WO2020203105A1 - Polyester film and production method therefor - Google Patents

Polyester film and production method therefor Download PDF

Info

Publication number
WO2020203105A1
WO2020203105A1 PCT/JP2020/010429 JP2020010429W WO2020203105A1 WO 2020203105 A1 WO2020203105 A1 WO 2020203105A1 JP 2020010429 W JP2020010429 W JP 2020010429W WO 2020203105 A1 WO2020203105 A1 WO 2020203105A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
resin
biaxially stretched
polyester film
stretched polyester
Prior art date
Application number
PCT/JP2020/010429
Other languages
French (fr)
Japanese (ja)
Inventor
考道 後藤
昇 玉利
雅幸 春田
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2020555086A priority Critical patent/JPWO2020203105A1/ja
Publication of WO2020203105A1 publication Critical patent/WO2020203105A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/84Boron, aluminium, gallium, indium, thallium, rare-earth metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a biaxially stretched polyester film used in the packaging field of foods, pharmaceuticals, industrial products, etc., and a method for producing the same. More specifically, it not only has excellent pinhole resistance and bag breakage resistance, but also has excellent hygiene, printability, and workability, and even a long film roll with a long winding length is in the longitudinal direction.
  • the present invention relates to a biaxially stretched polyester film having little variation in physical properties and a method for producing the same.
  • Packaging materials used in foods, pharmaceuticals, etc. must have the property of blocking gases such as oxygen and water vapor, that is, gas barrier properties, in order to suppress the oxidation of proteins and fats and oils, maintain the taste and freshness, and maintain the efficacy of pharmaceuticals. It has been demanded. Further, gas barrier materials used for electronic devices such as solar cells and organic ELs and electronic parts require higher gas barrier properties than packaging materials such as foods.
  • a metal thin film made of aluminum or the like and an inorganic oxide such as silicon oxide or aluminum oxide are used on the surface of a base film layer made of plastic.
  • a gas barrier laminated film on which an inorganic thin film is formed is generally used.
  • PET film on which a thin film (inorganic thin film layer) of an inorganic oxide such as silicon oxide, aluminum oxide, or a mixture thereof is formed is transparent and the contents can be confirmed. Therefore, it is widely used.
  • PET film has excellent heat resistance and dimensional stability, and can be used even when harsh treatment such as retort sterilization is applied.
  • PET film is brittle, a bag made of a laminated film using this is used. There was a problem that the bag was torn or punctured when it was dropped, and the contents packed in the bag leaked.
  • PBT polybutylene terephthalate
  • Patent Document 3 at least PBT resin or a polyester resin composition in which PET resin is blended in a range of 30% by mass or less with respect to PBT resin is 2.7 to 4.0 times simultaneously in the vertical direction and the horizontal direction.
  • a biaxially stretched PBT film obtained by axial stretching is used as a base film layer. According to such a technique, it is possible to obtain a packaging material for liquid filling which has bending pinhole resistance, impact resistance, and excellent aroma retention.
  • the antimony catalyst used in the process of producing (polymerizing) the polyester raw material may be carcinogenic, it is desirable that the content of antimony in the polyester film is as low as possible or not contained.
  • polyester raw materials that do not use an antimony catalyst for example, as described in Patent Documents 4 and 5.
  • the method for reducing the number of foreign substances in the film and the desired film characteristics are not described.
  • the amount of antimony contained in the film is not specified.
  • the present invention has been made against the background of the problems of the prior art. That is, it not only has excellent pinhole resistance and bag breakage resistance, but also has excellent hygiene, printability, and workability, and even a long film roll with a long winding length has physical properties in the longitudinal direction. It is an object of the present invention to provide a biaxially stretched polyester film having little variation and a method for producing the same.
  • the present inventors have obtained a biaxially stretched polyester film obtained by biaxially stretching a polyester resin composition in which a PET resin is blended in a range of 40% by mass or less with respect to a PBT resin.
  • a PET resin used in the above a resin produced by using a polymerization catalyst containing at least one selected from aluminum compounds and at least one selected from phosphorus-based compounds is used, and when mixing the resin chips as raw materials, , The polybutylene terephthalate resin chip is supplied to the hopper from above, and the PET resin (B) chip is supplied through a pipe (hereinafter, may be referred to as an inner pipe) having an outlet in the hopper and directly above the extruder. Then, by mixing both chips and melt-extruding them, it was found that a film having less variation in physical properties in the longitudinal direction and uniform physical properties in the longitudinal direction can be obtained, and the present invention has been completed.
  • the present invention has the following configuration.
  • [1] It is characterized by containing at least 60 to 95% by mass of the polybutylene terephthalate resin (A) and 5 to 40% by mass of the polyethylene terephthalate resin (B), and simultaneously satisfying the following (1) to (4).
  • Biaxially stretched polyester film (1)
  • the puncture strength measured according to JIS Z 1707 is 0.6 N / ⁇ m or more.
  • the degree of surface orientation of the film is 0.144 to 0.160.
  • the heat shrinkage of the film after heating at 150 ° C. for 15 minutes is 0 to 4% in the vertical direction and -1 to 3% in the horizontal direction.
  • the content of antimony atoms in the film is 7 ppm or less.
  • the polyethylene terephthalate (B) is a polyester raw material containing at least one selected from aluminum compounds and at least one selected from phosphorus compounds as a polymerization catalyst.
  • [3] The biaxially stretched polyester film according to [1] or [2], wherein the number of defects of 1 mm or more per 1000 square meters of the film is 1.0 or less.
  • the maximum value of the puncture strength measured in the vertical direction from the surface layer of the film roll to the winding core every 1000 m and measured according to JIS Z 1707 is Xmax (N / ⁇ m), and the minimum value is Xmin (N / ⁇ m).
  • the variation of the puncture strength represented by the following formula [1] is 20% or less when the average value is Xave, according to any one of [1] to [3].
  • Axial stretched polyester film. Longitudinal variation in piercing strength (%) 100 ⁇ (Xmax-Xmin) / Xave ... [1]
  • the gas barrier laminated film according to [5] wherein an adhesive layer is provided between the polyester film and the inorganic thin film layer.
  • the present inventors not only have excellent pinhole resistance and bag breakage resistance, but also have excellent hygiene, printability, and workability, and use a long film roll having a long winding length. Even if there is, it has become possible to provide a biaxially stretched polyester film having little variation in physical properties in the longitudinal direction and a method for producing the same.
  • FIG. 1 is a schematic view for explaining an example of a method of mixing raw material resin chips for producing the biaxially stretched polyester film of the present invention.
  • FIG. 2 is a partially enlarged view of FIG.
  • the biaxially stretched polyester film of the present invention contains PBT resin (A) as a main component, and the content of PBT is preferably 60% by mass or more, more preferably 70% by mass or more. If it is less than 60% by mass, the piercing strength is lowered, and the film characteristics are not sufficient.
  • the PBT resin (A) used as the main constituent component preferably contains terephthalic acid in an amount of 90 mol% or more, more preferably 95 mol% or more, and further preferably 98 mol% or more as a dicarboxylic acid component. Most preferably, it is 100 mol%.
  • the glycol component of 1,4-butanediol is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 97 mol% or more, and most preferably 1,4-butanediol at the time of polymerization. It does not contain anything other than by-products produced by the ether bond of the diol.
  • the lower limit of the intrinsic viscosity of the PBT resin used in the present invention is preferably 0.9 dl / g, more preferably 0.95 dl / g, and further preferably 1.0 dl / g.
  • the upper limit of the intrinsic viscosity of the PBT resin is preferably 1.4 dl / g. If it exceeds the above, the stress at the time of stretching becomes too high, and the film forming property may deteriorate.
  • the PBT resin may contain conventionally known additives such as lubricants, stabilizers, colorants, antistatic agents, and ultraviolet absorbers.
  • lubricant type in addition to inorganic lubricants such as silica, calcium carbonate and alumina, organic lubricants are preferable, silica and calcium carbonate are more preferable, and silica is particularly preferable in that haze is reduced. These can be expressed as transparent and slippery.
  • the lower limit of the lubricant concentration is preferably 100 ppm, more preferably 500 ppm, and even more preferably 800 ppm. If it is less than the above, the slipperiness of the base film layer may decrease.
  • the upper limit of the lubricant concentration is preferably 20000 ppm, more preferably 10000 ppm, and even more preferably 1800 ppm. If it exceeds the above, transparency may decrease.
  • a PET resin (B) is added for the purpose of adjusting mechanical properties and film-forming properties.
  • the content of PET is preferably 5% by mass or more. If it is less than 5% by mass, the film-forming property may decrease due to the crystallization of PBT.
  • the content of PET is preferably 40% by mass or less, more preferably 30% by mass or less. If it exceeds 40% by mass, the piercing strength is lowered, and the film characteristics are not sufficient.
  • a polymerization catalyst of an antimony compound such as antimony trioxide which is conventionally used as a polymerization catalyst, is not used as much as possible. Is preferable.
  • an antimony compound as the main polymerization catalyst in producing the PET resin (B) and using an aluminum compound described later instead, a polyester film having excellent hygiene and printability can be obtained. ..
  • the polymerization catalyst used in the present invention is a polymerization catalyst characterized by having an ability to promote esterification.
  • a polymerization catalyst of an antimony compound such as antimony trioxide which is conventionally used as described later.
  • a polymerization catalyst containing at least one selected from aluminum compounds and at least one selected from phosphorus compounds is preferable.
  • a known aluminum compound can be used without limitation as the aluminum compound constituting the polymerization catalyst used when synthesizing the PET resin (B) used in the present invention.
  • the aluminum compound include organoaluminum compounds such as aluminum acetate, basic aluminum acetate, aluminum lactate, aluminum chloride, aluminum hydroxide, aluminum chloride and aluminum acetylacetonate, and aluminum oxalate, and portions thereof. Hydrolyzate and the like can be mentioned. Of these, carboxylates, inorganic acid salts and chelate compounds are preferable, and among these, aluminum acetate, basic aluminum acetate, aluminum lactate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride and aluminum acetylacetonate are more preferable. Aluminum acetate, basic aluminum acetate, aluminum chloride, aluminum hydroxide and aluminum chloride are more preferable, and aluminum acetate and basic aluminum acetate are most preferable.
  • organoaluminum compounds such as aluminum acetate, basic aluminum acetate, aluminum lactate, aluminum chloride, aluminum hydroxide, aluminum chloride and aluminum acetylacetonate, and aluminum oxalate, and portions thereof. Hydrolyz
  • the amount of the aluminum compound used in the polymerization catalyst of the PET resin (B) used in the present invention may be 1 to 80 ppm remaining as an aluminum atom with respect to the total mass of the obtained PET resin (B). It is preferably more preferably 2 to 60 ppm, further preferably 3 to 50 ppm, particularly preferably 5 to 40 ppm, and most preferably 10 to 30 ppm. If it is less than the above, the catalytic activity may be poor, and if it exceeds the above, aluminum-based foreign matter may be generated. Even if the aluminum compound is placed in a reduced pressure environment during polyester polymerization, almost 100% of the used amount remains, so it can be considered that the used amount becomes the residual amount.
  • the phosphorus compound used in the polymerization catalyst is not particularly limited, but it is preferable to use a phosphonic acid compound or a phosphinic acid compound to greatly improve the catalytic activity, and among these, a phosphonic acid compound is used to improve the catalytic activity. Is particularly large and preferable.
  • a phosphorus compound having a phenol portion in the same molecule is preferable.
  • the phosphorus compound having a phenol structure is not particularly limited, but a catalyst may be used if one or more compounds selected from the group consisting of phosphonic acid compounds and phosphinic acid compounds having a phenol moiety in the same molecule are used.
  • the effect of improving activity is large and preferable.
  • examples of the phosphorus compound having a phenol portion in the same molecule include compounds represented by the following general formulas [Chemical formula 1] and [Chemical formula 2].
  • R 1 is a hydrocarbon group having 1 to 50 carbon atoms including a phenol portion, a hydroxyl group or a halogen group, a substituent such as an alkoxyl group or an amino group, and a carbon containing a phenol portion.
  • R 4 is a hydrocarbon having 1 to 50 carbon atoms including hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or a halogen group or a substituent such as an alkoxyl group or an amino group. Representing a hydrogen group.
  • R 2 and R 3 independently represent hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, and a hydrocarbon group having 1 to 50 carbon atoms including a substituent such as a hydroxyl group or an alkoxyl group.
  • the hydrocarbon group may contain a branched structure, an alicyclic structure such as cyclohexyl, or an aromatic ring structure such as phenyl or naphthyl.
  • the terminals of R 2 and R 4 may be bonded to each other.
  • Examples of the phosphorus compound having a phenol portion in the same molecule include p-hydroxyphenylphosphonic acid, dimethyl p-hydroxyphenylphosphonate, diethyl p-hydroxyphenylphosphonate, diphenyl p-hydroxyphenylphosphonate, and bis ( p-Hydroxyphenyl) phosphinic acid, methyl bis (p-hydroxyphenyl) phosphinate, phenyl bis (p-hydroxyphenyl) phosphinate, p-hydroxyphenylphenylphosphonate, methyl p-hydroxyphenylphenylphosphinate, p-hydroxy Examples thereof include phenyl phenylphenylphosphinate, p-hydroxyphenylphosphinic acid, methyl p-hydroxyphenylphosphinate, and phenyl p-hydroxyphenylphosphinate.
  • a phosphorus compound represented by the following general formula [Chemical Formula 3] can be mentioned.
  • X 1 and X 2 represent hydrogen, an alkyl group having 1 to 4 carbon atoms, or a metal having a valence of 1 or more, respectively. Further, in X 1 , the metal is divalent or higher, and X 2 does not have to be present. Furthermore, an anion corresponding to the surplus valence of the metal may be arranged with respect to the phosphorus compound.
  • the metal Li, Na, K, Ca, Mg and Al are preferable.
  • the phosphorus compound preferably used as a polycondensation catalyst is at least one phosphorus compound selected from the compounds represented by the chemical formula [Chemical Formula 4] and the chemical formula [Chemical Formula 5].
  • Irganox1222 (manufactured by BAF) is commercially available.
  • Irganox 1425 (manufactured by BAF) is commercially available and can be used.
  • the amount of the phosphorus compound used in the polymerization catalyst of the PET raw material (B) used in the present invention is preferably 10 to 100 ppm remaining as a phosphorus atom with respect to the total mass of the obtained raw material polyester resin. It is more preferably 15 to 90 ppm, further preferably 20 to 80 ppm, particularly preferably 25 to 70 ppm, and most preferably 30 to 60 ppm. If an amount of phosphorus atoms exceeding the above upper and lower limits remains, the polymerization activity may be lowered. When the phosphorus compound is placed in a reduced pressure environment during polyester polymerization, about 10 to 30% of the amount used is removed from the system depending on the conditions. Therefore, in reality, it is necessary to carry out several trial experiments to determine the residual ratio of the phosphorus compound in the polyester before deciding the amount to be used.
  • the heat resistance of the resin can be improved.
  • the cause is not clear, it is considered that the heat resistance of the polyester resin is improved by the hindered phenol portion in the phosphorus compound.
  • the residual amount of the phosphorus compound is less than 10 ppm, the above-mentioned effect of improving heat resistance is diminished, and as a result, the effect of improving heat resistance and coloring of the PET raw material (B) used in the present invention may not be observed.
  • a metal-containing polycondensation catalyst such as an antimony compound, a titanium compound, a tin compound, and a germanium compound may be used in combination in order to further improve the catalytic activity without impairing the effect of the present invention.
  • the antimony compound is preferably 7 ppm or less as an antimony atom with respect to the mass of the obtained copolymerized polyester resin
  • the germanium compound is preferably 10 ppm or less as a germanium atom with respect to the mass of the obtained copolymerized polyester resin.
  • the titanium compound is preferably 3 ppm or less as a titanium atom with respect to the mass of the obtained copolymer resin resin, and the tin compound is preferably 3 ppm or less as a tin atom with respect to the mass of the obtained polyester resin.
  • metal-containing polycondensation catalysts such as antimony compounds, titanium compounds, tin compounds and germanium compounds as much as possible.
  • a small amount of alkali metal, alkaline earth metal, and at least one selected from the compounds may coexist as a second metal-containing component. Coexistence of such a second metal-containing component in the catalyst system is effective in improving productivity because a catalyst component having an enhanced catalytic activity and thus a higher reaction rate can be obtained in addition to the effect of suppressing the formation of diethylene glycol. ..
  • the amount used (mol%) is preferably 1 ⁇ 10-5 with respect to the number of moles of the dicarboxylic acid component constituting the polyester resin. It is ⁇ 0.01 mol%. Alkaline metals, alkaline earth metals, or their compounds, even if they are placed in a reduced pressure environment during polyester polymerization, almost 100% of the amount used remains, so it can be considered that the amount used is the residual amount.
  • the polymerization catalyst according to the PET raw material (B) used in the present invention has catalytic activity not only in the polycondensation reaction but also in the esterification reaction and the transesterification reaction.
  • the transesterification reaction between an alkyl ester of a dicarboxylic acid such as dimethyl terephthalate and a glycol such as ethylene glycol is usually carried out in the presence of a transesterification catalyst such as zinc, but the above-mentioned aluminum compound is used instead of these catalysts. You can also do it.
  • these polymerization catalysts have catalytic activity not only in melt polymerization but also in solid phase polymerization and solution polymerization.
  • the polymerization catalyst of the PET raw material (B) used in the present invention can be added to the reaction system at any stage of the polymerization reaction.
  • it can be added to the reaction system at any stage before and during the start of the esterification reaction or transesterification reaction, immediately before the start of the polycondensation reaction, or at any stage during the polycondensation reaction.
  • the above-mentioned aluminum compound and phosphorus compound according to the present invention are preferably added immediately before the start of the polycondensation reaction.
  • the intrinsic viscosity of the PET resin (B) is preferably in the range of 0.57 to 0.76 dl / g, more preferably 0.60 to 0.73 dl / g, and further preferably 0.63 to 0.7 dl. / G. If the intrinsic viscosity is lower than 0.57 dl / g, the film tends to tear during the production of the polyester film (so-called breakage occurs), and if it is higher than 0.76 dl / g, the increase in filtration pressure becomes large and the high-precision filtration filter It tends to be difficult to extrude the resin through the resin.
  • the intrinsic viscosity of the resin of the biaxially stretched polyester film is preferably in the range of 0.51 to 0.70 dl / g, more preferably 0.56 to 0.68 dl / g, and further preferably 0.59. It is ⁇ 0.65 dl / g.
  • the intrinsic viscosity is lower than 0.51 dl / g, the polyester film is easily torn in the processing process such as printing, and when the intrinsic viscosity is higher than 0.76 dl / g, the effect of improving the mechanical properties becomes saturated. Prone.
  • additives may be added to the biaxially stretched polyester film of the present invention as long as its properties are not impaired.
  • a plasticizer an ultraviolet stabilizer, a color inhibitor, a matting agent, and a deodorant may be added.
  • These additives are added in a range of 50% by mass or less with respect to the biaxially stretched polyester film.
  • the biaxially stretched polyester film of the present invention may contain a polyester resin other than the above (A) and (B) for the purpose of adjusting mechanical properties and the like.
  • a polyester resin other than the above (A) and (B) at least one polyester resin selected from the group consisting of polyethylene naphthalate, polybutylene naphthalate and polypropylene terephthalate, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid and biphenyl.
  • PBT resin ethylene glycol, 1,3-propylene glycol, 1,2-propylene in which at least one dicarboxylic acid selected from the group consisting of dicarboxylic acid, cyclohexanedicarboxylic acid, adipic acid, azelaic acid and sebacic acid is copolymerized.
  • At least one diol component selected from the group consisting of glycol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, diethylene glycol, cyclohexanediol, polyethylene glycol, polytetramethylene glycol and polycarbonate diol is copolymerized. Examples thereof include the PBT resin used.
  • the upper limit of the amount of the polyester resin other than the PBT resin (A) and the PET resin (B) added is preferably less than 30% by mass, more preferably 25% by mass or less. If the amount of polyester resin other than PBT resin added exceeds 30% by mass, the mechanical properties of PBT are impaired, impact strength, pinhole resistance, or bag breakage resistance becomes insufficient, and transparency and gas barrier Sexual deterioration may occur.
  • the lower limit of the thickness of the biaxially stretched polyester film of the present invention is preferably 3 ⁇ m, more preferably 5 ⁇ m, and even more preferably 8 ⁇ m. When it is 3 ⁇ m or more, the strength as a base film layer becomes sufficient.
  • the upper limit of the thickness of the biaxially stretched polyester film of the present invention is preferably 100 ⁇ m, more preferably 75 ⁇ m, and even more preferably 50 ⁇ m. When it is 100 ⁇ m or less, the processing for the purpose of the present invention becomes easier.
  • the upper limit of the heat shrinkage rate after heating the biaxially stretched polyester film of the present invention at 150 ° C. in the longitudinal direction for 15 minutes is preferably 4.0%, more preferably 3.0%, still more preferably 2. %. If the upper limit is exceeded, the inorganic thin film layer may crack due to the dimensional change of the base film layer that occurs in the process of forming the protective film or in the high temperature treatment such as retort sterilization treatment, and not only the gas barrier property may deteriorate, but also printing etc. Pitch deviation may occur due to dimensional changes during processing.
  • the inorganic thin film layer may crack due to the dimensional change of the base film layer that occurs in the process of forming the protective film or in the high temperature treatment such as retort sterilization treatment, and not only the gas barrier property may deteriorate, but also printing etc. Pitch deviation may occur due to dimensional changes in the width direction during processing.
  • the lower limit of the heat shrinkage rate after heating the biaxially stretched polyester film of the present invention at 150 ° C. in the longitudinal direction for 15 minutes is preferably 0%. Even if it is less than the above, the effect of improvement cannot be obtained any more (saturation), and it may become mechanically brittle.
  • the lower limit of the heat shrinkage rate after heating the biaxially stretched polyester film of the present invention at 150 ° C. in the lateral direction for 15 minutes is preferably 1.0%. Even if it is less than the above, the effect of improvement cannot be obtained any more (saturation), and it may become mechanically brittle.
  • the lower limit of the puncture strength of the biaxially stretched polyester film of the present invention is preferably 0.6 N / ⁇ m. If it is 0.6 N / ⁇ m or more, the strength of the bag may be insufficient when used as a bag.
  • the maximum value of the puncture strength measured in accordance with JIS Z 1707 by sampling the film roll in the longitudinal direction from the surface layer of the film roll to the winding core every 100 m is Xmax (N).
  • the variation in the puncture strength represented by the following formula [1] is preferably 20% or less, more preferably 15% or less, and most preferably. It is preferably 10% or less.
  • Longitudinal variation in puncture strength (%) 100x (Xmax-Xmin) / Xave ... [1] If the variation in the piercing strength in the longitudinal direction of the film roll exceeds 20%, the quality of the packaging bag manufactured by secondary processing of the polyester film may vary.
  • the lower limit of the impact strength of the biaxially stretched polyester film of the present invention is preferably 0.05 J / ⁇ m. If it is 0.05 J / ⁇ m or more, the strength becomes sufficient when used as a bag.
  • the upper limit of the impact strength of the base film layer in the present invention is preferably 0.2 J / ⁇ m. Even if it is 0.2 J / ⁇ m or less, the effect of improvement may be maximized.
  • the lower limit of the plane orientation ( ⁇ P) of the biaxially stretched polyester film of the present invention is preferably 0.144, more preferably 0.148, and even more preferably 0.15. If it is less than the above, the orientation is weak, so that sufficient strength cannot be obtained and the bag breaking resistance may be lowered.
  • an inorganic thin film layer and a protective layer are provided on the base film layer to form a laminated film. In some cases, the tension and temperature applied when the protective film is formed make it easy to stretch, and the inorganic thin film layer is cracked, so that the gas barrier property may be lowered.
  • the upper limit of the plane orientation ( ⁇ P) of the biaxially stretched polyester film of the present invention is preferably 0.160, more preferably 0.158, and even more preferably 0.156. If it exceeds the above, the orientation is too strong, and not only the film-forming property is lowered, but also the pinhole resistance may be lowered because it becomes difficult to stretch.
  • the upper limit of haze per thickness of the biaxially stretched polyester film of the present invention is preferably 0.66% / ⁇ m, more preferably 0.60% / ⁇ m, and even more preferably 0.53% / ⁇ m. ..
  • the quality of the printed characters and images is improved.
  • the biaxially stretched polyester film of the present invention may be subjected to corona discharge treatment, glow discharge treatment, flame treatment, surface roughening treatment, as long as the object of the present invention is not impaired, and a known anchor. It may be coated, printed, decorated, etc.
  • the biaxially stretched polyester film of the present invention preferably has an antimony content of 7 ppm or less in the film. Since antimony is a substance of concern for carcinogenicity, the smaller the amount, the more preferable, 5 ppm is preferable, and 0 ppm is more preferable.
  • the raw material resin antimony used in the present invention is preferably 0 ppm, but it may be mixed during production and is set to 7 ppm or less.
  • the biaxially stretched polyester film of the present invention preferably has one or less defects having a size of 1 mm or more per 1000 square meters (for example, per film width of 500 mm and film winding length of 2000 m).
  • the number of defects having a size of 1 mm or more per large area of 1000 square meters to one or less in this way, the printability becomes very good. If the number of defects due to foreign matter is large, ink will be lost during printing, which is not preferable.
  • the smaller the number of defects in the size of 1 mm or more the more preferable, 0.5 or less is more preferable, 0.3 or less is further preferable, 0.1 or less is particularly preferable, and 0 is most preferable.
  • the production method is to supply and mix the PBT resin (A) chip and the PET resin (B) chip to an extruder equipped with a hopper, and the polyester raw material from the extruder.
  • the molten resin sheet is brought into close contact with a cooling roll (casting roll) by an electrostatic application method to be cooled and solidified to obtain an unstretched sheet.
  • the electrostatic application method is a method in which a voltage is applied to an electrode installed in the vicinity of a molten resin sheet in contact with a rotating metal roll and in the vicinity of a surface opposite to the surface of the resin sheet in contact with the rotating metal roll. This is a method in which the resin sheet is charged and the resin sheet and the rotary cooling roll are brought into close contact with each other.
  • the polybutylene terephthalate resin chips are supplied to the hopper from above, and the pipe (hereinafter, may be referred to as an inner pipe) having an outlet in the hopper and directly above the extruder is used. It is preferable to supply a resin chip of polyethylene terephthalate (B), mix both chips, and melt-extrude the two chips.
  • a polybutylene terephthalate resin (A) chip and a polyethylene terephthalate resin (B) chip are mixed and placed in a hopper on an extruder, resin chips having different specific gravities and chip shapes can cause segregation of raw materials in the hopper.
  • FIG. 1 is a schematic view showing an example of the relationship between the extruder 2 provided with the hopper 1 and the inner pipe 3, and FIG. 2 is an enlarged view of a portion A of FIG.
  • chips of a resin other than the polybutylene terephthalate resin (A) which is the main raw material such as the polyethylene terephthalate resin (B) are supplied through the inner pipe 3 and are the main raw material of the polybutylene terephthalate resin (A).
