WO2024024952A1 - Biaxially oriented polyester film, laminate, and packaging container - Google Patents

Biaxially oriented polyester film, laminate, and packaging container Download PDF

Info

Publication number
WO2024024952A1
WO2024024952A1 PCT/JP2023/027795 JP2023027795W WO2024024952A1 WO 2024024952 A1 WO2024024952 A1 WO 2024024952A1 JP 2023027795 W JP2023027795 W JP 2023027795W WO 2024024952 A1 WO2024024952 A1 WO 2024024952A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
biaxially oriented
oriented polyester
polyester film
laminate
Prior art date
Application number
PCT/JP2023/027795
Other languages
French (fr)
Japanese (ja)
Inventor
考道 後藤
信之 真鍋
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Publication of WO2024024952A1 publication Critical patent/WO2024024952A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/80Packaging reuse or recycling, e.g. of multilayer packaging

Definitions

  • the present invention relates to a biaxially oriented polyester film, a laminate, and a packaging container.
  • Polyesters such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), which are thermoplastic resins with excellent heat resistance and mechanical properties, are used in a wide variety of fields such as plastic films, electronics, energy, packaging materials, and automobiles. has been done.
  • biaxially oriented polyester film has an excellent balance between mechanical strength (that is, mechanical properties), heat resistance, dimensional stability, chemical resistance, optical properties, and cost, so it is used in industrial and packaging fields. It is widely used in
  • Patent Document 1 discloses a biaxially oriented polyester film produced using a polyester obtained by mechanically recycling a PET bottle, that is, a mechanically recycled polyester.
  • Polyester recycled polyester which is obtained by decomposing the polyester contained in used polyester products down to the monomer level and then polymerizing it again, is known as polyester recycled using a method different from mechanical recycling (Patent Document 3 and 4).
  • Patent Document 2 discloses a printed resin film that includes a polyester film made using chemically recycled polyester and a printed layer.
  • Chemically recycled polyester is often made to have a high molecular weight through solid phase polymerization to make it easier to mold into PET bottles, so the intrinsic viscosity of chemically recycled polyester is similar to that of polyester for general biaxially oriented polyester films. It is often higher than that.
  • the present invention can reduce environmental impact, suppress or reduce film breakage that may occur during stretching, and improve mechanical properties (specifically, tensile strength and puncture strength).
  • the purpose of the present invention is to provide a biaxially oriented polyester film with excellent properties.
  • Another object of the present invention is to provide a laminate including a biaxially oriented polyester film and a packaging container including the laminate.
  • the present invention includes the following configuration [1].
  • [1] Contains chemically recycled polyester At least one surface has a surface crystallinity of 1.10 or more and 1.31 or less as determined by the attenuated total reflection method using a Fourier transform infrared spectrophotometer, The melting point is 251°C or higher, Biaxially oriented polyester film.
  • “chemically recycled polyester” is a polyester obtained by decomposing polyester contained in used polyester products to the monomer level and then polymerizing it again.
  • “Surface crystallinity” is the intensity ratio of absorption appearing near 1340 cm -1 and absorption appearing near 1410 cm -1 . That is, the intensity is 1340 cm -1/1410 cm -1 .
  • the biaxially oriented polyester film contains chemically recycled polyester.
  • the biaxially oriented polyester film contains chemically recycled polyester means that when the biaxially oriented polyester film includes multiple layers, at least one layer of the multiple layers contains chemically recycled polyester. It means to include.
  • the biaxially oriented polyester film contains chemically recycled polyester, the environmental load can be reduced.
  • the molecular weight of the polyester contained in the biaxially oriented polyester film can be limited to a certain level or less. This will be explained. The crystallization rate becomes faster as the molecular weight of the polyester decreases. Therefore, the higher the surface crystallinity of the biaxially oriented polyester film, the lower the molecular weight of the polyester contained in the biaxially oriented polyester film tends to be. Therefore, by having a surface crystallinity of 1.10 or more, the molecular weight of the polyester contained in the biaxially oriented polyester film can be limited to a certain level or less.
  • a certain amount or more of a low molecular weight component that can act like a plasticizer can be present. This will be explained.
  • the molecular weight of the polyester contained in the biaxially oriented polyester film can be limited to a certain level or less. As a result, a certain amount of low molecular weight components can be present. Therefore, by having a surface crystallinity of 1.10 or more, a certain amount of low molecular weight components that can act like plasticizers can be present.
  • the melting point is 251°C or higher, it has excellent heat resistance.
  • the present invention further includes the following configurations [2] and later.
  • a biaxially oriented polyester film can be used to produce a product (for example, a packaging container) with excellent strength.
  • a product for example, a packaging container
  • biaxially oriented polyester films can be used to create packaging containers that are resistant to punctures.
  • the environmental load can be further reduced.
  • the laminate since the laminate includes a sealant layer, a product (for example, a packaging container) including the laminate can be manufactured by heat sealing.
  • the printing layer, the biaxially oriented polyester film, and the sealant layer are arranged in this order in the thickness direction of the laminate.
  • “the printed layer, the biaxially oriented polyester film, and the sealant layer are arranged in this order in the thickness direction of the laminate” means between the printed layer and the biaxially oriented polyester film, or between the printed layer and the biaxially oriented polyester film, This expression allows for the presence of other layers between the polyester film and the sealant layer.
  • the laminate since the laminate includes a printing layer, a design (for example, letters, patterns, symbols, etc.) can be applied to the laminate or a product (for example, a packaging container) that includes the laminate.
  • a design for example, letters, patterns, symbols, etc.
  • a product for example, a packaging container
  • the biaxially oriented polyester film, the printing layer, and the sealant layer are arranged in this order in the thickness direction of the laminate.
  • “the biaxially oriented polyester film, the printed layer, and the sealant layer are arranged in this order in the thickness direction of the laminate” means between the biaxially oriented polyester film and the printed layer, or between the printed layer and the sealant layer. This is an expression that allows the presence of other layers between the sealant layers.
  • the laminate since the laminate includes a printing layer, a design (for example, letters, patterns, symbols, etc.) can be applied to the laminate or a product (for example, a packaging container) that includes the laminate.
  • a design for example, letters, patterns, symbols, etc.
  • a product for example, a packaging container
  • a product for example, a packaging container
  • the laminate can be manufactured by pressurization.
  • the printed layer, the biaxially oriented polyester film, and the adhesive layer are arranged in this order in the thickness direction of the laminate.
  • “the printed layer, the biaxially oriented polyester film, and the adhesive layer are arranged in this order in the thickness direction of the laminate” means between the printed layer and the biaxially oriented polyester film, or between the printed layer and the biaxially oriented polyester film, This expression allows for the presence of another layer between the polyester film and the adhesive layer.
  • the laminate since the laminate includes a printing layer, a design (for example, letters, patterns, symbols, etc.) can be applied to the laminate or a product (for example, a packaging container) that includes the laminate.
  • a design for example, letters, patterns, symbols, etc.
  • a product for example, a packaging container
  • the biaxially oriented polyester film, the printing layer, and the adhesive layer are arranged in this order in the thickness direction of the laminate.
  • “the biaxially oriented polyester film, the printed layer, and the adhesive layer are arranged in this order in the thickness direction of the laminate” means between the biaxially oriented polyester film and the printed layer, or between the printed layer and the adhesive layer. This is an expression that allows other layers to exist between the adhesive layers.
  • the laminate since the laminate includes a printing layer, a design (for example, letters, patterns, symbols, etc.) can be applied to the laminate or a product (for example, a packaging container) that includes the laminate.
  • a design for example, letters, patterns, symbols, etc.
  • a product for example, a packaging container
  • a packaging container comprising the laminate according to any one of [6] to [11].
  • the present invention it is possible to reduce environmental load, suppress or reduce film breakage that may occur during stretching, and improve mechanical properties (specifically, tensile strength and puncture strength). It is possible to provide a biaxially oriented polyester film with excellent properties.
  • This expression allows other layers to exist between the first layer 81 and the second layer 82 and between the second layer 82 and the third layer 83.
  • Biaxially oriented polyester film As shown in FIG. 1, the biaxially oriented polyester film 8 of this embodiment has a film shape.
  • the biaxially oriented polyester film 8 contains chemically recycled polyester. Therefore, the environmental load can be reduced.
  • Chemically recycled polyester is polyester obtained by decomposing the polyester contained in used polyester products down to the monomer level and then polymerizing it again. Chemically recycled polyester is manufactured using polyester contained in used polyester products as raw material, so it can reduce environmental impact. In addition, chemically recycled polyester is superior in terms of hygiene compared to mechanically recycled polyester because foreign substances (such as catalysts, coloring components, dissimilar plastics, and metals) are removed during the recycling process.
  • Used polyester products can be mentioned as polyester that is decomposed to the monomer level.
  • the used polyester product may be, for example, in the form of a veil, flakes, or pellets. Used PET bottles are preferred as used polyester products.
  • polyester As a method for decomposing polyester to the monomer level, for example, PET bottle bales are crushed and washed, and then at least ethylene glycol (EG) and a catalyst are added to the flakes, heated, and bis-2-hydroxyethyl
  • EG ethylene glycol
  • a catalyst are added to the flakes, heated, and bis-2-hydroxyethyl
  • BHET method terephthalate
  • Other methods for decomposing polyester to the monomer level include, for example, the method described in Patent Document 4 (Japanese Unexamined Patent Publication No. 2000-302707).
  • polyester may be decomposed to the monomer level by methods other than those exemplified here.
  • PET bottle bales are put into a crusher and wet crushed.
  • Wet grinding allows for the grinding of plastic bottle bales in wash water (e.g. tap water or ground water with optional detergent added). Note that the washing water may be at room temperature or may be heated.
  • wash water e.g. tap water or ground water with optional detergent added.
  • the wash water is discharged from the crusher along with the PET bottle flakes and subjected to gravity separation to remove foreign matter (eg metal, stone, glass, sand). The flakes are then rinsed with ion-exchanged water and, if necessary, centrifuged.
  • the flakes After the flakes are melted, a catalyst and excess ethylene glycol are added and heated (in other words, depolymerization occurs). Thereby, the polyethylene terephthalate constituting the flakes can be depolymerized, and as a result, a depolymerization liquid in which BHET is dissolved in ethylene glycol can be obtained.
  • the flakes are preferably melted in a water-containing state (for example, in a water-containing state after centrifugal dehydration). Remove foreign substances (e.g. foreign plastics, metals, glass) that float or precipitate in the depolymerization solution.
  • the melting point of the cyclic oligomer in the depolymerization liquid is higher than that of polyethylene terephthalate, low molecular weight components such as the cyclic oligomer can also be removed by filtration.
  • the depolymerization solution is passed through activated carbon (i.e., passed) and then passed through an ion exchange resin.
  • activated carbon i.e., passed
  • ion exchange resin By passing the depolymerization liquid through activated carbon, coloring components (for example, pigments, dyes, compounds generated by thermal deterioration of organic substances) can be removed.
  • catalysts eg, polymerization catalysts, depolymerization catalysts
  • metal ions can be removed.
  • the depolymerization liquid is cooled, BHET is precipitated, and BHET and ethylene glycol are separated into solid and liquid.
  • vacuum evaporation is performed.
  • Molecular distillation is performed on the concentrated BHET.
  • High purity BHET can be obtained by such a procedure. Note that, although the operation described here involves solid-liquid separation of BHET and ethylene glycol and then vacuum evaporation, ethylene glycol may be distilled from the depolymerization liquid instead of this operation.
  • chemically recycled polyester examples include chemically recycled polyethylene terephthalate (hereinafter sometimes referred to as "chemically recycled PET”), chemically recycled polybutylene terephthalate, and chemically recycled polyethylene-2,6-naphthalate. Of course, these may also contain copolymerized components. Chemically recycled PET is preferred because it is easily available and has excellent mechanical properties and heat resistance. Note that these may be used alone or in combination of two or more.
  • the chemically recycled polyester may be copolymerized with other components.
  • the dicarboxylic acid component as a copolymerization component include isophthalic acid, naphthalene dicarboxylic acid, 4,4-diphenyldicarboxylic acid, adipic acid, sebacic acid, and ester-forming derivatives thereof.
  • examples of the diol component as a copolymerization component include diethylene glycol, hexamethylene glycol, neopentyl glycol, and cyclohexanedimethanol.
  • polyoxyalkylene glycols such as polyethylene glycol and polypropylene glycol. Note that these may be used alone or in combination of two or more.
  • chemically recycled PET contains at least an isophthalic acid component as a copolymerized component. It is preferable to include.
  • the number of moles of the copolymerized component is preferably 10 mol% or less, more preferably 8 mol% or less, and even more preferably 5 mol% or less. , more preferably 3 mol% or less.
  • the number of moles of the copolymer component is preferably 0.1 mol% or more, more preferably 1 mol% or more, and even more preferably 2 mol% or more.
  • the chemically recycled polyester may contain one kind or two or more kinds satisfying such a suitable number of moles of copolymerization components.
  • the number of moles of the isophthalic acid component is preferably 10 mol% or less, and 8 mol% or less. is more preferable, 5 mol% or less is even more preferable, and even more preferably 3 mol% or less.
  • the number of moles of the isophthalic acid component is preferably 0.1 mol% or more, more preferably 1 mol% or more, and even more preferably 2 mol% or more.
  • chemically recycled PET may contain one kind or two or more kinds satisfying such a suitable number of moles of isophthalic acid components.
  • the intrinsic viscosity of the chemically recycled polyester is preferably 0.50 dl/g or more, more preferably 0.55 dl/g or more, and even more preferably 0.57 dl/g or more.
  • the amount of low molecular weight components in the chemically recycled polyester can be limited to a certain level or less, and therefore, the yellow tinge that the biaxially oriented polyester film 8 may exhibit can be reduced.
  • the intrinsic viscosity of the chemically recycled polyester is preferably 0.90 dl/g or less, more preferably 0.85 dl/g or less, further preferably 0.80 dl/g or less, even more preferably 0.75 dl/g, and 0.
  • the intrinsic viscosity of the biaxially oriented polyester film 8 can be limited to a certain level or less, so that the stress during stretching (that is, stretching stress) during the manufacturing process of the biaxially oriented polyester film 8 is not excessive. As a result, breakage of the film that may occur during stretching can be further suppressed or reduced.
  • the chemically recycled polyester may contain one or more types that satisfy such a suitable intrinsic viscosity.
  • the area ratio of the region with a molecular weight of 1000 or less may be 3.5% or less of the total peak area, and may be 3.0% or less.
  • the content may be 2.5% or less, 2.2% or less, or 2.0% or less.
  • this area ratio may be 0.8% or more, 1.0% or more, or 1.2% or more.
  • the melt specific resistance at 285° C. of chemically recycled polyester may be, for example, 30.0 ⁇ 10 8 ⁇ cm or less, 25.0 ⁇ 10 8 ⁇ cm or less, and 20.0 ⁇ 10 ⁇ cm or less. It may be 8 ⁇ cm or less, or it may be 15.0 ⁇ 10 8 ⁇ cm or less.
  • the melt specific resistance at 285° C. of chemically recycled polyester may be, for example, 0.5 ⁇ 10 8 ⁇ cm or more, 1.5 ⁇ 10 8 ⁇ cm or more, or 3.0 ⁇ 10 ⁇ cm or more. It may be 8 ⁇ cm or more, or it may be 5.0 ⁇ 10 8 ⁇ cm or more.
  • the melt specific resistance of the chemically recycled polyester is preferably higher than that of the fossil fuel-derived polyester and mechanically recycled polyester, which will be described later.
  • the chemically recycled polyester may contain one or more types that satisfy such a suitable melt specific resistance.
  • the chemically recycled polyester may contain an alkaline earth metal compound, it is preferably substantially free of it. Since catalysts and metal ions are removed from chemically recycled polyester during the recycling process, alkaline earth metal compounds can be produced by polymerizing with catalysts other than alkaline earth metal compounds (for example, germanium-based catalysts or antimony-based catalysts). may contain little or no catalysts other than alkaline earth metal compounds (for example, germanium-based catalysts or antimony-based catalysts). may contain little or no
  • the content of the alkaline earth metal compound in the chemically recycled polyester may be, for example, less than 30 ppm, or 20 ppm or less, on an alkaline earth metal atom basis (i.e., in terms of alkaline earth metal atoms). It may be 10 ppm or less, 5 ppm or less, 3 ppm or less, or 0 ppm.
  • the content of the alkaline earth metal compound is the mass of the alkaline earth metal compound on the basis of the alkaline earth metal atom with respect to the mass of the chemically recycled polyester (that is, the content of the alkaline earth metal compound on the basis of the alkaline earth metal atom) mass of compound/mass of chemically recycled polyester).
  • the chemically recycled polyester may contain one or more kinds of alkaline earth metal compounds that satisfy such a suitable content of alkaline earth metal compounds.
  • the content of the magnesium compound in the chemically recycled polyester is based on magnesium atoms (that is, in terms of magnesium atoms), and may be, for example, less than 30 ppm, 20 ppm or less, 10 ppm or less, or 5 ppm. It may be below, 3 ppm or less, or 0 ppm.
  • the chemically recycled polyester may contain one kind or two or more kinds satisfying such a suitable magnesium compound content.
  • the content of the phosphorus compound in the chemically recycled polyester may be 10 ppm or more, 15 ppm or more, 20 ppm or more, 30 ppm or more, on a phosphorus atom basis (i.e., in terms of phosphorus atoms). It may be. On the other hand, the content of the phosphorus compound may be 300 ppm or less, 200 ppm or less, or 100 ppm or less based on phosphorus atoms.
  • the content of the phosphorus compound is the mass of the phosphorus compound on a phosphorus atom basis with respect to the mass of the chemically recycled polyester (that is, the mass of the phosphorus compound on a phosphorus atom basis/the mass of the chemically recycled polyester).
  • the chemically recycled polyester may contain one kind or two or more kinds satisfying such a suitable phosphorus compound content.
  • the content of the chemically recycled polyester is preferably 10% by mass or more, more preferably 20% by mass or more, and even more preferably 30% by mass or more, when the biaxially oriented polyester film 8 is 100% by mass.
  • the content of the chemically recycled polyester is preferably 95% by mass or less, more preferably 80% by mass or less, and even more preferably 70% by mass or less, when the biaxially oriented polyester film 8 is 100% by mass.
  • the biaxially oriented polyester film 8 contains fossil fuel-derived polyester, that is, virgin polyester.
  • Fossil fuel-derived polyester is a polyester obtained by condensation polymerization of a fossil fuel-derived diol compound and a fossil fuel-derived dicarboxylic acid compound.
  • Fossil fuel-derived polyesters generally have a wider range of selection than chemically recycled polyesters, but by using fossil fuel-derived polyesters, the range in which the physical properties of the biaxially oriented polyester film 8 can be adjusted can be expanded.
  • fossil fuel-derived polyesters include fossil fuel-derived polyethylene terephthalate (hereinafter sometimes referred to as "fossil fuel-derived PET"), fossil fuel-derived polybutylene terephthalate, and fossil fuel-derived polyethylene-2,6-naphthalate. Can be done. Of course, these may also contain copolymerized components. Fossil fuel-derived PET is preferred, and fossil fuel-derived homo-PET is more preferred because it can reduce costs and has excellent mechanical properties and heat resistance. Note that homo-PET may also contain an unavoidable diethylene glycol component. Note that these may be used alone or in combination of two or more.
  • the intrinsic viscosity of the fossil fuel-derived polyester is preferably 0.50 dl/g or more, more preferably 0.55 dl/g or more, and even more preferably 0.57 dl/g or more.
  • the amount of low molecular weight components in the fossil fuel-derived polyester can be limited to a certain level or less, and therefore, the yellowishness that the biaxially oriented polyester film 8 may exhibit can be reduced.
  • the intrinsic viscosity of the fossil fuel-derived polyester is preferably 0.75 dl/g or less, more preferably 0.70 dl/g or less, even more preferably 0.68 dl/g or less, even more preferably 0.66 dl/g or less, More preferably, it is 0.65 dl/g or less. If it is 0.75 dl/g or less, stress during stretching (that is, stretching stress) in the biaxially oriented polyester film 8 manufacturing process can be further prevented from becoming excessively large, and as a result, breakage of the film that may occur during stretching can be further prevented. , can be further suppressed or reduced.
  • the fossil fuel-derived polyester may contain one or more types that satisfy such a suitable intrinsic viscosity.
  • the area ratio of the region with a molecular weight of 1000 or less may be 3.5% or less of the total peak area, and may be 3.0% or less. It may be 2.8% or less. On the other hand, this area ratio may be 1.0% or more, 1.5% or more, 1.8% or more, or 2.0% or more. .
  • the melting resistivity at 285°C of fossil fuel-derived polyester may be, for example, 2.0 ⁇ 10 8 ⁇ cm or less, 1.5 ⁇ 10 8 ⁇ cm or less, or 1.0 ⁇ It may be 10 8 ⁇ cm or less, 0.5 ⁇ 10 8 ⁇ cm or less, or 0.4 ⁇ 10 8 ⁇ cm or less.
  • the melting specific resistance of the fossil fuel-derived polyester at 285° C. may be, for example, 0.05 ⁇ 10 8 ⁇ cm or more, or 0.1 ⁇ 10 8 ⁇ cm or more. Note that the fossil fuel-derived polyester may contain one or more types that satisfy such a suitable melting specific resistance.
  • the fossil fuel-derived polyester contains an alkaline earth metal compound.
  • the alkaline earth metal compound may be added to the fossil fuel-derived polyester, for example, as a polymerization catalyst for producing the fossil fuel-derived polyester, and may be added to lower the specific melting resistance of the biaxially oriented polyester film 8. may have been done.
  • the content of the alkaline earth metal compound in the fossil fuel-derived polyester is preferably, for example, 30 ppm or more, preferably 35 ppm or more, preferably 40 ppm or more, on an alkaline earth metal atom basis (that is, in terms of alkaline earth metal atoms). 45 ppm or more is preferable.
  • the content of the alkaline earth metal compound is the mass of the alkaline earth metal compound on the basis of alkaline earth metal atoms (that is, the content of the alkaline earth metal compound on the basis of alkaline earth metal atoms with respect to the mass of the fossil fuel-derived polyester). (mass of metal compound/mass of fossil fuel-derived polyester).
  • the fossil fuel-derived polyester may contain one or more kinds of alkaline earth metal compounds that satisfy such a suitable alkaline earth metal compound content.
  • the content of the magnesium compound in the fossil fuel-derived polyester is preferably, for example, 30 ppm or more, preferably 35 ppm or more, preferably 40 ppm or more, and preferably 45 ppm or more, on a magnesium atom basis (that is, in terms of magnesium atoms).
  • the fossil fuel-derived polyester may contain one or more kinds satisfying such a suitable magnesium compound content.
  • the content of the phosphorus compound in the fossil fuel-derived polyester may be 10 ppm or more, 15 ppm or more, 20 ppm or more, or 30 ppm on a phosphorus atom basis (i.e., in terms of phosphorus atoms). It may be more than that. On the other hand, the content of the phosphorus compound may be 300 ppm or less, 200 ppm or less, or 100 ppm or less based on phosphorus atoms.
  • the content of the phosphorus compound is the mass of the phosphorus compound on a phosphorus atom basis with respect to the mass of the fossil fuel-derived polyester (that is, the mass of the phosphorus compound on a phosphorus atom basis/the mass of the fossil fuel-derived polyester).
  • the fossil fuel-derived polyester may contain one kind or two or more kinds that satisfy such a suitable phosphorus compound content.
  • the content of the fossil fuel-derived polyester is preferably 5% by mass or more, more preferably 20% by mass or more, and even more preferably 30% by mass or more, when the biaxially oriented polyester film 8 is 100% by mass.
  • the content is 5% by mass or more, the range in which the physical properties of the biaxially oriented polyester film 8 can be adjusted can be further expanded.
  • the content of the fossil fuel-derived polyester is preferably 90% by mass or less, more preferably 80% by mass or less, and even more preferably 70% by mass or less, when the biaxially oriented polyester film 8 is 100% by mass.
  • the biaxially oriented polyester film 8 may or may not contain mechanically recycled polyester.
  • Mechanically recycled polyester is polyester obtained from used polyester products without undergoing an operation that decomposes the polyester contained in the used polyester products down to the monomer level. Mechanically recycled polyester is obtained, for example, by crushing and washing a used polyester product, and regenerating it into flakes or pellets as needed.
  • the area ratio of the region with a molecular weight of 1000 or less may be 4.5% or less of the total peak area, and may be 4.0% or less. There may be. On the other hand, this area ratio may be 2.5% or more, 3.0% or more, or 3.2% or more.
  • the biaxially oriented polyester film 8 does not substantially contain mechanically recycled polyester.
  • the content of the mechanically recycled polyester is preferably 3% by mass or less, more preferably 1% by mass or less, and even more preferably 0.1% by mass or less, when the biaxially oriented polyester film 8 is 100% by mass.
  • the biaxially oriented polyester film 8 does not contain any mechanically recycled polyester.
  • the biaxially oriented polyester film 8 may contain biomass polyester.
  • the content of polyester (that is, the content of polyester including chemically recycled polyester) is preferably 80% by mass or more, more preferably 90% by mass or more, and 95% by mass. % or more is more preferable, and even more preferably 98% by mass or more.
  • the biaxially oriented polyester film 8 may contain resin other than polyester (eg, chemically recycled polyester, fossil fuel-derived polyester).
  • the biaxially oriented polyester film 8 further contains particles.
  • the biaxially oriented polyester film 8 contains particles means that when the biaxially oriented polyester film 8 contains a plurality of layers, at least one layer among the plurality of layers contains particles. means.
  • Examples of the particles include inorganic particles and organic particles.
  • examples of inorganic particles include silica (silicon oxide) particles, alumina (aluminum oxide) particles, titanium dioxide particles, calcium carbonate particles, kaolin particles, crystalline glass fillers, kaolin particles, talc particles, and silica-alumina composite oxide particles. , barium sulfate particles.
  • silica particles, calcium carbonate particles, and alumina particles are preferred, and silica particles and calcium carbonate particles are more preferred.
  • Silica particles are particularly preferred because they can reduce haze.
  • examples of organic particles include acrylic resin particles, melamine resin particles, silicone resin particles, and crosslinked polystyrene particles. Among these, acrylic resin particles are preferred.
  • acrylic resin particles include particles made of polymethacrylate, polymethylacrylate, or derivatives thereof. Note that these may be used alone or in combination of two or more.
  • the weight average particle diameter of the particles is preferably 0.5 ⁇ m or more, more preferably 0.8 ⁇ m or more, and even more preferably 1.5 ⁇ m or more. If it is 0.5 ⁇ m or more, unevenness can be formed on the surface of the biaxially oriented polyester film 8. Therefore, slipperiness can be imparted to the biaxially oriented polyester film 8. In addition to this, air that may be trapped when the biaxially oriented polyester film 8 is wound into a roll shape is easily removed, and appearance defects such as wrinkles and air bubbles can be reduced.
  • the weight average particle diameter of the particles is preferably 4.0 ⁇ m or less, more preferably 3.8 ⁇ m or less, and even more preferably 3.0 ⁇ m or less. When the thickness is 4.0 ⁇ m or less, it is possible to prevent coarse protrusions from forming on the biaxially oriented polyester film 8 .
  • the content of particles in the biaxially oriented polyester film 8 is preferably 100 ppm or more. When it is 100 ppm or more, it is possible to further impart slipperiness to the biaxially oriented polyester film 8 and to further reduce the occurrence of appearance defects.
  • the content of particles in the biaxially oriented polyester film 8 is preferably 1000 ppm or less, more preferably 800 ppm or less. When it is 1000 ppm or less, the arithmetic mean height Sa and maximum protrusion height Sp of the surface of the biaxially oriented polyester film 8 can be prevented from becoming excessively high.
  • the particle content is the mass of the particles relative to the mass of the biaxially oriented polyester film 8 (that is, the mass of the particles/the mass of the biaxially oriented polyester film 8).
  • the biaxially oriented polyester film 8 may further contain additives such as antioxidants, heat stabilizers, antistatic agents, ultraviolet absorbers, plasticizers, and pigments.
  • the area ratio of the region having a molecular weight of 1000 or less is preferably 5.5% or less of the total peak area.
  • the area ratio is 5.5% or less, that is, by setting an upper limit on the content of components with a molecular weight of 1,000 or less (i.e., low molecular weight components), the yellowishness that the biaxially oriented polyester film 8 may exhibit is reduced. be able to.
  • this area ratio is 5.5% or less, when a sealant layer is formed on the biaxially oriented polyester film 8, the peel strength between the biaxially oriented polyester film 8 and the sealant layer can also be improved.
  • This area ratio may be 5.4% or less, 5.3% or less, 5.2% or less, 5.1% or less, 5.4% or less, 5.3% or less, 5.2% or less, 5.1% or less, It may be .0% or less.
  • This area ratio may be 4.9% or less, 4.8% or less, 4.7% or less, 4.6% or less, 4. It may be .5% or less.
  • the area ratio of the region having a molecular weight of 1000 or less is 1.9% or more of the total peak area.
  • the molecular weight of the polyester contained in the biaxially oriented polyester film 8 is It can be limited to a certain degree.
  • This area ratio may be 2.0% or more, 2.2% or more, 2.4% or more, 2.6% or more, 2.0% or more, 2.2% or more, 2.4% or more, 2.6% or more, It may be .8% or more, or it may be 3.0% or more.
  • the color b * value per 1 ⁇ m of thickness of the biaxially oriented polyester film 8 is preferably 0.067 or less, more preferably 0.060 or less, and even more preferably 0.050 or less. If it is 0.067 or less, the yellowishness that the biaxially oriented polyester film 8 may exhibit can be limited. Therefore, for example, when a printed layer is formed on the biaxially oriented polyester film 8, the influence of the color tone of the biaxially oriented polyester film 8 on the appearance (that is, the external appearance) of the printed layer can be reduced. Further, for example, when a packaging container is produced using the biaxially oriented polyester film 8, the influence of the color tone of the biaxially oriented polyester film 8 on the appearance of the contents can be reduced.
  • the intrinsic viscosity of the biaxially oriented polyester film 8 is preferably 0.50 dl/g or more, more preferably 0.51 dl/g or more. When it is 0.50 dl/g or more, mechanical properties, specifically tensile strength and puncture strength, can be further improved. On the other hand, the intrinsic viscosity of the biaxially oriented polyester film 8 is preferably 0.70 dl/g or less, more preferably 0.65 dl/g or less. If it is 0.70 dl/g or less, stress during stretching (that is, stretching stress) in the biaxially oriented polyester film 8 manufacturing process can be further prevented from becoming excessively large, and as a result, breakage of the film that may occur during stretching can be further prevented. can be further suppressed or reduced.
  • the surface crystallinity of at least one surface of the biaxially oriented polyester film 8 is 1.10 or more, preferably 1.15 or more, more preferably 1.20 or more, and even more preferably 1.25 or more.
  • “one side” is one of both sides of the biaxially oriented polyester film 8.
  • the molecular weight of the polyester contained in the biaxially oriented polyester film 8 can be limited to a certain level or less.
  • a certain amount of low molecular weight components that can act as plasticizers can be present. This will be explained. The lower the molecular weight of the polyester contained in the biaxially oriented polyester film 8, the more the low molecular weight components in the biaxially oriented polyester film 8 tend to be. This is because low molecular weight components are incorporated into the polyester during the polymerization process.
  • the molecular weight of the polyester contained in the biaxially oriented polyester film 8 can be limited to a certain level or less. As a result, a certain amount of low molecular weight components can be present. Therefore, by having a surface crystallinity of 1.10 or more, a certain amount of low molecular weight components that can act like plasticizers can be present. Therefore, by having a surface crystallinity of 1.10 or more, stress during stretching (that is, stretching stress) in the biaxially oriented polyester film 8 manufacturing process can be prevented from becoming excessively large, and as a result, the stress generated during stretching can be prevented from becoming excessively large. Breakage of the obtained film can be suppressed or reduced.
