WO2023068121A1 - Polyamide film laminate - Google Patents

Polyamide film laminate Download PDF

Info

Publication number
WO2023068121A1
WO2023068121A1 PCT/JP2022/037978 JP2022037978W WO2023068121A1 WO 2023068121 A1 WO2023068121 A1 WO 2023068121A1 JP 2022037978 W JP2022037978 W JP 2022037978W WO 2023068121 A1 WO2023068121 A1 WO 2023068121A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
polyamide film
carbon atoms
film
film laminate
Prior art date
Application number
PCT/JP2022/037978
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 高石
剛史 丸尾
吉朗 服部
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to JP2023512795A priority Critical patent/JP7274246B1/en
Publication of WO2023068121A1 publication Critical patent/WO2023068121A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to polyamide film laminates.
  • Polyamide films are widely used in electric and electronic parts due to their excellent heat resistance and mechanical properties.
  • reflow soldering is often performed at a high temperature of 250 ° C. or higher during circuit formation, so a semi-aromatic polyamide film with high heat resistance such as a melting point exceeding 300 ° C. is used (for example, Patent Documents 1 and 2).
  • the semi-aromatic polyamide film has high rigidity and insufficient flexibility.
  • Patent Document 3 discloses a film made of polyamide composed of terephthalic acid, 1,10-decanediamine, dimer acid, and dimer diamine. Further, for example, low dielectric materials such as liquid crystal polymer, low dielectric polyimide and polyarylene ether ketone are known as film materials (Patent Documents 4 and 5).
  • the inventors of the present invention have found that the conventional technology has the following problems. For example, in recent years, as the performance and speed of electronic devices have increased, it has become necessary for flexible printed circuit boards to cope with high-speed signal transmission, and reduction in transmission loss is required for use in such devices. However, the film of Patent Document 3 cannot sufficiently reduce the transmission loss in some cases.
  • Signal transmission loss mainly includes loss derived from the dielectric and loss derived from the conductor (copper foil), and the loss increases depending on the frequency. Since the loss derived from the dielectric depends on the dielectric properties (relative dielectric constant, dielectric loss tangent) of the film substrate and adhesive, materials with excellent dielectric properties are required to suppress loss in the high-frequency range. Become. However, since low-dielectric materials with excellent dielectric properties generally have low adhesion to conductors (eg, copper foil), adhesion to conductors is ensured by an anchor effect that utilizes the unevenness of the conductor surface.
  • the loss derived from a conductor is caused by the resistance component of the conductor, but the current distribution is concentrated on the conductor surface depending on the frequency (skin effect), so the surface roughness of the conductor has a greater effect in the high frequency range. In order to suppress the loss in the high frequency region, a conductor with small surface roughness is required.
  • Copper-clad laminates for flexible printed circuit boards are made by laminating insulating films and copper foils.
  • a method for laminating such a copper-clad laminate when the insulating film is polyimide, for example, there are a method of bonding with an adhesive such as an epoxy resin or an acrylic resin, and a method of applying varnish on a copper foil and heat-treating it. be.
  • Copper foil with a rough surface is used to obtain adhesion, but in order to suppress transmission loss in the high-frequency range, it is necessary to use copper foil with a small surface roughness and use a low-dielectric base film. It is desirable to use materials and laminate without the use of adhesives.
  • low-dielectric materials such as liquid crystal polymers and low-dielectric polyimides are difficult to adhere to copper foil, so a method for increasing adhesion to copper foil is required (Patent Document 4).
  • Polyarylene ether ketone is also known as another low dielectric material, but it has poor processing dimensional stability, and when metal layers are laminated, the laminate curls or deforms. In order to improve processing dimensional stability, it is necessary to add a fluororesin or mica, which significantly reduces the flexibility. Moreover, although a metal layer can be formed only by thermal fusion bonding, a high heating temperature of 345° C. is required (Patent Document 5).
  • the present invention is intended to solve the above problems, and is sufficiently excellent in heat resistance, flexibility, adhesion between the metal layer and the polyamide film, and transmission characteristics, and after heat treatment (for example, reflow treatment)
  • Another object of the present invention is to provide a polyamide film laminate in which warpage is sufficiently reduced.
  • the gist of the present invention is as follows. ⁇ 1> A unit consisting of an aliphatic dicarboxylic acid (A) having 18 or more carbon atoms, a unit consisting of an aliphatic diamine (B) having 18 or more carbon atoms, and an aromatic dicarboxylic acid (C) having 12 or less carbon atoms unit and a polyamide (E) containing a unit consisting of an aliphatic diamine (D) having 12 or less carbon atoms, a melting point of 240 ° C.
  • a unit consisting of an aliphatic dicarboxylic acid (A) having 18 or more carbon atoms a unit consisting of an aliphatic diamine (B) having 18 or more carbon atoms, and an aromatic dicarboxylic acid (C) having 12 or less carbon atoms unit and a polyamide (E) containing a unit consisting of an aliphatic diamine (D) having 12 or less carbon atoms, a melting point of 240
  • the aliphatic dicarboxylic acid (A) having 18 or more carbon atoms is a dimer acid
  • the aliphatic diamine (B) having 18 or more carbon atoms is a dimer diamine
  • the aromatic dicarboxylic acid (C) having 12 or less carbon atoms is The polyamide film laminate according to ⁇ 1> or ⁇ 2>, wherein the terephthalic acid and the aliphatic diamine (D) having 12 or less carbon atoms is 1,10-decanediamine.
  • ⁇ 4> The total content of the unit consisting of the aliphatic dicarboxylic acid (A) having 18 or more carbon atoms and the unit consisting of the aliphatic diamine (B) having 18 or more carbon atoms constitutes the polyamide (E)
  • ⁇ 5> The polyamide film laminate according to any one of ⁇ 1> to ⁇ 4>, wherein the peel strength between the polyamide film (F) and the metal layer is 0.1 [N/mm] or more.
  • ⁇ 6> ⁇ 1> to ⁇ 5> wherein the absolute value of the transmission loss of the microstrip line having a characteristic impedance of 50 ⁇ , which is produced from the polyamide film laminate, is 1.80 [dB/100 mm] or less at 5 GHz.
  • a polyamide film laminate according to any one of the above. ⁇ 7> The polyamide film laminate according to any one of ⁇ 1> to ⁇ 6>, wherein the metal layer is in direct contact with the polyamide film (F).
  • the metal layer is made of a metal selected from the group consisting of copper, aluminum, iron, nickel, tin, gold, silver, alloy steel, and alloy plating.
  • the polyamide film laminate has the metal layer on one or both sides of the polyamide film (F), and further has a resin layer on the metal layer, any of ⁇ 1> to ⁇ 8>
  • the content of the unit composed of the aliphatic dicarboxylic acid (A) having 18 or more carbon atoms is 3 to 45% by mass with respect to the total monomer components constituting the polyamide
  • the content of units composed of the aliphatic diamine (B) having 18 or more carbon atoms is 3 to 45% by mass with respect to the total monomer components constituting the polyamide
  • the content of units composed of the aromatic dicarboxylic acid (C) having 12 or less carbon atoms is 3 to 45% by mass with respect to the total monomer components constituting the polyamide, Any one of ⁇ 1> to ⁇ 9>, wherein the content of the unit composed of the aliphatic diamine (D) having 12 or less carbon atoms is 3 to 52% by mass with respect to the total mono
  • Polyamide film laminate according to. ⁇ 11> The polyamide film laminate according to any one of ⁇ 1> to ⁇ 10>, wherein the polyamide film (F) has a crystal melting enthalpy of 25 J/g or more.
  • Polyamide film laminate according to any one of. ⁇ 13> The polyamide film (F) has a thickness of 1 ⁇ m to 2 mm, The polyamide film laminate according to any one of ⁇ 1> to ⁇ 12>, wherein the metal layer has a thickness of 1 to 500 ⁇ m.
  • ⁇ 14> A method for producing a polyamide film laminate according to any one of ⁇ 1> to ⁇ 13>, A method for producing a polyamide film laminate, comprising laminating the polyamide film (F) and the metal layer by heating and pressing.
  • the polyamide film (F) and the metal layer are laminated by heating and pressing at “the melting point of the polyamide film (F) ⁇ 100° C.” to “the melting point of the polyamide film (F) ⁇ 5° C.” , the method for producing a polyamide film laminate according to ⁇ 14>.
  • a method for producing a polyamide film laminate according to any one of ⁇ 1> to ⁇ 13> A method for producing a polyamide film laminate, wherein the metal layer is provided on the polyamide film (F) by a method selected from the group consisting of a plating method, an inkjet method, a physical vapor deposition method, and a chemical vapor deposition method.
  • the heat resistance, flexibility, adhesion between the metal layer and the polyamide film, and transmission characteristics are sufficiently excellent, and even after heat treatment (for example, reflow treatment), warpage is sufficiently reduced.
  • a polyamide film laminate can be provided.
  • the polyamide film laminate of the present invention is laminated with a conductor (copper foil), it has a good appearance with respect to deformation of the laminate, surface unevenness and film bleeding, and is also good after heat treatment (for example, reflow treatment). is.
  • the polyamide film laminate of the present invention can be suitably used for flexible printed circuit boards and flexible antenna substrates, for example.
  • FIG. 4 is a schematic diagram showing a hysteresis curve for explaining a method of calculating a hysteresis loss rate
  • the polyamide film laminate of the present invention comprises a unit comprising an aliphatic dicarboxylic acid (A) having 18 or more carbon atoms (hereinafter sometimes referred to as component (A)) and an aliphatic diamine (B) having 18 or more carbon atoms. (hereinafter sometimes referred to as component (B)), a unit composed of an aromatic dicarboxylic acid (C) having 12 or less carbon atoms (hereinafter sometimes referred to as component (C)), and the number of carbon atoms
  • a metal layer is provided on a polyamide film (F) containing a polyamide (E) containing units consisting of 12 or less aliphatic diamines (D) (hereinafter sometimes referred to as component (D)).
  • Components (A) to (D) are contained as monomer components (or monomer residues) in the polyamide. Therefore, "a unit comprising an aliphatic dicarboxylic acid (A) having 18 or more carbon atoms” may simply be expressed as "a monomer of an aliphatic dicarboxylic acid (A) having 18 or more carbon atoms” or a residue thereof.
  • a "unit consisting of an aliphatic diamine (B) having 18 or more carbon atoms” may simply be expressed as "a monomer of an aliphatic diamine (B) having 18 or more carbon atoms" or a residue thereof.
  • a "unit consisting of an aromatic dicarboxylic acid (C) having 12 or less carbon atoms” may simply be expressed as "a monomer of an aromatic dicarboxylic acid (C) having 12 or less carbon atoms” or a residue thereof.
  • a “unit consisting of an aliphatic diamine (D) having 12 or less carbon atoms” may simply be expressed as an "aliphatic diamine (D) monomer having 12 or less carbon atoms" or a residue thereof.
  • an aliphatic dicarboxylic acid (A) having 18 or more carbon atoms that constitutes the polyamide (E) used in the film laminate of the present invention an aliphatic dicarboxylic acid consisting entirely of hydrocarbons other than the carboxyl group is preferable.
  • dimer acid 36 carbon atoms.
  • an aliphatic dicarboxylic acid having 20 or more carbon atoms is preferred, and a dimer acid is more preferred, because of its high flexibility.
  • the dimer acid may be an addition reaction of two molecules selected from unsaturated fatty acids such as oleic acid and linoleic acid.
  • the two molecules may be the same type of molecule, or they may be heterologous molecules to each other.
  • the dimer acid may be a dicarboxylic acid having an unsaturated bond, but is preferably a dicarboxylic acid in which all the bonds are saturated by hydrogenation because it is less likely to be colored.
  • Component (A) may be used alone or in combination of two or more of the above.
  • the number of carbon atoms in component (A) is preferably 20 to 40, more preferably 30 to 40, and still more preferably 30 to 40, from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity, and further reducing warpage. is 34-38.
  • heat resistance refers to heat resistance of a film and its laminate with a metal layer. is a property that can be reduced more fully. Heat resistance preferably also includes the property that the appearance of the film laminate is sufficiently good even after heat treatment. Flexibility refers to the flexibility of a film and its laminate with a metal layer, and more specifically, the property that the film has a sufficiently high elongational recovery rate and a sufficiently low tensile modulus of the film. Adhesion is the adhesion of a laminate of a film and a metal layer, and more specifically, it is a property in which the peel strength between the film and the metal layer is sufficiently high.
  • the transmission characteristic is the transmission characteristic of the laminate of the film and the metal layer, and more specifically, the characteristic that can sufficiently reduce the transmission loss when the laminate is used as the substrate of the electronic component.
  • Rubber elasticity refers to the rubber elasticity of a film, and more specifically, the property that the crystal melting enthalpy of the film is sufficiently high.
  • Elastomeric properties preferably also include the property that the hysteresis loss of the film is much lower.
  • the content of component (A) is preferably 3 to 45% by mass, more preferably 5 to 45% by mass, from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity and further reducing warpage. %, more preferably 10 to 45% by mass, particularly preferably 10 to 40% by mass, fully preferably 13 to 40% by mass, and 13 to 33% by mass. is more fully preferred.
  • the content is the content of the residue of component (A) and is the ratio to all the monomer components (or the total amount of those residues) constituting the polyamide. When the polyamide contains two or more components (A), the total amount thereof should be within the above range.
  • an aliphatic dicarboxylic acid consisting entirely of hydrocarbons other than amino groups is preferable. 18 carbon atoms), eicosane diamine (20 carbon atoms), and dimer diamine (36 carbon atoms). Among them, dimer diamine is preferred. By using dimer diamine, the flexibility of the entire polymer can be effectively improved even with a resin composition having a relatively smaller amount than other monomers. Dimer diamines are usually prepared by reacting a dimer acid with ammonia followed by dehydration, nitrile and reduction.
  • the dimer diamine may be a diamine having an unsaturated bond, but is preferably a diamine in which all bonds are saturated by hydrogenation because it is less likely to be colored.
  • Component (B) may be used alone or in combination of two or more of the above.
  • the number of carbon atoms in component (B) is preferably 20 to 40, more preferably 30 to 40, and still more preferably 30 to 40, from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity, and further reducing warpage. is 34-38.
  • the content of component (B) is preferably 3 to 45% by mass, more preferably 5 to 45% by mass, from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity and further reducing warpage. %, more preferably 10 to 45% by mass, particularly preferably 10 to 40% by mass, and fully preferably 12 to 27.3% by mass.
  • the content is the content of the residue of component (B) and is the ratio to all the monomer components (or the total amount of those residues) constituting the polyamide. When the polyamide contains two or more components (B), the total amount thereof should be within the above range.
  • aromatic dicarboxylic acid (C) having 12 or less carbon atoms constituting the polyamide (E) used in the film laminate of the present invention examples include terephthalic acid (8 carbon atoms), isophthalic acid (8 carbon atoms), and orthophthalic acid. (carbon number 8). Among them, aromatic dicarboxylic acids having 8 or more carbon atoms are preferred, and terephthalic acid is more preferred, because they tend to further improve heat resistance, flexibility and rubber elasticity.
  • Component (C) may be used alone or in combination of two or more of the above.
  • the number of carbon atoms in component (C) is preferably 4 to 12, more preferably 6 to 12, and even more preferably 6 to 12, from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity, and further reducing warpage. is 6-10.
  • the content of component (C) is preferably 3 to 45% by mass, more preferably 5 to 45% by mass, from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity and further reducing warpage. %, more preferably 5 to 40% by mass, particularly preferably 8 to 35% by mass, fully preferably 8 to 33% by mass, and 15 to 33% by mass. is more fully preferred.
  • the content is the content of the residue of component (C) and is the ratio to all the monomer components (or the total amount of those residues) constituting the polyamide. When the polyamide contains two or more components (C), the total amount thereof should be within the above range.
  • Examples of the aliphatic diamine (D) having 12 or less carbon atoms constituting the polyamide (E) used in the film laminate of the present invention include 1,12-dodecanediamine (12 carbon atoms), 1,10-decanediamine ( 10 carbon atoms), 1,9-nonanediamine (9 carbon atoms), 1,8-octanediamine (8 carbon atoms), and 1,6-hexanediamine (6 carbon atoms).
  • diamines having 6 or more carbon atoms are preferred, diamines having 8 or more carbon atoms are more preferred, and 1,10-decanediamine is even more preferred, since they tend to further improve heat resistance, flexibility and rubber elasticity.
  • (D) may be used alone among the above, or may be used in combination of two or more.
  • the number of carbon atoms in component (D) is preferably 4 to 12, more preferably 6 to 12, and still more preferably 6 to 12, from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity and further reducing warpage. is 8-12.
  • the content of component (D) is preferably 3 to 52% by mass, more preferably 5 to 50% by mass, from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity and further reducing warpage. %, more preferably 5 to 40% by mass, particularly preferably 10 to 40% by mass, fully preferably 20 to 40% by mass, and 25 to 40% by mass. is more fully preferred.
  • the content is the content of the residue of component (D) and is the ratio to all the monomer components (or the total amount of those residues) constituting the polyamide. When the polyamide contains two or more components (D), the total amount thereof should be within the above range.
  • the polyamide (E) may be a random polyamide in which components (A) to (D) are randomly arranged and polymerized, or a hard segment and component consisting of components (C) and (D) It may be a block-type polyamide containing a soft segment consisting of (A) and (B).
  • Polyamide (E) is preferably a block-type polyamide from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission properties and rubber elasticity and further reducing warpage.
  • the block-type structure a phase-separated structure of hard segments and soft segments is formed, the hard segments play the role of cross-linking points of rubber, and the soft segments can expand and contract freely. Therefore, the polyamide (E) can have sufficiently superior flexibility (and rubber elasticity) while having sufficiently superior heat resistance. As a result, it is believed that further improvements in heat resistance, flexibility, adhesion, transmission properties and rubber elasticity and further reduction in warpage are achieved in films and laminates.
  • Combinations of components (C) and (D) include, for example, terephthalic acid and butanediamine, terephthalic acid and 1,9-nonanediamine, terephthalic acid and 1,10-decanediamine, and terephthalic acid and 1,12-dodecanediamine.
  • terephthalic acid and 1,10-decanediamine are preferred.
  • the hard segment tends to be a highly crystalline segment, so the formation of a phase separation structure between the hard segment and the soft segment is promoted, and sufficiently excellent flexibility and It expresses rubber elasticity.
  • "Rubber” is used as a concept of a substance that exhibits the characteristic of being locally deformed by an external force, but returning to its original shape when the force is removed.
  • Total content of units consisting of aliphatic dicarboxylic acid (A) having 18 or more carbon atoms in polyamide (E) used in the present invention and units consisting of aliphatic diamine (B) having 18 or more carbon atoms is 10 to 90% by mass from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity and further reducing warpage.
  • it is 15 to 80% by mass, more preferably 20 to 80% by mass, particularly preferably 30 to 75% by mass, and fully preferably 30 to 60% by mass. .
  • the total content is the total content of the residues of the component (A) and the residues of the component (B), and all the monomer components (or the total amount of their residues) constituting the polyamide (E) is the ratio to When the polyamide (E) contains two or more polyamides as described later, the total content of the component (A) and the component (B) in the total polyamide (E) should be within the above range.
  • the total content of component (A) and component (B) in each polyamide (E) is It is preferably within the above range, and at this time, it is more preferable that the content of component (A) and the content of component (B) in each polyamide (E) be within the ranges described above.
  • the polyamide (E) used in the present invention does not contain a polyether component or a polyester component that easily decomposes during polymerization.
  • polyether components include polyoxyethylene glycol, polyoxypropylene glycol, polyoxytetramethylene glycol, and polyoxyethylene/polyoxypropylene glycol.
  • Polyester components include, for example, polyethylene adipate, polytetramethylene adipate, and polyethylene sebacate. When a polyether component or polyester component is used, decomposition may occur if the polymerization temperature is high.
  • the total content of the polyether component and the polyester component is preferably 2% by mass or less from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity and further reducing warpage, and 1 mass % or less, more preferably 0.1 mass % or less.
  • the lower limit of the total content range is usually 0% by mass.
  • the total content is the content of the residues of the polyether component and the polyester component, and is the ratio to all the monomer components (or the total amount of their residues) constituting the polyamide (E).
  • the polyether component and the polyester component are components that form a part of the polyamide through covalent bonding with the polyamide, and are not simply blended with the polyamide.
  • the polyamide (E) used in the present invention may contain an end-blocking agent for adjusting the degree of polymerization and suppressing decomposition and coloring of the product.
  • terminal blocking agents include monocarboxylic acids such as acetic acid, lauric acid, benzoic acid and stearic acid, and monoamines such as octylamine, cyclohexylamine, aniline and stearylamine.
  • One of the above terminal blocking agents may be used alone, or two or more thereof may be used in combination.
  • the content of the terminal blocking agent is not particularly limited, but is usually 0 to 10 mol % relative to the total molar amount of dicarboxylic acid and diamine.
  • the method for producing the polyamide (E) used in the present invention is not particularly limited.
  • a method of collectively reacting a group dicarboxylic acid (C) and an aliphatic diamine having 12 or less carbon atoms (D) (hereinafter sometimes referred to as a "batch polymerization method” or a “one-step method”), or component (C) and component (D) separately from component (A) and component (B) (hereinafter sometimes referred to as “split polymerization method” or “two-step method”).
  • the polyamide (E) used in the present invention is preferably produced by a split polymerization method from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission properties and rubber elasticity and further reducing warpage.
  • the polyamide By producing the polyamide by a split polymerization method, the polyamide has a more preferable crystal melting enthalpy (especially 25 J / g or more), heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity are further improved and This is because a further reduction in warpage is achieved.
  • the polymerization method is not particularly limited, but includes, for example, a method of heating to a temperature below the melting point of the polyamide to be obtained, and polymerizing by maintaining the temperature under a nitrogen stream while removing condensation water out of the system.
  • a polyamide polymerized by a batch polymerization method can be called a "random type polyamide” from the viewpoint that all components are arranged randomly.
  • the "melting point of the resulting polyamide” is the "melting point of the target polyamide", and may be, for example, the "melting point of the hard segment polymer” described in the division polymerization method described below.
  • a hard segment polymer is obtained by the production method explained in the split polymerization method described later.
  • the melting point of the resulting hard segment polymer is measured.
  • a method for measuring the melting point is not particularly limited, and for example, it can be measured by a differential scanning calorimeter.
  • the polyamide can be produced by subjecting the mixture containing the monomer (or prepolymer) to a polymerization reaction at a temperature below the "melting point" (particularly below the melting point).
  • the melting point of the "target polyamide” (for example, the “melting point of the hard segment polymer") is 315° C.
  • the polymerization temperature in batch polymerization may be 220 to 300° C. (especially 240 to 280° C.).
  • the polymerization time in the batch polymerization method is not particularly limited as long as sufficient polymerization is performed, and may be, for example, 1 to 10 hours (especially 3 to 7 hours).
  • component (C) and component (D) are reacted separately from component (A) and component (B) to polymerize.
  • the reaction product is further reacted with component (A) and component (B) to polymerize.
  • component (A) and component (B) may be used in an unreacted state with each other or in a mutually reacted state (i.e., in the form of their reaction products).
  • the polyamide (E) used in the present invention is a reaction product of the component (A) and the component (B) obtained by reacting the component (A) and the component (B) in advance, and the component (C ) and the component (D) by reacting and polymerizing.
  • the polyamide (E) used in the present invention is polymerized by reacting the reaction product of the component (A) and the component (B) with the reaction product of the component (C) and the component (D).
  • Component (A) and component (B) are in a mutually reacted state (that is, their reaction products are form) is preferably used.
  • the polyamide polymerized by the split polymerization method is a polyamide composed of a hard segment composed of components (C) and (D) and a soft segment composed of components (A) and (B). is obtained as Therefore, the polyamide polymerized by the batch polymerization method is called "random type polyamide", whereas the polyamide polymerized by the division polymerization method is called "block type polyamide” from the viewpoint of containing hard segments and soft segments. can be done.
  • the chain length of the resulting reaction product can be controlled and, as a result, the flexibility and rubber elasticity of the resulting polyamide can be controlled.
  • the molar ratio [(C)/(D)] is preferably 45/55 to 60/40, more preferably 45/55 to 55/45, because flexibility and rubber elasticity are more sufficiently improved. is more preferred.
  • reaction product manufacturing method X a method for producing a reaction product containing an aromatic dicarboxylic acid (C) having 12 carbon atoms or less and an aliphatic diamine (D) having 12 carbon atoms or less
  • reaction product manufacturing method X a method for producing a reaction product containing an aromatic dicarboxylic acid (C) having 12 carbon atoms or less and an aliphatic diamine (D) having 12 carbon atoms or less
  • reaction product manufacturing method X a method for producing a reaction product containing an aromatic dicarboxylic acid (C) having 12 carbon atoms or less and an aliphatic diamine (D) having 12 carbon atoms or less
  • reaction product manufacturing method X a method for producing a reaction product containing an aromatic dicarboxylic acid (C) having 12 carbon atoms or less and an aliphatic diamine (D) having 12 carbon atoms or less
  • the component A method of adding (D) can be mentioned.
  • the heating temperature may be 100 to 240°C
  • the reaction product of component (C) and component (D) may be in the form of salts of component (C) and component (D), or condensates (or oligomers or prepolymers) thereof. or a composite form thereof.
  • the method of reacting the aliphatic dicarboxylic acid (A) having 18 or more carbon atoms with the aliphatic diamine (B) having 18 or more carbon atoms is not particularly limited.
  • a method of reacting at a temperature of 80 to 150° C. (especially 100 to 150° C.) for 0.5 to 3 hours can be mentioned.
  • reaction product of component (A) and component (B), like the reaction product of component (C) and component (D), may also be in the form of a salt, or may be in the form of condensation. It may have the form of a substance (or oligomer or prepolymer), or it may have a composite form thereof.
  • the polymerization method is not particularly limited. and a method of polymerizing at a temperature of less than Specifically, the hard segment polymer (for example, a polyamide composed only of components (C) and (D) constituting the hard segment) is heated to a temperature below the melting point, and condensed water is removed from the system under a nitrogen stream. , polymerize by maintaining the temperature. By polymerizing in this manner, the hard segments are not melted, and only the soft segments can be polymerized in a melted state.
  • the method of polymerizing at a temperature below the melting point of the hard segment polymer is particularly effective in the polymerization of polyamide having a high melting point of 280° C. or higher, which tends to decompose due to the high polymerization temperature.
  • the “melting point of the hard segment polymer” is the melting point of the polyamide obtained by sufficiently polymerizing only the components (C) and (D) that constitute the hard segment as monomer components.
  • the “melting point of the hard segment polymer” is, for example, the method described in WO 2013/042541 pamphlet, even if it is the melting point of a polyamide obtained by sufficiently polymerizing only the components (C) and (D) as monomer components. good.
  • the “melting point of the hard segment polymer” is obtained by a method comprising step (i) of obtaining a reaction product from components (C) and (D) and step (ii) of polymerizing the resulting reaction product. is the melting point of polyamide (hard segment polymer).
  • step (i) components (C) and (D) are heated to a temperature equal to or higher than the melting point of component (D) and equal to or lower than the melting point of component (C),
  • the reaction product can be obtained by adding component (D) so as to maintain the powdery state of .
  • step (i) for example, when terephthalic acid and 1,10-decanediamine are used as components (C) and (D), respectively, the heating temperature is 100 to 240°C (preferably 140 to 200°C, especially 170°C).
  • Addition of component (D) is preferably carried out continuously, for example, preferably over 1 to 10 hours (preferably 1 to 5 hours, particularly 2.5 hours).
  • step (ii) the reaction product in a solid state obtained in step (i) is sufficiently heated so as to maintain the solid state to polymerize (i.e. solid phase polymerization).
  • the heating temperature that is, polymerization temperature
  • the heating time that is, polymerization time
  • Steps (i) and (ii) are preferably carried out in a stream of nitrogen inert gas or the like.
  • the melting point of the "hard segment polymer" is usually 315°C.
  • the following method can be adopted.
  • the reaction product is obtained by reacting the component (C) and the component (D) by the above-described reaction product manufacturing method X, and then the reaction product is heated to a temperature below the “melting point of the hard segment polymer”.
  • Polyamide can be produced by further reacting and polymerizing with component (A) and component (B).
  • dimer acid, dimer diamine, terephthalic acid and 1,10-decanediamine are used as components (A) to (D) respectively
  • the polymerization temperature in the split polymerization method is 220 to 300° C. (preferably 240 to 280° C., particularly 260° C. °C).
  • the polymerization time in the split polymerization method is not particularly limited as long as sufficient polymerization is performed, and may be, for example, 1 to 10 hours (preferably 3 to 7 hours, particularly 5 hours).
  • a catalyst may be used, if necessary, in the batch polymerization method and the divisional polymerization method (hereinafter sometimes simply referred to as the "method for producing the polyamide (E) used in the present invention").
  • Catalysts include, for example, phosphoric acid, phosphorous acid, hypophosphorous acid, or salts thereof.
  • the content of the catalyst is not particularly limited, but is usually 0 to 2 mol % relative to the total molar amount of dicarboxylic acid and diamine.
  • an organic solvent or water may be added as necessary.
  • polymerization may be performed in a closed system or under normal pressure.
  • the pressure may be increased due to volatilization of the monomers, generation of condensed water, etc. Therefore, it is preferable to appropriately control the pressure.
  • the monomer to be used has a high boiling point and does not flow out of the system without pressurization, the polymerization can be carried out under normal pressure.
  • a combination of dimer acid, dimer diamine, terephthalic acid and decanediamine can be polymerized under normal pressure.
  • the method for producing the polyamide (E) used in the present invention it is preferable to carry out polymerization under a nitrogen atmosphere or under vacuum in order to prevent oxidative deterioration.
  • the polymerized polyamide may be extruded into strands into pellets, or may be hot-cut or underwater-cut into pellets.
  • solid-phase polymerization may be performed after polymerization in order to further increase the molecular weight.
  • Solid phase polymerization is particularly effective when the viscosity during polymerization is high and operation becomes difficult.
  • the solid phase polymerization is preferably carried out by heating at a temperature below the melting point of the resin composition for 30 minutes or longer, more preferably for 1 hour or longer, under inert gas flow or under reduced pressure.
  • the melting point of the resin composition may be the same temperature as the "melting point of the hard segment polymer" described above.
  • the polyamide (E) may contain two or more polyamides having different monomer compositions (types), monomer sequences, and/or molecular weights (especially melting points).
  • the two or more polyamides may be two or more polyamides selected from the polyamide (E) described above.
  • the two or more types of polyamides having different monomer sequences are the above-described random type polyamide and the above-described block type polyamide. From the viewpoint of further improving heat resistance, flexibility, adhesion, transmission properties and rubber elasticity, and further reducing warpage, the polyamide (E) preferably has a higher block-type polyamide content.
  • the content of the block-type polyamide is preferably 10% by mass or more relative to the total amount of the polyamide (E), from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity and further reducing warpage. More preferably 30% by mass or more, still more preferably 45% by mass or more, particularly preferably 70% by mass or more, fully preferably 80% by mass or more, more preferably 90% by mass or more, most preferably 100% by mass be.
  • the content of components (A) to (D) described herein is the content of components (A) to (D) in the total polyamide (E) It can be the amount.
  • the polyamide (E) may be used by pre-melting and mixing part or all of the two or more polyamides, or each polyamide ( Pellets) may be used by dry-blending them, or they may be used in a composite form.
  • the polyamide (E) used in the present invention contains two types of polyamides, a random type polyamide and a block type polyamide
  • the polyamide obtained by the batch polymerization method and the division polymerization method may be produced by performing melt-mixing in any combination of two or more.
  • melt-mixing can be performed by combining a random type polyamide and a random type polyamide, a combination of a random type polyamide and a block type polyamide, or a combination of a block type polyamide and a block type polyamide.
  • a combination of block-type polyamide and block-type polyamide or a combination of random-type polyamide and block-type polyamide is preferable, and a combination of block-type polyamide and block-type polyamide is preferable. is more preferred.
  • the melt-mixing is preferably performed at a temperature equal to or higher than the melting point of the polyamide used for melt-mixing.
  • the polyamides used for melt-mixing have different melting points, it is preferable to perform melt-mixing at a temperature equal to or higher than the melting point of the polyamide having the highest melting point.
  • the monomer composition of each polyamide e.g., the contents of components (A), (B), (C) and (D) are mutually the same. may be different.
  • the polyamide (E) contains two or more types of polyamides
  • the component (A) and the component (B) described above can be obtained. can be arbitrarily adjusted.
  • the polyamide film (F) used in the present invention is obtained by melting and mixing the polyamide (E) at 240 to 340 ° C. for 3 to 15 minutes, extruding it into a sheet through a T-die, and extruding the extruded product from -10 to 80.
  • An unstretched film can be produced by contacting and cooling on a drum whose temperature is adjusted to °C.
  • the polyamide film (F) may further contain other polymers in addition to the polyamide (E).
  • the other polymer is usually 50% by mass or less, preferably 30% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less, and particularly preferably 0% by mass, based on the total amount of the film. %.
  • the polyamide film (F) may be in an unstretched state or in a stretched state. From the viewpoint of further improving heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity and further reducing warpage, especially after heat treatment, the warpage of the film laminate is more sufficiently reduced, and the appearance of the film laminate is improved. From the viewpoint of making it more satisfactory, it is preferable that the polyamide film (F) is in a stretched state.
  • the stretching is preferably uniaxial or biaxial stretching to further improve heat resistance, flexibility, adhesion, transmission properties and rubber elasticity, and From the viewpoint of further reducing warpage, stretching in the biaxial stretching direction is more preferable.
  • the stretching method includes a simultaneous stretching method and a sequential stretching method.
  • the stretching method is preferably a simultaneous stretching method from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission properties and rubber elasticity and further reducing warpage.
  • An example of the simultaneous biaxial stretching method is a method in which an unstretched film is simultaneously biaxially stretched and then heat-set. Stretching is performed at 30 to 150° C., for example, 1.2 to 8 times in both the width direction (hereinafter sometimes abbreviated as “TD”) and the longitudinal direction (hereinafter sometimes abbreviated as “MD”). It is preferable to perform The draw ratio is preferably 1.3 to 5 times, more preferably 1.3 to 5 times in both the TD and MD directions, from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission properties and rubber elasticity, and further reducing warpage. is 1.4 to 4 times, more preferably 1.8 to 2.5 times, particularly preferably 2 to 2.5 times.
  • the heat setting treatment is preferably performed at 150 to 300° C. for several seconds with a TD relaxation treatment of several percent. Prior to the simultaneous biaxial stretching, the film may be subjected to preliminary longitudinal stretching of more than 1 to 1.2 times or less.
  • An example of the sequential biaxial stretching method is a method in which an unstretched film is subjected to heat treatment such as roll heating or infrared heating, and then stretched in the longitudinal direction, followed by continuous lateral stretching and heat setting.
  • the longitudinal stretching (in the MD direction) is preferably carried out at 30 to 150° C. at a stretching ratio within the same range as the stretching ratio in the MD direction in the simultaneous biaxial stretching method.
  • the transverse stretching (TD direction) is preferably carried out at a temperature of 30 to 150° C., which is the same as in the longitudinal stretching, and at a stretching ratio within the same range as the stretching ratio in the TD direction in the simultaneous biaxial stretching method.
  • the heat setting treatment is preferably carried out at 150 to 300° C. for several seconds with TD relaxation set to several percent.
  • the surfaces of cylinders, melting parts of barrels, weighing parts, tubes, filters, T-dies, etc. are treated to reduce surface roughness in order to prevent resin from stagnation. preferably.
  • a method of reducing surface roughness for example, a method of modifying with a substance having low polarity can be mentioned.
  • a method of vapor-depositing silicon nitride or diamond-like carbon on the surface for example, a method of vapor-depositing silicon nitride or diamond-like carbon on the surface.
  • Examples of methods for stretching a film include a flat sequential biaxial stretching method, a flat simultaneous biaxial stretching method, and a tubular method. Among them, it is preferable to adopt the flat simultaneous biaxial stretching method from the viewpoint of improving the thickness accuracy of the film and making the MD properties of the film uniform.
  • Examples of the heat treatment method after stretching include known methods such as a method of blowing hot air, a method of irradiating with infrared rays, and a method of irradiating with microwaves.
  • the method of blowing hot air is preferable because it enables uniform and accurate heating.
  • the film used in the present invention has a heat-stabilizing agent in order to increase the thermal stability during film formation, prevent deterioration of the strength and elongation of the film, and prevent deterioration of the film due to oxidation and decomposition during use. It is preferred to include an agent.
  • heat stabilizers include hindered phenol-based heat stabilizers, hindered amine-based heat stabilizers, phosphorus-based heat stabilizers, sulfur-based heat stabilizers, and bifunctional heat stabilizers.
  • hindered phenol-based heat stabilizers examples include Irganox 1010 (registered trademark) (manufactured by BASF Japan, pentaerythritol tetrakis [3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate]) and Irganox 1076.
  • hindered amine heat stabilizers examples include Nylostab S-EED (registered trademark) (manufactured by Clariant Japan, N,N'-bis-2,2,6,6-tetramethyl-4-piperidinyl-1,3- benzenedicarboxamide).
  • Examples of phosphorus-based heat stabilizers include Irgafos168 (registered trademark) (manufactured by BASF Japan, tris(2,4-di-tert-butylphenyl) phosphite), Irgafos12 (registered trademark) (manufactured by BASF Japan, 6 ,6′,6′′-[nitrilotris(ethyleneoxy)]tris(2,4,8,10-tetra-tert-butyldibenzo[d,f][1,3,2]dioxaphosphepin)) , Irgafos38 (registered trademark) (manufactured by BASF Japan, bis (2,4-di-tert-butyl)-6-methylphenyl) ethyl phosphite), ADKSTAB329K (registered trademark) (manufactured by ADEKA, tris (mono-di nonylphenyl)
  • sulfur-based heat stabilizers examples include DSTP "Yoshitomi” (registered trademark) (manufactured by Mitsubishi Chemical Corporation, chemical formula name: distearyl thiodipropionate), Seenox 412S (registered trademark) (manufactured by Cipro Kasei Co., Ltd., pentaerythritol tetrakis -(3-dodecylthiopropionate)).
  • Bifunctional heat stabilizers include, for example, Sumilizer GM (registered trademark) (manufactured by Sumitomo Chemical Co., Ltd., 2-tert-butyl-6-(3-tert-butyl-2-hydroxy-5-methylbenzyl)-4 -methylphenyl acrylate), Sumilizer GS (registered trademark) (manufactured by Sumitomo Chemical Co., Ltd., 2-[1-(2-hydroxy-3,5-di-tert-pentylphenyl)ethyl]-4,6-di-tert- pentylphenyl acrylate).
  • the thermal decomposition temperature of the hindered phenol heat stabilizer is preferably 320°C or higher, more preferably 350°C or higher.
  • a hindered phenol heat stabilizer having a thermal decomposition temperature of 320° C. or higher there is Sumilizer GA-80.
  • the hindered phenol-based heat stabilizer has an amide bond, deterioration of film strength can be prevented.
  • Hindered phenolic heat stabilizers having an amide bond include, for example, Irganox 1098.
  • a hindered phenol-based heat stabilizer together with a bifunctional heat stabilizer deterioration of film strength can be further reduced.
  • heat stabilizers may be used alone or in combination of two or more.
  • a hindered phenol-based heat stabilizer and a phosphorus-based heat stabilizer are used in combination, it is possible to prevent pressure build-up in the filter for filtering raw materials during film formation, and to prevent deterioration of film strength.
  • a hindered phenol-based heat stabilizer, a phosphorus-based heat stabilizer, and a bifunctional heat stabilizer are used in combination, it is possible to prevent pressure build-up in the filter for filtering raw materials during film formation, and to improve film strength. Degradation can be further reduced.
  • a combination of the hindered phenol heat stabilizer and the phosphorus heat stabilizer a combination of Sumilizer GA-80 or Irganox 1098 and Hostanox P-EPQ or GSY-P101 is preferable.
  • a combination of a hindered phenol-based heat stabilizer, a phosphorus-based heat stabilizer, and a bifunctional heat stabilizer a combination of Sumilizer GA-80 or Irganox 1098, HostanoxP-EPQ or GSY-P101, and Sumilizer GS is preferable.
  • Sumilizer GA-80, GSY-P101 and Sumilizer GS are more preferred.
  • the content of the heat stabilizer in the polyamide film (F) used in the present invention is preferably 0.01 to 2 parts by weight, preferably 0.04 to 1 part by weight, with respect to 100 parts by weight of the polyamide (A). Part is more preferable.
  • the content of the heat stabilizer is preferably 0.01 to 2 parts by mass, thermal decomposition can be suppressed more efficiently.
  • both the individual content of each heat stabilizer and the total content of the heat stabilizers are preferably within the above range.
  • the polyamide film (F) used in the present invention may contain lubricant particles in order to improve slipperiness.
  • lubricant particles include inorganic particles such as silica, alumina, titanium dioxide, calcium carbonate, kaolin, and barium sulfate, and organic fine particles such as acrylic resin particles, melamine resin particles, silicone resin particles, and crosslinked polystyrene particles. be done.
  • the polyamide film (F) used in the present invention may contain various additives as necessary within a range that does not impair the effects of the present invention.
  • Additives include, for example, coloring agents such as pigments and dyes, coloring inhibitors, antioxidants different from the above heat stabilizers, weather resistance improvers, flame retardants, plasticizers, release agents, reinforcing agents, modifiers agents, antistatic agents, ultraviolet absorbers, antifogging agents, and various polymers.
  • Pigments include titanium oxide and the like.
  • weather resistance improvers include benzotriazole compounds.
  • flame retardants include brominated flame retardants and phosphorus flame retardants.
  • reinforcing agents include talc and the like.
  • the various additives described above may be added at any stage during film production.
  • the additives may be independently pre-kneaded with the polyamide (E), or may be added just before melt-mixing during extrusion into a sheet. good.
  • the polyamide film (F) used in the present invention contains heat stabilizers, lubricant particles, and various additives, it is preferable to knead the polyamide (E) and the additives in advance.
  • the kneader used for kneading with the polyamide (E) is not particularly limited, and examples thereof include known melt kneaders such as a single-screw extruder, a twin-screw extruder, a Banbury mixer, a kneader, and a mixing roll.
  • the melt-kneading temperature is usually at least the melting point of the polyamide (E).
  • the polyamide film (F) used in the present invention can be treated to improve the adhesion of its surface.
  • methods for improving adhesion include corona treatment, plasma treatment, acid treatment, and flame treatment.
  • Various coating agents may be applied to the surface of the polyamide film (F) used in the present invention in order to impart functions such as easy adhesion, antistatic properties, releasability, and gas barrier properties.
  • the thickness of the polyamide film (F) used in the present invention is usually 1 ⁇ m to 2 mm, and from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity and further reducing warpage, preferably 10 ⁇ m to 10 ⁇ m. 500 ⁇ m, more preferably 25-100 ⁇ m.
  • the stretched polyamide film (F) has the above thickness.
  • the polyamide film (F) used in the present invention has excellent heat resistance, and the melting point, which is an index of heat resistance, must be 240° C. or higher, preferably 250° C. or higher, and 270° C. It is more preferably 300° C. or higher, and more preferably 300° C. or higher. If the melting point is too low, the heat resistance will be lowered.
  • the melting point of the polyamide film (F) is determined by the molecular weight of the polyamide (E), the content of the reaction product (hard segment polymer) composed of the aromatic dicarboxylic acid (C) and the aliphatic diamine having 12 or less carbon atoms (D), ( It can be controlled by adjusting one or more factors selected from the C)/(D) content ratio. For example, increasing the molecular weight of polyamide (E) raises its melting point. Also, for example, if the molecular weight of polyamide (E) is reduced, the melting point will be lowered. Further, for example, increasing the content of the reaction product consisting of the aromatic dicarboxylic acid (C) and the aliphatic diamine having 12 or less carbon atoms (D) tends to increase the melting point.
  • the melting point is the temperature based on the endothermic peak when the temperature is raised at a temperature elevation rate of 20°C/min with a differential scanning calorimeter.
  • the polyamide film (F) used in the present invention is excellent in flexibility, and the elongation recovery rate, which is one indicator of flexibility, is usually 30% or more, and the heat resistance, flexibility, adhesion, and transmission characteristics And from the viewpoint of further improvement of rubber elasticity and further reduction of warpage, it is preferably 40% or more, more preferably 50% or more, and even more preferably 55% or more. If the elongation recovery rate is too low, the flexibility will decrease. The elongation recovery rate is usually 100% or less (especially 90% or less).
  • the polyamide (E) that constitutes the polyamide film (F) has a block-type structure, so that an elongation recovery rate of 50% or more (especially 55% or more) can be achieved.
  • the elongation recovery rate of the polyamide film (F) depends on the polymer structure of the polyamide (E), the draw ratio, the content of the aliphatic dicarboxylic acid (A) having 18 or more carbon atoms and the aliphatic diamine (B) having 18 or more carbon atoms. can be controlled by adjusting one or more factors selected from For example, when the polymer structure of polyamide (E) is adjusted from a random type structure to a block type structure, the elongation recovery rate tends to increase. Further, for example, when the draw ratio is increased, the elongation recovery rate is decreased. On the other hand, when the draw ratio is reduced, the elongation recovery rate increases.
  • the elongation recovery rate is the value obtained when a tensile test is performed under the conditions of a chuck-to-chuck distance of 70 mm and a tensile test speed of 5 mm/min in an environment of 23°C.
  • the tensile modulus (MD) which is one indicator of the flexibility of the polyamide film (F) used in the present invention, is usually 2500 MPa or less, and the heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity are further improved and From the viewpoint of further reducing warpage, it is preferably 2000 MPa or less, more preferably 1500 MPa or less, even more preferably 1000 MPa or less, particularly preferably 500 MPa or less, and 310 MPa or less is sufficient. preferred. Too high a tensile modulus reduces flexibility.
  • the tensile modulus is usually 10 MPa or more.
  • the tensile modulus of the polyamide film (F) depends on the polymer structure of the polyamide (E), the draw ratio, the content of the aliphatic dicarboxylic acid (A) having 18 or more carbon atoms and the aliphatic diamine (B) having 18 or more carbon atoms. can be controlled by adjusting one or more factors selected from For example, when the polymer structure of polyamide (E) is adjusted from a random type structure to a block type structure, the tensile modulus tends to decrease. Further, for example, when the draw ratio is increased, the tensile elastic modulus increases. On the other hand, reducing the draw ratio reduces the tensile modulus.
  • the tensile modulus uses values measured in an environment with a temperature of 20°C and a humidity of 65% according to JIS K 7127.
  • the crystalline melting enthalpy of the polyamide film (F) used in the present invention is usually 15 J / g or more, and from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity and further reducing warpage, 18 J /g or more, more preferably 20 J/g or more, even more preferably 23 J/g or more, particularly preferably 25 J/g or more, and 30 J/g or more. Fully preferred, 40 J/g or greater is more preferred, and 50 J/g or greater is most preferred. The higher the crystallinity of the hard segment, the more the formation of a phase separation structure between the hard segment and the soft segment is promoted, and the flexibility and rubber elasticity are improved.
  • the crystal melting enthalpy is usually 120 J/g or less (especially 90 J/g or less).
  • a crystalline melting enthalpy of 23 J/g or more is achieved because the polyamide (E) constituting the polyamide film (F) has a block type structure. can do.
  • the crystal melting enthalpy of the polyamide film (F) is determined by the polymer structure of the polyamide (E), the reaction product (hard segment polymer) composed of the aromatic dicarboxylic acid (C) and the aliphatic diamine (D) having 12 or less carbon atoms. It can be controlled by adjusting one or more factors selected from the content. For example, when the polymer structure of polyamide (E) is adjusted from a random type structure to a block type structure, the crystal melting enthalpy tends to increase. Further, for example, when the content of the reaction product composed of the aromatic dicarboxylic acid (C) and the aliphatic diamine having 12 or less carbon atoms (D) is increased, the crystal melting enthalpy is increased.
  • the crystal melting enthalpy uses the value of the calorie of the endothermic peak measured by the same method as the melting point.
  • the hysteresis loss rate is 90% or less (from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity and further reducing warpage.
  • the hysteresis loss rate is preferably 85% or less, more preferably 80% or less, and is usually 10% or more (especially 30% or more).
  • the hysteresis loss rate of the polyamide film (F) is determined by the polymer structure of the polyamide (E), the draw ratio, the content of the aliphatic dicarboxylic acid (A) having 18 or more carbon atoms and the aliphatic diamine (B) having 18 or more carbon atoms.
  • the hysteresis loss rate tends to decrease.
  • the draw ratio is increased, the hysteresis loss rate increases.
  • the draw ratio is reduced, the hysteresis loss rate is reduced.
  • the hysteresis loss rate uses the value obtained when a tensile test is performed in the same manner as the elongation recovery rate.
  • the polyamide film (F) used in the present invention has sufficiently low dielectric loss tangent and relative dielectric constant, is excellent in dielectric properties, and is also excellent in insulating properties.
  • the polyamide film (F) used in the present invention has sufficiently reduced heat shrinkage and water absorption.
  • the obtained film may be in the form of a sheet, or may be in the form of a film roll by being wound up on a take-up roll. From the viewpoint of productivity when used for various purposes, it is preferable to use the form of a film roll. When a film roll is used, it may be slit to a desired width.
  • the metal layer is provided on at least one side of the polyamide film (F), for example, it may be provided on only one side, or may be provided on both sides. Also, the metal layer may be provided entirely or partially on one side or both sides of the polyamide film (F).
  • the thickness of the metal layer is not particularly limited as long as the flexibility of the laminate (especially the film) is not hindered, and may be, for example, 1 to 500 ⁇ m. From the viewpoint of further improvement of the resistance and further reduction of warpage, the thickness is preferably 1 to 105 ⁇ m, more preferably 9 to 35 ⁇ m.
  • a resin layer may be further provided in the laminate of the present invention.
  • the resin layer may be provided on the metal layer, or the side of the polyamide film (F) not provided with the metal layer (opposite side) may be provided in A resin layer is usually provided on the metal layer.
  • the resin layer may be provided on one metal layer, or may be provided on both metal layers.
  • the resin constituting the resin layer is not particularly limited, and examples thereof include polyimide, polyamideimide, polyetherimide, polyarylene ether ketone, polyarylene sulfide, fluorocarbon polymer, polyamide, polyester, polyether, polyolefin, polystyrene, polycarbonate, and polyurethane. , ethylene/vinyl acetate copolymers, ethylene/ ⁇ -olefin copolymers, ethylene/acrylate copolymers, maleic anhydride-modified polyolefins, and ionomers.
  • the resin constituting the resin layer is polyamide
  • the polyamide may be polyamide (E) or other polyamide.
  • the metal layer provided on one side may be made of the same metal as the metal layer provided on the other side, or may be made of a different metal. may be configured.
  • the metal layer may be provided on the polyamide film (F) via a third member such as an adhesive layer. is preferably provided in direct contact with the This is because the transmission loss can be sufficiently reduced by not interposing a third member such as an adhesive layer between the metal layer and the polyamide film (F).
  • Examples of the method for producing the polyamide laminate used in the present invention include (1) a method of bonding a film and a metal by heating and pressing, (2) plating; inkjet method; vapor deposition (PVD); or a method of forming a metal layer by a chemical vapor deposition (CVD) method using heat, plasma, or light as an energy form; (3) forming a seed layer by plating, inkjet, PVD, or CVD; A method of forming a metal layer by plating after coating is exemplified. Among them, a method of laminating a film and a metal by heating and pressing is preferable from the viewpoint of productivity and further reduction of transmission loss.
  • a method of laminating a film and a metal by heating and pressurizing for example, a method of applying an adhesive to a film and then superimposing a metal and laminating by heating and pressurizing, or a method of laminating an adhesive sheet between a film and a metal.
  • a method of sandwiching and laminating by heating and pressurizing, and a method of directly laminating a film and metal and laminating by heating and pressurizing can be used.
  • heating and pressing methods include a method using a vacuum press and a method using a roll laminator.
  • the heating temperature should be "film melting point (°C) -100°C” to "film melting point (°C) -5°C”
  • the pressure should be 10 MPa or less
  • the processing time should be within 2 hours. preferable.
  • the heating temperature is preferably from “film melting point (°C) -100°C” to "film melting point (°C ) ⁇ 50° C.”, more preferably “melting point (° C.) of film ⁇ 90° C.” to “melting point (° C.) of film ⁇ 50° C.”.
  • the pressure is preferably 0.1 to 5 MPa, more preferably 0.5 to 2 MPa, from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission properties and rubber elasticity and further reducing warpage.
  • the treatment time is preferably 1 to 60 minutes, more preferably 1 to 10 minutes, from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission properties and rubber elasticity and further reducing warpage.
  • the film surface is coated with a solution in which an adhesive component is dispersed, dried to form an adhesive layer, and then the metal is applied.
  • a method of stacking and laminating by heating and pressurizing may be mentioned.
  • the drying temperature after coating is preferably 100° C. or less.
  • a method of sandwiching an adhesive sheet between a film and a metal and laminating them by heating and pressurizing includes, for example, a method of superimposing an adhesive sheet on a film and laminating a metal by heating and pressurizing.
  • the peel strength between the polyamide film and the metal layer of the polyamide film laminate of the present invention is preferably 0.1 [N/mm] or more, more preferably 0.3 [N/mm] or more, More preferably, it is 0.5 [N/mm] or more.
  • the peel strength is usually 2 [N/mm] or less.
  • the peel strength uses the value measured according to JIS C 6471 (Method A).
  • the absolute value of transmission loss in a microstrip line having a characteristic impedance of 50 ⁇ , which is produced from the polyamide laminate of the present invention, is preferably 1.80 [dB/100 mm] or less at 5 GHz, and preferably 1.70 or less. is more preferable, and 1.65 or less is even more preferable.
  • the absolute value of transmission loss is usually 1 [dB/100 mm] or more at 5 GHz.
  • the transmission loss uses the value at 5 GHz of a microstrip line made from a polyamide film laminate so that the characteristic impedance is 50 ⁇ .
  • the polyamide film laminate of the present invention is excellent in heat resistance and flexibility, has good adhesion to metals and resins, and has reduced warpage when formed into a laminate.
  • the polyamide film laminate of the present invention has good appearance and reduced warpage even after heat treatment (for example, reflow treatment).
  • the polyamide film laminate of the present invention also has reduced transmission loss when used as a flexible printed circuit board.
  • the polyamide film laminate of the present invention is suitably used for, for example, flexible printed circuit boards, flexible printed circuit boards for high-speed communication, antenna substrates for high-speed communication, coverlays, flexible antenna substrates, bonding sheets, electromagnetic shielding materials, and the like. be able to.
  • the polyamide film laminate of the present invention can be used by etching the metal layer of the polyamide film laminate to form metal wiring.
  • the polyamide film laminate of the present invention can be formed by a method selected from the group consisting of a plating method, an ink jet method, a physical vapor deposition method, and a chemical vapor deposition method, the polyamide of the present invention
  • a film laminate can also be used as a flexible printed circuit board.
  • the polyamide film laminate of the present invention When used for a flexible antenna substrate, it can be used by etching the metal layer of the polyamide film laminate to form metal wiring. Alternatively, by forming a metal layer as a metal wiring on the polyamide film (F) by a method selected from the group consisting of a plating method, an ink jet method, a physical vapor deposition method, and a chemical vapor deposition method, the polyamide of the present invention A film laminate can also be used as a flexible antenna substrate.
  • Resin Composition of Film A few mg of the obtained film was sampled and subjected to 1 H-NMR analysis using a high-resolution nuclear magnetic resonance spectrometer (ECA-500NMR manufactured by JEOL Ltd.) to determine the composition of each copolymer component. It was determined from the peak intensity (resolution: 500 MHz, solvent: mixed solvent of deuterated trifluoroacetic acid and deuterated chloroform at a volume ratio of 4/5, temperature: 23°C). In Table 1, the resin composition is shown in mass ratio as the final composition.
  • Crystal melting enthalpy is obtained from the peak area in the temperature range from the start to the end of melting.
  • the average value of the values measured at arbitrary 10 points was used. Melting points were evaluated according to the following criteria. ⁇ : 300 ° C. or higher (excellent); ⁇ : 270°C or higher and lower than 300°C (good); ⁇ : 240° C. or more and less than 270° C. (practically no problem); x: Less than 240°C (problem in practice).
  • Elongation recovery rate (%) (14-A) / 14 x 100 Furthermore, it was calculated by the following formula from the obtained hysteresis curve.
  • Hysteresis loss rate (%) area (Oabcd) / area (OabeO) x 100
  • the area (Oabcd) is the area of the region indicated by the broken line (vertical broken line)
  • the area (OabeO) is the area of the region indicated by the solid line (horizontal solid line).
  • FIG. 1 is a schematic diagram showing a hysteresis curve for explaining a method of calculating a hysteresis loss rate.
  • Deformation of the laminate is a state in which wrinkles are generated on the surface of the peripheral portion of the laminate, or the peripheral portion is deformed in a wavy manner. This is a phenomenon that occurs.
  • the unevenness of the surface is a state in which the surface of the laminate is deformed due to poor air evacuation, and is a phenomenon caused by the crystal melting enthalpy, the elongation recovery rate, and the tensile elastic modulus.
  • Film exudation is a state in which the film protrudes from the gaps in the laminate, and is a phenomenon that occurs due to the heating temperature and pressure at the time of laminate production, the melting point of the film, the crystalline melting enthalpy, the elongation recovery rate, and the tensile modulus. is.
  • the case where the warp was concave was given a positive value, and the case where the warp was a convex shape was given a negative value.
  • the average value (absolute value) X of the measured values of the four corners was evaluated according to the following criteria. If the average value X is 0 mm or more and less than 5 mm, “ ⁇ (best)", if it is 5 mm or more and less than 10 mm, “ ⁇ (excellent)", if it is 10 mm or more and less than 20 mm, " ⁇ (good)", 20 mm or more and 25 mm A case of less than 25 mm was evaluated as " ⁇ (practically no problem)", and a case of 25 mm or more was evaluated as "x (practically problematic)”.
  • There was no change in the appearance of the film, and the average warpage value X was 0 mm or more and less than 5 mm (best); A: No change in film appearance, no change in film appearance, average warpage value X of 5 mm or more and less than 10 mm (excellent); ⁇ : No change in appearance of the film, and the average warpage value X was 10 mm or more and less than 20 mm (good); ⁇ : There was no change in the appearance of the film, and the average warpage value X was 20 mm or more and less than 25 mm (practically no problem); x: The appearance of the film deteriorated, or even if the appearance of the film did not change, the average warpage value X was 25 mm or more (problematic in practice).
  • absolute value Y was 1.65 [dB / 100 mm] or less (excellent); ⁇ : the absolute value Y was more than 1.65 [dB / 100 mm] and 1.75 [dB / 100 mm] or less (good); ⁇ : Absolute value Y was more than 1.75 [dB / 100 mm] and 1.80 [dB / 100 mm] or less (no practical problem); x: Absolute value Y was over 1.80 [dB/100 mm] (problem in practice).
  • Elongation recovery rate ⁇ 50% or more (excellent); ⁇ : 40% or more and less than 50% (good); ⁇ : 30% or more and less than 40% (practically no problem); x: Less than 30% (practically problematic).
  • the molten polymer was filtered using a metal fiber sintered filter (“NF-13” manufactured by Nippon Seisen Co., Ltd., nominal filtration diameter: 60 ⁇ m). After that, the molten polymer was extruded in the form of a film from a T-die set at 330° C. to obtain a film-shaped melt. The melt was brought into close contact with a cooling roll set at 0° C. by an electrostatic application method and cooled to obtain a substantially non-oriented, unstretched polyamide film M1. When the resin composition of the polyamide component of the obtained unstretched polyamide film M1 was determined, it was the same as the resin composition of the polyamide used.
  • NF-13 metal fiber sintered filter
  • the obtained unstretched polyamide film M1 was biaxially stretched by a flat simultaneous biaxial stretching machine while holding both ends with clips.
  • the drawing conditions were as follows: temperature of the preheating section was 80°C, temperature of the drawing section was 80°C, MD drawing strain rate was 2400%/min, TD drawing strain rate was 2400%/min, and MD draw ratio was 2.3. times, and the draw ratio in TD was 2.3 times.
  • heat setting was performed at 270° C. in the same tenter of the biaxial stretching machine, and the film was subjected to a relaxation treatment of 6% in the width direction to obtain a simultaneously biaxially stretched polyamide film S1.
  • Examples 2-9 Polyamides P2 to P9 were obtained in the same manner as in Example 1, except that the amounts of monomers introduced into the reaction vessel were changed as shown in Table 1. Further, using the obtained pellets, the same operations as in Example 1 were performed to perform melt kneading, production of unstretched films M2 to M9, and simultaneous biaxial stretching, to simultaneously biaxially stretch polyamide films S2 to S9. Obtained.
  • a polyamide film laminate having copper foil layers on both sides was obtained by performing the same operation as in Example 1 except that the heating and pressing conditions were changed as shown in Table 2. When the resin composition of the polyamide component of the obtained unstretched polyamide film was determined, it was the same as the resin composition of the polyamide used.
  • Example 10 A reaction vessel equipped with a heating mechanism and a stirring mechanism was charged with 26.7 parts by mass of dimer acid, 25.3 parts by mass of dimer diamine, 23.5 parts by mass of terephthalic acid, 24.4 parts by mass of 1,10-decanediamine, and sodium hypochlorite. 0.1 part by mass of sodium phosphate monohydrate was added. Thereafter, the mixture was heated to 260° C. with stirring, and polymerization was carried out at 260° C. under normal pressure for 5 hours under a nitrogen stream while condensed water was removed from the system. The system was in suspension during the polymerization. After the polymerization was completed, it was discharged, cut, and dried to obtain polyamide P10 in the form of pellets.
  • Example 2 Using the obtained pellets, the same operations as in Example 1 were performed to melt-knead, prepare an unstretched film M10, and perform simultaneous biaxial stretching to obtain a simultaneous biaxially stretched polyamide film S10.
  • the resin composition of the polyamide component of the obtained unstretched polyamide film M10 was determined, it was the same as the resin composition of the polyamide used.
  • the same operation as in Example 1 was performed to obtain a polyamide film laminate having copper foil layers on both sides.
  • Examples 11 and 12 Polyamides P11 and 12 were obtained in the same manner as in Example 10, except that the amounts of dimer acid, dimer diamine, terephthalic acid and 1,10-decanediamine added were changed to those shown in Table 1. Further, using the obtained pellets, the same operations as in Example 1 were performed to perform melt kneading, production of unstretched films M11 and M12, and simultaneous biaxial stretching, to simultaneously biaxially stretch polyamide films S11 and S12. Obtained. A polyamide film laminate having copper foil layers on both sides was obtained by performing the same operation as in Example 1 except that the heating and pressing conditions were changed as shown in Table 2. When the resin composition of the polyamide component of the obtained unstretched film was determined, it was the same as the resin composition of the polyamide used.
  • Comparative example 1 In a reaction vessel equipped with a heating mechanism and a stirring mechanism, 44.0 parts by mass of dimer acid, 41.7 parts by mass of dimer diamine, 6.9 parts by mass of terephthalic acid, 7.3 parts by mass of 1,10-decanediamine, sodium hypochlorite 0.1 part by mass of sodium phosphate monohydrate was added. Thereafter, the mixture was heated to 260° C. with stirring, and polymerization was carried out at 260° C. under normal pressure for 5 hours under a nitrogen stream while condensed water was removed from the system. The system was in suspension during the polymerization. After the polymerization was completed, it was discharged, cut, and dried to obtain polyamide P13 in the form of pellets.
  • Example 2 Using the obtained pellets, the same operations as in Example 1 were performed to melt-knead, prepare an unstretched film M13, and perform simultaneous biaxial stretching to obtain a simultaneous biaxially stretched polyamide film S13. Using the obtained simultaneous biaxially stretched polyamide film S13, the same operation as in Example 1 was performed to obtain a polyamide film laminate having copper foil layers on both sides.
  • Comparative example 2 Polyamide P14 was obtained in the same manner as in Example 10, except that the amounts of dimer acid, dimer diamine, terephthalic acid and 1,10-decanediamine added were changed to those shown in Table 1. Using the obtained pellets, the same operations as in Example 1 were performed to melt-knead, prepare an unstretched film M14, and perform simultaneous biaxial stretching to obtain a simultaneous biaxially stretched polyamide film S14. A polyamide film laminate having copper foil layers on both sides was obtained by performing the same operation as in Example 1 except that the heating and pressing conditions were changed as shown in Table 2. When the resin composition of the polyamide component of the obtained unstretched film was determined, it was the same as the resin composition of the polyamide used.
  • Comparative example 3 49.0 parts by mass of terephthalic acid and 0.1 parts by mass of sodium hypophosphite monohydrate were charged into a powder stirring device equipped with a heating mechanism. While heating at 170° C. and stirring, 50.9 parts by mass of 1,10-decanediamine was added little by little over 3 hours to obtain a reaction product. After that, the reaction product was heated to 250° C. with stirring, and polymerization was carried out at 250° C. for 7 hours under normal pressure under a nitrogen stream while removing condensed water out of the system. The system was in powder form during the polymerization. After the polymerization was completed, it was discharged to obtain polyamide P15 in powder form.
  • Example 2 Using the obtained powder, the same operations as in Example 1 were performed to melt-knead, prepare an unstretched film M15, and perform simultaneous biaxial stretching to obtain a simultaneous biaxially stretched polyamide film S15. Using the obtained simultaneous biaxially stretched polyamide film, the same operation as in Example 1 was performed to obtain a polyamide film laminate having copper foil layers on both sides.
  • Comparative example 4 A reactor equipped with a heating mechanism and a stirring mechanism was charged with 51.3 parts by mass of dimer acid, 48.6 parts by mass of dimer diamine, and 0.1 part by mass of sodium hypophosphite monohydrate. Thereafter, the mixture was heated to 260° C. with stirring, and polymerization was carried out at 260° C. under normal pressure for 5 hours under a nitrogen stream while condensed water was removed from the system. The system was in a homogeneous molten state during the polymerization. After the polymerization was completed, it was discharged, cut and dried to obtain polyamide P16 in the form of pellets. Using the obtained pellets, the same operations as in Example 1 were performed to perform melt-kneading, preparation of unstretched film M16, and simultaneous biaxial stretching, but a stretched film could not be obtained.
  • Comparative example 5 In a reaction vessel equipped with a heating mechanism and a stirring mechanism, 51.0 parts by mass of polyoxytetramethylene glycol (PTMG1000) having a number average molecular weight of 1000 and having amino groups instead of hydroxyl groups at both ends, 28.3 parts by mass of terephthalic acid, 20.6 parts by mass of 1,10-decanediamine and 0.1 part by mass of sodium hypophosphite monohydrate were added. Thereafter, the mixture was heated to 250° C. with stirring, and polymerization was carried out at 250° C. under normal pressure for 5 hours under a nitrogen stream while removing condensed water out of the system. The system was in a suspended solution during the polymerization. After the polymerization was completed, it was discharged, cut and dried to obtain polyamide P17 in the form of pellets, which were brittle and not suitable for practical use.
  • PTMG1000 polyoxytetramethylene glycol
  • Example 13 Polyamide P18 50 parts by mass of polyamide P8 pellets obtained in Example 8, 50 parts by mass of polyamide P9 pellets obtained in Example 9, and 0.4 parts by mass of Sumilizer GA-80 are dry blended, and the cylinder temperature is 330 ° C. The mixture was put into a twin-screw extruder having a screw diameter of 26 mm and was melt-kneaded, and extruded into a strand. It was then cooled and cut to obtain polyamide P18 in the form of pellets.
  • the obtained unstretched polyamide film M18 was biaxially stretched by a flat simultaneous biaxial stretching machine while holding both ends with clips.
  • the drawing conditions were as follows: temperature of the preheating section was 80°C, temperature of the drawing section was 80°C, MD drawing strain rate was 2400%/min, TD drawing strain rate was 2400%/min, and MD draw ratio was 2.3. times, and the draw ratio in TD was 2.3 times.
  • the film was continuously heat-set at 270° C. in the same tenter of the biaxial stretching machine, and subjected to a relaxation treatment of 6% in the width direction of the film to obtain a simultaneously biaxially stretched polyamide film S18.
  • Examples 14-22 Polyamides P19 to P27 were obtained in the same manner as in Example 13 except that the type of polyamide used and the amount to be dry-blended were changed as shown in Table 3. Further, using the obtained pellets, the same operation as in Example 13 was performed to prepare unstretched films M19 to M27, and simultaneous biaxial stretching was performed to obtain simultaneous biaxially stretched polyamide films S19 to S27. A polyamide film laminate having copper foil layers on both sides was obtained by performing the same operation as in Example 13 except that the heating and pressing conditions were changed as shown in Table 4.
  • Comparative example 6 Polyamide P28 was obtained in the same manner as in Example 13 except that the type of polyamide used and the amount to be dry-blended were changed as shown in Table 3. Using the obtained pellets, the same operations as in Example 13 were performed to prepare an unstretched film M28 and to perform simultaneous biaxial stretching, but a stretched film could not be obtained.
  • Example 23 The substantially non-oriented unstretched polyamide film M1 obtained in Example 1 was heat-treated at 270°C. Using the obtained heat-treated polyamide film, the same operation as in Example 1 was performed except that the heating and pressing conditions were changed as shown in Table 5 to obtain a polyamide film laminate having copper foil layers on both sides. rice field.
  • Examples 25, 26 and 29-34 A polyamide film laminate having copper foil layers on both sides was obtained in the same manner as in Example 1, except that the unstretched polyamide film, the stretching conditions, and the heating and pressing conditions were changed as shown in Table 5.
  • Example 27 Provide of sequentially biaxially stretched polyamide film
  • the substantially non-oriented unstretched polyamide film M1 obtained in Example 1 was biaxially stretched by a flat type sequential axial stretching machine.
  • the unstretched polyamide film M1 was heated to 80° C. by roll heating, infrared heating, or the like, and stretched 4.0 times in the MD at a stretching strain rate of 2400%/min to obtain a longitudinally stretched film.
  • both ends of the film in the width direction were held by clips of a transverse stretching machine, and the film was transversely stretched.
  • the temperature of the preheating section for TD stretching was 85° C.
  • the temperature of the stretching section was 85° C.
  • the stretching strain rate was 2400%/min
  • the TD stretching ratio was 4.0 times.
  • heat setting was performed at 270° C.
  • the film was subjected to a relaxation treatment of 6% in the width direction to obtain successively biaxially stretched polyamide films.
  • the same operation as in Example 1 was performed except that the heating and pressing conditions were changed as shown in Table 5 to obtain a polyamide film laminate having copper foil layers on both sides. got
  • Example 28 The substantially non-oriented unstretched polyamide film M3 obtained in Example 3 was heat-treated at 270°C. Using the obtained heat-treated film, the same operation as in Example 3 was performed except that the heating and pressing conditions were changed as shown in Table 5 to obtain a polyamide film laminate having copper foil layers on both sides. .
  • Comparative Examples 7-9 A polyamide film laminate having copper foil layers on both sides was obtained in the same manner as in Example 1, except that the unstretched polyamide film, the stretching conditions, and the heating and pressing conditions were changed as shown in Table 5.
  • Comparative Example 7 a heat-treated film obtained by heat-treating a substantially non-oriented unstretched polyamide film M15 at 270° C. without stretching was used.
  • Examples 36 and 37 Polyamide film lamination having a copper foil layer on one side and a polyimide layer or polyamide film S15 on the other side was performed in the same manner as in Example 35 except that the counterpart material of the laminate was changed as shown in Table 6. got a body
  • a commercially available aluminum foil (25 ⁇ m) is superimposed on the opposite side, set in a vacuum press, and heat-pressed at 230 ° C. and 1 MPa for 5 minutes to obtain a copper foil layer on one side and an aluminum foil layer on the other side.
  • Examples 39, 40, 42, 43, 45, 46 Polyamide film lamination having a copper foil layer on one side and a polyimide layer or polyamide film S15 on the other side was performed in the same manner as in Example 35 except that the counterpart material of the laminate was changed as shown in Table 6. got a body
  • Table 1 shows the production conditions and evaluation of the polyamides obtained in Examples 1-12 and Comparative Examples 1-5.
  • A fatty acid dicarboxylic acid with 18 or more carbon atoms
  • C aromatic dicarboxylic acid having 12 or less carbon atoms
  • C terephthalic acid
  • B aliphatic diamine
  • D aliphatic diamine
  • D having 12 or less carbon atoms (decane diamine)
  • E PTMG1000 with amino groups at both ends
  • F sodium hypophosphite monohydrate
  • the melting point is usually 240°C or higher, preferably 270°C or higher, more preferably 300°C or higher.
  • Table 2 shows the polyamides used for the polyamide films obtained in Examples 1 to 12 and Comparative Examples 1 to 5, the stretching conditions, their evaluation, and the heating and pressurizing conditions and evaluation of the obtained polyamide film laminates.
  • Table 3 shows the production conditions and evaluation of the polyamides obtained in Examples 13-22 and Comparative Example 6
  • the melting point is usually 240°C or higher, preferably 270°C or higher, more preferably 300°C or higher.
  • Table 4 shows the polyamides used for the polyamide films obtained in Examples 13 to 22 and Comparative Example 6, the stretching conditions, their evaluation, and the heating and pressurizing conditions and evaluation of the obtained polyamide film laminates.
  • Table 5 shows the unstretched films used for the polyamide films obtained in Examples 23 to 34 and Comparative Examples 7 to 9, the stretching conditions, the thickness, and the pressure heating conditions and evaluation of the obtained polyamide laminates.
  • Table 6 shows the stretched films and thicknesses used for the polyamide films obtained in Examples 35-46 and Comparative Examples 10-12, and the pressurization and heating conditions and evaluation of the obtained polyamide laminates.
  • the polyamide film used has a melting point of 240° C. or higher, which is an index of heat resistance, and an elongation recovery rate of 30% or more in a hysteresis test, which is an index of flexibility. , excellent in heat resistance and flexibility.
  • the film laminates of Examples 1 to 22 had excellent rubber elasticity because the polyamide films used had a crystal melting enthalpy of 15 J/g or more, which is an index of crystallinity.
  • the film laminates of Examples 1 to 22 all had excellent adhesion, good appearance, little warpage, and good appearance after the heat resistance test.
  • the polyamide film laminates of Examples 1 to 9 were obtained by a split polymerization method in which a hard segment reaction product was prepared and then added to the soft segment reaction product and polymerized. Polyamide films made of polyamide were used. .
  • polyamide films made of polyamide obtained by a batch polymerization method in which raw materials are put together and polymerized were used.
  • the former polyamide film had higher elongation recovery rate and crystal melting enthalpy than the latter polyamide film, and had higher flexibility and rubber elasticity.
  • the polyamide film laminates of Examples 1 to 9 had better flexibility and adhesion than the polyamide film laminates of Examples 10 to 12, had a good appearance, had less warpage, and after the heat resistance test Appearance was also good.
  • polyamide films composed of two types of polyamide obtained by a split polymerization method were used.
  • polyamide films composed of one type of polyamide obtained by a split polymerization method and one type of polyamide obtained by a batch polymerization method were used.
  • polyamide films composed of two types of polyamide obtained by batch polymerization were used. Comparing Examples 13, 16 and 19 of the same monomer composition to each other; Examples 14, 18 and 20 of the same monomer composition to each other; and Examples 15, 17 and 21 of the same monomer composition to each other.
  • ⁇ A polyamide film containing more polyamide obtained by the split polymerization method has a higher elongation recovery rate and crystalline melting enthalpy, and a higher tensile modulus than a polyamide film containing less polyamide obtained by the split polymerization method. It was smaller and had higher flexibility and rubber elasticity.
  • the polyamide film laminates of Examples 13 to 15 had better flexibility and adhesion than the polyamide film laminates of Examples 16 to 21, had a good appearance, had a small warp, and after the heat resistance test The appearance was also good.
  • the polyamide film laminates of Examples 16 to 18 have better flexibility and adhesion than the polyamide film laminates of Examples 19 to 21, and have good appearance, less warpage, and good appearance after the heat resistance test. Met.
  • polyamide film laminates of Examples 35 to 37 one of the counterpart materials to be laminated to the film was a different material, but after preparing the reaction product of the hard segment, it was added to the reaction product of the soft segment and polymerized. Since a polyamide film made of polyamide obtained by the division polymerization method was used, all of them had excellent adhesion, good appearance, little warpage, and good appearance after the heat resistance test.
  • polyamide film laminates of Examples 41 to 43 and 44 to 46 one of the counterpart materials to be laminated to the film was a different material, but a polyamide film containing polyamide obtained by a split polymerization method was used. , the adhesiveness was excellent, the appearance was good, the warp was small, and the appearance after the heat resistance test was good.
  • the polyamide film laminate of Comparative Example 1 is made of a polyamide that does not contain the components (A) and (B) that form the soft segments, and since a polyamide film with a low elongation recovery rate is used, the adhesion is low and the appearance is poor. there were.
  • the polyamide film laminates of Comparative Examples 8 and 9 consist of a polyamide that does not contain the components (A) and (B) that form the soft segment, and use a polyamide film with a low elongation recovery rate. was raised to (melting point -5°C), but the adhesion was only slightly increased and the appearance was poor.
  • the polyamide film laminate of the present invention is sufficiently excellent in heat resistance, flexibility, adhesion to metals and resins, appearance characteristics, warpage resistance characteristics and transmission loss reduction characteristics, among these characteristics, It is useful in applications where at least one property is required (and preferably where all of these properties are required).
  • the polyamide film laminate of the present invention is suitably used for flexible printed circuit boards, flexible printed circuit boards for high-speed communication, antenna substrates for high-speed communication, coverlays, flexible antenna substrates, bonding sheets, electromagnetic shielding materials, and the like. be able to.