  • the chips are supplied from the upper part of the hopper 1.
  • the polyethylene terephthalate resin (B) chips segregate in the popper over time. Since it can be prevented, the mixing ratio of the polyethylene terephthalate resin (B) can always be kept constant.
  • the height (H2) of the outlet 4 of the inner pipe 3 preferably satisfies the following relationship (formula a), and satisfies both the relationships (formula a) and (b). Is more preferable.
  • H2 ⁇ H1 (formula a) In the formula, H1 indicates the height of the portion where the inner wall of the hopper is vertical (see FIG. 2).
  • 0.5 ⁇ L / tan ⁇ ⁇ H2 (Equation b) In the formula, L indicates the inner diameter of the outlet 4 of the inner pipe 3 (see FIG. 2). ⁇ is the angle of repose of another resin chip.)
  • the position where the resin other than the polybutylene terephthalate resin (A) chip is mixed with the polybutylene terephthalate resin chip (H3; see FIG. 2) is extruded. It can be located outside the machine and can prevent air from entering the extruder and generating bubbles.
  • the height H3 H2-0.5 ⁇ L / tan ⁇ of the mixing position of the resin other than the polybutylene terephthalate resin (A) chip is preferably higher than 0 m and less than 2 m. By setting the height above 0 m, it is possible to prevent air from entering the extruder. Further, if it is less than 2 m, the distance to the extruder can be kept short and segregation of raw materials can be prevented.
  • the height H3 is preferably 0.3 m or more and 1.7 m or less, and more preferably 0.6 m or more and 1.4 m or less.
  • the lower limit of the heating and melting temperature of the resin is preferably 200 ° C., more preferably 250 ° C., and even more preferably 260 ° C. If it is less than the above, the discharge may become unstable.
  • the upper limit of the resin melting temperature is preferably 280 ° C, more preferably 270 ° C. If it exceeds the above, the decomposition of the resin proceeds and the film becomes brittle.
  • the method of extruding and casting the molten polyester resin is specifically a step of melting a resin composition containing 60% by mass or more of PBT resin to form a molten fluid (1), and discharging the formed molten fluid from a die. It has at least a step (2) of contacting with a cooling roll and solidifying to form an unstretched sheet, and a step (3) of biaxially stretching the unstretched sheet.
  • the method of melting the polyester resin composition to form a molten fluid is not particularly limited, but a preferred method includes a method of heating and melting using a single-screw extruder or a twin-screw extruder. Can be done.
  • the molten fluid is discharged from the die and brought into contact with the cooling roll to solidify.
  • the lower limit of the cooling roll temperature is preferably ⁇ 10 ° C. If it is less than the above, the effect of suppressing crystallization may be saturated.
  • the upper limit of the cooling roll temperature is preferably 40 ° C. If it exceeds the above, the crystallinity may become too high and stretching may become difficult.
  • the upper limit of the cooling roll temperature is preferably 25 ° C. When the temperature of the cooling roll is within the above range, it is preferable to lower the humidity of the environment near the cooling roll in order to prevent dew condensation. It is preferable to reduce the temperature difference in the width direction of the cooling roll surface. At this time, the thickness of the unstretched sheet is preferably in the range of 15 to 2500 ⁇ m.
  • the stretching method can be either simultaneous biaxial stretching or sequential biaxial stretching, but in order to increase the puncture strength, it is necessary to increase the degree of plane orientation, and the film formation speed is high and the productivity is high. In terms of points, sequential biaxial stretching is most preferable.
  • the lower limit of the stretching temperature in the longitudinal stretching direction is preferably 55 ° C., more preferably 60 ° C. Breakage is unlikely to occur at 55 ° C. or higher. Further, since the vertical orientation of the film does not become too strong, the shrinkage stress during the heat fixing treatment can be suppressed, and a film with less distortion of the molecular orientation in the width direction can be obtained.
  • the upper limit of the stretching temperature in the longitudinal stretching direction is preferably 100 ° C., more preferably 95 ° C. When the temperature is 100 ° C. or lower, the orientation of the film is not too weak and the mechanical properties of the film are not deteriorated.
  • the lower limit of the draw ratio in the longitudinal stretching direction is preferably 2.8 times, particularly preferably 3.0 times. When it is 2.8 times or more, the degree of surface orientation is increased, the piercing strength of the film is improved, and the thickness accuracy of the film is improved.
  • the upper limit of the draw ratio in the longitudinal stretching direction is preferably 4.3 times, more preferably 4.0 times, and particularly preferably 3.8 times. When it is 4.3 times or less, the degree of orientation of the film in the lateral direction does not become too strong, the shrinkage stress during the heat fixing process does not become too large, and the distortion of the molecular orientation in the lateral direction of the film becomes small, resulting in As a result, the vertical tearability is improved. Moreover, the effect of improving the mechanical strength and the thickness unevenness is saturated in this range.
  • the lower limit of the stretching temperature in the transverse stretching direction is preferably 60 ° C., and if it is 60 ° C. or higher, fracture may be less likely to occur.
  • the upper limit of the stretching temperature in the transverse stretching direction is preferably 100 ° C., and when it is 100 ° C. or lower, the degree of orientation in the transverse stretching direction increases, so that the mechanical properties are improved.
  • the lower limit of the draw ratio in the transverse stretching direction is preferably 3.5 times, more preferably 3.6 times, and particularly preferably 3.7 times. If it is 3.5 times or more, the degree of orientation in the lateral direction is not too weak, and the mechanical properties and thickness unevenness are improved.
  • the upper limit of the draw ratio in the transverse stretching direction is preferably 5 times, more preferably 4.5 times, and particularly preferably 4.0 times. If it is 5.0 times or less, the effect of improving the mechanical strength and thickness unevenness is maximized (saturated) even in this range.
  • the lower limit of the heat fixing temperature in the heat fixing step is preferably 195 ° C., more preferably 200 ° C.
  • the upper limit of the heat fixing temperature is preferably 220 ° C., and if it is 220 ° C. or lower, the base film layer does not melt and is less likely to become brittle.
  • the lower limit of the relaxation rate in the heat relaxation section step is preferably 0.5%. If it is 0.5% or more, breakage may be less likely to occur during heat fixing.
  • the upper limit of the relaxation rate is preferably 10%. When it is 10% or less, the shrinkage in the longitudinal direction at the time of heat fixing becomes small, and as a result, the distortion of the molecular orientation at the edge of the film becomes small, and the straight tearability is improved. In addition, the film is less likely to sag and uneven thickness is less likely to occur.
  • the inorganic thin film layer is a thin film made of a metal or an inorganic oxide.
  • the material for forming the inorganic thin film layer is not particularly limited as long as it can be made into a thin film, but from the viewpoint of gas barrier properties, inorganic oxidation such as silicon oxide (silica), aluminum oxide (alumina), and a mixture of silicon oxide and aluminum oxide Things are preferred.
  • a composite oxide of silicon oxide and aluminum oxide is preferable from the viewpoint of achieving both flexibility and denseness of the thin film layer.
  • the mixing ratio of silicon oxide and aluminum oxide is preferably in the range of 20 to 70% by mass of Al in terms of the mass ratio of the metal content. If the Al concentration is less than 20% by mass, the water vapor barrier property may be lowered. On the other hand, if it exceeds 70% by mass, the inorganic thin film layer tends to be hard, and the film may be destroyed during secondary processing such as printing or laminating, and the gas barrier property may be lowered.
  • the silicon oxide referred to here is various silicon oxides such as SiO and SiO 2 or a mixture thereof
  • aluminum oxide is various aluminum oxides such as AlO and Al 2 O 3 or a mixture thereof.
  • the film thickness of the inorganic thin film layer is usually 1 to 100 nm, preferably 5 to 50 nm. If the film thickness of the inorganic thin film layer is less than 1 nm, it may be difficult to obtain a satisfactory gas barrier property. On the other hand, even if the thickness exceeds 100 nm, the corresponding improvement effect of the gas barrier property can be obtained. This is not possible, and it is rather disadvantageous in terms of bending resistance and manufacturing cost.
  • the method for forming the inorganic thin film layer is not particularly limited, and is known, for example, a physical vapor deposition method (PVD method) such as a vacuum vapor deposition method, a sputtering method, or an ion plating method, or a chemical vapor deposition method (CVD method).
  • PVD method physical vapor deposition method
  • CVD method chemical vapor deposition method
  • the method may be adopted as appropriate.
  • a typical method for forming the inorganic thin film layer will be described by taking a silicon oxide / aluminum oxide thin film as an example.
  • a mixture of SiO 2 and Al 2 O 3 or a mixture of SiO 2 and Al is preferably used as the vapor deposition raw material.
  • Particles are usually used as these vapor deposition raw materials, but at that time, it is desirable that the size of each particle is such that the pressure at the time of vapor deposition does not change, and the particle diameter is preferably 1 mm to 5 mm.
  • heating methods such as resistance heating, high frequency induction heating, electron beam heating, and laser heating can be adopted.
  • oxygen, nitrogen, hydrogen, argon, carbon dioxide gas, water vapor or the like as the reaction gas, or to adopt reactive vapor deposition using means such as ozone addition and ion assist.
  • the film forming conditions can be arbitrarily changed, such as applying a bias to the film to be deposited (laminated film to be subjected to vapor deposition) or heating or cooling the film to be deposited.
  • a bias to the film to be deposited (laminated film to be subjected to vapor deposition) or heating or cooling the film to be deposited.
  • Such a vapor deposition material, a reaction gas, a bias of the vapor deposition body, heating / cooling, and the like can be similarly changed when the sputtering method or the CVD method is adopted.
  • an adhesive layer can be provided between the base film layer and the inorganic thin film layer for the purpose of ensuring the gas barrier property and the lamination strength after the retort treatment.
  • the resin composition used for the adhesive layer provided between the base film layer and the inorganic thin film layer includes urethane-based, polyester-based, acrylic-based, titanium-based, isocyanate-based, imine-based, polybutadiene-based resins, and epoxy. Examples thereof include those to which a curing agent such as a system, an isocyanate system, or a melamine system is added.
  • the resin composition used for these adhesive layers preferably contains a silane coupling agent having at least one type of organic functional group.
  • organic functional group include an alkoxy group, an amino group, an epoxy group, an isocyanate group and the like.
  • the resin compositions used for the adhesive layer it is preferable to use a mixture of a resin containing an oxazoline group, an acrylic resin and a urethane resin.
  • the oxazoline group has a high affinity with the inorganic thin film, and can react with the oxygen-deficient portion of the inorganic oxide generated during the formation of the inorganic thin film layer and the metal hydroxide, and exhibits strong adhesion to the inorganic thin film layer. ..
  • the unreacted oxazoline group existing in the adhesive layer can react with the carboxylic acid terminal generated by hydrolysis of the base film layer and the adhesive layer to form a crosslink.
  • the method for forming the adhesive layer is not particularly limited, and a conventionally known method such as a coating method can be adopted.
  • a coating method such as a coating method
  • the offline coating method and the in-line coating method can be mentioned as preferable methods.
  • the conditions of drying and heat treatment at the time of coating depend on the coating thickness and the conditions of the apparatus, but immediately after coating, they are fed into the stretching process in the perpendicular direction. It is preferable to dry in the preheating zone or the stretching zone of the stretching step, and in such a case, the temperature is usually preferably about 50 to 250 ° C.
  • solvent examples include aromatic solvents such as benzene and toluene; alcohol solvents such as methanol and ethanol; ketone solvents such as acetone and methyl ethyl ketone; ethyl acetate and butyl acetate.
  • Etc. examples thereof include polyhydric alcohol derivatives such as ethylene glycol monomethyl ether.
  • a protective layer is provided on the inorganic thin film layer.
  • the metal oxide layer is not a completely dense film, but is dotted with minute defects.
  • the resin in the protective layer resin composition permeates the defective portion of the metal oxide layer.
  • the effect of stabilizing the gas barrier property can be obtained.
  • the gas barrier performance of the gas barrier laminated film will be greatly improved.
  • the resin composition used for the protective layer formed on the surface of the inorganic thin film layer of the gas barrier laminated film of the present invention includes resins such as urethane-based, polyester-based, acrylic-based, titanium-based, isocyanate-based, imine-based, and polybutadiene-based resins. , Epoxy-based, isocyanate-based, melamine-based and other curing agents are added.
  • the polar group of the urethane bond interacts with the inorganic thin film layer and also has flexibility due to the presence of the amorphous portion, so that damage to the inorganic thin film layer is suppressed even when a bending load is applied. It is preferable because it can be used.
  • the acid value of the urethane resin is preferably in the range of 10 to 60 mgKOH / g. It is more preferably in the range of 15 to 55 mgKOH / g, and even more preferably in the range of 20 to 50 mgKOH / g.
  • the acid value of the urethane resin is within the above range, the liquid stability is improved when it is made into an aqueous dispersion, and the protective layer can be uniformly deposited on the highly polar inorganic thin film, so that the coat appearance is good. It becomes.
  • the urethane resin preferably has a glass transition temperature (Tg) of 80 ° C. or higher, more preferably 90 ° C. or higher.
  • Tg glass transition temperature
  • a urethane resin containing an aromatic or aromatic aliphatic diisocyanate component as a main component.
  • the ratio of aromatic or aromatic aliphatic diisocyanate in the urethane resin is preferably in the range of 50 mol% or more (50 to 100 mol%) in 100 mol% of the polyisocyanate component (F).
  • the ratio of the total amount of the aromatic or aromatic aliphatic diisocyanate is preferably 60 to 100 mol%, more preferably 70 to 100 mol%, still more preferably 80 to 100 mol%.
  • the "Takelac (registered trademark) WPB" series commercially available from Mitsui Chemicals, Inc. can be preferably used. If the ratio of the total amount of aromatic or aromatic aliphatic diisocyanates is less than 50 mol%, good gas barrier properties may not be obtained.
  • the urethane resin preferably has a carboxylic acid group (carboxyl group) from the viewpoint of improving the affinity with the inorganic thin film layer.
  • a carboxylic acid (salt) group for example, a polyol compound having a carboxylic acid group such as dimethylolpropionic acid or dimethylolbutanoic acid may be introduced as a copolymerization component as a polyol component.
  • the carboxylic acid group-containing urethane resin is synthesized and then neutralized with a salt-forming agent, an aqueous dispersion urethane resin can be obtained.
  • the salt forming agent examples include trialkylamines such as ammonia, trimethylamine, triethylamine, triisopropylamine, tri-n-propylamine and tri-n-butylamine, and N such as N-methylmorpholine and N-ethylmorpholine.
  • trialkylamines such as ammonia, trimethylamine, triethylamine, triisopropylamine, tri-n-propylamine and tri-n-butylamine
  • N such as N-methylmorpholine and N-ethylmorpholine.
  • N-dialkylalkanolamines such as -alkylmorpholins, N-dimethylethanolamine and N-diethylethanolamine. These may be used alone or in combination of two or more.
  • solvent examples include aromatic solvents such as benzene and toluene; alcohol solvents such as methanol and ethanol; ketone solvents such as acetone and methyl ethyl ketone; ester solvents such as ethyl acetate and butyl acetate; ethylene glycol.
  • aromatic solvents such as benzene and toluene
  • alcohol solvents such as methanol and ethanol
  • ketone solvents such as acetone and methyl ethyl ketone
  • ester solvents such as ethyl acetate and butyl acetate
  • ethylene glycol examples include polyhydric alcohol derivatives such as monomethyl ether.
  • the biaxially stretched polyester film of the present invention is excellent in bag breaking resistance and bending resistance, and a wide roll is formed on the base film layer to form an inorganic thin film layer and a protective layer to form a gas barrier film. Even in the case of producing the above film, it is possible to suppress streak-like wrinkles generated during heat transfer and make the gas barrier property in the width direction uniform.
  • thermosetting resin layer When the biaxially stretched polyester film or gas barrier laminated film of the present invention is used as a packaging material, it is preferable to form a thermosetting resin layer called a sealant.
  • the heat-sealing resin layer is usually provided on the inorganic thin film layer, but may be provided on the outside of the base film layer (the surface opposite to the adhesive layer forming surface).
  • the heat-sealable resin layer is usually formed by an extrusion laminating method or a dry laminating method.
  • the thermoplastic polymer that forms the heat-sealable resin layer may be any that can sufficiently exhibit sealant adhesiveness, and is a polyethylene resin such as HDPE, LDPE, LLDPE, a polypropylene resin, or an ethylene-vinyl acetate copolymer. , Polyethylene- ⁇ -olefin random copolymer, ionomer resin and the like can be used.
  • a printing layer or another plastic base material and / or a paper base is provided between or outside the inorganic thin film layer or the base film layer and the heat-sealing resin layer. At least one layer or more of the material may be laminated.
  • water-based and solvent-based resin-containing printing inks can be preferably used.
  • the resin used for the printing ink include acrylic resin, urethane resin, polyester resin, vinyl chloride resin, vinyl acetate copolymer resin, and a mixture thereof.
  • Known printing inks include antistatic agents, light blocking agents, ultraviolet absorbers, plasticizers, lubricants, fillers, colorants, stabilizers, lubricants, defoamers, cross-linking agents, blocking agents, antioxidants, etc. Additives may be included.
  • the printing method for providing the print layer is not particularly limited, and known printing methods such as an offset printing method, a gravure printing method, and a screen printing method can be used.
  • known drying methods such as hot air drying, hot roll drying, and infrared drying can be used.
  • Heat shrinkage of film The heat shrinkage of the polyester film was measured by the dimensional change test method described in JIS-C-2151-2006.21, except that the test temperature was 150 ° C. and the heating time was 15 minutes. The test piece was used as described in 21.1 (a).
  • (B) Phosphorus atom The phosphorus compound is converted to orthophosphorus by a method of dry ash decomposition in the presence of sodium carbonate or a method of wet decomposition with a mixed solution of sulfuric acid / nitric acid / perchloric acid or a mixed solution of sulfuric acid / hydrogen peroxide solution. did. Then, the molybdate was reacted in a 1 mol / L sulfuric acid solution to obtain phosphomolybdic acid, which was reduced with hydrazine sulfate to produce heteropoly blue. The absorbance at a wavelength of 830 nm was measured with an absorptiometer (UV-150-02, manufactured by Shimadzu Corporation). The amount of phosphorus atoms in the sample was quantified from the calibration curve prepared in advance.
  • the obtained print sample was rewound using a rewinding machine.
  • PBT resin (A) As the polybutylene terephthalate resin used in the production of the biaxially stretched polyester film described later, 1100-211XG (CANG CHUN PLASTICS CO., LTD., Intrinsic viscosity 1.28 dl / g) was used.
  • PET resin (B) A PET resin (B-1) polymerized with an aluminum catalyst containing no antimony catalyst and a PET resin (B-2) polymerized with an antimony catalyst were prepared by the following method.
  • ⁇ Preparation of polymerization catalyst solution> Ethylene glycol solution of phosphorus compound
  • Irganox1222 (BA) represented by the chemical formula (4) as a phosphorus compound.
  • 200 g manufactured by SF
  • the jacket temperature was changed to 196 ° C.
  • the solution was filtered through a glass filter (3G) to obtain an aqueous solution of an aluminum compound.
  • 3G glass filter
  • 2.0 liters of the aqueous solution of the aluminum compound and 2.0 liters of ethylene glycol were charged into a flask equipped with a distillation apparatus under normal temperature and pressure, and after stirring at 200 rpm for 30 minutes, a uniform water / ethylene glycol mixed solution was prepared. Obtained.
  • the jacket temperature setting was changed to 110 ° C. to raise the temperature, and water was distilled off from the solution. When the amount of distilled water reached 2.0 liters, heating was stopped and allowed to cool to room temperature to obtain an ethylene glycol solution of an aluminum compound.
  • a polymerization catalyst solution a mixed solution of the ethylene glycol solution of the phosphorus compound and the ethylene glycol solution of the aluminum compound was used as an aluminum atom with 0.047 mol% as a phosphorus atom with respect to the dicarboxylic acid component in the polyester resin.
  • the initial polymerization under reduced pressure was carried out to 1.3 kPa over 1 hour, the temperature rose to 270 ° C., and the late polymerization was further carried out at 0.13 kPa or less, and the intrinsic viscosity used in the present invention was obtained. Obtained 0.73 dl / g of PET resin (B-1).
  • PET resin (B-2) Polymerization of PET resin (B-2)
  • an ethylene glycol solution of Sb 2 O 3 of the antimony-based catalyst was prepared and added so as to have 0.084 mol% as the antimony atom, and the same production as the above-mentioned PET resin (B-1) was produced.
  • a PET resin (B-2) having an intrinsic viscosity of 0.73 dl / g used in the comparative example of the present invention was obtained.
  • Resin having an oxazoline group (C) As a resin having an oxazoline group, a commercially available water-soluble oxazoline group-containing acrylate (“Epocross (registered trademark) WS-300” manufactured by Nippon Catalyst Co., Ltd .; solid content 10%) is prepared. did. The amount of oxazoline groups in this resin was 7.7 mmol / g.
  • Acrylic resin (D) As an acrylic resin, a 25% by mass emulsion of a commercially available acrylic acid ester copolymer (“Mobile (registered trademark) 7980” manufactured by Nichigo Vinyl Co., Ltd.” was prepared. This acrylic resin (B) The acid value (theoretical value) of was 4 mgKOH / g.
  • Urethane resin (E) As a urethane resin, a commercially available polyester urethane resin dispersion (“Takelac (registered trademark) W605” manufactured by Mitsui Chemicals, Inc .; solid content 30%) was prepared. The acid value of this urethane resin was 25 mgKOH / g, and the glass transition temperature (Tg) measured by DSC was 100 ° C. The ratio of aromatic or aromatic aliphatic diisocyanate to the total polyisocyanate component measured by 1H-NMR was 55 mol%.
  • Urethane resin (F) As a urethane resin, a dispersion of a commercially available metaxylylene group-containing urethane resin (“Takelac (registered trademark) WPB341” manufactured by Mitsui Chemicals, Inc .; solid content 30%) was prepared. The acid value of this urethane resin was 25 mgKOH / g, and the glass transition temperature (Tg) measured by DSC was 130 ° C. The ratio of aromatic or aromatic aliphatic diisocyanate to the total polyisocyanate component measured by 1H-NMR was 85 mol%.
  • Coating liquid used for the adhesive layer 1 Each material was mixed at the following blending ratio to prepare a coating liquid 1 (resin composition for an adhesive layer).
  • Coating liquid used for coating the protective layer 2 The following coating agents were mixed to prepare a coating liquid 2. Water 60.00% by mass Isopropanol 30.00% by mass Urethane resin (F) 10.00% by mass
  • Urethane-based two-component curable adhesives (“Takelac (registered trademark) A525S” manufactured by Mitsui Chemicals, Inc. and “Takenate” are placed on the protective layer side of the gas barrier films shown in Examples 1 to 8 and Comparative Examples 1 to 4, which will be described later.
  • a non-stretched polypropylene film with a thickness of 70 ⁇ m as a thermosetting resin layer (“P1147” manufactured by Toyo Boseki Co., Ltd.) by a dry laminating method using (registered trademark) A50 at a ratio of 13.5: 1 (mass ratio). ”) Are laminated and aged at 40 ° C. for 4 days to obtain a laminated laminate for evaluation.
  • the thickness of the adhesive layer formed of the urethane-based two-component curable adhesive after drying was about 4 ⁇ m.
  • Example 1 The method for producing the biaxially stretched polyester film used in each Example and Comparative Example is described below.
  • the physical properties of the following biaxially stretched polyester film are shown in Tables 1 and 2.
  • Example 1> Using a uniaxial extruder, 20% by mass of PET resin (B-1) was mixed with 80% by mass of PBT resin (A) and silica particles having an average particle size of 2.4 ⁇ m as inert particles so as to have an average particle size of 7000 ppm. The material was melted at 290 ° C. and then introduced into a melt line. However, the PET resin (B-1) was supplied using an inner pipe as shown in FIG.
  • a full-width roll (hereinafter referred to as a mill roll) of a biaxially stretched polyester film having a thickness of 15 ⁇ m and a total width of 4200 mm.
  • the obtained mill roll was slit, and two slit rolls having a roll width of 2080 mm were collected.
  • a gas barrier laminated film was obtained by forming an inorganic thin film layer and a protective layer on a biaxially stretched polyester film slit by the method for forming an inorganic thin film layer and a protective layer shown below.
  • ⁇ Formation of inorganic thin film layer> A composite oxide layer of silicon dioxide and aluminum oxide was formed as an inorganic thin film layer on the slit film by an electron beam deposition method. Particulate SiO 2 (purity 99.9%) and A1 2 O 3 (purity 99.9%) having a thickness of about 3 mm to 5 mm were used as the vapor deposition source.
  • the film thickness of the obtained film (inorganic thin layer / adhesive layer containing film) inorganic thin layer in the (SiO 2 / A1 2 O 3 composite oxide layer) was 13 nm.
  • the coating liquid 2 was applied onto the inorganic thin film layer formed by the above vapor deposition by the wire bar coating method, and dried at 200 ° C. for 15 seconds to obtain a protective layer.
  • the coating amount after drying was 0.190 g / m 2 (as Dry solid content).
  • Table 1 shows the film forming conditions, physical properties, and evaluation results of the obtained biaxially stretched polyester film and gas barrier laminated film.
  • a mixture prepared at 900 ppm with respect to the resin was melted at 290 ° C. and then introduced into a melt line. Then, it was cast from a T-die at 265 ° C. and adhered to a cooling roll at 20 ° C. by an electrostatic adhesion method to obtain an unstretched sheet. Then, the resin composition for the adhesive layer (coating liquid 1) was applied by the fountain bar coating method after the vertical stretching at 60 ° C. for 2.9 times roll stretching. Then, it is guided to a tenter while drying, then passed through the tenter and stretched 4.0 times in the lateral direction at 90 ° C., subjected to tension heat treatment at 200 ° C. for 3 seconds and relaxation treatment of 9% for 1 second, and then 50.
  • Example 2 shows the film forming conditions, physical properties, and evaluation results of the obtained biaxially stretched polyester film and gas barrier laminated film.
  • the obtained mill roll was slit, and two slit rolls having a roll width of 2080 mm were collected.
  • an inorganic thin film layer and a protective layer were formed on the slit film to obtain a gas barrier laminated film.
  • Table 2 shows the film forming conditions, physical properties, and evaluation results of the obtained biaxially stretched film and gas barrier laminated film.
  • the biaxial stretching of the present invention of Examples 1 to 7 is carried out by using a PET resin having a PBT ratio within the scope of the present invention and using an aluminum compound as a polymerization catalyst as a PET raw material.
  • the physical properties such as strength are inferior, the pinhole resistance is excellent, and the foreign matter in the film is further improved. It was possible to obtain a biaxially stretched polyester film with less printing loss.
  • the variation in the puncture strength in the longitudinal direction is small by using the inner pipe for supplying the raw material.
  • the adhesive layer was provided between the biaxially stretched polyester film and the inorganic thin film layer, the gas barrier property after the retort treatment was good.
  • Comparative Example 3 heat treatment can be performed at a high temperature in which the ratio of PET is increased, and the dimensional stability is improved, but at the same time, the ratio of PBT is reduced, so that the mechanical strength such as puncture resistance is lowered.
  • Comparative Example 4 since the inner pipe was not used for supplying the raw materials and the raw material ratio fluctuated greatly in the longitudinal direction due to the segregation of the raw materials, the variation in the puncture strength in the longitudinal direction was large.
  • the present invention not only is it excellent in pinhole resistance and bag tear resistance, but it is also excellent in hygiene, printability and workability, and even a long film roll having a long winding length is long. It has become possible to provide a biaxially stretched polyester film having little variation in physical properties in the direction and a method for producing the same. Since these films do not contain an antimony catalyst as a food packaging material, they have excellent hygiene and can be widely applied, and are expected to greatly contribute to the industrial world. In addition to food packaging, it can be widely used in packaging of pharmaceuticals and industrial products, and in industrial applications such as solar cells, electronic paper, organic EL elements, and semiconductor elements.