  • the surface crystallinity of both surfaces of the biaxially oriented polyester film 8 is preferably 1.10 or more, more preferably 1.15 or more, even more preferably 1.20 or more, and even more preferably 1.25 or more.
  • the surface crystallinity of at least one side of the biaxially oriented polyester film 8 is 1.31 or less, preferably 1.30 or less, more preferably 1.29 or less, and even more preferably 1.28 or less.
  • a surface crystallinity of 1.31 or less it is possible to prevent the biaxially oriented polyester film 8 from becoming excessively brittle (that is, the toughness is excessively deteriorated), so that the mechanical properties, specifically the tensile strength The sheath piercing strength can be improved.
  • the degree of surface crystallinity on both sides of the biaxially oriented polyester film 8 is preferably 1.31 or less, more preferably 1.30 or less, even more preferably 1.29 or less, and even more preferably 1.28 or less.
  • the surface crystallinity is determined by ATR-IR. That is, it is determined by obtaining a spectrum by the attenuated total reflection method using a Fourier transform infrared spectrophotometer.
  • the surface crystallinity is the intensity ratio of absorption appearing near 1340 cm -1 and absorption appearing near 1410 cm -1 , specifically, intensity of 1340 cm -1 /intensity of 1410 cm -1 .
  • the absorption that appears around 1340 cm ⁇ 1 is due to the bending vibration of CH 2 (trans structure) of ethylene glycol.
  • the absorption that appears near 1410 cm -1 is unrelated to crystal or orientation.
  • ATR-IR measurement is performed under the following conditions.
  • FT-IR Bio Rad DIGILAB FTS-60A/896 Single reflection
  • ATR attachment golden gate MKII (manufactured by SPECAC)
  • Internal reflective element Diamond Incident angle: 45° Resolution: 4cm -1 Accumulated number of times: 128 times
  • the melting point of the biaxially oriented polyester film 8 is 251°C or higher, preferably 252°C or higher. Since the temperature is 251°C or higher, it has excellent heat resistance.
  • the melting point of the biaxially oriented polyester film 8 is preferably 270°C or lower, more preferably 268°C or lower. When the temperature is 270°C or lower, it is possible to prevent the viscosity from becoming excessively high when melt extruding the raw material polyester (for example, chemically recycled polyester) for forming the biaxially oriented polyester film 8, and as a result, high-speed film formation is possible. becomes possible.
  • the specific melt resistance at 285°C of the biaxially oriented polyester film 8 is preferably 1.0 ⁇ 10 8 ⁇ cm or less, more preferably 0.5 ⁇ 10 8 ⁇ cm or less, and 0.25 ⁇ 10 8 ⁇ cm. The following are more preferred. If it is 1.0 ⁇ 10 8 ⁇ cm or less, when the polyester composition melt-extruded in the manufacturing process of the biaxially oriented polyester film 8 is adhered to the cooling drum by the electrostatic adhesion casting method, the polyester composition Since the surface of the object can be effectively charged with static electricity, the polyester composition can be brought into close contact with the cooling drum.
  • the film forming speed is the running speed (m/min) of the biaxially oriented polyester film 8 when the biaxially oriented polyester film 8 is wound onto a master roll.
  • the film forming speed can be calculated by multiplying the casting speed by the MD stretching ratio.
  • the melt specific resistance may be, for example, 0.01 ⁇ 10 8 ⁇ cm or more, 0.03 ⁇ 10 8 ⁇ cm or more, or 0.05 ⁇ 10 8 ⁇ cm. It may be more than that. When it is 0.01 ⁇ 10 8 ⁇ cm or more, the formation of foreign matter (for example, foreign matter caused by an alkaline earth metal compound that can lower the melting resistivity) can be suppressed or reduced.
  • the specific melt resistance of the biaxially oriented polyester film 8 can be adjusted by the content of the alkaline earth metal compound and the content of the phosphorus compound in the biaxially oriented polyester film 8.
  • the alkaline earth metal atoms (hereinafter sometimes referred to as "M2") constituting the alkaline earth metal compound have the effect of lowering the melting resistivity, so the content of the alkaline earth metal compound can be increased. The more the melting resistivity can be lowered.
  • the phosphorus compound itself is not considered to have the effect of lowering the melting resistivity of the biaxially oriented polyester film 8, it contributes to lowering the melting resistivity in the presence of the alkaline earth metal compound. Although the reason for this is not clear, it is thought that the inclusion of a phosphorus compound suppresses the generation of foreign substances and increases the amount of charge carriers.
  • alkaline earth metal compounds include alkaline earth metal hydroxides, aliphatic dicarboxylate salts (acetate, butyrate, etc., preferably acetate), aromatic subcarboxylate salts, and compounds having a phenolic hydroxyl group. Examples include salts with (such as salts with phenol).
  • alkaline earth metals include magnesium, calcium, strontium, and barium. Among them, magnesium is preferred. More specifically, magnesium hydroxide, magnesium acetate, calcium acetate, strontium acetate, barium acetate, etc. can be mentioned. Among them, magnesium acetate is preferred.
  • the alkaline earth metal compounds can be used alone or in combination of two or more. Although there are definitions of alkaline earth metals that do not include magnesium, in this specification, alkaline earth metals are used as a term that includes magnesium. In other words, alkaline earth metals herein refer to elements of group IIa of the periodic table.
  • chemically recycled polyester does not contain any or substantially alkaline earth metal compounds because catalysts and metal ions are removed during the recycling process.
  • the content of the alkaline earth metal compound can be adjusted by using a fuel-derived polyester or a masterbatch in which an alkaline earth metal compound is added thereto.
  • the content of the alkaline earth metal compound in the biaxially oriented polyester film 8 is preferably 20 ppm or more, more preferably 22 ppm or more, and 24 ppm or more on an alkaline earth metal atom basis (that is, in terms of alkaline earth metal atoms). More preferred.
  • the content of the alkaline earth metal compound is preferably 400 ppm or less, more preferably 350 ppm or less, even more preferably 300 ppm or less, based on alkaline earth metal atoms. When the content is 400 ppm or less, it is possible to suppress the generation of foreign substances and coloring caused by the alkaline earth metal compound.
  • the content of the alkaline earth metal compound is the mass of the alkaline earth metal compound on the basis of the alkaline earth metal atoms (that is, the content of the alkaline earth metal compound on the basis of the alkaline earth metal atoms) with respect to the mass of the biaxially oriented polyester film 8. mass of earth metal compound/mass of biaxially oriented polyester film 8).
  • the content of the magnesium compound in the biaxially oriented polyester film 8 is preferably 20 ppm or more, more preferably 22 ppm or more, and even more preferably 24 ppm or more on a magnesium atom basis (that is, in terms of magnesium atoms).
  • the content of the magnesium compound is preferably 400 ppm or less, more preferably 350 ppm or less, and even more preferably 300 ppm or less, based on magnesium atoms.
  • Phosphorus compounds include, for example, phosphoric acids (phosphoric acid, phosphorous acid, hypophosphorous acid, etc.), their esters (alkyl esters, aryl esters, etc.), alkylphosphonic acids, arylphosphonic acids, and their esters (alkyl esters, aryl esters, etc.).
  • Preferred phosphorus compounds include phosphoric acid, aliphatic esters of phosphoric acid (alkyl esters of phosphoric acid, etc.; for example, phosphoric acid mono-C1-6 alkyl esters such as phosphoric acid monomethyl ester, phosphoric acid monoethyl ester, phosphoric acid monobutyl ester) , phosphoric acid di-C1-6 alkyl esters such as phosphoric acid dimethyl ester, phosphoric acid diethyl ester, and phosphoric acid dibutyl ester, phosphoric acid tri-C1-6 alkyl esters such as phosphoric acid trimethyl ester, phosphoric acid triethyl ester, phosphoric acid tributyl ester, etc.
  • phosphoric acid mono-C1-6 alkyl esters such as phosphoric acid monomethyl ester, phosphoric acid monoethyl ester, phosphoric acid monobutyl ester
  • phosphoric acid di-C1-6 alkyl esters such as phospho
  • aromatic esters of phosphoric acid such as mono-, di-, or tri-C6-9 aryl esters of phosphoric acid, such as triphenyl phosphate, tricresyl phosphate, etc.
  • aliphatic esters of phosphorous acid alkyl esters; for example, mono-, di-, or tri-C1-6 alkyl esters of phosphorous acid such as trimethyl phosphite, tributyl phosphite, etc.
  • alkylphosphonic acids C1-6 alkyl esters such as methylphosphonic acid, ethylphosphonic acid, etc.
  • phosphonic acid alkylphosphonic acid alkyl esters (mono- or di-C1-6 alkyl esters of C1-6 alkylphosphonic acids such as dimethyl methylphosphonate, dimethyl ethylphosphonate, etc.), arylphosphonic acid alkyl esters (dimethyl phenylphosphonate, phenyl mono- or di
  • the content of the phosphorus compound in the biaxially oriented polyester film 8 is preferably 10 ppm or more, more preferably 11 ppm or more, and even more preferably 12 ppm or more, on a phosphorus atom basis (that is, in terms of phosphorus atoms). When it is 10 ppm or more, melt specific resistance can be effectively lowered. Further, the generation of foreign matter can be suppressed.
  • the content of the phosphorus compound may be 20 ppm or more, 40 ppm or more, or 50 ppm or more in terms of phosphorus atoms.
  • the content of the phosphorus compound is preferably 600 ppm or less, more preferably 550 ppm or less, and even more preferably 500 ppm or less, based on phosphorus atoms. If it is 600 ppm or less, diethylene glycol can reduce the production.
  • the content of the phosphorus compound may be 400 ppm or less, 200 ppm or less, or 100 ppm or less in terms of phosphorus atoms.
  • the content of the phosphorus compound is the mass of the phosphorus compound on a phosphorus atom basis with respect to the mass of the biaxially oriented polyester film 8 (that is, the mass of the phosphorus compound on a phosphorus atom basis/the mass of the biaxially oriented polyester film 8 ).
  • the mass ratio of alkaline earth metal atoms (i.e., M2) to phosphorus atoms (P), that is, the ratio of M2 mass to P mass (M2 mass/P mass) is 1.0 or more. is preferable, 1.1 or more is more preferable, 1.2 or more is even more preferable, 1.3 or more is even more preferable, and 1.4 or more is even more preferable.
  • M2 mass/P mass the mass ratio of alkaline earth metal atoms (i.e., M2) to phosphorus atoms (P), that is, the ratio of M2 mass to P mass (M2 mass/P mass) is 1.0 or more. is preferable, 1.1 or more is more preferable, 1.2 or more is even more preferable, 1.3 or more is even more preferable, and 1.4 or more is even more preferable.
  • this mass ratio is preferably 5.0 or less, more preferably 4.5 or less, and even more preferably 4.0 or less. When it is 5.0 or less, generation of foreign substances and coloring can
  • the number of moles of all the dicarboxylic acid components in the biaxially oriented polyester film 8 is 100 mol%
  • the number of moles of the isophthalic acid component is preferably 0.1 mol% or more, more preferably 0.15 mol% or more
  • the content is more preferably 0.2 mol% or more, and even more preferably 0.4 mol% or more. If the content is 0.1 mol % or more, when a sealant layer is provided on the biaxially oriented polyester film 8, the peel strength between the biaxially oriented polyester film 8 and the sealant layer can be improved.
  • the number of moles of the isophthalic acid component is preferably 3.0 mol% or less, more preferably 2.5 mol% or less, even more preferably 2.2 mol% or less, and even more preferably 2.0 mol% or less. If it is 3.0 mol% or less, it is possible to prevent the crystallinity from decreasing excessively, and therefore the heat resistance and mechanical properties (specifically, tensile strength and puncture strength) can be prevented from excessively decreasing. It can be prevented. Moreover, the thickness unevenness of the biaxially oriented polyester film 8 can be reduced, and the heat shrinkage rate of the biaxially oriented polyester film 8 can also be limited.
  • the tensile strength of the biaxially oriented polyester film 8 in at least one direction is preferably 180 MPa or more, more preferably 185 MPa or more, and even more preferably 190 MPa or more.
  • a product for example, a packaging container
  • the tensile strength of the biaxially oriented polyester film 8 in at least one direction is preferably 180 MPa or more, more preferably 185 MPa or more, and even more preferably 190 MPa or more.
  • a product for example, a packaging container
  • the tensile strength of the biaxially oriented polyester film 8 in the MD is preferably 180 MPa or more, more preferably 185 MPa or more, More preferably, the pressure is 190 MPa or more.
  • the tensile strength of the biaxially oriented polyester film 8 in at least one direction is preferably 350 MPa or less, more preferably 340 MPa or less, and even more preferably 330 MPa or less. If it is 350 MPa or less, stress during stretching (that is, stretching stress) in the biaxially oriented polyester film 8 manufacturing process can be further prevented from becoming excessively large, and as a result, breakage of the film that may occur during stretching can be further suppressed or reduced. can do.
  • the tensile strength may be 320 MPa or less.
  • the tensile strength of the biaxially oriented polyester film 8 in the MD (i.e. 0° direction), 45° direction, TD (i.e. 90° direction), and 135° direction is preferably 350 MPa or less, more preferably 340 MPa or less, More preferably, it is 330 MPa or less.
  • the tensile strength may be 320 MPa or less.
  • the puncture strength of the biaxially oriented polyester film 8 is preferably 0.50 N/ ⁇ m or more, more preferably 0.52 N/ ⁇ m or more, and even more preferably 0.55 N/ ⁇ m or more.
  • a product for example, a packaging container
  • the biaxially oriented polyester film 8 can be used to create a packaging container that is difficult to puncture.
  • the lamination strength of the biaxially oriented polyester film 8 is preferably 3.0 N/15 mm or more, more preferably 3.5 N/15 mm or more, and even more preferably 4.0 N/15 mm or more.
  • a product for example, a packaging container
  • the lamination strength of the biaxially oriented polyester film 8 is preferably 3.0 N/15 mm or more, more preferably 3.5 N/15 mm or more, and even more preferably 4.0 N/15 mm or more.
  • the heat shrinkage rate of the biaxially oriented polyester film 8 in the longitudinal direction, that is, MD, is preferably 2.0% or less, more preferably 1.8% or less.
  • the heat shrinkage rate of the MD may be, for example, 0.5% or more, or 0.8% or more.
  • the heat shrinkage rate in the width direction, that is, TD, of the biaxially oriented polyester film 8 is preferably -1.0% or more and 1.0% or less, more preferably -0.8% or more and 0.8% or less. If it is -1.0% or more and 1.0% or less, the frequency of occurrence of deformation and wrinkles due to heat can be reduced when performing secondary processing such as vapor deposition or printing.
  • the thickness of the biaxially oriented polyester film 8 is preferably 5 ⁇ m or more, more preferably 8 ⁇ m or more, and even more preferably 9 ⁇ m or more.
  • the thickness of the biaxially oriented polyester film 8 is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, even more preferably 50 ⁇ m or less, and particularly preferably 25 ⁇ m or less. The thinner the thickness, the lower the cost.
  • the biaxially oriented polyester film 8 includes a first layer 81 (hereinafter also referred to as “surface layer 81”), a second layer 82 (hereinafter also referred to as “center layer 82"), and a third layer 83 (hereinafter referred to as “ (also referred to as “surface layer 83").
  • the first layer 81, the second layer 82, and the third layer 83 are arranged in this order in the thickness direction of the biaxially oriented polyester film 8. Note that another layer may exist between the first layer 81 and the second layer 82 or between the second layer 82 and the third layer 83.
  • the first layer 81 that is, the surface layer 81, preferably contains chemically recycled polyester. If the first layer 81 contains chemically recycled polyester, the environmental load can be further reduced.
  • the explanation of the chemically recycled polyester in the first layer 81 is omitted because it overlaps with the above explanation (that is, the explanation of the chemically recycled polyester of the biaxially oriented polyester film 8). Therefore, the explanation of the chemically recycled polyester in the biaxially oriented polyester film 8 can also be treated as the explanation of the chemically recycled polyester in the first layer 81.
  • the content of the chemically recycled polyester is preferably 10% by mass or more, more preferably 20% by mass or more, and even more preferably 30% by mass or more, when the first layer 81 is 100% by mass.
  • the content of the chemically recycled polyester is preferably 95% by mass or less, more preferably 80% by mass or less, and even more preferably 70% by mass or less, when the first layer 81 is 100% by mass.
  • the first layer 81 preferably contains fossil fuel-derived polyester.
  • the description of the fossil fuel-derived polyester in the first layer 81 is omitted because it overlaps with the above description (that is, the description of the fossil fuel-derived polyester of the biaxially oriented polyester film 8). Therefore, the description of the fossil fuel-derived polyester in the biaxially oriented polyester film 8 can also be treated as the description of the fossil fuel-derived polyester in the first layer 81.
  • the content of the fossil fuel-derived polyester is preferably 5% by mass or more, more preferably 20% by mass or more, and even more preferably 30% by mass or more, when the first layer 81 is 100% by mass.
  • the content is 5% by mass or more, a certain amount of width in which the physical properties of the first layer 81 can be adjusted can be secured.
  • the content of the fossil fuel-derived polyester can be 100% by mass or less when the first layer 81 is 100% by mass.
  • the content of fossil fuel-derived polyester is preferably 90% by mass or less, more preferably 80% by mass or less, and even more preferably 70% by mass or less.
  • the first layer 81 may contain other polyesters, such as mechanically recycled polyester or biomass polyester.
  • the polyester content is preferably 80% by mass or more, more preferably 90% by mass or more, even more preferably 95% by mass or more, and even more preferably 98% by mass or more.
  • the first layer 81 may contain resin other than polyester.
  • the first layer 81 further includes particles.
  • the first layer 81 contains particles, unevenness can be formed on the surface of the biaxially oriented polyester film 8 . Therefore, slipperiness can be imparted to the biaxially oriented polyester film 8.
  • air that may be trapped when the biaxially oriented polyester film 8 is wound into a roll shape is easily removed, and appearance defects such as wrinkles and air bubbles can be reduced.
  • the explanation of the particles in the first layer 81 is omitted because it overlaps with the above explanation (that is, the explanation of the particles of the biaxially oriented polyester film 8). Therefore, the description of the particles in the biaxially oriented polyester film 8 can also be treated as the description of the particles in the first layer 81.
  • the content of particles in the first layer 81 is preferably 500 ppm or more, more preferably 600 ppm or more, and even more preferably 700 ppm or more. When it is 500 ppm or more, it is possible to further impart slipperiness to the biaxially oriented polyester film 8 and to further reduce the occurrence of appearance defects.
  • the content of particles in the first layer 81 may be 3000 ppm or less, 2000 ppm or less, or 1500 ppm or less.
  • the particle content is the mass of the particles relative to the mass of the first layer 81 (that is, the mass of the particles/the mass of the first layer 81).
  • the thickness of the first layer 81 is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, and even more preferably 0.5 ⁇ m or more.
  • the thickness of the first layer 81 is preferably 7 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 3 ⁇ m or less.
  • the description of the third layer 83 that is, the surface layer 83 is omitted because it overlaps with the description of the first layer 81. Therefore, the explanation of the first layer 81 can also be treated as the explanation of the third layer 83. For example, explanations about chemically recycled polyester, fossil fuel-derived polyester, particles, thickness, etc. for the first layer 81 can be treated as explanations for the third layer 83.
  • the first layer 81 and the third layer 83 can be independent from each other in terms of composition, physical properties (for example, thickness), and the like. Therefore, for example, the compositions of the first layer 81 and the third layer 83 may be the same or different. The thicknesses of both may be the same or different.
  • the second layer 82 ie, the center layer 82, preferably contains chemically recycled polyester. If the second layer 82 contains chemically recycled polyester, the environmental load can be further reduced.
  • the explanation of the chemically recycled polyester in the second layer 82 is omitted because it overlaps with the above explanation (that is, the explanation of the chemically recycled polyester of the biaxially oriented polyester film 8). Therefore, the description of the chemically recycled polyester in the biaxially oriented polyester film 8 can also be treated as the description of the chemically recycled polyester in the second layer 82.
  • the content of the chemically recycled polyester is preferably 10% by mass or more, more preferably 20% by mass or more, and even more preferably 30% by mass or more, when the second layer 82 is 100% by mass.
  • the content of the chemically recycled polyester is preferably 95% by mass or less, more preferably 80% by mass or less, and even more preferably 70% by mass or less, when the second layer 82 is 100% by mass.
  • the second layer 82 preferably contains fossil fuel-derived polyester.
  • the description of the fossil fuel-derived polyester in the second layer 82 is omitted because it overlaps with the above description (that is, the description of the fossil fuel-derived polyester of the biaxially oriented polyester film 8). Therefore, the description of the fossil fuel-derived polyester in the biaxially oriented polyester film 8 can also be treated as the description of the fossil fuel-derived polyester in the second layer 82.
  • the content of the fossil fuel-derived polyester is preferably 5% by mass or more, more preferably 20% by mass or more, and even more preferably 30% by mass or more, when the second layer 82 is 100% by mass.
  • the content of the fossil fuel-derived polyester is preferably 90% by mass or less, more preferably 80% by mass or less, and even more preferably 70% by mass or less, when the first layer 81 is 100% by mass.
  • the second layer 82 may include other polyesters, such as mechanically recycled polyester or biomass polyester.
  • the polyester content is preferably 80% by mass or more, more preferably 90% by mass or more, even more preferably 95% by mass or more, and even more preferably 98% by mass or more.
  • the second layer 82 may contain resin other than polyester.
  • the second layer 82 may or may not contain particles.
  • the explanation of the particles in the second layer 82 is omitted because it overlaps with the above explanation (that is, the explanation of the particles of the biaxially oriented polyester film 8). Therefore, the description of the particles in the biaxially oriented polyester film 8 can also be treated as a description of the particles in the second layer 82. Note that if the second layer 82 does not contain particles, voids that may occur around the particles will not occur, so that odor components can be prevented from passing through the biaxially oriented polyester film 8. In addition to this, it is easy to mix and use recovered raw materials from edge portions generated in the film forming process, recycled raw materials from other film forming processes, etc. in a timely manner, which is advantageous in terms of cost.
  • the content of particles in the second layer 82 may be 3000 ppm or less, 2000 ppm or less, 1500 ppm or less, 1000 ppm or less, or 500 ppm or less. , 100 ppm or less, 50 ppm or less, or 0 ppm or less.
  • the content of particles is the mass of particles relative to the mass of second layer 82 (that is, mass of particles/mass of second layer 82).
  • the thickness of the second layer 82 is preferably larger than the thickness of the first layer 81 and the thickness of the third layer 83.
  • the thickness of the second layer 82 is preferably 5 ⁇ m or more, more preferably 8 ⁇ m or more, and even more preferably 9 ⁇ m or more.
  • the thickness of the biaxially oriented polyester film 8 is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, and even more preferably 20 ⁇ m or less. The thinner the thickness, the lower the cost.
  • composition pattern A As a first composition pattern (hereinafter also referred to as "composition pattern A"), the first layer 81 contains chemically recycled polyester, the second layer 82 contains chemically recycled polyester, and the third layer 83 contains chemically recycled polyester.
  • composition pattern A is a pattern that includes. According to composition pattern A, chemically recycled polyester with few impurities constitutes both surface layers of the biaxially oriented polyester film 8, so defects in the biaxially oriented polyester film 8 can be reduced.
  • the description of the first layer 81, second layer 82, and third layer 83 in composition pattern A is omitted because it overlaps with the above description (i.e., the description of the first layer 81, second layer 82, and third layer 83). . Therefore, the above description can also be treated as a description of the first layer 81, second layer 82, and third layer 83 in composition pattern A. Therefore, the first layer 81 may contain polyester other than chemically recycled polyester, the second layer 82 may contain polyester other than chemically recycled polyester, and the third layer 83 may contain polyester other than chemically recycled polyester. It may also contain polyester.
  • composition pattern B is a pattern in which the first layer 81 contains chemically recycled polyester, and neither the second layer 82 nor the third layer 83 contains chemically recycled polyester. can be mentioned.
  • composition pattern B the surface layer of the biaxially oriented polyester film 8 is made of chemically recycled polyester containing few impurities, so that defects in the biaxially oriented polyester film 8 can be reduced.
  • the explanation of the first layer 81, second layer 82, and third layer 83 in composition pattern B is omitted because it overlaps with the above explanation (i.e., the explanation of the first layer 81, second layer 82, and third layer 83). .
  • composition pattern B the first layer 81 may contain polyester other than chemically recycled polyester.
  • composition pattern B it is preferable that the second layer 82 and/or the third layer 83 contain mechanically recycled polyester. According to this, the recycled raw material ratio can be further increased. In other words, the environmental load can be further reduced.
  • a third composition pattern (hereinafter also referred to as "composition pattern C") is a pattern in which the second layer 82 contains chemically recycled polyester, and neither the first layer 81 nor the third layer 83 contains chemically recycled polyester. can be mentioned.
  • the description of the first layer 81, second layer 82, and third layer 83 in composition pattern C is omitted because it overlaps with the above description (i.e., the description of the first layer 81, second layer 82, and third layer 83). . Therefore, the above explanation can also be treated as explanation of the first layer 81, second layer 82, and third layer 83 in composition pattern C. Therefore, the second layer 82 may contain polyester other than chemically recycled polyester. In addition, in composition pattern C, it is preferable that the first layer 81 and/or the third layer 83 contain mechanically recycled polyester. According to this, the recycled raw material ratio can be further increased. In other words, the environmental load can be further reduced.
  • composition pattern D As a fourth composition pattern (hereinafter also referred to as "composition pattern D"), the first layer 81 contains chemically recycled polyester, the second layer 82 contains chemically recycled polyester, and the third layer 83 contains chemically recycled polyester.
  • One example is a pattern that does not include .
  • the surface layer of the biaxially oriented polyester film 8 is made of chemically recycled polyester containing few impurities, so that defects in the biaxially oriented polyester film 8 can be reduced.
  • the description of the first layer 81, second layer 82, and third layer 83 in composition pattern D is omitted because it overlaps with the above description (i.e., the description of the first layer 81, second layer 82, and third layer 83). .
  • composition pattern D the first layer 81 may contain polyester other than chemically recycled polyester, and the second layer 82 may contain polyester other than chemically recycled polyester.
  • composition pattern D it is preferable that the third layer 83 contains mechanically recycled polyester. According to this, the recycled raw material ratio can be further increased. In other words, the environmental load can be further reduced.
  • composition pattern E a fifth composition pattern (hereinafter also referred to as "composition pattern E"), the first layer 81 contains chemically recycled polyester, the second layer 82 does not contain chemically recycled polyester, and the third layer 83 contains chemically recycled polyester.
  • composition pattern E a pattern that includes.
  • composition pattern E chemically recycled polyester with few impurities constitutes both surface layers of the biaxially oriented polyester film 8, so defects in the biaxially oriented polyester film 8 can be reduced.
  • the description of the first layer 81, second layer 82, and third layer 83 in composition pattern E is omitted because it overlaps with the above description (i.e., the description of the first layer 81, second layer 82, and third layer 83). . Therefore, the above description can also be treated as a description of the first layer 81, second layer 82, and third layer 83 in composition pattern E. Therefore, the first layer 81 may contain polyester other than chemically recycled polyester, and the third layer 83 may contain polyester other than chemically recycled polyester.
  • the second layer 82 preferably contains mechanically recycled polyester. According to this, the recycled raw material ratio can be further increased. In other words, the environmental load can be further reduced.
  • the raw material for forming the first layer 81 is supplied to the first extruder, the raw material for forming the second layer 82 is supplied to the second extruder, and the raw material for forming the third layer 83 is supplied to the second extruder. They are fed to a third extruder, then melted, guided from the first, second and third extruders to a T-die, laminated within the T-die, and then melted from the T-die.
  • the biaxially oriented polyester film 8 can be produced by extruding, solidifying with a cooling drum, and biaxially stretching. Of course, these raw materials may be led from the first, second, and third extruders to the feed block, stacked in the feed block, and then extruded from the T-die. Note that a method other than the T-die method, such as a tubular method, may be employed.
  • raw materials for forming the first layer 81 include chemically recycled polyester, fossil fuel-derived polyester, particle-containing masterbatch, and alkaline earth metal compound/phosphorus compound-containing masterbatch (hereinafter referred to as "MP masterbatch”). ) can be mentioned. It is preferable to use at least these as raw materials for forming the first layer 81.
  • the particle-containing masterbatch can include polyester and particles (eg, silica).
  • the particle-containing masterbatch may include particles (eg, silica) at the highest concentration of the individual ingredients used to form the first layer 81 .
  • the polyester of the particle-containing masterbatch may be chemically recycled polyester, fossil fuel-derived polyester, mechanically recycled polyester, or biomass polyester. Among these, chemically recycled polyester and fossil fuel-derived polyester are preferred, and fossil fuel-derived polyester is more preferred.
  • the content of particles in the particle-containing masterbatch is preferably 5,000 ppm or more, more preferably 10,000 ppm or more, and even more preferably 20,000 ppm or more.
  • the content of particles in the particle-containing masterbatch may be 1,000,000 ppm or less, 200,000 ppm or less, or 100,000 ppm or less.
  • the content of particles is the mass of particles relative to the mass of masterbatch containing particles (that is, mass of particles/mass of masterbatch containing particles).
  • the MP masterbatch (that is, the alkaline earth metal compound/phosphorus compound-containing masterbatch) can contain polyester, an alkaline earth metal compound, and a phosphorus compound.
  • the MP masterbatch contains the alkaline earth metal compound at the highest concentration and also contains the phosphorus compound at the highest concentration.
  • the polyester of the MP masterbatch may be chemically recycled polyester, fossil fuel-derived polyester, mechanically recycled polyester, or biomass polyester. Among these, chemically recycled polyester and fossil fuel-derived polyester are preferred, and fossil fuel-derived polyester is more preferred. Note that the MP masterbatch can be produced, for example, by adding a large amount of an alkaline earth metal compound and a phosphorus compound when polymerizing polyester.
  • the content of the alkaline earth metal compound in the MP masterbatch is preferably 200 ppm or more, preferably 400 ppm or more, preferably 600 ppm or more, and 700 ppm on an alkaline earth metal atom basis (that is, in terms of alkaline earth metal atoms).
  • the above is preferable.
  • the content of the alkaline earth metal compound may be, for example, 3000 ppm or less, 2000 ppm or less, or 1500 ppm or less, based on alkaline earth metal atoms.
  • the content of the alkaline earth metal compound is the mass of the alkaline earth metal compound on the basis of alkaline earth metal atoms (in other words, the content of the alkaline earth metal compound on the basis of alkaline earth metal atoms) with respect to the mass of the MP masterbatch. mass of compound/mass of MP masterbatch).
  • the content of the magnesium compound in the MP masterbatch is, for example, preferably 200 ppm or more, preferably 400 ppm or more, preferably 600 ppm or more, and preferably 700 ppm or more, on a magnesium compound atom basis (that is, in terms of magnesium compound atoms).
  • the content of the alkaline earth metal compound may be, for example, 3000 ppm or less, 2000 ppm or less, or 1500 ppm or less, based on magnesium compound atoms.
  • the content of the phosphorus compound in the MP masterbatch is preferably, for example, 150 ppm or more, more preferably 300 ppm or more, even more preferably 350 ppm or more, and even more preferably 400 ppm or more, on a phosphorus atom basis (that is, in terms of phosphorus atoms).
  • the content of the phosphorus compound may be 1000 ppm or less, 800 ppm or less, or 700 ppm or less based on phosphorus atoms.
  • the content of the phosphorus compound is the mass of the phosphorus compound on a phosphorus atom basis with respect to the mass of the MP masterbatch (that is, the mass of the phosphorus compound on a phosphorus atom basis/the mass of the MP masterbatch).
  • an alkaline earth metal compound-containing masterbatch and a phosphorus compound-containing masterbatch may be used.