Abstract

The present invention provides a polyamide film laminate which has more sufficiently excellent heat resistance, flexibility, adhesion between a metal layer and a polyamide film, and transmission characteristics, and in which warpage is more sufficiently reduced even after a heat treatment (e.g., reflow treatment). The present invention pertains to a polyamide film laminate comprising a metal layer on a polyamide film (F) that contains a polyamide (E) including a unit derived from an aliphatic dicarboxylic acid (A) having 18 or more carbon atoms, a unit derived from an aliphatic diamine (B) having 18 or more carbon atoms, a unit derived from an aromatic dicarboxylic acid (C) having 12 or less carbon atoms, and a unit derived from an aliphatic diamine (D) having 12 or less carbon atoms, and that has a melting point of 240°C or higher, a crystal melting enthalpy of 15 J/g or greater, an elongation recovery ratio of 30% or greater in a hysteresis test, and a tensile modulus of 2500 MPa or lower.

Description

ポリアミドフィルム積層体Polyamide film laminate
 本発明はポリアミドフィルム積層体に関する。 The present invention relates to polyamide film laminates.
 ポリアミドフィルムは、耐熱性や機械的特性に優れることから、電気電子部品に広く用いられている。例えば、フレキシブルプリント基板の用途においては、回路形成の際に、250℃以上という高温でリフローハンダ処理されることが多いため、融点が300℃を超えるような高い耐熱性を有する半芳香族ポリアミドフィルムが用いられている(例えば、特許文献1、2)。しかしながら、半芳香族ポリアミドフィルムは、剛性が高く、柔軟性が十分ではなかった。 Polyamide films are widely used in electric and electronic parts due to their excellent heat resistance and mechanical properties. For example, in the application of flexible printed circuit boards, reflow soldering is often performed at a high temperature of 250 ° C. or higher during circuit formation, so a semi-aromatic polyamide film with high heat resistance such as a melting point exceeding 300 ° C. is used (for example, Patent Documents 1 and 2). However, the semi-aromatic polyamide film has high rigidity and insufficient flexibility.
 例えば、耐熱性が高く柔軟性を有するポリアミドフィルムとしては、特許文献3に、テレフタル酸と1,10-デカンジアミンとダイマー酸とダイマージアミンとからなるポリアミドからなるフィルムが開示されている。また例えば、フィルム材料として、液晶ポリマー、低誘電ポリイミドおよびポリアリーレンエーテルケトンなどの低誘電材料が知られている(特許文献4および5)。 For example, as a polyamide film having high heat resistance and flexibility, Patent Document 3 discloses a film made of polyamide composed of terephthalic acid, 1,10-decanediamine, dimer acid, and dimer diamine. Further, for example, low dielectric materials such as liquid crystal polymer, low dielectric polyimide and polyarylene ether ketone are known as film materials (Patent Documents 4 and 5).
特許2013-127062号公報Japanese Patent No. 2013-127062 特開2000-186141号公報JP-A-2000-186141 国際公開2021/106541号パンフレットInternational publication 2021/106541 pamphlet 国際公開2018/225409号パンフレットInternational publication 2018/225409 pamphlet 国際公開2021/256349号パンフレットInternational publication 2021/256349 pamphlet
 本発明の発明者等は、従来の技術では、以下の問題が生じることを見出した。
 例えば、近年、電子機器の高性能、高速化に伴い、フレキシブルプリント回路基板においても高速信号伝送への対応が必要となり、このようなデバイスに用いるには、伝送損失の低減が求められている。しかしながら、特許文献3のフィルムでは、伝送損失を十分に低減できないことがあった。
The inventors of the present invention have found that the conventional technology has the following problems.
For example, in recent years, as the performance and speed of electronic devices have increased, it has become necessary for flexible printed circuit boards to cope with high-speed signal transmission, and reduction in transmission loss is required for use in such devices. However, the film of Patent Document 3 cannot sufficiently reduce the transmission loss in some cases.
 信号伝達の損失には、主に誘電体に由来する損失、導体(銅箔)に由来する損失があり、周波数に依存して損失は大きくなる。誘電体に由来する損失は、フィルム基材や接着剤の誘電特性(比誘電率、誘電正接)に依存するため、高周波領域での損失を抑制するためには誘電特性に優れた材料が必要となる。しかしながら、誘電特性に優れた低誘電材料は一般的に導体(例えば、銅箔)との密着性が低いため、導体表面の凹凸を利用したアンカー効果で導体との密着性を確保している。導体に由来する損失は導体の抵抗成分に起因するが、周波数に依存して電流分布は導体表面に集中するため(表皮効果)、高周波領域では導体の表面粗さの影響が大きくなる。高周波領域での損失を抑制するためには、表面粗さの小さい導体が必要となる。  Signal transmission loss mainly includes loss derived from the dielectric and loss derived from the conductor (copper foil), and the loss increases depending on the frequency. Since the loss derived from the dielectric depends on the dielectric properties (relative dielectric constant, dielectric loss tangent) of the film substrate and adhesive, materials with excellent dielectric properties are required to suppress loss in the high-frequency range. Become. However, since low-dielectric materials with excellent dielectric properties generally have low adhesion to conductors (eg, copper foil), adhesion to conductors is ensured by an anchor effect that utilizes the unevenness of the conductor surface. The loss derived from a conductor is caused by the resistance component of the conductor, but the current distribution is concentrated on the conductor surface depending on the frequency (skin effect), so the surface roughness of the conductor has a greater effect in the high frequency range. In order to suppress the loss in the high frequency region, a conductor with small surface roughness is required.
 フレキシブルプリント基板用の銅張積層板は、絶縁フィルムと銅箔とを積層させている。このような銅張積層板の積層方法としては、絶縁フィルムが例えばポリイミドの場合、エポキシ樹脂やアクリル樹脂などの接着剤で張り合わせる方法、ワニスを銅箔上に塗布して熱処理して得る方法がある。密着力を得るために粗面化した銅箔が用いられているが、高周波領域での伝送損失を抑制するためには、表面粗さの小さい銅箔を使用すること、基材フィルムに低誘電材料を使用すること、接着剤を使用せずに積層することが望ましい。しかしながら、液晶ポリマーや低誘電ポリイミドなどの低誘電材料は、銅箔と接着し難いため、銅箔との接着力を高める方法が必要である(特許文献4)。 Copper-clad laminates for flexible printed circuit boards are made by laminating insulating films and copper foils. As a method for laminating such a copper-clad laminate, when the insulating film is polyimide, for example, there are a method of bonding with an adhesive such as an epoxy resin or an acrylic resin, and a method of applying varnish on a copper foil and heat-treating it. be. Copper foil with a rough surface is used to obtain adhesion, but in order to suppress transmission loss in the high-frequency range, it is necessary to use copper foil with a small surface roughness and use a low-dielectric base film. It is desirable to use materials and laminate without the use of adhesives. However, low-dielectric materials such as liquid crystal polymers and low-dielectric polyimides are difficult to adhere to copper foil, so a method for increasing adhesion to copper foil is required (Patent Document 4).
 その他の低誘電材料として、ポリアリーレンエーテルケトンも知られているが、加工寸法安定性が悪く、金属層を積層させると、積層体がカールしたり変形したりする問題がある。加工寸法安定性を向上させるにはフッ素樹脂やマイカを添加する必要があるため、柔軟性は大きく低下する。また、熱融着だけで金属層を形成可能だが、345℃という高い加熱温度が必要である(特許文献5)。 Polyarylene ether ketone is also known as another low dielectric material, but it has poor processing dimensional stability, and when metal layers are laminated, the laminate curls or deforms. In order to improve processing dimensional stability, it is necessary to add a fluororesin or mica, which significantly reduces the flexibility. Moreover, although a metal layer can be formed only by thermal fusion bonding, a high heating temperature of 345° C. is required (Patent Document 5).
 本発明は、前記の問題点を解決しようとするものであり、耐熱性、柔軟性、金属層とポリアミドフィルムとの密着性および伝送特性に、より十分に優れ、熱処理(例えばリフロー処理)後においても、反りがより十分に低減されたポリアミドフィルム積層体を提供することを目的とする。 The present invention is intended to solve the above problems, and is sufficiently excellent in heat resistance, flexibility, adhesion between the metal layer and the polyamide film, and transmission characteristics, and after heat treatment (for example, reflow treatment) Another object of the present invention is to provide a polyamide film laminate in which warpage is sufficiently reduced.
 本発明の要旨は以下の通りである。
<1> 炭素数18以上の脂肪族ジカルボン酸(A)からなる単位と、炭素数18以上の脂肪族ジアミン(B)からなる単位と、炭素数12以下の芳香族ジカルボン酸(C)からなる単位と、炭素数12以下の脂肪族ジアミン(D)からなる単位とを含むポリアミド(E)を含有し、融点が240℃以上、結晶融解エンタルピーが15J/g以上、ヒステリシス試験における伸長回復率が30%以上、引張弾性率が2500MPa以下であるポリアミドフィルム(F)上に、金属層を有する、ポリアミドフィルム積層体。
<2> 前記ポリアミドフィルム(F)のヒステリシス試験における伸長回復率が50%以上である、<1>に記載のポリアミドフィルム積層体。
<3> 前記炭素数18以上の脂肪族ジカルボン酸(A)がダイマー酸、前記炭素数18以上の脂肪族ジアミン(B)がダイマージアミン、前記炭素数12以下の芳香族ジカルボン酸(C)がテレフタル酸、前記炭素数12以下の脂肪族ジアミン(D)が1,10-デカンジアミンである、<1>または<2>に記載のポリアミドフィルム積層体。
<4> 前記炭素数18以上の脂肪族ジカルボン酸(A)からなる単位と、前記炭素数18以上の脂肪族ジアミン(B)からなる単位の合計の含有量が、前記ポリアミド(E)を構成する全モノマー成分に対して、10~90質量%である、<1>~<3>のいずれかに記載のポリアミドフィルム積層体。
<5> 前記ポリアミドフィルム(F)と前記金属層との剥離強度が0.1[N/mm]以上である、<1>~<4>のいずれかに記載のポリアミドフィルム積層体。
<6> 前記ポリアミドフィルム積層体から作製した、特性インピーダンスが50Ωのマイクロストリップラインの伝送損失の絶対値が、5GHzで1.80[dB/100mm]以下である、<1>~<5>のいずれかに記載のポリアミドフィルム積層体。
<7> 前記金属層が前記ポリアミドフィルム(F)と直接的に接している、<1>~<6>のいずれかに記載のポリアミドフィルム積層体。
<8> 前記金属層が銅、アルミニウム、鉄、ニッケル、スズ、金、銀、合金鋼、合金メッキからなる群から選択される金属から構成されている、<1>~<7>のいずれかに記載のポリアミドフィルム積層体。
<9> 前記ポリアミドフィルム積層体は前記金属層を前記ポリアミドフィルム(F)の片面または両面に有しており、前記金属層の上に樹脂層をさらに有する、<1>~<8>のいずれかに記載のポリアミドフィルム積層体。
<10> 前記炭素数18以上の脂肪族ジカルボン酸(A)からなる単位の含有量が、前記ポリアミドを構成する全モノマー成分に対して、3~45質量%であり、
 前記炭素数18以上の脂肪族ジアミン(B)からなる単位の含有量が、前記ポリアミドを構成する全モノマー成分に対して、3~45質量%であり、
 前記炭素数12以下の芳香族ジカルボン酸(C)からなる単位の含有量が、前記ポリアミドを構成する全モノマー成分に対して、3~45質量%であり、
 前記炭素数12以下の脂肪族ジアミン(D)からなる単位の含有量が、前記ポリアミドを構成する全モノマー成分に対して、3~52質量%である、<1>~<9>のいずれかに記載のポリアミドフィルム積層体。
<11> 前記ポリアミドフィルム(F)の結晶融解エンタルピーが25J/g以上である、<1>~<10>のいずれかに記載のポリアミドフィルム積層体。
<12> 前記炭素数12以下の芳香族ジカルボン酸(C)からなる単位の含有量が、前記ポリアミドを構成する全モノマー成分に対して、8~35質量%である、<1>~<11>のいずれかに記載のポリアミドフィルム積層体。
<13> 前記ポリアミドフィルム(F)は1μm~2mmの厚みを有し、
 前記金属層は1~500μmの厚みを有する、<1>~<12>のいずれかに記載のポリアミドフィルム積層体。
<14> <1>~<13>のいずれかに記載のポリアミドフィルム積層体を製造する方法であって、
 前記ポリアミドフィルム(F)と前記金属層とを、加熱および加圧によって張り合わせる、ポリアミドフィルム積層体の製造方法。
<15> 前記ポリアミドフィルム(F)と前記金属層とを、「ポリアミドフィルム(F)の融点-100℃」~「ポリアミドフィルム(F)の融点-5℃」での加熱および加圧によって張り合わせる、<14>に記載のポリアミドフィルム積層体の製造方法。
<16> <1>~<13>のいずれかに記載のポリアミドフィルム積層体を製造する方法であって、
 前記ポリアミドフィルム(F)に、メッキ法、インクジェット法、物理蒸着法、化学蒸着法からなる群から選択される方法よって前記金属層を設ける、ポリアミドフィルム積層体の製造方法。
<17> 前記炭素数12以下の芳香族ジカルボン酸(C)と前記炭素数12以下の脂肪族ジアミン(D)とを、前記炭素数18以上の脂肪族ジカルボン酸(A)および前記炭素数18以上の脂肪族ジアミン(B)とは別に反応させて、前記ポリアミド(E)を得る、<14>~<16>のいずれかに記載のポリアミドフィルム積層体の製造方法。
<18> <1>~<13>のいずれかに記載のポリアミドフィルム積層体を含む基板であって、
 前記基板はフレキシブルプリント回路基板またはフレキシブルアンテナ基板である、基板。
The gist of the present invention is as follows.
<1> A unit consisting of an aliphatic dicarboxylic acid (A) having 18 or more carbon atoms, a unit consisting of an aliphatic diamine (B) having 18 or more carbon atoms, and an aromatic dicarboxylic acid (C) having 12 or less carbon atoms unit and a polyamide (E) containing a unit consisting of an aliphatic diamine (D) having 12 or less carbon atoms, a melting point of 240 ° C. or more, a crystal melting enthalpy of 15 J / g or more, and an elongation recovery rate in a hysteresis test A polyamide film laminate having a metal layer on a polyamide film (F) having a tensile modulus of 30% or more and 2500 MPa or less.
<2> The polyamide film laminate according to <1>, wherein the polyamide film (F) has an elongation recovery rate of 50% or more in a hysteresis test.
<3> The aliphatic dicarboxylic acid (A) having 18 or more carbon atoms is a dimer acid, the aliphatic diamine (B) having 18 or more carbon atoms is a dimer diamine, and the aromatic dicarboxylic acid (C) having 12 or less carbon atoms is The polyamide film laminate according to <1> or <2>, wherein the terephthalic acid and the aliphatic diamine (D) having 12 or less carbon atoms is 1,10-decanediamine.
<4> The total content of the unit consisting of the aliphatic dicarboxylic acid (A) having 18 or more carbon atoms and the unit consisting of the aliphatic diamine (B) having 18 or more carbon atoms constitutes the polyamide (E) The polyamide film laminate according to any one of <1> to <3>, which is 10 to 90% by mass with respect to the total monomer components.
<5> The polyamide film laminate according to any one of <1> to <4>, wherein the peel strength between the polyamide film (F) and the metal layer is 0.1 [N/mm] or more.
<6><1> to <5>, wherein the absolute value of the transmission loss of the microstrip line having a characteristic impedance of 50 Ω, which is produced from the polyamide film laminate, is 1.80 [dB/100 mm] or less at 5 GHz. A polyamide film laminate according to any one of the above.
<7> The polyamide film laminate according to any one of <1> to <6>, wherein the metal layer is in direct contact with the polyamide film (F).
<8> Any one of <1> to <7>, wherein the metal layer is made of a metal selected from the group consisting of copper, aluminum, iron, nickel, tin, gold, silver, alloy steel, and alloy plating. Polyamide film laminate according to.
<9> The polyamide film laminate has the metal layer on one or both sides of the polyamide film (F), and further has a resin layer on the metal layer, any of <1> to <8> The polyamide film laminate according to 1.
<10> The content of the unit composed of the aliphatic dicarboxylic acid (A) having 18 or more carbon atoms is 3 to 45% by mass with respect to the total monomer components constituting the polyamide,
The content of units composed of the aliphatic diamine (B) having 18 or more carbon atoms is 3 to 45% by mass with respect to the total monomer components constituting the polyamide,
The content of units composed of the aromatic dicarboxylic acid (C) having 12 or less carbon atoms is 3 to 45% by mass with respect to the total monomer components constituting the polyamide,
Any one of <1> to <9>, wherein the content of the unit composed of the aliphatic diamine (D) having 12 or less carbon atoms is 3 to 52% by mass with respect to the total monomer components constituting the polyamide. Polyamide film laminate according to.
<11> The polyamide film laminate according to any one of <1> to <10>, wherein the polyamide film (F) has a crystal melting enthalpy of 25 J/g or more.
<12><1> to <11, wherein the content of units composed of the aromatic dicarboxylic acid (C) having 12 or less carbon atoms is 8 to 35% by mass with respect to the total monomer components constituting the polyamide > Polyamide film laminate according to any one of.
<13> The polyamide film (F) has a thickness of 1 μm to 2 mm,
The polyamide film laminate according to any one of <1> to <12>, wherein the metal layer has a thickness of 1 to 500 μm.
<14> A method for producing a polyamide film laminate according to any one of <1> to <13>,
A method for producing a polyamide film laminate, comprising laminating the polyamide film (F) and the metal layer by heating and pressing.
<15> The polyamide film (F) and the metal layer are laminated by heating and pressing at “the melting point of the polyamide film (F) −100° C.” to “the melting point of the polyamide film (F) −5° C.” , the method for producing a polyamide film laminate according to <14>.
<16> A method for producing a polyamide film laminate according to any one of <1> to <13>,
A method for producing a polyamide film laminate, wherein the metal layer is provided on the polyamide film (F) by a method selected from the group consisting of a plating method, an inkjet method, a physical vapor deposition method, and a chemical vapor deposition method.
<17> The aromatic dicarboxylic acid (C) having 12 or less carbon atoms and the aliphatic diamine (D) having 12 or less carbon atoms are combined with the aliphatic dicarboxylic acid having 18 or more carbon atoms (A) and the 18 The method for producing a polyamide film laminate according to any one of <14> to <16>, wherein the polyamide (E) is obtained by reacting separately from the above aliphatic diamine (B).
<18> A substrate comprising the polyamide film laminate according to any one of <1> to <13>,
A substrate, wherein the substrate is a flexible printed circuit board or a flexible antenna substrate.
 本発明によれば、耐熱性、柔軟性、金属層とポリアミドフィルムとの密着性および伝送特性に、より十分に優れ、耐熱処理(例えばリフロー処理)後においても、反りがより十分に低減されたポリアミドフィルム積層体を提供することができる。
 本発明のポリアミドフィルム積層体は、導体(銅箔)と張り合わせた場合、積層体の変形、表面の凹凸およびフィルムの染み出しに関する外観が良好であり、耐熱処理(例えばリフロー処理)後においても良好である。
 本発明のポリアミドフィルム積層体は、例えば、フレキシブルプリント回路基板やフレキシブルアンテナ基板に好適に用いることができる。
According to the present invention, the heat resistance, flexibility, adhesion between the metal layer and the polyamide film, and transmission characteristics are sufficiently excellent, and even after heat treatment (for example, reflow treatment), warpage is sufficiently reduced. A polyamide film laminate can be provided.
When the polyamide film laminate of the present invention is laminated with a conductor (copper foil), it has a good appearance with respect to deformation of the laminate, surface unevenness and film bleeding, and is also good after heat treatment (for example, reflow treatment). is.
The polyamide film laminate of the present invention can be suitably used for flexible printed circuit boards and flexible antenna substrates, for example.
ヒステリシスロス率の算出方法を説明するためのヒステリシス曲線を示す模式図である。FIG. 4 is a schematic diagram showing a hysteresis curve for explaining a method of calculating a hysteresis loss rate;
 本発明のポリアミドフィルム積層体は、炭素数18以上の脂肪族ジカルボン酸(A)(以下、成分(A)ということがある。)からなる単位と、炭素数18以上の脂肪族ジアミン(B)(以下、成分(B)ということがある。)からなる単位と、炭素数12以下の芳香族ジカルボン酸(C)(以下、成分(C)ということがある。)からなる単位と、炭素数12以下の脂肪族ジアミン(D)(以下、成分(D)ということがある。)からなる単位を含むポリアミド(E)を含有するポリアミドフィルム(F)上に金属層を設けてなる。 The polyamide film laminate of the present invention comprises a unit comprising an aliphatic dicarboxylic acid (A) having 18 or more carbon atoms (hereinafter sometimes referred to as component (A)) and an aliphatic diamine (B) having 18 or more carbon atoms. (hereinafter sometimes referred to as component (B)), a unit composed of an aromatic dicarboxylic acid (C) having 12 or less carbon atoms (hereinafter sometimes referred to as component (C)), and the number of carbon atoms A metal layer is provided on a polyamide film (F) containing a polyamide (E) containing units consisting of 12 or less aliphatic diamines (D) (hereinafter sometimes referred to as component (D)).
 成分(A)~(D)は、ポリアミド中、モノマー成分(またはモノマー残基)として含有されている。従って、「炭素数18以上の脂肪族ジカルボン酸(A)からなる単位」は単に「炭素数18以上の脂肪族ジカルボン酸(A)モノマー」またはその残基と表現されてもよい。「炭素数18以上の脂肪族ジアミン(B)からなる単位」は単に「炭素数18以上の脂肪族ジアミン(B)モノマー」またはその残基と表現されてもよい。「炭素数12以下の芳香族ジカルボン酸(C)からなる単位」は単に「炭素数12以下の芳香族ジカルボン酸(C)モノマー」またはその残基と表現されてもよい。「炭素数12以下の脂肪族ジアミン(D)からなる単位」は単に「炭素数12以下の脂肪族ジアミン(D)モノマー」またはその残基と表現されてもよい。 Components (A) to (D) are contained as monomer components (or monomer residues) in the polyamide. Therefore, "a unit comprising an aliphatic dicarboxylic acid (A) having 18 or more carbon atoms" may simply be expressed as "a monomer of an aliphatic dicarboxylic acid (A) having 18 or more carbon atoms" or a residue thereof. A "unit consisting of an aliphatic diamine (B) having 18 or more carbon atoms" may simply be expressed as "a monomer of an aliphatic diamine (B) having 18 or more carbon atoms" or a residue thereof. A "unit consisting of an aromatic dicarboxylic acid (C) having 12 or less carbon atoms" may simply be expressed as "a monomer of an aromatic dicarboxylic acid (C) having 12 or less carbon atoms" or a residue thereof. A "unit consisting of an aliphatic diamine (D) having 12 or less carbon atoms" may simply be expressed as an "aliphatic diamine (D) monomer having 12 or less carbon atoms" or a residue thereof.
 本発明のフィルム積層体に用いるポリアミド(E)を構成する炭素数18以上の脂肪族ジカルボン酸(A)としては、カルボキシル基以外は全て炭化水素からなる脂肪族ジカルボン酸が好ましく、例えば、ヘキサデカンジカルボン酸(炭素数18)、オクタデカンジカルボン酸(炭素数20)、ダイマー酸(炭素数36)が挙げられる。中でも、柔軟性が高くなることから炭素数20以上の脂肪族ジカルボン酸が好ましく、ダイマー酸がより好ましい。ダイマー酸は、例えばオレイン酸、リノール酸等の不飽和脂肪酸から選択される2つの分子を付加反応させたものであってもよい。当該2つの分子は同種の分子であってもよいし、または相互に異種の分子であってもよい。ダイマー酸は、不飽和結合を有するジカルボン酸であってもよいが、着色しにくいことから、水添してすべての結合が飽和結合であるジカルボン酸が好ましい。成分(A)は、上記のうち1種を単独で用いてもよいし、または2種以上を併用してもよい。 As the aliphatic dicarboxylic acid (A) having 18 or more carbon atoms that constitutes the polyamide (E) used in the film laminate of the present invention, an aliphatic dicarboxylic acid consisting entirely of hydrocarbons other than the carboxyl group is preferable. For example, hexadecanedicarboxylic acid acid (18 carbon atoms), octadecane dicarboxylic acid (20 carbon atoms), dimer acid (36 carbon atoms). Among them, an aliphatic dicarboxylic acid having 20 or more carbon atoms is preferred, and a dimer acid is more preferred, because of its high flexibility. The dimer acid may be an addition reaction of two molecules selected from unsaturated fatty acids such as oleic acid and linoleic acid. The two molecules may be the same type of molecule, or they may be heterologous molecules to each other. The dimer acid may be a dicarboxylic acid having an unsaturated bond, but is preferably a dicarboxylic acid in which all the bonds are saturated by hydrogenation because it is less likely to be colored. Component (A) may be used alone or in combination of two or more of the above.
 成分(A)の炭素数は、耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減の観点から、好ましくは20~40、より好ましくは30~40、さらに好ましくは34~38である。 The number of carbon atoms in component (A) is preferably 20 to 40, more preferably 30 to 40, and still more preferably 30 to 40, from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity, and further reducing warpage. is 34-38.
 本明細書中、耐熱性は、フィルムおよびその金属層との積層体に関する耐熱性のことであり、詳しくは、フィルムの融点がより十分に高く、かつ、熱処理後においても、フィルム積層体の反りがより十分に低減され得る特性である。耐熱性は、好ましくは、熱処理後においても、フィルム積層体の外観が十分に良好な特性も包含する。
 柔軟性は、フィルムおよびその金属層との積層体に関する柔軟性のことであり、詳しくは、フィルムの伸長回復率がより十分に高く、かつフィルムの引張弾性率がより十分に低い特性である。
 密着性は、フィルムと金属層との積層体に関する密着性のことであり、詳しくは、フィルムと金属層との剥離強度がより十分に高い特性である。
 伝送特性は、フィルムと金属層との積層体に関する伝送特性のことであり、詳しくは、当該積層体を電子部品の基板として用いたときの伝送損失がより十分に低減され得る特性である。
 ゴム弾性は、フィルムに関するゴム弾性のことであり、詳しくは、フィルムの結晶融解エンタルピーがより十分に高い特性である。ゴム弾性は、好ましくは、フィルムのヒステリシスロスがより十分に低い特性も包含する。本発明のポリアミドフィルム積層体を構成するポリアミドフィルムが良好なゴム弾性を有することにより、当該フィルムおよびその金属層との積層体の柔軟性をさらに向上させることができる。
In this specification, heat resistance refers to heat resistance of a film and its laminate with a metal layer. is a property that can be reduced more fully. Heat resistance preferably also includes the property that the appearance of the film laminate is sufficiently good even after heat treatment.
Flexibility refers to the flexibility of a film and its laminate with a metal layer, and more specifically, the property that the film has a sufficiently high elongational recovery rate and a sufficiently low tensile modulus of the film.
Adhesion is the adhesion of a laminate of a film and a metal layer, and more specifically, it is a property in which the peel strength between the film and the metal layer is sufficiently high.
The transmission characteristic is the transmission characteristic of the laminate of the film and the metal layer, and more specifically, the characteristic that can sufficiently reduce the transmission loss when the laminate is used as the substrate of the electronic component.
Rubber elasticity refers to the rubber elasticity of a film, and more specifically, the property that the crystal melting enthalpy of the film is sufficiently high. Elastomeric properties preferably also include the property that the hysteresis loss of the film is much lower. When the polyamide film constituting the polyamide film laminate of the present invention has good rubber elasticity, the flexibility of the laminate of the film and its metal layer can be further improved.
 成分(A)の含有量は、耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減の観点から、3~45質量%であることが好ましく、5~45質量%であることがより好ましく、10~45質量%であることがさらに好ましく、10~40質量%であることが特に好ましく、13~40質量%であることが十分に好ましく、13~33質量%であることがより十分に好ましい。当該含有量は、成分(A)の残基の含有量であって、ポリアミドを構成する全モノマー成分(またはそれらの残基の全量)に対する割合である。ポリアミドが2種以上の成分(A)を含む場合、それらの合計量が上記範囲内であればよい。 The content of component (A) is preferably 3 to 45% by mass, more preferably 5 to 45% by mass, from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity and further reducing warpage. %, more preferably 10 to 45% by mass, particularly preferably 10 to 40% by mass, fully preferably 13 to 40% by mass, and 13 to 33% by mass. is more fully preferred. The content is the content of the residue of component (A) and is the ratio to all the monomer components (or the total amount of those residues) constituting the polyamide. When the polyamide contains two or more components (A), the total amount thereof should be within the above range.
 本発明のフィルム積層体に用いるポリアミド(E)を構成する炭素数18以上の脂肪族ジアミン(B)としては、アミノ基以外は全て炭化水素からなる脂肪族ジカルボン酸が好ましく、例えば、オクタデカンジアミン(炭素数18)、エイコサンジアミン(炭素数20)、ダイマージアミン(炭素数36)が挙げられる。中でも、ダイマージアミンが好ましい。ダイマージアミンを用いることにより、他のモノマーより比較的少ない樹脂組成でもポリマー全体の柔軟性を効果的に向上させることができる。通常、ダイマージアミンは、ダイマー酸をアンモニアと反応させたのち、脱水し、ニトリル化し、還元することにより製造される。ダイマージアミンは、不飽和結合を有するジアミンであってもよいが、着色しにくいことから、水添してすべての結合が飽和結合であるジアミンが好ましい。成分(B)は、上記のうち1種を単独で用いてもよいし、または2種以上を併用してもよい。 As the aliphatic diamine (B) having 18 or more carbon atoms that constitutes the polyamide (E) used in the film laminate of the present invention, an aliphatic dicarboxylic acid consisting entirely of hydrocarbons other than amino groups is preferable. 18 carbon atoms), eicosane diamine (20 carbon atoms), and dimer diamine (36 carbon atoms). Among them, dimer diamine is preferred. By using dimer diamine, the flexibility of the entire polymer can be effectively improved even with a resin composition having a relatively smaller amount than other monomers. Dimer diamines are usually prepared by reacting a dimer acid with ammonia followed by dehydration, nitrile and reduction. The dimer diamine may be a diamine having an unsaturated bond, but is preferably a diamine in which all bonds are saturated by hydrogenation because it is less likely to be colored. Component (B) may be used alone or in combination of two or more of the above.
 成分(B)の炭素数は、耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減の観点から、好ましくは20~40、より好ましくは30~40、さらに好ましくは34~38である。 The number of carbon atoms in component (B) is preferably 20 to 40, more preferably 30 to 40, and still more preferably 30 to 40, from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity, and further reducing warpage. is 34-38.
 成分(B)の含有量は、耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減の観点から、3~45質量%であることが好ましく、5~45質量%であることがより好ましく、10~45質量%であることがさらに好ましく、10~40質量%であることが特に好ましく、12~27.3質量%であることが十分に好ましい。当該含有量は、成分(B)の残基の含有量であって、ポリアミドを構成する全モノマー成分(またはそれらの残基の全量)に対する割合である。ポリアミドが2種以上の成分(B)を含む場合、それらの合計量が上記範囲内であればよい。 The content of component (B) is preferably 3 to 45% by mass, more preferably 5 to 45% by mass, from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity and further reducing warpage. %, more preferably 10 to 45% by mass, particularly preferably 10 to 40% by mass, and fully preferably 12 to 27.3% by mass. The content is the content of the residue of component (B) and is the ratio to all the monomer components (or the total amount of those residues) constituting the polyamide. When the polyamide contains two or more components (B), the total amount thereof should be within the above range.
 本発明のフィルム積層体に用いるポリアミド(E)を構成する炭素数12以下の芳香族ジカルボン酸(C)としては、例えば、テレフタル酸(炭素数8)、イソフタル酸(炭素数8)、オルトフタル酸(炭素数8)が挙げられる。中でも、耐熱性、柔軟性、ゴム弾性をさらに向上させやすいことから、炭素数8以上の芳香族ジカルボン酸が好ましく、テレフタル酸がより好ましい。成分(C)は、上記のうち1種を単独で用いてもよいし、または2種以上を併用してもよい。 Examples of the aromatic dicarboxylic acid (C) having 12 or less carbon atoms constituting the polyamide (E) used in the film laminate of the present invention include terephthalic acid (8 carbon atoms), isophthalic acid (8 carbon atoms), and orthophthalic acid. (carbon number 8). Among them, aromatic dicarboxylic acids having 8 or more carbon atoms are preferred, and terephthalic acid is more preferred, because they tend to further improve heat resistance, flexibility and rubber elasticity. Component (C) may be used alone or in combination of two or more of the above.
 成分(C)の炭素数は、耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減の観点から、好ましくは4~12、より好ましくは6~12、さらに好ましくは6~10である。 The number of carbon atoms in component (C) is preferably 4 to 12, more preferably 6 to 12, and even more preferably 6 to 12, from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity, and further reducing warpage. is 6-10.
 成分(C)の含有量は、耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減の観点から、3~45質量%であることが好ましく、5~45質量%であることがより好ましく、5~40質量%であることがさらに好ましく、8~35質量%であることが特に好ましく、8~33質量%であることが十分に好ましく、15~33質量%であることがより十分に好ましい。当該含有量は、成分(C)の残基の含有量であって、ポリアミドを構成する全モノマー成分(またはそれらの残基の全量)に対する割合である。ポリアミドが2種以上の成分(C)を含む場合、それらの合計量が上記範囲内であればよい。 The content of component (C) is preferably 3 to 45% by mass, more preferably 5 to 45% by mass, from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity and further reducing warpage. %, more preferably 5 to 40% by mass, particularly preferably 8 to 35% by mass, fully preferably 8 to 33% by mass, and 15 to 33% by mass. is more fully preferred. The content is the content of the residue of component (C) and is the ratio to all the monomer components (or the total amount of those residues) constituting the polyamide. When the polyamide contains two or more components (C), the total amount thereof should be within the above range.
 本発明のフィルム積層体に用いるポリアミド(E)を構成する炭素数12以下の脂肪族ジアミン(D)としては、例えば、1,12-ドデカンジアミン(炭素数12)、1,10-デカンジアミン(炭素数10)、1,9-ノナンジアミン(炭素数9)、1,8-オクタンジアミン(炭素数8)、1,6-ヘキサンジアミン(炭素数6)が挙げられる。中でも、耐熱性、柔軟性、ゴム弾性をさらに向上させやすいことから、炭素数6以上のジアミンが好ましく、炭素数8以上のジアミンがより好ましく、1,10-デカンジアミンがさらに好ましい。(D)は、上記のうち1種を単独で用いてもよいし、または2種以上を併用してもよい。 Examples of the aliphatic diamine (D) having 12 or less carbon atoms constituting the polyamide (E) used in the film laminate of the present invention include 1,12-dodecanediamine (12 carbon atoms), 1,10-decanediamine ( 10 carbon atoms), 1,9-nonanediamine (9 carbon atoms), 1,8-octanediamine (8 carbon atoms), and 1,6-hexanediamine (6 carbon atoms). Among them, diamines having 6 or more carbon atoms are preferred, diamines having 8 or more carbon atoms are more preferred, and 1,10-decanediamine is even more preferred, since they tend to further improve heat resistance, flexibility and rubber elasticity. (D) may be used alone among the above, or may be used in combination of two or more.
 成分(D)の炭素数は、耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減の観点から、好ましくは4~12、より好ましくは6~12、さらに好ましくは8~12である。 The number of carbon atoms in component (D) is preferably 4 to 12, more preferably 6 to 12, and still more preferably 6 to 12, from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity and further reducing warpage. is 8-12.
 成分(D)の含有量は、耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減の観点から、3~52質量%であることが好ましく、5~50質量%であることがより好ましく、5~40質量%であることがさらに好ましく、10~40質量%であることが特に好ましく、20~40質量%であることが十分に好ましく、25~40質量%であることがより十分に好ましい。当該含有量は、成分(D)の残基の含有量であって、ポリアミドを構成する全モノマー成分(またはそれらの残基の全量)に対する割合である。ポリアミドが2種以上の成分(D)を含む場合、それらの合計量が上記範囲内であればよい。 The content of component (D) is preferably 3 to 52% by mass, more preferably 5 to 50% by mass, from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity and further reducing warpage. %, more preferably 5 to 40% by mass, particularly preferably 10 to 40% by mass, fully preferably 20 to 40% by mass, and 25 to 40% by mass. is more fully preferred. The content is the content of the residue of component (D) and is the ratio to all the monomer components (or the total amount of those residues) constituting the polyamide. When the polyamide contains two or more components (D), the total amount thereof should be within the above range.
 本発明において、ポリアミド(E)は、成分(A)~(D)がランダムに配列および重合されたランダム型ポリアミドであってもよいし、成分(C)と(D)からなるハードセグメントおよび成分(A)と(B)からなるソフトセグメントを含むブロック型ポリアミドであってもよい。ポリアミド(E)は、耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減の観点から、ブロック型ポリアミドであることが好ましい。ブロック型ポリアミドが好ましいものと位置付けられるメカニズムの詳細は明らかではないが、以下の現象に基づくものと考えられる。ブロック型構造においてはハードセグメントとソフトセグメントの相分離構造が形成され、ハードセグメントがゴムの架橋点の役割を果たし、ソフトセグメントが自由に伸縮できるようになる。このため、ポリアミド(E)がより十分に優れた耐熱性を有しながらも、より十分に優れた柔軟性(およびゴム弾性)を有することができる。この結果として、フィルムおよび積層体において耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減が達成されるものと考えられる。成分(C)と(D)の組み合わせとしては、例えば、テレフタル酸とブタンジアミン、テレフタル酸と1,9-ノナンジアミン、テレフタル酸と1,10-デカンジアミン、テレフタル酸と1,12-ドデカンジアミンが挙げられ、中でも、テレフタル酸と1,10-デカンジアミンが好ましい。テレフタル酸と1,10-デカンジアミンを用いることにより、ハードセグメントが高結晶性のセグメントになりやすいため、ハードセグメントとソフトセグメントの相分離構造の形成が促進され、より十分に優れた柔軟性やゴム弾性を発現する。「ゴム」は、外力によって局所的に変形するが、除力すると元の形状へと戻る特性を示す物質の概念で用いている。 In the present invention, the polyamide (E) may be a random polyamide in which components (A) to (D) are randomly arranged and polymerized, or a hard segment and component consisting of components (C) and (D) It may be a block-type polyamide containing a soft segment consisting of (A) and (B). Polyamide (E) is preferably a block-type polyamide from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission properties and rubber elasticity and further reducing warpage. Although the details of the mechanism by which block-type polyamides are positioned as preferred are not clear, it is believed to be based on the following phenomenon. In the block-type structure, a phase-separated structure of hard segments and soft segments is formed, the hard segments play the role of cross-linking points of rubber, and the soft segments can expand and contract freely. Therefore, the polyamide (E) can have sufficiently superior flexibility (and rubber elasticity) while having sufficiently superior heat resistance. As a result, it is believed that further improvements in heat resistance, flexibility, adhesion, transmission properties and rubber elasticity and further reduction in warpage are achieved in films and laminates. Combinations of components (C) and (D) include, for example, terephthalic acid and butanediamine, terephthalic acid and 1,9-nonanediamine, terephthalic acid and 1,10-decanediamine, and terephthalic acid and 1,12-dodecanediamine. Among them, terephthalic acid and 1,10-decanediamine are preferred. By using terephthalic acid and 1,10-decanediamine, the hard segment tends to be a highly crystalline segment, so the formation of a phase separation structure between the hard segment and the soft segment is promoted, and sufficiently excellent flexibility and It expresses rubber elasticity. "Rubber" is used as a concept of a substance that exhibits the characteristic of being locally deformed by an external force, but returning to its original shape when the force is removed.