Abstract

[Problem] To provide a biaxially stretched polyester film which has excellent unsusceptibility to pinhole formation and to bag breakage, is highly hygienic, and has low unevenness in machine-direction physical property. [Solution] A biaxially stretched polyester film characterized by comprising 60-95 mass% poly(butylene terephthalate) resin (A) and 5-40 mass% poly(ethylene terephthalate) resin (B) and satisfying all of the following (1) to (4). (1) To have a piercing strength, as measured in accordance with JIS Z 1707, of 0.6 N/μm or greater. (2) To have a degree of planar orientation of 0.144-0.160. (3) To have degrees of thermal shrinkage through 15-minute heating at 150°C of 0-4% for the machine direction and -1 to 3% for the transverse direction. (4) To have an antimony atom content of 7 ppm or less.

Description

ポリエステルフィルム及びその製造方法Polyester film and its manufacturing method

 本発明は、食品、医薬品、工業製品等の包装分野に用いられる二軸延伸ポリエステルフィルムに及びその製造方法に関する。更に詳しくは、優れた耐ピンホール性、耐破袋性を有するだけでなく、衛生性に優れ、印刷性、加工性に優れ、巻き長の長い長尺のフィルムロールであっても長手方向の物性のばらつきの少ない二軸延伸ポリエステルフィルム及びその製造方法に関する。

The present invention relates to a biaxially stretched polyester film used in the packaging field of foods, pharmaceuticals, industrial products, etc., and a method for producing the same. More specifically, it not only has excellent pinhole resistance and bag breakage resistance, but also has excellent hygiene, printability, and workability, and even a long film roll with a long winding length is in the longitudinal direction. The present invention relates to a biaxially stretched polyester film having little variation in physical properties and a method for producing the same.

 食品、医薬品等に用いられる包装材料は、蛋白質、油脂の酸化抑制、味、鮮度の保持、医薬品の効能維持のために、酸素や水蒸気等のガスを遮断する性質、すなわちガスバリア性を備えることが求められている。また、太陽電池や有機EL等の電子デバイスや電子部品等に使用されるガスバリア性材料は、食品等の包装材料以上に高いガスバリア性を必要とする。

Packaging materials used in foods, pharmaceuticals, etc. must have the property of blocking gases such as oxygen and water vapor, that is, gas barrier properties, in order to suppress the oxidation of proteins and fats and oils, maintain the taste and freshness, and maintain the efficacy of pharmaceuticals. It has been demanded. Further, gas barrier materials used for electronic devices such as solar cells and organic ELs and electronic parts require higher gas barrier properties than packaging materials such as foods.

 従来から、水蒸気や酸素等の各種ガスの遮断を必要とする食品用途においては、プラスチックからなる基材フィルム層の表面に、アルミニウム等からなる金属薄膜、酸化ケイ素や酸化アルミニウム等の無機酸化物からなる無機薄膜を形成したガスバリア性積層フィルムが、一般的に用いられている。

Conventionally, in food applications that require blocking of various gases such as water vapor and oxygen, a metal thin film made of aluminum or the like and an inorganic oxide such as silicon oxide or aluminum oxide are used on the surface of a base film layer made of plastic. A gas barrier laminated film on which an inorganic thin film is formed is generally used.

 二軸延伸ナイロンフィルムを基材フィルム層とするすることにより、内容物による耐ピンホール性が良好になったり、袋の落下時の内容物の漏れが無くなることが知られていた(例えば特許文献5)。しかし、二軸延伸ナイロンフィルムは吸湿時の寸法変化が大きく、加工工程時に吸湿によりカールしてしまったり、レトルト殺菌のような過酷な処理が施された場合に収縮により形が変形するという問題点があった。

It has been known that by using a biaxially stretched nylon film as a base film layer, pinhole resistance due to the contents is improved and leakage of the contents when the bag is dropped is eliminated (for example, Patent Documents). 5). However, the biaxially stretched nylon film has a large dimensional change during moisture absorption, and has a problem that it curls due to moisture absorption during the processing process and the shape is deformed due to shrinkage when a harsh treatment such as retort sterilization is applied. was there.

 一方、ポリエチレンテレフタレート(以下、PETと略記する)フィルムに酸化ケイ素や酸化アルミニウム、これらの混合物等の無機酸化物の薄膜(無機薄膜層)を形成したものは、透明であり内容物の確認が可能であることから、広く使用されている。(例えば特許文献1及び特許文献2)

 PETフィルムは、耐熱性や寸法安定性に優れ、レトルト殺菌のような過酷な処理が施された場合にも使用し得るが、PETフィルムは脆いため、これを使用した積層フィルムからなる袋は、落下時に袋が破れたり、穴が開いて、袋に詰められていた内容物が漏れるという課題が残されていた。

On the other hand, a polyethylene terephthalate (hereinafter abbreviated as PET) film on which a thin film (inorganic thin film layer) of an inorganic oxide such as silicon oxide, aluminum oxide, or a mixture thereof is formed is transparent and the contents can be confirmed. Therefore, it is widely used. (For example, Patent Document 1 and Patent Document 2)

PET film has excellent heat resistance and dimensional stability, and can be used even when harsh treatment such as retort sterilization is applied. However, since PET film is brittle, a bag made of a laminated film using this is used. There was a problem that the bag was torn or punctured when it was dropped, and the contents packed in the bag leaked.

 これらの問題を解決するための手段として、二軸延伸したポリブチレンテレフタレート(以下、PBTと略記する)フィルムをもちいることが検討されている。

 例えば、特許文献3では、少なくともPBT樹脂、又はPBT樹脂に対してPET樹脂を30質量%以下の範囲で配合したポリエステル樹脂組成物を縦方向及び横方向それぞれ2.7~4.0倍同時二軸延伸することにより得られた二軸延伸PBTフィルムを基材フィルム層に使用することが知られていた。かかる技術によれば、耐屈曲ピンホール性、及び耐衝撃性を持ち、かつ優れた保香性を併せ持つ液体充填用包材が得られるというものである。

As a means for solving these problems, it has been studied to use a biaxially stretched polybutylene terephthalate (hereinafter abbreviated as PBT) film.

For example, in Patent Document 3, at least PBT resin or a polyester resin composition in which PET resin is blended in a range of 30% by mass or less with respect to PBT resin is 2.7 to 4.0 times simultaneously in the vertical direction and the horizontal direction. It has been known that a biaxially stretched PBT film obtained by axial stretching is used as a base film layer. According to such a technique, it is possible to obtain a packaging material for liquid filling which has bending pinhole resistance, impact resistance, and excellent aroma retention.

 ところで、ポリエステルフィルムが多く用いられている包装用フィルムは、食品への直接接触が想定されるため、衛生性の観点から、ポリエステルフィルム中の異物が少ないことが望まれている。またポリエステルの原料を生産(重合)する工程で使用されるアンチモン触媒は 発癌性の可能性がある為、ポリエステルフィルム中のアンチモンの含有量は極力少ないか、又は含まれていない事が望ましい。

By the way, since a packaging film in which a polyester film is often used is expected to come into direct contact with food, it is desired that there are few foreign substances in the polyester film from the viewpoint of hygiene. In addition, since the antimony catalyst used in the process of producing (polymerizing) the polyester raw material may be carcinogenic, it is desirable that the content of antimony in the polyester film is as low as possible or not contained.

 従来、例えば特許文献4、5に記載されているように、アンチモン触媒を使用しないポリエステル原料がある。しかし、フィルム中の異物数を低下させる方法や望まれているフィルム特性については記されていない。

 また、先に挙げた特許文献3のような、PBT樹脂に対してPET樹脂を配合したポリエステル樹脂組成物を延伸して得られるフィルムにおいても、フィルム中に含まれるアンチモン量については規定されておらず、フィルム中のアンチモン量低減や異物低減については未だ改善の余地があった。

Conventionally, there are polyester raw materials that do not use an antimony catalyst, for example, as described in Patent Documents 4 and 5. However, the method for reducing the number of foreign substances in the film and the desired film characteristics are not described.

Further, even in a film obtained by stretching a polyester resin composition obtained by blending a PET resin with a PBT resin as in Patent Document 3 mentioned above, the amount of antimony contained in the film is not specified. However, there was still room for improvement in reducing the amount of antimony in the film and reducing foreign matter.

 一方、PBT樹脂に対してPET樹脂を配合したポリエステル樹脂組成物からなるようなフィルムの場合では、PBT樹脂とPET樹脂などのその他の樹脂とを混合して成膜するのが一般的である。しかしPBT樹脂とその他の樹脂では、比重や樹脂チップの形状が異なる場合があるため、これら原料樹脂チップの偏析により、混合、押出し工程で原料比率のバラツキが生じ易く、フィルム長手方向で物性差が生じる。その結果、長尺な製品ロールの長手方向で均一な物性の製品が得られなくなるケースがあった。

On the other hand, in the case of a film made of a polyester resin composition obtained by blending PET resin with PBT resin, it is common to mix PBT resin and other resins such as PET resin to form a film. However, since the specific gravity and the shape of the resin chip may differ between the PBT resin and other resins, the segregation of these raw material resin chips tends to cause variations in the raw material ratio in the mixing and extrusion processes, resulting in differences in physical properties in the longitudinal direction of the film. Occurs. As a result, there are cases where a product having uniform physical properties cannot be obtained in the longitudinal direction of a long product roll.

特開平6-278240号公報、JP-A-6-278240, 特開平11-10725号公報JP-A-11-10725 特開2017-094746号公報Japanese Unexamined Patent Publication No. 2017-09746 特許3461175号公報Japanese Patent No. 3461175 特許3506236号公報Japanese Patent No. 3506236

 本発明は、かかる従来技術の課題を背景になされたものである。

 すなわち、優れた耐ピンホール性、耐破袋性を有するだけでなく、衛生性に優れ、印刷性、加工性に優れ、巻き長の長い長尺のフィルムロールであっても長手方向の物性のばらつきの少ない二軸延伸ポリエステルフィルム及びその製造方法を提供することにある。

The present invention has been made against the background of the problems of the prior art.

That is, it not only has excellent pinhole resistance and bag breakage resistance, but also has excellent hygiene, printability, and workability, and even a long film roll with a long winding length has physical properties in the longitudinal direction. It is an object of the present invention to provide a biaxially stretched polyester film having little variation and a method for producing the same.

 本発明者らはかかる課題を解決するため鋭意検討した結果、PBT樹脂に対してPET樹脂を40質量%以下の範囲で配合したポリエステル樹脂組成物を二軸延伸して得られる二軸延伸ポリエステルフィルムに用いるPET樹脂として、アルミニウム化合物から選ばれる少なくとも1種と、リン系化合物から選択される少なくとも1種を含む重合触媒を用いて製造されたものを用い、また原料となる樹脂チップの混合に際しては、ホッパーに上方からポリブチレンテレフタレート樹脂チップを供給すると共に、ホッパー内であって押出機直上に出口を有する配管(以下、インナーパイプと称する場合がある)を通じて前記PET樹脂(B)のチップを供給して、両チップを混合し、溶融押し出しする事で、フィルムの長手方向で物性のばらつきが少ない、長手方向で物性の均一なフィルムを得ることができることを見出し、本発明の完成に至った。

As a result of diligent studies to solve this problem, the present inventors have obtained a biaxially stretched polyester film obtained by biaxially stretching a polyester resin composition in which a PET resin is blended in a range of 40% by mass or less with respect to a PBT resin. As the PET resin used in the above, a resin produced by using a polymerization catalyst containing at least one selected from aluminum compounds and at least one selected from phosphorus-based compounds is used, and when mixing the resin chips as raw materials, , The polybutylene terephthalate resin chip is supplied to the hopper from above, and the PET resin (B) chip is supplied through a pipe (hereinafter, may be referred to as an inner pipe) having an outlet in the hopper and directly above the extruder. Then, by mixing both chips and melt-extruding them, it was found that a film having less variation in physical properties in the longitudinal direction and uniform physical properties in the longitudinal direction can be obtained, and the present invention has been completed.

 すなわち本発明は、以下の構成からなる。

〔1〕 少なくともポリブチレンテレフタレート樹脂(A)を60~95質量%及びポリエチレンテレフタレート樹脂(B)を5~40質量%を含み、下記(1)~(4)を同時に満足することを特徴とする二軸延伸ポリエステルフィルム。

(1)JIS Z 1707に準じて測定した突刺し強度が0.6N/μm以上。

(2)フィルムの面配向度が0.144~0.160。

(3)フィルムの150℃で15分間加熱後の熱収縮率が、縦方向が0~4%、横方向が-1~3%。

(4)フィルム中のアンチモン原子の含有量が7ppm以下。

〔2〕 前記ポリエチレンテレフタレート(B)が、重合触媒として、アルミニウム化合物から選択される少なくとも1種、及びリン化合物から選択される少なくとも1種を含有することを特徴とするポリエステル原料であることを特徴とする〔1〕に記載の二軸延伸ポリエステルフィルム。

〔3〕 フィルム1000平方メートル当たり1mm以上の欠点数が1.0個以下であることを特徴とする、〔1〕又は〔2〕に記載の二軸延伸ポリエステルフィルム

〔4〕 縦方向にフィルムロールの表層から巻き芯まで1000m毎にサンプリングし、JIS Z 1707に準じて測定した突刺し強度の最大値をXmax(N/μm)、最小値をXmin(N/μm)、平均値をXaveとしたときの、下記式[1]で表される突刺し強度のばらつきが20%以下であることを特徴とする、〔1〕~〔3〕いずれかに記載の二軸延伸ポリエステルフィルム。

 突刺し強度の長手方向ばらつき(%)=100×(Xmax-Xmin)/Xave・・・[1]

〔5〕 二軸延伸ポリエステルフィルムの少なくとも片方の面に無機薄膜層を有することを特徴とする〔1〕~〔4〕いずれかに記載のしてなるガスバリア性積層フィルム。

〔6〕 ポリエステルフィルムと無機薄膜層の間に接着層を有することを特徴とする〔5〕に記載のガスバリア性積層フィルム。

〔7〕 無機薄膜層の表面に保護層を有することを特徴とする〔5〕又は〔6〕に記載のガスバリア性積層フィルム。

〔8〕 ポリエステル原料樹脂の溶融押出し工程において、ホッパーに上方からポリブチレンテレフタレート(A)の原料樹脂チップを供給すると共に、ホッパー内であって押出機直上に出口を有する配管を通じてポリエチレンテレフタレート(B)の原料樹脂チップを供給して、両チップを混合し、溶融押出しすることを特徴とする〔1〕~〔4〕いずれかに記載の二軸延伸ポリエステルフィルムの製造方法。

That is, the present invention has the following configuration.

[1] It is characterized by containing at least 60 to 95% by mass of the polybutylene terephthalate resin (A) and 5 to 40% by mass of the polyethylene terephthalate resin (B), and simultaneously satisfying the following (1) to (4). Biaxially stretched polyester film.

(1) The puncture strength measured according to JIS Z 1707 is 0.6 N / μm or more.

(2) The degree of surface orientation of the film is 0.144 to 0.160.

(3) The heat shrinkage of the film after heating at 150 ° C. for 15 minutes is 0 to 4% in the vertical direction and -1 to 3% in the horizontal direction.

(4) The content of antimony atoms in the film is 7 ppm or less.

[2] The polyethylene terephthalate (B) is a polyester raw material containing at least one selected from aluminum compounds and at least one selected from phosphorus compounds as a polymerization catalyst. The biaxially stretched polyester film according to [1].

[3] The biaxially stretched polyester film according to [1] or [2], wherein the number of defects of 1 mm or more per 1000 square meters of the film is 1.0 or less.

[4] The maximum value of the puncture strength measured in the vertical direction from the surface layer of the film roll to the winding core every 1000 m and measured according to JIS Z 1707 is Xmax (N / μm), and the minimum value is Xmin (N / μm). ), The variation of the puncture strength represented by the following formula [1] is 20% or less when the average value is Xave, according to any one of [1] to [3]. Axial stretched polyester film.

Longitudinal variation in piercing strength (%) = 100 × (Xmax-Xmin) / Xave ... [1]

[5] The gas barrier laminated film according to any one of [1] to [4], which has an inorganic thin film layer on at least one surface of the biaxially stretched polyester film.

[6] The gas barrier laminated film according to [5], wherein an adhesive layer is provided between the polyester film and the inorganic thin film layer.

[7] The gas barrier laminated film according to [5] or [6], which has a protective layer on the surface of the inorganic thin film layer.

[8] In the melt extrusion step of the polyester raw material resin, the raw material resin chip of polybutylene terephthalate (A) is supplied to the hopper from above, and the polyethylene terephthalate (B) is passed through a pipe having an outlet in the hopper and directly above the extruder. The method for producing a biaxially stretched polyester film according to any one of [1] to [4], wherein the raw material resin chips of the above are supplied, both chips are mixed, and melt-extruded.

 本発明者らは、かかる技術によって、優れた耐ピンホール性、耐破袋性を有するだけでなく、衛生性に優れ、印刷性、加工性に優れ、巻き長の長い長尺のフィルムロールであっても長手方向の物性のばらつきの少ない二軸延伸ポリエステルフィルム及びその製造方法を提供することが可能となった。

By using this technique, the present inventors not only have excellent pinhole resistance and bag breakage resistance, but also have excellent hygiene, printability, and workability, and use a long film roll having a long winding length. Even if there is, it has become possible to provide a biaxially stretched polyester film having little variation in physical properties in the longitudinal direction and a method for producing the same.

図1は、本発明の二軸延伸ポリエステルフィルムを製造するための原料樹脂チップの混合方法の一例を説明する為の概略図である。FIG. 1 is a schematic view for explaining an example of a method of mixing raw material resin chips for producing the biaxially stretched polyester film of the present invention. 図2は図1の部分拡大図である。FIG. 2 is a partially enlarged view of FIG.

 以下、本発明について詳細に説明する。

 本発明の二軸延伸ポリエステルフィルムは、PBT樹脂(A)を主たる構成成分とするものであり、PBTの含有率60質量%以上が好ましく、さらには70質量%以上が好ましい。60質量%未満であると突刺し強度が低下してしまい、フィルム特性としては十分なものでなくなってしまう。

 主たる構成成分として用いるPBT樹脂(A)としては、ジカルボン酸成分として、テレフタル酸が90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは98モル%以上であり最も好ましくは100モル%である。グリコール成分として1,4-ブタンジオールが90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは97モル%以上であり、最も好ましくは重合時に1,4-ブタンジオールのエーテル結合により生成する副生物以外は含まれないことである。

Hereinafter, the present invention will be described in detail.

The biaxially stretched polyester film of the present invention contains PBT resin (A) as a main component, and the content of PBT is preferably 60% by mass or more, more preferably 70% by mass or more. If it is less than 60% by mass, the piercing strength is lowered, and the film characteristics are not sufficient.

The PBT resin (A) used as the main constituent component preferably contains terephthalic acid in an amount of 90 mol% or more, more preferably 95 mol% or more, and further preferably 98 mol% or more as a dicarboxylic acid component. Most preferably, it is 100 mol%. The glycol component of 1,4-butanediol is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 97 mol% or more, and most preferably 1,4-butanediol at the time of polymerization. It does not contain anything other than by-products produced by the ether bond of the diol.

 本発明に用いるPBT樹脂の固有粘度の下限は好ましくは0.9dl/gであり、より好ましくは0.95dl/gであり、更に好ましくは1.0dl/gである。

 原料であるPBT樹脂の固有粘度が0.9dl/g未満の場合、製膜して得られるフィルムの固有粘度が低下し、突刺し強度、衝撃強度、耐ピンホール性、又は耐破袋性などが低下するとなることがある。

 PBT樹脂の固有粘度の上限は好ましくは1.4dl/gである。上記を越えると延伸時の応力が高くなりすぎ、製膜性が悪化するとなることがある。固有粘度の高いPBTを使用した場合、樹脂の溶融粘度が高くなるため押出し温度を高温にする必要があるが、PBT樹脂をより高温で押出しすると分解物が出やすくなることがある。

The lower limit of the intrinsic viscosity of the PBT resin used in the present invention is preferably 0.9 dl / g, more preferably 0.95 dl / g, and further preferably 1.0 dl / g.

When the intrinsic viscosity of the raw material PBT resin is less than 0.9 dl / g, the intrinsic viscosity of the film obtained by film formation decreases, and piercing strength, impact strength, pinhole resistance, bag breaking resistance, etc. May decrease.

The upper limit of the intrinsic viscosity of the PBT resin is preferably 1.4 dl / g. If it exceeds the above, the stress at the time of stretching becomes too high, and the film forming property may deteriorate. When PBT having a high intrinsic viscosity is used, it is necessary to raise the extrusion temperature to a high temperature because the melt viscosity of the resin becomes high, but when the PBT resin is extruded at a higher temperature, decomposition products may be easily generated.

 前記PBT樹脂は必要に応じ、従来公知の添加剤、例えば、滑剤、安定剤、着色剤、静電防止剤、紫外線吸収剤等を含有していてもよい。

 滑剤種としてはシリカ、炭酸カルシウム、アルミナなどの無機系滑剤のほか、有機系滑剤が好ましく、シリカ、炭酸カルシウムがより好ましく、中でもシリカがヘイズを低減する点で特に好ましい。これらにより透明性と滑り性と発現することができる。

 滑剤濃度の下限は好ましくは100ppmであり、より好ましくは500ppmであり、さらに好ましくは800ppmである。上記未満であると基材フィルム層の滑り性が低下となることがある。滑剤濃度の上限は好ましくは20000ppmであり、より好ましくは10000ppmであり、さらに好ましくは1800ppmである。上記を越えると透明性が低下となることがある。

If necessary, the PBT resin may contain conventionally known additives such as lubricants, stabilizers, colorants, antistatic agents, and ultraviolet absorbers.

As the lubricant type, in addition to inorganic lubricants such as silica, calcium carbonate and alumina, organic lubricants are preferable, silica and calcium carbonate are more preferable, and silica is particularly preferable in that haze is reduced. These can be expressed as transparent and slippery.

The lower limit of the lubricant concentration is preferably 100 ppm, more preferably 500 ppm, and even more preferably 800 ppm. If it is less than the above, the slipperiness of the base film layer may decrease. The upper limit of the lubricant concentration is preferably 20000 ppm, more preferably 10000 ppm, and even more preferably 1800 ppm. If it exceeds the above, transparency may decrease.