  • the alkaline earth metal compound-containing masterbatch can include a polyester and an alkaline earth metal compound. This masterbatch contains the alkaline earth metal compound at the highest concentration among the individual raw materials for forming the first layer 81.
  • the phosphorus compound-containing masterbatch can include a polyester and a phosphorus compound. This masterbatch contains the highest concentration of phosphorus compounds among the individual raw materials for forming the first layer 81.
  • raw materials for forming the second layer 82 include chemically recycled polyester, fossil fuel-derived polyester, and a masterbatch containing an alkaline earth metal compound and a phosphorus compound (that is, MP masterbatch). It is preferable to use at least these as raw materials for forming the second layer 82.
  • the description of the MP masterbatch in the second layer 82 is omitted because it overlaps with the above description (that is, the description of the MP masterbatch in the first layer 81). Therefore, the explanation of the MP masterbatch in the first layer 81 can also be treated as the explanation of the MP masterbatch in the second layer 82.
  • the description of the raw materials for forming the third layer 83 is omitted because it overlaps with the description of the raw materials for forming the first layer 81. Therefore, the description of the raw materials for forming the first layer 81 can also be treated as the description of the raw materials for forming the third layer 83.
  • the raw material for forming the first layer 81 and the raw material for forming the third layer 83 can be independent from each other. Therefore, for example, these raw materials may be the same or different.
  • These raw materials are preferably dried before being supplied to the extruder.
  • a dryer such as a hopper dryer or a paddle dryer, or a vacuum dryer can be used.
  • the raw material for forming the first layer 81 is sent to the first extruder, the raw material for forming the second layer 82 is sent to the second extruder, and the raw material for forming the third layer 83 is sent to the third extruder.
  • a film-like polyester composition can be extruded from a T-die and cast onto a cooling drum. Thereby, the polyester composition can be rapidly solidified, and as a result, a substantially unoriented unstretched film can be obtained.
  • the surface temperature of the cooling drum is preferably 40° C. or lower.
  • the unstretched film can be biaxially stretched.
  • Biaxial stretching can enhance mechanical properties such as tensile strength.
  • the biaxial stretching may be simultaneous biaxial stretching or sequential biaxial stretching. Among these, sequential biaxial stretching is preferred.
  • sequential biaxial stretching it is preferable that the unstretched film is stretched in the longitudinal direction, that is, MD, and the sheet after MD stretching is stretched in the width direction, that is, TD. According to this, the biaxially oriented polyester film 8 having excellent thickness uniformity can be manufactured at a relatively high film forming speed.
  • the temperature at which the unstretched film is stretched in the longitudinal direction is preferably 80°C or higher and 130°C or lower.
  • the stretching ratio at this time that is, the MD stretching ratio is preferably 3.3 times or more and 4.7 times or less.
  • shrinkage stress in the longitudinal direction can be reduced, the bowing phenomenon can be reduced, and variations in molecular orientation and heat shrinkage rate in the width direction of the biaxially oriented polyester film 8 can be reduced. and distortion can be reduced.
  • the method for stretching the unstretched film in the longitudinal direction may be, for example, a method of stretching in multiple stages between a plurality of rolls, or a method of stretching by heating with an infrared heater or the like.
  • the latter is preferred because it is easy to raise the temperature, local heating is easy, and scratches and defects caused by the roll can be reduced.
  • At least one surface of the longitudinally stretched film may be subjected to surface treatment such as corona treatment or plasma treatment, if necessary.
  • surface treatment such as corona treatment or plasma treatment
  • a resin dispersion or a resin solution may be applied to at least one surface of the film stretched in the longitudinal direction.
  • functions such as easy slipping, easy adhesion, and antistatic properties can be imparted.
  • both surface treatment such as corona treatment or plasma treatment and application of a resin dispersion or resin solution may be performed.
  • the film stretched in the longitudinal direction is guided into a tenter device, both ends of the film are gripped with clips, the film is heated to a predetermined temperature with hot air, and the distance between the clips is widened while being conveyed in the longitudinal direction. can be stretched in the width direction.
  • the preheating temperature when stretching the film in the width direction is preferably 100°C or more and 130°C or less.
  • the shrinkage stress generated when stretching in the longitudinal direction can be reduced, the bowing phenomenon can be reduced, and variations in molecular orientation and heat shrinkage rate in the width direction of the biaxially oriented polyester film 8 can be reduced. and distortion can be reduced.
  • the temperature at which the film is stretched in the width direction is preferably 105°C or more and 135°C or less.
  • the temperature is 105° C. or higher, stretching stress in the longitudinal direction caused by TD stretching can be reduced, and an increase in the bowing phenomenon can be suppressed.
  • the temperature is 135° C. or lower, even when polyester (for example, chemically recycled polyester) whose heating crystallization temperature is about 130° C. is used, breakage of the film that may occur during stretching can be suppressed or reduced.
  • the stretching ratio when stretching the film in the width direction is preferably 3.5 times or more and 5.0 times or less.
  • it is easy to obtain a high yield in terms of material balance, and it is also possible to suppress a decrease in mechanical strength, and also to suppress an increase in thickness unevenness in the width direction. If it is 5.0 times or less, breakage of the film that may occur during stretching can be suppressed or reduced.
  • the biaxially stretched film can be heated for heat setting.
  • the heat setting temperature is preferably 220°C or more and 250°C or less.
  • the temperature is 220° C. or higher, it is possible to prevent the thermal shrinkage rate from becoming excessively high in both the longitudinal direction and the width direction. Therefore, thermal dimensional stability during secondary processing can be improved.
  • the temperature is 250° C. or lower, an increase in the bowing phenomenon can be suppressed, and variations and distortions in the molecular orientation and thermal shrinkage rate in the width direction of the biaxially oriented polyester film 8 can be reduced.
  • a heat relaxation treatment can be performed in conjunction with the heat setting treatment or separately from the heat setting treatment.
  • the relaxation rate in the width direction in the thermal relaxation treatment is preferably 4% or more and 8% or less. When it is 4% or more, it is possible to prevent the heat shrinkage rate in the width direction from becoming excessively high. Therefore, thermal dimensional stability during secondary processing can be improved. When it is 8% or less, it is possible to prevent the stretching stress in the longitudinal direction at the center portion in the width direction of the film from becoming excessively large, and it is possible to suppress an increase in the bowing phenomenon.
  • the binding force in the width direction decreases and the film loosens due to its own weight, and hot air blows out from nozzles installed above and below the film. Air currents may cause the film to swell.
  • the amount of change in the orientation angle of the biaxially oriented polyester film 8 tends to fluctuate greatly. For example, the speed of the hot air blown from the nozzle can be adjusted so that the film can remain parallel.
  • Corona discharge treatment, glow discharge treatment, flame treatment, and surface roughening treatment may be performed. Furthermore, anchor coating treatment or the like may be performed.
  • the wide biaxially oriented polyester film 8 stretched and formed by such a procedure may be wound up using a winder device to form a roll.
  • a master roll may be produced.
  • the width of the master roll is preferably 5000 mm or more and 10000 mm or less. When it is 5000 mm or more, the cost per film area can be suppressed in subsequent secondary processing such as slitting process, vapor deposition process, and printing process.
  • the winding length of the master roll is preferably 10,000 m or more and 100,000 m or less.
  • the length is 10,000 m or more, the cost per film area can be suppressed in subsequent secondary processing such as slitting process, vapor deposition process, and printing process.
  • a film roll may be produced.
  • the winding width of the film roll is preferably 400 mm or more and 3000 mm or less. If it is 400 mm or more, the frequency of replacing the film roll in the printing process can be reduced, and costs can be reduced. When it is 3000 mm or less, the roll width is not excessively large and the roll weight can be prevented from becoming excessively heavy. In other words, the handling property is good.
  • the winding length of the film roll is preferably 2000 m or more and 65000 m or less.
  • the length is 2000 m or more, the frequency of replacing the film roll in the printing process can be reduced, and costs can be reduced.
  • it is 65,000 m or less, the roll diameter is not excessively large and the roll weight can be prevented from becoming excessively heavy. In other words, the handling property is good.
  • the core used for the film roll is not particularly limited, and may be made of plastic or metal with a diameter of 3 inches (37.6 mm), 6 inches (152.2 mm), 8 inches (203.2 mm), etc.
  • a cylindrical winding core made of aluminum or paper can be used.
  • the biaxially oriented polyester film 8 can be used for various purposes.
  • it can be suitably used as a packaging container, a label (for example, a label for wrapping around a PET bottle), and an exterior film for electronic components such as the exterior for lithium ion batteries.
  • a packaging container for example, a label for wrapping around a PET bottle
  • an exterior film for electronic components such as the exterior for lithium ion batteries.
  • it can be suitably used for packaging containers.
  • it can be suitably used for food packaging containers.
  • the laminate 9 includes a biaxially oriented polyester film 8 and a sealant layer 21. Since the laminate 9 includes the sealant layer 21, a product (for example, a packaging container) including the laminate 9 can be manufactured by heat sealing.
  • the sealant layer 21 is a layer that can be softened at a lower temperature than the biaxially oriented polyester film 8. That is, the sealant layer 21 can be melted at a lower temperature than the biaxially oriented polyester film 8.
  • the sealant layer 21 may be formed of, for example, a hot melt adhesive, a film, or a material other than these.
  • Thermoplastic resin can be used as a material constituting the sealant layer 21.
  • materials constituting the sealant layer 21 include polyethylene resins such as high-density polyethylene (HDPE), low-density polyethylene (LDPE), and linear low-density polyethylene (LLDPE), polypropylene resins, ethylene-vinyl acetate copolymers, and ethylene. - ⁇ -olefin random copolymers and ionomer resins can be mentioned.
  • the sealant layer 21 may contain one kind of these, and may contain two or more kinds.
  • biomass polyethylene is preferable as the polyethylene from the viewpoint of further reducing environmental load.
  • Biomass polyethylene is polyethylene manufactured using biomass ethanol as a raw material.
  • biomass polyethylene produced using fermented ethanol derived from biomass obtained from plant materials as a raw material is preferred.
  • plant materials mention may be made, for example, of corn, sugar cane, beets and manioc.
  • the sealant layer 21 can contain additives.
  • additives for example, oxygen absorbers, plasticizers, UV stabilizers, antioxidants, color inhibitors, matting agents, deodorants, flame retardants, weathering agents, antistatic agents, friction reducers, slip agents. , a mold release agent, an antioxidant, an ion exchange agent, an anti-blocking agent, and a coloring agent.
  • the thickness of the sealant layer 21 may be, for example, 5 ⁇ m or more, or 7 ⁇ m or more.
  • the thickness of the sealant layer 21 may be, for example, 50 ⁇ m or less or 30 ⁇ m or less. Note that the sealant layer 21 may have a single layer structure or may have a two or more layer structure.
  • the laminate 9 can further include a printed layer 11.
  • the laminate 9 can include a printed layer 11 , a biaxially oriented polyester film 8 , and a sealant layer 21 .
  • the printed layer 11, the biaxially oriented polyester film 8, and the sealant layer 21 can be arranged in this order in the thickness direction of the laminate 9.
  • the printing layer 11, that is, the ink layer 11 can impart a design to the laminate 9.
  • the design may be, for example, a design such as a pattern, a picture, a photograph, or a figure, or a symbol such as a letter, code, or mark, or it may be a combination of two or more of these. Any combination may be used.
  • the design may be plain.
  • the shape of the printed layer 11 when the laminate 9 is viewed in the perpendicular direction can be set as appropriate.
  • the size of the printed layer 11 may be the same as the size of the biaxially oriented polyester film 8 or may be smaller than the biaxially oriented polyester film 8.
  • the printing layer 11 can contain resin.
  • the resin include acrylic resin, urethane resin, polyester resin, vinyl chloride resin, vinyl acetate copolymer resin, and mixtures of two or more of these resins.
  • Print layer 11 can contain a colorant. Examples of colorants include pigments and dyes.
  • the printed layer 11 can contain additives. Examples of additives include antistatic agents, light blocking agents, ultraviolet absorbers, plasticizers, lubricants, fillers, stabilizers, lubricants, antifoaming agents, crosslinking agents, antiblocking agents, antioxidants, etc. can.
  • the printed layer 11 can be formed using ink.
  • the ink can include, for example, a solvent.
  • the ink may be an ink using raw materials derived from biomass.
  • the printed layer 11 can be formed by printing ink and drying it.
  • printing methods include offset printing, gravure printing, and screen printing.
  • drying methods after printing include hot air drying, hot roll drying, and infrared drying.
  • the laminate 9 may further include a paper layer.
  • the laminate 9 may include a paper layer between the biaxially oriented polyester film 8 and the printed layer 11, or may include a paper layer between the printed layer 11 and the sealant layer 21.
  • the biaxially oriented polyester film 8 in at least a portion of the laminate 9, the biaxially oriented polyester film 8, the paper layer, the printing layer 11, and the sealant layer 21 may be arranged in this order in the thickness direction of the laminate 9 (not shown). do not have).
  • the paper layer for example, high quality paper, art paper, coated paper, resin coated paper, cast coated paper, paperboard, synthetic paper, impregnated paper, etc. can be used.
  • the thickness of the paper layer is preferably, for example, 30 g/m 2 or more and 400 g/m 2 or less.
  • the paper layer can be laminated to the biaxially oriented polyester film 8 via other layers (for example, an adhesive layer, an adhesive resin layer, an anchor coat layer).
  • the adhesive layer can be formed with an adhesive, ie, a laminating adhesive.
  • a laminating adhesive For example, it can be formed by applying a laminating adhesive to the biaxially oriented polyester film 8 and/or the paper layer and drying.
  • the laminating adhesive may be a one-component curing type or a two-component curing type.
  • the laminating adhesive may be solvent-based, water-based, or emulsion-based.
  • Examples of laminating adhesives include vinyl adhesives, (meth)acrylic adhesives, polyamide adhesives, polyester adhesives, polyether adhesives, polyurethane adhesives, epoxy adhesives, and rubber adhesives. can be mentioned. Note that these may be used alone or in combination of two or more.
  • the thickness of the adhesive layer may be, for example, 0.1 ⁇ m or more, or 1 ⁇ m or more.
  • the thickness of the adhesive layer may be, for example, 10 ⁇ m or less, or 5 ⁇ m or less.
  • the adhesive resin layer contains a thermoplastic resin.
  • thermoplastic resins include low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear low-density polyethylene, ethylene-acrylic acid copolymer, ethylene-ethyl acrylate copolymer, and ethylene-methacrylic acid copolymer. , ethylene-methyl methacrylate copolymer, ethylene-maleic acid copolymer, and ionomer resin.
  • resins in which at least one of an unsaturated carboxylic acid, an unsaturated carboxylic acid, an unsaturated carboxylic acid anhydride, and an ester monomer is graft-polymerized and/or copolymerized with a polyolefin resin can also be mentioned.
  • a resin obtained by graft-modifying maleic anhydride onto a polyolefin resin can also be mentioned. Note that these may be used alone or in combination of two or more.
  • the thickness of the adhesive resin layer may be, for example, 0.1 ⁇ m or more, 1 ⁇ m or more, 5 ⁇ m or more, or 10 ⁇ m or more.
  • the thickness of the adhesive resin layer may be, for example, 100 ⁇ m or less, 50 ⁇ m or less, 10 ⁇ m or less, or 5 ⁇ m or less.
  • the anchor coat layer can be formed from a composition containing a resin and a curing agent.
  • the resin include urethane-based, polyester-based, acrylic-based, titanium-based, isocyanate-based, imine-based, and polybutadiene-based resins.
  • urethane-based, polyester-based, and acrylic-based resins are preferred.
  • urethane resin is preferred.
  • acrylic resin is preferred from the viewpoint of water resistance. Note that these may be used alone or in combination of two or more.
  • the curing agent include epoxy, isocyanate, and melamine curing agents. Note that these may be used alone or in combination of two or more.
  • the composition for forming the anchor coat layer preferably contains a silane coupling agent. It is preferable that the silane coupling agent has one or more organic functional groups in the molecule.
  • the silane coupling agent has a plurality of organic functional groups (that is, one or more) in the molecule, the plurality of organic functional groups may be the same or different. In other words, each of the plurality of organic functional groups can be independent. Examples of organic functional groups include alkoxy groups, amino groups, epoxy groups, and isocyanate groups.
  • the composition for forming the anchor coat layer may contain a solvent.
  • solvents include aromatic solvents such as benzene and toluene, alcohol solvents such as methanol and ethanol, ketone solvents such as acetone and methyl ethyl ketone, ester solvents such as ethyl acetate and butyl acetate, and polyhydric alcohols such as ethylene glycol monomethyl ether. Derivatives can be mentioned.
  • the anchor coat layer can be formed by applying a composition for forming the anchor coat layer to the biaxially oriented polyester film 8 and drying it.
  • the thickness of the anchor coat layer may be, for example, 0.1 ⁇ m or more, or 0.2 ⁇ m or more.
  • the thickness of the anchor coat layer may be, for example, 2 ⁇ m or less, or 1 ⁇ m or less.
  • the laminate 9 may further include an inorganic thin film layer 31, that is, a vapor deposition layer 31.
  • the laminate 9 may include a printed layer 11 , a biaxially oriented polyester film 8 , an inorganic thin film layer 31 , and a sealant layer 21 .
  • the printed layer 11, the biaxially oriented polyester film 8, the inorganic thin film layer 31, and the sealant layer 21 can be arranged in this order in the thickness direction of the laminate 9. Since the laminate 9 includes the inorganic thin film layer 31, gas barrier properties can be improved.
  • the inorganic thin film layer 31 can contain an inorganic oxide.
  • inorganic oxides include silicon (Si), aluminum (Al), magnesium (Mg), calcium (Ca), potassium (K), tin (Sn), sodium (Na), boron (B), and titanium (Ti). ), lead (Pb), zirconium (Zr), and yttrium (Y) oxides.
  • Preferable materials for forming the inorganic thin film layer 31 include silicon oxide (ie, silica), aluminum oxide (ie, alumina), and a mixture of silicon oxide and aluminum oxide. Among these, a composite oxide of silicon oxide and aluminum oxide is more preferable because it can achieve both flexibility and denseness of the inorganic thin film layer 31.
  • the mixing ratio of silicon oxide and aluminum oxide is a mass ratio in terms of metal atoms, that is, a mass ratio in terms of metal atoms, and Al is preferably 20% by mass or more and 70% by mass or less.
  • the content is 20% by mass or more, gas barrier properties are excellent.
  • the content is 70% by mass or less, the inorganic thin film layer 31 can be prevented from becoming excessively hard.
  • silicon oxide herein refers to various silicon oxides such as SiO and SiO 2 or mixtures thereof
  • aluminum oxide refers to various aluminum oxides such as AlO and Al 2 O 3 or mixtures thereof. .
  • the inorganic thin film layer 31 may be a metal vapor deposition layer.
  • the metal of the metal vapor deposition layer include magnesium, aluminum, titanium, chromium, iron, nickel, copper, zinc, silver, tin, platinum, and gold.
  • aluminum is preferred. That is, it is preferable that the inorganic thin film layer 31 is an aluminum vapor deposited layer.
  • the thickness of the inorganic thin film layer 31 may be, for example, 1 nm or more, 5 nm or more, 10 nm or more, or 20 nm or more.
  • the thickness of the inorganic thin film layer 31 may be, for example, 200 nm or less, 100 nm or less, or 50 nm or less.
  • the inorganic thin film layer 31 may have a single layer structure, or may have a two or more layer structure. When the inorganic thin film layer 31 has two or more layers, these layers can be independent from each other in terms of composition, physical properties (for example, thickness), and the like.
  • the inorganic thin film layer 31 can be formed by, for example, a physical vapor deposition method (PVD method) such as a vacuum evaporation method, a sputtering method, or an ion plating method, a plasma chemical vapor deposition method, a thermal chemical vapor deposition method, or a photochemical vapor deposition method. It can be formed by a chemical vapor deposition method (CVD method) such as.
  • CVD method chemical vapor deposition method
  • a mixture of SiO 2 and Al 2 O 3 or a mixture of SiO 2 and Al can be used as the evaporation raw material, for example.
  • These vapor deposition raw materials are preferably in the form of particles.
  • the size of the particles is preferably such that the pressure during vapor deposition does not change.
  • the particle size is preferably 1 mm to 5 mm.
  • heating methods such as resistance heating, high frequency induction heating, electron beam heating, laser heating, etc. can be adopted. It is also possible to introduce oxygen, nitrogen, hydrogen, argon, carbon dioxide, water vapor, etc. as a reactive gas, or to adopt reactive vapor deposition using means such as ozone addition or ion assist.
  • the film forming conditions can also be changed arbitrarily, such as by applying a bias to the object to be deposited (the laminated film to be subjected to vapor deposition), heating or cooling the object to be deposited.
  • the evaporation material, reaction gas, bias of the evaporation target, heating/cooling, etc. can be changed in the same way when sputtering or CVD is employed.
  • the laminate 9 may include the biaxially oriented polyester film 8, the inorganic thin film layer 31, and the sealant layer 21.
  • the biaxially oriented polyester film 8, the inorganic thin film layer 31, and the sealant layer 21 can be arranged in this order in the thickness direction of the laminate 9.
  • the laminate 9 may further include an anchor coat layer 32, that is, a covering layer 32.
  • the laminate 9 may include a printed layer 11 , a biaxially oriented polyester film 8 , an anchor coat layer 32 , an inorganic thin film layer 31 , and a sealant layer 21 .
  • the printed layer 11, the biaxially oriented polyester film 8, the anchor coat layer 32, the inorganic thin film layer 31, and the sealant layer 21 may be arranged in this order in the thickness direction of the laminate 9. .
  • the anchor coat layer 32 can connect the biaxially oriented polyester film 8 and the inorganic thin film layer 31.
  • anchor coat layer that includes the anchor coat layer 32
  • an explanation will be added because there are suitable examples specific to the anchor coat layer 32.
  • the anchor coat layer 32 can be formed from a composition containing a resin and a curing agent.
  • the resin include urethane-based, polyester-based, acrylic-based, titanium-based, isocyanate-based, imine-based, and polybutadiene-based resins.
  • urethane-based, polyester-based, and acrylic-based resins are preferred.
  • urethane resin is preferred.
  • acrylic resin is preferred from the viewpoint of water resistance. Note that these may be used alone or in combination of two or more.
  • the curing agent include epoxy, isocyanate, and melamine curing agents. Note that these may be used alone or in combination of two or more.
  • the composition for forming the anchor coat layer 32 preferably contains a silane coupling agent. It is preferable that the silane coupling agent has one or more organic functional groups in the molecule. When the silane coupling agent has a plurality of organic functional groups (that is, one or more) in the molecule, the plurality of organic functional groups may be the same or different. In other words, each of the plurality of organic functional groups can be independent. Examples of organic functional groups include alkoxy groups, amino groups, epoxy groups, and isocyanate groups.
  • the composition for forming the anchor coat layer 32 preferably contains a resin containing an oxazoline group, that is, a polymer containing an oxazoline group.
  • the oxazoline group has a high affinity with the inorganic thin film layer 31 and can react with the oxygen-deficient parts of the inorganic oxide and metal hydroxide that may be generated during the formation of the inorganic thin film layer 31. Can be firmly attached.
  • the unreacted oxazoline groups present in the anchor coat layer 32 are free from carboxylic acid terminals that may occur in the biaxially oriented polyester film 8 and the anchor coat layer 32 (for example, carboxylic acid terminals that may occur due to hydrolysis). Because they can react, crosslinks can be formed.
  • the composition for forming the anchor coat layer 32 may contain a solvent.
  • solvents include aromatic solvents such as benzene and toluene, alcohol solvents such as methanol and ethanol, ketone solvents such as acetone and methyl ethyl ketone, ester solvents such as ethyl acetate and butyl acetate, and polyhydric alcohols such as ethylene glycol monomethyl ether. Derivatives can be mentioned.
  • the anchor coat layer 32 can be formed by applying a composition for forming the anchor coat layer 32 to the biaxially oriented polyester film 8 and drying it.
  • the laminate 9 may include the biaxially oriented polyester film 8, the anchor coat layer 32, the inorganic thin film layer 31, and the sealant layer 21.
  • the biaxially oriented polyester film 8, the anchor coat layer 32, the inorganic thin film layer 31, and the sealant layer 21 can be arranged in this order in the thickness direction of the laminate 9.
  • the laminate 9 may further include a protective layer 33 on the inorganic thin film layer 31. That is, the laminate 9 may further include a protective layer 33 adjacent to the inorganic thin film layer 31.
  • the laminate 9 may include a printed layer 11 , a biaxially oriented polyester film 8 , an anchor coat layer 32 , an inorganic thin film layer 31 , a protective layer 33 , and a sealant layer 21 .
  • the printed layer 11, the biaxially oriented polyester film 8, the anchor coat layer 32, the inorganic thin film layer 31, the protective layer 33, and the sealant layer 21 are arranged in this order in the thickness direction of the laminate 9. I can be there.
  • the protective layer 33 the laminate 9 can suppress or reduce gas permeation.
  • the protective layer 33 plays a role in improving the gas barrier properties of the laminate 9.
  • the gas barrier properties of the laminate 9 can be improved. This will be explained.
  • the inorganic thin film layer 31 is dotted with minute defects.
  • the composition can be penetrated into the defective parts of the inorganic thin film layer 31, and as a result, the laminate 9 is Gas barrier properties can be improved.
  • Examples of the resin include urethane-based, polyester-based, acrylic-based, titanium-based, isocyanate-based, imine-based, and polybutadiene-based resins. Note that these may be used alone or in combination of two or more.
  • Examples of the curing agent include epoxy, isocyanate, and melamine curing agents. Note that these may be used alone or in combination of two or more.
  • urethane-based resins that is, urethane resins are preferred.
  • the polar group of the urethane bond interacts with the inorganic thin film layer 31, and the amorphous portion in the urethane resin exhibits flexibility, so damage to the inorganic thin film layer 31 is suppressed when bending load is applied. be able to.
  • the acid value of the urethane resin is preferably within the range of 10 mgKOH/g or more and 60 mgKOH/g or less. More preferably, it is within the range of 15 mgKOH/g or more and 55 mgKOH/g or less, and even more preferably within the range of 20 mgKOH/g or more and 50 mgKOH/g or less.
  • the acid value of the urethane resin is within the above range, the liquid stability is improved when it is made into an aqueous dispersion, and the protective layer 33 can be uniformly deposited on the highly polar inorganic thin film, so that the coat appearance is improved. becomes good.
  • the glass transition temperature (Tg) of the urethane resin is preferably 80°C or higher, more preferably 90°C or higher. By setting Tg to 80° C. or higher, it is possible to reduce swelling of the protective layer 33 due to molecular movement during the moist heat treatment process (temperature increase, temperature retention, and temperature decrease).
  • the urethane resin preferably contains an aromatic or araliphatic diisocyanate component as a main component.
  • an aromatic or araliphatic diisocyanate component it is particularly preferable to contain a metaxylylene diisocyanate component.
  • the proportion of aromatic or araliphatic diisocyanate in the urethane resin is preferably in the range of 50 mol% or more (that is, 50 mol% or more and 100 mol% or less) based on 100 mol% of the polyisocyanate component.
  • the proportion of the total amount of aromatic or araliphatic diisocyanates is preferably 60 mol% or more and 100 mol% or less, more preferably 70 mol% or more and 100 mol% or less, and still more preferably 80 mol% or more and 100 mol% or less.
  • the "Takelac (registered trademark) WPB" series commercially available from Mitsui Chemicals, Inc. can be suitably used.
  • the total amount of aromatic or araliphatic diisocyanate is 50 mol% or more, good gas barrier properties can be obtained.
  • the urethane resin has a carboxylic acid group (carboxyl group) from the viewpoint of improving affinity with the inorganic thin film layer 31.
  • a carboxylic acid (salt) group for example, a polyol compound having a carboxylic acid group such as dimethylolpropionic acid or dimethylolbutanoic acid may be introduced as a copolymerization component as a polyol component.
  • a carboxylic acid group-containing urethane resin is synthesized and then neutralized with a salt forming agent, an aqueous dispersion of the urethane resin can be obtained.
  • salt forming agent for example, ammonia, trialkylamines such as trimethylamine, triethylamine, triisopropylamine, tri-n-propylamine, tri-n-butylamine, N-alkyl such as N-methylmorpholine, N-ethylmorpholine, etc.
  • trialkylamines such as trimethylamine, triethylamine, triisopropylamine, tri-n-propylamine, tri-n-butylamine
  • N-alkyl such as N-methylmorpholine, N-ethylmorpholine, etc.
  • Examples include morpholines, N-dialkylalkanolamines such as N-dimethylethanolamine, and N-diethylethanolamine. These may be used alone or in combination of two or more.
  • the composition for forming the protective layer 33 may contain a solvent.
  • solvents include aromatic solvents such as benzene and toluene, alcohol solvents such as methanol and ethanol, ketone solvents such as acetone and methyl ethyl ketone, ester solvents such as ethyl acetate and butyl acetate, and polyhydric alcohols such as ethylene glycol monomethyl ether. Derivatives can be mentioned.
  • the protective layer 33 may be formed of a composition that is polycondensed by a sol-gel method. According to this, since the protective layer 33 with high gas barrier properties can be formed, the gas barrier properties of the laminate 9 can be improved.
  • a composition can contain the alkoxide represented by Formula 1 and at least one of a polyvinyl alcohol resin and an ethylene-vinyl alcohol copolymer.
  • Formula 1 R 1 n M(OR 2 ) m represents an organic group having 1 to 8 carbon atoms.
  • R 2 represents an organic group having 1 to 8 carbon atoms.
  • M represents a metal atom.
  • n represents an integer of 0 or more.
  • m represents an integer of 1 or more.
  • n+m represents the valence of M. Note that in Formula 1, when there is a plurality of R 1 s , each of the plural R 1s can be independent. In Formula 1, when there is a plurality of R 2 s, each of the plural R 2s can be independent.
  • alkoxide represented by Formula 1 at least one of a partial hydrolyzate of an alkoxide and a condensate of hydrolysis of an alkoxide can be used.
  • a partial hydrolyzate of an alkoxide and a condensate of hydrolysis of an alkoxide can be used.
  • the alkoxide partial hydrolyzate not all of the alkoxy groups need to be hydrolyzed.
  • a dimer or more of partially hydrolyzed alkoxide specifically a dimer to hexamer, can be used.
  • Examples of the metal atom represented by M include silicon, zirconium, titanium, and aluminum. Among these, silicon and titanium are preferred. Note that alkoxides of two or more different metal atoms may be used alone or in combination.
  • Examples of the organic group having 1 to 8 carbon atoms represented by R 1 include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, t Examples include alkyl groups such as -butyl group, n-hexyl group, and n-octyl group.
  • Examples of the organic group represented by R 2 include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, t-butyl group, n- Examples include alkyl groups such as hexyl and n-octyl groups.
  • This composition may contain a silane coupling agent.
  • the silane coupling agent include organoalkoxysilane containing an organic reactive group. Particularly preferred are organoalkoxysilanes having epoxy groups.
  • organoalkoxysilane having an epoxy group include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, and ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane. can. Note that these may be used alone or in combination of two or more.
  • composition can further contain, for example, a sol-gel method catalyst, an acid, water, and an organic solvent.
  • the laminate 9 may include the biaxially oriented polyester film 8, the anchor coat layer 32, the inorganic thin film layer 31, the protective layer 33, and the sealant layer 21.
  • the biaxially oriented polyester film 8, the anchor coat layer 32, the inorganic thin film layer 31, the protective layer 33, and the sealant layer 21 can be arranged in this order in the thickness direction of the laminate 9. .
  • the laminate 9 may further include a sealant layer 22.
  • the laminate 9 may include a sealant layer 22, a biaxially oriented polyester film 8, and a sealant layer 21.
  • the sealant layer 22, the biaxially oriented polyester film 8, and the sealant layer 21 can be arranged in this order in the thickness direction of the laminate 9.