 本発明に用いるポリアミド(E)中の炭素数18以上の脂肪族ジカルボン酸(A)からなる単位と、炭素数18以上の脂肪族ジアミン(B)からなる単位の合計の含有量(例えば成分(A)と成分(B)との合計含有量)は、耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減の観点から、10~90質量%であることが好ましく、15~80質量%であることがより好ましく、20~80質量%であることがさらに好ましく、30~75質量%であることが特に好ましく、30~60質量%であることが十分に好ましい。当該合計含有量は、成分(A)の残基と、成分(B)の残基の合計の含有量であって、ポリアミド(E)を構成する全モノマー成分(またはそれらの残基の全量)に対する割合である。ポリアミド(E)が後述するように2種以上のポリアミドを含む場合、全ポリアミド(E)における成分(A)と成分(B)との合計含有量が上記範囲内であればよい。この場合、耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減の観点から、各ポリアミド(E)において成分(A)と成分(B)との合計含有量が上記範囲内であることが好ましく、このとき、各ポリアミド(E)において成分(A)の含有量および成分(B)の含有量が前記した範囲内であることがより好ましい。 Total content of units consisting of aliphatic dicarboxylic acid (A) having 18 or more carbon atoms in polyamide (E) used in the present invention and units consisting of aliphatic diamine (B) having 18 or more carbon atoms (for example, component ( The total content of A) and component (B)) is 10 to 90% by mass from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity and further reducing warpage. Preferably, it is 15 to 80% by mass, more preferably 20 to 80% by mass, particularly preferably 30 to 75% by mass, and fully preferably 30 to 60% by mass. . The total content is the total content of the residues of the component (A) and the residues of the component (B), and all the monomer components (or the total amount of their residues) constituting the polyamide (E) is the ratio to When the polyamide (E) contains two or more polyamides as described later, the total content of the component (A) and the component (B) in the total polyamide (E) should be within the above range. In this case, from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission properties and rubber elasticity and further reducing warpage, the total content of component (A) and component (B) in each polyamide (E) is It is preferably within the above range, and at this time, it is more preferable that the content of component (A) and the content of component (B) in each polyamide (E) be within the ranges described above.
 本発明に用いるポリアミド(E)には、重合時に分解しやすいポリエーテル成分やポリエステル成分を用いないことが好ましい。そのようなポリエーテル成分としては、例えば、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリオキシテトラメチレングリコール、ポリオキシエチレン・ポリオキシプロピレングリコールが挙げられる。ポリエステル成分としては、例えば、ポリエチレンアジペート、ポリテトラメチレンアジペート、ポリエチレンセバケートが挙げられる。ポリエーテル成分やポリエステル成分を用いた場合、重合温度が高いと、分解が生じる場合がある。 It is preferable that the polyamide (E) used in the present invention does not contain a polyether component or a polyester component that easily decomposes during polymerization. Examples of such polyether components include polyoxyethylene glycol, polyoxypropylene glycol, polyoxytetramethylene glycol, and polyoxyethylene/polyoxypropylene glycol. Polyester components include, for example, polyethylene adipate, polytetramethylene adipate, and polyethylene sebacate. When a polyether component or polyester component is used, decomposition may occur if the polymerization temperature is high.
 ポリエーテル成分およびポリエステル成分の合計含有量は、耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減の観点から、2質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.1質量%以下であることがさらに好ましい。当該合計含有量範囲の下限値は通常、0質量%である。当該合計含有量は、ポリエーテル成分およびポリエステル成分の残基の含有量であって、ポリアミド(E)を構成する全モノマー成分(またはそれらの残基の全量)に対する割合である。ポリエーテル成分およびポリエステル成分は、ポリアミドとの共有結合によりポリアミドの一部を構成する成分であり、ポリアミドに単にブレンドされるものではない。 The total content of the polyether component and the polyester component is preferably 2% by mass or less from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity and further reducing warpage, and 1 mass % or less, more preferably 0.1 mass % or less. The lower limit of the total content range is usually 0% by mass. The total content is the content of the residues of the polyether component and the polyester component, and is the ratio to all the monomer components (or the total amount of their residues) constituting the polyamide (E). The polyether component and the polyester component are components that form a part of the polyamide through covalent bonding with the polyamide, and are not simply blended with the polyamide.
 本発明に用いるポリアミド(E)には、重合度調整や、製品の分解抑制や着色抑制等のため、末端封鎖剤を含有してもよい。末端封鎖剤としては、例えば、酢酸、ラウリル酸、安息香酸、ステアリン酸等のモノカルボン酸、オクチルアミン、シクロヘキシルアミン、アニリン、ステアリルアミン等のモノアミンが挙げられる。末端封鎖剤は上記のうち1種を単独で用いてもよいし、または2種以上を併用してもよい。末端封鎖剤の含有量は、特に限定されないが、通常、ジカルボン酸とジアミンの総モル量に対して0~10モル%である。 The polyamide (E) used in the present invention may contain an end-blocking agent for adjusting the degree of polymerization and suppressing decomposition and coloring of the product. Examples of terminal blocking agents include monocarboxylic acids such as acetic acid, lauric acid, benzoic acid and stearic acid, and monoamines such as octylamine, cyclohexylamine, aniline and stearylamine. One of the above terminal blocking agents may be used alone, or two or more thereof may be used in combination. The content of the terminal blocking agent is not particularly limited, but is usually 0 to 10 mol % relative to the total molar amount of dicarboxylic acid and diamine.
 本発明に用いるポリアミド(E)の製造方法は特に限定されず、例えば、炭素数18以上の脂肪族ジカルボン酸(A)と炭素数18以上の脂肪族ジアミン(B)と炭素数12以下の芳香族ジカルボン酸(C)と炭素数12以下の脂肪族ジアミン(D)とをまとめて反応させる方法(以下、「一括重合法」または「一工程法」ということがある)、または成分(C)と成分(D)とを、成分(A)および成分(B)とは別に反応させる方法(以下、「分割重合法」または「二工程法」ということがある)により得ることができる。本発明に用いるポリアミド(E)は、耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減の観点から、分割重合方法により製造されることが好ましい。ポリアミドを分割重合法により製造することにより、当該ポリアミドはより好ましい結晶融解エンタルピー(特に25J/g以上)を有するようになり、耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減が達成されるためである。 The method for producing the polyamide (E) used in the present invention is not particularly limited. A method of collectively reacting a group dicarboxylic acid (C) and an aliphatic diamine having 12 or less carbon atoms (D) (hereinafter sometimes referred to as a "batch polymerization method" or a "one-step method"), or component (C) and component (D) separately from component (A) and component (B) (hereinafter sometimes referred to as “split polymerization method” or “two-step method”). The polyamide (E) used in the present invention is preferably produced by a split polymerization method from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission properties and rubber elasticity and further reducing warpage. By producing the polyamide by a split polymerization method, the polyamide has a more preferable crystal melting enthalpy (especially 25 J / g or more), heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity are further improved and This is because a further reduction in warpage is achieved.
 一括重合法においては、所定の全成分を混合し、重合を行う。重合方法は特に限定されないが、例えば、得られるポリアミドの融点以下の温度に加熱し、縮合水を系外に除去しながら、窒素気流下、当該温度を維持することにより重合する方法が挙げられる。一括重合法により重合したポリアミドは、全成分がランダムに配列される観点から、「ランダム型ポリアミド」と称することができる。「得られるポリアミドの融点」とは「目的とするポリアミドの融点」のことであり、例えば、後述する分割重合法において説明される「ハードセグメントポリマーの融点」であってもよい。 In the batch polymerization method, all predetermined components are mixed and polymerized. The polymerization method is not particularly limited, but includes, for example, a method of heating to a temperature below the melting point of the polyamide to be obtained, and polymerizing by maintaining the temperature under a nitrogen stream while removing condensation water out of the system. A polyamide polymerized by a batch polymerization method can be called a "random type polyamide" from the viewpoint that all components are arranged randomly. The "melting point of the resulting polyamide" is the "melting point of the target polyamide", and may be, for example, the "melting point of the hard segment polymer" described in the division polymerization method described below.
 従って、一括重合法によりポリアミドを製造するに際しては、例えば、まず、後述する分割重合法において説明される製造方法によりハードセグメントポリマーを得る。次いで、得られたハードセグメントポリマーの融点を測定する。融点の測定方法は特に限定されず、例えば、示差走査型熱量計により測定することができる。その後、モノマー(またはプレポリマー)を含む混合物を、当該「融点」以下の温度(特に当該融点未満の温度)で重合反応に供することにより、ポリアミドを製造することができる。例えば、成分(A)~(D)それぞれとしてダイマー酸、ダイマージアミン、テレフタル酸および1,10-デカンジアミンを用いる場合、「目的とするポリアミド」の融点(例えば「ハードセグメントポリマーの融点」)は315℃であり、一括重合法における重合温度は220~300℃(特に240~280℃)であってもよい。この場合、一括重合法における重合時間は、十分な重合が行われる限り特に限定されず、例えば、1~10時間(特に3~7時間)であってもよい。 Therefore, when producing a polyamide by the batch polymerization method, for example, first, a hard segment polymer is obtained by the production method explained in the split polymerization method described later. Next, the melting point of the resulting hard segment polymer is measured. A method for measuring the melting point is not particularly limited, and for example, it can be measured by a differential scanning calorimeter. Thereafter, the polyamide can be produced by subjecting the mixture containing the monomer (or prepolymer) to a polymerization reaction at a temperature below the "melting point" (particularly below the melting point). For example, when dimer acid, dimer diamine, terephthalic acid and 1,10-decanediamine are used as components (A) to (D) respectively, the melting point of the "target polyamide" (for example, the "melting point of the hard segment polymer") is 315° C., and the polymerization temperature in batch polymerization may be 220 to 300° C. (especially 240 to 280° C.). In this case, the polymerization time in the batch polymerization method is not particularly limited as long as sufficient polymerization is performed, and may be, for example, 1 to 10 hours (especially 3 to 7 hours).
 分割重合法においては、成分(C)と成分(D)とを、成分(A)および成分(B)とは別に反応させて重合を行う。例えば、成分(C)と成分(D)とを反応させ反応生成物を得たのち、当該反応生成物を、成分(A)および成分(B)と、さらに反応させて重合する。詳しくは、
 成分(A)と、
 成分(B)と、
 成分(C)と成分(D)との反応生成物と、
を反応させて重合する。
In the split polymerization method, component (C) and component (D) are reacted separately from component (A) and component (B) to polymerize. For example, after component (C) and component (D) are reacted to obtain a reaction product, the reaction product is further reacted with component (A) and component (B) to polymerize. For more information,
component (A);
component (B);
a reaction product of component (C) and component (D);
react to polymerize.
 このような分割重合法において、成分(A)および成分(B)は、相互に反応していない状態で使用されてもよいし、または相互に反応した状態(すなわち、それらの反応生成物の形態)で使用されてもよい。例えば、本発明に用いるポリアミド(E)は、成分(A)と成分(B)を予め反応させたのち、得られた成分(A)と成分(B)との反応生成物と、成分(C)と成分(D)との反応生成物を反応させて重合することにより得てもよい。詳しくは、本発明に用いるポリアミド(E)は、成分(A)と成分(B)との反応生成物と、成分(C)と成分(D)との反応生成物と、を反応させて重合することにより得てもよい。成分(A)および成分(B)は、耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減の観点から、相互に反応した状態(すなわち、それらの反応生成物の形態)で使用されることが好ましい。 In such a split polymerization process, component (A) and component (B) may be used in an unreacted state with each other or in a mutually reacted state (i.e., in the form of their reaction products). ) may be used in For example, the polyamide (E) used in the present invention is a reaction product of the component (A) and the component (B) obtained by reacting the component (A) and the component (B) in advance, and the component (C ) and the component (D) by reacting and polymerizing. Specifically, the polyamide (E) used in the present invention is polymerized by reacting the reaction product of the component (A) and the component (B) with the reaction product of the component (C) and the component (D). may be obtained by Component (A) and component (B) are in a mutually reacted state (that is, their reaction products are form) is preferably used.
 分割重合法により重合したポリアミドは、一括重合法により重合したポリアミドとは異なり、成分(C)と(D)からなるハードセグメントおよび成分(A)と(B)からなるソフトセグメントから構成されるポリアミドとして得られる。従って、一括重合法により重合したポリアミドが「ランダム型ポリアミド」であることに対して、分割重合法により重合したポリアミドは、ハードセグメントおよびソフトセグメントの含有の観点から、「ブロック型ポリアミド」と称することができる。 Unlike the polyamide polymerized by the batch polymerization method, the polyamide polymerized by the split polymerization method is a polyamide composed of a hard segment composed of components (C) and (D) and a soft segment composed of components (A) and (B). is obtained as Therefore, the polyamide polymerized by the batch polymerization method is called "random type polyamide", whereas the polyamide polymerized by the division polymerization method is called "block type polyamide" from the viewpoint of containing hard segments and soft segments. can be done.
 分割重合法においては、用いる炭素数12以下の芳香族ジカルボン酸(C)と炭素数12以下の脂肪族ジアミン(D)のモノマー比率[(C)/(D)]を調整することにより、得られる反応生成物の連鎖長を制御することができ、その結果、得られるポリアミドの柔軟性やゴム弾性を制御することができる。柔軟性やゴム弾性がより十分に向上することから、モル比[(C)/(D)]は、45/55~60/40とすることが好ましく、45/55~55/45とすることがより好ましい。 In the split polymerization method, by adjusting the monomer ratio [(C)/(D)] of the aromatic dicarboxylic acid (C) having 12 carbon atoms or less and the aliphatic diamine (D) having 12 carbon atoms or less to be used, The chain length of the resulting reaction product can be controlled and, as a result, the flexibility and rubber elasticity of the resulting polyamide can be controlled. The molar ratio [(C)/(D)] is preferably 45/55 to 60/40, more preferably 45/55 to 55/45, because flexibility and rubber elasticity are more sufficiently improved. is more preferred.
 分割重合法において、炭素数12以下の芳香族ジカルボン酸(C)と炭素数12以下の脂肪族ジアミン(D)を含有する反応生成物の製造方法(以下、単に「反応生成物の製造方法X」ということがある)は特に限定されないが、例えば、成分(D)の融点以上、かつ成分(C)の融点以下の温度に加熱し、成分(C)の粉末の状態を保つように、成分(D)を添加する方法が挙げられる。例えば、成分(C)および(D)それぞれとしてテレフタル酸および1,10-デカンジアミンを用いる場合、加熱温度は100~240℃(特に140~200℃)であってもよい。成分(D)の添加は連続的に行うことが好ましく、例えば、1~10時間(特に1~5時間)かけて行うことが好ましい。 In the division polymerization method, a method for producing a reaction product containing an aromatic dicarboxylic acid (C) having 12 carbon atoms or less and an aliphatic diamine (D) having 12 carbon atoms or less (hereinafter simply referred to as “reaction product manufacturing method X ”) is not particularly limited, but for example, the component A method of adding (D) can be mentioned. For example, when terephthalic acid and 1,10-decanediamine are used as components (C) and (D), respectively, the heating temperature may be 100 to 240°C (especially 140 to 200°C). Addition of component (D) is preferably carried out continuously, for example, preferably over 1 to 10 hours (especially 1 to 5 hours).
 成分(C)と成分(D)との反応生成物は、成分(C)と成分(D)との塩の形態を有していてもよいし、それらの縮合物(またはオリゴマーもしくはプレポリマー)の形態を有していてもよいし、またはこれらの複合形態を有していてもよい。 The reaction product of component (C) and component (D) may be in the form of salts of component (C) and component (D), or condensates (or oligomers or prepolymers) thereof. or a composite form thereof.
 成分(A)と成分(B)を予め反応させる場合、炭素数18以上の脂肪族ジカルボン酸(A)と炭素数18以上の脂肪族ジアミン(B)とを反応させる方法は特に限定されないが、例えば、80~150℃(特に100~150℃)の温度で0.5~3時間反応させる方法が挙げられる。 When the component (A) and the component (B) are pre-reacted, the method of reacting the aliphatic dicarboxylic acid (A) having 18 or more carbon atoms with the aliphatic diamine (B) having 18 or more carbon atoms is not particularly limited. For example, a method of reacting at a temperature of 80 to 150° C. (especially 100 to 150° C.) for 0.5 to 3 hours can be mentioned.
 成分(A)と成分(B)との反応生成物もまた、成分(C)と成分(D)との反応生成物と同様に、塩の形態を有していてもよいし、それらの縮合物(またはオリゴマーもしくはプレポリマー)の形態を有していてもよいし、またはこれらの複合形態を有していてもよい。 The reaction product of component (A) and component (B), like the reaction product of component (C) and component (D), may also be in the form of a salt, or may be in the form of condensation. It may have the form of a substance (or oligomer or prepolymer), or it may have a composite form thereof.
 分割重合法において、重合方法は特に限定されないが、例えば、ハードセグメントポリマー(例えばハードセグメントを構成する成分(C)および(D)のみから構成されるポリアミド)の融点以下の温度(好ましくは当該融点未満の温度)で重合する方法が挙げられる。詳しくは、ハードセグメントポリマー(例えばハードセグメントを構成する成分(C)および(D)のみから構成されるポリアミド)の融点以下の温度に加熱し、縮合水を系外に除去しながら、窒素気流下、当該温度を維持することにより重合する。このように重合することにより、ハードセグメントは溶融することなく、ソフトセグメントだけが溶融した状態で重合することができる。ハードセグメントポリマーの融点以下の温度で重合する方法は、重合温度が高くなり分解しやすい280℃以上の高融点のポリアミドの重合において、特に効果的である。 In the split polymerization method, the polymerization method is not particularly limited. and a method of polymerizing at a temperature of less than Specifically, the hard segment polymer (for example, a polyamide composed only of components (C) and (D) constituting the hard segment) is heated to a temperature below the melting point, and condensed water is removed from the system under a nitrogen stream. , polymerize by maintaining the temperature. By polymerizing in this manner, the hard segments are not melted, and only the soft segments can be polymerized in a melted state. The method of polymerizing at a temperature below the melting point of the hard segment polymer is particularly effective in the polymerization of polyamide having a high melting point of 280° C. or higher, which tends to decompose due to the high polymerization temperature.
 「ハードセグメントポリマーの融点」とは、ハードセグメントを構成する成分(C)および(D)のみをモノマー成分として十分に重合させてなるポリアミドの融点のことである。「ハードセグメントポリマーの融点」は、例えば、国際公開2013/042541号パンフレットに記載の方法により、成分(C)および(D)のみをモノマー成分として十分に重合させてなるポリアミドの融点であってもよい。詳しくは、「ハードセグメントポリマーの融点」は、成分(C)および(D)から反応生成物を得る工程(i)および得られた反応生成物を重合する工程(ii)を含む方法により得られたポリアミド(ハードセグメントポリマー)の融点である。ハードセグメントポリマーの製造過程において、工程(i)では、成分(C)および(D)を、成分(D)の融点以上、かつ成分(C)の融点以下の温度に加熱し、成分(C)の粉末の状態を保つように、成分(D)を添加することにより反応生成物を得ることができる。工程(i)では、例えば、成分(C)および(D)それぞれとしてテレフタル酸および1,10-デカンジアミンを用いる場合、加熱温度は100~240℃(好ましくは140~200℃、特に170℃)であってもよい。成分(D)の添加は連続的に行うことが好ましく、例えば、1~10時間(好ましくは1~5時間、特に2.5時間)かけて行うことが好ましい。ハードセグメントポリマーの製造過程において、工程(ii)では、工程(i)で得られた固相状態の反応生成物を、当該固相状態を保つように、十分に加熱して、重合(すなわち固相重合)を行う。工程(ii)では、例えば、成分(C)および(D)それぞれとしてテレフタル酸および1,10-デカンジアミンを用いる場合、加熱温度(すなわち重合温度)は220~300℃(好ましくは240~280℃、特に260℃)であってもよく、加熱時間(すなわち重合時間)は1~10時間(好ましくは3~7時間、特に5時間)であってもよい。工程(i)および(ii)は窒素不活性ガス等の気流中で行うことが好ましい。例えば、成分(C)および(D)それぞれとしてテレフタル酸および1,10-デカンジアミンを用いる場合、「ハードセグメントポリマーの融点」の融点は通常315℃である。 The "melting point of the hard segment polymer" is the melting point of the polyamide obtained by sufficiently polymerizing only the components (C) and (D) that constitute the hard segment as monomer components. The "melting point of the hard segment polymer" is, for example, the method described in WO 2013/042541 pamphlet, even if it is the melting point of a polyamide obtained by sufficiently polymerizing only the components (C) and (D) as monomer components. good. Specifically, the "melting point of the hard segment polymer" is obtained by a method comprising step (i) of obtaining a reaction product from components (C) and (D) and step (ii) of polymerizing the resulting reaction product. is the melting point of polyamide (hard segment polymer). In the process of producing a hard segment polymer, in step (i), components (C) and (D) are heated to a temperature equal to or higher than the melting point of component (D) and equal to or lower than the melting point of component (C), The reaction product can be obtained by adding component (D) so as to maintain the powdery state of . In step (i), for example, when terephthalic acid and 1,10-decanediamine are used as components (C) and (D), respectively, the heating temperature is 100 to 240°C (preferably 140 to 200°C, especially 170°C). may be Addition of component (D) is preferably carried out continuously, for example, preferably over 1 to 10 hours (preferably 1 to 5 hours, particularly 2.5 hours). In the process of producing a hard segment polymer, in step (ii), the reaction product in a solid state obtained in step (i) is sufficiently heated so as to maintain the solid state to polymerize (i.e. solid phase polymerization). In step (ii), for example, when terephthalic acid and 1,10-decanediamine are used as components (C) and (D), respectively, the heating temperature (that is, polymerization temperature) is 220 to 300°C (preferably 240 to 280°C , especially 260° C.), and the heating time (that is, polymerization time) may be 1 to 10 hours (preferably 3 to 7 hours, especially 5 hours). Steps (i) and (ii) are preferably carried out in a stream of nitrogen inert gas or the like. For example, when terephthalic acid and 1,10-decanediamine are used as components (C) and (D), respectively, the melting point of the "hard segment polymer" is usually 315°C.
 従って、分割重合法によりポリアミドを製造するに際しては、例えば、以下の方法を採用することができる。まず、当該ポリアミドを構成する成分(C)および(D)のみを用いて上記した工程(i)および(ii)により十分に重合を行い、ポリアミド(すなわちハードセグメントポリマー)を得る。次いで、得られたポリアミドの融点を測定する。融点の測定方法は一括重合法においてと同様である。その後、前記した反応生成物の製造方法Xにより、成分(C)と成分(D)とを反応させ反応生成物を得たのち、当該反応生成物を、「ハードセグメントポリマーの融点」以下の温度で、成分(A)および成分(B)と、さらに反応させて重合することにより、ポリアミドを製造することができる。成分(A)~(D)それぞれとしてダイマー酸、ダイマージアミン、テレフタル酸および1,10-デカンジアミンを用いる場合、分割重合法における重合温度は220~300℃(好ましくは240~280℃、特に260℃)であってもよい。この場合、分割重合法における重合時間は、十分な重合が行われる限り特に限定されず、例えば、1~10時間(好ましくは3~7時間、特に5時間)であってもよい。 Therefore, when producing a polyamide by the split polymerization method, for example, the following method can be adopted. First, using only the components (C) and (D) constituting the polyamide, sufficient polymerization is performed by the above steps (i) and (ii) to obtain a polyamide (that is, a hard segment polymer). The melting point of the resulting polyamide is then measured. The method for measuring the melting point is the same as in the batch polymerization method. After that, the reaction product is obtained by reacting the component (C) and the component (D) by the above-described reaction product manufacturing method X, and then the reaction product is heated to a temperature below the “melting point of the hard segment polymer”. Polyamide can be produced by further reacting and polymerizing with component (A) and component (B). When dimer acid, dimer diamine, terephthalic acid and 1,10-decanediamine are used as components (A) to (D) respectively, the polymerization temperature in the split polymerization method is 220 to 300° C. (preferably 240 to 280° C., particularly 260° C. °C). In this case, the polymerization time in the split polymerization method is not particularly limited as long as sufficient polymerization is performed, and may be, for example, 1 to 10 hours (preferably 3 to 7 hours, particularly 5 hours).
 一括重合法および分割重合法(以下、単に「本発明に用いるポリアミド(E)の製造方法」ということがある)においては、必要に応じて、触媒を用いてもよい。触媒としては、例えば、リン酸、亜リン酸、次亜リン酸またはそれらの塩が挙げられる。触媒の含有量は、特に限定されないが、通常、ジカルボン酸とジアミンの総モル量に対して0~2モル%である。 A catalyst may be used, if necessary, in the batch polymerization method and the divisional polymerization method (hereinafter sometimes simply referred to as the "method for producing the polyamide (E) used in the present invention"). Catalysts include, for example, phosphoric acid, phosphorous acid, hypophosphorous acid, or salts thereof. The content of the catalyst is not particularly limited, but is usually 0 to 2 mol % relative to the total molar amount of dicarboxylic acid and diamine.
 本発明に用いるポリアミド(E)の製造方法においては、必要に応じて、有機溶媒や水を加えてもよい。 In the method for producing the polyamide (E) used in the present invention, an organic solvent or water may be added as necessary.
 本発明に用いるポリアミド(E)の製造方法においては、重合は、密閉系でおこなってもよいし、常圧でおこなってもよい。密閉系でおこなう場合、モノマーの揮発や縮合水の発生等で圧力が上昇することがあるため、適宜圧力を制御することが好ましい。一方、用いるモノマーの沸点が高く、加圧しなくてもモノマーが系外に流出しない場合、常圧で重合することができる。例えば、ダイマー酸、ダイマージアミン、テレフタル酸、デカンジアミンの組み合わせの場合、常圧で重合することができる。 In the method for producing the polyamide (E) used in the present invention, polymerization may be performed in a closed system or under normal pressure. When the reaction is performed in a closed system, the pressure may be increased due to volatilization of the monomers, generation of condensed water, etc. Therefore, it is preferable to appropriately control the pressure. On the other hand, if the monomer to be used has a high boiling point and does not flow out of the system without pressurization, the polymerization can be carried out under normal pressure. For example, a combination of dimer acid, dimer diamine, terephthalic acid and decanediamine can be polymerized under normal pressure.
 本発明に用いるポリアミド(E)の製造方法においては、酸化劣化を防ぐため、窒素雰囲気下または真空下で重合をおこなうことが好ましい。 In the method for producing the polyamide (E) used in the present invention, it is preferable to carry out polymerization under a nitrogen atmosphere or under vacuum in order to prevent oxidative deterioration.
 重合したポリアミドは、ストランド状に押出しペレットとしてもよいし、ホットカット、アンダーウォーターカットしてペレットとしてもよい。 The polymerized polyamide may be extruded into strands into pellets, or may be hot-cut or underwater-cut into pellets.
 本発明に用いるポリアミド(E)の製造方法においては、重合後、さらに高分子量化するために、固相重合をおこなってもよい。固相重合は、重合時の粘度が高粘度で操業が困難になる場合等に、特に効果的である。固相重合は、不活性ガス流通下または減圧下で、樹脂組成物の融点未満の温度で30分以上加熱することによりおこなうことが好ましく、1時間以上加熱することによりおこなうことがより好ましい。樹脂組成物の融点は、上記した「ハードセグメントポリマーの融点」と同様の温度であってもよい。 In the method for producing the polyamide (E) used in the present invention, solid-phase polymerization may be performed after polymerization in order to further increase the molecular weight. Solid phase polymerization is particularly effective when the viscosity during polymerization is high and operation becomes difficult. The solid phase polymerization is preferably carried out by heating at a temperature below the melting point of the resin composition for 30 minutes or longer, more preferably for 1 hour or longer, under inert gas flow or under reduced pressure. The melting point of the resin composition may be the same temperature as the "melting point of the hard segment polymer" described above.
 ポリアミド(E)は、モノマー組成(種類)、モノマー配列、および/または分子量(特に融点)の異なる2種以上のポリアミドを含んでもよい。2種以上のポリアミドは、上記したポリアミド(E)の範囲内から選択される2種以上のポリアミドであってもよい。モノマー配列の異なる2種以上のポリアミドとは、上記したランダム型ポリアミドおよび上記したブロック型ポリアミドのことである。ポリアミド(E)は、耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減の観点から、ブロック型ポリアミドの含有量がより多いことが好ましい。ブロック型ポリアミドの含有量は、耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減の観点から、ポリアミド(E)全量に対して、好ましくは10質量%以上、より好ましくは30質量%以上、さらに好ましくは45質量%以上、特に好ましくは70質量%以上、十分に好ましくは80質量%以上、より十分に好ましくは90質量%以上、最も好ましくは100質量%である。ポリアミド(E)が2種以上のポリアミドを含む場合、本明細書中に記載の成分(A)~(D)の含有量は、全ポリアミド(E)における成分(A)~(D)の含有量であってよい。 The polyamide (E) may contain two or more polyamides having different monomer compositions (types), monomer sequences, and/or molecular weights (especially melting points). The two or more polyamides may be two or more polyamides selected from the polyamide (E) described above. The two or more types of polyamides having different monomer sequences are the above-described random type polyamide and the above-described block type polyamide. From the viewpoint of further improving heat resistance, flexibility, adhesion, transmission properties and rubber elasticity, and further reducing warpage, the polyamide (E) preferably has a higher block-type polyamide content. The content of the block-type polyamide is preferably 10% by mass or more relative to the total amount of the polyamide (E), from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity and further reducing warpage. More preferably 30% by mass or more, still more preferably 45% by mass or more, particularly preferably 70% by mass or more, fully preferably 80% by mass or more, more preferably 90% by mass or more, most preferably 100% by mass be. When the polyamide (E) contains two or more polyamides, the content of components (A) to (D) described herein is the content of components (A) to (D) in the total polyamide (E) It can be the amount.
 ポリアミド(E)が2種以上のポリアミドを含む場合、ポリアミド(E)は、当該2種以上のポリアミドのうち一部または全部のポリアミドを予め溶融混合して使用されてもよいし、各ポリアミド(ペレット)をドライブレンドして使用されてもよいし、またはこれらの複合形態で使用されてもよい。 When the polyamide (E) contains two or more polyamides, the polyamide (E) may be used by pre-melting and mixing part or all of the two or more polyamides, or each polyamide ( Pellets) may be used by dry-blending them, or they may be used in a composite form.
 例えば、本発明に用いるポリアミド(E)がランダム型ポリアミドおよびブロック型ポリアミドの2種類のポリアミドを含む場合、当該ポリアミド(E)の製造方法においては、一括重合法および分割重合法で得られたポリアミドを2種以上、任意の組み合わせで溶融混合をおこなって製造してもよい。例えば、2種類の場合、ランダム型ポリアミドとランダム型ポリアミドとの組み合わせ、ランダム型ポリアミドとブロック型ポリアミドとの組み合わせ、またはブロック型ポリアミドとブロック型ポリアミドとの組み合わせで溶融混合をおこなうことができる。耐熱性、柔軟性、金属層との密着性の観点から、ブロック型ポリアミドとブロック型ポリアミドとの組み合わせまたはランダム型ポリアミドとブロック型ポリアミドとの組み合わせが好ましく、ブロック型ポリアミドとブロック型ポリアミドとの組み合わせがより好ましい。 For example, when the polyamide (E) used in the present invention contains two types of polyamides, a random type polyamide and a block type polyamide, in the method for producing the polyamide (E), the polyamide obtained by the batch polymerization method and the division polymerization method may be produced by performing melt-mixing in any combination of two or more. For example, in the case of two types, melt-mixing can be performed by combining a random type polyamide and a random type polyamide, a combination of a random type polyamide and a block type polyamide, or a combination of a block type polyamide and a block type polyamide. From the viewpoint of heat resistance, flexibility, and adhesion to the metal layer, a combination of block-type polyamide and block-type polyamide or a combination of random-type polyamide and block-type polyamide is preferable, and a combination of block-type polyamide and block-type polyamide is preferable. is more preferred.
 本発明に用いるポリアミド(E)を溶融混合して得る場合、溶融混合は、溶融混合に用いるポリアミドの融点以上の温度でおこなうことが好ましい。溶融混合に用いるポリアミドの融点がそれぞれ異なる場合、融点の最も高いポリアミドの融点以上の温度で溶融混合をおこなうことが好ましい。 When the polyamide (E) used in the present invention is obtained by melt-mixing, the melt-mixing is preferably performed at a temperature equal to or higher than the melting point of the polyamide used for melt-mixing. When the polyamides used for melt-mixing have different melting points, it is preferable to perform melt-mixing at a temperature equal to or higher than the melting point of the polyamide having the highest melting point.
 ポリアミド(E)が2種以上のポリアミドを含む場合、各ポリアミドのモノマー組成(例えば、成分(A)、(B)、(C)および(D)の含有量)は、相互に、同じであってもよいし、異なっていてもよい。 When the polyamide (E) contains two or more polyamides, the monomer composition of each polyamide (e.g., the contents of components (A), (B), (C) and (D)) are mutually the same. may be different.
 ポリアミド(E)が2種以上のポリアミドを含む場合、モノマー組成の異なるポリアミドを2種以上用いれば、それぞれのポリアミドの混合比率を調整することで、前記した成分(A)と成分(B)との合計含有量を任意に調整することができる。 When the polyamide (E) contains two or more types of polyamides, if two or more types of polyamides having different monomer compositions are used, by adjusting the mixing ratio of each polyamide, the component (A) and the component (B) described above can be obtained. can be arbitrarily adjusted.
 本発明に用いるポリアミドフィルム(F)は、上記ポリアミド(E)を240~340℃で3~15分間溶融混合した後、Tダイを通じてシート状に押出し、この押し出された物を、-10~80℃に温度調節されたドラム上に密着させて冷却することにより未延伸フィルムを製造することができる。ポリアミドフィルム(F)は、ポリアミド(E)以外に他のポリマーをさらに含んでもよい。他のポリマーは、通常、フィルム全量に対して、50質量%以下であり、好ましくは30質量%以下であり、より好ましくは10質量%以下、さらに好ましくは5質量%以下、特に好ましくは0質量%である。 The polyamide film (F) used in the present invention is obtained by melting and mixing the polyamide (E) at 240 to 340 ° C. for 3 to 15 minutes, extruding it into a sheet through a T-die, and extruding the extruded product from -10 to 80. An unstretched film can be produced by contacting and cooling on a drum whose temperature is adjusted to °C. The polyamide film (F) may further contain other polymers in addition to the polyamide (E). The other polymer is usually 50% by mass or less, preferably 30% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less, and particularly preferably 0% by mass, based on the total amount of the film. %.
 ポリアミドフィルム(F)は、未延伸の状態であってもよいし、または延伸された状態であってもよい。耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減の観点、特に熱処理後においても、フィルム積層体の反りをより十分に低減し、さらにフィルム積層体の外観をより十分に良好にする観点から、ポリアミドフィルム(F)は延伸された状態であることが好ましい。 The polyamide film (F) may be in an unstretched state or in a stretched state. From the viewpoint of further improving heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity and further reducing warpage, especially after heat treatment, the warpage of the film laminate is more sufficiently reduced, and the appearance of the film laminate is improved. From the viewpoint of making it more satisfactory, it is preferable that the polyamide film (F) is in a stretched state.
 ポリアミドフィルム(F)が延伸された状態で使用される場合、延伸は一軸方向または二軸方向の延伸であることが好ましく、耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減の観点から、二軸延伸方向の延伸であることがより好ましい。延伸方法としては、同時延伸法や逐次延伸法が挙げられる。延伸方法は、耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減の観点から、同時延伸法であることが好ましい。 When the polyamide film (F) is used in a stretched state, the stretching is preferably uniaxial or biaxial stretching to further improve heat resistance, flexibility, adhesion, transmission properties and rubber elasticity, and From the viewpoint of further reducing warpage, stretching in the biaxial stretching direction is more preferable. The stretching method includes a simultaneous stretching method and a sequential stretching method. The stretching method is preferably a simultaneous stretching method from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission properties and rubber elasticity and further reducing warpage.