 本発明の二軸延伸ポリエステルフィルムは、上記PBT樹脂(A)のほかに力学特性や製膜性などを調整する目的でPET樹脂(B)が添加される。

 PETの含有率としては5質量%以上が好ましい。5質量%未満であるとPBTの結晶化により製膜性が低下することがある。

 PETの含有率としては40質量%以下が好ましく、さらには30質量%以下が好ましい。40質量%を超えると突刺し強度が低下してしまい、フィルム特性としては十分なものでなくなってしまう。

In the biaxially stretched polyester film of the present invention, in addition to the PBT resin (A), a PET resin (B) is added for the purpose of adjusting mechanical properties and film-forming properties.

The content of PET is preferably 5% by mass or more. If it is less than 5% by mass, the film-forming property may decrease due to the crystallization of PBT.

The content of PET is preferably 40% by mass or less, more preferably 30% by mass or less. If it exceeds 40% by mass, the piercing strength is lowered, and the film characteristics are not sufficient.

 また本発明の二軸延伸ポリエステルフィルムに使用されるPET樹脂(B)としては、重合触媒として後述するように従来使用されている三酸化アンチモン等のアンチモン化合物の重合触媒はできるだけ使用しないものであることが好ましい。

 PET樹脂(B)を製造する際の主たる重合触媒としてアンチモン化合物を使用せず、代わりに後述するアルミニウム化合物を使用することにより、衛生性に優れ、印刷性に優れたポリエステルフィルムを得ることができる。

Further, as the PET resin (B) used in the biaxially stretched polyester film of the present invention, a polymerization catalyst of an antimony compound such as antimony trioxide, which is conventionally used as a polymerization catalyst, is not used as much as possible. Is preferable.

By not using an antimony compound as the main polymerization catalyst in producing the PET resin (B) and using an aluminum compound described later instead, a polyester film having excellent hygiene and printability can be obtained. ..

 次に、本発明に使用するPET原料(B)を製造する際に使用する重合触媒について説明する。本発明に用いられる重合触媒は、エステル化を促進させる能力を有することを特徴とする重合触媒である。本発明においては、後述するように従来使用されている三酸化アンチモン等のアンチモン化合物の重合触媒はできるだけ使用しないことが好ましい。このような重合触媒としては、アルミニウム化合物から選ばれる少なくとも1種と、リン系化合物から選択される少なくとも1種を含む重合触媒が好ましい。

Next, the polymerization catalyst used when producing the PET raw material (B) used in the present invention will be described. The polymerization catalyst used in the present invention is a polymerization catalyst characterized by having an ability to promote esterification. In the present invention, it is preferable not to use a polymerization catalyst of an antimony compound such as antimony trioxide which is conventionally used as described later. As such a polymerization catalyst, a polymerization catalyst containing at least one selected from aluminum compounds and at least one selected from phosphorus compounds is preferable.

 本発明に使用するPET樹脂(B)を合成する際に、使用する重合触媒を構成するアルミニウム化合物としては、公知のアルミニウム化合物が限定なく使用できる。

A known aluminum compound can be used without limitation as the aluminum compound constituting the polymerization catalyst used when synthesizing the PET resin (B) used in the present invention.

 アルミニウム化合物としては、具体的には、酢酸アルミニウム、塩基性酢酸アルミニウム、乳酸アルミニウム、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウム及びアルミニウムアセチルアセトネート、シュウ酸アルミニウムなどの有機アルミニウム化合物及びこれらの部分加水分解物などが挙げられる。これらのうちカルボン酸塩、無機酸塩及びキレート化合物が好ましく、これらの中でも酢酸アルミニウム、塩基性酢酸アルミニウム、乳酸アルミニウム、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウム及びアルミニウムアセチルアセトネートがより好ましく、酢酸アルミニウム、塩基性酢酸アルミニウム、塩化アルミニウム、水酸化アルミニウム及び水酸化塩化アルミニウムがさらに好ましく、酢酸アルミニウム、塩基性酢酸アルミニウムが最も好ましい。

Specific examples of the aluminum compound include organoaluminum compounds such as aluminum acetate, basic aluminum acetate, aluminum lactate, aluminum chloride, aluminum hydroxide, aluminum chloride and aluminum acetylacetonate, and aluminum oxalate, and portions thereof. Hydrolyzate and the like can be mentioned. Of these, carboxylates, inorganic acid salts and chelate compounds are preferable, and among these, aluminum acetate, basic aluminum acetate, aluminum lactate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride and aluminum acetylacetonate are more preferable. Aluminum acetate, basic aluminum acetate, aluminum chloride, aluminum hydroxide and aluminum chloride are more preferable, and aluminum acetate and basic aluminum acetate are most preferable.

 本発明で用いるPET樹脂(B)にかかる重合触媒に用いられるアルミニウム化合物の使用量は、アルミニウム原子として、得られるPET樹脂(B)の全質量に対して1~80ppm残留するようにすることが好ましく、より好ましくは2~60ppmであり、更に好ましくは3~50ppmであり、特に好ましくは5~40ppmであり、最も好ましくは10~30ppmである。

 上記を下回ると触媒活性不良となる可能性があり、上記を超えるとアルミニウム系異物生成を引き起こす可能性がある。

 アルミニウム化合物は、ポリエステル重合時に減圧環境下に置かれても、使用量のほぼ100%が残留するので、使用量が残留量になると考えてよい。

The amount of the aluminum compound used in the polymerization catalyst of the PET resin (B) used in the present invention may be 1 to 80 ppm remaining as an aluminum atom with respect to the total mass of the obtained PET resin (B). It is preferably more preferably 2 to 60 ppm, further preferably 3 to 50 ppm, particularly preferably 5 to 40 ppm, and most preferably 10 to 30 ppm.

If it is less than the above, the catalytic activity may be poor, and if it exceeds the above, aluminum-based foreign matter may be generated.

Even if the aluminum compound is placed in a reduced pressure environment during polyester polymerization, almost 100% of the used amount remains, so it can be considered that the used amount becomes the residual amount.

 重合触媒に用いられるリン化合物は、特に限定されないが、ホスホン酸系化合物、ホスフィン酸系化合物を用いると触媒活性の向上効果が大きく好ましく、これらの中でもホスホン酸系化合物を用いると触媒活性の向上効果が特に大きく好ましい。

The phosphorus compound used in the polymerization catalyst is not particularly limited, but it is preferable to use a phosphonic acid compound or a phosphinic acid compound to greatly improve the catalytic activity, and among these, a phosphonic acid compound is used to improve the catalytic activity. Is particularly large and preferable.

 これらのリン化合物のうち、同一分子内にフェノール部を有するリン化合物が好ましい。フェノール構造を有するリン化合物であれば特に限定はされないが、同一分子内にフェノール部を有する、ホスホン酸系化合物、ホスフィン酸系化合物からなる群より選ばれる一種又は二種以上の化合物を用いると触媒活性の向上効果が大きく好ましい。これらの中でも、一種又は二種以上の同一分子内にフェノール部を有するホスホン酸系化合物を用いると触媒活性の向上効果が特に大きく好ましい。

Among these phosphorus compounds, a phosphorus compound having a phenol portion in the same molecule is preferable. The phosphorus compound having a phenol structure is not particularly limited, but a catalyst may be used if one or more compounds selected from the group consisting of phosphonic acid compounds and phosphinic acid compounds having a phenol moiety in the same molecule are used. The effect of improving activity is large and preferable. Among these, it is particularly preferable to use one or more phosphonic acid compounds having a phenol portion in the same molecule because the effect of improving the catalytic activity is particularly large.

 また、同一分子内にフェノール部を有するリン化合物としては、下記一般式[化1]、[化2]で表される化合物などが挙げられる。

In addition, examples of the phosphorus compound having a phenol portion in the same molecule include compounds represented by the following general formulas [Chemical formula 1] and [Chemical formula 2].

Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001

Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002

 (式[化1]~[化2]中、Rはフェノール部を含む炭素数1~50の炭化水素基、水酸基又はハロゲン基又はアルコキシル基又はアミノ基などの置換基及びフェノール部を含む炭素数1~50の炭化水素基を表す。Rは、水素、炭素数1~50の炭化水素基、水酸基又はハロゲン基又はアルコキシル基又はアミノ基などの置換基を含む炭素数1~50の炭化水素基を表す。R、Rはそれぞれ独立に水素、炭素数1~50の炭化水素基、水酸基又はアルコキシル基などの置換基を含む炭素数1~50の炭化水素基を表す。ただし、炭化水素基は分岐構造やシクロヘキシル等の脂環構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。RとRの末端どうしは結合していてもよい。)

(In the formulas [Chemical formula 1] to [Chemical formula 2], R 1 is a hydrocarbon group having 1 to 50 carbon atoms including a phenol portion, a hydroxyl group or a halogen group, a substituent such as an alkoxyl group or an amino group, and a carbon containing a phenol portion. Represents a hydrocarbon group of number 1 to 50. R 4 is a hydrocarbon having 1 to 50 carbon atoms including hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or a halogen group or a substituent such as an alkoxyl group or an amino group. Representing a hydrogen group. R 2 and R 3 independently represent hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, and a hydrocarbon group having 1 to 50 carbon atoms including a substituent such as a hydroxyl group or an alkoxyl group. The hydrocarbon group may contain a branched structure, an alicyclic structure such as cyclohexyl, or an aromatic ring structure such as phenyl or naphthyl. The terminals of R 2 and R 4 may be bonded to each other.)

 前記の同一分子内にフェノール部を有するリン化合物としては、例えば、p-ヒドロキシフェニルホスホン酸、p-ヒドロキシフェニルホスホン酸ジメチル、p-ヒドロキシフェニルホスホン酸ジエチル、p-ヒドロキシフェニルホスホン酸ジフェニル、ビス(p-ヒドロキシフェニル)ホスフィン酸、ビス(p-ヒドロキシフェニル)ホスフィン酸メチル、ビス(p-ヒドロキシフェニル)ホスフィン酸フェニル、p-ヒドロキシフェニルフェニルホスフィン酸、p-ヒドロキシフェニルフェニルホスフィン酸メチル、p-ヒドロキシフェニルフェニルホスフィン酸フェニル、p-ヒドロキシフェニルホスフィン酸、p-ヒドロキシフェニルホスフィン酸メチル、p-ヒドロキシフェニルホスフィン酸フェニルなどが挙げられる。その他、下記一般式[化3]で表されるリン化合物を挙げることができる。

Examples of the phosphorus compound having a phenol portion in the same molecule include p-hydroxyphenylphosphonic acid, dimethyl p-hydroxyphenylphosphonate, diethyl p-hydroxyphenylphosphonate, diphenyl p-hydroxyphenylphosphonate, and bis ( p-Hydroxyphenyl) phosphinic acid, methyl bis (p-hydroxyphenyl) phosphinate, phenyl bis (p-hydroxyphenyl) phosphinate, p-hydroxyphenylphenylphosphonate, methyl p-hydroxyphenylphenylphosphinate, p-hydroxy Examples thereof include phenyl phenylphenylphosphinate, p-hydroxyphenylphosphinic acid, methyl p-hydroxyphenylphosphinate, and phenyl p-hydroxyphenylphosphinate. In addition, a phosphorus compound represented by the following general formula [Chemical Formula 3] can be mentioned.

Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003

 式[化3]中、X、Xは、それぞれ、水素、炭素数1~4のアルキル基、又は1価以上の金属を表す。

 また、Xは、金属が2価以上であって、Xが存在しなくても良い。さらには、リン化合物に対して金属の余剰の価数に相当するアニオンが配置されていても良い。

 金属としては、Li、Na、K、Ca、Mg、Alが好ましい。

In the formula [Chemical Formula 3], X 1 and X 2 represent hydrogen, an alkyl group having 1 to 4 carbon atoms, or a metal having a valence of 1 or more, respectively.

Further, in X 1 , the metal is divalent or higher, and X 2 does not have to be present. Furthermore, an anion corresponding to the surplus valence of the metal may be arranged with respect to the phosphorus compound.

As the metal, Li, Na, K, Ca, Mg and Al are preferable.

 これらの同一分子内にフェノール部を有するリン化合物をポリエステルの重合時に添加することによってアルミニウム化合物の触媒活性が向上するとともに、重合したポリエステル樹脂の熱安定性も向上する。

By adding these phosphorus compounds having a phenol portion in the same molecule at the time of polymerization of polyester, the catalytic activity of the aluminum compound is improved and the thermal stability of the polymerized polyester resin is also improved.

 上記の中でも、重縮合触媒として使用することが好ましいリン化合物は、化学式[化4]、化学式[化5]で表される化合物から選ばれる少なくとも一種のリン化合物である。

Among the above, the phosphorus compound preferably used as a polycondensation catalyst is at least one phosphorus compound selected from the compounds represented by the chemical formula [Chemical Formula 4] and the chemical formula [Chemical Formula 5].

Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004

Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005

 上記の化学式[化4]で示される化合物としては、Irganox1222(ビーエーエスエフ社製)が市販されている。また、化学式[化5]にて示される化合物としては、Irganox1425(ビーエーエスエフ社製)が市販されており、使用可能である。

As the compound represented by the above chemical formula [Chemical Formula 4], Irganox1222 (manufactured by BAF) is commercially available. Further, as a compound represented by the chemical formula [Chemical Formula 5], Irganox 1425 (manufactured by BAF) is commercially available and can be used.

 本発明で用いるPET原料(B)にかかる重合触媒に用いられるリン化合物の使用量は、リン原子として、得られる原料ポリエステル樹脂の全質量に対して10~100ppm残留するようにすることが好ましく、より好ましくは15~90ppmであり、更に好ましくは20~80ppmであり、特に好ましくは25~70ppmであり、最も好ましくは30~60ppmである。

 上記の上下限を超える量のリン原子が残存する場合は、重合活性を低下させる可能性がある。

 リン化合物は、ポリエステル重合時に減圧環境下に置かれる際、その条件により、使用量の約10~30%が系外に除去される。そこで、実際は、数回の試行実験を行い、リン化合物のポリエステル中への残留率を見極めた上で、使用量を決める必要がある。

The amount of the phosphorus compound used in the polymerization catalyst of the PET raw material (B) used in the present invention is preferably 10 to 100 ppm remaining as a phosphorus atom with respect to the total mass of the obtained raw material polyester resin. It is more preferably 15 to 90 ppm, further preferably 20 to 80 ppm, particularly preferably 25 to 70 ppm, and most preferably 30 to 60 ppm.

If an amount of phosphorus atoms exceeding the above upper and lower limits remains, the polymerization activity may be lowered.

When the phosphorus compound is placed in a reduced pressure environment during polyester polymerization, about 10 to 30% of the amount used is removed from the system depending on the conditions. Therefore, in reality, it is necessary to carry out several trial experiments to determine the residual ratio of the phosphorus compound in the polyester before deciding the amount to be used.

 また、上記のリン化合物を使用することで、樹脂の耐熱性を向上させることができる。原因は定かではないが、リン化合物中のヒンダードフェノール部分によりポリエステル樹脂の耐熱性を向上させていると考えられる。

Further, by using the above phosphorus compound, the heat resistance of the resin can be improved. Although the cause is not clear, it is considered that the heat resistance of the polyester resin is improved by the hindered phenol portion in the phosphorus compound.

 リン化合物の残留量が10ppmより少なくなると、上記の耐熱性向上の効果が薄れ、結果として、本発明で用いるPET原料(B)の耐熱性、着色改善効果が見られなくなることがある。

When the residual amount of the phosphorus compound is less than 10 ppm, the above-mentioned effect of improving heat resistance is diminished, and as a result, the effect of improving heat resistance and coloring of the PET raw material (B) used in the present invention may not be observed.

 本発明の効果を損なわない範囲で、触媒活性をさらに向上させるために、アンチモン化合物、チタン化合物、スズ化合物、ゲルマニウム化合物等の金属含有重縮合触媒を併用しても良い。その場合、アンチモン化合物は、得られる共重合ポリエステル樹脂の質量に対して、アンチモン原子として7ppm以下が好ましく、ゲルマニウム化合物は、得られる共重合ポリエステル樹脂の質量に対して、ゲルマニウム原子として10ppm以下が好ましく、チタン化合物は、得られる共重合ポリエステル樹脂の質量に対して、チタン原子として3ppm以下であることが好ましく、スズ化合物は、得られるポリエステル樹脂の質量に対して、スズ原子として3ppm以下が好ましい。本発明の目的からは、これらアンチモン化合物、チタン化合物、スズ化合物、ゲルマニウム化合物等の金属含有重縮合触媒は、極力使用しないことが好ましい。

A metal-containing polycondensation catalyst such as an antimony compound, a titanium compound, a tin compound, and a germanium compound may be used in combination in order to further improve the catalytic activity without impairing the effect of the present invention. In that case, the antimony compound is preferably 7 ppm or less as an antimony atom with respect to the mass of the obtained copolymerized polyester resin, and the germanium compound is preferably 10 ppm or less as a germanium atom with respect to the mass of the obtained copolymerized polyester resin. The titanium compound is preferably 3 ppm or less as a titanium atom with respect to the mass of the obtained copolymer resin resin, and the tin compound is preferably 3 ppm or less as a tin atom with respect to the mass of the obtained polyester resin. For the purpose of the present invention, it is preferable not to use metal-containing polycondensation catalysts such as antimony compounds, titanium compounds, tin compounds and germanium compounds as much as possible.

 本発明で用いるPET原料(B)においてアルミニウム化合物に加えて少量のアルカリ金属、アルカリ土類金属並びにその化合物から選択される少なくとも1種を第2金属含有成分として共存させても良い。かかる第2金属含有成分を触媒系に共存させることは、ジエチレングリコールの生成を抑制する効果に加えて触媒活性を高め、従って反応速度をより高めた触媒成分が得られ、生産性向上に有効である。アルカリ金属、アルカリ土類金属、又はそれらの化合物を併用添加する場合、その使用量(mol%)は、ポリエステル樹脂を構成するジカルボン酸成分のモル数に対して、好ましくは、1×10-5~0.01mol%である。アルカリ金属、アルカリ土類金属、又はそれらの化合物は、ポリエステル重合時に減圧環境下に置かれても、使用量のほぼ100%が残留するので、使用量が残留量になると考えてよい。

In the PET raw material (B) used in the present invention, in addition to the aluminum compound, a small amount of alkali metal, alkaline earth metal, and at least one selected from the compounds may coexist as a second metal-containing component. Coexistence of such a second metal-containing component in the catalyst system is effective in improving productivity because a catalyst component having an enhanced catalytic activity and thus a higher reaction rate can be obtained in addition to the effect of suppressing the formation of diethylene glycol. .. When an alkali metal, an alkaline earth metal, or a compound thereof is added in combination, the amount used (mol%) is preferably 1 × 10-5 with respect to the number of moles of the dicarboxylic acid component constituting the polyester resin. It is ~ 0.01 mol%. Alkaline metals, alkaline earth metals, or their compounds, even if they are placed in a reduced pressure environment during polyester polymerization, almost 100% of the amount used remains, so it can be considered that the amount used is the residual amount.

 本発明で用いるPET原料(B)に係る重合触媒は、重縮合反応のみならずエステル化反応及びエステル交換反応にも触媒活性を有する。テレフタル酸ジメチルなどのジカルボン酸のアルキルエステルとエチレングリコールなどのグリコールとのエステル交換反応は、通常亜鉛などのエステル交換触媒の存在下で行われるが、これらの触媒の代わりに上述したアルミニウム化合物を用いることもできる。また、これらの重合触媒は、溶融重合のみならず固相重合や溶液重合においても触媒活性を有する。

The polymerization catalyst according to the PET raw material (B) used in the present invention has catalytic activity not only in the polycondensation reaction but also in the esterification reaction and the transesterification reaction. The transesterification reaction between an alkyl ester of a dicarboxylic acid such as dimethyl terephthalate and a glycol such as ethylene glycol is usually carried out in the presence of a transesterification catalyst such as zinc, but the above-mentioned aluminum compound is used instead of these catalysts. You can also do it. Further, these polymerization catalysts have catalytic activity not only in melt polymerization but also in solid phase polymerization and solution polymerization.

 本発明で用いるPET原料(B)の重合触媒は、重合反応の任意の段階で反応系に添加することができる。例えば、エステル化反応もしくはエステル交換反応の開始前及び反応途中の任意の段階、重縮合反応の開始直前、あるいは重縮合反応途中の任意の段階で、反応系への添加することができる。特に、本発明に係る上述のアルミニウム化合物及びリン化合物の添加は重縮合反応の開始直前に添加することが好ましい。

The polymerization catalyst of the PET raw material (B) used in the present invention can be added to the reaction system at any stage of the polymerization reaction. For example, it can be added to the reaction system at any stage before and during the start of the esterification reaction or transesterification reaction, immediately before the start of the polycondensation reaction, or at any stage during the polycondensation reaction. In particular, the above-mentioned aluminum compound and phosphorus compound according to the present invention are preferably added immediately before the start of the polycondensation reaction.

 前記PET樹脂(B)の固有粘度は、0.57~0.76dl/gの範囲が好ましく、より好ましくは0.60~0.73dl/gであり、さらに好ましくは0.63~0.7dl/gである。固有粘度が0.57dl/gよりも低いと、ポリエステルフィルムを生産途中でフィルムが裂けやすくなり(所謂破断が発生)、0.76dl/gより高いと濾圧上昇が大きくなって高精度濾過フィルタを介して樹脂を押出すことが困難となりやすい。

 また、前記二軸延伸ポリエステルフィルムの樹脂の固有粘度は、0.51~0.70dl/gの範囲が好ましく、より好ましくは0.56~0.68dl/gであり、さらに好ましくは0.59~0.65dl/gである。固有粘度が0.51dl/gよりも低いと、ポリエステルフィルムが印刷等の加工工程で裂けやすくなり、固有粘度が0.76dl/gよりも高いと、機械的特性を向上する効果が飽和状態になりやすい。

The intrinsic viscosity of the PET resin (B) is preferably in the range of 0.57 to 0.76 dl / g, more preferably 0.60 to 0.73 dl / g, and further preferably 0.63 to 0.7 dl. / G. If the intrinsic viscosity is lower than 0.57 dl / g, the film tends to tear during the production of the polyester film (so-called breakage occurs), and if it is higher than 0.76 dl / g, the increase in filtration pressure becomes large and the high-precision filtration filter It tends to be difficult to extrude the resin through the resin.

The intrinsic viscosity of the resin of the biaxially stretched polyester film is preferably in the range of 0.51 to 0.70 dl / g, more preferably 0.56 to 0.68 dl / g, and further preferably 0.59. It is ~ 0.65 dl / g. When the intrinsic viscosity is lower than 0.51 dl / g, the polyester film is easily torn in the processing process such as printing, and when the intrinsic viscosity is higher than 0.76 dl / g, the effect of improving the mechanical properties becomes saturated. Prone.

 本発明の二軸延伸ポリエステルフィルムには、その特性が損なわれない範囲において各種の添加剤を添加してもよく、例えば、可塑剤、紫外線安定化剤、着色防止剤、艶消し剤、消臭剤、難燃剤、耐候剤、帯電防止剤、糸摩擦低減剤、離型剤、抗酸化剤、イオン交換剤、着色顔料等を添加することができる。これら添加剤は、二軸延伸ポリエステルフィルムに対して、50質量%以下の範囲で添加される。

Various additives may be added to the biaxially stretched polyester film of the present invention as long as its properties are not impaired. For example, a plasticizer, an ultraviolet stabilizer, a color inhibitor, a matting agent, and a deodorant may be added. Agents, flame retardants, weather resistant agents, antistatic agents, thread friction reducing agents, mold release agents, antioxidants, ion exchangers, coloring pigments and the like can be added. These additives are added in a range of 50% by mass or less with respect to the biaxially stretched polyester film.

 本発明の二軸延伸ポリエステルフィルムには、力学特性などを調整する目的で上記(A)及び(B)以外のポリエステル樹脂を含有することができる。

 上記(A)及び(B)以外のポリエステル樹脂としては、ポリエチレンナフタレート、ポリブチレンナフタレート及びポリプロピレンテレフタレートからなる群から選ばれる少なくとも1種のポリエステル樹脂、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、シクロヘキサンジカルボン酸、アジピン酸、アゼライン酸及びセバシン酸からなる群から選ばれる少なくとも1種のジカルボン酸が共重合されたPBT樹脂、エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール、ポリエチレングリコール、ポリテトラメチレングリコール及びポリカーボネートジオールからなる群から選ばれる少なくとも1種のジオール成分が共重合されたPBT樹脂などが挙げられる。

The biaxially stretched polyester film of the present invention may contain a polyester resin other than the above (A) and (B) for the purpose of adjusting mechanical properties and the like.

As the polyester resin other than the above (A) and (B), at least one polyester resin selected from the group consisting of polyethylene naphthalate, polybutylene naphthalate and polypropylene terephthalate, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid and biphenyl. PBT resin, ethylene glycol, 1,3-propylene glycol, 1,2-propylene in which at least one dicarboxylic acid selected from the group consisting of dicarboxylic acid, cyclohexanedicarboxylic acid, adipic acid, azelaic acid and sebacic acid is copolymerized. At least one diol component selected from the group consisting of glycol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, diethylene glycol, cyclohexanediol, polyethylene glycol, polytetramethylene glycol and polycarbonate diol is copolymerized. Examples thereof include the PBT resin used.

 これらPBT樹脂(A)及びPET樹脂(B)以外のポリエステル樹脂の添加量の上限としては、30質量%未満が好ましく、より好ましくは25質量%以下が好ましい。PBT樹脂以外のポリエステル樹脂の添加量が30質量%を超えると、PBTとしての力学特性が損なわれ、衝撃強度、耐ピンホール性、又は耐破袋性が不十分となるほか、透明性やガスバリア性が低下するなどが起こることがある。

The upper limit of the amount of the polyester resin other than the PBT resin (A) and the PET resin (B) added is preferably less than 30% by mass, more preferably 25% by mass or less. If the amount of polyester resin other than PBT resin added exceeds 30% by mass, the mechanical properties of PBT are impaired, impact strength, pinhole resistance, or bag breakage resistance becomes insufficient, and transparency and gas barrier Sexual deterioration may occur.