  • the laminate 9 having the laminate configuration shown in FIGS. 3 to 6B may further include the sealant layer 22. It is preferable that one surface of both surfaces of the laminate 9 be constituted by the sealant layer 21 and the other surface be constituted by the sealant layer 22.
  • one of the pair of outermost layers of the laminate 9 is the sealant layer 21 and the other outermost layer is the sealant layer 22.
  • the description of the sealant layer 22 is omitted because it overlaps with the description of the sealant layer 21. Therefore, the description of the sealant layer 21 can also be treated as the description of the sealant layer 22.
  • FIG. 4A, FIG. 5A, and FIG. 6A the configuration in which the printing layer 11, the biaxially oriented polyester film 8, and the sealant layer 21 are arranged in this order in the thickness direction of the laminate 9 is explained, but of course , these do not need to be arranged in that order.
  • the biaxially oriented polyester film 8 the printed layer 11, and the sealant layer 21 may be arranged in this order in the thickness direction of the laminate 9.
  • the laminate 9 can include a biaxially oriented polyester film 8 , a printed layer 11 , and a sealant layer 21 .
  • the biaxially oriented polyester film 8, the printed layer 11, the inorganic thin film layer 31, and the sealant layer 21 are arranged in this order in the thickness direction of the laminate 9. good.
  • the laminate 9 can include a biaxially oriented polyester film 8 , a printed layer 11 , an inorganic thin film layer 31 , and a sealant layer 21 .
  • the biaxially oriented polyester film 8, the printed layer 11, the anchor coat layer 32, the inorganic thin film layer 31, and the sealant layer 21 are arranged in the thickness direction of the laminate 9. They may be arranged in order.
  • the laminate 9 can include a biaxially oriented polyester film 8 , a printing layer 11 , an anchor coat layer 32 , an inorganic thin film layer 31 , and a sealant layer 21 .
  • the biaxially oriented polyester film 8, the printed layer 11, the anchor coat layer 32, the inorganic thin film layer 31, the protective layer 33, and the sealant layer 21 are included in the laminate 9. They may be arranged in this order in the thickness direction.
  • the laminate 9 can include a biaxially oriented polyester film 8 , a printing layer 11 , an anchor coat layer 32 , an inorganic thin film layer 31 , a protective layer 33 , and a sealant layer 21 .
  • the laminate 9 may further include a sealant layer 22.
  • the laminate 9 may include a sealant layer 22, a biaxially oriented polyester film 8, a printed layer 11, and a sealant layer 21.
  • the sealant layer 22, the biaxially oriented polyester film 8, the printed layer 11, and the sealant layer 21 can be arranged in this order in the thickness direction of the laminate 9.
  • the laminate 9 having the laminate configuration shown in FIGS. 9 to 11 may further include the sealant layer 22. It is preferable that one surface of both surfaces of the laminate 9 be constituted by the sealant layer 21 and the other surface be constituted by the sealant layer 22. That is, it is preferable that one of the pair of outermost layers of the laminate 9 is the sealant layer 21 and the other outermost layer is the sealant layer 22.
  • the role played by the biaxially oriented polyester film 8 is not particularly limited.
  • the biaxially oriented polyester film 8 may play the role of holding the above-mentioned layers (eg, the sealant layer 21, the printing layer 11, the inorganic thin film layer 31), that is, the role of a base material.
  • the biaxially oriented polyester film 8 may be used not as a base material but for the purpose of improving some physical properties of the laminate 9, such as strength.
  • the biaxially oriented polyester film 8 used for that purpose plays the role of a support. That is, the biaxially oriented polyester film 8 may serve as a support.
  • another layer for example, a resin film, a paper layer
  • the laminate 9 may further include a layer that serves as a support (hereinafter referred to as a "support layer”). good.
  • the laminate 9 is a layer that plays a role as a base material (hereinafter referred to as a "base material layer”). ) may also be included.
  • the laminate 9 has been explained by focusing on the biaxially oriented polyester film 8, but from here on, we will focus on the base material layer and support layer rather than the biaxially oriented polyester film 8.
  • the laminate 9 will be explained. That is, the laminate 9 will be explained from a different perspective. Therefore, the explanation from here may have some overlap with the previous explanation.
  • the laminate 9 includes a base layer 51 and a sealant layer 21. Since the laminate 9 includes the sealant layer 21, a product (for example, a packaging container) including the laminate 9 can be manufactured by heat sealing.
  • a biaxially oriented polyester film 8 is used as the base layer 51. That is, the base material layer 51 is the biaxially oriented polyester film 8.
  • the base material layer 51 may have a single layer structure or may have a two or more layer structure. It may also have a laminated structure with a stretched nylon film).
  • the laminate 9 can further include a printed layer 11.
  • the laminate 9 can include a printed layer 11 , a base layer 51 , and a sealant layer 21 .
  • the printed layer 11, the base material layer 51, and the sealant layer 21 can be arranged in this order in the thickness direction of the laminate 9.
  • the laminate 9 can further include an intermediate layer 61.
  • the laminate 9 can include a printed layer 11 , a base layer 51 , an intermediate layer 61 , and a sealant layer 21 .
  • the printed layer 11, the base layer 51, the intermediate layer 61, and the sealant layer 21 can be arranged in this order in the thickness direction of the laminate 9.
  • the intermediate layer 61 may include a support layer, a gas barrier layer, a metal foil, or two or more of these. Of course, layers other than these, such as an adhesive layer, an adhesive resin layer, and an anchor coat layer, may also be included. Intermediate layer 61 may include printed layer 11 . By including the support in the intermediate layer 61, some physical properties of the laminate 9, such as strength, can be improved. When the intermediate layer 61 includes a gas barrier layer or metal foil, the gas barrier properties of the laminate 9 can be improved.
  • the support layer examples include a resin film and a paper layer.
  • resin films include polyester, (meth)acrylic resin, polyolefin (e.g. polyethylene, polypropylene, polymethylpentene), vinyl resin, cellulose resin, ionomer resin, polyamide (nylon 6, nylon 6,6, polymethaxylylene adipate).
  • films containing one or more resin materials such as Mido (MXD6).
  • MXD6 Mido
  • polyester is preferred. That is, it is preferable that the resin film contains polyester.
  • the resin film may be a stretched resin film or an unstretched resin film.
  • the stretched resin film may be a uniaxially stretched resin film or a biaxially stretched resin film. Among these, biaxially stretched resin films are preferred because they have excellent dimensional stability.
  • the support layer can contain additives.
  • additives include oxygen absorbers, plasticizers, ultraviolet stabilizers, antioxidants, color inhibitors, matting agents, deodorants, flame retardants, weathering agents, antistatic agents, friction reducers, and slip agents. agent, mold release agent, antioxidant, ion exchange agent, antiblocking agent, and coloring agent.
  • a biaxially oriented polyester film 8 may be used as the support layer. That is, the support layer may be a biaxially oriented polyester film 8.
  • the biaxially oriented polyester film 8 When the biaxially oriented polyester film 8 is used as the support layer, the biaxially oriented polyester film 8, a resin film, or a paper layer may be used as the base layer 51. In this way, when the biaxially oriented polyester film 8 is used as the support layer, it is not necessary to use the biaxially oriented polyester film 8 as the base layer 51.
  • examples of the base layer 51 include the biaxially oriented polyester film 8, a resin film other than the biaxially oriented polyester film 8, and a paper layer.
  • resin films include polyester, (meth)acrylic resin, polyolefin (e.g. polyethylene, polypropylene, polymethylpentene), vinyl resin, cellulose resin, ionomer resin, polyamide (nylon 6, nylon 6,6, polymethaxylylene adipate).
  • films containing one or more resin materials such as Mido (MXD6).
  • polyester is preferred. That is, it is preferable that the resin film contains polyester.
  • the resin film may be a stretched resin film or an unstretched resin film.
  • the stretched resin film may be a uniaxially stretched resin film or a biaxially stretched resin film.
  • biaxially stretched resin films are preferred because they have excellent dimensional stability.
  • intermediate layer 61 may include the anchor coat layer 32 on at least one surface of the support layer, or may include the inorganic thin film layer 31.
  • Intermediate layer 61 may include protective layer 33 (not shown).
  • the gas barrier layer contains a gas barrier resin.
  • gas barrier resins include ethylene-vinyl alcohol copolymer (EVOH), polyvinyl alcohol, polyacrylonitrile, polyamide (for example, nylon 6, nylon 6,6, polymethaxylylene adipamide (MXD6)), polyester, polyurethane, (Meth)acrylic resin can be mentioned.
  • the gas barrier layer may contain two or more kinds of gas barrier resins.
  • the gas barrier layer may further contain other resins or additives.
  • the thickness of the gas barrier layer may be, for example, 3 ⁇ m or more, 5 ⁇ m or more, or 7 ⁇ m or more.
  • the thickness of the gas barrier layer may be, for example, 30 ⁇ m or less, or 20 ⁇ m or less.
  • the metal foil examples include aluminum foil and magnesium foil. Among these, aluminum foil is preferred. Among these, aluminum foil containing iron is preferred from the viewpoint of pinhole resistance and spreadability.
  • the content of iron is preferably 0.1% by mass or more, more preferably 0.5% by mass or more in 100% by mass of the aluminum foil. On the other hand, the iron content is preferably 9.0% by mass or less, more preferably 2.0% by mass or more.
  • the metal foil may be pretreated.
  • pretreatment include degreasing, acid cleaning, alkali cleaning, and the like.
  • the thickness of the metal foil may be, for example, 3 ⁇ m or more, or 6 ⁇ m or more.
  • the thickness of the metal foil may be, for example, 100 ⁇ m or less, or 25 ⁇ m or less.
  • the printed layer 11, the base material layer 51, the intermediate layer 61, and the sealant layer 21 are arranged in this order in the thickness direction of the laminate 9.
  • the printed layer 11, the intermediate layer 61, the base material layer 51, and the sealant layer 21 may be arranged in this order in the thickness direction of the laminate 9 (not shown).
  • the laminate 9 may include a base layer 51, an intermediate layer 61, and a sealant layer 21.
  • the base layer 51, the intermediate layer 61, and the sealant layer 21 can be arranged in this order in the thickness direction of the laminate 9.
  • FIGS. 14 and 15A a configuration in which the printing layer 11, the base material layer 51, and the sealant layer 21 are arranged in this order in the thickness direction of the laminate 9 has been explained, but of course, these are not arranged in that order. You don't have to.
  • the base layer 51, the print layer 11, and the sealant layer 21 may be arranged in this order in the thickness direction of the laminate 9.
  • the laminate 9 can include a base layer 51 , a printed layer 11 , and a sealant layer 21 .
  • the base layer 51, the printed layer 11, the intermediate layer 61, and the sealant layer 21 may be arranged in this order in the thickness direction of the laminate 9.
  • the laminate 9 can include a base layer 51 , a printed layer 11 , an intermediate layer 61 , and a sealant layer 21 .
  • the base layer 51, the intermediate layer 61, and the sealant layer 21 may be arranged in this order in the thickness direction of the laminate 9.
  • the laminate 9 can include a base layer 51 , an intermediate layer 61 , and a sealant layer 21 .
  • the laminate 9 having the laminate configuration shown in FIGS. 13 to 17B may further include a sealant layer 22 (not shown). It is preferable that one surface of both surfaces of the laminate 9 be constituted by the sealant layer 21 and the other surface be constituted by the sealant layer 22. That is, it is preferable that one of the pair of outermost layers of the laminate 9 is the sealant layer 21 and the other outermost layer is the sealant layer 22.
  • the laminate 9 may include an adhesive layer in place of at least one of the sealant layer 21 and the sealant layer 22.
  • the adhesive layer can be formed using an adhesive.
  • the adhesive include synthetic rubbers such as styrene-butadiene rubber, acrylonitrile-butadiene rubber, and polyisobutylene rubber, natural rubber, acrylic resins, silicone resins, and polypropylene. Note that these may be used alone or in combination of two or more.
  • the laminate 9 is Including a base material layer 51 and a sealant layer 21 or an adhesive layer
  • the base material layer 51 may include the biaxially oriented polyester film 8 .
  • the laminate 9 is Including a base material layer 51, an intermediate layer 61, a sealant layer 21 or an adhesive layer, A configuration in which the intermediate layer 61 includes the biaxially oriented polyester film 8 is also possible.
  • the base material layer 51 is a biaxially oriented polyester film 8.
  • Base material layer (CRF)/adhesive layer/heat seal layer (PEF) (2) Base material layer (CRF)/heat seal layer (PE) (3) Base material layer (CRF)/anchor coat layer/heat seal layer (PE) (4) Base material layer (CRF)/anchor coat layer/adhesive resin layer (PE)/heat seal layer (PEF) (5) Base material layer (CRF)/Adhesive layer (6) Base material layer (CRF)/Inorganic thin film layer (MO)/Protective layer (MOR)/Adhesive layer/Heat seal layer (PEF) (7) Base material layer (CRF)/Inorganic thin film layer (MO)/Protective layer (MOR)/Heat seal layer (PE) (8) Base material layer (CRF)/Inorganic thin film layer (MO)/Protective layer (MOR)/Heat seal layer (PE) (8) Base material layer (CRF)/
  • the base layer 51 is the biaxially oriented polyester film 8.
  • Base material layer (CRF)/printing layer/adhesive layer/heat sealing layer (PEF) (2) Base material layer (CRF)/printing layer/heat sealing layer (PE) (3) Base material layer (CRF)/printing layer/anchor coat layer/heat sealing layer (PE) (4) Base material layer (CRF)/Print layer/Anchor coat layer/Adhesive resin layer (PE)/Heat seal layer (PEF) (5) Base layer (CRF)/Print layer/Adhesive layer (6) Print layer/Base layer (CRF)/Inorganic thin film layer (Al)/Adhesive layer (7) Print layer/Base layer (CRF)/ Inorganic thin film layer (Al)/heat seal layer (PE) (8) Printing layer/base material layer (CRF)/inorganic thin film layer (Al)/anchor coat layer/heat seal layer (PE) (8) Printing layer/base material layer (CRF
  • the base layer 51 is the biaxially oriented polyester film 8.
  • Base material layer (CRF)/adhesive layer/metal foil (Al)/adhesive layer/support layer (ONY)/adhesive layer/heat seal layer (PEF) (2) Base material layer (CRF)/adhesive layer/metal foil (Al)/adhesive layer/heat seal layer (CPP) (3) Base material layer (CRF)/adhesive layer/inorganic thin film layer (Al)/support layer (PET)/adhesive layer/heat seal layer (PEF) (4) Base material layer (CRF)/adhesive layer/support layer (ONY)/adhesive layer/heat seal layer (PEF) (5) Base material layer (CRF) / adhesive layer / protective layer (MOR) / inorganic thin film layer (MO) / support layer (PET) / adhesive layer /
  • the base layer 51 is the biaxially oriented polyester film 8.
  • Base layer (CRF)/Print layer/Adhesive layer/Metal foil (Al)/Adhesive layer/Support layer (ONY)/Adhesive layer/Heat seal layer (PEF) (2) Base material layer (CRF)/Print layer/Adhesive layer/Metal foil (Al)/Adhesive layer/Heat seal layer (CPP) (3) Base layer (CRF)/Print layer/Adhesive layer/Inorganic thin film layer (Al)/Support layer (PET)/Adhesive layer/Heat seal layer (PEF) (4) Base layer (CRF)/Print layer/Adhesive layer/Support layer (ONY)/Adhesive layer/Heat seal layer (PEF) (5) Base material layer (CRF) / Printing layer / Adhesive layer / Protective layer (MOR)
  • the support layer is a biaxially oriented polyester film 8.
  • Base material layer (paper)/adhesive layer/metal foil (Al)/adhesive layer/support layer (CRF)/adhesive layer/heat seal layer (PVC) (2) Base material layer (ONY)/adhesive layer/support layer (CRF)/adhesive layer/metal foil (Al)/adhesive layer/heat seal layer (PEF) (3) Base material layer (PET) / Inorganic thin film layer (MO) / Protective layer (MOR) / Adhesive layer / Support layer (CRF) / Adhesive layer / Heat seal layer (PEF) (4) Base material layer (paper)/adhesive layer/support layer (CRF)/adhesive layer/heat seal layer (CPP) (5) Base material layer (OPP)/adhesive layer/support layer (CRF)/adhesive layer/heat seal layer (CP
  • the support layer is a biaxially oriented polyester film 8.
  • Printing layer/base material layer (paper)/adhesive layer/metal foil (Al)/adhesive layer/support layer (CRF)/adhesive layer/heat seal layer (PVC) (2) Base layer (ONY)/Print layer/Adhesive layer/Support layer (CRF)/Adhesive layer/Metal foil (Al)/Adhesive layer/Heat seal layer (PEF) (3) Printing layer/base material layer (paper)/adhesive layer/support layer (CRF)/adhesive layer/heat seal layer (CPP) (4) Base layer (OPP)/Print layer/Adhesive layer/Support layer (CRF)/Adhesive layer/Heat seal layer (CPP) (5) Base layer (ONY)/Print layer/Adhesive layer/Support layer (CRF)/A
  • the protective layer 33 may be formed of a composition containing a resin and a curing agent.
  • both the base material layer 51 and the support layer there are some laminates 9 that include both the base material layer 51 and the support layer.
  • both the base layer 51 and the support layer may be biaxially oriented polyester films 8.
  • the laminate 9 can be used for various purposes. For example, it can be suitably used as a packaging container, a label (for example, a label for wrapping around a PET bottle), and an exterior film for electronic components such as the exterior for lithium ion batteries. Among these, it can be suitably used for packaging containers. In particular, it can be suitably used for food packaging containers.
  • the packaging container of this embodiment includes a laminate 9. That is, the packaging container of this embodiment can be produced using the laminate 9.
  • the packaging container includes the laminate 9 means that when the packaging container is composed of a plurality of members, at least one member includes the laminate 9.
  • packaging containers include packaging bags (ie, pouches), lids, laminate tubes, paper containers, and paper cups (see, for example, Japanese Patent No. 6984717).
  • the packaging container may be a food packaging container or a non-food packaging container. In other words, the contents may be food or non-food.
  • the packaging container is preferably a food packaging container.
  • packaging bags include standing pouches, pillow bags (i.e. gassho sticker bags), two-side seal bags, three-side seal bags, four-side seal bags, side seal bags, envelope sticker bags, and pleated sticker bags.
  • pillow bags i.e. gassho sticker bags
  • two-side seal bags three-side seal bags
  • four-side seal bags side seal bags
  • envelope sticker bags envelope stickers bags
  • pleated sticker bags examples include molded bags, flat-bottom sealed bags, square-bottom sealed bags, and gusseted bags.
  • the biaxially oriented polyester film 8 has a three-layer structure composed of the first layer 81, the second layer 82, and the third layer 83.
  • the biaxially oriented polyester film 8 may have a single-layer structure, or may have a two-layer structure composed of a first layer 81 and a second layer 82.
  • the biaxially oriented polyester film 8 may have a structure of four or more layers.
  • polyesters A to G which will be described later, may be collectively referred to as raw material polyester.
  • Samples (specifically, raw polyester and biaxially oriented polyester films) are decomposed by dry ashing in the coexistence of sodium carbonate, or using either sulfuric acid/nitric acid/perchloric acid systems or sulfuric acid/hydrogen peroxide aqueous systems. Phosphorus was converted to orthophosphoric acid by a wet decomposition method. Next, molybdate was reacted in a 1 mol/L sulfuric acid solution to form phosphomolybdic acid, and this was reduced with hydrazine sulfate. 150-02'') (that is, colorimetric determination was performed).
  • GPC analysis areas outside the range of the calibration curve are generally excluded from the calculation range of GPC analysis, but in this analysis, in order to more accurately determine the area ratio of the area with a molecular weight of 1000 or less.
  • GPC chromatogram area ie, total peak area
  • the thickness of the biaxially oriented polyester film was measured using a dial gauge in accordance with JIS K7130-1999 A method.
  • melting point Using a differential scanning calorimeter ("DSC60" manufactured by Shimadzu Corporation), 5 mg of a sample (specifically, a biaxially oriented polyester film) was heated from 25 °C to 320 °C at a rate of 10 °C/min, and as it melted, The main peak top temperature of the endothermic curve was determined as the melting point.
  • DSC60 differential scanning calorimeter
  • Test piece with a width of 15 mm and a length of 100 mm was cut from a biaxially oriented polyester film. In accordance with JIS K 7127, this test piece was pulled using a tensile tester ("Autograph AG-I" manufactured by Shimadzu Corporation) at a distance between gauge lines of 50 mm and a tension speed of 200 mm/min. The tensile strength of the test piece, that is, the tensile strength at break, was calculated from the stress/strain curve thus obtained. Using this procedure, the tensile strengths in the MD (ie, 0° direction), 45° direction, TD (ie, 90° direction), and 135° direction were determined.
  • FT-IR ATR measurements were performed on both the corona-treated and untreated surfaces of the biaxially oriented polyester film under the following conditions. That is, a spectrum was obtained by the attenuated total reflection method using a Fourier transform infrared spectrophotometer.
  • FT-IR Bio Rad DIGILAB FTS-60A/896 Single reflection
  • ATR attachment golden gate MKII (manufactured by SPECAC)
  • Internal reflective element Diamond Incident angle: 45° Resolution: 4cm -1
  • Number of integrations 128 times The surface crystallinity was calculated from the intensity ratio of the absorption appearing near 1340 cm -1 and the absorption appearing near 1410 cm -1 (intensity at 1340 cm -1 / intensity at 1410 cm -1 ).
  • the absorption that appears around 1340 cm ⁇ 1 is due to the bending vibration of CH 2 (trans structure) of ethylene glycol.
  • the absorption that appears near 1410 cm -1 is unrelated to crystal or orientation.
  • the puncture strength of a 5 cm square test piece cut from a biaxially oriented polyester film was measured using a digital force gauge (“ZTS-500N” manufactured by Imada Co., Ltd.), an electric measuring stand (“MX2-500N” manufactured by Imada Co., Ltd.), Then, measurements were made in accordance with JIS Z1707 using a film puncture test jig ("TKS-250N” manufactured by Imada Co., Ltd.). Based on the puncture strength determined by this measurement (that is, the puncture strength of the biaxially oriented polyester film), the puncture strength per 1 ⁇ m of thickness was also calculated.
  • a urethane two-component curing adhesive (specifically, "Takelac (registered trademark) A525S” manufactured by Mitsui Chemicals, Inc. and "Takenate (registered trademark)” manufactured by Mitsui Chemicals, Inc.
  • a 70 ⁇ m thick unstretched polypropylene film (P1147 manufactured by Toyobo Co., Ltd.) was used as a polyolefin sealant layer by dry laminating using an adhesive containing 13.5:1 (mass ratio) of A50 (Trademark).
  • a laminate was produced by bonding them together and then aging them at 40° C. for 4 days.
  • the peel strength (N/15 mm) of the bonded surface between the corona-treated surface of the biaxially oriented polyester film and the polyolefin resin layer was measured for a test piece having a width of 15 mm and a length of 200 mm cut out from this laminate.
  • the peel strength was measured at a temperature of 23°C and a relative humidity of 65% using a Tensilon UMT-II-500 manufactured by Toyo Baldwin Co., Ltd. at a tensile rate of 20 cm/min and a peel angle of 180 degrees. .
  • the film formability of the biaxially oriented polyester film was evaluated based on the following criteria. ⁇ : No breakage occurred for 60 minutes or more. That is, continuous film formation for 60 minutes or more was possible. ⁇ : Broken at least once during 30 minutes or more and less than 60 minutes. ⁇ : Broken at least once in less than 30 minutes.
  • ⁇ Raw material polyester> (Polyester B)
  • a cleaning solution specifically, a cleaning solution prepared by adding 500 g of liquid kitchen detergent to 1000 liters of water.
  • a gravity separator connected to the wet crusher precipitates foreign substances with high specific gravity, such as metals, sand, and glass, and extracts flakes from the upper layer.
  • the flakes were rinsed with pure water and dehydrated by centrifugation. Recovered flakes were obtained by such a procedure.
  • the filtrate was passed through an activated carbon bed and then an anion/cation exchange mixed bed at 50° C. to 51° C. for 30 minutes.
  • pre-purification treatment was performed.
  • the pre-purification treatment liquid was charged into a stirring autoclave, heated and excess ethylene glycol was distilled off at normal pressure to obtain a concentrated BHET molten liquid. After the melt of concentrated BHET was allowed to cool down naturally while being stirred under a nitrogen gas atmosphere, it was taken out from the stirring autoclave to obtain a block of concentrated BHET strips.
  • the strip block After heating and melting the strip block to 130° C., it was supplied to a thin film vacuum evaporator using a metering pump, evaporated, and cooled and condensed to obtain purified BHET. 2,650 kg of this purified BHET was supplied at once to a dissolution tank purged with nitrogen, and after replacing the tank with nitrogen again, the temperature of the dissolution tank was set at 150° C. for dissolution. After the dissolution was completed, the temperature of the dissolution tank was raised to 230° C. for 30 minutes while using a stirrer.
  • 2,650 kg of the obtained BHET solution was transferred to a polycondensation reaction tank, and 300 ppm of antimony trioxide, 170 ppm of cobalt acetate, and phosphoric acid were added to the BHET solution, based on the amount of PET obtained (approximately 2,000 kg of PET can be obtained from 2,650 kg of BHET). 55 ppm and 0.3% by weight of titanium dioxide were added, and while stirring at 10 to 40 rpm, the temperature of the polycondensation reactor was gradually raised from 230° C. to 290° C., and the pressure was lowered to 40 Pa.
  • the polycondensation reaction tank was purged with nitrogen and returned to normal pressure to stop the polycondensation reaction, and the mixture was discharged in the form of a strand, cooled, and immediately cut to obtain polyester chips.
  • Polyester B (ie, a chemically recycled polyester with an intrinsic viscosity of 0.59 dl/g) was continuously fed to a crystallizer, crystallized at 150°C, and then fed to a dryer and dried at 130°C for 10 hours. The dried polyester B was sent to a preheater, heated to 180°C, and then supplied to a solid phase polymerization machine. A solid phase polymerization reaction was carried out at 190° C. for 24 hours under nitrogen gas to obtain a chemically recycled polyester, ie, polyester A, having an intrinsic viscosity of 0.79 dl/g.
  • polyester C A chemically recycled polyester having an intrinsic viscosity of 0.83 dl/g, that is, polyester C, was obtained in the same manner as polyester A, except that the time for the solid phase polymerization reaction was changed from 24 hours to 50 hours.
  • the filters were installed in the extruder up to the third filter so that the opening size of the filters gradually decreased.
  • the opening size of the third stage filter was 50 ⁇ m.
  • polyester E-1 As the polyester E-1, that is, as the fossil fuel-derived polyester, a polyester (manufactured by Toyobo Co., Ltd.) with an intrinsic viscosity of 0.62 dl/g and a terephthalic acid/ethylene glycol ratio of 100 mol%/100 mol% was used. That is, homopolyethylene terephthalate (ie, homoPET) with an intrinsic viscosity of 0.62 dl/g was used. It should be noted that both terephthalic acid and ethylene glycol were not derived from used polyester products, but from fossil fuels.
  • polyester E-2 As the polyester E-2, that is, as the fossil fuel-derived polyester, a polyester (manufactured by Toyobo Co., Ltd.) with an intrinsic viscosity of 0.75 dl/g and a terephthalic acid/ethylene glycol ratio of 100 mol%/100 mol% was used. That is, homopolyethylene terephthalate (ie, homoPET) with an intrinsic viscosity of 0.75 dl/g was used. It should be noted that both terephthalic acid and ethylene glycol were not derived from used polyester products, but from fossil fuels.
  • the above-mentioned ethylene glycol slurry of amorphous silica particles is prepared by mixing amorphous silica particles with ethylene glycol, performing a dispersion process using a high-pressure disperser, and then centrifuging to cut off 35% of the coarse particle portion. The slurry was then filtered through a metal filter with an opening of 5 ⁇ m. It should be noted that both terephthalic acid and ethylene glycol were not derived from used polyester products, but from fossil fuels.
  • TPA is an abbreviation for terephthalic acid.
  • EG is an abbreviation for ethylene glycol.
  • IPA is an abbreviation for isophthalic acid.
  • Mg indicates the content of a magnesium compound on the basis of magnesium atoms. This content is the mass of the magnesium compound on a magnesium atom basis with respect to the mass of the polyester (that is, the mass of the magnesium compound on a magnesium atom basis/the mass of the polyester). In addition, only the content of the magnesium compound among the alkaline earth metal compounds is shown here.
  • P indicates the content of phosphorus compounds on the basis of phosphorus atoms. This content is the mass of the phosphorus compound on a phosphorus atom basis with respect to the mass of the polyester (that is, the mass of the phosphorus compound on a phosphorus atom basis/the mass of the polyester).
  • polyester C had the highest intrinsic viscosity and the lowest amount of low molecular weight components.
  • Polyester B had the lowest intrinsic viscosity and the highest amount of low molecular weight components. In other words, the higher the intrinsic viscosity, the lower the content of low molecular weight components.
  • polyester B i.e., chemically recycled polyester
  • polyester E-1 i.e., fossil fuel-derived polyester
  • polyester D i.e., mechanically recycled polyester
  • polyester E-1 i.e., fossil fuel-derived polyester
  • Example 1 A biaxially oriented polyester film having a three-layer structure was formed using three extruders.
  • To form the base layer of the biaxially oriented polyester film that is, layer B, 50.0% by mass of polyester A, 42.0% by mass of polyester E-1, and 8.0% by mass of polyester G were used.
  • To form a pair of surface layers of the biaxially oriented polyester film that is, a pair of A layers, 50.0% by mass of polyester A, 39.0% by mass of polyester E-1, and 3.0% by mass of polyester F were used.
  • 0% by mass, and 8.0% by mass of polyester G was used. The film forming procedure will be explained below.
  • the raw material polyester for forming layer A After drying the raw material polyester for forming layer A, it is supplied to the first and third extruders and melted at 285°C, and after drying the raw material polyester for forming layer B, , fed to a second extruder and melted at 285°C.
  • the molten polyester is led from each extruder to the T-die, and the layers are laminated in the T-die to form layer A/layer B/layer A (thickness 1 ⁇ m/10 ⁇ m/1 ⁇ m), and then extruded from the T-die at a surface temperature of 25°C. It was cooled and solidified in a casting drum, that is, a cooling drum.
  • the film extruded from the T-die and before contact with the cooling drum was charged with a wire-shaped electrode having a diameter of 0.15 mm.
  • Casting speed was 70 m/min.
  • An unstretched film was produced by such a procedure.
  • the unstretched film was heated to 120° C. with an infrared heater and stretched once in the longitudinal direction (ie, MD) at a stretching ratio of 4.0 times.
  • it was stretched in the width direction (i.e. TD) using a tenter type horizontal stretching machine at a preheating temperature of 120°C, a stretching temperature of 130°C, and a stretching ratio of 4.2 times, heat setting at 245°C, and 5% heat treatment in the width direction.
  • Relaxation treatment was performed.
  • the length of the widthwise stretching zone was 12.2 m, and the widthwise stretching speed (ie, TD stretching ratio) was 122.66%/sec.
  • the A layer in contact with the cooling drum was subjected to corona treatment at 40 W min/m 2 and then wound into a roll using a winder.
  • a master roll (winding length: 60,000 m, width: 8,000 mm) of a biaxially oriented polyester film having a thickness of 12 ⁇ m was obtained by such a procedure.
  • a biaxially oriented polyester film is unwound from a master roll, and while being slit to a width of 800 mm, while applying surface pressure with a contact roll and tension with a biaxial turret winder, the slit biaxially oriented polyester film is slit into a diameter of 6 mm. It was wound into a roll around an inch (152.2 mm) core. A biaxially oriented polyester film was obtained by such a procedure.