 同時二軸延伸法の一例としては、未延伸フィルムを同時二軸延伸し、続いて熱固定処理を施す方法が挙げられる。延伸は、30~150℃で、幅方向(以下、「TD」と略称することがある。)、長手方向(以下、「MD」と略称することがある。)ともに例えば1.2~8倍にて行うことが好ましい。延伸倍率は、耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減の観点から、TD方向およびMD方向ともに、好ましくは1.3~5倍であり、より好ましくは1.4~4倍であり、さらに好ましくは1.8~2.5倍であり、特に好ましくは2~2.5倍である。熱固定処理は、TDのリラックス処理を数%にて、150~300℃で数秒間おこなうことが好ましい。同時二軸する前に、フィルムに1を超えて1.2倍以下程度の予備縦延伸を施しておいてもよい。 An example of the simultaneous biaxial stretching method is a method in which an unstretched film is simultaneously biaxially stretched and then heat-set. Stretching is performed at 30 to 150° C., for example, 1.2 to 8 times in both the width direction (hereinafter sometimes abbreviated as “TD”) and the longitudinal direction (hereinafter sometimes abbreviated as “MD”). It is preferable to perform The draw ratio is preferably 1.3 to 5 times, more preferably 1.3 to 5 times in both the TD and MD directions, from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission properties and rubber elasticity, and further reducing warpage. is 1.4 to 4 times, more preferably 1.8 to 2.5 times, particularly preferably 2 to 2.5 times. The heat setting treatment is preferably performed at 150 to 300° C. for several seconds with a TD relaxation treatment of several percent. Prior to the simultaneous biaxial stretching, the film may be subjected to preliminary longitudinal stretching of more than 1 to 1.2 times or less.
 逐次二軸延伸法の一例としては、未延伸フィルムにロール加熱、赤外線加熱等の加熱処理を施したうえで、縦方向に延伸し、続いて連続的に、横延伸、熱固定処理を施す方法が挙げられる。縦延伸(MD方向)は、30~150℃で、同時二軸延伸法におけるMD方向の延伸倍率と同様の範囲内の延伸倍率にて行うことが好ましい。横延伸(TD方向)は、縦延伸の場合と同じ30~150℃で、同時二軸延伸法におけるTD方向の延伸倍率と同様の範囲内の延伸倍率にて行うことが好ましい。熱固定処理は、TDのリラックスを数%として150~300℃で数秒間おこなうことが好ましい。 An example of the sequential biaxial stretching method is a method in which an unstretched film is subjected to heat treatment such as roll heating or infrared heating, and then stretched in the longitudinal direction, followed by continuous lateral stretching and heat setting. is mentioned. The longitudinal stretching (in the MD direction) is preferably carried out at 30 to 150° C. at a stretching ratio within the same range as the stretching ratio in the MD direction in the simultaneous biaxial stretching method. The transverse stretching (TD direction) is preferably carried out at a temperature of 30 to 150° C., which is the same as in the longitudinal stretching, and at a stretching ratio within the same range as the stretching ratio in the TD direction in the simultaneous biaxial stretching method. The heat setting treatment is preferably carried out at 150 to 300° C. for several seconds with TD relaxation set to several percent.
 フィルムの製造装置においては、シリンダー、バレルの溶融部、計量部、単管、フィルター、Tダイ等の表面に対して、樹脂の滞留を防ぐため、その表面の粗さを小さくする処理が施されていることが好ましい。表面の粗さを小さくする方法としては、例えば、極性の低い物質で改質する方法が挙げられる。または、その表面に窒化珪素やダイヤモンドライクカーボンを蒸着させる方法が挙げられる。 In the film manufacturing equipment, the surfaces of cylinders, melting parts of barrels, weighing parts, tubes, filters, T-dies, etc. are treated to reduce surface roughness in order to prevent resin from stagnation. preferably. As a method of reducing surface roughness, for example, a method of modifying with a substance having low polarity can be mentioned. Alternatively, there is a method of vapor-depositing silicon nitride or diamond-like carbon on the surface.
 フィルムを延伸する方法としては、例えば、フラット式逐次二軸延伸法、フラット式同時二軸延伸法、チューブラ法を挙げることができる。中でも、フィルムの厚み精度を向上させ、フィルムのMDの物性を均一とすることができる観点から、フラット式同時二軸延伸法を採用することが好ましい。 Examples of methods for stretching a film include a flat sequential biaxial stretching method, a flat simultaneous biaxial stretching method, and a tubular method. Among them, it is preferable to adopt the flat simultaneous biaxial stretching method from the viewpoint of improving the thickness accuracy of the film and making the MD properties of the film uniform.
 フラット式同時二軸延伸法を採用するための延伸装置としては、例えば、スクリュー式テンター、パンタグラフ式テンター、リニアモーター駆動クリップ式テンターが挙げられる。 Examples of stretching equipment for adopting the flat simultaneous biaxial stretching method include a screw type tenter, a pantograph type tenter, and a linear motor driven clip type tenter.
 延伸後の熱処理方法としては、例えば、熱風を吹き付ける方法、赤外線を照射する方法、マイクロ波を照射する方法等の公知の方法が挙げられる。中でも、均一に精度良く加熱できることから、熱風を吹き付ける方法が好ましい。 Examples of the heat treatment method after stretching include known methods such as a method of blowing hot air, a method of irradiating with infrared rays, and a method of irradiating with microwaves. Among them, the method of blowing hot air is preferable because it enables uniform and accurate heating.
 本発明に用いるフィルムには、製膜時の熱安定性を高め、フィルムの強度や伸度の劣化を防ぎ、使用時の酸化や分解等に起因するフィルムの劣化を防止するために、熱安定剤を含有させることが好ましい。熱安定剤としては、例えば、ヒンダードフェノール系熱安定剤、ヒンダードアミン系熱安定剤、リン系熱安定剤、イオウ系熱安定剤、二官能型熱安定剤が挙げられる。 The film used in the present invention has a heat-stabilizing agent in order to increase the thermal stability during film formation, prevent deterioration of the strength and elongation of the film, and prevent deterioration of the film due to oxidation and decomposition during use. It is preferred to include an agent. Examples of heat stabilizers include hindered phenol-based heat stabilizers, hindered amine-based heat stabilizers, phosphorus-based heat stabilizers, sulfur-based heat stabilizers, and bifunctional heat stabilizers.
 ヒンダードフェノール系熱安定剤としては、例えば、Irganox1010(登録商標)(BASFジャパン社製、ペンタエリスリトール テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート])、Irganox1076(登録商標)(BASFジャパン社製、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート)、Cyanox1790(登録商標)(ソルベイ社製、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)イソシアヌル酸)、Irganox1098(登録商標)(BASFジャパン社製、N,N’-(ヘキサン-1,6-ジイル)ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオンアミド]、SumilizerGA-80(登録商標)(住友化学社製、3,9-ビス[2-{3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン)が挙げられる。 Examples of hindered phenol-based heat stabilizers include Irganox 1010 (registered trademark) (manufactured by BASF Japan, pentaerythritol tetrakis [3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate]) and Irganox 1076. (registered trademark) (manufactured by BASF Japan, octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate), Cyanox 1790 (registered trademark) (manufactured by Solvay, 1,3,5-tris (4-t-butyl-3-hydroxy-2,6-dimethylbenzyl)isocyanuric acid), Irganox 1098 (registered trademark) (manufactured by BASF Japan, N,N'-(hexane-1,6-diyl)bis[3 -(3,5-di-tert-butyl-4-hydroxyphenyl)propionamide], SumilizerGA-80 (registered trademark) (manufactured by Sumitomo Chemical Co., Ltd., 3,9-bis[2-{3-(3-t- Butyl-4-hydroxy-5-methylphenyl)propionyloxy}-1,1-dimethylethyl]-2,4,8,10-tetraoxaspiro[5.5]undecane).
 ヒンダードアミン系熱安定剤としては、例えば、Nylostab S-EED(登録商標)(クラリアントジャパン社製、N、N’-ビス-2,2,6,6-テトラメチル-4-ピペリジニル-1,3-ベンゼンジカルボキシアミド)が挙げられる。 Examples of hindered amine heat stabilizers include Nylostab S-EED (registered trademark) (manufactured by Clariant Japan, N,N'-bis-2,2,6,6-tetramethyl-4-piperidinyl-1,3- benzenedicarboxamide).
 リン系熱安定剤としては、例えば、Irgafos168(登録商標)(BASFジャパン社製、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト)、Irgafos12(登録商標)(BASFジャパン社製、6,6’,6”-[ニトリロトリス(エチレンオキシ)]トリス(2,4,8,10-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン))、Irgafos38(登録商標)(BASFジャパン社製、ビス(2,4-ジ-tert-ブチル)-6-メチルフェニル)エチルホスフィット)、ADKSTAB329K(登録商標)(ADEKA社製、トリス(モノ-ジノニルフェニル)ホスフィット)、ADKSTAB PEP36(登録商標)(ADEKA社製、ビス(2,6-ジ―tert―ブチル-4-メチルフェニル)ペンタエリスリトール-ジ-ホスファイト)、Hostanox P-EPQ(登録商標)(クラリアント社製、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニルジホスホナイト)、GSY-P101(登録商標)(堺化学工業社製、テトラキス(2,4-ジ-tert-ブチル-5-メチルフェニル)-4,4’-ビフェニレンジホスホナイト)、スミライザーGP(登録商標)(住友化学社製、6-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,8,10-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]-ジオキサホスフェピン)が挙げられる。 Examples of phosphorus-based heat stabilizers include Irgafos168 (registered trademark) (manufactured by BASF Japan, tris(2,4-di-tert-butylphenyl) phosphite), Irgafos12 (registered trademark) (manufactured by BASF Japan, 6 ,6′,6″-[nitrilotris(ethyleneoxy)]tris(2,4,8,10-tetra-tert-butyldibenzo[d,f][1,3,2]dioxaphosphepin)) , Irgafos38 (registered trademark) (manufactured by BASF Japan, bis (2,4-di-tert-butyl)-6-methylphenyl) ethyl phosphite), ADKSTAB329K (registered trademark) (manufactured by ADEKA, tris (mono-di nonylphenyl) phosphite), ADKSTAB PEP36 (registered trademark) (manufactured by ADEKA, bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol-di-phosphite), Hostanox P-EPQ (registered Trademark) (manufactured by Clariant, tetrakis(2,4-di-tert-butylphenyl)-4,4′-biphenyldiphosphonite), GSY-P101 (registered trademark) (manufactured by Sakai Chemical Industry Co., Ltd., tetrakis(2, 4-di-tert-butyl-5-methylphenyl)-4,4′-biphenylenediphosphonite), Sumilizer GP (registered trademark) (manufactured by Sumitomo Chemical Co., Ltd., 6-[3-(3-tert-butyl-4 -hydroxy-5-methylphenyl)propoxy]-2,4,8,10-tetra-tert-butyldibenzo[d,f][1,3,2]-dioxaphosphepin).
 イオウ系熱安定剤としては、例えば、DSTP「ヨシトミ」(登録商標)(三菱ケミカル社製、化学式名:ジステアリルチオジプロピオネート)、Seenox 412S(登録商標)(シプロ化成社製、ペンタエリスリトール テトラキス-(3-ドデシルチオプロピオネート))が挙げられる。 Examples of sulfur-based heat stabilizers include DSTP "Yoshitomi" (registered trademark) (manufactured by Mitsubishi Chemical Corporation, chemical formula name: distearyl thiodipropionate), Seenox 412S (registered trademark) (manufactured by Cipro Kasei Co., Ltd., pentaerythritol tetrakis -(3-dodecylthiopropionate)).
 二官能型熱安定剤としては、例えば、スミライザーGM(登録商標)、(住友化学社製、2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート)、スミライザーGS(登録商標)(住友化学社製、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート)が挙げられる。 Bifunctional heat stabilizers include, for example, Sumilizer GM (registered trademark) (manufactured by Sumitomo Chemical Co., Ltd., 2-tert-butyl-6-(3-tert-butyl-2-hydroxy-5-methylbenzyl)-4 -methylphenyl acrylate), Sumilizer GS (registered trademark) (manufactured by Sumitomo Chemical Co., Ltd., 2-[1-(2-hydroxy-3,5-di-tert-pentylphenyl)ethyl]-4,6-di-tert- pentylphenyl acrylate).
 フィルム強度の劣化を防止する観点からは、ヒンダードフェノール系熱安定剤が好ましい。ヒンダードフェノール系熱安定剤の熱分解温度は、320℃以上であることが好ましく、350℃以上であることがより好ましい。熱分解温度が320℃以上のヒンダードフェノール系熱安定剤としては、スミライザーGA-80が挙げられる。また、ヒンダードフェノール系熱安定剤は、アミド結合を有していれば、フィルム強度の劣化を防止することができる。アミド結合を有しているヒンダードフェノール系熱安定剤としては、例えば、イルガノックス1098が挙げられる。また、ヒンダードフェノール系熱安定剤に二官能型熱安定剤を併用することにより、フィルム強度の劣化をさらに低減することができる。 From the viewpoint of preventing deterioration of film strength, hindered phenol-based heat stabilizers are preferred. The thermal decomposition temperature of the hindered phenol heat stabilizer is preferably 320°C or higher, more preferably 350°C or higher. As a hindered phenol heat stabilizer having a thermal decomposition temperature of 320° C. or higher, there is Sumilizer GA-80. Further, if the hindered phenol-based heat stabilizer has an amide bond, deterioration of film strength can be prevented. Hindered phenolic heat stabilizers having an amide bond include, for example, Irganox 1098. In addition, by using a hindered phenol-based heat stabilizer together with a bifunctional heat stabilizer, deterioration of film strength can be further reduced.
 これらの熱安定剤は、単独で用いてもよいし、2種以上を併用してもよい。例えば、ヒンダードフェノール系熱安定剤とリン系熱安定剤を併用すれば、フィルムの製膜時における原料濾過用フィルターの昇圧を防止することができるとともに、フィルム強度の劣化を防止することができる。また、ヒンダードフェノール系熱安定剤とリン系熱安定剤と二官能型熱安定剤を併用すれば、フィルムの製膜時における原料濾過用フィルターの昇圧を防止することができるとともに、フィルム強度の劣化をさらに低減することができる。 These heat stabilizers may be used alone or in combination of two or more. For example, if a hindered phenol-based heat stabilizer and a phosphorus-based heat stabilizer are used in combination, it is possible to prevent pressure build-up in the filter for filtering raw materials during film formation, and to prevent deterioration of film strength. . In addition, if a hindered phenol-based heat stabilizer, a phosphorus-based heat stabilizer, and a bifunctional heat stabilizer are used in combination, it is possible to prevent pressure build-up in the filter for filtering raw materials during film formation, and to improve film strength. Degradation can be further reduced.
 ヒンダードフェノール系熱安定剤とリン系熱安定剤の組み合わせとしては、スミライザーGA-80またはイルガノックス1098と、Hostanox P-EPQまたはGSY-P101との組み合わせが好ましい。ヒンダードフェノール系熱安定剤とリン系熱安定剤と二官能型熱安定剤の組み合わせとしては、スミライザーGA-80またはイルガノックス1098と、HostanoxP-EPQまたはGSY-P101と、スミライザーGSの組み合わせが好ましく、スミライザーGA-80と、GSY-P101とスミライザーGSとの組み合わせがより好ましい。 As a combination of the hindered phenol heat stabilizer and the phosphorus heat stabilizer, a combination of Sumilizer GA-80 or Irganox 1098 and Hostanox P-EPQ or GSY-P101 is preferable. As a combination of a hindered phenol-based heat stabilizer, a phosphorus-based heat stabilizer, and a bifunctional heat stabilizer, a combination of Sumilizer GA-80 or Irganox 1098, HostanoxP-EPQ or GSY-P101, and Sumilizer GS is preferable. , Sumilizer GA-80, GSY-P101 and Sumilizer GS are more preferred.
 本発明に用いるポリアミドフィルム(F)における上記熱安定剤の含有量としては、ポリアミド(A)100質量部に対して、0.01~2質量部とすることが好ましく、0.04~1質量部とすることがより好ましい。熱安定剤の含有量が0.01~2質量部とすることにより、熱分解をより効率的に抑制することができる。なお、熱安定剤を2種以上併用する場合は、各々の熱安定剤の個別の含有量、および熱安定剤の合計の含有量のいずれもが、上記の範囲に入っていることが好ましい。 The content of the heat stabilizer in the polyamide film (F) used in the present invention is preferably 0.01 to 2 parts by weight, preferably 0.04 to 1 part by weight, with respect to 100 parts by weight of the polyamide (A). Part is more preferable. By setting the content of the heat stabilizer to 0.01 to 2 parts by mass, thermal decomposition can be suppressed more efficiently. When two or more heat stabilizers are used in combination, both the individual content of each heat stabilizer and the total content of the heat stabilizers are preferably within the above range.
 本発明に用いるポリアミドフィルム(F)には、滑り性を良好にするため、滑剤粒子が含有されていてもよい。滑剤粒子としては、例えば、シリカ、アルミナ、二酸化チタン、炭酸カルシウム、カオリン、硫酸バリウム等の無機粒子や、アクリル系樹脂粒子、メラミン樹脂粒子、シリコーン樹脂粒子、架橋ポリスチレン粒子等の有機系微粒子が挙げられる。 The polyamide film (F) used in the present invention may contain lubricant particles in order to improve slipperiness. Examples of lubricant particles include inorganic particles such as silica, alumina, titanium dioxide, calcium carbonate, kaolin, and barium sulfate, and organic fine particles such as acrylic resin particles, melamine resin particles, silicone resin particles, and crosslinked polystyrene particles. be done.
 本発明に用いるポリアミドフィルム(F)には、本発明の効果を損なわない範囲において、必要に応じて、各種の添加剤が含有されていてもよい。添加剤としては、例えば、顔料・染料等の着色剤、着色防止剤、上記熱安定剤とは異なる酸化防止剤、耐候性改良剤、難燃剤、可塑剤、離型剤、強化剤、改質剤、帯電防止剤、紫外線吸収剤、防曇剤、各種ポリマーが挙げられる。顔料としては、酸化チタン等が挙げられる。耐候性改良剤としては、ベンゾトリアゾール系化合物等が挙げられる。難燃剤としては、臭素系難燃剤やリン系難燃剤等が挙げられる。強化剤としては、タルク等が挙げられる。なお、上記各種の添加剤は、フィルムを製造する際の任意の段階でこれを添加すればよい。 The polyamide film (F) used in the present invention may contain various additives as necessary within a range that does not impair the effects of the present invention. Additives include, for example, coloring agents such as pigments and dyes, coloring inhibitors, antioxidants different from the above heat stabilizers, weather resistance improvers, flame retardants, plasticizers, release agents, reinforcing agents, modifiers agents, antistatic agents, ultraviolet absorbers, antifogging agents, and various polymers. Pigments include titanium oxide and the like. Examples of weather resistance improvers include benzotriazole compounds. Examples of flame retardants include brominated flame retardants and phosphorus flame retardants. Examples of reinforcing agents include talc and the like. The various additives described above may be added at any stage during film production.
 ポリアミドフィルム(F)が添加剤を含む場合、当該添加剤はそれぞれ独立して、ポリアミド(E)と予め混練されてもよいし、またはシート状に押出す際の溶融混合直前に添加されてもよい。 When the polyamide film (F) contains additives, the additives may be independently pre-kneaded with the polyamide (E), or may be added just before melt-mixing during extrusion into a sheet. good.
 本発明に用いるポリアミドフィルム(F)に、熱安定剤、滑剤粒子、各種の添加剤を含有させる場合、ポリアミド(E)と当該添加剤とを予め混練しておくことが好ましい。ポリアミド(E)との混練に用いられる混練機は、特に限定されないが、例えば、単軸押出機、二軸押出機、バンバリーミキサー、ニーダー、ミキシングロール等、公知の溶融混練機が挙げられる。溶融混練温度は、通常、ポリアミド(E)の融点以上である。 When the polyamide film (F) used in the present invention contains heat stabilizers, lubricant particles, and various additives, it is preferable to knead the polyamide (E) and the additives in advance. The kneader used for kneading with the polyamide (E) is not particularly limited, and examples thereof include known melt kneaders such as a single-screw extruder, a twin-screw extruder, a Banbury mixer, a kneader, and a mixing roll. The melt-kneading temperature is usually at least the melting point of the polyamide (E).
 本発明に用いるポリアミドフィルム(F)には、必要に応じて、その表面の密着性を向上させるための処理を施すことができる。密着性を向上させる方法としては、例えば、コロナ処理、プラズマ処理、酸処理、火炎処理が挙げられる。 If necessary, the polyamide film (F) used in the present invention can be treated to improve the adhesion of its surface. Examples of methods for improving adhesion include corona treatment, plasma treatment, acid treatment, and flame treatment.
 本発明に用いるポリアミドフィルム(F)の表面には、易接着性、帯電防止性、離型性、ガスバリア性等の機能を付与するため、各種のコーティング剤が塗布されていてもよい。 Various coating agents may be applied to the surface of the polyamide film (F) used in the present invention in order to impart functions such as easy adhesion, antistatic properties, releasability, and gas barrier properties.
 本発明に用いるポリアミドフィルム(F)の厚みは通常、1μm~2mmであり、耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減の観点から、好ましくは10μm~500μm、より好ましくは25~100μmである。ポリアミドフィルム(F)が延伸されている場合、延伸されたポリアミドフィルム(F)が上記厚みを有している。 The thickness of the polyamide film (F) used in the present invention is usually 1 μm to 2 mm, and from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity and further reducing warpage, preferably 10 μm to 10 μm. 500 μm, more preferably 25-100 μm. When the polyamide film (F) is stretched, the stretched polyamide film (F) has the above thickness.
 本発明に用いるポリアミドフィルム(F)は、耐熱性に優れるものであり、耐熱性の指標となる融点が、240℃以上であることが必要であり、250℃以上であることが好ましく、270℃以上であることがより好ましく、300℃以上であることがさらに好ましい。融点が低すぎると、耐熱性が低下する。 The polyamide film (F) used in the present invention has excellent heat resistance, and the melting point, which is an index of heat resistance, must be 240° C. or higher, preferably 250° C. or higher, and 270° C. It is more preferably 300° C. or higher, and more preferably 300° C. or higher. If the melting point is too low, the heat resistance will be lowered.
 ポリアミドフィルム(F)の融点は、ポリアミド(E)の分子量、芳香族ジカルボン酸(C)と炭素数12以下の脂肪族ジアミン(D)からなる反応生成物(ハードセグメントポリマー)の含有量、(C)/(D)含有比から選択される1つ以上の因子を調整することにより、制御することができる。例えば、ポリアミド(E)の分子量を増大させると、当該融点は高くなる。また例えば、ポリアミド(E)の分子量を低減させると、当該融点は低くなる。
 さらに例えば、芳香族ジカルボン酸(C)と炭素数12以下の脂肪族ジアミン(D)からなる反応生成物の含有量を増大させると、当該融点は高くなる傾向がある。
The melting point of the polyamide film (F) is determined by the molecular weight of the polyamide (E), the content of the reaction product (hard segment polymer) composed of the aromatic dicarboxylic acid (C) and the aliphatic diamine having 12 or less carbon atoms (D), ( It can be controlled by adjusting one or more factors selected from the C)/(D) content ratio. For example, increasing the molecular weight of polyamide (E) raises its melting point. Also, for example, if the molecular weight of polyamide (E) is reduced, the melting point will be lowered.
Further, for example, increasing the content of the reaction product consisting of the aromatic dicarboxylic acid (C) and the aliphatic diamine having 12 or less carbon atoms (D) tends to increase the melting point.
 本明細書中、融点は、示差走査熱量計により昇温速度20℃/分にて昇温した時の吸熱ピークに基づく温度を用いている。 In this specification, the melting point is the temperature based on the endothermic peak when the temperature is raised at a temperature elevation rate of 20°C/min with a differential scanning calorimeter.
 本発明に用いるポリアミドフィルム(F)は、柔軟性に優れるものであり、柔軟性の1つの指標となる伸長回復率が通常、30%以上であり、耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減の観点から、40%以上であることが好ましく、50%以上であることがより好ましく、55%以上であることがさらに好ましい。伸長回復率が低すぎると、柔軟性が低下する。当該伸長回復率は通常、100%以下(特に90%以下)である。本発明においては、ポリアミドフィルム(F)を構成するポリアミド(E)がブロック型構造を有することにより、50%以上(特に55%以上)の伸長回復率を達成することができる。 The polyamide film (F) used in the present invention is excellent in flexibility, and the elongation recovery rate, which is one indicator of flexibility, is usually 30% or more, and the heat resistance, flexibility, adhesion, and transmission characteristics And from the viewpoint of further improvement of rubber elasticity and further reduction of warpage, it is preferably 40% or more, more preferably 50% or more, and even more preferably 55% or more. If the elongation recovery rate is too low, the flexibility will decrease. The elongation recovery rate is usually 100% or less (especially 90% or less). In the present invention, the polyamide (E) that constitutes the polyamide film (F) has a block-type structure, so that an elongation recovery rate of 50% or more (especially 55% or more) can be achieved.
 ポリアミドフィルム(F)の伸長回復率は、ポリアミド(E)の高分子構造、延伸倍率、炭素数18以上の脂肪族ジカルボン酸(A)と炭素数18以上の脂肪族ジアミン(B)の含有量から選択される1つ以上の因子を調整することにより、制御することができる。
 例えば、ポリアミド(E)の高分子構造をランダム型構造からブロック型構造に調整すると、伸長回復率は増大する傾向がある。
 また例えば、延伸倍率を増大させると、当該伸長回復率は低減する。他方、延伸倍率を低減させると、当該伸長回復率は増大する。
 さらに例えば、炭素数18以上の脂肪族ジカルボン酸(A)と炭素数18以上の脂肪族ジアミン(B)の含有量を増大させたり、(B)の含有量を増大させたりすると、当該伸長回復率は増大する傾向がある。
The elongation recovery rate of the polyamide film (F) depends on the polymer structure of the polyamide (E), the draw ratio, the content of the aliphatic dicarboxylic acid (A) having 18 or more carbon atoms and the aliphatic diamine (B) having 18 or more carbon atoms. can be controlled by adjusting one or more factors selected from
For example, when the polymer structure of polyamide (E) is adjusted from a random type structure to a block type structure, the elongation recovery rate tends to increase.
Further, for example, when the draw ratio is increased, the elongation recovery rate is decreased. On the other hand, when the draw ratio is reduced, the elongation recovery rate increases.
Further, for example, by increasing the content of an aliphatic dicarboxylic acid having 18 or more carbon atoms (A) and an aliphatic diamine having 18 or more carbon atoms (B), or increasing the content of (B), the elongation recovery rates tend to increase.
 本明細書中、伸長回復率は、23℃環境下、チャック間距離70mmおよび引張試験速度5mm/minの条件で引張り試験したときの値を用いている。 In this specification, the elongation recovery rate is the value obtained when a tensile test is performed under the conditions of a chuck-to-chuck distance of 70 mm and a tensile test speed of 5 mm/min in an environment of 23°C.
 本発明に用いるポリアミドフィルム(F)の柔軟性の1つの指標となる引張弾性率(MD)は通常、2500MPa以下であり、耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減の観点から、2000MPa以下であることが好ましく、1500MPa以下であることがより好ましく、1000MPa以下であることがさらに好ましく、500MPa以下であることが特に好ましく、310MPa以下であることが十分に好ましい。引張弾性率が高すぎると、柔軟性が低下する。当該引張弾性率は通常、10MPa以上である。 The tensile modulus (MD), which is one indicator of the flexibility of the polyamide film (F) used in the present invention, is usually 2500 MPa or less, and the heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity are further improved and From the viewpoint of further reducing warpage, it is preferably 2000 MPa or less, more preferably 1500 MPa or less, even more preferably 1000 MPa or less, particularly preferably 500 MPa or less, and 310 MPa or less is sufficient. preferred. Too high a tensile modulus reduces flexibility. The tensile modulus is usually 10 MPa or more.
 ポリアミドフィルム(F)の引張弾性率は、ポリアミド(E)の高分子構造、延伸倍率、炭素数18以上の脂肪族ジカルボン酸(A)と炭素数18以上の脂肪族ジアミン(B)の含有量から選択される1つ以上の因子を調整することにより、制御することができる。
 例えば、ポリアミド(E)の高分子構造をランダム型構造からブロック型構造に調整すると、引張弾性率は低減する傾向がある。
 また例えば、延伸倍率を増大させると、当該引張弾性率は増大する。他方、延伸倍率を低減させると、当該引張弾性率は低減する。
 さらに例えば、炭素数18以上の脂肪族ジカルボン酸(A)と炭素数18以上の脂肪族ジアミン(B)の含有量を増大さると当該弾性率は低減する傾向があり、(B)の含有量を増大させたりすると、当該弾性率は増大する傾向がある。
The tensile modulus of the polyamide film (F) depends on the polymer structure of the polyamide (E), the draw ratio, the content of the aliphatic dicarboxylic acid (A) having 18 or more carbon atoms and the aliphatic diamine (B) having 18 or more carbon atoms. can be controlled by adjusting one or more factors selected from
For example, when the polymer structure of polyamide (E) is adjusted from a random type structure to a block type structure, the tensile modulus tends to decrease.
Further, for example, when the draw ratio is increased, the tensile elastic modulus increases. On the other hand, reducing the draw ratio reduces the tensile modulus.
Further, for example, when the contents of an aliphatic dicarboxylic acid having 18 or more carbon atoms (A) and an aliphatic diamine having 18 or more carbon atoms (B) are increased, the elastic modulus tends to decrease, and the content of (B) is increased, the elastic modulus tends to increase.
 本明細書中、引張弾性率は、JIS K 7127に従って、温度20℃、湿度65%の環境下で測定された値を用いている。 In this specification, the tensile modulus uses values measured in an environment with a temperature of 20°C and a humidity of 65% according to JIS K 7127.
 本発明に用いるポリアミドフィルム(F)の結晶融解エンタルピーは通常、15J/g以上であり、耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減の観点から、18J/g以上であることが好ましく、20J/g以上であることがより好ましく、23J/g以上であることがさらに好ましく、25J/g以上であることが特に好ましく、30J/g以上であることが十分に好ましく、40J/g以上であることがより十分に好ましく、50J/g以上であることが最も好ましい。ハードセグメントの結晶性が高いほど、ハードセグメントとソフトセグメントの相分離構造の形成が促進され、柔軟性やゴム弾性が向上する。当該結晶融解エンタルピーが低すぎると、柔軟性および/またはゴム弾性が低下する。当該結晶融解エンタルピーは通常、120J/g以下(特に90J/g以下)である。本発明においては、ポリアミドフィルム(F)を構成するポリアミド(E)がブロック型構造を有することにより、23J/g以上(特に25J/g以上、好ましくは40J/g以上)の結晶融解エンタルピーを達成することができる。 The crystalline melting enthalpy of the polyamide film (F) used in the present invention is usually 15 J / g or more, and from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity and further reducing warpage, 18 J /g or more, more preferably 20 J/g or more, even more preferably 23 J/g or more, particularly preferably 25 J/g or more, and 30 J/g or more. Fully preferred, 40 J/g or greater is more preferred, and 50 J/g or greater is most preferred. The higher the crystallinity of the hard segment, the more the formation of a phase separation structure between the hard segment and the soft segment is promoted, and the flexibility and rubber elasticity are improved. If the crystal melting enthalpy is too low, flexibility and/or rubber elasticity will be reduced. The crystal melting enthalpy is usually 120 J/g or less (especially 90 J/g or less). In the present invention, a crystalline melting enthalpy of 23 J/g or more (particularly 25 J/g or more, preferably 40 J/g or more) is achieved because the polyamide (E) constituting the polyamide film (F) has a block type structure. can do.
 ポリアミドフィルム(F)の結晶融解エンタルピーは、ポリアミド(E)の高分子構造、芳香族ジカルボン酸(C)と炭素数12以下の脂肪族ジアミン(D)からなる反応生成物(ハードセグメントポリマー)の含有量から選択される1つ以上の因子を調整することにより、制御することができる。
 例えば、ポリアミド(E)の高分子構造をランダム型構造からブロック型構造に調整すると、結晶融解エンタルピーは増大する傾向がある。
 また例えば、芳香族ジカルボン酸(C)と炭素数12以下の脂肪族ジアミン(D)からなる反応生成物の含有量を増大させると、結晶融解エンタルピー増大する。
The crystal melting enthalpy of the polyamide film (F) is determined by the polymer structure of the polyamide (E), the reaction product (hard segment polymer) composed of the aromatic dicarboxylic acid (C) and the aliphatic diamine (D) having 12 or less carbon atoms. It can be controlled by adjusting one or more factors selected from the content.
For example, when the polymer structure of polyamide (E) is adjusted from a random type structure to a block type structure, the crystal melting enthalpy tends to increase.
Further, for example, when the content of the reaction product composed of the aromatic dicarboxylic acid (C) and the aliphatic diamine having 12 or less carbon atoms (D) is increased, the crystal melting enthalpy is increased.
 本明細書中、結晶融解エンタルピーは、融点と同様の方法で測定された吸熱ピークの熱量の値を用いている。 In this specification, the crystal melting enthalpy uses the value of the calorie of the endothermic peak measured by the same method as the melting point.
 本発明に用いるポリアミドフィルム(F)において、ヒステリシスロス率は、小さければ小さいほどゴム弾性が高いことを示す。本発明に用いるポリアミドフィルム(F)において、ヒステリシスロス率は、(耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減の観点から、90%以下であることが好ましく、85%以下であることがより好ましく、80%以下であることがさらに好ましい。当該ヒステリシスロス率は通常、10%以上(特に30%以上)である。 In the polyamide film (F) used in the present invention, the smaller the hysteresis loss rate, the higher the rubber elasticity. In the polyamide film (F) used in the present invention, the hysteresis loss rate is 90% or less (from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission characteristics and rubber elasticity and further reducing warpage. The hysteresis loss rate is preferably 85% or less, more preferably 80% or less, and is usually 10% or more (especially 30% or more).
 ポリアミドフィルム(F)のヒステリシスロス率は、ポリアミド(E)の高分子構造、延伸倍率、炭素数18以上の脂肪族ジカルボン酸(A)と炭素数18以上の脂肪族ジアミン(B)の含有量から選択される1つ以上の因子を調整することにより、制御することができる。
 例えば、ポリアミド(E)の高分子構造をランダム型構造からブロック型構造に調整すると、ヒステリシスロス率は低減する傾向がある。
 また例えば、延伸倍率を増大させると、当該ヒステリシスロス率は増大する。他方、延伸倍率を低減させると、当該ヒステリシスロス率は低減する。
 さらに例えば、炭素数18以上の脂肪族ジカルボン酸(A)と炭素数18以上の脂肪族ジアミン(B)の含有量を増大させたり、(B)の含有量を増大させたりすると、当該ヒステリシスロス率は低減する傾向がある。
The hysteresis loss rate of the polyamide film (F) is determined by the polymer structure of the polyamide (E), the draw ratio, the content of the aliphatic dicarboxylic acid (A) having 18 or more carbon atoms and the aliphatic diamine (B) having 18 or more carbon atoms. can be controlled by adjusting one or more factors selected from
For example, when the polymer structure of polyamide (E) is adjusted from a random type structure to a block type structure, the hysteresis loss rate tends to decrease.
Further, for example, when the draw ratio is increased, the hysteresis loss rate increases. On the other hand, when the draw ratio is reduced, the hysteresis loss rate is reduced.
Furthermore, for example, when the content of an aliphatic dicarboxylic acid having 18 or more carbon atoms (A) and an aliphatic diamine having 18 or more carbon atoms (B) is increased, or the content of (B) is increased, the hysteresis loss rate tends to decrease.
 本明細書中、ヒステリシスロス率は、伸長回復率と同様の方法で引張り試験したときの値を用いている。 In this specification, the hysteresis loss rate uses the value obtained when a tensile test is performed in the same manner as the elongation recovery rate.
 本発明に用いるポリアミドフィルム(F)は、誘電正接や比誘電率がより十分に低く誘電特性に優れており、さらに絶縁特性にも優れている。
 本発明に用いるポリアミドフィルム(F)は、熱収縮率および吸水率がより十分に低減されている。
The polyamide film (F) used in the present invention has sufficiently low dielectric loss tangent and relative dielectric constant, is excellent in dielectric properties, and is also excellent in insulating properties.
The polyamide film (F) used in the present invention has sufficiently reduced heat shrinkage and water absorption.
 得られたフィルムは、枚葉とされてもよいし、巻き取りロールに巻き取られることによりフィルムロールの形態とされてもよい。各種用途への利用に際しての生産性の観点から、フィルムロールの形態とすることが好ましい。フィルムロールとされた場合は、所望の巾にスリットされていてもよい。 The obtained film may be in the form of a sheet, or may be in the form of a film roll by being wound up on a take-up roll. From the viewpoint of productivity when used for various purposes, it is preferable to use the form of a film roll. When a film roll is used, it may be slit to a desired width.
 本発明のポリアミドフィルム積層体は、上記ポリアミドフィルム(F)上に、金属層を設けることが必要である。金属層を構成する金属としては、例えば、銅、アルミニウム、鉄、ニッケル、スズ、金、銀、合金鋼(例えばステンレス)、合金メッキが挙げられる。金属層は、ポリアミドフィルム(F)の少なくとも片面に設けられ、例えば、片面のみに設けられてもよいし、または両面に設けられてもよい。また、金属層は、ポリアミドフィルム(F)片面または両面において、全面に設けられてもよいし、または部分的に設けられてもよい。金属層の厚みは、積層体(特にフィルム)の柔軟性が阻害されない限り、特に限定されず、例えば、1~500μmであってもよく、耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減の観点から、1~105μmであることが好ましく、9~35μmであることがより好ましい。 In the polyamide film laminate of the present invention, it is necessary to provide a metal layer on the polyamide film (F). Examples of metals forming the metal layer include copper, aluminum, iron, nickel, tin, gold, silver, alloy steel (eg, stainless steel), and alloy plating. The metal layer is provided on at least one side of the polyamide film (F), for example, it may be provided on only one side, or may be provided on both sides. Also, the metal layer may be provided entirely or partially on one side or both sides of the polyamide film (F). The thickness of the metal layer is not particularly limited as long as the flexibility of the laminate (especially the film) is not hindered, and may be, for example, 1 to 500 μm. From the viewpoint of further improvement of the resistance and further reduction of warpage, the thickness is preferably 1 to 105 μm, more preferably 9 to 35 μm.
 本発明の積層体には、さらに樹脂層を設けてもよい。金属層がポリアミドフィルム(F)の片面に設けられる場合、樹脂層は、金属層の上に設けられてもよいし、またはポリアミドフィルム(F)における金属層が設けられていない面(反対面)に設けられてもよい。樹脂層は通常、金属層の上に設けられる。金属層がポリアミドフィルム(F)の両面に設けられる場合、樹脂層は、一方の金属層の上に設けられてもよいし、または両方の金属層の上に設けられてもよい。樹脂層を構成する樹脂は、特に限定されず、例えば、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリアリーレンエーテルケトン、ポリアリーレンスルフィド、フルオロカーボンポリマー、ポリアミド、ポリエステル、ポリエーテル、ポリオレフィン、ポリスチレン、ポリカーボネート、ポリウレタン、エチレン/酢酸ビニル共重合体、エチレン/α-オレフィン共重合体、エチレン/アクリル酸エステル共重合体、無水マレイン酸変性ポリオレフィン、アイオノマーからなる群から選択されてもよい。樹脂層を構成する樹脂がポリアミドの場合、当該ポリアミドは、ポリアミド(E)であってもよいし、またはそれ以外のポリアミドであってもよい。金属層がポリアミドフィルム(F)の両面に設けられる場合、一方の面に設けられる金属層は他方の面に設けられる金属層と同種の金属から構成されていてもよいし、または異種の金属から構成されていてもよい。 A resin layer may be further provided in the laminate of the present invention. When the metal layer is provided on one side of the polyamide film (F), the resin layer may be provided on the metal layer, or the side of the polyamide film (F) not provided with the metal layer (opposite side) may be provided in A resin layer is usually provided on the metal layer. When metal layers are provided on both sides of the polyamide film (F), the resin layer may be provided on one metal layer, or may be provided on both metal layers. The resin constituting the resin layer is not particularly limited, and examples thereof include polyimide, polyamideimide, polyetherimide, polyarylene ether ketone, polyarylene sulfide, fluorocarbon polymer, polyamide, polyester, polyether, polyolefin, polystyrene, polycarbonate, and polyurethane. , ethylene/vinyl acetate copolymers, ethylene/α-olefin copolymers, ethylene/acrylate copolymers, maleic anhydride-modified polyolefins, and ionomers. When the resin constituting the resin layer is polyamide, the polyamide may be polyamide (E) or other polyamide. When the metal layers are provided on both sides of the polyamide film (F), the metal layer provided on one side may be made of the same metal as the metal layer provided on the other side, or may be made of a different metal. may be configured.