 本発明の二軸延伸ポリエステルフィルムの厚みの下限は好ましくは3μmであり、より好ましくは5μmであり、さらに好ましくは8μmである。3μm以上であると基材フィルム層としての強度が十分となる。

 本発明の二軸延伸ポリエステルフィルムの厚みの上限は好ましくは100μmであり、より好ましくは75μmであり、さらに好ましくは50μmである。100μm以下であると本発明の目的における加工がより容易となる。

The lower limit of the thickness of the biaxially stretched polyester film of the present invention is preferably 3 μm, more preferably 5 μm, and even more preferably 8 μm. When it is 3 μm or more, the strength as a base film layer becomes sufficient.

The upper limit of the thickness of the biaxially stretched polyester film of the present invention is preferably 100 μm, more preferably 75 μm, and even more preferably 50 μm. When it is 100 μm or less, the processing for the purpose of the present invention becomes easier.

 本発明の二軸延伸ポリエステルフィルムの縦方向の150℃で15分間加熱後の熱収縮率の上限は、好ましくは4.0%であり、より好ましくは3.0%であり、さらに好ましくは2%である。上限を越えると保護膜の形成工程や、レトルト殺菌処理のような高温処理において生じる基材フィルム層の寸法変化により無機薄膜層に割れが生じ、ガスバリア性が低下する恐れがあるばかりか、印刷などの加工時の寸法変化により、ピッチズレなどが起こることがある。

 本発明の二軸延伸ポリエステルフィルムの横方向の150℃で15分間加熱後の熱収縮率の上限は好ましくは3.0%であり、より好ましくは2.0%であり、さらに好ましくは1%である。上限を越えると保護膜の形成工程や、レトルト殺菌処理のような高温処理において生じる基材フィルム層の寸法変化により無機薄膜層に割れが生じ、ガスバリア性が低下する恐れがあるばかりか、印刷などの加工時の幅方向の寸法変化により、ピッチズレなどが起こるとなることがある。

The upper limit of the heat shrinkage rate after heating the biaxially stretched polyester film of the present invention at 150 ° C. in the longitudinal direction for 15 minutes is preferably 4.0%, more preferably 3.0%, still more preferably 2. %. If the upper limit is exceeded, the inorganic thin film layer may crack due to the dimensional change of the base film layer that occurs in the process of forming the protective film or in the high temperature treatment such as retort sterilization treatment, and not only the gas barrier property may deteriorate, but also printing etc. Pitch deviation may occur due to dimensional changes during processing.

The upper limit of the heat shrinkage rate after heating the biaxially stretched polyester film of the present invention at 150 ° C. in the lateral direction for 15 minutes is preferably 3.0%, more preferably 2.0%, still more preferably 1%. Is. If the upper limit is exceeded, the inorganic thin film layer may crack due to the dimensional change of the base film layer that occurs in the process of forming the protective film or in the high temperature treatment such as retort sterilization treatment, and not only the gas barrier property may deteriorate, but also printing etc. Pitch deviation may occur due to dimensional changes in the width direction during processing.

 本発明の二軸延伸ポリエステルフィルムの縦方向の150℃で15分間加熱後の熱収縮率の下限は好ましくは0%である。上記未満であってもと改善の効果がそれ以上得られない(飽和する)ほか、力学的に脆くなってしまうことがある。

 本発明の二軸延伸ポリエステルフィルムの横方向の150℃で15分間加熱後の熱収縮率の下限は好ましくは1.0%である。上記未満であっても改善の効果がそれ以上得られない(飽和する)ほか、力学的に脆くなってしまうことがある。

The lower limit of the heat shrinkage rate after heating the biaxially stretched polyester film of the present invention at 150 ° C. in the longitudinal direction for 15 minutes is preferably 0%. Even if it is less than the above, the effect of improvement cannot be obtained any more (saturation), and it may become mechanically brittle.

The lower limit of the heat shrinkage rate after heating the biaxially stretched polyester film of the present invention at 150 ° C. in the lateral direction for 15 minutes is preferably 1.0%. Even if it is less than the above, the effect of improvement cannot be obtained any more (saturation), and it may become mechanically brittle.

 本発明の二軸延伸ポリエステルフィルムの突刺し強度の下限は好ましくは0.6N/μmである。0.6N/μm以上であると袋として用いる際に袋の強度が不十分となることがある。

The lower limit of the puncture strength of the biaxially stretched polyester film of the present invention is preferably 0.6 N / μm. If it is 0.6 N / μm or more, the strength of the bag may be insufficient when used as a bag.

 本発明の二軸延伸ポリエステルフィルムのロールにおいて、フィルムロールを長手方向にフィルムロールの表層から巻き芯まで100m毎にサンプリングしJIS Z 1707に準じて測定した突刺し強度の最大値をXmax(N)、最小値をXmin(N)、平均値をXaveとしたときの、下記式[1]で表される突刺し強度のばらつきは20%以下であることが好ましく、さらに好ましくは15%以下、最も好ましくは10%以下である。

 突刺し強度の長手方向ばらつき(%)=100x(Xmax-Xmin)/Xave・・・[1]

 フィルムロールの長手方向の突刺し強度のばらつきが20%を超えると、ポリエステルフィルムを二次加工して製造された包装袋に品質のばらつきが生じる恐れがある。

In the roll of the biaxially stretched polyester film of the present invention, the maximum value of the puncture strength measured in accordance with JIS Z 1707 by sampling the film roll in the longitudinal direction from the surface layer of the film roll to the winding core every 100 m is Xmax (N). When the minimum value is Xmin (N) and the average value is Xave, the variation in the puncture strength represented by the following formula [1] is preferably 20% or less, more preferably 15% or less, and most preferably. It is preferably 10% or less.

Longitudinal variation in puncture strength (%) = 100x (Xmax-Xmin) / Xave ... [1]

If the variation in the piercing strength in the longitudinal direction of the film roll exceeds 20%, the quality of the packaging bag manufactured by secondary processing of the polyester film may vary.

 本発明の二軸延伸ポリエステルフィルムの衝撃強度の下限は好ましくは0.05J/μmである。0.05J/μm以上であると袋として用いる際に強度が十分となる。

 本発明における基材フィルム層の衝撃強度の上限は好ましくは0.2J/μmである。0.2J/μm以下でも改善の効果が最大となることがある。

The lower limit of the impact strength of the biaxially stretched polyester film of the present invention is preferably 0.05 J / μm. If it is 0.05 J / μm or more, the strength becomes sufficient when used as a bag.

The upper limit of the impact strength of the base film layer in the present invention is preferably 0.2 J / μm. Even if it is 0.2 J / μm or less, the effect of improvement may be maximized.

 本発明の二軸延伸ポリエステルフィルムの面配向度(ΔP)の下限は、好ましくは0.144であり、より好ましくは0.148であり、さらに好ましくは0.15である。上記未満であると配向が弱いため、十分な強度が得られず、耐破袋性が低下することがあるばかりか、基材フィルム層上に無機薄膜層と保護層を設けて積層フィルムとした場合に、保護膜の形成時にかかる張力と温度によって伸び易くなり、無機薄膜層が割れてしまうために、ガスバリア性が低下することがある。

The lower limit of the plane orientation (ΔP) of the biaxially stretched polyester film of the present invention is preferably 0.144, more preferably 0.148, and even more preferably 0.15. If it is less than the above, the orientation is weak, so that sufficient strength cannot be obtained and the bag breaking resistance may be lowered. In addition, an inorganic thin film layer and a protective layer are provided on the base film layer to form a laminated film. In some cases, the tension and temperature applied when the protective film is formed make it easy to stretch, and the inorganic thin film layer is cracked, so that the gas barrier property may be lowered.

 本発明の二軸延伸ポリエステルフィルムの面配向度(ΔP)の上限は、好ましくは0.160であり、より好ましくは0.158であり、さらに好ましくは0.156である。上記を超えると配向強すぎて、製膜性が低下するばかりか、伸びにくくなるために耐ピンホール性が低下する恐れがある。

The upper limit of the plane orientation (ΔP) of the biaxially stretched polyester film of the present invention is preferably 0.160, more preferably 0.158, and even more preferably 0.156. If it exceeds the above, the orientation is too strong, and not only the film-forming property is lowered, but also the pinhole resistance may be lowered because it becomes difficult to stretch.

 本発明の二軸延伸ポリエステルフィルムの厚みあたりのヘイズの上限は好ましくは0.66%/μmであり、より好ましくは0.60%/μmであり、更に好ましくは0.53%/μmである。0.66%/μm以下である基材フィルム層に印刷を施した際に、印刷された文字や画像の品位が向上する。

The upper limit of haze per thickness of the biaxially stretched polyester film of the present invention is preferably 0.66% / μm, more preferably 0.60% / μm, and even more preferably 0.53% / μm. .. When printing is applied to the base film layer having a ratio of 0.66% / μm or less, the quality of the printed characters and images is improved.

 また本発明の二軸延伸ポリエステルフィルムには、本発明の目的を損なわない限りにおいて、コロナ放電処理、グロー放電処理、火炎処理、表面粗面化処理が施されてもよく、また、公知のアンカーコート処理、印刷、装飾などが施されてもよい。

Further, the biaxially stretched polyester film of the present invention may be subjected to corona discharge treatment, glow discharge treatment, flame treatment, surface roughening treatment, as long as the object of the present invention is not impaired, and a known anchor. It may be coated, printed, decorated, etc.

 本発明の二軸延伸ポリエステルフィルムは、フィルム中のアンチモンの含有量が7ppm以下であることが好ましい。アンチモンは発癌性が懸念される物質なので、量が少なければ少ないほど好ましく、5ppmであると好ましく、0ppmであるとより好ましい。本発明で使用している原料樹脂のアンチモンは0ppmであることが好ましいが、生産時に混入する可能性があり7ppm以下とした。

The biaxially stretched polyester film of the present invention preferably has an antimony content of 7 ppm or less in the film. Since antimony is a substance of concern for carcinogenicity, the smaller the amount, the more preferable, 5 ppm is preferable, and 0 ppm is more preferable. The raw material resin antimony used in the present invention is preferably 0 ppm, but it may be mixed during production and is set to 7 ppm or less.

 本発明の二軸延伸ポリエステルフィルムは、1000平方メートル当り(例えばフィルム幅500mm、フィルム巻長2000m当たり)で1mm以上のサイズの欠点数が1個以下であることが好ましい。このように1000平方メートルの大面積当たりにおける1mm以上のサイズの欠点数を1個以下にまで低減することにより、印刷性が非常に良好となる。異物による欠点数が多いと、印刷でインキ抜けが生じて好ましくない。1mm以上のサイズの欠点数は少なければ少ないほど好ましく、0.5個以下がより好ましく、0.3個以下がさらに好ましく、0.1個以下が特に好ましく、0個が最も好ましい。本発明では、予期せぬトラブル時に異物が混入する可能性があり1個以下とした。

The biaxially stretched polyester film of the present invention preferably has one or less defects having a size of 1 mm or more per 1000 square meters (for example, per film width of 500 mm and film winding length of 2000 m). By reducing the number of defects having a size of 1 mm or more per large area of 1000 square meters to one or less in this way, the printability becomes very good. If the number of defects due to foreign matter is large, ink will be lost during printing, which is not preferable. The smaller the number of defects in the size of 1 mm or more, the more preferable, 0.5 or less is more preferable, 0.3 or less is further preferable, 0.1 or less is particularly preferable, and 0 is most preferable. In the present invention, there is a possibility that foreign matter may be mixed in when an unexpected trouble occurs, and the number is reduced to one or less.

 次に、本発明の二軸延伸ポリエステルフィルムを得るため製造方法を具体的に説明する。これらに限定されるものではない。

 本発明の二軸延伸ポリエステルフィルムを得るため製造方法は、PBT樹脂(A)チップと、PET樹脂(B)チップとを、ホッパーを備えた押出機に供給及び混合し、該押出機からポリエステル原料樹脂をシート状に溶融押出し、キャスティングドラム上で冷却して未延伸シートを成形する工程、成形された前記未延伸シートを長手方向に延伸する縦延伸工程、前記縦延伸後に横延伸可能な温度に予熱する予熱工程、前記長手方向と直交する幅方向に延伸する横延伸工程、前記縦延伸及び横延伸を行なった後のフィルムを加熱し結晶化させる熱固定工程、前記熱固定されたフィルムの残留歪みを除去する熱緩和工程、及び熱緩和後のフィルムを冷却する冷却工程からなる。

[未延伸シート成形工程]

 まず、フィルム原料を乾燥あるいは熱風乾燥する。次いで、原料を計量、混合して押し出し機に供給し、加熱溶融して、シート状に溶融キャスティングを行う。

 さらに、溶融状態の樹脂シートを、静電印加法を用いて冷却ロール(キャスティングロール)に密着させて冷却固化し、未延伸シートを得る。静電印加法とは、溶融状態の樹脂シートが回転金属ロールに接触する付近で、樹脂シートの回転金属ロールに接触した面の反対の面の近傍に設置した電極に電圧を印加することによって、樹脂シートを帯電させ、樹脂シートと回転冷却ロールを密着させる方法である。

Next, a manufacturing method for obtaining the biaxially stretched polyester film of the present invention will be specifically described. It is not limited to these.

In order to obtain the biaxially stretched polyester film of the present invention, the production method is to supply and mix the PBT resin (A) chip and the PET resin (B) chip to an extruder equipped with a hopper, and the polyester raw material from the extruder. A step of melt-extruding the resin into a sheet and cooling it on a casting drum to form an unstretched sheet, a longitudinal stretching step of stretching the molded unstretched sheet in the longitudinal direction, and a temperature at which lateral stretching is possible after the longitudinal stretching. A preheating step for preheating, a transverse stretching step for stretching in a width direction orthogonal to the longitudinal direction, a heat fixing step for heating and crystallizing the film after the longitudinal stretching and the transverse stretching, and a residual heat-fixed film. It consists of a heat relaxation step for removing the strain and a cooling step for cooling the film after the heat relaxation.

[Unstretched sheet molding process]

First, the film raw material is dried or hot air dried. Next, the raw materials are weighed, mixed, supplied to the extruder, heated and melted, and melt-casted in the form of a sheet.

Further, the molten resin sheet is brought into close contact with a cooling roll (casting roll) by an electrostatic application method to be cooled and solidified to obtain an unstretched sheet. The electrostatic application method is a method in which a voltage is applied to an electrode installed in the vicinity of a molten resin sheet in contact with a rotating metal roll and in the vicinity of a surface opposite to the surface of the resin sheet in contact with the rotating metal roll. This is a method in which the resin sheet is charged and the resin sheet and the rotary cooling roll are brought into close contact with each other.

 原料となる樹脂チップの混合に際しては、ホッパーに上方からポリブチレンテレフタレート樹脂チップを供給すると共に、ホッパー内であって押出機直上に出口を有する配管(以下、インナーパイプと称する場合がある)を通じて前記ポリエチレンテレフタレート(B)の樹脂チップを供給して、両チップを混合し、溶融押し出しする事が好ましい。ポリブチレンテレフタレート樹脂(A)チップとポリエチレンテレフタレート樹脂(B)チップとを混合した状態で押出し機の上のホッパーに入れると、比重やチップの形状の異なる樹脂チップがホッパー内で原料偏析を起こす可能性があり、特にホッパーの内壁が鉛直でない箇所(斜めになっている部分)で原料偏析を起こす心配が高いが、インナーパイプを通じてホッパー内の押出機直上部にポリエチレンテレフタレート樹脂(B)をダイレクトに供給すると、比重やチップ形状が異なっていっても、原料偏斥を低減でき、ポリエステルフィルムを安定して工業生産することができる。

When mixing the resin chips as raw materials, the polybutylene terephthalate resin chips are supplied to the hopper from above, and the pipe (hereinafter, may be referred to as an inner pipe) having an outlet in the hopper and directly above the extruder is used. It is preferable to supply a resin chip of polyethylene terephthalate (B), mix both chips, and melt-extrude the two chips. When a polybutylene terephthalate resin (A) chip and a polyethylene terephthalate resin (B) chip are mixed and placed in a hopper on an extruder, resin chips having different specific gravities and chip shapes can cause segregation of raw materials in the hopper. There is a high concern that raw material segregation will occur especially in places where the inner wall of the hopper is not vertical (diagonal part), but polyethylene terephthalate resin (B) is directly applied directly above the extruder in the hopper through the inner pipe. When supplied, even if the specific gravity and the chip shape are different, the bias of the raw material can be reduced, and the polyester film can be stably industrially produced.

 具体的な混合手順の一例を図1に示す。図1は、ホッパー1を備えた押出機2と、インナーパイプ3との関係の一例を示す概略図であり、図2は前記図1のA部分の拡大図である。

 図1,2において、ポリエチレンテレフタレート樹脂(B)などの主原料であるポリブチレンテレフタレート樹脂(A)以外の樹脂のチップはインナーパイプ3を通じて供給され、主原料であるポリブチレンテレフタレート樹脂(A)のチップはホッパー1の上部から供給される。そしてインナーパイプ3の出口4が押出機直上(正確には押出機2の樹脂供給口5の直上)になっているため、ポッパー内で経時とともにポリエチレンテレフタレート樹脂(B)のチップが偏析することを防止できるので、ポリエチレンテレフタレート樹脂(B)の混合比率を常に一定に保つことができる。

An example of a specific mixing procedure is shown in FIG. FIG. 1 is a schematic view showing an example of the relationship between the extruder 2 provided with the hopper 1 and the inner pipe 3, and FIG. 2 is an enlarged view of a portion A of FIG.

In FIGS. 1 and 2, chips of a resin other than the polybutylene terephthalate resin (A), which is the main raw material such as the polyethylene terephthalate resin (B), are supplied through the inner pipe 3 and are the main raw material of the polybutylene terephthalate resin (A). The chips are supplied from the upper part of the hopper 1. Since the outlet 4 of the inner pipe 3 is directly above the extruder (to be exact, directly above the resin supply port 5 of the extruder 2), the polyethylene terephthalate resin (B) chips segregate in the popper over time. Since it can be prevented, the mixing ratio of the polyethylene terephthalate resin (B) can always be kept constant.

 なお、前記インナーパイプ3の出口4の高さ(H2)は、以下の(式a)の関係を満足しているのが好ましく、(式a)及び(式b)の両方の関係を満足しているのがより好ましい。

 H2<H1 (式a)

 (式中、H1はホッパーの内壁が鉛直になっている部分の高さを示す(図2参照)。)

 0.5×L/tanθ<H2 (式b)

 (式中、Lはインナーパイプ3の出口4の内径を示す(図2参照)。θは他の樹脂チップの安息角である。)

The height (H2) of the outlet 4 of the inner pipe 3 preferably satisfies the following relationship (formula a), and satisfies both the relationships (formula a) and (b). Is more preferable.

H2 <H1 (formula a)

(In the formula, H1 indicates the height of the portion where the inner wall of the hopper is vertical (see FIG. 2).

0.5 × L / tan θ <H2 (Equation b)

(In the formula, L indicates the inner diameter of the outlet 4 of the inner pipe 3 (see FIG. 2). θ is the angle of repose of another resin chip.)

 H2の高さを0.5×L/tanθよりも大きくすることで、ポリブチレンテレフタレート樹脂(A)チップ以外の樹脂がポリブチレンテレフタレート樹脂チップと混合される位置(H3;図2参照)を押出機の外部にすることができ、押出機内に空気が入って気泡が生じることを防止できる。

By making the height of H2 larger than 0.5 × L / tan θ, the position where the resin other than the polybutylene terephthalate resin (A) chip is mixed with the polybutylene terephthalate resin chip (H3; see FIG. 2) is extruded. It can be located outside the machine and can prevent air from entering the extruder and generating bubbles.

 ポリブチレンテレフタレート樹脂(A)チップ以外の樹脂の混合位置の高さH3=H2-0.5×L/tanθは、0mより高く、2m未満であるのが望ましい。0mより高くすることで、押出機内への空気の侵入を防止できる。また2m未満にすることで、押出機までの距離を短く保つことができ、原料偏析を防止できる。高さH3は、好ましくは0.3m以上1.7m以下であり、更に好ましくは0.6m以上1.4m以下である。

The height H3 = H2-0.5 × L / tan θ of the mixing position of the resin other than the polybutylene terephthalate resin (A) chip is preferably higher than 0 m and less than 2 m. By setting the height above 0 m, it is possible to prevent air from entering the extruder. Further, if it is less than 2 m, the distance to the extruder can be kept short and segregation of raw materials can be prevented. The height H3 is preferably 0.3 m or more and 1.7 m or less, and more preferably 0.6 m or more and 1.4 m or less.

 樹脂の加熱溶融温度の下限は好ましくは200℃であり、より好ましくは250℃であり、さらに好ましくは260℃である。上記未満であると吐出が不安定となることがある。樹脂溶融温度の上限は好ましくは280℃であり、より好ましくは270℃である。上記を越えると樹脂の分解が進行し、フィルムが脆くなってしまう。

The lower limit of the heating and melting temperature of the resin is preferably 200 ° C., more preferably 250 ° C., and even more preferably 260 ° C. If it is less than the above, the discharge may become unstable. The upper limit of the resin melting temperature is preferably 280 ° C, more preferably 270 ° C. If it exceeds the above, the decomposition of the resin proceeds and the film becomes brittle.

 溶融したポリエステル樹脂を押出し冷却ロール上にキャスティングする時に、幅方向の結晶化度の差を小さくすることが好ましい。このための具体的な方法としては、溶融したポリエステル樹脂を押出し、キャスティングする時に同一の組成の原料を多層化してキャスティングすること、またさらに冷却ロール温度を低温とすることが挙げられる。

When casting the molten polyester resin onto an extruded cooling roll, it is preferable to reduce the difference in crystallinity in the width direction. Specific methods for this include extruding the molten polyester resin and casting the raw materials having the same composition in multiple layers at the time of casting, and further lowering the cooling roll temperature.

 溶融したポリエステル樹脂を押出し、キャスティングする方法は、具体的にはPBT樹脂を60質量%以上含む樹脂組成物を溶融して溶融流体を形成する工程(1)、形成された溶融流体をダイスから吐出し、冷却ロールに接触させて固化させ未延伸シートを形成する工程(2)、前記未延伸シートを二軸延伸する工程(3)を少なくとも有する。

The method of extruding and casting the molten polyester resin is specifically a step of melting a resin composition containing 60% by mass or more of PBT resin to form a molten fluid (1), and discharging the formed molten fluid from a die. It has at least a step (2) of contacting with a cooling roll and solidifying to form an unstretched sheet, and a step (3) of biaxially stretching the unstretched sheet.

 工程(1)において、ポリエステル樹脂組成物を溶融して溶融流体を形成する方法は特に限定されないが、好適な方法としては、一軸押出機や二軸押出機を用いて加熱溶融する方法を挙げることができる。

In the step (1), the method of melting the polyester resin composition to form a molten fluid is not particularly limited, but a preferred method includes a method of heating and melting using a single-screw extruder or a twin-screw extruder. Can be done.

 工程(2)において、溶融流体をダイスから吐出し、冷却ロールに接触させて固化させる。

 冷却ロール温度の下限は好ましくは-10℃である。上記未満であると結晶化抑制の効果が飽和することがある。冷却ロール温度の上限は好ましくは40℃である。上記を越えると結晶化度が高くなりすぎて延伸が困難となることがある。冷却ロール温度の上限は好ましくは25℃である。また冷却ロールの温度を上記の範囲とする場合、結露防止のため冷却ロール付近の環境の湿度を下げておくことが好ましい。冷却ロール表面の幅方向の温度差は少なくすることが好ましい。このとき、未延伸シートの厚みは15~2500μmの範囲が好適である。

In step (2), the molten fluid is discharged from the die and brought into contact with the cooling roll to solidify.

The lower limit of the cooling roll temperature is preferably −10 ° C. If it is less than the above, the effect of suppressing crystallization may be saturated. The upper limit of the cooling roll temperature is preferably 40 ° C. If it exceeds the above, the crystallinity may become too high and stretching may become difficult. The upper limit of the cooling roll temperature is preferably 25 ° C. When the temperature of the cooling roll is within the above range, it is preferable to lower the humidity of the environment near the cooling roll in order to prevent dew condensation. It is preferable to reduce the temperature difference in the width direction of the cooling roll surface. At this time, the thickness of the unstretched sheet is preferably in the range of 15 to 2500 μm.

[縦延伸及び横延伸工程]

 次に延伸方法について説明する。延伸方法は、同時二軸延伸でも逐次二軸延伸でも可能であるが、突刺し強度を高めるためには、面配向度を高めておく必要があるほか、製膜速度が速く生産性が高いという点においては逐次二軸延伸が最も好ましい。

[Vertical stretching and horizontal stretching steps]

Next, the stretching method will be described. The stretching method can be either simultaneous biaxial stretching or sequential biaxial stretching, but in order to increase the puncture strength, it is necessary to increase the degree of plane orientation, and the film formation speed is high and the productivity is high. In terms of points, sequential biaxial stretching is most preferable.