  • Examples 2 to 5 and Comparative Examples 1 to 4 and 6> A biaxially oriented polyester film was produced in the same manner as in Example 1, except that the mixing ratio of raw polyesters and film forming conditions were changed according to the recipe in Table 2. Note that the casting speed was 70 m/min in all these examples. In all these examples, the length of the widthwise stretching zone was 12.2 m, and the widthwise stretching speed (i.e., TD stretching ratio) was 122.66%/sec.
  • a biaxially oriented polyester film was produced in the same manner as in Example 1, except that the mixing ratio of raw polyesters and film forming conditions were changed according to the recipe in Table 2. Note that the casting speed was 65 m/min. The length of the widthwise stretching zone was 12.2 m, and the widthwise stretching speed (ie, TD stretching ratio) was 113.7%/sec.
  • Example 6 An unstretched film was obtained in the same manner as in Example 1, except that the mixing ratio of the raw material polyester was changed according to the recipe in Table 2. Note that the casting speed was 70 m/min. The ends of the unstretched film were gripped with the clips of a tenter-type simultaneous biaxial stretching machine, and after running through a 120°C preheating zone, the film was stretched at 130°C, 4.0 times in the longitudinal direction (i.e., MD), and 4.0 times in the width direction (i.e., TD). ) Simultaneous biaxial stretching was carried out at 4.2 times. Next, the film was heat-treated at a temperature of 245° C. with a relaxation rate in the width direction of 5%, and then cooled to room temperature and wound up to obtain a biaxially oriented polyester film with a thickness of 12 ⁇ m.
  • the "mixing ratio” listed in Table 2 is expressed as a value when the total mass of the raw material polyester used to form the target layer is 100% by mass.
  • polyester A was 50% by mass out of 100% by mass of the total mass of polyesters A, E-1, and G used to form layer B.
  • the silica content is the mass of silica relative to the mass of the target layer (that is, the mass of silica/the mass of the target layer).
  • the mass of the target layer means the total mass of raw materials (eg, polyester and particles) for forming the target layer.
  • "CRPET" is a generic term for polyesters A, B and C.
  • Mg indicates the content of the magnesium compound on the basis of magnesium atoms. This content is the mass of the magnesium compound on the basis of magnesium atoms relative to the mass of the biaxially oriented polyester film.
  • P indicates the content of phosphorus compounds on the basis of phosphorus atoms. This content is the mass of the phosphorus compound on a phosphorus atom basis with respect to the mass of the biaxially oriented polyester film.
  • polyester E-1 i.e., fossil fuel-derived homo-PET with an intrinsic viscosity of 0.62 dl/g
  • polyester C i.e., a chemically recycled polyester with an intrinsic viscosity of 0.83 dl/g
  • the surface crystallinity was excessively reduced, the intrinsic viscosity was excessively high, and the film was broken during stretching (see Comparative Examples 1 and 3).
  • Comparative Example 5 which had an excessively low surface crystallinity and an excessively high intrinsic viscosity, the film broke during stretching.
  • polyester E-1 i.e., fossil fuel-derived homo-PET with an intrinsic viscosity of 0.62 dl/g
  • polyester B i.e., a chemically recycled polyester with an intrinsic viscosity of 0.59 dl/g
  • the surface crystallinity was excessively high
  • the intrinsic viscosity was excessively low
  • the tensile strength and puncture strength were decreased (see Comparative Examples 1 and 4).
  • the color b * values were excessively high.
  • the biaxially oriented polyester film of Comparative Example 6 which had an excessively high content of isophthalic acid components, had an excessively low melting point and surface crystallization, and was inferior in tensile strength and puncture strength.
  • polyester E-1 specifically 50%, 20%, 80% by mass
  • polyester A i.e., a chemically recycled polyester with an intrinsic viscosity of 0.79 dl/g
  • the tensile strength and A biaxially oriented polyester film with excellent puncture strength and heat resistance could be produced without breakage (see Comparative Example 1 and Examples 1 to 3).
  • Even with simultaneous biaxial stretching, a biaxially oriented polyester film could be produced without breakage (see Example 6).
  • polyester E-1 specifically 50% by mass, 80% by mass
  • polyester B i.e., chemically recycled polyester with an intrinsic viscosity of 0.59 dl/g
  • the tensile strength and puncture strength can be improved.
  • a biaxially oriented polyester film with excellent heat resistance could be produced without breakage (see Comparative Example 1 and Examples 4 and 5).
  • the present invention relates to a biaxially oriented polyester film, the present invention has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

This biaxially oriented polyester film contains a chemically recycled polyester. At least one surface of the biaxially oriented polyester film has a surface crystallinity of 1.10-1.31. A laminate may include the biaxially oriented polyester film and a sealant layer. A laminate may also include the biaxially oriented polyester film and an adhesive layer. A packaging container may include the laminate. A packaging container may include the laminate.

Description

二軸配向ポリエステルフィルム、積層体、および包装容器Biaxially oriented polyester films, laminates, and packaging containers
 本発明は、二軸配向ポリエステルフィルム、積層体、および包装容器に関する。 The present invention relates to a biaxially oriented polyester film, a laminate, and a packaging container.
 耐熱性や機械物性に優れた熱可塑性樹脂であるポリエチレンテレフタレート(PET)やポリブチレンテレフタレート(PBT)などのポリエステルは、プラスチックフィルム、エレクトロニクス、エネルギー、包装材料、自動車などの非常に多岐な分野で利用されている。なかでも、二軸配向ポリエステルフィルムは、機械特性強度(すなわち機械的性質)、耐熱性、寸法安定性、耐薬品性、光学特性などとコストとのバランスに優れることから、工業用や包装用分野において幅広く用いられている。 Polyesters such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), which are thermoplastic resins with excellent heat resistance and mechanical properties, are used in a wide variety of fields such as plastic films, electronics, energy, packaging materials, and automobiles. has been done. Among these, biaxially oriented polyester film has an excellent balance between mechanical strength (that is, mechanical properties), heat resistance, dimensional stability, chemical resistance, optical properties, and cost, so it is used in industrial and packaging fields. It is widely used in
 近年、循環型社会の構築を求める声の高まりとともに、材料分野においてもリサイクル原料の利用が進められている。ポリエステルにおいても、使用済みのペットボトルのリサイクルがおこなわれている。リサイクルされたポリエステルを用いることによりCO削減につながると言われている。そのような事情から、リサイクルされたポリエステルの使用比率を少しで高めることが望ましい。 In recent years, with the growing call for building a recycling-oriented society, the use of recycled raw materials has been promoted in the materials field as well. For polyester, used PET bottles are also recycled. It is said that using recycled polyester will lead to a reduction in CO2 . Under these circumstances, it is desirable to increase the usage ratio of recycled polyester even if only a little.
 たとえば、特許文献1には、ペットボトルをメカニカルリサイクルして得られたポリエステル、すなわちメカニカルリサイクルポリエステルを用いて作製した二軸配向ポリエステルフィルムが開示されている。 For example, Patent Document 1 discloses a biaxially oriented polyester film produced using a polyester obtained by mechanically recycling a PET bottle, that is, a mechanically recycled polyester.
 しかしながら、使用済みペットボトルのような使用済みポリエステル製品は、そこに充填されていた内容品や保管環境などにより、その汚染の程度にバラツキがあるところ、メカニカルリサイクルでは、汚染物質を高度に除去することは難しい。 However, the degree of contamination of used polyester products such as used PET bottles varies depending on the contents they were filled in and the storage environment, but mechanical recycling can remove contaminants to a high degree. That's difficult.
 メカニカルリサイクルとは異なる手法でリサイクルされたポリエステルとして、使用済みポリエステル製品に含まれるポリエステルをモノマーレベルまで分解したうえで、再度重合して得られるポリエステル、すなわちケミカルリサイクルポリエステルが知られている(特許文献3および4参照)。 Chemical recycled polyester, which is obtained by decomposing the polyester contained in used polyester products down to the monomer level and then polymerizing it again, is known as polyester recycled using a method different from mechanical recycling (Patent Document 3 and 4).
 たとえば、特許文献2には、ケミカルリサイクルポリエステルを用いて作製したポリエステルフィルムと、印刷層とを備える印刷樹脂フィルムが開示されている。 For example, Patent Document 2 discloses a printed resin film that includes a polyester film made using chemically recycled polyester and a printed layer.
特許第6036099号公報Patent No. 6036099 特許第6984717号公報Patent No. 6984717 特開2000-169623号公報Japanese Patent Application Publication No. 2000-169623 特開2000-302707号公報Japanese Patent Application Publication No. 2000-302707
 ケミカルリサイクルポリエステルは、ペットボトルに成形しやすいように固相重合によって高分子量化されることが多いため、ケミカルリサイクルポリエステルの固有粘度は、一般的な二軸配向ポリエステルフィルム用のポリエステルの固有粘度に比べて高いことが多い。 Chemically recycled polyester is often made to have a high molecular weight through solid phase polymerization to make it easier to mold into PET bottles, so the intrinsic viscosity of chemically recycled polyester is similar to that of polyester for general biaxially oriented polyester films. It is often higher than that.
 本発明者は、ケミカルリサイクルポリエステルをペットボトルではなく、二軸配向ポリエステルフィルム製造のために使用することを検討する過程で、ケミカルリサイクルポリエステルを用いたフィルムは延伸時に破断しやすく、したがって製膜速度を過度に落とさざるを得ないことがある、という課題を見出した。 In the process of considering the use of chemically recycled polyester for the production of biaxially oriented polyester films rather than PET bottles, the present inventor found that films using chemically recycled polyesters tend to break during stretching, and therefore the film forming rate was We have found that there is a problem in that there are cases where it is necessary to reduce the amount of water excessively.
 本発明は、環境負荷を軽減することができ、しかも、延伸時に生じ得るフィルムの破断を抑制または低減することが可能であり、そのうえ機械的性質(具体的には引張強さや突刺し強さ)に優れた二軸配向ポリエステルフィルムを提供することを目的とする。本発明は、二軸配向ポリエステルフィルムを含む積層体や、積層体を含む包装容器を提供することも目的とする。 The present invention can reduce environmental impact, suppress or reduce film breakage that may occur during stretching, and improve mechanical properties (specifically, tensile strength and puncture strength). The purpose of the present invention is to provide a biaxially oriented polyester film with excellent properties. Another object of the present invention is to provide a laminate including a biaxially oriented polyester film and a packaging container including the laminate.
 この課題を解決するために、本発明は、下記[1]の構成を備える。
 [1]
 ケミカルリサイクルポリエステルを含み、
 少なくとも一方の面は、フーリエ変換赤外分光光度計を用いて全反射減衰法で求められる表面結晶化度が1.10以上1.31以下であり、
 融点が251℃以上である、
 二軸配向ポリエステルフィルム。
 ここで、「ケミカルリサイクルポリエステル」とは、使用済みポリエステル製品に含まれるポリエステルをモノマーレベルまで分解したうえで、再度重合して得られるポリエステルである。
 「表面結晶化度」は、1340cm-1付近に現れる吸収と、1410cm-1付近に現れる吸収との強度比である。すなわち、1340cm-1の強度/1410cm-1の強度である。なお、1340cm-1付近に現れる吸収は、エチレングリコールのCH(トランス構造)の変角振動による吸収である。これは、結晶に特有の吸収である。いっぽう、1410cm-1付近に現れる吸収は、結晶とは無関係の吸収である。
In order to solve this problem, the present invention includes the following configuration [1].
[1]
Contains chemically recycled polyester
At least one surface has a surface crystallinity of 1.10 or more and 1.31 or less as determined by the attenuated total reflection method using a Fourier transform infrared spectrophotometer,
The melting point is 251°C or higher,
Biaxially oriented polyester film.
Here, "chemically recycled polyester" is a polyester obtained by decomposing polyester contained in used polyester products to the monomer level and then polymerizing it again.
"Surface crystallinity" is the intensity ratio of absorption appearing near 1340 cm -1 and absorption appearing near 1410 cm -1 . That is, the intensity is 1340 cm -1/1410 cm -1 . Note that the absorption that appears around 1340 cm −1 is due to the bending vibration of CH 2 (trans structure) of ethylene glycol. This is an absorption characteristic of crystals. On the other hand, the absorption that appears near 1410 cm -1 is unrelated to the crystal.
 [1]では、二軸配向ポリエステルフィルムがケミカルリサイクルポリエステルを含む。ここで、「二軸配向ポリエステルフィルムがケミカルリサイクルポリエステルを含む」とは、二軸配向ポリエステルフィルムが複数の層を含む場合には、複数の層のうち、少なくとも一つの層が、ケミカルリサイクルポリエステルを含むことを意味する。 In [1], the biaxially oriented polyester film contains chemically recycled polyester. Here, "the biaxially oriented polyester film contains chemically recycled polyester" means that when the biaxially oriented polyester film includes multiple layers, at least one layer of the multiple layers contains chemically recycled polyester. It means to include.
 [1]によれば、二軸配向ポリエステルフィルムがケミカルリサイクルポリエステルを含むため、環境負荷を軽減することができる。 According to [1], since the biaxially oriented polyester film contains chemically recycled polyester, the environmental load can be reduced.
 しかも、表面結晶化度が1.31以下であることによって、二軸配向ポリエステルフィルムが過度に脆くなる(つまり靭性が過度に悪くなる)ことを防止できるため、機械的性質、具体的には引張強さや突刺し強さを向上することができる。 Moreover, by having a surface crystallinity of 1.31 or less, it is possible to prevent the biaxially oriented polyester film from becoming excessively brittle (in other words, the toughness is excessively deteriorated). Strength and piercing strength can be improved.
 そのうえ、表面結晶化度が1.10以上であることによって、二軸配向ポリエステルフィルムに含まれるポリエステルの分子量をある程度以下に制限できる。これについて説明する。結晶化速度は、ポリエステルの分子量が小さいほど速くなる。このため、二軸配向ポリエステルフィルムの表面結晶化度が高いほど、二軸配向ポリエステルフィルムに含まれるポリエステルの分子量が低くなる傾向がある。したがって、表面結晶化度が1.10以上であることによって、二軸配向ポリエステルフィルムに含まれるポリエステルの分子量をある程度以下に制限できる。 Moreover, by having a surface crystallinity of 1.10 or more, the molecular weight of the polyester contained in the biaxially oriented polyester film can be limited to a certain level or less. This will be explained. The crystallization rate becomes faster as the molecular weight of the polyester decreases. Therefore, the higher the surface crystallinity of the biaxially oriented polyester film, the lower the molecular weight of the polyester contained in the biaxially oriented polyester film tends to be. Therefore, by having a surface crystallinity of 1.10 or more, the molecular weight of the polyester contained in the biaxially oriented polyester film can be limited to a certain level or less.
 表面結晶化度が1.10以上であることによって、可塑剤のように働くことが可能な低分子量成分を、ある程度以上存在させることもできる。これについて説明する。二軸配向ポリエステルフィルムに含まれるポリエステルの分子量が小さいほど、二軸配向ポリエステルフィルム中の低分子量成分は多くなる傾向がある。なぜなら、低分子量成分は、重合過程でポリエステルに取り込まれるためである。上述の通り、表面結晶化度が1.10以上であることによって、二軸配向ポリエステルフィルムに含まれるポリエステルの分子量をある程度以下に制限できる。その結果、低分子量成分をある程度以上存在させることができる。したがって、表面結晶化度が1.10以上であることによって、可塑剤のように働くことが可能な低分子量成分を、ある程度以上存在させることができる。 By having a surface crystallinity of 1.10 or more, a certain amount or more of a low molecular weight component that can act like a plasticizer can be present. This will be explained. The lower the molecular weight of the polyester contained in the biaxially oriented polyester film, the more the low molecular weight components in the biaxially oriented polyester film tend to be. This is because low molecular weight components are incorporated into the polyester during the polymerization process. As described above, by having a surface crystallinity of 1.10 or more, the molecular weight of the polyester contained in the biaxially oriented polyester film can be limited to a certain level or less. As a result, a certain amount of low molecular weight components can be present. Therefore, by having a surface crystallinity of 1.10 or more, a certain amount of low molecular weight components that can act like plasticizers can be present.
 したがって、表面結晶化度が1.10以上であることによって、二軸配向ポリエステルフィルム製造過程における延伸時の応力(つまり延伸応力)が過度に大きくなることを防止でき、その結果、延伸時に生じ得るフィルムの破断を抑制または低減することができる。 Therefore, by having a surface crystallinity of 1.10 or more, stress during stretching (that is, stretching stress) in the biaxially oriented polyester film manufacturing process can be prevented from becoming excessively large, which may occur during stretching. Breakage of the film can be suppressed or reduced.
 さらに、融点が251℃以上であるため耐熱性に優れる。 Furthermore, since the melting point is 251°C or higher, it has excellent heat resistance.
 本発明は、下記[2]以降の構成をさらに備えることが好ましい。 It is preferable that the present invention further includes the following configurations [2] and later.
 [2]
 前記二軸配向ポリエステルフィルム中の全ジカルボン酸成分のモル数を100モル%としたとき、イソフタル酸成分のモル数は0.1モル%以上3.0モル%以下である、[1]に記載の二軸配向ポリエステルフィルム。
[2]
When the number of moles of all dicarboxylic acid components in the biaxially oriented polyester film is 100 mol%, the number of moles of the isophthalic acid component is 0.1 mol% or more and 3.0 mol% or less, described in [1] biaxially oriented polyester film.
 [2]によれば、イソフタル酸成分のモル数が0.1モル%以上であることによって、
二軸配向ポリエステルフィルムにシーラント層を設けた場合、二軸配向ポリエステルフィルムとシーラント層とのはく離強度を向上することができる。いっぽう、イソフタル酸成分のモル数が3.0モル%以下であることによって、結晶性が過度に低下することを防止でき、したがって耐熱性や機械的性質(具体的には、引張強さや突刺し強さ)が過度に低下することを防止できる。
According to [2], when the number of moles of the isophthalic acid component is 0.1 mol% or more,
When a sealant layer is provided on a biaxially oriented polyester film, the peel strength between the biaxially oriented polyester film and the sealant layer can be improved. On the other hand, by setting the number of moles of the isophthalic acid component to 3.0 mol% or less, it is possible to prevent the crystallinity from decreasing excessively, thereby improving heat resistance and mechanical properties (specifically, tensile strength and puncture resistance). strength) can be prevented from decreasing excessively.
 [3]
 前記二軸配向ポリエステルフィルムの突刺し強さが0.50N/μm以上である、[1]または[2]に記載の二軸配向ポリエステルフィルム。
[3]
The biaxially oriented polyester film according to [1] or [2], wherein the biaxially oriented polyester film has a puncture strength of 0.50 N/μm or more.
 [3]によれば、二軸配向ポリエステルフィルムを用いて、優れた強度を有する製品(たとえば包装容器)を作製することができる。たとえば、二軸配向ポリエステルフィルムを用いて穴が開きにくい包装容器を作製することができる。 According to [3], a biaxially oriented polyester film can be used to produce a product (for example, a packaging container) with excellent strength. For example, biaxially oriented polyester films can be used to create packaging containers that are resistant to punctures.
 [4]
 前記二軸配向ポリエステルフィルムの固有粘度が0.50dl/g以上0.70dl/g以下である、[1]~[3]のいずれかに記載の二軸配向ポリエステルフィルム。
[4]
The biaxially oriented polyester film according to any one of [1] to [3], wherein the biaxially oriented polyester film has an intrinsic viscosity of 0.50 dl/g or more and 0.70 dl/g or less.
 [4]によれば、固有粘度が0.70dl/g以下であることによって、二軸配向ポリエステルフィルム製造過程における延伸時の応力(つまり延伸応力)が過度に大きくなることをいっそう防止でき、その結果、延伸時に生じ得るフィルムの破断をいっそう抑制または低減することができる。固有粘度が0.50dl/g以上であることによって、機械的性質、具体的には引張強さや突刺し強さをいっそう向上することができる。 According to [4], by having an intrinsic viscosity of 0.70 dl/g or less, it is possible to further prevent stress during stretching (that is, stretching stress) in the biaxially oriented polyester film manufacturing process from becoming excessively large. As a result, breakage of the film that may occur during stretching can be further suppressed or reduced. By having an intrinsic viscosity of 0.50 dl/g or more, mechanical properties, specifically tensile strength and puncture strength, can be further improved.
 [5]
 前記ケミカルリサイクルポリエステルの含有量が20質量%以上である、[1]~[4]のいずれかに記載の二軸配向ポリエステルフィルム。
[5]
The biaxially oriented polyester film according to any one of [1] to [4], wherein the content of the chemically recycled polyester is 20% by mass or more.
 [5]によれば、環境負荷をいっそう軽減することができる。 According to [5], the environmental load can be further reduced.
 [6]
 [1]~[5]のいずれかに記載の二軸配向ポリエステルフィルムと、
 シーラント層とを含む、
 積層体。
[6]
The biaxially oriented polyester film according to any one of [1] to [5],
a sealant layer;
laminate.
 [6]によれば、積層体がシーラント層を含むため、積層体を含む製品(たとえば包装容器)をヒートシールによって製造することができる。 According to [6], since the laminate includes a sealant layer, a product (for example, a packaging container) including the laminate can be manufactured by heat sealing.
 [7]
 印刷層をさらに含み、
 前記積層体の少なくとも一部において、前記印刷層、前記二軸配向ポリエステルフィルム、前記シーラント層が、前記積層体の厚み方向でこの順に並んでいる、
 [6]に記載の積層体。
 ここで、「前記印刷層、前記二軸配向ポリエステルフィルム、前記シーラント層が、前記積層体の厚み方向でこの順に並んでいる」は、印刷層および二軸配向ポリエステルフィルムの間や、二軸配向ポリエステルフィルムおよびシーラント層の間に、他の層が存在することを許容する表現である。
[7]
further comprising a printing layer;
In at least a portion of the laminate, the printing layer, the biaxially oriented polyester film, and the sealant layer are arranged in this order in the thickness direction of the laminate.
The laminate according to [6].
Here, "the printed layer, the biaxially oriented polyester film, and the sealant layer are arranged in this order in the thickness direction of the laminate" means between the printed layer and the biaxially oriented polyester film, or between the printed layer and the biaxially oriented polyester film, This expression allows for the presence of other layers between the polyester film and the sealant layer.
 [7]によれば、積層体が印刷層を含むため、積層体や、積層体を含む製品(たとえば包装容器)にデザイン(たとえば、文字、柄、記号など)を付与することができる。 According to [7], since the laminate includes a printing layer, a design (for example, letters, patterns, symbols, etc.) can be applied to the laminate or a product (for example, a packaging container) that includes the laminate.
 [8]
 印刷層をさらに含み、
 前記積層体の少なくとも一部において、前記二軸配向ポリエステルフィルム、前記印刷層、前記シーラント層が、前記積層体の厚み方向でこの順に並んでいる、
 [6]に記載の積層体。
 ここで、「前記二軸配向ポリエステルフィルム、前記印刷層、前記シーラント層が、前記積層体の厚み方向でこの順に並んでいる」は、二軸配向ポリエステルフィルムおよび印刷層の間や、印刷層およびシーラント層の間に、他の層が存在することを許容する表現である。
[8]
further comprising a printing layer;
In at least a portion of the laminate, the biaxially oriented polyester film, the printing layer, and the sealant layer are arranged in this order in the thickness direction of the laminate.
The laminate according to [6].
Here, "the biaxially oriented polyester film, the printed layer, and the sealant layer are arranged in this order in the thickness direction of the laminate" means between the biaxially oriented polyester film and the printed layer, or between the printed layer and the sealant layer. This is an expression that allows the presence of other layers between the sealant layers.
 [8]によれば、積層体が印刷層を含むため、積層体や、積層体を含む製品(たとえば包装容器)にデザイン(たとえば、文字、柄、記号など)を付与することができる。 According to [8], since the laminate includes a printing layer, a design (for example, letters, patterns, symbols, etc.) can be applied to the laminate or a product (for example, a packaging container) that includes the laminate.
 [9]
 [1]~[5]のいずれかに記載の二軸配向ポリエステルフィルムと、
 粘着層とを含む、
 積層体。
[9]
The biaxially oriented polyester film according to any one of [1] to [5],
including an adhesive layer;
laminate.
 [9]によれば、積層体が粘着層を含むため、積層体を含む製品(たとえば包装容器)を加圧によって製造することができる。 According to [9], since the laminate includes an adhesive layer, a product (for example, a packaging container) including the laminate can be manufactured by pressurization.
 [10]
 印刷層をさらに含み、
 前記積層体の少なくとも一部において、前記印刷層、前記二軸配向ポリエステルフィルム、前記粘着層が、前記積層体の厚み方向でこの順に並んでいる、
 [9]に記載の積層体。
 ここで、「前記印刷層、前記二軸配向ポリエステルフィルム、前記粘着層が、前記積層体の厚み方向でこの順に並んでいる」は、印刷層および二軸配向ポリエステルフィルムの間や、二軸配向ポリエステルフィルムおよび粘着層の間に、他の層が存在することを許容する表現である。
[10]
further comprising a printing layer;
In at least a portion of the laminate, the printed layer, the biaxially oriented polyester film, and the adhesive layer are arranged in this order in the thickness direction of the laminate.
The laminate according to [9].
Here, "the printed layer, the biaxially oriented polyester film, and the adhesive layer are arranged in this order in the thickness direction of the laminate" means between the printed layer and the biaxially oriented polyester film, or between the printed layer and the biaxially oriented polyester film, This expression allows for the presence of another layer between the polyester film and the adhesive layer.
 [10]によれば、積層体が印刷層を含むため、積層体や、積層体を含む製品(たとえば包装容器)にデザイン(たとえば、文字、柄、記号など)を付与することができる。 According to [10], since the laminate includes a printing layer, a design (for example, letters, patterns, symbols, etc.) can be applied to the laminate or a product (for example, a packaging container) that includes the laminate.
 [11]
 印刷層をさらに含み、
 前記積層体の少なくとも一部において、前記二軸配向ポリエステルフィルム、前記印刷層、前記粘着層が、前記積層体の厚み方向でこの順に並んでいる、
 [9]に記載の積層体。
 ここで、「前記二軸配向ポリエステルフィルム、前記印刷層、前記粘着層が、前記積層体の厚み方向でこの順に並んでいる」は、二軸配向ポリエステルフィルムおよび印刷層の間や、印刷層および粘着層の間に、他の層が存在することを許容する表現である。
[11]
further comprising a printing layer;
In at least a portion of the laminate, the biaxially oriented polyester film, the printing layer, and the adhesive layer are arranged in this order in the thickness direction of the laminate.
The laminate according to [9].
Here, "the biaxially oriented polyester film, the printed layer, and the adhesive layer are arranged in this order in the thickness direction of the laminate" means between the biaxially oriented polyester film and the printed layer, or between the printed layer and the adhesive layer. This is an expression that allows other layers to exist between the adhesive layers.
 [11]によれば、積層体が印刷層を含むため、積層体や、積層体を含む製品(たとえば包装容器)にデザイン(たとえば、文字、柄、記号など)を付与することができる。 According to [11], since the laminate includes a printing layer, a design (for example, letters, patterns, symbols, etc.) can be applied to the laminate or a product (for example, a packaging container) that includes the laminate.
 [12]
 [6]~[11]のいずれかに記載の積層体を含む、包装容器。
[12]
A packaging container comprising the laminate according to any one of [6] to [11].
 本発明によれば、環境負荷を軽減することができ、しかも、延伸時に生じ得るフィルムの破断を抑制または低減することが可能であり、そのうえ機械的性質(具体的には引張強さや突刺し強さ)に優れた二軸配向ポリエステルフィルムを提供することができる。 According to the present invention, it is possible to reduce environmental load, suppress or reduce film breakage that may occur during stretching, and improve mechanical properties (specifically, tensile strength and puncture strength). It is possible to provide a biaxially oriented polyester film with excellent properties.
本実施形態における二軸配向ポリエステルフィルムの概略断面図である。It is a schematic sectional view of the biaxially oriented polyester film in this embodiment. 一実施形態における積層体の概略断面図である。It is a schematic sectional view of the layered product in one embodiment. 一実施形態における積層体の概略断面図である。It is a schematic sectional view of the layered product in one embodiment. 一実施形態における積層体の概略断面図である。It is a schematic sectional view of the layered product in one embodiment. 一実施形態における積層体の概略断面図である。It is a schematic sectional view of the layered product in one embodiment. 一実施形態における積層体の概略断面図である。It is a schematic sectional view of the layered product in one embodiment. 一実施形態における積層体の概略断面図である。It is a schematic sectional view of the layered product in one embodiment. 一実施形態における積層体の概略断面図である。It is a schematic sectional view of the layered product in one embodiment. 一実施形態における積層体の概略断面図である。It is a schematic sectional view of the layered product in one embodiment. 一実施形態における積層体の概略断面図である。It is a schematic sectional view of the layered product in one embodiment. 一実施形態における積層体の概略断面図である。It is a schematic sectional view of the layered product in one embodiment. 一実施形態における積層体の概略断面図である。It is a schematic sectional view of the layered product in one embodiment. 一実施形態における積層体の概略断面図である。It is a schematic sectional view of the layered product in one embodiment. 一実施形態における積層体の概略断面図である。It is a schematic sectional view of the layered product in one embodiment. 一実施形態における積層体の概略断面図である。It is a schematic sectional view of the layered product in one embodiment. 一実施形態における積層体の概略断面図である。It is a schematic sectional view of the layered product in one embodiment. 一実施形態における積層体の概略断面図である。It is a schematic sectional view of the layered product in one embodiment. 一実施形態における積層体の概略断面図である。It is a schematic sectional view of the layered product in one embodiment. 一実施形態における積層体の概略断面図である。It is a schematic sectional view of the layered product in one embodiment. 一実施形態における積層体の概略断面図である。It is a schematic sectional view of the layered product in one embodiment. 一実施形態における積層体の概略断面図である。It is a schematic sectional view of the layered product in one embodiment. 一実施形態における積層体の概略断面図である。It is a schematic sectional view of the layered product in one embodiment.
 <1.はじめに>
 以下、本発明の実施形態について説明する。
 なお、以下では、ポリエチレンテレフタレートをペットやPETと言うことがある。すなわち、これらを同義語として用いる。
 Machine Direction(以下、「MD」と言う。)を長手方向と言うことがある。すなわち、MDと長手方向とを同義語として用いる。
 Transverse Direction(以下、「TD」と言う。)を幅方向と言うことがある。すなわち、TDと幅方向とを同義語として用いる。
 本発明の実施形態を説明するに当たり、「第一層81、第二層82、第三層83は、二軸配向ポリエステルフィルム8の厚み方向でこの順に並んでいる」といった表現をすることがある。この表現は、第一層81および第二層82の間や、第二層82および第三層83の間に、他の層が存在することを許容する。複数の層が「この順に並んでいる」という記載を含む他の表現(つまり類似の表現)も、同様である。
<1. Introduction>
Embodiments of the present invention will be described below.
Note that hereinafter, polyethylene terephthalate may be referred to as PET or PET. In other words, these terms are used as synonyms.
Machine Direction (hereinafter referred to as "MD") is sometimes referred to as the longitudinal direction. That is, MD and longitudinal direction are used as synonyms.
Transverse Direction (hereinafter referred to as "TD") is sometimes referred to as the width direction. That is, TD and width direction are used as synonyms.
In describing embodiments of the present invention, expressions such as "the first layer 81, the second layer 82, and the third layer 83 are arranged in this order in the thickness direction of the biaxially oriented polyester film 8" may be used. . This expression allows other layers to exist between the first layer 81 and the second layer 82 and between the second layer 82 and the third layer 83. The same applies to other expressions (that is, similar expressions) including the description that a plurality of layers are "arranged in this order."
 <2.二軸配向ポリエステルフィルム>
 図1に示すように、本実施形態の二軸配向ポリエステルフィルム8はフィルム状をなす。
<2. Biaxially oriented polyester film>
As shown in FIG. 1, the biaxially oriented polyester film 8 of this embodiment has a film shape.