 本発明のポリアミドフィルム積層体において、金属層は接着層等の第3部材を介してポリアミドフィルム(F)上に設けられてもよいが、第3部材を介在させることなく、ポリアミドフィルム(F)と直接的に接して設けられていることが好ましい。金属層とポリアミドフィルム(F)との間に接着層等の第3部材が介在しないことにより、伝送損失をより十分に低減できるためである。 In the polyamide film laminate of the present invention, the metal layer may be provided on the polyamide film (F) via a third member such as an adhesive layer. is preferably provided in direct contact with the This is because the transmission loss can be sufficiently reduced by not interposing a third member such as an adhesive layer between the metal layer and the polyamide film (F).
 本発明に用いるポリアミド積層体の作製方法としては、例えば、(1)フィルムと金属とを、加熱および加圧によって張り合わせる方法、(2)メッキ処理;インクジェット法;真空蒸着やスパッタリング処理等の物理蒸着(PVD)法;または熱、プラズマ、光をエネルギー形態とする化学蒸着(CVD)法により金属層を形成する方法、(3)メッキ処理、インクジェット法、PVD法またはCVD法によりシード層を形成した後にメッキ処理により金属層を形成する方法が挙げられる。中でも、フィルムと金属とを加熱および加圧によって張り合わせる方法が、生産性および伝送損失のさらなる低減の観点から好ましい。 Examples of the method for producing the polyamide laminate used in the present invention include (1) a method of bonding a film and a metal by heating and pressing, (2) plating; inkjet method; vapor deposition (PVD); or a method of forming a metal layer by a chemical vapor deposition (CVD) method using heat, plasma, or light as an energy form; (3) forming a seed layer by plating, inkjet, PVD, or CVD; A method of forming a metal layer by plating after coating is exemplified. Among them, a method of laminating a film and a metal by heating and pressing is preferable from the viewpoint of productivity and further reduction of transmission loss.
 フィルムと金属とを加熱および加圧によって張り合わせる方法としては、例えば、フィルムに接着剤を塗布した後に金属を重ね合わせ加熱および加圧によって張り合わせる方法や、フィルムと金属との間に接着シートを挟み加熱および加圧によって張り合わせる方法や、フィルムと金属とを直接重ね合わせ加熱および加圧によって張り合わせる方法が挙げられる。 As a method of laminating a film and a metal by heating and pressurizing, for example, a method of applying an adhesive to a film and then superimposing a metal and laminating by heating and pressurizing, or a method of laminating an adhesive sheet between a film and a metal. A method of sandwiching and laminating by heating and pressurizing, and a method of directly laminating a film and metal and laminating by heating and pressurizing can be used.
 加熱および加圧の方法としては、例えば、真空プレス装置を用いる方法や、ロール式ラミネート機を用いる方法が挙げられる。真空プレス装置を用いる場合、加熱温度は、「フィルムの融点(℃)-100℃」~「フィルムの融点(℃)-5℃」、圧力は10MPa以下、処理時間は2時間以内とすることが好ましい。加熱温度は、耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減の観点から、好ましくは「フィルムの融点(℃)-100℃」~「フィルムの融点(℃)-50℃」、より好ましくは「フィルムの融点(℃)-90℃」~「フィルムの融点(℃)-50℃」である。圧力は、耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減の観点から、好ましくは0.1~5MPa、より好ましくは0.5~2MPaである。処理時間は、耐熱性、柔軟性、密着性、伝送特性およびゴム弾性のさらなる向上ならびに反りのさらなる低減の観点から、好ましくは1~60分間であり、より好ましくは1~10分間である。 Examples of heating and pressing methods include a method using a vacuum press and a method using a roll laminator. When using a vacuum press, the heating temperature should be "film melting point (°C) -100°C" to "film melting point (°C) -5°C", the pressure should be 10 MPa or less, and the processing time should be within 2 hours. preferable. From the viewpoint of further improving heat resistance, flexibility, adhesion, transmission properties and rubber elasticity, and further reducing warpage, the heating temperature is preferably from "film melting point (°C) -100°C" to "film melting point (°C ) −50° C.”, more preferably “melting point (° C.) of film −90° C.” to “melting point (° C.) of film −50° C.”. The pressure is preferably 0.1 to 5 MPa, more preferably 0.5 to 2 MPa, from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission properties and rubber elasticity and further reducing warpage. The treatment time is preferably 1 to 60 minutes, more preferably 1 to 10 minutes, from the viewpoint of further improving heat resistance, flexibility, adhesion, transmission properties and rubber elasticity and further reducing warpage.
 フィルムに接着剤を塗布した後に金属を重ね合わせて加および加圧によって張り合わせる方法としては、接着成分を分散させた溶液をフィルム表面にコートし、乾燥させて接着層を形成した後、金属を重ね合わせて、加熱および加圧によって張り合わせる方法が挙げられる。コート後の乾燥温度は100℃以下とすることが好ましい。 As a method of applying an adhesive to a film and then laminating the metal by applying pressure and pressure, the film surface is coated with a solution in which an adhesive component is dispersed, dried to form an adhesive layer, and then the metal is applied. A method of stacking and laminating by heating and pressurizing may be mentioned. The drying temperature after coating is preferably 100° C. or less.
 フィルムと金属との間に接着シートを挟み加熱および加圧によって張り合わせる方法としては、例えば、フィルムに接着シートを重ね合わせ、金属を加熱および加圧によって張り合わせる方法が挙げられる。 A method of sandwiching an adhesive sheet between a film and a metal and laminating them by heating and pressurizing includes, for example, a method of superimposing an adhesive sheet on a film and laminating a metal by heating and pressurizing.
 本発明のポリアミドフィルム積層体のポリアミドフィルムと金属層との剥離強度は、0.1[N/mm]以上であることが好ましく、0.3[N/mm]以上であることがより好ましく、0.5[N/mm]以上であることがさらに好ましい。当該剥離強度は通常、2[N/mm]以下である。 The peel strength between the polyamide film and the metal layer of the polyamide film laminate of the present invention is preferably 0.1 [N/mm] or more, more preferably 0.3 [N/mm] or more, More preferably, it is 0.5 [N/mm] or more. The peel strength is usually 2 [N/mm] or less.
 本明細書中、剥離強度は、JIS C 6471(方法A)に従って測定された値を用いている。 In this specification, the peel strength uses the value measured according to JIS C 6471 (Method A).
 本発明のポリアミド積層体から作製した、特性インピーダンスが50Ωのマイクロストリップラインにおける、伝送損失の絶対値が、5GHzで1.80[dB/100mm]以下あることが好ましく、1.70以下であることがより好ましく、1.65以下であることがさらに好ましい。伝送損失の絶対値は通常、5GHzで1[dB/100mm]以上である。 The absolute value of transmission loss in a microstrip line having a characteristic impedance of 50 Ω, which is produced from the polyamide laminate of the present invention, is preferably 1.80 [dB/100 mm] or less at 5 GHz, and preferably 1.70 or less. is more preferable, and 1.65 or less is even more preferable. The absolute value of transmission loss is usually 1 [dB/100 mm] or more at 5 GHz.
 本明細書中、伝送損失は、ポリアミドフィルム積層体から、特性インピーダンスが50Ωとなるように作製されたマイクロストリップラインの5GHzでの値を用いている。 In this specification, the transmission loss uses the value at 5 GHz of a microstrip line made from a polyamide film laminate so that the characteristic impedance is 50Ω.
 本発明のポリアミドフィルム積層体は、耐熱性、柔軟性に優れ、金属や樹脂との密着性が良く、積層体としたときの反りが低減されている。本発明のポリアミドフィルム積層体は、熱処理(例えばリフロー処理)後においても、外観が良好であり、さらには、反りが低減されている。本発明のポリアミドフィルム積層体は、フレキシブルプリント回路基板としたときの伝送損失も低減されている。 The polyamide film laminate of the present invention is excellent in heat resistance and flexibility, has good adhesion to metals and resins, and has reduced warpage when formed into a laminate. The polyamide film laminate of the present invention has good appearance and reduced warpage even after heat treatment (for example, reflow treatment). The polyamide film laminate of the present invention also has reduced transmission loss when used as a flexible printed circuit board.
 本発明のポリアミドフィルム積層体は、例えば、フレキシブルプリント回路基板、高速通信用のフレキシブルプリント回路基板、高速通信用のアンテナ基板、カバーレイ、フレキシブルアンテナ基板、ボンディングシート、電磁波シールド材料等に好適に用いることができる。 The polyamide film laminate of the present invention is suitably used for, for example, flexible printed circuit boards, flexible printed circuit boards for high-speed communication, antenna substrates for high-speed communication, coverlays, flexible antenna substrates, bonding sheets, electromagnetic shielding materials, and the like. be able to.
 本発明のポリアミドフィルム積層体をフレキシブルプリント回路基板に用いる場合、ポリアミドフィルム積層体の金属層をエッチングし、金属配線を形成することにより、本発明のポリアミドフィルム積層体を用いることができる。別法として、ポリアミドフィルム(F)に、メッキ法、インクジェット法、物理蒸着法、化学蒸着法からなる群から選択される方法よって、金属配線としての金属層を形成することにより、本発明のポリアミドフィルム積層体をフレキシブルプリント回路基板として用いることもできる。 When the polyamide film laminate of the present invention is used for a flexible printed circuit board, the polyamide film laminate of the present invention can be used by etching the metal layer of the polyamide film laminate to form metal wiring. Alternatively, by forming a metal layer as a metal wiring on the polyamide film (F) by a method selected from the group consisting of a plating method, an ink jet method, a physical vapor deposition method, and a chemical vapor deposition method, the polyamide of the present invention A film laminate can also be used as a flexible printed circuit board.
 本発明のポリアミドフィルム積層体をフレキシブルアンテナ基板に用いる場合、ポリアミドフィルム積層体の金属層をエッチングし、金属配線を形成することにより用いることができる。別法として、ポリアミドフィルム(F)に、メッキ法、インクジェット法、物理蒸着法、化学蒸着法からなる群から選択される方法よって、金属配線としての金属層を形成することにより、本発明のポリアミドフィルム積層体をフレキシブルアンテナ基板として用いることもできる。 When the polyamide film laminate of the present invention is used for a flexible antenna substrate, it can be used by etching the metal layer of the polyamide film laminate to form metal wiring. Alternatively, by forming a metal layer as a metal wiring on the polyamide film (F) by a method selected from the group consisting of a plating method, an ink jet method, a physical vapor deposition method, and a chemical vapor deposition method, the polyamide of the present invention A film laminate can also be used as a flexible antenna substrate.
 以下、本発明を実施例によって具体的に説明するが、本発明はこれらによって限定されるものではない。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to these.
A.評価方法
 ポリアミドフィルムおよびポリアミドフィルム積層体の物性測定は、以下の方法によっておこなった。
A. Evaluation Methods Physical properties of polyamide films and polyamide film laminates were measured by the following methods.
(1)フィルムの樹脂組成
 得られたフィルムから数mg採り、高分解能核磁気共鳴装置(日本電子社製ECA-500NMR)を用いて、H-NMR分析することにより、それぞれの共重合成分のピーク強度から求めた(分解能:500MHz、溶媒:重水素化トリフルオロ酢酸と重水素化クロロホルムとの容量比が4/5の混合溶媒、温度:23℃)。表1において、樹脂組成を最終組成として質量比で示した。
(1) Resin Composition of Film A few mg of the obtained film was sampled and subjected to 1 H-NMR analysis using a high-resolution nuclear magnetic resonance spectrometer (ECA-500NMR manufactured by JEOL Ltd.) to determine the composition of each copolymer component. It was determined from the peak intensity (resolution: 500 MHz, solvent: mixed solvent of deuterated trifluoroacetic acid and deuterated chloroform at a volume ratio of 4/5, temperature: 23°C). In Table 1, the resin composition is shown in mass ratio as the final composition.
(2)フィルムの融点、結晶融解エンタルピー
 得られたフィルムから数mg採り、示差走査熱量計DSC-7型(パーキンエルマー社製)用いて、昇温速度20℃/分で350℃まで昇温した後、350℃で5分間保持し、降温速度20℃/分で25℃まで降温し、さらに25℃で5分間保持後、昇温速度20℃/分で再昇温した。
 再昇温時の吸熱ピークのトップを融点とし、吸熱ピークの熱量を結晶融解エンタルピーとした。結晶融解エンタルピーは、融解開始から終了までの温度範囲のピーク面積から求められる。なお、融点および結晶融解エンタルピーは、任意の10箇所で測定された値の平均値を用いた。
 融点を以下の基準に従って評価した。
◎:300℃以上(優良);
○:270℃以上300℃未満(良);
△:240℃以上270℃未満(実用上問題なし);
×:240℃未満(実用上問題あり)。
(2) Melting point of film, crystalline melting enthalpy A few mg of the obtained film was sampled and heated to 350°C at a heating rate of 20°C/min using a differential scanning calorimeter DSC-7 (manufactured by PerkinElmer). After that, the temperature was maintained at 350° C. for 5 minutes, the temperature was lowered to 25° C. at a temperature decrease rate of 20° C./min, the temperature was further maintained at 25° C. for 5 minutes, and then the temperature was raised again at a temperature increase rate of 20° C./min.
The top of the endothermic peak at the time of reheating was taken as the melting point, and the heat quantity of the endothermic peak was taken as the crystal melting enthalpy. Crystal melting enthalpy is obtained from the peak area in the temperature range from the start to the end of melting. For the melting point and crystal melting enthalpy, the average value of the values measured at arbitrary 10 points was used.
Melting points were evaluated according to the following criteria.
◎: 300 ° C. or higher (excellent);
○: 270°C or higher and lower than 300°C (good);
△: 240° C. or more and less than 270° C. (practically no problem);
x: Less than 240°C (problem in practice).
(3)フィルムの伸長回復率(柔軟性)、ヒステリシスロス率(ゴム弾性率)
 得られたフィルムから、JIS K6251 3号の形状の試験片を作製し、INTESCO社製2020型試験機を用いて伸長回復率およびヒステリシスロス率の測定をおこなった。23℃環境下、チャック間距離70mm、引張試験速度5mm/minの条件で、14mm引張り、直ちに同じ速度で元に戻し、応力がゼロになった時の残留歪A(mm)を求めた。なお、伸長回復率およびヒステリシスロス率は、フィルムの任意の10箇所で得られた10個の試験片を用いて測定された値の平均値を用いた。
 伸長回復率は、残留歪Aを用いて下記式により算出した。
 伸長回復率(%)=(14-A)/14×100  
 さらに、得られたヒステリシス曲線から、下記式により算出した。
 ヒステリシスロス率(%)=面積(Oabcd)/面積(OabeO)×100
 例えば、図1において、面積(Oabcd)は破線(縦破線)により示される領域の面積のことであり、面積(OabeO)は実線(横実線)により示される領域の面積のことである。図1は、ヒステリシスロス率の算出方法を説明するためのヒステリシス曲線を示す模式図である。
(3) Film elongation recovery rate (flexibility), hysteresis loss rate (rubber elastic modulus)
A test piece in the shape of JIS K6251 No. 3 was prepared from the obtained film, and the elongation recovery rate and the hysteresis loss rate were measured using a 2020 model tester manufactured by INTESCO. In an environment of 23° C., the distance between chucks was 70 mm, and the tension test speed was 5 mm/min. For the recovery rate from elongation and the rate of hysteresis loss, the average value of values measured using 10 test pieces obtained at arbitrary 10 locations on the film was used.
The elongation recovery rate was calculated using the residual strain A according to the following formula.
Elongation recovery rate (%) = (14-A) / 14 x 100
Furthermore, it was calculated by the following formula from the obtained hysteresis curve.
Hysteresis loss rate (%) = area (Oabcd) / area (OabeO) x 100
For example, in FIG. 1, the area (Oabcd) is the area of the region indicated by the broken line (vertical broken line), and the area (OabeO) is the area of the region indicated by the solid line (horizontal solid line). FIG. 1 is a schematic diagram showing a hysteresis curve for explaining a method of calculating a hysteresis loss rate.
(4)フィルムの引張破断強度、引張破断伸度および引張弾性率(柔軟性)
 JIS K 7127に従って、温度20℃、湿度65%の環境下で測定した。試料の大きさは10mm×150mm、チャック間の初期距離は100mm、引張速度は500mm/分とした。
 フィルムの引張破断強度、引張破断伸度および引張弾性率はMD方向の物性を測定した。
 なお、フィルムの引張破断強度、引張破断伸度および引張弾性率は、フィルムの任意の10箇所で得られた10個の試料を用いて測定された値の平均値を用いた。
(4) Tensile breaking strength, tensile breaking elongation and tensile modulus (flexibility) of film
Measurement was performed in accordance with JIS K 7127 under an environment of temperature 20° C. and humidity 65%. The sample size was 10 mm×150 mm, the initial distance between chucks was 100 mm, and the pulling speed was 500 mm/min.
The tensile strength at break, tensile elongation at break and tensile elastic modulus of the film were measured in the MD direction.
For the tensile strength at break, tensile elongation at break and tensile elastic modulus of the film, an average value of values measured using 10 samples obtained at arbitrary 10 locations of the film was used.
(5)フィルムの熱収縮率
 JIS K 7133に従って、200℃で15分間熱処理をした際のフィルムの収縮率を測定した。
(5) Thermal Shrinkage of Film According to JIS K 7133, the shrinkage of the film after heat treatment at 200° C. for 15 minutes was measured.
(6)フィルムの吸水率
 50℃で24時間の真空乾燥をおこなって質量を測定し、23℃の純水に浸漬した。24時間後、表面の水分をふき取って質量を測定し、浸漬前後の質量変化から吸水率を求めた。
(6) Water Absorption Rate of Film The film was vacuum-dried at 50°C for 24 hours, weighed, and immersed in pure water at 23°C. After 24 hours, the moisture on the surface was wiped off, the mass was measured, and the water absorption was obtained from the change in mass before and after the immersion.
(7)フィルムの誘電特性
 空洞共振器摂動法により、5.8GHzにおける比誘電率および誘電正接を測定した。試料の大きさは2mm×50mmとした。
(7) Dielectric Properties of Films Relative permittivity and dielectric loss tangent at 5.8 GHz were measured by cavity resonator perturbation method. The sample size was 2 mm×50 mm.
(8)フィルム積層体の密着力
 JIS C 6471(方法A)に従って、実施例、比較例で得られたポリアミドフィルム積層体から一方の面の金属層を引きはがす際の剥離強度を測定し、密着力とした。剥離強度を以下の基準に従って評価した。なお、剥離強度は、10回の測定で得られた値の平均値を用いた。
◎:剥離強度が0.5[N/mm]以上であった(優良);
○:剥離強度が0.3[N/mm]以上0.5[N/mm]未満であった(良);
△:剥離強度が0.1[N/mm]以上0.3[N/mm]未満であった(実用上問題なし);
×:剥離強度が0.1[N/mm]未満であった(実用上問題あり)。
(8) Adhesion of Film Laminate According to JIS C 6471 (Method A), the peel strength when peeling off the metal layer on one side from the polyamide film laminates obtained in Examples and Comparative Examples was measured and adhered. Powered. Peel strength was evaluated according to the following criteria. For the peel strength, the average value of the values obtained by 10 measurements was used.
◎: peel strength was 0.5 [N / mm] or more (excellent);
○: peel strength was 0.3 [N / mm] or more and less than 0.5 [N / mm] (good);
Δ: Peel strength was 0.1 [N/mm] or more and less than 0.3 [N/mm] (practically no problem);
x: The peel strength was less than 0.1 [N/mm] (problematic in practice).
(9)フィルム積層体の外観
 実施例、比較例で得られたポリアミドフィルム積層体について、以下の基準に従って評価した。
◎◎:積層体の変形、表面の凹凸、フィルムの染み出しのいずれもなかった(最良);
◎:積層体の変形や表面の凹凸はないが、フィルムの一部が染み出しており、その染み出し量が2mm以未満であった(優良);
○:積層体の変形や表面の凹凸はないが、フィルムの一部が染み出しており、その染み出し量が2mm以上4mm未満であった(良);
△:表面の凹凸はないが、フィルムの一部が染み出しており、その染み出し量が2mm未満であり、積層体周辺部に変形があった(実用上問題なし);
×:積層体の変形および表面の凹凸があった(実用上問題あり)。
 積層体の変形とは、積層体の周辺部の表面にシワが発生したり、周辺部が波打つように変形したりする状態であり、結晶融解エンタルピー、伸長回復率、引張弾性率に起因して生じる現象である。
 表面の凹凸とは、空気抜け不良で積層体表面が変形する状態であり、結晶融解エンタルピー、伸長回復率、引張弾性率に起因して生じる現象である。
 フィルムの染み出しとは、積層体の隙間からフィルムがはみ出す状態であり、積層体作製時の加熱温度および圧力、フィルムの融点、結晶融解エンタルピー、伸長回復率、引張弾性率に起因して生じる現象である。
(9) Appearance of Film Laminate The polyamide film laminates obtained in Examples and Comparative Examples were evaluated according to the following criteria.
◎◎: There was no deformation of the laminate, unevenness on the surface, or bleeding of the film (best);
A: There was no deformation of the laminate and no unevenness on the surface, but part of the film was exuded, and the amount of exudation was less than 2 mm (excellent);
○: There was no deformation of the laminate and no unevenness on the surface, but part of the film was exuding, and the amount of exudation was 2 mm or more and less than 4 mm (good);
Δ: There is no unevenness on the surface, but part of the film is exuded, the amount of exudation is less than 2 mm, and there is deformation in the peripheral part of the laminate (no practical problem);
x: Deformation of the laminate and irregularities on the surface were found (problematic in practice).
Deformation of the laminate is a state in which wrinkles are generated on the surface of the peripheral portion of the laminate, or the peripheral portion is deformed in a wavy manner. This is a phenomenon that occurs.
The unevenness of the surface is a state in which the surface of the laminate is deformed due to poor air evacuation, and is a phenomenon caused by the crystal melting enthalpy, the elongation recovery rate, and the tensile elastic modulus.
Film exudation is a state in which the film protrudes from the gaps in the laminate, and is a phenomenon that occurs due to the heating temperature and pressure at the time of laminate production, the melting point of the film, the crystalline melting enthalpy, the elongation recovery rate, and the tensile modulus. is.
(10)フィルム積層体の反り
 実施例、比較例で得られたポリアミドフィルム積層体から10cm×10cmを切り出し、片面に保護層を設けてエッチング処理を行い、保護層を設けなかった側の金属層を除去し、片面のみに金属層を有するポリアミドフィルム積層体を得た。
 なお、実施例35~46および比較例13~15については、銅箔層側ではない層に保護層を設けてエッチング処理をおこなった。
 フィルム側を下面にして23℃、相対湿度50%、24時間調湿した後、4角の浮き上がり量を測定した。反りが凸形状の場合は、上下反転させて測定した。反りが凹形状の場合をプラス、凸形状の場合をマイナスとした。4角の測定値の平均値(絶対値)Xについて、以下の基準に従って評価した。平均値Xが0mm以上5mm未満の場合を「◎◎(最良)」、5mm以上10mm未満の場合を「◎(優良)」、10mm以上20mm未満の場合を「○(良)」、20mm以上25mm未満を「△(実用上問題なし)」、25mm以上の場合を「×(実用上問題あり)」とした。
(10) Warp of film laminate A 10 cm × 10 cm piece was cut out from the polyamide film laminates obtained in Examples and Comparative Examples, a protective layer was provided on one side, etching was performed, and the metal layer on the side without the protective layer was provided. was removed to obtain a polyamide film laminate having a metal layer only on one side.
In Examples 35 to 46 and Comparative Examples 13 to 15, a protective layer was provided on a layer other than the copper foil layer, and the etching process was performed.
After conditioned at 23° C. and a relative humidity of 50% for 24 hours with the film side facing downward, the floating amount of the four corners was measured. When the warp was convex, the measurement was performed by turning it upside down. The case where the warp was concave was given a positive value, and the case where the warp was a convex shape was given a negative value. The average value (absolute value) X of the measured values of the four corners was evaluated according to the following criteria. If the average value X is 0 mm or more and less than 5 mm, "◎ (best)", if it is 5 mm or more and less than 10 mm, "◎ (excellent)", if it is 10 mm or more and less than 20 mm, "○ (good)", 20 mm or more and 25 mm A case of less than 25 mm was evaluated as "Δ (practically no problem)", and a case of 25 mm or more was evaluated as "x (practically problematic)".
(11)耐熱性試験後のフィルム積層体の外観・反り
 (10)で得られた片面のみに金属層を有するポリアミドフィルム積層体を、250℃で60秒の処理をおこなった。その後、「(9)フィルム積層体の外観」および「(10)フィルム積層体の反り」と同様の方法により、評価を行い、以下の基準に従ってランク付けした。
◎◎:フィルムの外観に変化なく、反り平均値Xが0mm以上5mm未満であった(最良);
◎:フィルムの外観に変化なく、フィルムの外観に変化なく、反り平均値Xが5mm以上10mm未満であった(優良);
○:フィルムの外観に変化なく、反り平均値Xが10mm以上20mm未満であった(良);
△:フィルムの外観に変化なく、反り平均値Xが20mm以上25mm未満であった(実用上問題なし);
×:フィルムの外観が悪化したか、またはフィルムの外観に変化がなかったとしても、反り平均値Xが25mm以上であった(実用上問題あり)。
(11) Appearance and Warp of Film Laminate after Heat Resistance Test The polyamide film laminate having a metal layer on only one side obtained in (10) was treated at 250° C. for 60 seconds. After that, evaluation was performed in the same manner as in "(9) Appearance of film laminate" and "(10) Warpage of film laminate", and ranking was performed according to the following criteria.
◎◎: There was no change in the appearance of the film, and the average warpage value X was 0 mm or more and less than 5 mm (best);
A: No change in film appearance, no change in film appearance, average warpage value X of 5 mm or more and less than 10 mm (excellent);
◯: No change in appearance of the film, and the average warpage value X was 10 mm or more and less than 20 mm (good);
Δ: There was no change in the appearance of the film, and the average warpage value X was 20 mm or more and less than 25 mm (practically no problem);
x: The appearance of the film deteriorated, or even if the appearance of the film did not change, the average warpage value X was 25 mm or more (problematic in practice).
(12)フィルム積層体の伝送特性
 実施例、比較例で得られた両面に金属層を有したポリアミドフィルム積層体から、特性インピーダンスが50Ωとなるようにマイクロストリップラインを作製し、ネットワークアナライザーを用いて、10MHz~40GHzの伝送損失の絶対値)を測定し、以下の基準に従って評価した。なお、伝送損失は、10回の測定で得られた値の平均値を用いた。
◎:絶対値Yが1.65[dB/100mm]以下であった(優良);
○:絶対値Yが1.65[dB/100mm]超1.75[dB/100mm]以下であった(良);
△:絶対値Yが1.75[dB/100mm]超1.80[dB/100mm]以下あった(実用上問題なし);
×:絶対値Yが1.80[dB/100mm]超であった(実用上問題あり)。
(12) Transmission characteristics of film laminate From the polyamide film laminates having metal layers on both sides obtained in Examples and Comparative Examples, a microstrip line was produced so that the characteristic impedance was 50Ω, and a network analyzer was used. Absolute value of transmission loss from 10 MHz to 40 GHz) was measured and evaluated according to the following criteria. For the transmission loss, the average value of the values obtained by 10 measurements was used.
◎: absolute value Y was 1.65 [dB / 100 mm] or less (excellent);
○: the absolute value Y was more than 1.65 [dB / 100 mm] and 1.75 [dB / 100 mm] or less (good);
△: Absolute value Y was more than 1.75 [dB / 100 mm] and 1.80 [dB / 100 mm] or less (no practical problem);
x: Absolute value Y was over 1.80 [dB/100 mm] (problem in practice).
(13)耐熱性
 上記した「(2)フィルムの融点、結晶融解エンタルピー」におけるフィルムの融点の評価結果および「(11)耐熱性試験後のフィルム積層体の外観・反り」の評価結果のうち、低い方の評価結果を耐熱性の評価結果として用いた。
(13) Heat resistance Of the evaluation results of the melting point of the film in the above "(2) Melting point of the film, crystalline melting enthalpy" and the evaluation results of "(11) Appearance and warpage of the film laminate after the heat resistance test", The lower evaluation result was used as the heat resistance evaluation result.
(14)フィルムの柔軟性
 上記したフィルムの伸長回復率および引張弾性率について以下の基準に従って評価した。それらの評価結果のうち、低い方の評価結果を柔軟性の評価結果として用いた。
・伸長回復率
◎:50%以上(優良);
○:40%以上50%未満(良);
△:30%以上40%未満(実用上問題なし);
×:30%未満(実用上問題あり)。
・引張弾性率(MD)
◎:1500MPa以下(優良)
○:1500MPa超2000MPa以下(良);
△:2000MPa超2500MPa以下(実用上問題なし);
×:2500MPa超(実用上問題なし)。
(14) Flexibility of film The elongation recovery rate and tensile modulus of the film were evaluated according to the following criteria. Among those evaluation results, the lower evaluation result was used as the flexibility evaluation result.
Elongation recovery rate ◎: 50% or more (excellent);
○: 40% or more and less than 50% (good);
△: 30% or more and less than 40% (practically no problem);
x: Less than 30% (practically problematic).
・Tensile modulus (MD)
◎: 1500 MPa or less (excellent)
○: more than 1500 MPa and 2000 MPa or less (good);
△: more than 2000 MPa and 2500 MPa or less (no practical problem);
x: more than 2500 MPa (no practical problem).
(15)総合評価
 上記した項目(8)~(14)の評価結果を総合的に評価した。詳しくは、これらの評価結果のうち、最低の評価結果を総合評価の結果として用いた。
(15) Comprehensive Evaluation The evaluation results of the above items (8) to (14) were comprehensively evaluated. Specifically, among these evaluation results, the lowest evaluation result was used as the comprehensive evaluation result.
B.原料
 原料は、以下のものを用いた。
・ダイマー酸:クローダ社製 プリポール1009
・テレフタル酸:
・ダイマージアミン:クローダ社製 プリアミン1075
・デカンジアミン:
・次亜リン酸ナトリウム:
・熱安定剤:住友化学社製 Sumilizer GA-80
B. Raw Materials The following raw materials were used.
・ Dimer acid: Pripol 1009 manufactured by Croda
·Terephthalic acid:
- Dimer diamine: Priamine 1075 manufactured by Croda
・Decanediamine:
・Sodium hypophosphite:
・ Thermal stabilizer: Sumilizer GA-80 manufactured by Sumitomo Chemical Co., Ltd.
実施例1
・ポリアミドP1
 リボンブレンダー式の反応装置にテレフタル酸23.5質量部、次亜リン酸ナトリウム一水和物0.1質量部を投入し、窒素密閉下、回転数30rpmで撹拌しながら170℃に加熱した。その後、温度を170℃に保ち、かつ回転数を30rpmに保ったまま、液注装置を用いて、100℃に加温した1,10-デカンジアミン24.4質量部を、2.5時間かけて連続的(連続液注方式)に添加し反応生成物を得た。なお、原料モノマーのモル比は、テレフタル酸:1,10-デカンジアミン=50.0:50.0であった。
 加熱機構、撹拌機構を備えた反応容器にダイマー酸26.7質量部、ダイマージアミン25.3質量部を投入した。100℃で1時間撹拌した後に上記反応生成物を47.9質量部撹拌しながら投入した。
 その後260℃まで撹拌しながら加熱し、縮合水を系外に除去しながら、窒素気流下、常圧、260℃で、5時間重合をおこなった。重合中、系は懸濁溶液の状態であった。
 重合終了後、払い出し、これを切断し、乾燥してペレット形態のポリアミドP1を得た。
Example 1
・Polyamide P1
23.5 parts by mass of terephthalic acid and 0.1 part by mass of sodium hypophosphite monohydrate were placed in a ribbon blender-type reactor, and heated to 170° C. while being stirred at 30 rpm under nitrogen sealing. After that, while maintaining the temperature at 170° C. and the rotation speed at 30 rpm, 24.4 parts by mass of 1,10-decanediamine heated to 100° C. was added over 2.5 hours using a liquid injector. was added continuously (continuous injection method) to obtain a reaction product. The molar ratio of raw material monomers was terephthalic acid:1,10-decanediamine=50.0:50.0.
26.7 parts by mass of dimer acid and 25.3 parts by mass of dimer diamine were charged into a reaction vessel equipped with a heating mechanism and a stirring mechanism. After stirring at 100° C. for 1 hour, 47.9 parts by mass of the above reaction product was added while stirring.
Thereafter, the mixture was heated to 260° C. with stirring, and polymerization was carried out at 260° C. under normal pressure for 5 hours under a nitrogen stream while condensed water was removed from the system. The system was in a suspended solution during the polymerization.
After the polymerization was completed, it was discharged, cut, and dried to obtain polyamide P1 in the form of pellets.
・同時二軸延伸ポリアミドフィルムの作製
 得られたペレット 100質量部とスミライザーGA-80 0.4質量部とをドライブレンドし、シリンダー温度を330℃に加熱したスクリュー径が26mmである二軸押出機に投入し、溶融混練して、ストランド状に押出した。その後、冷却、切断して、ペレットを得た。
 得られたペレットを、シリンダー温度330℃に加熱した単軸押出機(スクリュー径50mm)に投入し溶融して、溶融ポリマーを得た。該溶融ポリマーを金属繊維焼結フィルター(日本精線社製、「NF-13」、公称濾過径:60μm)を用いて濾過した。その後、330℃にしたTダイより溶融ポリマーをフィルム状に押出し、フィルム状の溶融物とした。該溶融物を0℃に設定した冷却ロール上に静電印加法により密着させて冷却し、実質的に無配向の未延伸ポリアミドフィルムM1を得た。
 得られた未延伸ポリアミドフィルムM1のポリアミド成分の樹脂組成を求めたところ、用いたポリアミドの樹脂組成と同一であった。
 得られたポリアミド未延伸フィルムM1の両端をクリップで把持しながら、フラット式同時二軸延伸機にて、二軸延伸をおこなった。延伸条件は、予熱部の温度が80℃、延伸部の温度が80℃、MDの延伸歪み速度が2400%/分、TDの延伸歪み速度が2400%/分、MDの延伸倍率が2.3倍、TDの延伸倍率が2.3倍であった。延伸後連続して、二軸延伸機の同じテンター内で270℃にて熱固定をおこない、フィルムの幅方向に6%のリラックス処理を施し、同時二軸延伸ポリアミドフィルムS1を得た。
・Preparation of simultaneous biaxially stretched polyamide film 100 parts by mass of the obtained pellets and 0.4 parts by mass of Sumilizer GA-80 are dry blended, and the cylinder temperature is heated to 330 ° C. A twin-screw extruder with a screw diameter of 26 mm , melt-kneaded, and extruded into a strand. After that, it was cooled and cut to obtain pellets.
The obtained pellets were put into a single-screw extruder (screw diameter: 50 mm) heated to a cylinder temperature of 330° C. and melted to obtain a molten polymer. The molten polymer was filtered using a metal fiber sintered filter (“NF-13” manufactured by Nippon Seisen Co., Ltd., nominal filtration diameter: 60 μm). After that, the molten polymer was extruded in the form of a film from a T-die set at 330° C. to obtain a film-shaped melt. The melt was brought into close contact with a cooling roll set at 0° C. by an electrostatic application method and cooled to obtain a substantially non-oriented, unstretched polyamide film M1.
When the resin composition of the polyamide component of the obtained unstretched polyamide film M1 was determined, it was the same as the resin composition of the polyamide used.
The obtained unstretched polyamide film M1 was biaxially stretched by a flat simultaneous biaxial stretching machine while holding both ends with clips. The drawing conditions were as follows: temperature of the preheating section was 80°C, temperature of the drawing section was 80°C, MD drawing strain rate was 2400%/min, TD drawing strain rate was 2400%/min, and MD draw ratio was 2.3. times, and the draw ratio in TD was 2.3 times. Continuously after the stretching, heat setting was performed at 270° C. in the same tenter of the biaxial stretching machine, and the film was subjected to a relaxation treatment of 6% in the width direction to obtain a simultaneously biaxially stretched polyamide film S1.
・ポリアミドフィルム積層体の作製
 得られた同時二軸延伸ポリアミドフィルムS1の両面に、厚さ18μmの電解銅箔(表面粗さRz=1.2μm)が接するように重ね合わせ、真空プレス装置にセットして、230℃、1MPa、5分間加熱および加圧処理して、両面に銅箔層を有するポリアミドフィルム積層体を得た。
- Preparation of polyamide film laminate On both sides of the obtained simultaneous biaxially stretched polyamide film S1, 18 μm thick electrolytic copper foil (surface roughness Rz = 1.2 μm) is superimposed so that it is in contact, and set in a vacuum press device. Then, it was subjected to heat and pressure treatment at 230° C. and 1 MPa for 5 minutes to obtain a polyamide film laminate having copper foil layers on both sides.
実施例2~9
 反応容器に投入するモノマーの量を表1のように変更する以外は、実施例1と同様の操作をおこない、ポリアミドP2~P9を得た。また、得られたペレットを用いて、実施例1と同様の操作をおこなって、溶融混練、未延伸フィルムM2~M9の作製、同時二軸延伸をおこない、同時二軸延伸ポリアミドフィルムS2~S9を得た。加熱加圧条件を表2のように変更する以外は、実施例1と同様の操作をおこない、両面に銅箔層を有するポリアミドフィルム積層体を得た。
 得られた未延伸ポリアミドフィルムのポリアミド成分の樹脂組成を求めたところ、用いたポリアミドの樹脂組成と同一であった。
Examples 2-9
Polyamides P2 to P9 were obtained in the same manner as in Example 1, except that the amounts of monomers introduced into the reaction vessel were changed as shown in Table 1. Further, using the obtained pellets, the same operations as in Example 1 were performed to perform melt kneading, production of unstretched films M2 to M9, and simultaneous biaxial stretching, to simultaneously biaxially stretch polyamide films S2 to S9. Obtained. A polyamide film laminate having copper foil layers on both sides was obtained by performing the same operation as in Example 1 except that the heating and pressing conditions were changed as shown in Table 2.
When the resin composition of the polyamide component of the obtained unstretched polyamide film was determined, it was the same as the resin composition of the polyamide used.
実施例10
 加熱機構、撹拌機構を備えた反応容器に、ダイマー酸26.7質量部、ダイマージアミン25.3質量部、テレフタル酸23.5質量部、1,10-デカンジアミン24.4質量部、次亜リン酸ナトリウム一水和物0.1質量部を投入した。
 その後、撹拌しながら260℃まで加熱し、縮合水を系外に除去しながら、窒素気流下、常圧、260℃で、5時間重合をおこなった。重合中、系は懸濁状態であった。
 重合終了後、払い出し、これを切断し、乾燥してペレット形態のポリアミドP10を得た。
 また、得られたペレットを用いて、実施例1と同様の操作をおこなって、溶融混練、未延伸フィルムM10の作製、同時二軸延伸をおこない、同時二軸延伸ポリアミドフィルムS10を得た。
 得られた未延伸ポリアミドフィルムM10のポリアミド成分の樹脂組成を求めたところ、用いたポリアミドの樹脂組成と同一であった。
 得られた同時二軸延伸ポリアミドフィルムS10を用いて、実施例1と同様の操作をおこなって、両面に銅箔層を有するポリアミドフィルム積層体を得た。
Example 10
A reaction vessel equipped with a heating mechanism and a stirring mechanism was charged with 26.7 parts by mass of dimer acid, 25.3 parts by mass of dimer diamine, 23.5 parts by mass of terephthalic acid, 24.4 parts by mass of 1,10-decanediamine, and sodium hypochlorite. 0.1 part by mass of sodium phosphate monohydrate was added.