 縦延伸方向の延伸温度の下限は好ましくは55℃であり、より好ましくは60℃である。55℃以上であると破断が起こりにくい。また、フィルムの縦配向度が強くなり過ぎないため、熱固定処理の際の収縮応力を抑えられ、幅方向の分子配向の歪みの少ないフィルムが得られる。縦延伸方向の延伸温度の上限は、好ましくは100℃であり、より好ましくは95℃である。100℃以下であるとフィルムの配向が弱くなり過ぎないためフィルムの力学特性が低下しない。

The lower limit of the stretching temperature in the longitudinal stretching direction is preferably 55 ° C., more preferably 60 ° C. Breakage is unlikely to occur at 55 ° C. or higher. Further, since the vertical orientation of the film does not become too strong, the shrinkage stress during the heat fixing treatment can be suppressed, and a film with less distortion of the molecular orientation in the width direction can be obtained. The upper limit of the stretching temperature in the longitudinal stretching direction is preferably 100 ° C., more preferably 95 ° C. When the temperature is 100 ° C. or lower, the orientation of the film is not too weak and the mechanical properties of the film are not deteriorated.

 縦延伸方向の延伸倍率の下限は好ましくは2.8倍であり、特に好ましくは3.0倍である。2.8倍以上であると面配向度が大きくなり、フィルムの突刺し強度が向上するほか、フィルムの厚み精度が向上する。

 縦延伸方向の延伸倍率の上限は好ましくは4.3倍であり、より好ましくは4.0倍であり、特に好ましくは3.8倍である。4.3倍以下であると、フィルムの横方向の配向度が強くなり過ぎず、熱固定処理の際の収縮応力が大きくなり過ぎず、フィルムの横方向の分子配向の歪みが小さくなり、結果として縦方向の直進引裂き性が向上する。また、力学強度や厚みムラの改善の効果はこの範囲では飽和する。

The lower limit of the draw ratio in the longitudinal stretching direction is preferably 2.8 times, particularly preferably 3.0 times. When it is 2.8 times or more, the degree of surface orientation is increased, the piercing strength of the film is improved, and the thickness accuracy of the film is improved.

The upper limit of the draw ratio in the longitudinal stretching direction is preferably 4.3 times, more preferably 4.0 times, and particularly preferably 3.8 times. When it is 4.3 times or less, the degree of orientation of the film in the lateral direction does not become too strong, the shrinkage stress during the heat fixing process does not become too large, and the distortion of the molecular orientation in the lateral direction of the film becomes small, resulting in As a result, the vertical tearability is improved. Moreover, the effect of improving the mechanical strength and the thickness unevenness is saturated in this range.

 横延伸方向の延伸温度の下限は好ましくは60℃であり、60度以上であると破断が起こりにくくなることがある。横延伸方向の延伸温度の上限は好ましくは100℃であり、100℃以下であると横方向の配向度が大きくなるため力学特性が向上する。

The lower limit of the stretching temperature in the transverse stretching direction is preferably 60 ° C., and if it is 60 ° C. or higher, fracture may be less likely to occur. The upper limit of the stretching temperature in the transverse stretching direction is preferably 100 ° C., and when it is 100 ° C. or lower, the degree of orientation in the transverse stretching direction increases, so that the mechanical properties are improved.

 横延伸方向の延伸倍率の下限は好ましくは3.5倍であり、より好ましくは3.6倍であり、特に好ましくは3.7倍である。3.5倍以上であると横方向の配向度が弱くなり過ぎず、力学特性や厚みムラが向上する。横延伸方向の延伸倍率の上限は好ましくは5倍であり、より好ましくは4.5倍であり、特に好ましくは4.0倍である。5.0倍以下であると力学強度や厚みムラ改善の効果はこの範囲でも最大となる(飽和する)。

The lower limit of the draw ratio in the transverse stretching direction is preferably 3.5 times, more preferably 3.6 times, and particularly preferably 3.7 times. If it is 3.5 times or more, the degree of orientation in the lateral direction is not too weak, and the mechanical properties and thickness unevenness are improved. The upper limit of the draw ratio in the transverse stretching direction is preferably 5 times, more preferably 4.5 times, and particularly preferably 4.0 times. If it is 5.0 times or less, the effect of improving the mechanical strength and thickness unevenness is maximized (saturated) even in this range.

[熱固定工程]

 熱固定工程での熱固定温度の下限は好ましくは195℃であり、より好ましくは200℃である。195℃以上であるとフィルムの熱収縮率を小さくなり、レトルト処理後においても、無機薄膜層がダメージを受けにくいため、ガスバリア性が向上する。熱固定温度の上限は好ましくは220℃であり、220度以下であると基材フィルム層が融けることがなく、脆くなり難い。

[Heat fixing process]

The lower limit of the heat fixing temperature in the heat fixing step is preferably 195 ° C., more preferably 200 ° C. When the temperature is 195 ° C. or higher, the heat shrinkage rate of the film is reduced, and the inorganic thin film layer is not easily damaged even after the retort treatment, so that the gas barrier property is improved. The upper limit of the heat fixing temperature is preferably 220 ° C., and if it is 220 ° C. or lower, the base film layer does not melt and is less likely to become brittle.

[熱緩和部工程]

 熱緩和部工程でのリラックス率の下限は好ましくは0.5%である。0.5%以上であると熱固定時に破断が起こりにくくなることがある。リラックス率の上限は好ましくは10%である。10%以下であると熱固定時の長手方向への収縮が小さくなる結果、フィルム端部の分子配向の歪みが小さくなり、直進引裂き性が向上する。また、フィルムのたるみなどが生じにくく、厚みムラが発生しにくい。

[Heat relaxation section process]

The lower limit of the relaxation rate in the heat relaxation section step is preferably 0.5%. If it is 0.5% or more, breakage may be less likely to occur during heat fixing. The upper limit of the relaxation rate is preferably 10%. When it is 10% or less, the shrinkage in the longitudinal direction at the time of heat fixing becomes small, and as a result, the distortion of the molecular orientation at the edge of the film becomes small, and the straight tearability is improved. In addition, the film is less likely to sag and uneven thickness is less likely to occur.

[無機薄膜層]

 本発明の二軸延伸ポリエステルフィルムの表面に無機薄膜層を設けることで、ガスバリア性を付与することが出来る。

 無機薄膜層は金属又は無機酸化物からなる薄膜である。無機薄膜層を形成する材料は、薄膜にできるものなら特に制限はないが、ガスバリア性の観点から、酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)、酸化ケイ素と酸化アルミニウムとの混合物等の無機酸化物が好ましく挙げられる。特に、薄膜層の柔軟性と緻密性を両立できる点からは、酸化ケイ素と酸化アルミニウムとの複合酸化物が好ましい。この複合酸化物において、酸化ケイ素と酸化アルミニウムとの混合比は、金属分の質量比でAlが20~70質量%の範囲であることが好ましい。Al濃度が20質量%未満であると、水蒸気バリア性が低くなる場合がある。一方、70質量%を超えると、無機薄膜層が硬くなる傾向があり、印刷やラミネートといった二次加工の際に膜が破壊されてガスバリア性が低下する虞がある。なお、ここでいう酸化ケイ素とはSiOやSiO等の各種珪素酸化物又はそれらの混合物であり、酸化アルミニウムとは、AlOやAl等の各種アルミニウム酸化物又はそれらの混合物である。

[Inorganic thin film layer]

By providing an inorganic thin film layer on the surface of the biaxially stretched polyester film of the present invention, gas barrier properties can be imparted.

The inorganic thin film layer is a thin film made of a metal or an inorganic oxide. The material for forming the inorganic thin film layer is not particularly limited as long as it can be made into a thin film, but from the viewpoint of gas barrier properties, inorganic oxidation such as silicon oxide (silica), aluminum oxide (alumina), and a mixture of silicon oxide and aluminum oxide Things are preferred. In particular, a composite oxide of silicon oxide and aluminum oxide is preferable from the viewpoint of achieving both flexibility and denseness of the thin film layer. In this composite oxide, the mixing ratio of silicon oxide and aluminum oxide is preferably in the range of 20 to 70% by mass of Al in terms of the mass ratio of the metal content. If the Al concentration is less than 20% by mass, the water vapor barrier property may be lowered. On the other hand, if it exceeds 70% by mass, the inorganic thin film layer tends to be hard, and the film may be destroyed during secondary processing such as printing or laminating, and the gas barrier property may be lowered. The silicon oxide referred to here is various silicon oxides such as SiO and SiO 2 or a mixture thereof, and aluminum oxide is various aluminum oxides such as AlO and Al 2 O 3 or a mixture thereof.

 無機薄膜層の膜厚は、通常1~100nm、好ましくは5~50nmである。無機薄膜層の膜厚が1nm未満であると、満足のいくガスバリア性が得られ難くなる場合があり、一方、100nmを超えて過度に厚くしても、それに相当するガスバリア性の向上効果は得られず、耐屈曲性や製造コストの点でかえって不利となる。

The film thickness of the inorganic thin film layer is usually 1 to 100 nm, preferably 5 to 50 nm. If the film thickness of the inorganic thin film layer is less than 1 nm, it may be difficult to obtain a satisfactory gas barrier property. On the other hand, even if the thickness exceeds 100 nm, the corresponding improvement effect of the gas barrier property can be obtained. This is not possible, and it is rather disadvantageous in terms of bending resistance and manufacturing cost.

 無機薄膜層を形成する方法としては、特に制限はなく、例えば真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着法(PVD法)、あるいは化学蒸着法(CVD法)等、公知の蒸着法を適宜採用すればよい。以下、無機薄膜層を形成する典型的な方法を、酸化ケイ素・酸化アルミニウム系薄膜を例に説明する。例えば、真空蒸着法を採用する場合は、蒸着原料としてSiOとAlの混合物、あるいはSiOとAlの混合物等が好ましく用いられる。これら蒸着原料としては通常粒子が用いられるが、その際、各粒子の大きさは蒸着時の圧力が変化しない程度の大きさであることが望ましく、好ましい粒子径は1mm~5mmである。加熱には、抵抗加熱、高周波誘導加熱、電子ビーム加熱、レーザー加熱などの方式を採用することができる。また、反応ガスとして酸素、窒素、水素、アルゴン、炭酸ガス、水蒸気等を導入したり、オゾン添加、イオンアシスト等の手段を用いた反応性蒸着を採用することも可能である。さらに、被蒸着体(蒸着に供する積層フィルム)にバイアスを印加したり、被蒸着体を加熱もしくは冷却するなど、成膜条件も任意に変更することができる。このような蒸着材料、反応ガス、被蒸着体のバイアス、加熱・冷却等は、スパッタリング法やCVD法を採用する場合にも同様に変更可能である。

The method for forming the inorganic thin film layer is not particularly limited, and is known, for example, a physical vapor deposition method (PVD method) such as a vacuum vapor deposition method, a sputtering method, or an ion plating method, or a chemical vapor deposition method (CVD method). The method may be adopted as appropriate. Hereinafter, a typical method for forming the inorganic thin film layer will be described by taking a silicon oxide / aluminum oxide thin film as an example. For example, when the vacuum vapor deposition method is adopted, a mixture of SiO 2 and Al 2 O 3 or a mixture of SiO 2 and Al is preferably used as the vapor deposition raw material. Particles are usually used as these vapor deposition raw materials, but at that time, it is desirable that the size of each particle is such that the pressure at the time of vapor deposition does not change, and the particle diameter is preferably 1 mm to 5 mm. For heating, methods such as resistance heating, high frequency induction heating, electron beam heating, and laser heating can be adopted. Further, it is also possible to introduce oxygen, nitrogen, hydrogen, argon, carbon dioxide gas, water vapor or the like as the reaction gas, or to adopt reactive vapor deposition using means such as ozone addition and ion assist. Further, the film forming conditions can be arbitrarily changed, such as applying a bias to the film to be deposited (laminated film to be subjected to vapor deposition) or heating or cooling the film to be deposited. Such a vapor deposition material, a reaction gas, a bias of the vapor deposition body, heating / cooling, and the like can be similarly changed when the sputtering method or the CVD method is adopted.

[接着層]

 本発明のガスバイア性積層フィルムは、レトルト処理後のガスバリア性やラミネート強度を確保することを目的として、基材フィルム層と前記無機薄膜層との間に接着層を設けることができる。

 基材フィルム層と前記無機薄膜層との間に設ける接着層に用いる樹脂組成物としては、ウレタン系、ポリエステル系、アクリル系、チタン系、イソシアネート系、イミン系、ポリブタジエン系等の樹脂に、エポキシ系、イソシアネート系、メラミン系等の硬化剤を添加したものが挙げられる。これらの接着層に用いる樹脂組成物は、有機官能基を少なくとも1種類以上有するシランカップリング剤を含有することが好ましい。前記有機官能基としては、アルコキシ基、アミノ基、エポキシ基、イソシアネート基等が挙げられる。前記シランカップリング剤の添加によって、レトルト処理後のラミネート強度がより向上する。

[Adhesive layer]

In the gas-via laminated film of the present invention, an adhesive layer can be provided between the base film layer and the inorganic thin film layer for the purpose of ensuring the gas barrier property and the lamination strength after the retort treatment.

The resin composition used for the adhesive layer provided between the base film layer and the inorganic thin film layer includes urethane-based, polyester-based, acrylic-based, titanium-based, isocyanate-based, imine-based, polybutadiene-based resins, and epoxy. Examples thereof include those to which a curing agent such as a system, an isocyanate system, or a melamine system is added. The resin composition used for these adhesive layers preferably contains a silane coupling agent having at least one type of organic functional group. Examples of the organic functional group include an alkoxy group, an amino group, an epoxy group, an isocyanate group and the like. By adding the silane coupling agent, the lamination strength after the retort treatment is further improved.

 前記接着層に用いる樹脂組成物の中でも、オキサゾリン基を含有する樹脂とアクリル系樹脂及びウレタン系樹脂の混合物を用いることが好ましい。オキサゾリン基は無機薄膜との親和性が高く、また無機薄膜層形成時に発生する無機酸化物の酸素欠損部分や金属水酸化物とが反応することができ、無機薄膜層と強固な密着性を示す。また接着層中に存在する未反応のオキサゾリン基は、基材フィルム層及び接着層の加水分解により発生したカルボン酸末端と反応し、架橋を形成することができる。

Among the resin compositions used for the adhesive layer, it is preferable to use a mixture of a resin containing an oxazoline group, an acrylic resin and a urethane resin. The oxazoline group has a high affinity with the inorganic thin film, and can react with the oxygen-deficient portion of the inorganic oxide generated during the formation of the inorganic thin film layer and the metal hydroxide, and exhibits strong adhesion to the inorganic thin film layer. .. Further, the unreacted oxazoline group existing in the adhesive layer can react with the carboxylic acid terminal generated by hydrolysis of the base film layer and the adhesive layer to form a crosslink.

 前記接着層を形成するための方法としては、特に限定されるものではなく、例えばコート法など従来公知の方法を採用することができる。コート法の中でも好適な方法としては、オフラインコート法、インラインコート法を挙げることができる。例えば基材フィルム層を製造する工程で行うインラインコート法の場合、コート時の乾燥や熱処理の条件は、コート厚みや装置の条件にもよるが、コート後直ちに直角方向の延伸工程に送入し延伸工程の予熱ゾーンあるいは延伸ゾーンで乾燥させることが好ましく、そのような場合には通常50~250℃程度の温度とすることが好ましい。

 コート法を用いる場合に使用する溶媒(溶剤)としては、例えば、ベンゼン、トルエン等の芳香族系溶剤;メタノール、エタノール等のアルコール系溶剤;アセトン、メチルエチルケトン等のケトン系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;エチレングリコールモノメチルエーテル等の多価アルコール誘導体等が挙げられる。

The method for forming the adhesive layer is not particularly limited, and a conventionally known method such as a coating method can be adopted. Among the coating methods, the offline coating method and the in-line coating method can be mentioned as preferable methods. For example, in the case of the in-line coating method performed in the process of manufacturing the base film layer, the conditions of drying and heat treatment at the time of coating depend on the coating thickness and the conditions of the apparatus, but immediately after coating, they are fed into the stretching process in the perpendicular direction. It is preferable to dry in the preheating zone or the stretching zone of the stretching step, and in such a case, the temperature is usually preferably about 50 to 250 ° C.

Examples of the solvent (solvent) used when the coating method is used include aromatic solvents such as benzene and toluene; alcohol solvents such as methanol and ethanol; ketone solvents such as acetone and methyl ethyl ketone; ethyl acetate and butyl acetate. Etc., and examples thereof include polyhydric alcohol derivatives such as ethylene glycol monomethyl ether.

[保護層]

 本発明においては、前記無機薄膜層の上に保護層を有する。金属酸化物層は完全に密な膜ではなく、微小な欠損部分が点在している。金属酸化物層上に後述する特定の保護層用樹脂組成物を塗工して保護層を形成することにより、金属酸化物層の欠損部分に保護層用樹脂組成物中の樹脂が浸透し、結果としてガスバリア性が安定するという効果が得られる。加えて、保護層そのものにもガスバリア性を持つ材料を使用することで、ガスバリア性積層フィルムのガスバリア性能も大きく向上することになる。

[Protective layer]

In the present invention, a protective layer is provided on the inorganic thin film layer. The metal oxide layer is not a completely dense film, but is dotted with minute defects. By applying a specific protective layer resin composition described later on the metal oxide layer to form the protective layer, the resin in the protective layer resin composition permeates the defective portion of the metal oxide layer. As a result, the effect of stabilizing the gas barrier property can be obtained. In addition, by using a material having a gas barrier property for the protective layer itself, the gas barrier performance of the gas barrier laminated film will be greatly improved.

 本発明のガスバリア性積層フィルムの無機薄膜層の表面に形成する保護層に用いる樹脂組成物としては、ウレタン系、ポリエステル系、アクリル系、チタン系、イソシアネート系、イミン系、ポリブタジエン系等の樹脂に、エポキシ系、イソシアネート系、メラミン系等の硬化剤を添加したものが挙げられる。

 前記ウレタン樹脂は、ウレタン結合の極性基が無機薄膜層と相互作用するとともに、非晶部分の存在により柔軟性をも有するため、屈曲負荷がかかった際にも無機薄膜層へのダメージを抑えることができるため好ましい。

 前記ウレタン樹脂の酸価は10~60mgKOH/gの範囲内であるのが好ましい。より好ましくは15~55mgKOH/gの範囲内、さらに好ましくは20~50mgKOH/gの範囲内である。ウレタン樹脂の酸価が前記範囲であると、水分散液とした際に液安定性が向上し、また保護層は高極性の無機薄膜上に均一に堆積することができるため、コート外観が良好となる。

The resin composition used for the protective layer formed on the surface of the inorganic thin film layer of the gas barrier laminated film of the present invention includes resins such as urethane-based, polyester-based, acrylic-based, titanium-based, isocyanate-based, imine-based, and polybutadiene-based resins. , Epoxy-based, isocyanate-based, melamine-based and other curing agents are added.

In the urethane resin, the polar group of the urethane bond interacts with the inorganic thin film layer and also has flexibility due to the presence of the amorphous portion, so that damage to the inorganic thin film layer is suppressed even when a bending load is applied. It is preferable because it can be used.

The acid value of the urethane resin is preferably in the range of 10 to 60 mgKOH / g. It is more preferably in the range of 15 to 55 mgKOH / g, and even more preferably in the range of 20 to 50 mgKOH / g. When the acid value of the urethane resin is within the above range, the liquid stability is improved when it is made into an aqueous dispersion, and the protective layer can be uniformly deposited on the highly polar inorganic thin film, so that the coat appearance is good. It becomes.

 前記ウレタン樹脂は、ガラス転移温度(Tg)が80℃以上であることが好ましく、より好ましくは90℃以上である。Tgを80℃以上にすることで、湿熱処理過程(昇温~保温~降温)における分子運動による保護層の膨潤を低減できる。

The urethane resin preferably has a glass transition temperature (Tg) of 80 ° C. or higher, more preferably 90 ° C. or higher. By setting the Tg to 80 ° C. or higher, the swelling of the protective layer due to molecular motion in the wet heat treatment process (heating-retaining-lowering) can be reduced.

 前記ウレタン樹脂は、ガスバリア性向上の面から、芳香族又は芳香脂肪族ジイソシアネート成分を主な構成成分として含有するウレタン樹脂を用いることがより好ましい。

 その中でも、メタキシリレンジイソシアネート成分を含有することが特に好ましい。上記樹脂を用いることで、芳香環同士のスタッキング効果によりウレタン結合の凝集力を一層高めることができ、結果として良好なガスバリア性が得られる。

From the viewpoint of improving gas barrier properties, it is more preferable to use a urethane resin containing an aromatic or aromatic aliphatic diisocyanate component as a main component.

Among them, it is particularly preferable to contain a metaxylylene diisocyanate component. By using the above resin, the cohesive force of the urethane bond can be further enhanced by the stacking effect of the aromatic rings, and as a result, good gas barrier properties can be obtained.

 本発明においては、ウレタン樹脂中の芳香族又は芳香脂肪族ジイソシアネートの割合を、ポリイソシアネート成分(F)100モル%中、50モル%以上(50~100モル%)の範囲とすることが好ましい。芳香族又は芳香脂肪族ジイソシアネートの合計量の割合は、60~100モル%が好ましく、より好ましくは70~100モル%、さらに好ましくは80~100モル%である。このような樹脂として、三井化学株式会社から市販されている「タケラック(登録商標)WPB」シリーズは好適に用いることが出来る。芳香族又は芳香脂肪族ジイソシアネートの合計量の割合が50モル%未満であると、良好なガスバリア性が得られない可能性がある。

In the present invention, the ratio of aromatic or aromatic aliphatic diisocyanate in the urethane resin is preferably in the range of 50 mol% or more (50 to 100 mol%) in 100 mol% of the polyisocyanate component (F). The ratio of the total amount of the aromatic or aromatic aliphatic diisocyanate is preferably 60 to 100 mol%, more preferably 70 to 100 mol%, still more preferably 80 to 100 mol%. As such a resin, the "Takelac (registered trademark) WPB" series commercially available from Mitsui Chemicals, Inc. can be preferably used. If the ratio of the total amount of aromatic or aromatic aliphatic diisocyanates is less than 50 mol%, good gas barrier properties may not be obtained.

 前記ウレタン樹脂は、無機薄膜層との親和性向上の観点から、カルボン酸基(カルボキシル基)を有することが好ましい。ウレタン樹脂にカルボン酸(塩)基を導入するためには、例えば、ポリオール成分として、ジメチロールプロピオン酸、ジメチロールブタン酸等のカルボン酸基を有するポリオール化合物を共重合成分として導入すればよい。また、カルボン酸基含有ウレタン樹脂を合成後、塩形成剤により中和すれば、水分散体のウレタン樹脂を得ることができる。塩形成剤の具体例としては、アンモニア、トリメチルアミン、トリエチルアミン、トリイソプロピルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン等のトリアルキルアミン類、N-メチルモルホリン、N-エチルモルホリン等のN-アルキルモルホリン類、N-ジメチルエタノールアミン、N-ジエチルエタノールアミン等のN-ジアルキルアルカノールアミン類等が挙げられる。これらは単独で使用してもよいし、2種以上を併用してもよい。

 溶媒(溶剤)としては、例えば、ベンゼン、トルエン等の芳香族系溶剤;メタノール、エタノール等のアルコール系溶剤;アセトン、メチルエチルケトン等のケトン系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;エチレングリコールモノメチルエーテル等の多価アルコール誘導体等が挙げられる。

The urethane resin preferably has a carboxylic acid group (carboxyl group) from the viewpoint of improving the affinity with the inorganic thin film layer. In order to introduce a carboxylic acid (salt) group into the urethane resin, for example, a polyol compound having a carboxylic acid group such as dimethylolpropionic acid or dimethylolbutanoic acid may be introduced as a copolymerization component as a polyol component. Further, if the carboxylic acid group-containing urethane resin is synthesized and then neutralized with a salt-forming agent, an aqueous dispersion urethane resin can be obtained. Specific examples of the salt forming agent include trialkylamines such as ammonia, trimethylamine, triethylamine, triisopropylamine, tri-n-propylamine and tri-n-butylamine, and N such as N-methylmorpholine and N-ethylmorpholine. Examples thereof include N-dialkylalkanolamines such as -alkylmorpholins, N-dimethylethanolamine and N-diethylethanolamine. These may be used alone or in combination of two or more.

Examples of the solvent (solvent) include aromatic solvents such as benzene and toluene; alcohol solvents such as methanol and ethanol; ketone solvents such as acetone and methyl ethyl ketone; ester solvents such as ethyl acetate and butyl acetate; ethylene glycol. Examples thereof include polyhydric alcohol derivatives such as monomethyl ether.

 以上より、本発明の二軸延伸ポリエステルフィルムは、耐破袋性、耐屈曲性に優れ、かつ、基材フィルム層の上に、広幅のロールを無機薄膜層及び保護層を形成してガスバリアフィルムを製造するような場合においても、加熱搬送時に発生する筋状のシワを抑制し、幅方向のガスバリア性を均一にすることができる。

From the above, the biaxially stretched polyester film of the present invention is excellent in bag breaking resistance and bending resistance, and a wide roll is formed on the base film layer to form an inorganic thin film layer and a protective layer to form a gas barrier film. Even in the case of producing the above film, it is possible to suppress streak-like wrinkles generated during heat transfer and make the gas barrier property in the width direction uniform.

[包装材料]

 本発明の二軸延伸ポリエステルフィルム又はガスバリア性積層フィルムを包装材料として用いる場合には、シーラントと呼ばれるヒートシール性樹脂層を形成することが好ましい。ヒートシール性樹脂層は通常、無機薄膜層上に設けられるが、基材フィルム層の外側(接着層形成面の反対側の面)に設けることもある。ヒートシール性樹脂層の形成は、通常押出しラミネート法あるいはドライラミネート法によりなされる。ヒートシール性樹脂層を形成する熱可塑性重合体としては、シーラント接着性が充分に発現できるものであればよく、HDPE、LDPE、LLDPEなどのポリエチレン樹脂類、ポリプロピレン樹脂、エチレン-酢酸ビニル共重合体、エチレン-α-オレフィンランダム共重合体、アイオノマー樹脂等を使用できる。

[Packaging material]

When the biaxially stretched polyester film or gas barrier laminated film of the present invention is used as a packaging material, it is preferable to form a thermosetting resin layer called a sealant. The heat-sealing resin layer is usually provided on the inorganic thin film layer, but may be provided on the outside of the base film layer (the surface opposite to the adhesive layer forming surface). The heat-sealable resin layer is usually formed by an extrusion laminating method or a dry laminating method. The thermoplastic polymer that forms the heat-sealable resin layer may be any that can sufficiently exhibit sealant adhesiveness, and is a polyethylene resin such as HDPE, LDPE, LLDPE, a polypropylene resin, or an ethylene-vinyl acetate copolymer. , Polyethylene-α-olefin random copolymer, ionomer resin and the like can be used.