 二軸配向ポリエステルフィルム8はケミカルリサイクルポリエステルを含む。このため、環境負荷を軽減することができる。 The biaxially oriented polyester film 8 contains chemically recycled polyester. Therefore, the environmental load can be reduced.
 ケミカルリサイクルポリエステルは、使用済みポリエステル製品に含まれるポリエステルをモノマーレベルまで分解したうえで、再度重合して得られるポリエステルである。ケミカルリサイクルポリエステルは、使用済みポリエステル製品に含まれるポリエステルを原料として製造されるため、環境負荷を軽減できる。しかも、ケミカルリサイクルポリエステルは、リサイクルの過程で異物(たとえば触媒、着色成分、異種プラスチック、金属)が除去されるため、メカニカルリサイクルポリエステルに比べて衛生面に優れる。 Chemically recycled polyester is polyester obtained by decomposing the polyester contained in used polyester products down to the monomer level and then polymerizing it again. Chemically recycled polyester is manufactured using polyester contained in used polyester products as raw material, so it can reduce environmental impact. In addition, chemically recycled polyester is superior in terms of hygiene compared to mechanically recycled polyester because foreign substances (such as catalysts, coloring components, dissimilar plastics, and metals) are removed during the recycling process.
 モノマーレベルまで分解されるポリエステルとして、使用済みポリエステル製品を挙げることができる。使用済みポリエステル製品は、たとえば、ベール状であってもよく、フレーク状であってもよく、ペレット状であってもい。使用済みポリエステル製品としては使用済みペットボトルが好ましい。 Used polyester products can be mentioned as polyester that is decomposed to the monomer level. The used polyester product may be, for example, in the form of a veil, flakes, or pellets. Used PET bottles are preferred as used polyester products.
 ポリエステルをモノマーレベルまで分解する方法として、たとえば、ペットボトルベールを粉砕、洗浄したうえで、これ(すなわちフレーク)に、少なくともエチレングリコール(EG)および触媒を加えて加熱し、ビス-2-ヒドロキシエチルテレフタレート(BHET)まで分解する方法(以下、「BHET法」と言うことがある。)を挙げることができる(特許文献3、すなわち特開2000-169623号公報参照)。ポリエステルをモノマーレベルまで分解する他の方法として、たとえば、特許文献4(特開2000-302707号公報)に記載された方法を挙げることができる。もちろん、ここに例示した方法以外で、ポリエステルをモノマーレベルまで分解してもよい。 As a method for decomposing polyester to the monomer level, for example, PET bottle bales are crushed and washed, and then at least ethylene glycol (EG) and a catalyst are added to the flakes, heated, and bis-2-hydroxyethyl A method of decomposing it to terephthalate (BHET) (hereinafter sometimes referred to as "BHET method") can be mentioned (see Patent Document 3, ie, Japanese Patent Application Laid-Open No. 2000-169623). Other methods for decomposing polyester to the monomer level include, for example, the method described in Patent Document 4 (Japanese Unexamined Patent Publication No. 2000-302707). Of course, polyester may be decomposed to the monomer level by methods other than those exemplified here.
 BHET法について、使用済みペットボトルを構成するポリエチレンテレフタレートを分解して、BHETを得るまでの手順の一例をここで説明する。
 ペットボトルベールを粉砕機に投入し、湿式粉砕する。湿式粉砕では、洗浄水(たとえば、必要に応じて洗剤が添加された水道水や地下水)中のペットボトルベールを粉砕することができる。なお、洗浄水は常温であってもよく、温められていてもよい。
 ペットボトルのフレークとともに洗浄水を粉砕機から排出し、比重分離おこなって、異物(たとえば、金属、石、ガラス、砂)を除去する。
 次いで、フレークをイオン交換水ですすぎ、必要に応じて遠心脱水をおこなう。
 フレークを溶融させたうえで、触媒や、過剰のエチレングリコールを加え、加熱する(つまり解重合をおこなう)。これによって、フレークを構成するポリエチレンテレフタレートを解重合することができ、その結果、エチレングリコールにBHETが溶解した解重合液を得ることができる。なお、フレークは、水分を含む状態(たとえば、遠心脱水後の水分を含む状態)で溶融させることが好ましい。
 解重合液に浮遊したり沈殿する異物(たとえば異種プラスチック、金属、ガラス)を除去する。なお、解重合液中の環状オリゴマーの融点はポリエチレンテレフタレートよりも高いため、ろ過によって環状オリゴマーのような低分子量成分を除去することもできる。
 解重合液を活性炭に通し(すなわち通液し)、さらにイオン交換樹脂に通す。解重合液を活性炭に通すことによって、着色成分(たとえば、顔料、染料、有機物が熱劣化することによって生成した化合物)を除去することができる。解重合液をイオン交換樹脂に通すことによって、触媒(たとえば、重合触媒、解重合触媒)や、金属イオンを除去することができる。
 次いで、解重合液を冷却し、BHETを析出させたうえで、BHETとエチレングリコールとを固液分離する。
 BHETに残存するエチレングリコールを除去するために(つまりBHETを濃縮するために)、真空蒸発をおこなう。
 濃縮されたBHETについて分子蒸留をおこなう。
 このような手順で、高純度のBHETを得ることができる。なお、ここでは、BHETとエチレングリコールとを固液分離したうえで真空蒸発をおこなう、という操作を説明したものの、この操作に代えて、解重合液からエチレングリコールを留出してもよい。
Regarding the BHET method, an example of a procedure for decomposing polyethylene terephthalate constituting a used PET bottle to obtain BHET will be described here.
PET bottle bales are put into a crusher and wet crushed. Wet grinding allows for the grinding of plastic bottle bales in wash water (e.g. tap water or ground water with optional detergent added). Note that the washing water may be at room temperature or may be heated.
The wash water is discharged from the crusher along with the PET bottle flakes and subjected to gravity separation to remove foreign matter (eg metal, stone, glass, sand).
The flakes are then rinsed with ion-exchanged water and, if necessary, centrifuged.
After the flakes are melted, a catalyst and excess ethylene glycol are added and heated (in other words, depolymerization occurs). Thereby, the polyethylene terephthalate constituting the flakes can be depolymerized, and as a result, a depolymerization liquid in which BHET is dissolved in ethylene glycol can be obtained. Note that the flakes are preferably melted in a water-containing state (for example, in a water-containing state after centrifugal dehydration).
Remove foreign substances (e.g. foreign plastics, metals, glass) that float or precipitate in the depolymerization solution. Note that, since the melting point of the cyclic oligomer in the depolymerization liquid is higher than that of polyethylene terephthalate, low molecular weight components such as the cyclic oligomer can also be removed by filtration.
The depolymerization solution is passed through activated carbon (i.e., passed) and then passed through an ion exchange resin. By passing the depolymerization liquid through activated carbon, coloring components (for example, pigments, dyes, compounds generated by thermal deterioration of organic substances) can be removed. By passing the depolymerization liquid through an ion exchange resin, catalysts (eg, polymerization catalysts, depolymerization catalysts) and metal ions can be removed.
Next, the depolymerization liquid is cooled, BHET is precipitated, and BHET and ethylene glycol are separated into solid and liquid.
To remove the ethylene glycol remaining in the BHET (ie, to concentrate the BHET), vacuum evaporation is performed.
Molecular distillation is performed on the concentrated BHET.
High purity BHET can be obtained by such a procedure. Note that, although the operation described here involves solid-liquid separation of BHET and ethylene glycol and then vacuum evaporation, ethylene glycol may be distilled from the depolymerization liquid instead of this operation.
 ケミカルリサイクルポリエステルとして、たとえば、ケミカルリサイクルポリエチレンテレフタレート(以下、「ケミカルリサイクルPET」と言うことがある。)、ケミカルリサイクルポリブチレンテレフタレート、ケミカルリサイクルポリエチレン-2,6-ナフタレートを挙げることができる。もちろん、これらは、共重合成分を含んでいてもよい。入手が容易であり、しかも、機械的性質や耐熱性に優れるといった理由でケミカルリサイクルPETが好ましい。なお、これらは単独で用いてもよく、二種以上を用いてもよい。 Examples of chemically recycled polyester include chemically recycled polyethylene terephthalate (hereinafter sometimes referred to as "chemically recycled PET"), chemically recycled polybutylene terephthalate, and chemically recycled polyethylene-2,6-naphthalate. Of course, these may also contain copolymerized components. Chemically recycled PET is preferred because it is easily available and has excellent mechanical properties and heat resistance. Note that these may be used alone or in combination of two or more.
 ケミカルリサイクルポリエステルは、他の成分が共重合されていてもよい。共重合成分としてのジカルボン酸成分として、たとえば、イソフタル酸、ナフタレンジカルボン酸、4、4-ジフェニルジカルボン酸、アジピン酸、セバシン酸、それらのエステル形成性誘導体を挙げることができる。いっぽう、共重合成分としてのジオール成分として、たとえば、ジエチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノールを挙げることができる。同様に、ポリエチレングリコール、ポリプロピレングリコールなどのポリオキシアルキレングリコールを挙げることもできる。なお、これらは単独で用いてもよく、二種以上を用いてもよい。なお、ペットボトルを構成するPETは、ボトルへの成形性を向上するために、一般的にイソフタル酸が共重合されていることを踏まえると、ケミカルリサイクルPETは、共重合成分として少なくともイソフタル酸成分を含むことが好ましい。 The chemically recycled polyester may be copolymerized with other components. Examples of the dicarboxylic acid component as a copolymerization component include isophthalic acid, naphthalene dicarboxylic acid, 4,4-diphenyldicarboxylic acid, adipic acid, sebacic acid, and ester-forming derivatives thereof. On the other hand, examples of the diol component as a copolymerization component include diethylene glycol, hexamethylene glycol, neopentyl glycol, and cyclohexanedimethanol. Similarly, mention may also be made of polyoxyalkylene glycols such as polyethylene glycol and polypropylene glycol. Note that these may be used alone or in combination of two or more. In addition, considering that PET constituting PET bottles is generally copolymerized with isophthalic acid in order to improve moldability into bottles, chemically recycled PET contains at least an isophthalic acid component as a copolymerized component. It is preferable to include.
 ケミカルリサイクルポリエステル中の全ジカルボン酸成分のモル数を100モル%としたとき、共重合成分のモル数は、10モル%以下が好ましく、8モル%以下がより好ましく、5モル%以下がさらに好ましく、3モル%以下がさらに好ましい。共重合成分のモル数は、0.1モル%以上が好ましく、1モル%以上がより好ましく、2モル%以上がさらに好ましい。なお、ケミカルリサイクルポリエステルは、このような好適な共重合成分モル数を満たす一種、または二種以上を含んでいてもよい。 When the number of moles of all dicarboxylic acid components in the chemically recycled polyester is 100 mol%, the number of moles of the copolymerized component is preferably 10 mol% or less, more preferably 8 mol% or less, and even more preferably 5 mol% or less. , more preferably 3 mol% or less. The number of moles of the copolymer component is preferably 0.1 mol% or more, more preferably 1 mol% or more, and even more preferably 2 mol% or more. In addition, the chemically recycled polyester may contain one kind or two or more kinds satisfying such a suitable number of moles of copolymerization components.
 ケミカルリサイクルポリエステルがケミカルリサイクルPETである場合、ケミカルリサイクルPET中の全ジカルボン酸成分のモル数を100モル%としたとき、イソフタル酸成分のモル数は、10モル%以下が好ましく、8モル%以下がより好ましく、5モル%以下がさらに好ましく、3モル%以下がさらに好ましい。イソフタル酸成分のモル数は、0.1モル%以上が好ましく、1モル%以上がより好ましく、2モル%以上がさらに好ましい。なお、ケミカルリサイクルPETは、このような好適なイソフタル酸成分モル数を満たす一種、または二種以上を含んでいてもよい。 When the chemically recycled polyester is chemically recycled PET, when the number of moles of all dicarboxylic acid components in the chemically recycled PET is 100 mol%, the number of moles of the isophthalic acid component is preferably 10 mol% or less, and 8 mol% or less. is more preferable, 5 mol% or less is even more preferable, and even more preferably 3 mol% or less. The number of moles of the isophthalic acid component is preferably 0.1 mol% or more, more preferably 1 mol% or more, and even more preferably 2 mol% or more. In addition, chemically recycled PET may contain one kind or two or more kinds satisfying such a suitable number of moles of isophthalic acid components.
 ケミカルリサイクルポリエステルの固有粘度は、0.50dl/g以上が好ましく、0.55dl/g以上がより好ましく、0.57dl/g以上がさらに好ましい。0.50dl/g以上であると、ケミカルリサイクルポリエステル中の低分子量成分の量をある程度以下に制限することができるため、二軸配向ポリエステルフィルム8が呈し得る黄色味を低減することができる。いっぽう、ケミカルリサイクルポリエステルの固有粘度は、0.90dl/g以下が好ましく、0.85dl/g以下がより好ましく、0.80dl/g以下がさらに好ましく、0.75dl/g以下がさらに好ましく、0.69dl/g以下がさらに好ましい。0.90dl/g以下であると、二軸配向ポリエステルフィルム8の固有粘度をある程度以下に制限することができるため、二軸配向ポリエステルフィルム8製造過程における延伸時の応力(つまり延伸応力)が過度に大きくなることをいっそう防止でき、その結果、延伸時に生じ得るフィルムの破断を、いっそう抑制または低減することができる。なお、ケミカルリサイクルポリエステルは、このような好適な固有粘度を満たす一種、または二種以上を含んでいてもよい。 The intrinsic viscosity of the chemically recycled polyester is preferably 0.50 dl/g or more, more preferably 0.55 dl/g or more, and even more preferably 0.57 dl/g or more. When it is 0.50 dl/g or more, the amount of low molecular weight components in the chemically recycled polyester can be limited to a certain level or less, and therefore, the yellow tinge that the biaxially oriented polyester film 8 may exhibit can be reduced. On the other hand, the intrinsic viscosity of the chemically recycled polyester is preferably 0.90 dl/g or less, more preferably 0.85 dl/g or less, further preferably 0.80 dl/g or less, even more preferably 0.75 dl/g, and 0. More preferably, it is .69 dl/g or less. If it is 0.90 dl/g or less, the intrinsic viscosity of the biaxially oriented polyester film 8 can be limited to a certain level or less, so that the stress during stretching (that is, stretching stress) during the manufacturing process of the biaxially oriented polyester film 8 is not excessive. As a result, breakage of the film that may occur during stretching can be further suppressed or reduced. Note that the chemically recycled polyester may contain one or more types that satisfy such a suitable intrinsic viscosity.
 ケミカルリサイクルポリエステルのゲル浸透クロマトグラフィー(GPC)で得られる分子量分布曲線において、分子量1000以下の領域の面積割合は、全ピーク面積の3.5%以下であってもよく、3.0%以下であってもよく、2.5%以下であってもよく、2.2%以下であってもよく、2.0%以下であってもよい。いっぽう、この面積割合は、0.8%以上であってもよく、1.0%以上であってもよく、1.2%以上であってもよい。 In the molecular weight distribution curve obtained by gel permeation chromatography (GPC) of chemically recycled polyester, the area ratio of the region with a molecular weight of 1000 or less may be 3.5% or less of the total peak area, and may be 3.0% or less. The content may be 2.5% or less, 2.2% or less, or 2.0% or less. On the other hand, this area ratio may be 0.8% or more, 1.0% or more, or 1.2% or more.
 ケミカルリサイクルポリエステルにおける285℃の溶融比抵抗は、たとえば30.0×10Ω・cm以下であってもよく、25.0×10Ω・cm以下であってもよく、20.0×10Ω・cm以下であってもよく、15.0×10Ω・cm以下であってもよい。ケミカルリサイクルポリエステルにおける285℃の溶融比抵抗は、たとえば0.5×10Ω・cm以上であってもよく、1.5×10Ω・cm以上であってもよく、3.0×10Ω・cm以上であってもよく、5.0×10Ω・cm以上であってもよい。なお、ケミカルリサイクルポリエステルの溶融比抵抗は、後述する化石燃料由来ポリエステルやメカニカルリサイクルポリエステルに比べて高いことが好ましい。なお、ケミカルリサイクルポリエステルは、このような好適な溶融比抵抗を満たす一種、または二種以上を含んでいてもよい。 The melt specific resistance at 285° C. of chemically recycled polyester may be, for example, 30.0×10 8 Ω・cm or less, 25.0×10 8 Ω・cm or less, and 20.0×10 Ω・cm or less. It may be 8 Ω·cm or less, or it may be 15.0×10 8 Ω·cm or less. The melt specific resistance at 285° C. of chemically recycled polyester may be, for example, 0.5×10 8 Ω・cm or more, 1.5×10 8 Ω・cm or more, or 3.0×10 Ω・cm or more. It may be 8 Ω·cm or more, or it may be 5.0×10 8 Ω·cm or more. Note that the melt specific resistance of the chemically recycled polyester is preferably higher than that of the fossil fuel-derived polyester and mechanically recycled polyester, which will be described later. Note that the chemically recycled polyester may contain one or more types that satisfy such a suitable melt specific resistance.
 ケミカルリサイクルポリエステルは、アルカリ土類金属化合物を含んでいてもよいものの、実質的に含まないことが好ましい。ケミカルリサイクルポリエステルは、リサイクルの過程で触媒や金属イオンが除去されるので、アルカリ土類金属化合物以外の触媒(たとえば、ゲルマニウム系触媒やアンチモン系触媒)で重合されることで、アルカリ土類金属化合物をまったく、またはほとんど含まないことができる。 Although the chemically recycled polyester may contain an alkaline earth metal compound, it is preferably substantially free of it. Since catalysts and metal ions are removed from chemically recycled polyester during the recycling process, alkaline earth metal compounds can be produced by polymerizing with catalysts other than alkaline earth metal compounds (for example, germanium-based catalysts or antimony-based catalysts). may contain little or no
 ケミカルリサイクルポリエステル中のアルカリ土類金属化合物の含有量は、アルカリ土類金属原子基準で(すなわちアルカリ土類金属原子換算で)、たとえば30ppm未満であってもよく、20ppm以下であってもよく、10ppm以下であってもよく、5ppm以下であってもよく、3ppm以下であってもよく、0ppmであってもよい。
 ここで、アルカリ土類金属化合物の含有量は、ケミカルリサイクルポリエステルの質量に対する、アルカリ土類金属原子基準でのアルカリ土類金属化合物の質量(つまり、アルカリ土類金属原子基準でのアルカリ土類金属化合物の質量/ケミカルリサイクルポリエステルの質量)である。
 なお、ケミカルリサイクルポリエステルは、このような好適なアルカリ土類金属化合物含有量を満たす一種、または二種以上を含んでいてもよい。
The content of the alkaline earth metal compound in the chemically recycled polyester may be, for example, less than 30 ppm, or 20 ppm or less, on an alkaline earth metal atom basis (i.e., in terms of alkaline earth metal atoms). It may be 10 ppm or less, 5 ppm or less, 3 ppm or less, or 0 ppm.
Here, the content of the alkaline earth metal compound is the mass of the alkaline earth metal compound on the basis of the alkaline earth metal atom with respect to the mass of the chemically recycled polyester (that is, the content of the alkaline earth metal compound on the basis of the alkaline earth metal atom) mass of compound/mass of chemically recycled polyester).
Note that the chemically recycled polyester may contain one or more kinds of alkaline earth metal compounds that satisfy such a suitable content of alkaline earth metal compounds.
 ケミカルリサイクルポリエステル中のマグネシウム化合物の含有量は、マグネシウム原子基準で(すなわちマグネシウム原子換算で)、たとえば30ppm未満であってもよく、20ppm以下であってもよく、10ppm以下であってもよく、5ppm以下であってもよく、3ppm以下であってもよく、0ppmであってもよい。なお、ケミカルリサイクルポリエステルは、このような好適なマグネシウム化合物含有量を満たす一種、または二種以上を含んでいてもよい。 The content of the magnesium compound in the chemically recycled polyester is based on magnesium atoms (that is, in terms of magnesium atoms), and may be, for example, less than 30 ppm, 20 ppm or less, 10 ppm or less, or 5 ppm. It may be below, 3 ppm or less, or 0 ppm. In addition, the chemically recycled polyester may contain one kind or two or more kinds satisfying such a suitable magnesium compound content.
 ケミカルリサイクルポリエステル中のリン化合物の含有量は、リン原子基準で(すなわちリン原子換算で)、10ppm以上であってもよく、15ppm以上であってもよく、20ppm以上であってもよく、30ppm以上であってもよい。いっぽう、リン化合物の含有量は、リン原子基準で、300ppm以下であってもよく、200ppm以下であってもよく、100ppm以下であってもよい。
 ここで、リン化合物の含有量は、ケミカルリサイクルポリエステルの質量に対する、リン原子基準でのリン化合物の質量(つまり、リン原子基準でのリン化合物の質量/ケミカルリサイクルポリエステルの質量)である。
 なお、ケミカルリサイクルポリエステルは、このような好適なリン化合物含有量を満たす一種、または二種以上を含んでいてもよい。
The content of the phosphorus compound in the chemically recycled polyester may be 10 ppm or more, 15 ppm or more, 20 ppm or more, 30 ppm or more, on a phosphorus atom basis (i.e., in terms of phosphorus atoms). It may be. On the other hand, the content of the phosphorus compound may be 300 ppm or less, 200 ppm or less, or 100 ppm or less based on phosphorus atoms.
Here, the content of the phosphorus compound is the mass of the phosphorus compound on a phosphorus atom basis with respect to the mass of the chemically recycled polyester (that is, the mass of the phosphorus compound on a phosphorus atom basis/the mass of the chemically recycled polyester).
In addition, the chemically recycled polyester may contain one kind or two or more kinds satisfying such a suitable phosphorus compound content.
 ケミカルリサイクルポリエステルの含有量は、二軸配向ポリエステルフィルム8を100質量%としたとき、10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましい。10質量%以上であると、環境負荷をいっそう軽減することができる。いっぽう、ケミカルリサイクルポリエステルの含有量は、二軸配向ポリエステルフィルム8を100質量%としたとき、95質量%以下が好ましく、80質量%以下がより好ましく、70質量%以下がさらに好ましい。 The content of the chemically recycled polyester is preferably 10% by mass or more, more preferably 20% by mass or more, and even more preferably 30% by mass or more, when the biaxially oriented polyester film 8 is 100% by mass. When the content is 10% by mass or more, the environmental load can be further reduced. On the other hand, the content of the chemically recycled polyester is preferably 95% by mass or less, more preferably 80% by mass or less, and even more preferably 70% by mass or less, when the biaxially oriented polyester film 8 is 100% by mass.
 二軸配向ポリエステルフィルム8は、化石燃料由来ポリエステル、すなわちバージンポリエステルを含むことが好ましい。化石燃料由来ポリエステルは、化石燃料由来のジオール化合物と、化石燃料由来のジカルボン酸化合物とを縮合重合して得られるポリエステルである。化石燃料由来ポリエステルは、一般にケミカルリサイクルポリエステルに比べて選択の幅が広いところ、化石燃料由来ポリエステルを使用することによって、二軸配向ポリエステルフィルム8の物性を調整可能な幅を広げることができる。 Preferably, the biaxially oriented polyester film 8 contains fossil fuel-derived polyester, that is, virgin polyester. Fossil fuel-derived polyester is a polyester obtained by condensation polymerization of a fossil fuel-derived diol compound and a fossil fuel-derived dicarboxylic acid compound. Fossil fuel-derived polyesters generally have a wider range of selection than chemically recycled polyesters, but by using fossil fuel-derived polyesters, the range in which the physical properties of the biaxially oriented polyester film 8 can be adjusted can be expanded.
 化石燃料由来ポリエステルとして、たとえば、化石燃料由来ポリエチレンテレフタレート(以下、「化石燃料由来PET」と言うことがある。)、化石燃料由来ポリブチレンテレフタレート、化石燃料由来ポリエチレン-2,6-ナフタレートを挙げることができる。もちろん、これらは、共重合成分を含んでいてもよい。コストを抑制でき、しかも、機械的性質や耐熱性に優れるといった理由で化石燃料由来PETが好ましく、化石燃料由来ホモPETがより好ましい。なお、ホモPETは、不可避的に含有されるジエチレングリコール成分を含んでいてもよい。なお、これらは単独で用いてもよく、二種以上を用いてもよい。 Examples of fossil fuel-derived polyesters include fossil fuel-derived polyethylene terephthalate (hereinafter sometimes referred to as "fossil fuel-derived PET"), fossil fuel-derived polybutylene terephthalate, and fossil fuel-derived polyethylene-2,6-naphthalate. Can be done. Of course, these may also contain copolymerized components. Fossil fuel-derived PET is preferred, and fossil fuel-derived homo-PET is more preferred because it can reduce costs and has excellent mechanical properties and heat resistance. Note that homo-PET may also contain an unavoidable diethylene glycol component. Note that these may be used alone or in combination of two or more.
 化石燃料由来ポリエステルの固有粘度は、0.50dl/g以上が好ましく、0.55dl/g以上がより好ましく、0.57dl/g以上がさらに好ましい。0.50dl/g以上であると、化石燃料由来ポリエステル中の低分子量成分の量をある程度以下に制限することができるため、二軸配向ポリエステルフィルム8が呈し得る黄色味を低減することができる。いっぽう、化石燃料由来ポリエステルの固有粘度は、0.75dl/g以下が好ましく、0.70dl/g以下がより好ましく、0.68dl/g以下がさらに好ましく、0.66dl/g以下がさらに好ましく、0.65dl/g以下がさらに好ましい。0.75dl/g以下であると、二軸配向ポリエステルフィルム8製造過程における延伸時の応力(つまり延伸応力)が過度に大きくなることをいっそう防止でき、その結果、延伸時に生じ得るフィルムの破断を、いっそう抑制または低減することができる。なお、化石燃料由来ポリエステルは、このような好適な固有粘度を満たす一種、または二種以上を含んでいてもよい。 The intrinsic viscosity of the fossil fuel-derived polyester is preferably 0.50 dl/g or more, more preferably 0.55 dl/g or more, and even more preferably 0.57 dl/g or more. When it is 0.50 dl/g or more, the amount of low molecular weight components in the fossil fuel-derived polyester can be limited to a certain level or less, and therefore, the yellowishness that the biaxially oriented polyester film 8 may exhibit can be reduced. On the other hand, the intrinsic viscosity of the fossil fuel-derived polyester is preferably 0.75 dl/g or less, more preferably 0.70 dl/g or less, even more preferably 0.68 dl/g or less, even more preferably 0.66 dl/g or less, More preferably, it is 0.65 dl/g or less. If it is 0.75 dl/g or less, stress during stretching (that is, stretching stress) in the biaxially oriented polyester film 8 manufacturing process can be further prevented from becoming excessively large, and as a result, breakage of the film that may occur during stretching can be further prevented. , can be further suppressed or reduced. Note that the fossil fuel-derived polyester may contain one or more types that satisfy such a suitable intrinsic viscosity.
 石燃料由来ポリエステルのゲル浸透クロマトグラフィー(GPC)で得られる分子量分布曲線において、分子量1000以下の領域の面積割合は、全ピーク面積の3.5%以下であってもよく、3.0%以下であってもよく、2.8%以下であってもよい。いっぽう、この面積割合は、1.0%以上であってもよく、1.5%以上であってもよく、1.8%以上であってもよく、2.0%以上であってもよい。 In the molecular weight distribution curve obtained by gel permeation chromatography (GPC) of fossil fuel-derived polyester, the area ratio of the region with a molecular weight of 1000 or less may be 3.5% or less of the total peak area, and may be 3.0% or less. It may be 2.8% or less. On the other hand, this area ratio may be 1.0% or more, 1.5% or more, 1.8% or more, or 2.0% or more. .
 化石燃料由来ポリエステルにおける285℃の溶融比抵抗は、たとえば2.0×10Ω・cm以下であってもよく、1.5×10Ω・cm以下であってもよく、1.0×10Ω・cm以下であってもよく、0.5×10Ω・cm以下であってもよく、0.4×10Ω・cm以下であってもよい。化石燃料由来ポリエステルにおける285℃の溶融比抵抗は、たとえば0.05×10Ω・cm以上であってもよく、0.1×10Ω・cm以上であってもよい。なお、化石燃料由来ポリエステルは、このような好適な溶融比抵抗を満たす一種、または二種以上を含んでいてもよい。 The melting resistivity at 285°C of fossil fuel-derived polyester may be, for example, 2.0×10 8 Ω·cm or less, 1.5×10 8 Ω·cm or less, or 1.0× It may be 10 8 Ω·cm or less, 0.5×10 8 Ω·cm or less, or 0.4×10 8 Ω·cm or less. The melting specific resistance of the fossil fuel-derived polyester at 285° C. may be, for example, 0.05×10 8 Ω·cm or more, or 0.1×10 8 Ω·cm or more. Note that the fossil fuel-derived polyester may contain one or more types that satisfy such a suitable melting specific resistance.
 化石燃料由来ポリエステルは、アルカリ土類金属化合物を含むことが好ましい。なお、アルカリ土類金属化合物は、たとえば、化石燃料由来ポリエステルを製造するための重合触媒として化石燃料由来ポリエステルに添加されていてもよく、二軸配向ポリエステルフィルム8の溶融比抵抗を下げるために添加されていてもよい。 It is preferable that the fossil fuel-derived polyester contains an alkaline earth metal compound. Note that the alkaline earth metal compound may be added to the fossil fuel-derived polyester, for example, as a polymerization catalyst for producing the fossil fuel-derived polyester, and may be added to lower the specific melting resistance of the biaxially oriented polyester film 8. may have been done.
 化石燃料由来ポリエステル中のアルカリ土類金属化合物の含有量は、アルカリ土類金属原子基準で(すなわちアルカリ土類金属原子換算で)、たとえば30ppm以上が好ましく、35ppm以上が好ましく、40ppm以上が好ましく、45ppm以上が好ましい。
 ここで、アルカリ土類金属化合物の含有量は、化石燃料由来ポリエステルの質量に対する、アルカリ土類金属原子基準でのアルカリ土類金属化合物の質量(つまり、アルカリ土類金属原子基準でのアルカリ土類金属化合物の質量/化石燃料由来ポリエステルの質量)である。
 なお、化石燃料由来ポリエステルは、このような好適なアルカリ土類金属化合物含有量を満たす一種、または二種以上を含んでいてもよい。
The content of the alkaline earth metal compound in the fossil fuel-derived polyester is preferably, for example, 30 ppm or more, preferably 35 ppm or more, preferably 40 ppm or more, on an alkaline earth metal atom basis (that is, in terms of alkaline earth metal atoms). 45 ppm or more is preferable.
Here, the content of the alkaline earth metal compound is the mass of the alkaline earth metal compound on the basis of alkaline earth metal atoms (that is, the content of the alkaline earth metal compound on the basis of alkaline earth metal atoms with respect to the mass of the fossil fuel-derived polyester). (mass of metal compound/mass of fossil fuel-derived polyester).
Note that the fossil fuel-derived polyester may contain one or more kinds of alkaline earth metal compounds that satisfy such a suitable alkaline earth metal compound content.
 化石燃料由来ポリエステル中のマグネシウム化合物の含有量は、マグネシウム原子基準で(すなわちマグネシウム原子換算で)、たとえば30ppm以上が好ましく、35ppm以上が好ましく、40ppm以上が好ましく、45ppm以上が好ましい。なお、化石燃料由来ポリエステルは、このような好適なマグネシウム化合物含有量を満たす一種、または二種以上を含んでいてもよい。 The content of the magnesium compound in the fossil fuel-derived polyester is preferably, for example, 30 ppm or more, preferably 35 ppm or more, preferably 40 ppm or more, and preferably 45 ppm or more, on a magnesium atom basis (that is, in terms of magnesium atoms). In addition, the fossil fuel-derived polyester may contain one or more kinds satisfying such a suitable magnesium compound content.