Thereafter, the mixture was heated to 260° C. with stirring, and polymerization was carried out at 260° C. under normal pressure for 5 hours under a nitrogen stream while condensed water was removed from the system. The system was in suspension during the polymerization.
After the polymerization was completed, it was discharged, cut, and dried to obtain polyamide P10 in the form of pellets.
Using the obtained pellets, the same operations as in Example 1 were performed to melt-knead, prepare an unstretched film M10, and perform simultaneous biaxial stretching to obtain a simultaneous biaxially stretched polyamide film S10.
When the resin composition of the polyamide component of the obtained unstretched polyamide film M10 was determined, it was the same as the resin composition of the polyamide used.
Using the obtained simultaneous biaxially stretched polyamide film S10, the same operation as in Example 1 was performed to obtain a polyamide film laminate having copper foil layers on both sides.
実施例11、12
 ダイマー酸、ダイマージアミン、テレフタル酸、1,10-デカンジアミンの投入量を表1の投入量に変更する以外は、実施例10と同様の操作をおこない、ポリアミドP11、12を得た。また、得られたペレットを用いて、実施例1と同様の操作をおこなって、溶融混練、未延伸フィルムM11、M12の作製、同時二軸延伸をおこない、同時二軸延伸ポリアミドフィルムS11、S12を得た。加熱加圧条件を表2のように変更する以外は、実施例1と同様の操作をおこない、両面に銅箔層を有するポリアミドフィルム積層体を得た。
 得られた未延伸フィルムのポリアミド成分の樹脂組成を求めたところ、用いたポリアミドの樹脂組成と同一であった。
Examples 11 and 12
Polyamides P11 and 12 were obtained in the same manner as in Example 10, except that the amounts of dimer acid, dimer diamine, terephthalic acid and 1,10-decanediamine added were changed to those shown in Table 1. Further, using the obtained pellets, the same operations as in Example 1 were performed to perform melt kneading, production of unstretched films M11 and M12, and simultaneous biaxial stretching, to simultaneously biaxially stretch polyamide films S11 and S12. Obtained. A polyamide film laminate having copper foil layers on both sides was obtained by performing the same operation as in Example 1 except that the heating and pressing conditions were changed as shown in Table 2.
When the resin composition of the polyamide component of the obtained unstretched film was determined, it was the same as the resin composition of the polyamide used.
比較例1
 加熱機構、撹拌機構を備えた反応容器に、ダイマー酸44.0質量部、ダイマージアミン41.7質量部、テレフタル酸6.9質量部、1,10-デカンジアミン7.3質量部、次亜リン酸ナトリウム一水和物0.1質量部を投入した。
 その後、撹拌しながら260℃まで加熱し、縮合水を系外に除去しながら、窒素気流下、常圧、260℃で、5時間重合をおこなった。重合中、系は懸濁状態であった。
 重合終了後、払い出し、これを切断し、乾燥してペレット形態のポリアミドP13を得た。
 また、得られたペレットを用いて、実施例1と同様の操作をおこなって、溶融混練、未延伸フィルムM13の作製、同時二軸延伸をおこない、同時二軸延伸ポリアミドフィルムS13を得た。
 得られた同時二軸延伸ポリアミドフィルムS13を用いて、実施例1と同様の操作をおこなって、両面に銅箔層を有するポリアミドフィルム積層体を得た。
Comparative example 1
In a reaction vessel equipped with a heating mechanism and a stirring mechanism, 44.0 parts by mass of dimer acid, 41.7 parts by mass of dimer diamine, 6.9 parts by mass of terephthalic acid, 7.3 parts by mass of 1,10-decanediamine, sodium hypochlorite 0.1 part by mass of sodium phosphate monohydrate was added.
Thereafter, the mixture was heated to 260° C. with stirring, and polymerization was carried out at 260° C. under normal pressure for 5 hours under a nitrogen stream while condensed water was removed from the system. The system was in suspension during the polymerization.
After the polymerization was completed, it was discharged, cut, and dried to obtain polyamide P13 in the form of pellets.
Using the obtained pellets, the same operations as in Example 1 were performed to melt-knead, prepare an unstretched film M13, and perform simultaneous biaxial stretching to obtain a simultaneous biaxially stretched polyamide film S13.
Using the obtained simultaneous biaxially stretched polyamide film S13, the same operation as in Example 1 was performed to obtain a polyamide film laminate having copper foil layers on both sides.
比較例2
 ダイマー酸、ダイマージアミン、テレフタル酸、1,10-デカンジアミンの投入量を表1の投入量に変更する以外は、実施例10と同様の操作をおこない、ポリアミドP14を得た。また、得られたペレットを用いて、実施例1と同様の操作をおこなって、溶融混練、未延伸フィルムM14の作製、同時二軸延伸をおこない、同時二軸延伸ポリアミドフィルムS14を得た。加熱加圧条件を表2のように変更する以外は、実施例1と同様の操作をおこない、両面に銅箔層を有するポリアミドフィルム積層体を得た。
 得られた未延伸フィルムのポリアミド成分の樹脂組成を求めたところ、用いたポリアミドの樹脂組成と同一であった。
Comparative example 2
Polyamide P14 was obtained in the same manner as in Example 10, except that the amounts of dimer acid, dimer diamine, terephthalic acid and 1,10-decanediamine added were changed to those shown in Table 1. Using the obtained pellets, the same operations as in Example 1 were performed to melt-knead, prepare an unstretched film M14, and perform simultaneous biaxial stretching to obtain a simultaneous biaxially stretched polyamide film S14. A polyamide film laminate having copper foil layers on both sides was obtained by performing the same operation as in Example 1 except that the heating and pressing conditions were changed as shown in Table 2.
When the resin composition of the polyamide component of the obtained unstretched film was determined, it was the same as the resin composition of the polyamide used.
比較例3
 加熱機構を備えた粉末撹拌装置に、テレフタル酸49.0質量部、次亜リン酸ナトリウム一水和物0.1質量部を投入した。170℃加熱下、撹拌しながら、1,10-デカンジアミン50.9質量部を3時間かけて少量ずつ加え、反応生成物を得た。その後、攪拌しながら前記反応生成物を250℃まで加熱し、縮合水を系外に除去しながら、窒素気流下、常圧、250℃で7時間重合をおこなった。重合中、系は粉末の状態であった。
 重合終了後、払い出し、粉末形態のポリアミドP15を得た。
 また、得られた粉末を用いて、実施例1と同様の操作をおこなって、溶融混練、未延伸フィルムM15の作製、同時二軸延伸をおこない、同時二軸延伸ポリアミドフィルムS15を得た。
 得られた同時二軸延伸ポリアミドフィルムを用いて、実施例1と同様の操作をおこなって、両面に銅箔層を有するポリアミドフィルム積層体を得た。
Comparative example 3
49.0 parts by mass of terephthalic acid and 0.1 parts by mass of sodium hypophosphite monohydrate were charged into a powder stirring device equipped with a heating mechanism. While heating at 170° C. and stirring, 50.9 parts by mass of 1,10-decanediamine was added little by little over 3 hours to obtain a reaction product. After that, the reaction product was heated to 250° C. with stirring, and polymerization was carried out at 250° C. for 7 hours under normal pressure under a nitrogen stream while removing condensed water out of the system. The system was in powder form during the polymerization.
After the polymerization was completed, it was discharged to obtain polyamide P15 in powder form.
Using the obtained powder, the same operations as in Example 1 were performed to melt-knead, prepare an unstretched film M15, and perform simultaneous biaxial stretching to obtain a simultaneous biaxially stretched polyamide film S15.
Using the obtained simultaneous biaxially stretched polyamide film, the same operation as in Example 1 was performed to obtain a polyamide film laminate having copper foil layers on both sides.
比較例4
 加熱機構、撹拌機構を備えた反応容器に、ダイマー酸51.3質量部、ダイマージアミン48.6質量部、次亜リン酸ナトリウム一水和物0.1質量部を投入した。
 その後、撹拌しながら、260℃まで加熱し、縮合水を系外に除去しながら、窒素気流下、常圧、260℃で、5時間重合をおこなった。重合中、系は均一な溶融状態であった。
 重合終了後、払い出し、これを切断し、乾燥して、ペレット形態のポリアミドP16を得た。
 また、得られたペレットを用いて、実施例1と同様の操作をおこなって、溶融混練、未延伸フィルムM16の作製、同時二軸延伸をおこなったが、延伸フィルムを得ることができなかった。
Comparative example 4
A reactor equipped with a heating mechanism and a stirring mechanism was charged with 51.3 parts by mass of dimer acid, 48.6 parts by mass of dimer diamine, and 0.1 part by mass of sodium hypophosphite monohydrate.
Thereafter, the mixture was heated to 260° C. with stirring, and polymerization was carried out at 260° C. under normal pressure for 5 hours under a nitrogen stream while condensed water was removed from the system. The system was in a homogeneous molten state during the polymerization.
After the polymerization was completed, it was discharged, cut and dried to obtain polyamide P16 in the form of pellets.
Using the obtained pellets, the same operations as in Example 1 were performed to perform melt-kneading, preparation of unstretched film M16, and simultaneous biaxial stretching, but a stretched film could not be obtained.
比較例5
 加熱機構、撹拌機構を備えた反応容器に、両末端の水酸基に代えてアミノ基を有する数平均分子量1000のポリオキシテトラメチレングリコール(PTMG1000)51.0質量部、テレフタル酸28.3質量部、1,10-デカンジアミン20.6質量部、次亜リン酸ナトリウム一水和物0.1質量部を投入した。
 その後、撹拌しながら250℃まで加熱し、縮合水を系外に除去しながら、窒素気流下、常圧、250℃で、5時間重合をおこなった。重合中、系は懸濁溶液の状態であった。
 重合終了後、払い出し、これを切断し、乾燥して、ペレット形態のポリアミドP17を得たが、脆く、実用には適さないものであった。
Comparative example 5
In a reaction vessel equipped with a heating mechanism and a stirring mechanism, 51.0 parts by mass of polyoxytetramethylene glycol (PTMG1000) having a number average molecular weight of 1000 and having amino groups instead of hydroxyl groups at both ends, 28.3 parts by mass of terephthalic acid, 20.6 parts by mass of 1,10-decanediamine and 0.1 part by mass of sodium hypophosphite monohydrate were added.
Thereafter, the mixture was heated to 250° C. with stirring, and polymerization was carried out at 250° C. under normal pressure for 5 hours under a nitrogen stream while removing condensed water out of the system. The system was in a suspended solution during the polymerization.
After the polymerization was completed, it was discharged, cut and dried to obtain polyamide P17 in the form of pellets, which were brittle and not suitable for practical use.
実施例13
・ポリアミドP18
 実施例8で得られたポリアミドP8のペレット 50質量部、実施例9で得られたポリアミドP9のペレット 50質量部、スミライザーGA-80 0.4質量部とをドライブレンドし、シリンダー温度を330℃に加熱したスクリュー径が26mmである二軸押出機に投入し、溶融混練して、ストランド状に押出した。その後、冷却、切断して、ペレット形態のポリアミドP18を得た。
Example 13
・Polyamide P18
50 parts by mass of polyamide P8 pellets obtained in Example 8, 50 parts by mass of polyamide P9 pellets obtained in Example 9, and 0.4 parts by mass of Sumilizer GA-80 are dry blended, and the cylinder temperature is 330 ° C. The mixture was put into a twin-screw extruder having a screw diameter of 26 mm and was melt-kneaded, and extruded into a strand. It was then cooled and cut to obtain polyamide P18 in the form of pellets.
・同時二軸延伸ポリアミドフィルムの作製
 得られたペレットを、シリンダー温度330℃に加熱した単軸押出機(スクリュー径50mm)に投入し溶融して、溶融ポリマーを得た。該溶融ポリマーを金属繊維焼結フィルター(日本精線社製、「NF-13」、公称濾過径:60μm)を用いて濾過した。その後、330℃にしたTダイより溶融ポリマーをフィルム状に押出し、フィルム状の溶融物とした。該溶融物を0℃に設定した冷却ロール上に静電印加法により密着させて冷却し、実質的に無配向の未延伸ポリアミドフィルムM18を得た。
 得られたポリアミド未延伸フィルムM18の両端をクリップで把持しながら、フラット式同時二軸延伸機にて、二軸延伸をおこなった。延伸条件は、予熱部の温度が80℃、延伸部の温度が80℃、MDの延伸歪み速度が2400%/分、TDの延伸歪み速度が2400%/分、MDの延伸倍率が2.3倍、TDの延伸倍率が2.3倍であった。延伸後連続して、二軸延伸機の同じテンター内で270℃にて熱固定をおこない、フィルムの幅方向に6%のリラックス処理を施し、同時二軸延伸ポリアミドフィルムS18を得た。
- Preparation of Simultaneously Biaxially Stretched Polyamide Film The obtained pellets were put into a single screw extruder (screw diameter: 50 mm) heated to a cylinder temperature of 330°C and melted to obtain a molten polymer. The molten polymer was filtered using a metal fiber sintered filter (“NF-13” manufactured by Nippon Seisen Co., Ltd., nominal filtration diameter: 60 μm). After that, the molten polymer was extruded in the form of a film from a T-die set at 330° C. to obtain a film-shaped melt. The melt was brought into close contact with a cooling roll set at 0° C. by an electrostatic application method and cooled to obtain a substantially non-oriented, unstretched polyamide film M18.
The obtained unstretched polyamide film M18 was biaxially stretched by a flat simultaneous biaxial stretching machine while holding both ends with clips. The drawing conditions were as follows: temperature of the preheating section was 80°C, temperature of the drawing section was 80°C, MD drawing strain rate was 2400%/min, TD drawing strain rate was 2400%/min, and MD draw ratio was 2.3. times, and the draw ratio in TD was 2.3 times. After the stretching, the film was continuously heat-set at 270° C. in the same tenter of the biaxial stretching machine, and subjected to a relaxation treatment of 6% in the width direction of the film to obtain a simultaneously biaxially stretched polyamide film S18.
・ポリアミドフィルム積層体の作製
 得られた同時二軸延伸ポリアミドフィルムS18の両面に、厚さ18μmの電解銅箔(表面粗さRz=1.2μm)が接するように重ね合わせ、真空プレス装置にセットして、230℃、1MPa、5分間加熱および加圧処理して、両面に銅箔層を有するポリアミドフィルム積層体を得た。
- Preparation of polyamide film laminate On both sides of the obtained simultaneous biaxially stretched polyamide film S18, 18 μm thick electrolytic copper foil (surface roughness Rz = 1.2 μm) is superimposed so that it is in contact, and set in a vacuum press device. Then, it was subjected to heat and pressure treatment at 230° C. and 1 MPa for 5 minutes to obtain a polyamide film laminate having copper foil layers on both sides.
実施例14~22
 用いるポリアミドの種類とドライブレンドする量を表3のように変更する以外は、実施例13と同様の操作をおこない、ポリアミドP19~P27を得た。また、得られたペレットを用いて、実施例13と同様の操作をおこなって、未延伸フィルムM19~M27の作製、同時二軸延伸をおこない、同時二軸延伸ポリアミドフィルムS19~S27を得た。加熱加圧条件を表4のように変更する以外は、実施例13と同様の操作をおこない、両面に銅箔層を有するポリアミドフィルム積層体を得た。
Examples 14-22
Polyamides P19 to P27 were obtained in the same manner as in Example 13 except that the type of polyamide used and the amount to be dry-blended were changed as shown in Table 3. Further, using the obtained pellets, the same operation as in Example 13 was performed to prepare unstretched films M19 to M27, and simultaneous biaxial stretching was performed to obtain simultaneous biaxially stretched polyamide films S19 to S27. A polyamide film laminate having copper foil layers on both sides was obtained by performing the same operation as in Example 13 except that the heating and pressing conditions were changed as shown in Table 4.
比較例6
 用いるポリアミドの種類とドライブレンドする量を表3のように変更する以外は、実施例13と同様の操作をおこない、ポリアミドP28を得た。また、得られたペレットを用いて、実施例13と同様の操作をおこなって、未延伸フィルムM28の作製、同時二軸延伸をおこなったが、延伸フィルムを得ることができなかった。
Comparative example 6
Polyamide P28 was obtained in the same manner as in Example 13 except that the type of polyamide used and the amount to be dry-blended were changed as shown in Table 3. Using the obtained pellets, the same operations as in Example 13 were performed to prepare an unstretched film M28 and to perform simultaneous biaxial stretching, but a stretched film could not be obtained.
実施例23、24
 実施例1で得られた、実質的に無配向の未延伸ポリアミドフィルムM1を270℃にて熱処理をおこなった。
 得られた熱処理したポリアミドフィルムを用いて、加熱加圧条件を表5のように変更する以外は、実施例1と同様の操作をおこなって、両面に銅箔層を有するポリアミドフィルム積層体を得た。
Examples 23, 24
The substantially non-oriented unstretched polyamide film M1 obtained in Example 1 was heat-treated at 270°C.
Using the obtained heat-treated polyamide film, the same operation as in Example 1 was performed except that the heating and pressing conditions were changed as shown in Table 5 to obtain a polyamide film laminate having copper foil layers on both sides. rice field.
実施例25、26および29~34
 未延伸ポリアミドフィルム、延伸条件、加熱加圧条件を表5のように変更する以外は、実施例1と同様の操作をおこなって、両面に銅箔層を有するポリアミドフィルム積層体を得た。
Examples 25, 26 and 29-34
A polyamide film laminate having copper foil layers on both sides was obtained in the same manner as in Example 1, except that the unstretched polyamide film, the stretching conditions, and the heating and pressing conditions were changed as shown in Table 5.
実施例27
・逐次二軸延伸ポリアミドフィルムの作製
 実施例1で得られた、実質的に無配向の未延伸ポリアミドフィルムM1を、フラット式逐次軸延伸機によって二軸延伸をおこなった。まず、未延伸ポリアミドフィルムM1をロール加熱や赤外線加熱等によって80℃に加熱し、MDに延伸歪み速度2400%/分で4.0倍延伸して、縦延伸フィルムを得た。続いて連続的に、フィルムの幅方向の両端を横延伸機のクリップに把持させ、横延伸をおこなった。TD延伸の予熱部の温度は85℃、延伸部の温度は85℃、延伸歪み速度は2400%/分、TDの延伸倍率が4.0倍であった。そして、横延伸機の同じテンター内で、270℃で熱固定をおこない、フィルムの幅方向に6%のリラックス処理を施し、逐次二軸延伸ポリアミドフィルムを得た。
 得られた逐次二軸延伸ポリアミドフィルムを用いて、加熱加圧条件を表5のように変更する以外は、実施例1と同様の操作をおこなって、両面に銅箔層を有するポリアミドフィルム積層体を得た。
Example 27
-Production of sequentially biaxially stretched polyamide film The substantially non-oriented unstretched polyamide film M1 obtained in Example 1 was biaxially stretched by a flat type sequential axial stretching machine. First, the unstretched polyamide film M1 was heated to 80° C. by roll heating, infrared heating, or the like, and stretched 4.0 times in the MD at a stretching strain rate of 2400%/min to obtain a longitudinally stretched film. Subsequently, both ends of the film in the width direction were held by clips of a transverse stretching machine, and the film was transversely stretched. The temperature of the preheating section for TD stretching was 85° C., the temperature of the stretching section was 85° C., the stretching strain rate was 2400%/min, and the TD stretching ratio was 4.0 times. Then, in the same tenter of the transverse stretching machine, heat setting was performed at 270° C., and the film was subjected to a relaxation treatment of 6% in the width direction to obtain successively biaxially stretched polyamide films.
Using the obtained sequentially biaxially stretched polyamide film, the same operation as in Example 1 was performed except that the heating and pressing conditions were changed as shown in Table 5 to obtain a polyamide film laminate having copper foil layers on both sides. got
実施例28
 実施例3で得られた、実質的に無配向の未延伸ポリアミドフィルムM3を、270℃にて熱処理をおこなった。
 得られた熱処理したフィルムを用いて、加熱加圧条件を表5のように変更する以外は、実施例3と同様の操作をおこなって、両面に銅箔層を有するポリアミドフィルム積層体を得た。
Example 28
The substantially non-oriented unstretched polyamide film M3 obtained in Example 3 was heat-treated at 270°C.
Using the obtained heat-treated film, the same operation as in Example 3 was performed except that the heating and pressing conditions were changed as shown in Table 5 to obtain a polyamide film laminate having copper foil layers on both sides. .
比較例7~9
 未延伸ポリアミドフィルム、延伸条件、加熱加圧条件を表5のように変更する以外は、実施例1と同様の操作をおこなって、両面に銅箔層を有するポリアミドフィルム積層体を得た。なお、比較例7においては、延伸は行うことなく、実質的に無配向の未延伸ポリアミドフィルムM15を270℃にて熱処理をおこなった熱処理フィルムを用いた。
Comparative Examples 7-9
A polyamide film laminate having copper foil layers on both sides was obtained in the same manner as in Example 1, except that the unstretched polyamide film, the stretching conditions, and the heating and pressing conditions were changed as shown in Table 5. In Comparative Example 7, a heat-treated film obtained by heat-treating a substantially non-oriented unstretched polyamide film M15 at 270° C. without stretching was used.
実施例35
 実施例1で得られた同時二軸延伸ポリアミドフィルムS1の片面に、市販の電解銅箔(Rz=1.2μm、18μm)が接するように重ね、ポリアミドフィルムS1の反対面に市販のアルミニウム箔(25μm)が接するように重ね合わせ、真空プレス装置にセットして、230℃、1MPa、5分加熱加圧処理して、一方の片面に銅箔層、他方の片面にアルミニウム箔層を有するポリアミドフィルム積層体を得た。
Example 35
On one side of the simultaneous biaxially stretched polyamide film S1 obtained in Example 1, a commercially available electrolytic copper foil (Rz = 1.2 µm, 18 µm) was laminated so as to be in contact with it, and a commercially available aluminum foil ( 25 μm) are in contact with each other, set in a vacuum press, heat and pressurize at 230 ° C., 1 MPa, for 5 minutes, and a polyamide film having a copper foil layer on one side and an aluminum foil layer on the other side. A laminate was obtained.
実施例36および37
 積層体の相手材を表6のように変更する以外は、実施例35と同様の操作をおこなって、一方の片面に銅箔層、他方の片面にポリイミド層またはポリアミドフィルムS15を有するポリアミドフィルム積層体を得た。
Examples 36 and 37
Polyamide film lamination having a copper foil layer on one side and a polyimide layer or polyamide film S15 on the other side was performed in the same manner as in Example 35 except that the counterpart material of the laminate was changed as shown in Table 6. got a body
実施例38、41、44
 実施例10、13、16で得られた同時二軸延伸ポリアミドフィルムS10、18、21の一方の片面に、市販の電解銅箔(Rz=1.2μm、18μm)を接するように重ね、他方の反対面に市販のアルミニウム箔(25μm)が接するように重ね合わせ、真空プレス装置にセットして、230℃、1MPa、5分加熱加圧処理して、片面に銅箔層、片面にアルミニウム箔層を有するポリアミドフィルム積層体を得た。
Examples 38, 41, 44
On one side of the simultaneously biaxially stretched polyamide films S10, 18, and 21 obtained in Examples 10, 13, and 16, a commercially available electrolytic copper foil (Rz = 1.2 µm, 18 µm) was laminated so as to be in contact with the other side. A commercially available aluminum foil (25 μm) is superimposed on the opposite side, set in a vacuum press, and heat-pressed at 230 ° C. and 1 MPa for 5 minutes to obtain a copper foil layer on one side and an aluminum foil layer on the other side. A polyamide film laminate having
実施例39、40、42、43、45、46
 積層体の相手材を表6のように変更する以外は、実施例35と同様の操作をおこなって、一方の片面に銅箔層、他方の片面にポリイミド層またはポリアミドフィルムS15を有するポリアミドフィルム積層体を得た。
Examples 39, 40, 42, 43, 45, 46
Polyamide film lamination having a copper foil layer on one side and a polyimide layer or polyamide film S15 on the other side was performed in the same manner as in Example 35 except that the counterpart material of the laminate was changed as shown in Table 6. got a body
比較例10
 比較例3で得られた同時二軸延伸ポリアミドフィルムS15の一方の片面に、市販の電解銅箔(Rz=1.2μm、18μm)を接するように重ね、他方の片面に市販のアルミニウム箔(25μm)を接するように重ね合わせ、真空プレス装置にセットして、300℃、1MPa、5分加熱加圧処理して、片面に銅箔層、片面にアルミニウム箔層を有するポリアミドフィルム積層体を得た。
Comparative example 10
On one side of the simultaneously biaxially stretched polyamide film S15 obtained in Comparative Example 3, a commercially available electrolytic copper foil (Rz = 1.2 µm, 18 µm) was laminated so as to be in contact, and a commercially available aluminum foil (25 µm ) were placed in contact with each other, set in a vacuum press, and heat-pressed at 300° C. and 1 MPa for 5 minutes to obtain a polyamide film laminate having a copper foil layer on one side and an aluminum foil layer on one side. .
比較例11および12
 積層体の相手材を表6のように変更する以外は、実施例35と同様の操作をおこなって、一方の片面に銅箔層、他方の片面にポリイミド層またはポリアミドフィルムS15を有するポリアミドフィルム積層体を得た。
Comparative Examples 11 and 12
Polyamide film lamination having a copper foil layer on one side and a polyimide layer or polyamide film S15 on the other side was performed in the same manner as in Example 35 except that the counterpart material of the laminate was changed as shown in Table 6. got a body
 実施例1~12、比較例1~5で得られたポリアミドの製造条件およびその評価を表1に示す。 Table 1 shows the production conditions and evaluation of the polyamides obtained in Examples 1-12 and Comparative Examples 1-5.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中の略号は以下の通りである。
A=炭素18以上の脂肪酸ジカルボン酸(A)(ダイマー酸)
C=炭素数が12以下の芳香族ジカルボン酸(C)(テレフタル酸)
B=炭素数が18以上の脂肪族ジアミン(B)(ダイマージアミン)
D=炭素数が12以下の脂肪族ジアミン(D)(デカンジアミン)
E=両末端にアミノ基を有するPTMG1000
F=次亜リン酸Na一水和物
Abbreviations in Table 1 are as follows.
A = fatty acid dicarboxylic acid with 18 or more carbon atoms (A) (dimer acid)
C = aromatic dicarboxylic acid having 12 or less carbon atoms (C) (terephthalic acid)
B = aliphatic diamine (B) having 18 or more carbon atoms (dimer diamine)
D = aliphatic diamine (D) having 12 or less carbon atoms (decane diamine)
E = PTMG1000 with amino groups at both ends
F = sodium hypophosphite monohydrate
 実施例1~12において、融点は通常、240℃以上であり、好ましくは270℃以上、より好ましくは300℃以上である。 In Examples 1 to 12, the melting point is usually 240°C or higher, preferably 270°C or higher, more preferably 300°C or higher.
 実施例1~12、比較例1~5で得られたポリアミドフィルムに用いたポリアミド、延伸条件、その評価および得られたポリアミドフィルム積層体の加熱加圧条件、評価を表2に示す。 Table 2 shows the polyamides used for the polyamide films obtained in Examples 1 to 12 and Comparative Examples 1 to 5, the stretching conditions, their evaluation, and the heating and pressurizing conditions and evaluation of the obtained polyamide film laminates.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例13~22および比較例6で得られたポリアミドの製造条件およびその評価を表3に示す Table 3 shows the production conditions and evaluation of the polyamides obtained in Examples 13-22 and Comparative Example 6
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1中の略号は以下の通りである。
A=炭素18以上の脂肪酸ジカルボン酸(A)(ダイマー酸)
C=炭素数が12以下の芳香族ジカルボン酸(C)(テレフタル酸)
B=炭素数が18以上の脂肪族ジアミン(B)(ダイマージアミン)
D=炭素数が12以下の脂肪族ジアミン(D)(デカンジアミン)
Abbreviations in Table 1 are as follows.
A = fatty acid dicarboxylic acid with 18 or more carbon atoms (A) (dimer acid)
C = aromatic dicarboxylic acid having 12 or less carbon atoms (C) (terephthalic acid)
B = aliphatic diamine (B) having 18 or more carbon atoms (dimer diamine)
D = aliphatic diamine (D) having 12 or less carbon atoms (decane diamine)
 実施例13~22において、融点は通常、240℃以上であり、好ましくは270℃以上、より好ましくは300℃以上である。 In Examples 13 to 22, the melting point is usually 240°C or higher, preferably 270°C or higher, more preferably 300°C or higher.
 実施例13~22および比較例6で得られたポリアミドフィルムに用いたポリアミド、延伸条件、その評価および得られたポリアミドフィルム積層体の加熱加圧条件、評価を表4に示す。 Table 4 shows the polyamides used for the polyamide films obtained in Examples 13 to 22 and Comparative Example 6, the stretching conditions, their evaluation, and the heating and pressurizing conditions and evaluation of the obtained polyamide film laminates.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例23~34および比較例7~9で得られたポリアミドフィルムに用いた未延伸フィルム、延伸条件、厚み、および、得られたポリアミド積層体の加圧加熱条件、評価を表5に示す。 Table 5 shows the unstretched films used for the polyamide films obtained in Examples 23 to 34 and Comparative Examples 7 to 9, the stretching conditions, the thickness, and the pressure heating conditions and evaluation of the obtained polyamide laminates.
 表5中の略号は下記のとおりである。
 Cu箔:電解銅箔
Abbreviations in Table 5 are as follows.
Cu foil: electrolytic copper foil
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例35~46および比較例10~12で得られたポリアミドフィルムに用いた延伸フィルム、厚み、および、得られたポリアミド積層体の加圧加熱条件、評価を表6に示す。 Table 6 shows the stretched films and thicknesses used for the polyamide films obtained in Examples 35-46 and Comparative Examples 10-12, and the pressurization and heating conditions and evaluation of the obtained polyamide laminates.
 表6中の略号は下記のとおりである。
 Cu箔:電解銅箔
 Al:アルミニウム箔
 PI:ポリイミドフィルム
Abbreviations in Table 6 are as follows.
Cu foil: electrolytic copper foil Al: aluminum foil PI: polyimide film
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例1~22のポリアミドフィルム積層体は、用いるポリアミドフィルムが、いずれも、耐熱性の指標である融点が240℃以上で、柔軟性の指標であるヒステリシス試験における伸長回復率が30%以上で、耐熱性および柔軟性に優れていた。また、実施例1~22のフィルム積層体は、用いるポリアミドフィルムが、結晶性の指標である結晶融解エンタルピーが15J/g以上であったため、ゴム弾性に優れていた。その結果、実施例1~22のフィルム積層体は、いずれも、密着性に優れ、外観が良好で、反りが小さく、耐熱性試験後の外観が良好であった。 In the polyamide film laminates of Examples 1 to 22, the polyamide film used has a melting point of 240° C. or higher, which is an index of heat resistance, and an elongation recovery rate of 30% or more in a hysteresis test, which is an index of flexibility. , excellent in heat resistance and flexibility. In addition, the film laminates of Examples 1 to 22 had excellent rubber elasticity because the polyamide films used had a crystal melting enthalpy of 15 J/g or more, which is an index of crystallinity. As a result, the film laminates of Examples 1 to 22 all had excellent adhesion, good appearance, little warpage, and good appearance after the heat resistance test.
 実施例1~9のポリアミドフィルム積層体は、ハードセグメントの反応生成物を作製したのち、ソフトセグメントの反応生成物に添加して重合する分割重合法により得られたポリアミドからなるポリアミドフィルムを用いた。
 実施例10~12のポリアミドフィルム積層体は、原料をまとめて投入し重合する一括重合法で得られたポリアミドからなるポリアミドフィルムを用いた。
 前者のポリアミドフィルムは、後者のポリアミドフィルムよりも、伸長回復率および結晶融解エンタルピーが大きく、柔軟性やゴム弾性が高かった。その結果、実施例1~9のポリアミドフィルム積層体は、実施例10~12のポリアミドフィルム積層体よりも、柔軟性および密着性に優れ、外観が良好で、反りが小さく、耐熱性試験後の外観も良好であった。
The polyamide film laminates of Examples 1 to 9 were obtained by a split polymerization method in which a hard segment reaction product was prepared and then added to the soft segment reaction product and polymerized. Polyamide films made of polyamide were used. .
For the polyamide film laminates of Examples 10 to 12, polyamide films made of polyamide obtained by a batch polymerization method in which raw materials are put together and polymerized were used.
The former polyamide film had higher elongation recovery rate and crystal melting enthalpy than the latter polyamide film, and had higher flexibility and rubber elasticity. As a result, the polyamide film laminates of Examples 1 to 9 had better flexibility and adhesion than the polyamide film laminates of Examples 10 to 12, had a good appearance, had less warpage, and after the heat resistance test Appearance was also good.
 実施例13~15のポリアミドフィルム積層体は、分割重合法により得られた2種類のポリアミドからなるポリアミドフィルムを用いた。
 実施例16~18のポリアミドフィルム積層体は、分割重合法により得られた1種類のポリアミドと一括重合法により得られた1種類のポリアミドからなるポリアミドフィルムを用いた。
 実施例19~22のポリアミドフィルム積層体は、一括重合法により得られた2種類のポリアミドからなるポリアミドフィルムを用いた。
 相互に同じモノマー組成の実施例13、16および19を対比すること、相互に同じモノマー組成の実施例14、18および20を対比すること、および相互に同じモノマー組成の実施例15、17および21を対比することにより、以下の事項が明らかとなった:
・分割重合法で得られたポリアミドをより多く含むポリアミドフィルムは、分割重合法で得られたポリアミドをより少なく含むポリアミドフィルムより、伸長回復率および結晶融解エンタルピーがより大きく、かつ引張弾性率がより小さく、柔軟性やゴム弾性がより高かった。
・その結果、実施例13~15のポリアミドフィルム積層体は、実施例16~21のポリアミドフィルム積層体よりも、柔軟性および密着性に優れ、外観が良好で、反りが小さく、耐熱性試験後の外観も良好であった。実施例16~18のポリアミドフィルム積層体は、実施例19~21のポリアミドフィルム積層体よりも、柔軟性および密着性に優れ、外観が良好で、反りが小さく、耐熱性試験後の外観も良好であった。
As the polyamide film laminates of Examples 13 to 15, polyamide films composed of two types of polyamide obtained by a split polymerization method were used.
For the polyamide film laminates of Examples 16 to 18, polyamide films composed of one type of polyamide obtained by a split polymerization method and one type of polyamide obtained by a batch polymerization method were used.
As the polyamide film laminates of Examples 19 to 22, polyamide films composed of two types of polyamide obtained by batch polymerization were used.
Comparing Examples 13, 16 and 19 of the same monomer composition to each other; Examples 14, 18 and 20 of the same monomer composition to each other; and Examples 15, 17 and 21 of the same monomer composition to each other. By comparing , the following items were revealed:
・A polyamide film containing more polyamide obtained by the split polymerization method has a higher elongation recovery rate and crystalline melting enthalpy, and a higher tensile modulus than a polyamide film containing less polyamide obtained by the split polymerization method. It was smaller and had higher flexibility and rubber elasticity.
- As a result, the polyamide film laminates of Examples 13 to 15 had better flexibility and adhesion than the polyamide film laminates of Examples 16 to 21, had a good appearance, had a small warp, and after the heat resistance test The appearance was also good. The polyamide film laminates of Examples 16 to 18 have better flexibility and adhesion than the polyamide film laminates of Examples 19 to 21, and have good appearance, less warpage, and good appearance after the heat resistance test. Met.
 実施例23と24のポリアミドフィルム積層体を対比することにより、積層体作製時の加熱温度を「融点-100℃」~「融点-5℃」に調整することにより、積層体作製時の外観がより良好とすることができたり、反りをより小さくできたりすることがわかる。 By comparing the polyamide film laminates of Examples 23 and 24, by adjusting the heating temperature at the time of laminate production to "melting point -100°C" to "melting point -5°C", the appearance at the time of laminate production was changed. It can be seen that it can be made better and the warpage can be made smaller.
 実施例35~37のポリアミドフィルム積層体は、フィルムに貼り合わせる相手材の一方が異種材料であったが、ハードセグメントの反応生成物を作製したのち、ソフトセグメントの反応生成物に添加して重合する分割重合法により得られたポリアミドからなるポリアミドフィルムを用いたため、いずれも、密着性に優れ、外観が良好で、反りが小さく、耐熱性試験後の外観が良好であった。 In the polyamide film laminates of Examples 35 to 37, one of the counterpart materials to be laminated to the film was a different material, but after preparing the reaction product of the hard segment, it was added to the reaction product of the soft segment and polymerized. Since a polyamide film made of polyamide obtained by the division polymerization method was used, all of them had excellent adhesion, good appearance, little warpage, and good appearance after the heat resistance test.
 実施例41~43および44~46のポリアミドフィルム積層体は、フィルムに貼り合わせる相手材の一方が異種材料であったが、分割重合法により得られたポリアミドを含むポリアミドフィルムを用いたため、いずれも、密着性に優れ、外観が良好で、反りが小さく、耐熱性試験後の外観が良好であった。 In the polyamide film laminates of Examples 41 to 43 and 44 to 46, one of the counterpart materials to be laminated to the film was a different material, but a polyamide film containing polyamide obtained by a split polymerization method was used. , the adhesiveness was excellent, the appearance was good, the warp was small, and the appearance after the heat resistance test was good.
 比較例1のポリアミドフィルム積層体は、ソフトセグメントを形成する成分(A)と(B)を含まないポリアミドからなり、伸長回復率が低いポリアミドフィルムを用いたため、密着力が低く、外観が不良であった。
 比較例8、9のポリアミドフィルム積層体は、ソフトセグメントを形成する成分(A)と(B)を含まないポリアミドからなり、伸長回復率が低いポリアミドフィルムを用いたため、積層体作製時の加熱温度を(融点-5℃)まで上げたが、密着力はわずかに上昇するだけで、外観が不良であった。
The polyamide film laminate of Comparative Example 1 is made of a polyamide that does not contain the components (A) and (B) that form the soft segments, and since a polyamide film with a low elongation recovery rate is used, the adhesion is low and the appearance is poor. there were.
The polyamide film laminates of Comparative Examples 8 and 9 consist of a polyamide that does not contain the components (A) and (B) that form the soft segment, and use a polyamide film with a low elongation recovery rate. was raised to (melting point -5°C), but the adhesion was only slightly increased and the appearance was poor.
 本発明のポリアミドフィルム積層体は、耐熱性、柔軟性、金属や樹脂との密着性、外観特性、耐反り特性および伝送損失低減特性に、より十分に優れているため、これらの特性のうち、少なくとも1つの特性が要求される用途(好ましくはこれらの全ての特性が要求される用途)に有用である。例えば、本発明のポリアミドフィルム積層体は、フレキシブルプリント回路基板、高速通信用のフレキシブルプリント回路基板、高速通信用のアンテナ基板、カバーレイ、フレキシブルアンテナ基板、ボンディングシート、電磁波シールド材料等に好適に用いることができる。 Since the polyamide film laminate of the present invention is sufficiently excellent in heat resistance, flexibility, adhesion to metals and resins, appearance characteristics, warpage resistance characteristics and transmission loss reduction characteristics, among these characteristics, It is useful in applications where at least one property is required (and preferably where all of these properties are required). For example, the polyamide film laminate of the present invention is suitably used for flexible printed circuit boards, flexible printed circuit boards for high-speed communication, antenna substrates for high-speed communication, coverlays, flexible antenna substrates, bonding sheets, electromagnetic shielding materials, and the like. be able to.