 さらに、二軸延伸ポリエステルフィルム又はガスバリア性積層フィルムには、無機薄膜層又は基材フィルム層とヒートシール性樹脂層との間又はその外側に、印刷層や他のプラスチック基材及び/又は紙基材を少なくとも1層以上積層してもよい。

Further, in the biaxially stretched polyester film or the gas barrier laminated film, a printing layer or another plastic base material and / or a paper base is provided between or outside the inorganic thin film layer or the base film layer and the heat-sealing resin layer. At least one layer or more of the material may be laminated.

 前記印刷層を形成する印刷インクとしては、水性及び溶媒系の樹脂含有印刷インクが好ましく使用できる。ここで印刷インクに使用される樹脂としては、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂、酢酸ビニル共重合樹脂及びこれらの混合物が例示される。印刷インクには、帯電防止剤、光線遮断剤、紫外線吸収剤、可塑剤、滑剤、フィラー、着色剤、安定剤、潤滑剤、消泡剤、架橋剤、耐ブロッキング剤、酸化防止剤等の公知の添加剤を含有させてもよい。印刷層を設けるための印刷方法としては、特に限定されず、オフセット印刷法、グラビア印刷法、スクリーン印刷法等の公知の印刷方法が使用できる。印刷後の溶媒の乾燥には、熱風乾燥、熱ロール乾燥、赤外線乾燥等公知の乾燥方法が使用できる。

As the printing ink forming the printing layer, water-based and solvent-based resin-containing printing inks can be preferably used. Examples of the resin used for the printing ink include acrylic resin, urethane resin, polyester resin, vinyl chloride resin, vinyl acetate copolymer resin, and a mixture thereof. Known printing inks include antistatic agents, light blocking agents, ultraviolet absorbers, plasticizers, lubricants, fillers, colorants, stabilizers, lubricants, defoamers, cross-linking agents, blocking agents, antioxidants, etc. Additives may be included. The printing method for providing the print layer is not particularly limited, and known printing methods such as an offset printing method, a gravure printing method, and a screen printing method can be used. For drying the solvent after printing, known drying methods such as hot air drying, hot roll drying, and infrared drying can be used.

 次に、実施例により本発明をさらに詳細に説明するが、本発明は以下の例に限定されるものではない。なお、フィルムの評価は次の測定法によって行った。

Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to the following examples. The film was evaluated by the following measurement method.

[フィルムの厚み]

 JIS K7130-1999 A法に準拠し、ダイアルゲージを用いて測定した。

[Film thickness]

It was measured using a dial gauge in accordance with JIS K7130-1999 A method.

[フィルムの面配向度ΔP]

 サンプルについてJIS K 7142-1996 A法により、ナトリウムD線を光源としてアッベ屈折計によりフィルム長手方向の屈折率(Nx)、幅方向の屈折率(Ny)を測定し、式[2]の計算式により面配向度ΔPを算出した。

 面配向度(ΔP)=(Nx+Ny)/2-Nz ・・・[2]

[Film surface orientation ΔP]

About the sample The refractive index (Nx) in the longitudinal direction of the film and the refractive index (Ny) in the width direction were measured by the Abbe refractometer using sodium D line as a light source by the JIS K 7142-1996 A method, and the formula [2] was calculated. The plane orientation ΔP was calculated as described above.

Planar orientation (ΔP) = (Nx + Ny) / 2-Nz ・ ・ ・ [2]

[フィルムの熱収縮率]

 ポリエステルフィルムの熱収縮率は試験温度150℃、加熱時間15分間とした以外は、JIS-C-2151-2006.21に記載の寸法変化試験法で測定した。試験片は21.1(a)に記載に従い使用した。

[Heat shrinkage of film]

The heat shrinkage of the polyester film was measured by the dimensional change test method described in JIS-C-2151-2006.21, except that the test temperature was 150 ° C. and the heating time was 15 minutes. The test piece was used as described in 21.1 (a).

[フィルムの突刺し強度]

 得られたポリエステルフィルムを5cm角にサンプリングし、株式会社イマダ製デジタルフォースゲージ「ZTS-500N」、電動計測スタンド「MX2-500N」及び突刺し治具「TKS-250N」を用いて、JIS Z1707に準じてフィルムの突刺し強度を測定した。単位はN/μmで示した。

[Film piercing strength]

The obtained polyester film was sampled into a 5 cm square, and made into JIS Z1707 using the digital force gauge "ZTS-500N" manufactured by Imada Co., Ltd., the electric measuring stand "MX2-500N", and the piercing jig "TKS-250N". The piercing strength of the film was measured accordingly. The unit is N / μm.

[長手方向の突刺し強度のばらつき]

 得られたポリエステルフィルムロール(幅2080mm、巻き長30,000m)について、長手方向にフィルムロールの表層から巻き芯まで100m毎にサンプリングした。

 サンプリングした各フィルムについて、JIS Z 1707に準じて突刺し強度を測定した。

 得られた突刺し強度の最大値をXmax(N/μm)、最小値をXmin(N/μm)、平均値をXaveとし、下記式[1]で表される突刺し強度のばらつきを求めた。

 突刺し強度の長手方向ばらつき(%)=100×(Xmax-Xmin)/Xave ・・・[1]

[Variation of puncture strength in the longitudinal direction]

The obtained polyester film roll (width 2080 mm, winding length 30,000 m) was sampled every 100 m from the surface layer of the film roll to the winding core in the longitudinal direction.

The piercing strength of each sampled film was measured according to JIS Z 1707.

The maximum value of the obtained piercing strength was Xmax (N / μm), the minimum value was Xmin (N / μm), and the average value was Xave, and the variation in piercing strength represented by the following formula [1] was obtained. ..

Longitudinal variation in piercing strength (%) = 100 × (Xmax-Xmin) / Xave ・ ・ ・ [1]

[フィルムのインパクト強度]

 株式会社東洋精機製作所製のインパクトテスターを用い、23℃の雰囲気下におけるフィルムの衝撃打ち抜きに対する強度を測定した。衝撃球面は、直径1/2インチのものを用いた。単位はJ/μmで示した。

[Impact strength of film]

Using an impact tester manufactured by Toyo Seiki Seisakusho Co., Ltd., the strength of the film against impact punching in an atmosphere of 23 ° C. was measured. The impact spherical surface used was one with a diameter of 1/2 inch. The unit is J / μm.

[ポリエステルフィルム中の各種原子の含有量]

以下に示す方法で定量した。

(a)アンチモン原子

 試料1gを硫酸/過酸化水素水の混合液で湿式分解させた。次いで、亜硝酸ナトリウムを加えてSb原子をSb5+とし、ブリリアングリーンを添加してSbとの青色錯体を生成させた。この錯体をトルエンで抽出後、吸光光度計(島津製作所製、UV-150-02)を用いて、波長625nmにおける吸光度を測定し、予め作成した検量線から、試料中のSb原子の量を比色定量した。

[Contents of various atoms in polyester film]

It was quantified by the method shown below.

(A) Antimony atom

1 g of the sample was wet-decomposed with a mixed solution of sulfuric acid / hydrogen peroxide solution. Then, sodium nitrite was added to make the Sb atom Sb 5+, and Brilliant Green was added to form a blue complex with Sb. After extracting this complex with toluene, the absorbance at a wavelength of 625 nm was measured using an absorptiometer (UV-150-02 manufactured by Shimadzu Corporation), and the amount of Sb atoms in the sample was compared from the calibration curve prepared in advance. Color quantified.

(b)リン原子

 試料1gを、炭酸ナトリウム共存下で乾式灰化分解させる方法、あるいは硫酸/硝酸/過塩素酸の混合液又は硫酸/過酸化水素水の混合液で湿式分解させる方法によってリン化合物を正リン酸とした。次いで、1モル/Lの硫酸溶液中においてモリブデン酸塩を反応させてリンモリブデン酸とし、これを硫酸ヒドラジンで還元してヘテロポリ青を生成させた。吸光光度計(島津製作所製、UV-150-02)により波長830nmにおける吸光度を測定した。予め作成した検量線から、試料中のリン原子の量を定量した。

(B) Phosphorus atom

The phosphorus compound is converted to orthophosphorus by a method of dry ash decomposition in the presence of sodium carbonate or a method of wet decomposition with a mixed solution of sulfuric acid / nitric acid / perchloric acid or a mixed solution of sulfuric acid / hydrogen peroxide solution. did. Then, the molybdate was reacted in a 1 mol / L sulfuric acid solution to obtain phosphomolybdic acid, which was reduced with hydrazine sulfate to produce heteropoly blue. The absorbance at a wavelength of 830 nm was measured with an absorptiometer (UV-150-02, manufactured by Shimadzu Corporation). The amount of phosphorus atoms in the sample was quantified from the calibration curve prepared in advance.

(c)アルミニウム原子

試料0.1gを6M塩酸溶液に溶解させ一日放置した後、純水で希釈し1.2M塩酸測定用溶液とした。調製した溶液試料を高周波プラズマ発光分析により求めた。

(C) Aluminum atom

0.1 g of the sample was dissolved in a 6 M hydrochloric acid solution and left to stand for one day, and then diluted with pure water to prepare a 1.2 M hydrochloric acid measurement solution. The prepared solution sample was determined by high frequency plasma emission analysis.

[欠点数]

 幅800mm、巻長10000m(8000平方メートル)のフィルムロールを、巻返し機を用いて巻返した。巻返す際 FUTEC社製の欠点検知機(型式 F MAX MR)を用いて欠点数を調査した。そしてタテ方向 又は ヨコ方向のどちらか1つの方向で1mm以上のサイズの欠点数を求めた。全ての欠点数から式[3]により、1000平方メートル当りの欠点数を求めた。

 1000平方メートル当りの欠点数=全ての欠点数÷8 ・・・[3]

[Number of defects]

A film roll having a width of 800 mm and a winding length of 10000 m (8000 square meters) was rewound using a rewinding machine. When rewinding, the number of defects was investigated using a defect detector (model FMAX MR) manufactured by FUTEC. Then, the number of defects having a size of 1 mm or more was determined in either the vertical direction or the horizontal direction. From all the defects, the number of defects per 1000 square meters was calculated by the formula [3].

Number of defects per 1000 square meters = Number of all defects ÷ 8 ... [3]

[印刷]

 欠点検査をした800mm、巻長10000m(8000平方メートル)のフィルムロールを、グラビア印刷機(東谷鉄工所社製)を使用して速度100m/minで網点5%でグラビア印刷を実施した。このときのインキは、グラビア印刷インキ(東洋インキ社製:商品名ファインスターR92墨)であり、希釈溶剤(東洋インキ社製:商品名SL302)で77:23の比率で混合したものを用いた。得られた印刷サンプルを巻返し機を用いて巻返した。巻返す際にFUTEC社製の欠点検知機(型式 F MAX MR)を用いて印刷抜け数を調査した。そしてタテ方向又はヨコ方向のどちらか1つの方向で1mm以上のサイズの印刷抜け数を求めた。全ての印刷抜け数から[4]により、1000平方メートル当りの欠点数を求めた。

 1000平方メートル当りの印刷抜け数=全ての欠点数÷8 ・・・[4]

[printing]

A film roll having a defect inspection of 800 mm and a winding length of 10000 m (8000 square meters) was gravure-printed at a speed of 100 m / min and a halftone dot of 5% using a gravure printing machine (manufactured by Higashiya Iron Works Co., Ltd.). The ink used at this time was gravure printing ink (manufactured by Toyo Ink Co., Ltd .: trade name Finestar R92 ink), and was mixed with a diluting solvent (manufactured by Toyo Ink Co., Ltd .: trade name SL302) at a ratio of 77:23. .. The obtained print sample was rewound using a rewinding machine. When rewinding, the number of print omissions was investigated using a defect detector (model FMAX MR) manufactured by FUTEC. Then, the number of print omissions having a size of 1 mm or more was determined in either the vertical direction or the horizontal direction. From all the print omissions, the number of defects per 1000 square meters was calculated by [4].

Number of missing prints per 1000 square meters = Number of all defects ÷ 8 ・ ・ ・ [4]

 以下に実施例及び比較例で使用した原料樹脂及び塗工液の詳細を記す。

1)PBT樹脂(A):後述する二軸延伸ポリエステルフィルムの作製において使用するポリブチレンテレフタレート樹脂は1100-211XG(CHANG CHUN PLASTICS CO.,LTD.、固有粘度1.28dl/g)を用いた。

The details of the raw material resin and the coating liquid used in Examples and Comparative Examples are described below.

1) PBT resin (A): As the polybutylene terephthalate resin used in the production of the biaxially stretched polyester film described later, 1100-211XG (CANG CHUN PLASTICS CO., LTD., Intrinsic viscosity 1.28 dl / g) was used.

2)PET樹脂(B):以下の方法でアンチモン系触媒を含まないアルミニウム系触媒で重合したPET樹脂(B-1)とアンチモン系触媒で重合したPET樹脂(B-2)を準備した。

<重合触媒溶液の調製>

(リン化合物のエチレングリコール溶液)

 窒素導入管、冷却管を備えたフラスコに、常温常圧下、エチレングリコール2.0リットルを加えた後、窒素雰囲気下200rpmで攪拌しながら、リン化合物として化学式(4)で表されるIrganox1222(ビーエーエスエフ社製)200gを加えた。さらに2.0リットルのエチレングリコールを追加した後、ジャケット温度の設定を196℃に変更して昇温し、内温が185℃以上になった時点から60分間還流下で攪拌した。その後加熱を止め、直ちに溶液を熱源から取り去り、窒素雰囲気下を保ったまま、30分以内に120℃以下まで冷却した。

2) PET resin (B): A PET resin (B-1) polymerized with an aluminum catalyst containing no antimony catalyst and a PET resin (B-2) polymerized with an antimony catalyst were prepared by the following method.

<Preparation of polymerization catalyst solution>

(Ethylene glycol solution of phosphorus compound)

After adding 2.0 liters of ethylene glycol to a flask equipped with a nitrogen introduction tube and a cooling tube under normal temperature and pressure, while stirring at 200 rpm under a nitrogen atmosphere, Irganox1222 (BA) represented by the chemical formula (4) as a phosphorus compound. 200 g (manufactured by SF) was added. After further adding 2.0 liters of ethylene glycol, the jacket temperature was changed to 196 ° C. to raise the temperature, and the mixture was stirred under reflux for 60 minutes from the time when the internal temperature reached 185 ° C. or higher. After that, the heating was stopped, the solution was immediately removed from the heat source, and the solution was cooled to 120 ° C. or lower within 30 minutes while maintaining the nitrogen atmosphere.

(アルミニウム化合物のエチレングリコール溶液)

 冷却管を備えたフラスコに、常温常圧下、純水5.0リットルを加えた後、200rpmで攪拌しながら、塩基性酢酸アルミニウム(ヒドロキシアルミニウムジアセテート)200gを純水とのスラリーとして加えた。さらに、全体として10.0リットルとなるよう純水を追加して、常温常圧で12時間攪拌した。その後、ジャケット温度の設定を100.5℃に変更して昇温し、内温が95℃以上になった時点から3時間還流下で攪拌した。攪拌を止め、室温まで放冷した。その際、未溶解粒子が見られた場合は、溶液をガラスフィルター(3G)にてろ過してアルミニウム化合物の水溶液を得た。

 続いて、蒸留装置を備えたフラスコに、常温常圧下、前記アルミニウム化合物の水溶液2.0リットルとエチレングリコール2.0リットルを仕込み、200rpmで30分間攪拌後、均一な水/エチレングリコール混合溶液を得た。次いで、ジャケット温度の設定を110℃に変更して昇温し、該溶液から水を留去した。留出した水の量が2.0リットルになった時点で加熱を止め、室温まで放冷することでアルミニウム化合物のエチレングリコール溶液を得た。

(Ethylene glycol solution of aluminum compound)

After adding 5.0 liters of pure water to a flask provided with a cooling tube under normal temperature and pressure, 200 g of basic aluminum acetate (hydroxyaluminum diacetate) was added as a slurry with pure water while stirring at 200 rpm. Further, pure water was added so as to have a total volume of 10.0 liters, and the mixture was stirred at normal temperature and pressure for 12 hours. Then, the jacket temperature setting was changed to 100.5 ° C. to raise the temperature, and the mixture was stirred under reflux for 3 hours from the time when the internal temperature reached 95 ° C. or higher. Stirring was stopped and the mixture was allowed to cool to room temperature. At that time, when undissolved particles were found, the solution was filtered through a glass filter (3G) to obtain an aqueous solution of an aluminum compound.

Subsequently, 2.0 liters of the aqueous solution of the aluminum compound and 2.0 liters of ethylene glycol were charged into a flask equipped with a distillation apparatus under normal temperature and pressure, and after stirring at 200 rpm for 30 minutes, a uniform water / ethylene glycol mixed solution was prepared. Obtained. Then, the jacket temperature setting was changed to 110 ° C. to raise the temperature, and water was distilled off from the solution. When the amount of distilled water reached 2.0 liters, heating was stopped and allowed to cool to room temperature to obtain an ethylene glycol solution of an aluminum compound.

(PET樹脂(B-1)の重合)

 攪拌機、温度計、溜出用冷却機を装備した反応缶にテレフタル酸2130質量部、エチレングリコール1955質量部、トリエチルアミン0.7質量部を添加して0.35MPaの加圧下、220℃から250℃まで徐々に昇温し、溜出する水を系外に除きつつエステル化反応を行った。続いて、重合触媒溶液として前記のリン化合物のエチレングリコール溶液及びアルミニウム化合物のエチレングリコール溶液の混合溶液をポリエステル樹脂中のジカルボン酸成分に対して、リン原子として0.047モル%を、アルミニウム原子として0.021モル%となるように添加した後、1時間かけて1.3kPaまで減圧初期重合を行うとともに270℃まで上昇し、さらに0.13kPa以下で後期重合を行い、本発明で用いる固有粘度が0.73dl/gのPET樹脂(B-1)を得た。

(Polymerization of PET resin (B-1))

2130 parts by mass of terephthalic acid, 1955 parts by mass of ethylene glycol, and 0.7 parts by mass of triethylamine were added to a reaction can equipped with a stirrer, a thermometer, and a cooling device for distillation, and the temperature was 220 ° C. to 250 ° C. under a pressure of 0.35 MPa. The temperature was gradually raised to, and the esterification reaction was carried out while removing the accumulated water from the system. Subsequently, as a polymerization catalyst solution, a mixed solution of the ethylene glycol solution of the phosphorus compound and the ethylene glycol solution of the aluminum compound was used as an aluminum atom with 0.047 mol% as a phosphorus atom with respect to the dicarboxylic acid component in the polyester resin. After adding to 0.021 mol%, the initial polymerization under reduced pressure was carried out to 1.3 kPa over 1 hour, the temperature rose to 270 ° C., and the late polymerization was further carried out at 0.13 kPa or less, and the intrinsic viscosity used in the present invention was obtained. Obtained 0.73 dl / g of PET resin (B-1).

(PET樹脂(B-2)の重合)

 アルミニウム系触媒の代わりにアンチモン系触媒のSbのエチレングリコール溶液を作製してアンチモン原子として0.084モル%となるように添加して前記のPET樹脂(B-1)と同様の製造方法で本発明の比較例に用いる固有粘度0.73dl/gのPET樹脂(B-2)を得た。

(Polymerization of PET resin (B-2))

Instead of the aluminum-based catalyst, an ethylene glycol solution of Sb 2 O 3 of the antimony-based catalyst was prepared and added so as to have 0.084 mol% as the antimony atom, and the same production as the above-mentioned PET resin (B-1) was produced. By the method, a PET resin (B-2) having an intrinsic viscosity of 0.73 dl / g used in the comparative example of the present invention was obtained.

3)オキサゾリン基を有する樹脂(C):オキサゾリン基を有する樹脂として、市販の水溶性オキサゾリン基含有アクリレート(株式会社日本触媒製「エポクロス(登録商標)WS-300」;固形分10%)を用意した。この樹脂のオキサゾリン基量は7.7mmol/gであった。

3) Resin having an oxazoline group (C): As a resin having an oxazoline group, a commercially available water-soluble oxazoline group-containing acrylate (“Epocross (registered trademark) WS-300” manufactured by Nippon Catalyst Co., Ltd .; solid content 10%) is prepared. did. The amount of oxazoline groups in this resin was 7.7 mmol / g.

4)アクリル樹脂(D):アクリル樹脂として、市販のアクリル酸エステル共重合体の25質量%エマルジョン(ニチゴー・モビニール株式会社製「モビニール(登録商標)7980」を用意した。このアクリル樹脂(B)の酸価(理論値)は4mgKOH/gであった。

4) Acrylic resin (D): As an acrylic resin, a 25% by mass emulsion of a commercially available acrylic acid ester copolymer (“Mobile (registered trademark) 7980” manufactured by Nichigo Vinyl Co., Ltd.” was prepared. This acrylic resin (B) The acid value (theoretical value) of was 4 mgKOH / g.

5)ウレタン樹脂(E):ウレタン樹脂として、市販のポリエステルウレタン樹脂のディスパージョン(三井化学株式会社製「タケラック(登録商標)W605」;固形分30%)を用意した。このウレタン樹脂の酸価25mgKOH/gであり、DSCで測定したガラス転移温度(Tg)は100℃であった。また、1H-NMRにより測定したポリイソシアネート成分全体に対する芳香族又は芳香脂肪族ジイソシアネートの割合は、55モル%であった。

5) Urethane resin (E): As a urethane resin, a commercially available polyester urethane resin dispersion (“Takelac (registered trademark) W605” manufactured by Mitsui Chemicals, Inc .; solid content 30%) was prepared. The acid value of this urethane resin was 25 mgKOH / g, and the glass transition temperature (Tg) measured by DSC was 100 ° C. The ratio of aromatic or aromatic aliphatic diisocyanate to the total polyisocyanate component measured by 1H-NMR was 55 mol%.

6)ウレタン樹脂(F);:ウレタン樹脂として、市販のメタキシリレン基含有ウレタン樹脂のディスパージョン(三井化学株式会社製「タケラック(登録商標)WPB341」;固形分30%)を用意した。このウレタン樹脂の酸価25mgKOH/gであり、DSCで測定したガラス転移温度(Tg)は130℃であった。また、1H-NMRにより測定したポリイソシアネート成分全体に対する芳香族又は芳香脂肪族ジイソシアネートの割合は、85モル%であった。

6) Urethane resin (F) ;: As a urethane resin, a dispersion of a commercially available metaxylylene group-containing urethane resin (“Takelac (registered trademark) WPB341” manufactured by Mitsui Chemicals, Inc .; solid content 30%) was prepared. The acid value of this urethane resin was 25 mgKOH / g, and the glass transition temperature (Tg) measured by DSC was 130 ° C. The ratio of aromatic or aromatic aliphatic diisocyanate to the total polyisocyanate component measured by 1H-NMR was 85 mol%.

7)接着層に用いる塗工液1

 下記の配合比率で各材料を混合し、塗工液1(接着層用樹脂組成物)を作製した。

  水                54.40質量%

  イソプロパノール         25.00質量%

  オキサゾリン基含有樹脂 (C)  15.00質量%

  アクリル樹脂 (D)        3.60質量%

  ウレタン樹脂 (E)        2.00質量%

7) Coating liquid used for the adhesive layer 1

Each material was mixed at the following blending ratio to prepare a coating liquid 1 (resin composition for an adhesive layer).

Water 54.40% by mass

Isopropanol 25.00% by mass

Oxazoline group-containing resin (C) 15.00% by mass

Acrylic resin (D) 3.60% by mass

Urethane resin (E) 2.00% by mass

8)保護層のコートに用いる塗工液2

 下記の塗剤を混合し、塗工液2を作製した。

  水                60.00質量%

  イソプロパノール         30.00質量%

  ウレタン樹脂(F)        10.00質量%

8) Coating liquid used for coating the protective layer 2

The following coating agents were mixed to prepare a coating liquid 2.

Water 60.00% by mass

Isopropanol 30.00% by mass

Urethane resin (F) 10.00% by mass

[ラミネート積層体の作製]

 後述する実施例1~8、比較例1~4に示したガスバリア性フィルムの保護層側に、ウレタン系2液硬化型接着剤(三井化学株式会社製「タケラック(登録商標)A525S」と「タケネート(登録商標)A50」を13.5:1(質量比)の割合で配合)を用いてドライラミネート法により、ヒートシール性樹脂層として厚さ70μmの無延伸ポリプロピレンフィルム(東洋紡株式会社製「P1147」)を貼り合わせ、40℃にて4日間エージングを施すことにより、評価用のラミネート積層体を得た。なお、ウレタン系2液硬化型接着剤で形成される接着剤層の乾燥後の厚みはいずれも約4μmであった。

[Preparation of laminated laminate]

Urethane-based two-component curable adhesives (“Takelac (registered trademark) A525S” manufactured by Mitsui Chemicals, Inc. and “Takenate” are placed on the protective layer side of the gas barrier films shown in Examples 1 to 8 and Comparative Examples 1 to 4, which will be described later. A non-stretched polypropylene film with a thickness of 70 μm as a thermosetting resin layer (“P1147” manufactured by Toyo Boseki Co., Ltd.) by a dry laminating method using (registered trademark) A50 at a ratio of 13.5: 1 (mass ratio). ”) Are laminated and aged at 40 ° C. for 4 days to obtain a laminated laminate for evaluation. The thickness of the adhesive layer formed of the urethane-based two-component curable adhesive after drying was about 4 μm.