 化石燃料由来ポリエステル中のリン化合物の含有量は、リン原子基準で(すなわちリン原子換算で)、10ppm以上であってもよく、15ppm以上であってもよく、20ppm以上であってもよく、30ppm以上であってもよい。いっぽう、リン化合物の含有量は、リン原子基準で、300ppm以下であってもよく、200ppm以下であってもよく、100ppm以下であってもよい。
 ここで、リン化合物の含有量は、化石燃料由来ポリエステルの質量に対する、リン原子基準でのリン化合物の質量(つまり、リン原子基準でのリン化合物の質量/化石燃料由来ポリエステルの質量)である。
 なお、化石燃料由来ポリエステルは、このような好適なリン化合物含有量を満たす一種、または二種以上を含んでいてもよい。
The content of the phosphorus compound in the fossil fuel-derived polyester may be 10 ppm or more, 15 ppm or more, 20 ppm or more, or 30 ppm on a phosphorus atom basis (i.e., in terms of phosphorus atoms). It may be more than that. On the other hand, the content of the phosphorus compound may be 300 ppm or less, 200 ppm or less, or 100 ppm or less based on phosphorus atoms.
Here, the content of the phosphorus compound is the mass of the phosphorus compound on a phosphorus atom basis with respect to the mass of the fossil fuel-derived polyester (that is, the mass of the phosphorus compound on a phosphorus atom basis/the mass of the fossil fuel-derived polyester).
In addition, the fossil fuel-derived polyester may contain one kind or two or more kinds that satisfy such a suitable phosphorus compound content.
 化石燃料由来ポリエステルの含有量は、二軸配向ポリエステルフィルム8を100質量%としたとき、5質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましい。5質量%以上であると、二軸配向ポリエステルフィルム8の物性を調整可能な幅をいっそう広げることができる。いっぽう、化石燃料由来ポリエステルの含有量は、二軸配向ポリエステルフィルム8を100質量%としたとき、90質量%以下が好ましく、80質量%以下がより好ましく、70質量%以下がさらに好ましい。 The content of the fossil fuel-derived polyester is preferably 5% by mass or more, more preferably 20% by mass or more, and even more preferably 30% by mass or more, when the biaxially oriented polyester film 8 is 100% by mass. When the content is 5% by mass or more, the range in which the physical properties of the biaxially oriented polyester film 8 can be adjusted can be further expanded. On the other hand, the content of the fossil fuel-derived polyester is preferably 90% by mass or less, more preferably 80% by mass or less, and even more preferably 70% by mass or less, when the biaxially oriented polyester film 8 is 100% by mass.
 二軸配向ポリエステルフィルム8は、メカニカルリサイクルポリエステルを含んでいてもよいし、含んでいなくてもよい。メカニカルリサイクルポリエステルは、使用済みポリエステル製品に含まれるポリエステルをモノマーレベルまで分解する操作を経ずに、使用済みポリエステル製品から得られるポリエステルである。メカニカルリサイクルポリエステルは、たとえば、使用済みポリエステル製品を粉砕、洗浄し、必要に応じてフレーク状またはペレット状に再生することによって得られる。 The biaxially oriented polyester film 8 may or may not contain mechanically recycled polyester. Mechanically recycled polyester is polyester obtained from used polyester products without undergoing an operation that decomposes the polyester contained in the used polyester products down to the monomer level. Mechanically recycled polyester is obtained, for example, by crushing and washing a used polyester product, and regenerating it into flakes or pellets as needed.
 メカニカルリサイクルポリエステルのゲル浸透クロマトグラフィー(GPC)で得られる分子量分布曲線において、分子量1000以下の領域の面積割合は、全ピーク面積の4.5%以下であってもよく、4.0%以下であってもよい。いっぽう、この面積割合は、2.5%以上であってもよく、3.0%以上であってもよく、3.2%以上であってもよい。 In the molecular weight distribution curve obtained by gel permeation chromatography (GPC) of mechanically recycled polyester, the area ratio of the region with a molecular weight of 1000 or less may be 4.5% or less of the total peak area, and may be 4.0% or less. There may be. On the other hand, this area ratio may be 2.5% or more, 3.0% or more, or 3.2% or more.
 二軸配向ポリエステルフィルム8は、メカニカルリサイクルポリエステルを実質的に含まないことが好ましい。メカニカルリサイクルポリエステルの含有量は、二軸配向ポリエステルフィルム8を100質量%としたとき、3質量%以下が好ましく、1質量%以下がより好ましく、0.1質量%以下がさらに好ましい。二軸配向ポリエステルフィルム8は、メカニカルリサイクルポリエステルをまったく含まないことが好ましい。 Preferably, the biaxially oriented polyester film 8 does not substantially contain mechanically recycled polyester. The content of the mechanically recycled polyester is preferably 3% by mass or less, more preferably 1% by mass or less, and even more preferably 0.1% by mass or less, when the biaxially oriented polyester film 8 is 100% by mass. Preferably, the biaxially oriented polyester film 8 does not contain any mechanically recycled polyester.
 二軸配向ポリエステルフィルム8は、バイオマスポリエステルを含んでいてもよい。 The biaxially oriented polyester film 8 may contain biomass polyester.
 二軸配向ポリエステルフィルム8を100質量%としたとき、ポリエステルの含有量(すなわち、ケミカルリサイクルポリエステルを含むポリエステルの含有量)は、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましく、98質量%以上がさらに好ましい。 When the biaxially oriented polyester film 8 is 100% by mass, the content of polyester (that is, the content of polyester including chemically recycled polyester) is preferably 80% by mass or more, more preferably 90% by mass or more, and 95% by mass. % or more is more preferable, and even more preferably 98% by mass or more.
 二軸配向ポリエステルフィルム8は、ポリエステル(たとえばケミカルリサイクルポリエステル、化石燃料由来ポリエステル)以外の樹脂を含んでいてもよい。 The biaxially oriented polyester film 8 may contain resin other than polyester (eg, chemically recycled polyester, fossil fuel-derived polyester).
 二軸配向ポリエステルフィルム8は粒子をさらに含むことが好ましい。ここで、「二軸配向ポリエステルフィルム8が粒子を含む」とは、二軸配向ポリエステルフィルム8が複数の層を含む場合には、複数の層のうち、少なくとも一つの層が、粒子を含むことを意味する。 Preferably, the biaxially oriented polyester film 8 further contains particles. Here, "the biaxially oriented polyester film 8 contains particles" means that when the biaxially oriented polyester film 8 contains a plurality of layers, at least one layer among the plurality of layers contains particles. means.
 粒子として、たとえば、無機粒子、有機粒子を挙げることができる。無機粒子として、たとえば、シリカ(酸化珪素)粒子、アルミナ(酸化アルミニウム)粒子、二酸化チタン粒子、炭酸カルシウム粒子、カオリン粒子、結晶性のガラスフィラー、カオリン粒子、タルク粒子、シリカ-アルミナ複合酸化物粒子、硫酸バリウム粒子を挙げることができる。なかでも、シリカ粒子、炭酸カルシウム粒子、アルミナ粒子が好ましく、シリカ粒子、炭酸カルシウム粒子がより好ましい。ヘイズを低減できるという理由でシリカ粒子が特に好ましい。いっぽう、有機粒子として、たとえば、アクリル系樹脂粒子、メラミン樹脂粒子、シリコーン樹脂粒子、架橋ポリスチレン粒子を挙げることができる。なかでもアクリル系樹脂粒子が好ましい。アクリル系樹脂粒子として、たとえば、ポリメタクリレート、ポリメチルアクリレート、またはそれらの誘導体からなる粒子を挙げることができる。なお、これらは単独で用いてもよく、二種以上を用いてもよい。 Examples of the particles include inorganic particles and organic particles. Examples of inorganic particles include silica (silicon oxide) particles, alumina (aluminum oxide) particles, titanium dioxide particles, calcium carbonate particles, kaolin particles, crystalline glass fillers, kaolin particles, talc particles, and silica-alumina composite oxide particles. , barium sulfate particles. Among these, silica particles, calcium carbonate particles, and alumina particles are preferred, and silica particles and calcium carbonate particles are more preferred. Silica particles are particularly preferred because they can reduce haze. On the other hand, examples of organic particles include acrylic resin particles, melamine resin particles, silicone resin particles, and crosslinked polystyrene particles. Among these, acrylic resin particles are preferred. Examples of acrylic resin particles include particles made of polymethacrylate, polymethylacrylate, or derivatives thereof. Note that these may be used alone or in combination of two or more.
 粒子の重量平均粒径は、0.5μm以上が好ましく、0.8μm以上がより好ましく、1.5μm以上がさらに好ましい。0.5μm以上であると、二軸配向ポリエステルフィルム8の表面に凹凸を形成することができる。したがって、二軸配向ポリエステルフィルム8に滑り性を付与することができる。これに加えて、二軸配向ポリエステルフィルム8をロール状に巻取る際に巻込まれ得る空気が抜けやすくなり、シワや気泡といった外観不良の発生を低減できる。いっぽう、粒子の重量平均粒径は、4.0μm以下が好ましく、3.8μm以下がより好ましく、3.0μm以下がさらに好ましい。4.0μm以下であると、二軸配向ポリエステルフィルム8に粗大突起が生じることを防止できる。 The weight average particle diameter of the particles is preferably 0.5 μm or more, more preferably 0.8 μm or more, and even more preferably 1.5 μm or more. If it is 0.5 μm or more, unevenness can be formed on the surface of the biaxially oriented polyester film 8. Therefore, slipperiness can be imparted to the biaxially oriented polyester film 8. In addition to this, air that may be trapped when the biaxially oriented polyester film 8 is wound into a roll shape is easily removed, and appearance defects such as wrinkles and air bubbles can be reduced. On the other hand, the weight average particle diameter of the particles is preferably 4.0 μm or less, more preferably 3.8 μm or less, and even more preferably 3.0 μm or less. When the thickness is 4.0 μm or less, it is possible to prevent coarse protrusions from forming on the biaxially oriented polyester film 8 .
 二軸配向ポリエステルフィルム8における粒子の含有量は、100ppm以上が好ましい。100ppm以上であると、二軸配向ポリエステルフィルム8に滑り性をいっそう付与できるとともに、外観不良の発生をいっそう低減できる。いっぽう、二軸配向ポリエステルフィルム8における粒子の含有量は、1000ppm以下が好ましく、800ppm以下がより好ましい。1000ppm以下であると、二軸配向ポリエステルフィルム8表面の算術平均高さSaや最大突起高さSpが過度に高くなることを防止できる。これに加えて、二軸配向ポリエステルフィルム8中に生じ得るボイドを低減することができるため、ボイドによる透明性の悪化を抑制できる。
 ここで、粒子の含有量は、二軸配向ポリエステルフィルム8の質量に対する、粒子の質量(つまり、粒子の質量/二軸配向ポリエステルフィルム8の質量)である。
The content of particles in the biaxially oriented polyester film 8 is preferably 100 ppm or more. When it is 100 ppm or more, it is possible to further impart slipperiness to the biaxially oriented polyester film 8 and to further reduce the occurrence of appearance defects. On the other hand, the content of particles in the biaxially oriented polyester film 8 is preferably 1000 ppm or less, more preferably 800 ppm or less. When it is 1000 ppm or less, the arithmetic mean height Sa and maximum protrusion height Sp of the surface of the biaxially oriented polyester film 8 can be prevented from becoming excessively high. In addition, since voids that may occur in the biaxially oriented polyester film 8 can be reduced, deterioration of transparency due to voids can be suppressed.
Here, the particle content is the mass of the particles relative to the mass of the biaxially oriented polyester film 8 (that is, the mass of the particles/the mass of the biaxially oriented polyester film 8).
 二軸配向ポリエステルフィルム8は、酸化防止剤、熱安定剤、帯電防止剤、紫外線吸収剤、可塑剤、顔料といった添加剤などをさらに含んでいてもよい。 The biaxially oriented polyester film 8 may further contain additives such as antioxidants, heat stabilizers, antistatic agents, ultraviolet absorbers, plasticizers, and pigments.
 二軸配向ポリエステルフィルム8のゲル浸透クロマトグラフィー(GPC)で得られる分子量分布曲線において、分子量1000以下の領域の面積割合は、全ピーク面積の5.5%以下であることが好ましい。5.5%以下であることによって、すなわち、分子量1,000以下の成分(すなわち低分子量成分)の含有量の上限が設けられることによって、二軸配向ポリエステルフィルム8が呈し得る黄色味を低減することができる。
 この面積割合が5.5%以下であることによって、二軸配向ポリエステルフィルム8にシーラント層を形成した場合、二軸配向ポリエステルフィルム8とシーラント層とのはく離強度を向上することもできる。これは、塑性成分として作用し得る低分子量成分によるはく離強度の低下を抑制できるためである、と考えられる。
 この面積割合は、5.4%以下であってもよく、5.3%以下であってもよく、5.2%以下であってもよく、5.1%以下であってもよく、5.0%以下であってもよい。この面積割合は、4.9%以下であってもよく、4.8%以下であってもよく、4.7%以下であってもよく、4.6%以下であってもよく、4.5%以下であってもよい。
In the molecular weight distribution curve obtained by gel permeation chromatography (GPC) of the biaxially oriented polyester film 8, the area ratio of the region having a molecular weight of 1000 or less is preferably 5.5% or less of the total peak area. By being 5.5% or less, that is, by setting an upper limit on the content of components with a molecular weight of 1,000 or less (i.e., low molecular weight components), the yellowishness that the biaxially oriented polyester film 8 may exhibit is reduced. be able to.
When this area ratio is 5.5% or less, when a sealant layer is formed on the biaxially oriented polyester film 8, the peel strength between the biaxially oriented polyester film 8 and the sealant layer can also be improved. This is considered to be because deterioration in peel strength due to low molecular weight components that can act as plastic components can be suppressed.
This area ratio may be 5.4% or less, 5.3% or less, 5.2% or less, 5.1% or less, 5.4% or less, 5.3% or less, 5.2% or less, 5.1% or less, It may be .0% or less. This area ratio may be 4.9% or less, 4.8% or less, 4.7% or less, 4.6% or less, 4. It may be .5% or less.
 これに加えて、分子量1000以下の領域の面積割合が、全ピーク面積の1.9%以上であることが好ましい。
 1.9%以上であることによって、すなわち、低分子量成分の含有量の下限が設けられることによって、可塑剤のように働くことが可能な低分子量成分の含有量を確保することができる。
 1.9%以上であることによって、二軸配向ポリエステルフィルム8に含まれるポリエステルの分子量をある程度以下に制限することもできる。これについて説明する。低分子量成分は、重合過程でポリエステルに取り込まれるため、ポリエステルの分子量が大きいほど低分子量成分が少なく、ポリエステルの分子量が小さいほど低分子量成分が多くなる傾向がある。本実施形態によれば、分子量1000以下の領域の面積割合が1.9%以上であるため、つまり、低分子量成分がある程度以上存在するため、二軸配向ポリエステルフィルム8に含まれるポリエステルの分子量をある程度以下に制限することができる。
 したがって、二軸配向ポリエステルフィルム8製造過程における延伸時の応力(つまり延伸応力)が過度に大きくなることをいっそう防止でき、その結果、延伸時に生じ得るフィルムの破断をいっそう抑制または低減することができる。
 この面積割合は、2.0%以上であってもよく、2.2%以上であってもよく、2.4%以上であってもよく、2.6%以上であってもよく、2.8%以上であってもよく、3.0%以上であってもよい。
In addition, it is preferable that the area ratio of the region having a molecular weight of 1000 or less is 1.9% or more of the total peak area.
By setting the content of the low molecular weight component at 1.9% or more, that is, by setting a lower limit for the content of the low molecular weight component, it is possible to ensure the content of the low molecular weight component that can function like a plasticizer.
By setting the content to 1.9% or more, the molecular weight of the polyester contained in the biaxially oriented polyester film 8 can be limited to a certain level or less. This will be explained. Since low molecular weight components are incorporated into polyester during the polymerization process, there is a tendency that the larger the molecular weight of polyester, the less low molecular weight components, and the smaller the molecular weight of polyester, the more low molecular weight components. According to this embodiment, since the area ratio of the region having a molecular weight of 1000 or less is 1.9% or more, that is, since a certain amount or more of low molecular weight components are present, the molecular weight of the polyester contained in the biaxially oriented polyester film 8 is It can be limited to a certain degree.
Therefore, it is possible to further prevent stress during stretching (that is, stretching stress) during the manufacturing process of biaxially oriented polyester film 8 from becoming excessively large, and as a result, it is possible to further suppress or reduce breakage of the film that may occur during stretching. .
This area ratio may be 2.0% or more, 2.2% or more, 2.4% or more, 2.6% or more, 2.0% or more, 2.2% or more, 2.4% or more, 2.6% or more, It may be .8% or more, or it may be 3.0% or more.
 二軸配向ポリエステルフィルム8の厚み1μm当たりのカラーb値は0.067以下が好ましく、0.060以下がより好ましく、0.050以下がさらに好ましい。0.067以下であると、二軸配向ポリエステルフィルム8が呈し得る黄色味を制限することができる。したがって、たとえば、二軸配向ポリエステルフィルム8に印刷層を形成した場合、二軸配向ポリエステルフィルム8の色合いが、印刷層の見た目(つまり外観)に与える影響を低減することができる。また、たとえば、二軸配向ポリエステルフィルム8を用いて包装容器を作製した場合には、二軸配向ポリエステルフィルム8の色合いが、内容品の見た目に与える影響を低減することができる。 The color b * value per 1 μm of thickness of the biaxially oriented polyester film 8 is preferably 0.067 or less, more preferably 0.060 or less, and even more preferably 0.050 or less. If it is 0.067 or less, the yellowishness that the biaxially oriented polyester film 8 may exhibit can be limited. Therefore, for example, when a printed layer is formed on the biaxially oriented polyester film 8, the influence of the color tone of the biaxially oriented polyester film 8 on the appearance (that is, the external appearance) of the printed layer can be reduced. Further, for example, when a packaging container is produced using the biaxially oriented polyester film 8, the influence of the color tone of the biaxially oriented polyester film 8 on the appearance of the contents can be reduced.
 二軸配向ポリエステルフィルム8の固有粘度は0.50dl/g以上が好ましく、0.51dl/g以上がより好ましい。0.50dl/g以上であると、機械的性質、具体的には引張強さや突刺し強さをいっそう向上することができる。いっぽう、二軸配向ポリエステルフィルム8の固有粘度は0.70dl/g以下が好ましく、0.65dl/g以下がより好ましい。0.70dl/g以下であると、二軸配向ポリエステルフィルム8製造過程における延伸時の応力(つまり延伸応力)が過度に大きくなることをいっそう防止でき、その結果、延伸時に生じ得るフィルムの破断をいっそう抑制または低減することができる。 The intrinsic viscosity of the biaxially oriented polyester film 8 is preferably 0.50 dl/g or more, more preferably 0.51 dl/g or more. When it is 0.50 dl/g or more, mechanical properties, specifically tensile strength and puncture strength, can be further improved. On the other hand, the intrinsic viscosity of the biaxially oriented polyester film 8 is preferably 0.70 dl/g or less, more preferably 0.65 dl/g or less. If it is 0.70 dl/g or less, stress during stretching (that is, stretching stress) in the biaxially oriented polyester film 8 manufacturing process can be further prevented from becoming excessively large, and as a result, breakage of the film that may occur during stretching can be further prevented. can be further suppressed or reduced.
 二軸配向ポリエステルフィルム8の少なくとも一方の面の表面結晶化度は1.10以上であり、1.15以上が好ましく、1.20以上がより好ましく、1.25以上がさらに好ましい。ここで、「一方の面」とは、二軸配向ポリエステルフィルム8の両面のうちの一方の面である。
 表面結晶化度が1.10以上であることによって、二軸配向ポリエステルフィルム8に含まれるポリエステルの分子量をある程度以下に制限できる。これについて説明する。結晶化速度は、ポリエステルの分子量が小さいほど速くなる。このため、二軸配向ポリエステルフィルム8の表面結晶化度が高いほど、二軸配向ポリエステルフィルム8に含まれるポリエステルの分子量が低くなる傾向がある。したがって、表面結晶化度が1.10以上であることによって、二軸配向ポリエステルフィルム8に含まれるポリエステルの分子量をある程度以下に制限できる。
 表面結晶化度が1.10以上であることによって、可塑剤のように働くことが可能な低分子量成分を、ある程度以上存在させることもできる。これについて説明する。二軸配向ポリエステルフィルム8に含まれるポリエステルの分子量が小さいほど、二軸配向ポリエステルフィルム8中の低分子量成分は多くなる傾向がある。なぜなら、低分子量成分は、重合過程でポリエステルに取り込まれるためである。上述の通り、表面結晶化度が1.10以上であることによって、二軸配向ポリエステルフィルム8に含まれるポリエステルの分子量をある程度以下に制限できる。その結果、低分子量成分をある程度以上存在させることができる。したがって、表面結晶化度が1.10以上であることによって、可塑剤のように働くことが可能な低分子量成分を、ある程度以上存在させることができる。
 したがって、表面結晶化度が1.10以上であることによって、二軸配向ポリエステルフィルム8製造過程における延伸時の応力(つまり延伸応力)が過度に大きくなることを防止でき、その結果、延伸時に生じ得るフィルムの破断を抑制または低減することができる。
The surface crystallinity of at least one surface of the biaxially oriented polyester film 8 is 1.10 or more, preferably 1.15 or more, more preferably 1.20 or more, and even more preferably 1.25 or more. Here, "one side" is one of both sides of the biaxially oriented polyester film 8.
By having a surface crystallinity of 1.10 or more, the molecular weight of the polyester contained in the biaxially oriented polyester film 8 can be limited to a certain level or less. This will be explained. The crystallization rate becomes faster as the molecular weight of the polyester decreases. Therefore, the higher the surface crystallinity of the biaxially oriented polyester film 8, the lower the molecular weight of the polyester contained in the biaxially oriented polyester film 8 tends to be. Therefore, by having a surface crystallinity of 1.10 or more, the molecular weight of the polyester contained in the biaxially oriented polyester film 8 can be limited to a certain level or less.
By having a surface crystallinity of 1.10 or more, a certain amount of low molecular weight components that can act as plasticizers can be present. This will be explained. The lower the molecular weight of the polyester contained in the biaxially oriented polyester film 8, the more the low molecular weight components in the biaxially oriented polyester film 8 tend to be. This is because low molecular weight components are incorporated into the polyester during the polymerization process. As described above, by having a surface crystallinity of 1.10 or more, the molecular weight of the polyester contained in the biaxially oriented polyester film 8 can be limited to a certain level or less. As a result, a certain amount of low molecular weight components can be present. Therefore, by having a surface crystallinity of 1.10 or more, a certain amount of low molecular weight components that can act like plasticizers can be present.
Therefore, by having a surface crystallinity of 1.10 or more, stress during stretching (that is, stretching stress) in the biaxially oriented polyester film 8 manufacturing process can be prevented from becoming excessively large, and as a result, the stress generated during stretching can be prevented from becoming excessively large. Breakage of the obtained film can be suppressed or reduced.
 同じように、二軸配向ポリエステルフィルム8の両面の表面結晶化度が、1.10以上が好ましく、1.15以上がより好ましく、1.20以上がさらに好ましく、1.25以上がさらに好ましい。 Similarly, the surface crystallinity of both surfaces of the biaxially oriented polyester film 8 is preferably 1.10 or more, more preferably 1.15 or more, even more preferably 1.20 or more, and even more preferably 1.25 or more.
 二軸配向ポリエステルフィルム8の少なくとも一方の面の表面結晶化度は1.31以下であり、1.30以下が好ましく、1.29以下がより好ましく、1.28以下がさらに好ましい。表面結晶化度が1.31以下であることによって、二軸配向ポリエステルフィルム8が過度に脆くなる(つまり靭性が過度に悪くなる)ことを防止できるため、機械的性質、具体的には引張強さや突刺し強さを向上することができる。 The surface crystallinity of at least one side of the biaxially oriented polyester film 8 is 1.31 or less, preferably 1.30 or less, more preferably 1.29 or less, and even more preferably 1.28 or less. By having a surface crystallinity of 1.31 or less, it is possible to prevent the biaxially oriented polyester film 8 from becoming excessively brittle (that is, the toughness is excessively deteriorated), so that the mechanical properties, specifically the tensile strength The sheath piercing strength can be improved.
 同じように、二軸配向ポリエステルフィルム8の両面の表面結晶化度が、1.31以下が好ましく、1.30以下がより好ましく、1.29以下がさらに好ましく、1.28以下がさらに好ましい。 Similarly, the degree of surface crystallinity on both sides of the biaxially oriented polyester film 8 is preferably 1.31 or less, more preferably 1.30 or less, even more preferably 1.29 or less, and even more preferably 1.28 or less.
 なお、表面結晶化度は、ATR-IRにより求められる。すなわち、フーリエ変換赤外分光光度計を用いて全反射減衰法でスペクトルを得ることにより求められる。表面結晶化度は、1340cm-1付近に現れる吸収と、1410cm-1付近に現れる吸収との強度比、具体的には、1340cm-1の強度/1410cm-1の強度である。1340cm-1付近に現れる吸収は、エチレングリコールのCH(トランス構造)の変角振動による吸収である。いっぽう、1410cm-1付近に現れる吸収は、結晶とも配向とも無関係の吸収である。
 ATR-IR測定は、以下の条件でおこなわれる。
   FT-IR:Bio Rad DIGILAB社製 FTS-60A/896
   1回反射ATRアタッチメント:golden gate MKII(SPECAC製)
   内部反射エレメント:ダイヤモンド
   入射角:45°
   分解能:4cm-1
   積算回数:128回
Note that the surface crystallinity is determined by ATR-IR. That is, it is determined by obtaining a spectrum by the attenuated total reflection method using a Fourier transform infrared spectrophotometer. The surface crystallinity is the intensity ratio of absorption appearing near 1340 cm -1 and absorption appearing near 1410 cm -1 , specifically, intensity of 1340 cm -1 /intensity of 1410 cm -1 . The absorption that appears around 1340 cm −1 is due to the bending vibration of CH 2 (trans structure) of ethylene glycol. On the other hand, the absorption that appears near 1410 cm -1 is unrelated to crystal or orientation.
ATR-IR measurement is performed under the following conditions.
FT-IR: Bio Rad DIGILAB FTS-60A/896
Single reflection ATR attachment: golden gate MKII (manufactured by SPECAC)
Internal reflective element: Diamond Incident angle: 45°
Resolution: 4cm -1
Accumulated number of times: 128 times
 二軸配向ポリエステルフィルム8の融点は、251℃以上であり、252℃以上が好ましい。251℃以上であるため耐熱性に優れる。いっぽう、二軸配向ポリエステルフィルム8の融点は、270℃以下が好ましく、268℃以下がより好ましい。270℃以下であると、二軸配向ポリエステルフィルム8を形成するための原料ポリエステル(たとえばケミカルリサイクルポリエステル)を溶融押出しする際に、粘度が過度に高くなることを防止でき、その結果、高速製膜が可能となる。 The melting point of the biaxially oriented polyester film 8 is 251°C or higher, preferably 252°C or higher. Since the temperature is 251°C or higher, it has excellent heat resistance. On the other hand, the melting point of the biaxially oriented polyester film 8 is preferably 270°C or lower, more preferably 268°C or lower. When the temperature is 270°C or lower, it is possible to prevent the viscosity from becoming excessively high when melt extruding the raw material polyester (for example, chemically recycled polyester) for forming the biaxially oriented polyester film 8, and as a result, high-speed film formation is possible. becomes possible.
 二軸配向ポリエステルフィルム8における285℃の溶融比抵抗は1.0×10Ω・cm以下が好ましく、0.5×10Ω・cm以下がより好ましく、0.25×10Ω・cm以下がさらに好ましい。1.0×10Ω・cm以下であると、二軸配向ポリエステルフィルム8製造過程において溶融押出しされたフィルム状のポリエステル組成物を冷却ドラムに静電密着キャスト法で密着させる際に、ポリエステル組成物の表面に静電気を効果的に帯電させることが可能であるため、ポリエステル組成物を冷却ドラムに良好に密着させることができる。したがって、製膜速度を過度に落とさずに、ピンナーバブル(すなわち、ポリエステル組成物と冷却ドラムとの間にエアーが入り込むことによって生じるスジ状の欠陥)が生じることを抑制できる。なお、製膜速度は、二軸配向ポリエステルフィルム8をマスターロールに巻き取る際の、二軸配向ポリエステルフィルム8の走行速度(m/分)である。製膜速度は、キャスト速度にMD延伸倍率をかけることで算出することができる。いっぽう、溶融比抵抗は、たとえば、0.01×10Ω・cm以上であってもよく、0.03×10Ω・cm以上であってもよく、0.05×10Ω・cm以上であってもよい。0.01×10Ω・cm以上であると、異物(たとえば、溶融比抵抗を低下させることができるアルカリ土類金属化合物に起因する異物)の生成を抑制または低減することができる。 The specific melt resistance at 285°C of the biaxially oriented polyester film 8 is preferably 1.0×10 8 Ω・cm or less, more preferably 0.5×10 8 Ω・cm or less, and 0.25×10 8 Ω・cm. The following are more preferred. If it is 1.0×10 8 Ω・cm or less, when the polyester composition melt-extruded in the manufacturing process of the biaxially oriented polyester film 8 is adhered to the cooling drum by the electrostatic adhesion casting method, the polyester composition Since the surface of the object can be effectively charged with static electricity, the polyester composition can be brought into close contact with the cooling drum. Therefore, the formation of pinner bubbles (ie, streak-like defects caused by air entering between the polyester composition and the cooling drum) can be suppressed without reducing the film forming speed excessively. Note that the film forming speed is the running speed (m/min) of the biaxially oriented polyester film 8 when the biaxially oriented polyester film 8 is wound onto a master roll. The film forming speed can be calculated by multiplying the casting speed by the MD stretching ratio. On the other hand, the melt specific resistance may be, for example, 0.01×10 8 Ω・cm or more, 0.03×10 8 Ω・cm or more, or 0.05×10 8 Ω・cm. It may be more than that. When it is 0.01×10 8 Ω·cm or more, the formation of foreign matter (for example, foreign matter caused by an alkaline earth metal compound that can lower the melting resistivity) can be suppressed or reduced.
 二軸配向ポリエステルフィルム8の溶融比抵抗は、二軸配向ポリエステルフィルム8中のアルカリ土類金属化合物の含有量や、リン化合物の含有量によって調製することができる。たとえば、アルカリ土類金属化合物を構成するアルカリ土類金属原子(以下、「M2」と言うことがある。)は、溶融比抵抗を下げる作用を有するため、アルカリ土類金属化合物の含有量を高めるほど、溶融比抵抗を下げることができる。いっぽう、リン化合物自体は、二軸配向ポリエステルフィルム8の溶融比抵抗を下げる作用を有さないと考えられるものの、アルカリ土類金属化合物の存在下で、溶融比抵抗の低下に寄与する。その理由は明らかではないものの、リン化合物を含有させることにより、異物の生成を抑制し、電荷担体の量を増大させることができるためであると考えられる。 The specific melt resistance of the biaxially oriented polyester film 8 can be adjusted by the content of the alkaline earth metal compound and the content of the phosphorus compound in the biaxially oriented polyester film 8. For example, the alkaline earth metal atoms (hereinafter sometimes referred to as "M2") constituting the alkaline earth metal compound have the effect of lowering the melting resistivity, so the content of the alkaline earth metal compound can be increased. The more the melting resistivity can be lowered. On the other hand, although the phosphorus compound itself is not considered to have the effect of lowering the melting resistivity of the biaxially oriented polyester film 8, it contributes to lowering the melting resistivity in the presence of the alkaline earth metal compound. Although the reason for this is not clear, it is thought that the inclusion of a phosphorus compound suppresses the generation of foreign substances and increases the amount of charge carriers.