Claims (15)

  1.  炭素数18以上の脂肪族ジカルボン酸(A)からなる単位と、炭素数18以上の脂肪族ジアミン(B)からなる単位と、炭素数12以下の芳香族ジカルボン酸(C)からなる単位と、炭素数12以下の脂肪族ジアミン(D)からなる単位とを含むポリアミド(E)を含有し、融点が240℃以上、結晶融解エンタルピーが15J/g以上、ヒステリシス試験における伸長回復率が30%以上、引張弾性率が2500MPa以下であるポリアミドフィルム(F)上に、金属層を有する、ポリアミドフィルム積層体。 A unit consisting of an aliphatic dicarboxylic acid (A) having 18 or more carbon atoms, a unit consisting of an aliphatic diamine (B) having 18 or more carbon atoms, and a unit consisting of an aromatic dicarboxylic acid (C) having 12 or less carbon atoms, A polyamide (E) containing units consisting of an aliphatic diamine (D) having 12 or less carbon atoms, a melting point of 240 ° C. or higher, a crystal melting enthalpy of 15 J / g or higher, and an elongation recovery rate of 30% or higher in a hysteresis test. A polyamide film laminate having a metal layer on a polyamide film (F) having a tensile modulus of 2500 MPa or less.
  2.  前記ポリアミドフィルム(F)のヒステリシス試験における伸長回復率が50%以上である、請求項1に記載のポリアミドフィルム積層体。 The polyamide film laminate according to claim 1, wherein the polyamide film (F) has an elongation recovery rate of 50% or more in a hysteresis test.
  3.  前記炭素数18以上の脂肪族ジカルボン酸(A)がダイマー酸、前記炭素数18以上の脂肪族ジアミン(B)がダイマージアミン、前記炭素数12以下の芳香族ジカルボン酸(C)がテレフタル酸、前記炭素数12以下の脂肪族ジアミン(D)が1,10-デカンジアミンである、請求項1に記載のポリアミドフィルム積層体。 The aliphatic dicarboxylic acid (A) having 18 or more carbon atoms is a dimer acid, the aliphatic diamine (B) having 18 or more carbon atoms is a dimer diamine, the aromatic dicarboxylic acid (C) having 12 or less carbon atoms is terephthalic acid, 2. The polyamide film laminate according to claim 1, wherein the aliphatic diamine (D) having 12 or less carbon atoms is 1,10-decanediamine.
  4.  前記炭素数18以上の脂肪族ジカルボン酸(A)からなる単位と、前記炭素数18以上の脂肪族ジアミン(B)からなる単位の合計の含有量が、前記ポリアミド(E)を構成する全モノマー成分に対して、10~90質量%である、請求項1に記載のポリアミドフィルム積層体。 The total content of the unit consisting of the aliphatic dicarboxylic acid (A) having 18 or more carbon atoms and the unit consisting of the aliphatic diamine (B) having 18 or more carbon atoms is the total monomer constituting the polyamide (E) The polyamide film laminate according to claim 1, which is 10 to 90% by mass based on the components.
  5.  前記ポリアミドフィルム(F)と前記金属層との剥離強度が0.1[N/mm]以上である、請求項1に記載のポリアミドフィルム積層体。 The polyamide film laminate according to claim 1, wherein the peel strength between the polyamide film (F) and the metal layer is 0.1 [N/mm] or more.
  6.  前記ポリアミドフィルム積層体から作製した、特性インピーダンスが50Ωのマイクロストリップラインの伝送損失の絶対値が、5GHzで1.80[dB/100mm]以下である、請求項1に記載のポリアミドフィルム積層体。 The polyamide film laminate according to claim 1, wherein the absolute value of transmission loss of a microstrip line having a characteristic impedance of 50Ω, which is produced from the polyamide film laminate, is 1.80 [dB/100 mm] or less at 5 GHz.
  7.  前記金属層が前記ポリアミドフィルム(F)と直接的に接している、請求項1に記載のポリアミドフィルム積層体。 The polyamide film laminate according to claim 1, wherein the metal layer is in direct contact with the polyamide film (F).
  8.  前記金属層が銅、アルミニウム、鉄、ニッケル、スズ、金、銀、合金鋼、合金メッキからなる群から選択される金属から構成されている、請求項1に記載のポリアミドフィルム積層体。 The polyamide film laminate according to claim 1, wherein the metal layer is composed of a metal selected from the group consisting of copper, aluminum, iron, nickel, tin, gold, silver, alloy steel, and alloy plating.
  9.  前記ポリアミドフィルム積層体は前記金属層を前記ポリアミドフィルム(F)の片面または両面に有しており、前記金属層の上に樹脂層をさらに有する、請求項1に記載のポリアミドフィルム積層体。 The polyamide film laminate according to claim 1, wherein the polyamide film laminate has the metal layer on one side or both sides of the polyamide film (F), and further has a resin layer on the metal layer.
  10.  前記炭素数18以上の脂肪族ジカルボン酸(A)からなる単位の含有量が、前記ポリアミドを構成する全モノマー成分に対して、3~45質量%であり、
     前記炭素数18以上の脂肪族ジアミン(B)からなる単位の含有量が、前記ポリアミドを構成する全モノマー成分に対して、3~45質量%であり、
     前記炭素数12以下の芳香族ジカルボン酸(C)からなる単位の含有量が、前記ポリアミドを構成する全モノマー成分に対して、3~45質量%であり、
     前記炭素数12以下の脂肪族ジアミン(D)からなる単位の含有量が、前記ポリアミドを構成する全モノマー成分に対して、3~52質量%である、請求項1に記載のポリアミドフィルム積層体。
    The content of the unit composed of the aliphatic dicarboxylic acid (A) having 18 or more carbon atoms is 3 to 45% by mass with respect to the total monomer components constituting the polyamide,
    The content of units composed of the aliphatic diamine (B) having 18 or more carbon atoms is 3 to 45% by mass with respect to the total monomer components constituting the polyamide,
    The content of units composed of the aromatic dicarboxylic acid (C) having 12 or less carbon atoms is 3 to 45% by mass with respect to the total monomer components constituting the polyamide,
    The polyamide film laminate according to claim 1, wherein the content of the unit composed of the aliphatic diamine (D) having 12 or less carbon atoms is 3 to 52% by mass with respect to the total monomer components constituting the polyamide. .
  11.  前記ポリアミドフィルム(F)の結晶融解エンタルピーが25J/g以上である、請求項1に記載のポリアミドフィルム積層体。 The polyamide film laminate according to claim 1, wherein the polyamide film (F) has a crystal melting enthalpy of 25 J/g or more.
  12.  前記炭素数12以下の芳香族ジカルボン酸(C)からなる単位の含有量が、前記ポリアミドを構成する全モノマー成分に対して、8~35質量%である、請求項1に記載のポリアミドフィルム積層体。 The polyamide film lamination according to claim 1, wherein the content of units composed of the aromatic dicarboxylic acid (C) having 12 or less carbon atoms is 8 to 35% by mass with respect to the total monomer components constituting the polyamide. body.
  13.  前記ポリアミドフィルム(F)は1μm~2mmの厚みを有し、
     前記金属層は1~500μmの厚みを有する、請求項1に記載のポリアミドフィルム積層体。
    The polyamide film (F) has a thickness of 1 μm to 2 mm,
    2. The polyamide film laminate according to claim 1, wherein said metal layer has a thickness of 1 to 500 μm.
  14.  請求項1~13のいずれかに記載のポリアミドフィルム積層体を製造する方法であって、
     前記ポリアミドフィルム(F)と前記金属層とを、加熱および加圧によって張り合わせる、ポリアミドフィルム積層体の製造方法。
    A method for producing a polyamide film laminate according to any one of claims 1 to 13,
    A method for producing a polyamide film laminate, comprising laminating the polyamide film (F) and the metal layer by heating and pressing.
  15.  請求項1~13のいずれかに記載のポリアミドフィルム積層体を含む基板であって、
     前記基板はフレキシブルプリント回路基板またはフレキシブルアンテナ基板である、基板。
    A substrate comprising the polyamide film laminate according to any one of claims 1 to 13,
    A substrate, wherein the substrate is a flexible printed circuit board or a flexible antenna substrate.
PCT/JP2022/037978 2021-10-19 2022-10-12 Polyamide film laminate WO2023068121A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023512795A JP7274246B1 (en) 2021-10-19 2022-10-12 Polyamide film laminate