[ラミネート積層体の水蒸気透過度]

 前述のラミネート積層体に対して、JIS-K7129-1992 B法に準じて、水蒸気透過度測定装置(MOCON社製「PERMATRAN-W1A」)を用い、温度40℃、相対湿度90RH%の雰囲気下で、常態での水蒸気透過度を測定した。なお、水蒸気透過度の測定は、基材フィルム層側からシーラント側に水蒸気が透過する方向で行った。

[Water vapor permeability of laminated laminate]

The above-mentioned laminated laminate was subjected to a water vapor permeability measuring device (“PERMATRAN-W1A” manufactured by MOCON) in accordance with the JIS-K7129-1992 B method under an atmosphere of a temperature of 40 ° C. and a relative humidity of 90 RH%. , The water vapor permeability under normal conditions was measured. The water vapor permeability was measured in the direction in which water vapor permeated from the base film layer side to the sealant side.

[ラミネート積層体のレトルト後の水蒸気透過度]

 前述のラミネート積層体に対して、レトルト釜内で130℃の熱水中に30分間保持する湿熱処理を行い、40℃で1日間(24時間)乾燥し、得られた湿熱処理後のラミネート積層体について上記と同様にして水蒸気透過度を測定した。

[Water vapor permeability after retort of laminated laminate]

The above-mentioned laminated laminate was subjected to a wet heat treatment of holding it in hot water at 130 ° C. for 30 minutes in a retort kettle, dried at 40 ° C. for 1 day (24 hours), and the obtained laminated laminate after the wet heat treatment. The water vapor permeability of the body was measured in the same manner as above.

 以下に各実施例及び比較例で使用する二軸延伸ポリエステルフィルムの作製方法を記す。また、下記二軸延伸ポリエステルフィルムの物性を表1及び表2に示した。

<実施例1>

 一軸押出機を用い、PBT樹脂(A)を80質量%と不活性粒子として平均粒径2.4μmのシリカ粒子を7000ppmとなるように混合したPET樹脂(B-1)を20質量%配合したものを290℃で溶融させた後、メルトラインに導入した。ただし、PET樹脂(B-1)は、押出し機に入る前に偏析が起こらないように(PBT樹脂と常に均一に配合できるするように)図1に示すようなインナーパイプを用いて供給した。

 次いで265℃のT-ダイスからキャストし、20℃の冷却ロールに静電密着法により密着させて未延伸シートを得た。

 次いで、60℃で縦方向に2.9倍ロール延伸し、次いで、テンターに通して90℃で横方向に4.0倍延伸し、200℃で3秒間の緊張熱処理と1秒間9%の緩和処理を実施した後、50℃で2秒間の冷却を行いフィルムを冷却した。

 次いで、両端の把持部を10%ずつ切断除去して厚みが15μm、全幅4200mmの二軸延伸ポリエステルフィルムの全幅のロール(以下、ミルロールという)を得た。得られたミルロールをスリットして、ロール幅2080mm幅のスリットロール2本を採取した。

The method for producing the biaxially stretched polyester film used in each Example and Comparative Example is described below. The physical properties of the following biaxially stretched polyester film are shown in Tables 1 and 2.

<Example 1>

Using a uniaxial extruder, 20% by mass of PET resin (B-1) was mixed with 80% by mass of PBT resin (A) and silica particles having an average particle size of 2.4 μm as inert particles so as to have an average particle size of 7000 ppm. The material was melted at 290 ° C. and then introduced into a melt line. However, the PET resin (B-1) was supplied using an inner pipe as shown in FIG. 1 so that segregation does not occur before entering the extruder (so that it can always be uniformly mixed with the PBT resin).

Then, it was cast from a T-die at 265 ° C. and adhered to a cooling roll at 20 ° C. by an electrostatic adhesion method to obtain an unstretched sheet.

Then, it was rolled 2.9 times in the longitudinal direction at 60 ° C., then passed through a tenter and stretched 4.0 times in the lateral direction at 90 ° C., and tension heat treatment at 200 ° C. for 3 seconds and relaxation of 9% for 1 second. After the treatment was carried out, the film was cooled by cooling at 50 ° C. for 2 seconds.

Next, the grips at both ends were cut and removed by 10% to obtain a full-width roll (hereinafter referred to as a mill roll) of a biaxially stretched polyester film having a thickness of 15 μm and a total width of 4200 mm. The obtained mill roll was slit, and two slit rolls having a roll width of 2080 mm were collected.

 以下に示した無機薄膜層及び保護層の形成方法でスリットした二軸延伸ポリエステルフィルムに無機薄膜層と保護層を形成してガスバリア性積層フィルムを得た。

<無機薄膜層の形成>

 スリットしたフィルムに無機薄膜層として二酸化ケイ素と酸化アルミニウムの複合酸化物層を電子ビーム蒸着法で形成した。蒸着源としては、3mm~5mm程度の粒子状SiO(純度99.9%)とA1(純度99.9%)とを用いた。このようにして得

られたフィルム(無機薄膜層/接着層含有フィルム)における無機薄膜層(SiO/A1複合酸化物層)の膜厚は13nmであった。またこの複合酸化物層の組成は、SiO/A1(質量比)=60/40であった。

A gas barrier laminated film was obtained by forming an inorganic thin film layer and a protective layer on a biaxially stretched polyester film slit by the method for forming an inorganic thin film layer and a protective layer shown below.

<Formation of inorganic thin film layer>

A composite oxide layer of silicon dioxide and aluminum oxide was formed as an inorganic thin film layer on the slit film by an electron beam deposition method. Particulate SiO 2 (purity 99.9%) and A1 2 O 3 (purity 99.9%) having a thickness of about 3 mm to 5 mm were used as the vapor deposition source. Get in this way

The film thickness of the obtained film (inorganic thin layer / adhesive layer containing film) inorganic thin layer in the (SiO 2 / A1 2 O 3 composite oxide layer) was 13 nm. The composition of this composite oxide layer was SiO 2 / A1 2 O 3 (mass ratio) = 60/40.

<保護層の形成>

 塗工液2をワイヤーバーコート法によって、上記の蒸着で形成された無機薄膜層上に塗布し、200℃で15秒乾燥させ、保護層を得た。乾燥後の塗布量は0.190g/m(Dry固形分として)であった。

 以上のようにして、基材フィルム上に接着層/無機薄膜層/保護層をこの順に備えたガスバリア性積層フィルムを作製した。

 得られた二軸延伸ポリエステルフィルム及びガスバリア性積層フィルムの製膜条件、物性及び評価結果を表1に示した。

<Formation of protective layer>

The coating liquid 2 was applied onto the inorganic thin film layer formed by the above vapor deposition by the wire bar coating method, and dried at 200 ° C. for 15 seconds to obtain a protective layer. The coating amount after drying was 0.190 g / m 2 (as Dry solid content).

As described above, a gas barrier laminated film having an adhesive layer / an inorganic thin film layer / a protective layer on the base film in this order was produced.

Table 1 shows the film forming conditions, physical properties, and evaluation results of the obtained biaxially stretched polyester film and gas barrier laminated film.

<実施例2~7、比較例1~3>

 二軸延伸ポリエステルフィルム2~7、及び比較例1~3の二軸延伸フィルムの製膜工程において、PBT樹脂(A)の比率、PET樹脂(B)の種類、縦横延伸倍率、リラックス率を表1及び表2に示した以外は、実施例1と同様に行った。

<実施例8>

 一軸押出機を用い、PBT樹脂(A)を80質量%とPET樹脂(B-1)を20質量%混合したものに、不活性粒子として平均粒径2.4μmのシリカ粒子をシリカ濃度として混合樹脂に対して900ppmとなるように配合したものを290℃で溶融させた後、メルトラインに導入した。次いで265℃のT-ダイスからキャストし、20℃の冷却ロールに静電密着法により密着させて未延伸シートを得た。

 次いで、60℃で縦方向に2.9倍ロール延伸し、縦延伸後に接着層用樹脂組成物(塗工液1)をファウンテンバーコート法により塗布した。その後、乾燥しながらテンターに導き、次いで、テンターに通して90℃で横方向に4.0倍延伸し、200℃で3秒間の緊張熱処理と1秒間9%の緩和処理を実施した後、50℃で2秒間の冷却を行った。

 次いで、両端の把持部を10%ずつ切断除去して厚みが15μm、全幅4200mmの二軸延伸ポリエステルフィルムのミルロールを得た。得られたミルロールをスリットして、幅が2080mmのスリットロール2本を採取した。実施例1と同様にして、スリットしたフィルムに無機薄膜層と保護層を形成してガスバリア性積層フィルムを得た。

 得られた二軸延伸ポリエステルフィルム及びガスバリア性積層フィルムの製膜条件、物性及び評価結果を表2に示した。

<Examples 2 to 7, Comparative Examples 1 to 3>

In the film forming process of the biaxially stretched polyester films 2 to 7 and the biaxially stretched films of Comparative Examples 1 to 3, the ratio of the PBT resin (A), the type of the PET resin (B), the vertical and horizontal stretching ratio, and the relaxation rate are shown. This was carried out in the same manner as in Example 1 except that it was shown in 1 and Table 2.

<Example 8>

Using a uniaxial extruder, 80% by mass of PBT resin (A) and 20% by mass of PET resin (B-1) are mixed, and silica particles having an average particle size of 2.4 μm as inert particles are mixed as a silica concentration. A mixture prepared at 900 ppm with respect to the resin was melted at 290 ° C. and then introduced into a melt line. Then, it was cast from a T-die at 265 ° C. and adhered to a cooling roll at 20 ° C. by an electrostatic adhesion method to obtain an unstretched sheet.

Then, the resin composition for the adhesive layer (coating liquid 1) was applied by the fountain bar coating method after the vertical stretching at 60 ° C. for 2.9 times roll stretching. Then, it is guided to a tenter while drying, then passed through the tenter and stretched 4.0 times in the lateral direction at 90 ° C., subjected to tension heat treatment at 200 ° C. for 3 seconds and relaxation treatment of 9% for 1 second, and then 50. Cooling was performed at ° C. for 2 seconds.

Next, the grips at both ends were cut and removed by 10% to obtain a mill roll of a biaxially stretched polyester film having a thickness of 15 μm and a total width of 4200 mm. The obtained mill roll was slit, and two slit rolls having a width of 2080 mm were collected. In the same manner as in Example 1, an inorganic thin film layer and a protective layer were formed on the slit film to obtain a gas barrier laminated film.

Table 2 shows the film forming conditions, physical properties, and evaluation results of the obtained biaxially stretched polyester film and gas barrier laminated film.

<比較例4>

 一軸押出機を用い、PBT樹脂(A)を80質量%と不活性粒子として平均粒径2.4μmのシリカ粒子を7000ppmとなるように混合したPET樹脂(B-1)を20質量%配合したものを290℃で溶融させた後、メルトラインを12エレメントのスタティックミキサーに導入した。PBT樹脂とPET樹脂の混合にはインナーパイプを用いず、ホッパー上部で混合した。

 上記同様265℃のT-ダイスからキャストし、20℃の冷却ロールに静電密着法により密着させて未延伸シートを得た。

 次いで、60℃で縦方向に2.9倍ロール延伸し、次いで、テンターに通して90℃で横方向に4.0倍延伸し、200℃で3秒間の緊張熱処理と1秒間9%の緩和処理を実施した後、50℃で2秒間の冷却を行いフィルムを冷却した。

 次いで、両端の把持部を10%ずつ切断除去して厚みが15μm、全幅4200mmの二軸延伸ポリエステルフィルムの全幅のロール(以下、ミルロールという)を得た。得られたミルロールをスリットして、ロール幅2080mm幅のスリットロール2本を採取した。実施例1と同様にして、スリットしたフィルムに無機薄膜層と保護層を形成してガスバリア性積層フィルムを得た。

 得られた二軸延伸フィルム及びガスバリア性積層フィルムの製膜条件、物性及び評価結果を表2に示した。

<Comparative example 4>

Using a uniaxial extruder, 20% by mass of PET resin (B-1) was mixed with 80% by mass of PBT resin (A) and silica particles having an average particle size of 2.4 μm as inert particles so as to have an average particle size of 7000 ppm. After melting the material at 290 ° C., the melt line was introduced into a 12-element static mixer. The inner pipe was not used for mixing the PBT resin and the PET resin, and the PBT resin and the PET resin were mixed at the upper part of the hopper.

Similarly to the above, the product was cast from a T-die at 265 ° C. and adhered to a cooling roll at 20 ° C. by an electrostatic adhesion method to obtain an unstretched sheet.

Then, it was rolled 2.9 times in the longitudinal direction at 60 ° C., then passed through a tenter and stretched 4.0 times in the lateral direction at 90 ° C., tension heat treatment at 200 ° C. for 3 seconds and relaxation of 9% for 1 second. After the treatment was carried out, the film was cooled by cooling at 50 ° C. for 2 seconds.

Next, the grips at both ends were cut and removed by 10% to obtain a full-width roll (hereinafter referred to as a mill roll) of a biaxially stretched polyester film having a thickness of 15 μm and a total width of 4200 mm. The obtained mill roll was slit, and two slit rolls having a roll width of 2080 mm were collected. In the same manner as in Example 1, an inorganic thin film layer and a protective layer were formed on the slit film to obtain a gas barrier laminated film.

Table 2 shows the film forming conditions, physical properties, and evaluation results of the obtained biaxially stretched film and gas barrier laminated film.

Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006

Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007

 表1及び表2に示すように、実施例1~7の本発明の二軸延伸は、PBT比率を本発明の範囲とし、PET原料としてアルミニウム化合物を重合触媒として用いたPET樹脂を用いることで、比較例1及び2に示した従来のアンチモン化合物を重合触媒として用いたPET樹脂と用いた場合と比べて、強度などの物性に遜色なく、耐ピンホール性に優れ、さらにはフィルム中の異物が少なく、印刷抜けの少ない二軸延伸ポリエステルフィルムを得ることが可能であった。

As shown in Tables 1 and 2, the biaxial stretching of the present invention of Examples 1 to 7 is carried out by using a PET resin having a PBT ratio within the scope of the present invention and using an aluminum compound as a polymerization catalyst as a PET raw material. Compared with the case where the conventional antimony compounds shown in Comparative Examples 1 and 2 are used with the PET resin used as the polymerization catalyst, the physical properties such as strength are inferior, the pinhole resistance is excellent, and the foreign matter in the film is further improved. It was possible to obtain a biaxially stretched polyester film with less printing loss.

 また、本発明によって得られた二軸延伸ポリエステルフィルムは、原料の供給にインナーパイプを用いることによって、長手方向での突刺し強度のばらつきが小さくなっていた。

 実施例8では、二軸延伸ポリエステルフィルムと無機薄膜層との間に接着層を設けたため、レトルト処理後のガスバリア性が良好であった。

Further, in the biaxially stretched polyester film obtained by the present invention, the variation in the puncture strength in the longitudinal direction is small by using the inner pipe for supplying the raw material.

In Example 8, since the adhesive layer was provided between the biaxially stretched polyester film and the inorganic thin film layer, the gas barrier property after the retort treatment was good.

 比較例3は、PETの比率を増やしているの高温で熱処理でき、寸法安定性は向上するものの、同時にPBTの比率が低下するので、耐突刺し性などの力学強度が低下した。

 比較例4は、原料の供給にインナーパイプを用いておらず、原料の偏析のために長手方向で原料比率の変動が大きくなるため、長手方向の突刺し強度のばらつきが大きくなっていた。

In Comparative Example 3, heat treatment can be performed at a high temperature in which the ratio of PET is increased, and the dimensional stability is improved, but at the same time, the ratio of PBT is reduced, so that the mechanical strength such as puncture resistance is lowered.

In Comparative Example 4, since the inner pipe was not used for supplying the raw materials and the raw material ratio fluctuated greatly in the longitudinal direction due to the segregation of the raw materials, the variation in the puncture strength in the longitudinal direction was large.

 本発明によれば、優れた耐ピンホール性、耐破袋性を有するだけでなく、衛生性に優れ、印刷性、加工性に優れ、巻き長の長い長尺のフィルムロールであっても長手方向の物性のばらつきの少ない二軸延伸ポリエステルフィルム及びその製造方法を提供することが可能となった。これらのフィルムは食品包装材料としてアンチモン触媒を含んでいないので衛生性に優れ、広く適用できることから、産業界に大きく寄与することが期待される。

 また、食品包装の他に、医薬品や工業製品等の包装や太陽電池、電子ペーパー、有機EL素子、半導体素子等の工業用途にも広く用いることができる。

According to the present invention, not only is it excellent in pinhole resistance and bag tear resistance, but it is also excellent in hygiene, printability and workability, and even a long film roll having a long winding length is long. It has become possible to provide a biaxially stretched polyester film having little variation in physical properties in the direction and a method for producing the same. Since these films do not contain an antimony catalyst as a food packaging material, they have excellent hygiene and can be widely applied, and are expected to greatly contribute to the industrial world.

In addition to food packaging, it can be widely used in packaging of pharmaceuticals and industrial products, and in industrial applications such as solar cells, electronic paper, organic EL elements, and semiconductor elements.

Claims (8)


  1.  少なくともポリブチレンテレフタレート樹脂(A)を60~95質量%及びポリエチレンテレフタレート樹脂(B)を5~40質量%を含み、下記(1)~(4)を同時に満足することを特徴とする二軸延伸ポリエステルフィルム。

    (1)JIS Z 1707に準じて測定した突刺し強度が0.6N/μm以上。

    (2)フィルムの面配向度が0.144~0.160。

    (3)フィルムの150℃で15分間加熱後の熱収縮率が、縦方向が0~4%、横方向が-1~3%。

    (4)フィルム中のアンチモン原子の含有量が7ppm以下。

    Biaxial stretching containing at least 60 to 95% by mass of polybutylene terephthalate resin (A) and 5 to 40% by mass of polyethylene terephthalate resin (B) and simultaneously satisfying the following (1) to (4). Polyester film.

    (1) The puncture strength measured according to JIS Z 1707 is 0.6 N / μm or more.

    (2) The degree of surface orientation of the film is 0.144 to 0.160.

    (3) The heat shrinkage of the film after heating at 150 ° C. for 15 minutes is 0 to 4% in the vertical direction and -1 to 3% in the horizontal direction.

    (4) The content of antimony atoms in the film is 7 ppm or less.

  2.  ポリエチレンテレフタレート(B)が、重合触媒として、アルミニウム化合物から選択される少なくとも1種、及びリン化合物から選択される少なくとも1種を含有することを特徴とすることを特徴とする請求項1に記載の二軸延伸ポリエステルフィルム。

    The first aspect of the present invention, wherein the polyethylene terephthalate (B) contains at least one selected from an aluminum compound and at least one selected from a phosphorus compound as a polymerization catalyst. Biaxially stretched polyester film.

  3.  フィルム1000平方メートル当たり1mm以上の欠点数が1.0個以下であることを特徴とする請求項1又は2に記載の二軸延伸ポリエステルフィルム。

    The biaxially stretched polyester film according to claim 1 or 2, wherein the number of defects of 1 mm or more per 1000 square meters of the film is 1.0 or less.

  4.  縦方向にフィルムロールの表層から巻き芯まで1000m毎にサンプリングし、JIS Z 1707に準じて測定した突刺し強度の最大値をXmax(N/μm)、最小値をXmin(N/μm)、平均値をXaveとしたときの、下記式[1]で表される突刺し強度のばらつきが20%以下であることを特徴とする請求項1~3いずれかに記載の二軸延伸ポリエステルフィルム。

     突刺し強度の長手方向ばらつき(%)=100×(Xmax-Xmin)/Xave・・・[1]

    Sampling from the surface layer of the film roll to the core in the vertical direction every 1000 m, the maximum value of the puncture strength measured according to JIS Z 1707 is Xmax (N / μm), the minimum value is Xmin (N / μm), and the average. The biaxially stretched polyester film according to any one of claims 1 to 3, wherein the variation in piercing strength represented by the following formula [1] is 20% or less when the value is Xave.

    Longitudinal variation in piercing strength (%) = 100 × (Xmax-Xmin) / Xave ... [1]

  5.  二軸延伸ポリエステルフィルムの少なくとも片方の面に無機薄膜層を有することを特徴とする請求項1~4いずれかに記載のガスバリア性積層フィルム。

    The gas barrier laminated film according to any one of claims 1 to 4, wherein the biaxially stretched polyester film has an inorganic thin film layer on at least one surface.

  6.  二軸延伸ポリエステルフィルムと無機薄膜層の間に接着層を有することを特徴とする請求項5に記載のガスバリア性積層フィルム。

    The gas barrier laminated film according to claim 5, wherein an adhesive layer is provided between the biaxially stretched polyester film and the inorganic thin film layer.

  7.  無機薄膜層の表面に保護層を有することを特徴とする請求項5又は6に記載のガスバリア性積層フィルム。

    The gas barrier laminated film according to claim 5 or 6, wherein the surface of the inorganic thin film layer has a protective layer.

  8.  ポリエステル原料樹脂の溶融押出し工程において、ホッパーに上方からポリブチレンテレフタレート(A)の原料樹脂チップを供給すると共に、ホッパー内であって押出機直上に出口を有する配管を通じてポリエチレンテレフタレート(B)の原料樹脂チップを供給して、両チップを混合し、溶融押出しすることを特徴とする請求項1~4いずれかに記載の二軸延伸ポリエステルフィルムの製造方法。

    In the melt extrusion process of the polyester raw material resin, the raw material resin chip of polybutylene terephthalate (A) is supplied to the hopper from above, and the raw material resin of polyethylene terephthalate (B) is supplied through a pipe having an outlet directly above the extruder in the hopper. The method for producing a biaxially stretched polyester film according to any one of claims 1 to 4, wherein the chips are supplied, both chips are mixed, and melt-extruded.
PCT/JP2020/010429 2019-03-29 2020-03-11 Polyester film and production method therefor WO2020203105A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020555086A JPWO2020203105A1 (en) 2019-03-29 2020-03-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019067526 2019-03-29
JP2019-067526 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203105A1 true WO2020203105A1 (en) 2020-10-08

Family

ID=72668593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010429 WO2020203105A1 (en) 2019-03-29 2020-03-11 Polyester film and production method therefor

Country Status (2)

Country Link
JP (1) JPWO2020203105A1 (en)
WO (1) WO2020203105A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168703A1 (en) * 2021-02-03 2022-08-11 東洋紡株式会社 Biaxially oriented polyester film and production method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001131276A (en) * 1999-08-24 2001-05-15 Toyobo Co Ltd Polymerization catalyst for polyester, polyester manufactured by using the same, and process for manufacturing polyester
WO2017126563A1 (en) * 2016-01-22 2017-07-27 東洋紡株式会社 Biaxially-stretched polyester film, laminate and packaging bag
WO2018062145A1 (en) * 2016-09-28 2018-04-05 東洋紡株式会社 White heat-shrinkable polyester-based film roll
WO2019021759A1 (en) * 2017-07-26 2019-01-31 東洋紡株式会社 Packing bag in which polybutylene terephthalate film is used

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001131276A (en) * 1999-08-24 2001-05-15 Toyobo Co Ltd Polymerization catalyst for polyester, polyester manufactured by using the same, and process for manufacturing polyester
WO2017126563A1 (en) * 2016-01-22 2017-07-27 東洋紡株式会社 Biaxially-stretched polyester film, laminate and packaging bag
WO2018062145A1 (en) * 2016-09-28 2018-04-05 東洋紡株式会社 White heat-shrinkable polyester-based film roll
WO2019021759A1 (en) * 2017-07-26 2019-01-31 東洋紡株式会社 Packing bag in which polybutylene terephthalate film is used

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168703A1 (en) * 2021-02-03 2022-08-11 東洋紡株式会社 Biaxially oriented polyester film and production method therefor

Also Published As

Publication number Publication date
JPWO2020203105A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
WO2020203106A1 (en) Polyester film and production method therefor
JP6962364B2 (en) Laminated film
JP6819816B2 (en) Polyester film roll
WO2021117736A1 (en) Biaxially oriented polyester film and production method therefor
JPWO2018225559A1 (en) Biaxially oriented polyester film
JP6927336B2 (en) Gas barrier laminated film and its manufacturing method
WO2020195742A1 (en) Polyester film and production method therefor
JP7006445B2 (en) Polyester film and gas barrier laminated film
WO2021111941A1 (en) Laminated layered body
WO2021100558A1 (en) Layered film
WO2018179726A1 (en) Biaxially oriented polyester film and method for manufacturing same
JP7060842B2 (en) Laminate Laminate
WO2020203105A1 (en) Polyester film and production method therefor
JP6879473B2 (en) Biaxially oriented polyester film
JPWO2020145254A1 (en) Laminated film
WO2020080131A1 (en) Layered film
JP7310876B2 (en) Polyester film and gas barrier laminated film
WO2022168703A1 (en) Biaxially oriented polyester film and production method therefor
CN113498376B (en) Biaxially oriented polyester film and method for producing biaxially oriented polyester film
JP6826784B2 (en) Biaxially oriented polyester film and method for producing biaxially oriented polyester film
WO2022168702A1 (en) Biaxially oriented polyester film and production method therefor
WO2024024952A1 (en) Biaxially oriented polyester film, laminate, and packaging container
WO2024024960A1 (en) Gas barrier film, laminate, and packaging container
WO2024024941A1 (en) Biaxially oriented polyester film, multilayer body, and packaging container
JP2019171587A (en) Polyester film and gas barrier laminate film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020555086

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20782175

Country of ref document: EP

Kind code of ref document: A1