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021-171033 2021-10-19
JP2021171033 2021-10-19
JP2021-194789 2021-11-30
JP2021194789 2021-11-30
JP2022-035425 2022-03-08
JP2022035425 2022-03-08

Publications (1)

Publication Number Publication Date
WO2023068121A1 true WO2023068121A1 (en) 2023-04-27

Family

ID=86058187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037978 WO2023068121A1 (en) 2021-10-19 2022-10-12 Polyamide film laminate

Country Status (3)

Country Link
JP (1) JP7274246B1 (en)
TW (1) TW202333947A (en)
WO (1) WO2023068121A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274641A (en) * 1985-09-30 1987-04-06 東レ株式会社 Laminated structure containing polyamide elastomer
JP2012234849A (en) * 2011-04-28 2012-11-29 Unitika Ltd Copper clad laminate for flexible printed wiring board and flexible printed wiring board
WO2020085360A1 (en) * 2018-10-25 2020-04-30 ユニチカ株式会社 Flexible polyamide
JP2020514139A (en) * 2017-03-20 2020-05-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Laminate containing metal and polyamide composition
WO2021106541A1 (en) * 2019-11-27 2021-06-03 ユニチカ株式会社 Flexible polyamide film
JP2021154650A (en) * 2020-03-27 2021-10-07 三井化学株式会社 Metal/resin composite structure, method for manufacturing metal/resin composite structure, and engine mount member
WO2022054944A1 (en) * 2020-09-14 2022-03-17 ユニチカ株式会社 Polyamide, molded body and film formed of same, and method for producing said polyamide

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274641A (en) * 1985-09-30 1987-04-06 東レ株式会社 Laminated structure containing polyamide elastomer
JP2012234849A (en) * 2011-04-28 2012-11-29 Unitika Ltd Copper clad laminate for flexible printed wiring board and flexible printed wiring board
JP2020514139A (en) * 2017-03-20 2020-05-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Laminate containing metal and polyamide composition
WO2020085360A1 (en) * 2018-10-25 2020-04-30 ユニチカ株式会社 Flexible polyamide
WO2021106541A1 (en) * 2019-11-27 2021-06-03 ユニチカ株式会社 Flexible polyamide film
JP2021154650A (en) * 2020-03-27 2021-10-07 三井化学株式会社 Metal/resin composite structure, method for manufacturing metal/resin composite structure, and engine mount member
WO2022054944A1 (en) * 2020-09-14 2022-03-17 ユニチカ株式会社 Polyamide, molded body and film formed of same, and method for producing said polyamide

Also Published As

Publication number Publication date
JPWO2023068121A1 (en) 2023-04-27
JP7274246B1 (en) 2023-05-16
TW202333947A (en) 2023-09-01

Similar Documents

Publication Publication Date Title
CN107200856B (en) Semi-aromatic polyamide film and method for producing same
JP6889966B1 (en) Flexible polyamide film
JP7398288B2 (en) Composition for extrusion molding, its film, and method for producing the film
KR101867495B1 (en) Semi-aromatic polyamide film
JP6842792B1 (en) Semi-aromatic polyamide film and its manufacturing method
JP6358837B2 (en) Semi-aromatic polyamide film
WO2019031428A1 (en) Semiaromatic polyamide film and method for producing same
EP3030604B1 (en) Polyamide films and process for preparation
JP7274246B1 (en) Polyamide film laminate
JP7051181B1 (en) Polyamide, a molded product and film made of the polyamide, and a method for producing the polyamide.
JP7445356B2 (en) Polyamide film and its manufacturing method
JP2024009620A (en) stretched polyamide film
JP2020132744A (en) Semiaromatic polyamide film
KR102648548B1 (en) Semi-aromatic polyamide film and laminate obtained therefrom
RU2786076C1 (en) Semi-aromatic polyamide film and method for obtaining the film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023512795

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883425

Country of ref document: EP

Kind code of ref document: A1