 アルカリ土類金属化合物として、たとえば、アルカリ土類金属の水酸化物、脂肪族ジカルボン酸塩(酢酸塩、酪酸塩など、好ましくは酢酸塩)、芳香族次カルボン酸塩、フェノール性水酸基を有する化合物との塩(フェノールとの塩など)などを挙げることができる。アルカリ土類金属として、たとえば、マグネシウム、カルシウム、ストロンチウム、バリウムを挙げることができる。なかでもマグネシウムが好ましい。より具体的には、水酸化マグネシウム、酢酸マグネシウム、酢酸カルシウム、酢酸ストロンチウム、酢酸バリウムなどを挙げることができる。なかでも、酢酸マグネシウムが好ましい。アルカリ土類金属化合物は、単独でまたは2種以上組合せて使用できる。なお、アルカリ土類金属の定義として、マグネシウムをアルカリ土類金属に含めない定義が世の中にはあるものの、本明細書では、アルカリ土類金属は、マグネシウムを含む用語として使用している。言い換えれば、本明細書では、アルカリ土類金属は、周期表IIa族の元素を指している。 Examples of alkaline earth metal compounds include alkaline earth metal hydroxides, aliphatic dicarboxylate salts (acetate, butyrate, etc., preferably acetate), aromatic subcarboxylate salts, and compounds having a phenolic hydroxyl group. Examples include salts with (such as salts with phenol). Examples of alkaline earth metals include magnesium, calcium, strontium, and barium. Among them, magnesium is preferred. More specifically, magnesium hydroxide, magnesium acetate, calcium acetate, strontium acetate, barium acetate, etc. can be mentioned. Among them, magnesium acetate is preferred. The alkaline earth metal compounds can be used alone or in combination of two or more. Although there are definitions of alkaline earth metals that do not include magnesium, in this specification, alkaline earth metals are used as a term that includes magnesium. In other words, alkaline earth metals herein refer to elements of group IIa of the periodic table.
 なお、ケミカルリサイクルポリエステルは、リサイクルの過程で触媒や金属イオンが除去されるため、アルカリ土類金属化合物を、まったく、または実質的に含まないため、ケミカルリサイクルポリエステルと、他のポリエステル(たとえば、化石燃料由来ポリエステルや、これにアルカリ土類金属化合物を添加したマスターバッチ)とを併用することで、アルカリ土類金属化合物の含有量を調整することができる。 In addition, chemically recycled polyester does not contain any or substantially alkaline earth metal compounds because catalysts and metal ions are removed during the recycling process. The content of the alkaline earth metal compound can be adjusted by using a fuel-derived polyester or a masterbatch in which an alkaline earth metal compound is added thereto.
 二軸配向ポリエステルフィルム8中のアルカリ土類金属化合物の含有量は、アルカリ土類金属原子基準で(すなわちアルカリ土類金属原子換算で)、20ppm以上が好ましく、22ppm以上がより好ましく、24ppm以上がさらに好ましい。いっぽう、アルカリ土類金属化合物の含有量は、アルカリ土類金属原子基準で、400ppm以下が好ましく、350ppm以下がより好ましく、300ppm以下さらに好ましい。400ppm以下であると、アルカリ土類金属化合物に起因する異物の生成や着色を抑えることができる。
 ここで、アルカリ土類金属化合物の含有量は、二軸配向ポリエステルフィルム8の質量に対する、アルカリ土類金属原子基準でのアルカリ土類金属化合物の質量(つまり、アルカリ土類金属原子基準でのアルカリ土類金属化合物の質量/二軸配向ポリエステルフィルム8の質量)である。
The content of the alkaline earth metal compound in the biaxially oriented polyester film 8 is preferably 20 ppm or more, more preferably 22 ppm or more, and 24 ppm or more on an alkaline earth metal atom basis (that is, in terms of alkaline earth metal atoms). More preferred. On the other hand, the content of the alkaline earth metal compound is preferably 400 ppm or less, more preferably 350 ppm or less, even more preferably 300 ppm or less, based on alkaline earth metal atoms. When the content is 400 ppm or less, it is possible to suppress the generation of foreign substances and coloring caused by the alkaline earth metal compound.
Here, the content of the alkaline earth metal compound is the mass of the alkaline earth metal compound on the basis of the alkaline earth metal atoms (that is, the content of the alkaline earth metal compound on the basis of the alkaline earth metal atoms) with respect to the mass of the biaxially oriented polyester film 8. mass of earth metal compound/mass of biaxially oriented polyester film 8).
 二軸配向ポリエステルフィルム8中のマグネシウム化合物の含有量は、マグネシウム原子基準で(すなわちマグネシウム原子換算で)、20ppm以上が好ましく、22ppm以上がより好ましく、24ppm以上がさらに好ましい。いっぽう、マグネシウム化合物の含有量は、マグネシウム原子基準で、400ppm以下が好ましく、350ppm以下がより好ましく、300ppm以下さらに好ましい。 The content of the magnesium compound in the biaxially oriented polyester film 8 is preferably 20 ppm or more, more preferably 22 ppm or more, and even more preferably 24 ppm or more on a magnesium atom basis (that is, in terms of magnesium atoms). On the other hand, the content of the magnesium compound is preferably 400 ppm or less, more preferably 350 ppm or less, and even more preferably 300 ppm or less, based on magnesium atoms.
 リン化合物として、たとえば、リン酸類(リン酸、亜リン酸、次亜リン酸など)、およびそのエステル(アルキルエステル、アリールエステルなど)、並びにアルキルホスホン酸、アリールホスホン酸、およびそれらのエステル(アルキルエステル、アリールエステルなど)を挙げることができる。好ましいリン化合物として、リン酸、リン酸の脂肪族エステル(リン酸のアルキルエステルなど;たとえば、リン酸モノメチルエステル、リン酸モノエチルエステル、リン酸モノブチルエステルなどのリン酸モノC1-6アルキルエステル、リン酸ジメチルエステル、リン酸ジエチルエステル、リン酸ジブチルエステルなどのリン酸ジC1-6アルキルエステル、リン酸トリメチルエステル、リン酸トリエチルエステル、リン酸トリブチルエステルなどのリン酸トリC1-6アルキルエステルなど)、リン酸の芳香族エステル(リン酸トリフェニル、リン酸トリクレジルなどのリン酸のモノ、ジ、またはトリC6-9アリールエステルなど)、亜リン酸の脂肪族エステル(亜リン酸のアルキルエステルなど;たとえば、亜リン酸トリメチル、亜リン酸トリブチルなどの亜リン酸のモノ、ジ、またはトリC1-6アルキルエステルなど)、アルキルホスホン酸(メチルホスホン酸、エチルホスホン酸などのC1-6アルキルホスホン酸)、アルキルホスホン酸アルキルエステル(メチルホスホン酸ジメチル、エチルホスホン酸ジメチルなどのC1-6アルキルホスホン酸のモノまたはジC1-6アルキルエステルなど)、アリールホスホン酸アルキルエステル(フェニルホスホン酸ジメチル、フェニルホスホン酸ジエチルなどのC6-9アリールホスホン酸のモノまたはジC1-6アルキルエステルなど)、アリールホスホン酸アリールエステル(フェニルホスホン酸ジフェニルなどのC6-9アリールホスホン酸のモノまたはジC6-9アリールエステルなど)を挙げることができる。特に好ましいリン化合物として、リン酸、リン酸トリアルキル(リン酸トリメチルなど)を挙げることができる。これらリン化合物は単独で、または2種以上組合せて使用できる。 Phosphorus compounds include, for example, phosphoric acids (phosphoric acid, phosphorous acid, hypophosphorous acid, etc.), their esters (alkyl esters, aryl esters, etc.), alkylphosphonic acids, arylphosphonic acids, and their esters (alkyl esters, aryl esters, etc.). Preferred phosphorus compounds include phosphoric acid, aliphatic esters of phosphoric acid (alkyl esters of phosphoric acid, etc.; for example, phosphoric acid mono-C1-6 alkyl esters such as phosphoric acid monomethyl ester, phosphoric acid monoethyl ester, phosphoric acid monobutyl ester) , phosphoric acid di-C1-6 alkyl esters such as phosphoric acid dimethyl ester, phosphoric acid diethyl ester, and phosphoric acid dibutyl ester, phosphoric acid tri-C1-6 alkyl esters such as phosphoric acid trimethyl ester, phosphoric acid triethyl ester, phosphoric acid tributyl ester, etc. ), aromatic esters of phosphoric acid (such as mono-, di-, or tri-C6-9 aryl esters of phosphoric acid, such as triphenyl phosphate, tricresyl phosphate, etc.), aliphatic esters of phosphorous acid (alkyl esters; for example, mono-, di-, or tri-C1-6 alkyl esters of phosphorous acid such as trimethyl phosphite, tributyl phosphite, etc.), alkylphosphonic acids (C1-6 alkyl esters such as methylphosphonic acid, ethylphosphonic acid, etc.); phosphonic acid), alkylphosphonic acid alkyl esters (mono- or di-C1-6 alkyl esters of C1-6 alkylphosphonic acids such as dimethyl methylphosphonate, dimethyl ethylphosphonate, etc.), arylphosphonic acid alkyl esters (dimethyl phenylphosphonate, phenyl mono- or di-C1-6 alkyl esters of C6-9 arylphosphonic acids such as diethyl phosphonate), arylphosphonic acid aryl esters (mono- or di-C6-9 aryl esters of C6-9 arylphosphonic acids such as diphenyl phenylphosphonate); etc.) can be mentioned. Particularly preferred phosphorus compounds include phosphoric acid and trialkyl phosphate (trimethyl phosphate, etc.). These phosphorus compounds can be used alone or in combination of two or more.
 二軸配向ポリエステルフィルム8中のリン化合物の含有量は、リン原子基準で(すなわちリン原子換算で)、10ppm以上が好ましく、11ppm以上がより好ましく、12ppm以上がさらに好ましい。10ppm以上であると、溶融比抵抗を効果的に下げることができる。また、異物の生成を抑制することができる。リン化合物の含有量は、リン原子換算で、20ppm以上であってもよく、40ppm以上であってもよく、50ppm以上であってもよい。いっぽう、リン化合物の含有量は、リン原子基準で、600ppm以下が好ましく、550ppm以下がより好ましく、500ppm以下がさらに好ましい。600ppm以下であると、ジエチレングリコールが生成を低減することができる。リン化合物の含有量は、リン原子換算で、400ppm以下であってもよく、200ppm以下であってもよく、100ppm以下であってもよい。
 ここで、リン化合物の含有量は、二軸配向ポリエステルフィルム8の質量に対する、リン原子基準でのリン化合物の質量(つまり、リン原子基準でのリン化合物の質量/二軸配向ポリエステルフィルム8の質量)である。
The content of the phosphorus compound in the biaxially oriented polyester film 8 is preferably 10 ppm or more, more preferably 11 ppm or more, and even more preferably 12 ppm or more, on a phosphorus atom basis (that is, in terms of phosphorus atoms). When it is 10 ppm or more, melt specific resistance can be effectively lowered. Further, the generation of foreign matter can be suppressed. The content of the phosphorus compound may be 20 ppm or more, 40 ppm or more, or 50 ppm or more in terms of phosphorus atoms. On the other hand, the content of the phosphorus compound is preferably 600 ppm or less, more preferably 550 ppm or less, and even more preferably 500 ppm or less, based on phosphorus atoms. If it is 600 ppm or less, diethylene glycol can reduce the production. The content of the phosphorus compound may be 400 ppm or less, 200 ppm or less, or 100 ppm or less in terms of phosphorus atoms.
Here, the content of the phosphorus compound is the mass of the phosphorus compound on a phosphorus atom basis with respect to the mass of the biaxially oriented polyester film 8 (that is, the mass of the phosphorus compound on a phosphorus atom basis/the mass of the biaxially oriented polyester film 8 ).
 二軸配向ポリエステルフィルム8において、アルカリ土類金属原子(すなわちM2)とリン原子(P)との質量比、すなわち、M2質量のP質量に対する比(M2質量/P質量)は、1.0以上が好ましく、1.1以上がより好ましく、1.2以上がさらに好ましく、1.3以上がさらに好ましく、1.4以上がさらに好ましい。1.0以上であると、二軸配向ポリエステルフィルム8の溶融比抵抗を効果的に低減することができる。いっぽう、この質量比は、5.0以下が好ましく、4.5以下がより好ましく、4.0以下がさらに好ましい。5.0以下であると、異物の生成や着色を抑えることができる。 In the biaxially oriented polyester film 8, the mass ratio of alkaline earth metal atoms (i.e., M2) to phosphorus atoms (P), that is, the ratio of M2 mass to P mass (M2 mass/P mass) is 1.0 or more. is preferable, 1.1 or more is more preferable, 1.2 or more is even more preferable, 1.3 or more is even more preferable, and 1.4 or more is even more preferable. When it is 1.0 or more, the melt specific resistance of the biaxially oriented polyester film 8 can be effectively reduced. On the other hand, this mass ratio is preferably 5.0 or less, more preferably 4.5 or less, and even more preferably 4.0 or less. When it is 5.0 or less, generation of foreign substances and coloring can be suppressed.
 二軸配向ポリエステルフィルム8中の全ジカルボン酸成分のモル数を100モル%としたとき、イソフタル酸成分のモル数は、0.1モル%以上が好ましく、0.15モル%以上がより好ましく、0.2モル%以上がさらに好ましく、0.4モル%以上がさらに好ましい。0.1モル%以上であると、二軸配向ポリエステルフィルム8にシーラント層を設けた場合、二軸配向ポリエステルフィルム8とシーラント層とのはく離強度を向上することができる。いっぽう、イソフタル酸成分のモル数は、3.0モル%以下が好ましく、2.5モル%以下がより好ましく、2.2モル%以下がさらに好ましく、2.0モル%以下がさらに好ましい。3.0モル%以下であると、結晶性が過度に低下することを防止でき、したがって耐熱性や機械的性質(具体的には、引張強さや突刺し強さ)が過度に低下することを防止できる。また、二軸配向ポリエステルフィルム8の厚みムラを小さくすることができ、二軸配向ポリエステルフィルム8の熱収縮率を制限することもできる。 When the number of moles of all the dicarboxylic acid components in the biaxially oriented polyester film 8 is 100 mol%, the number of moles of the isophthalic acid component is preferably 0.1 mol% or more, more preferably 0.15 mol% or more, The content is more preferably 0.2 mol% or more, and even more preferably 0.4 mol% or more. If the content is 0.1 mol % or more, when a sealant layer is provided on the biaxially oriented polyester film 8, the peel strength between the biaxially oriented polyester film 8 and the sealant layer can be improved. On the other hand, the number of moles of the isophthalic acid component is preferably 3.0 mol% or less, more preferably 2.5 mol% or less, even more preferably 2.2 mol% or less, and even more preferably 2.0 mol% or less. If it is 3.0 mol% or less, it is possible to prevent the crystallinity from decreasing excessively, and therefore the heat resistance and mechanical properties (specifically, tensile strength and puncture strength) can be prevented from excessively decreasing. It can be prevented. Moreover, the thickness unevenness of the biaxially oriented polyester film 8 can be reduced, and the heat shrinkage rate of the biaxially oriented polyester film 8 can also be limited.
 二軸配向ポリエステルフィルム8の少なくとも一方向の引張強さは180MPa以上が好ましく、185MPa以上がより好ましく、190MPa以上がさらに好ましい。180MPa以上であると、二軸配向ポリエステルフィルム8を用いて、優れた強度を有する製品(たとえば包装容器)を作製することができる。 The tensile strength of the biaxially oriented polyester film 8 in at least one direction is preferably 180 MPa or more, more preferably 185 MPa or more, and even more preferably 190 MPa or more. When it is 180 MPa or more, a product (for example, a packaging container) having excellent strength can be produced using the biaxially oriented polyester film 8.
 同様に、二軸配向ポリエステルフィルム8のMD(すなわち0°方向)、45°方向、TD(すなわち90°方向)、および135°方向の引張強さは180MPa以上が好ましく、185MPa以上がより好ましく、190MPa以上がさらに好ましい。 Similarly, the tensile strength of the biaxially oriented polyester film 8 in the MD (i.e. 0° direction), 45° direction, TD (i.e. 90° direction), and 135° direction is preferably 180 MPa or more, more preferably 185 MPa or more, More preferably, the pressure is 190 MPa or more.
 二軸配向ポリエステルフィルム8の少なくとも一方向の引張強さは350MPa以下が好ましく、340MPa以下がより好ましく、330MPa以下がさらに好ましい。350MPa以下であると、二軸配向ポリエステルフィルム8製造過程における延伸時の応力(つまり延伸応力)が過度に大きくなることをいっそう防止でき、その結果、延伸時に生じ得るフィルムの破断をいっそう抑制または低減することができる。引張強さは320MPa以下であってもよい。 The tensile strength of the biaxially oriented polyester film 8 in at least one direction is preferably 350 MPa or less, more preferably 340 MPa or less, and even more preferably 330 MPa or less. If it is 350 MPa or less, stress during stretching (that is, stretching stress) in the biaxially oriented polyester film 8 manufacturing process can be further prevented from becoming excessively large, and as a result, breakage of the film that may occur during stretching can be further suppressed or reduced. can do. The tensile strength may be 320 MPa or less.
 同様に、二軸配向ポリエステルフィルム8のMD(すなわち0°方向)、45°方向、TD(すなわち90°方向)、および135°方向の引張強さは350MPa以下が好ましく、340MPa以下がより好ましく、330MPa以下がさらに好ましい。引張強さは320MPa以下であってもよい。 Similarly, the tensile strength of the biaxially oriented polyester film 8 in the MD (i.e. 0° direction), 45° direction, TD (i.e. 90° direction), and 135° direction is preferably 350 MPa or less, more preferably 340 MPa or less, More preferably, it is 330 MPa or less. The tensile strength may be 320 MPa or less.
 二軸配向ポリエステルフィルム8の突刺し強さは、0.50N/μm以上が好ましく、0.52N/μm以上がより好ましく、0.55N/μm以上がさらに好ましい。0.50N/μm以上であると、二軸配向ポリエステルフィルム8を用いて、優れた強度を有する製品(たとえば包装容器)を作製することができる。たとえば、二軸配向ポリエステルフィルム8を用いて穴が開きにくい包装容器を作製することができる。 The puncture strength of the biaxially oriented polyester film 8 is preferably 0.50 N/μm or more, more preferably 0.52 N/μm or more, and even more preferably 0.55 N/μm or more. When it is 0.50 N/μm or more, a product (for example, a packaging container) having excellent strength can be produced using the biaxially oriented polyester film 8. For example, the biaxially oriented polyester film 8 can be used to create a packaging container that is difficult to puncture.
 二軸配向ポリエステルフィルム8のラミネート強度は、3.0N/15mm以上が好ましく、3.5N/15mm以上がより好ましく、4.0N/15mm以上がさらに好ましい。3.0N/15mm以上であると、二軸配向ポリエステルフィルム8にシーラント層を設けた場合に、これらの間ではく離しにくい製品(たとえば包装容器)を作製することができる。 The lamination strength of the biaxially oriented polyester film 8 is preferably 3.0 N/15 mm or more, more preferably 3.5 N/15 mm or more, and even more preferably 4.0 N/15 mm or more. When it is 3.0 N/15 mm or more, when a sealant layer is provided on the biaxially oriented polyester film 8, a product (for example, a packaging container) that is difficult to separate between the sealant layers can be produced.
 二軸配向ポリエステルフィルム8の長手方向、すなわちMDの熱収縮率は2.0%以下が好ましく、1.8%以下がより好ましい。2.0%以下であると、二軸配向ポリエステルフィルム8に、蒸着加工や印刷加工などの二次加工を施す際に、熱による変形やシワの発生頻度を低減できる。MDの熱収縮率は、たとえば0.5%以上であってもよく、0.8%以上であってもよい。 The heat shrinkage rate of the biaxially oriented polyester film 8 in the longitudinal direction, that is, MD, is preferably 2.0% or less, more preferably 1.8% or less. When the content is 2.0% or less, the frequency of occurrence of deformation and wrinkles due to heat can be reduced when the biaxially oriented polyester film 8 is subjected to secondary processing such as vapor deposition or printing. The heat shrinkage rate of the MD may be, for example, 0.5% or more, or 0.8% or more.
 二軸配向ポリエステルフィルム8の幅方向、すなわちTDの熱収縮率は-1.0%以上1.0%以下が好ましく、-0.8%以上0.8%以下がより好ましい。-1.0%以上1.0%以下であると、蒸着加工や印刷加工などの二次加工を施す際に、熱による変形やシワの発生頻度を低減できる。 The heat shrinkage rate in the width direction, that is, TD, of the biaxially oriented polyester film 8 is preferably -1.0% or more and 1.0% or less, more preferably -0.8% or more and 0.8% or less. If it is -1.0% or more and 1.0% or less, the frequency of occurrence of deformation and wrinkles due to heat can be reduced when performing secondary processing such as vapor deposition or printing.
 二軸配向ポリエステルフィルム8の厚みは5μm以上が好ましく、8μm以上がより好ましく、9μm以上がさらに好ましい。5μm以上であると、二軸配向ポリエステルフィルム8の剛性に優れているため、二軸配向ポリエステルフィルム8を巻き取る際のシワの発生頻度を低減できる。いっぽう、二軸配向ポリエステルフィルム8の厚みは200μm以下が好ましく、100μm以下がより好ましく、50μm以下がさらに好ましく、25μm以下が特に好ましい。厚みが薄いほど、コストを抑えることができる。 The thickness of the biaxially oriented polyester film 8 is preferably 5 μm or more, more preferably 8 μm or more, and even more preferably 9 μm or more. When the thickness is 5 μm or more, the biaxially oriented polyester film 8 has excellent rigidity, so that the frequency of wrinkles occurring when the biaxially oriented polyester film 8 is wound up can be reduced. On the other hand, the thickness of the biaxially oriented polyester film 8 is preferably 200 μm or less, more preferably 100 μm or less, even more preferably 50 μm or less, and particularly preferably 25 μm or less. The thinner the thickness, the lower the cost.
 二軸配向ポリエステルフィルム8は、第一層81(以下、「表層81」とも言う。)、第二層82(以下、「中心層82」とも言う。)、および第三層83(以下、「表層83」とも言う。)を含む。第一層81、第二層82、第三層83は、二軸配向ポリエステルフィルム8の厚み方向でこの順に並んでいる。なお、第一層81および第二層82の間や、第二層82および第三層83の間に、他の層が存在してもよい。 The biaxially oriented polyester film 8 includes a first layer 81 (hereinafter also referred to as "surface layer 81"), a second layer 82 (hereinafter also referred to as "center layer 82"), and a third layer 83 (hereinafter referred to as " (also referred to as "surface layer 83"). The first layer 81, the second layer 82, and the third layer 83 are arranged in this order in the thickness direction of the biaxially oriented polyester film 8. Note that another layer may exist between the first layer 81 and the second layer 82 or between the second layer 82 and the third layer 83.
 第一層81、すなわち表層81は、ケミカルリサイクルポリエステルを含むことが好ましい。第一層81が、ケミカルリサイクルポリエステルを含むと、環境負荷をいっそう軽減できる。 The first layer 81, that is, the surface layer 81, preferably contains chemically recycled polyester. If the first layer 81 contains chemically recycled polyester, the environmental load can be further reduced.
 第一層81におけるケミカルリサイクルポリエステルの説明は、上述の説明(すなわち二軸配向ポリエステルフィルム8のケミカルリサイクルポリエステルの説明)と重複するため省略する。よって、二軸配向ポリエステルフィルム8におけるケミカルリサイクルポリエステルの説明は、第一層81におけるケミカルリサイクルポリエステルの説明としても扱うことができる。 The explanation of the chemically recycled polyester in the first layer 81 is omitted because it overlaps with the above explanation (that is, the explanation of the chemically recycled polyester of the biaxially oriented polyester film 8). Therefore, the explanation of the chemically recycled polyester in the biaxially oriented polyester film 8 can also be treated as the explanation of the chemically recycled polyester in the first layer 81.
 ケミカルリサイクルポリエステルの含有量は、第一層81を100質量%としたとき、10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましい。10質量%以上であると、環境負荷をいっそう軽減することができる。いっぽう、ケミカルリサイクルポリエステルの含有量は、第一層81を100質量%としたとき、95質量%以下が好ましく、80質量%以下がより好ましく、70質量%以下がさらに好ましい。 The content of the chemically recycled polyester is preferably 10% by mass or more, more preferably 20% by mass or more, and even more preferably 30% by mass or more, when the first layer 81 is 100% by mass. When the content is 10% by mass or more, the environmental load can be further reduced. On the other hand, the content of the chemically recycled polyester is preferably 95% by mass or less, more preferably 80% by mass or less, and even more preferably 70% by mass or less, when the first layer 81 is 100% by mass.
 第一層81は、化石燃料由来ポリエステルを含むことが好ましい。第一層81における化石燃料由来ポリエステルの説明は、上述の説明(すなわち二軸配向ポリエステルフィルム8の化石燃料由来ポリエステルの説明)と重複するため省略する。よって、二軸配向ポリエステルフィルム8における化石燃料由来ポリエステルの説明は、第一層81における化石燃料由来ポリエステルの説明としても扱うことができる。 The first layer 81 preferably contains fossil fuel-derived polyester. The description of the fossil fuel-derived polyester in the first layer 81 is omitted because it overlaps with the above description (that is, the description of the fossil fuel-derived polyester of the biaxially oriented polyester film 8). Therefore, the description of the fossil fuel-derived polyester in the biaxially oriented polyester film 8 can also be treated as the description of the fossil fuel-derived polyester in the first layer 81.
 化石燃料由来ポリエステルの含有量は、第一層81を100質量%としたとき、5質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましい。5質量%以上であると、第一層81の物性を調整可能な幅をある程度確保できる。いっぽう、化石燃料由来ポリエステルの含有量は、第一層81を100質量%としたとき、100質量%以下とすることができる。化石燃料由来ポリエステルの含有量は、90質量%以下が好ましく、80質量%以下がより好ましく、70質量%以下がさらに好ましい。 The content of the fossil fuel-derived polyester is preferably 5% by mass or more, more preferably 20% by mass or more, and even more preferably 30% by mass or more, when the first layer 81 is 100% by mass. When the content is 5% by mass or more, a certain amount of width in which the physical properties of the first layer 81 can be adjusted can be secured. On the other hand, the content of the fossil fuel-derived polyester can be 100% by mass or less when the first layer 81 is 100% by mass. The content of fossil fuel-derived polyester is preferably 90% by mass or less, more preferably 80% by mass or less, and even more preferably 70% by mass or less.
 第一層81は、他のポリエステル、たとえば、メカニカルリサイクルポリエステル、バイオマスポリエステルを含んでいてもよい。 The first layer 81 may contain other polyesters, such as mechanically recycled polyester or biomass polyester.
 第一層81を100質量%としたときポリエステルの含有量は、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましく、98質量%以上がさらに好ましい。 When the first layer 81 is 100% by mass, the polyester content is preferably 80% by mass or more, more preferably 90% by mass or more, even more preferably 95% by mass or more, and even more preferably 98% by mass or more.
 第一層81は、ポリエステル以外の樹脂を含んでいてもよい。 The first layer 81 may contain resin other than polyester.
 第一層81は粒子をさらに含むことが好ましい。第一層81が粒子を含むと、二軸配向ポリエステルフィルム8の表面に凹凸を形成することができる。したがって、二軸配向ポリエステルフィルム8に滑り性を付与することができる。これに加えて、二軸配向ポリエステルフィルム8をロール状に巻取る際に巻込まれ得る空気が抜けやすくなり、シワや気泡といった外観不良の発生を低減できる。 Preferably, the first layer 81 further includes particles. When the first layer 81 contains particles, unevenness can be formed on the surface of the biaxially oriented polyester film 8 . Therefore, slipperiness can be imparted to the biaxially oriented polyester film 8. In addition to this, air that may be trapped when the biaxially oriented polyester film 8 is wound into a roll shape is easily removed, and appearance defects such as wrinkles and air bubbles can be reduced.
 第一層81における粒子の説明は、上述の説明(すなわち二軸配向ポリエステルフィルム8の粒子の説明)と重複するため省略する。よって、二軸配向ポリエステルフィルム8における粒子の説明は、第一層81における粒子の説明としても扱うことができる。 The explanation of the particles in the first layer 81 is omitted because it overlaps with the above explanation (that is, the explanation of the particles of the biaxially oriented polyester film 8). Therefore, the description of the particles in the biaxially oriented polyester film 8 can also be treated as the description of the particles in the first layer 81.
 第一層81における粒子の含有量は、500ppm以上が好ましく、600ppm以上がより好ましく、700ppm以上がさらに好ましい。500ppm以上であると、二軸配向ポリエステルフィルム8に滑り性をいっそう付与できるとともに、外観不良の発生をいっそう低減できる。いっぽう、第一層81における粒子の含有量は、3000ppm以下であってもよく、2000ppm以下であってもよく、1500ppm以下であってもよい。
 ここで、粒子の含有量は、第一層81の質量に対する、粒子の質量(つまり、粒子の質量/第一層81の質量)である。
The content of particles in the first layer 81 is preferably 500 ppm or more, more preferably 600 ppm or more, and even more preferably 700 ppm or more. When it is 500 ppm or more, it is possible to further impart slipperiness to the biaxially oriented polyester film 8 and to further reduce the occurrence of appearance defects. On the other hand, the content of particles in the first layer 81 may be 3000 ppm or less, 2000 ppm or less, or 1500 ppm or less.
Here, the particle content is the mass of the particles relative to the mass of the first layer 81 (that is, the mass of the particles/the mass of the first layer 81).
 第一層81の厚みは、0.1μm以上が好ましく、0.3μm以上がより好ましく、0.5μm以上がさらに好ましい。第一層81の厚みは、7μm以下が好ましく、5μm以下がより好ましく、3μm以下がさらに好ましい。 The thickness of the first layer 81 is preferably 0.1 μm or more, more preferably 0.3 μm or more, and even more preferably 0.5 μm or more. The thickness of the first layer 81 is preferably 7 μm or less, more preferably 5 μm or less, and even more preferably 3 μm or less.
 第三層83、すなわち表層83の説明は、第一層81の説明と重複するため省略する。よって、第一層81の説明は、第三層83の説明としても扱うことができる。たとえば、第一層81についてのケミカルリサイクルポリエステルや、化石燃料由来ポリエステル、粒子、厚みなどの説明は、第三層83の説明として扱うことができる。もちろん、第一層81と第三層83とは、組成や物性(たとえば厚み)などについて、互いに独立していることができる。よって、たとえば、第一層81と第三層83との組成が同じであってもよく、異なっていてもよい。両者の厚みが同じであってもよく、異なっていてもよい。 The description of the third layer 83, that is, the surface layer 83 is omitted because it overlaps with the description of the first layer 81. Therefore, the explanation of the first layer 81 can also be treated as the explanation of the third layer 83. For example, explanations about chemically recycled polyester, fossil fuel-derived polyester, particles, thickness, etc. for the first layer 81 can be treated as explanations for the third layer 83. Of course, the first layer 81 and the third layer 83 can be independent from each other in terms of composition, physical properties (for example, thickness), and the like. Therefore, for example, the compositions of the first layer 81 and the third layer 83 may be the same or different. The thicknesses of both may be the same or different.
 第二層82、すなわち中心層82は、ケミカルリサイクルポリエステルを含むことが好ましい。第二層82が、ケミカルリサイクルポリエステルを含むと、環境負荷をいっそう軽減できる。 The second layer 82, ie, the center layer 82, preferably contains chemically recycled polyester. If the second layer 82 contains chemically recycled polyester, the environmental load can be further reduced.
 第二層82におけるケミカルリサイクルポリエステルの説明は、上述の説明(すなわち二軸配向ポリエステルフィルム8のケミカルリサイクルポリエステルの説明)と重複するため省略する。よって、二軸配向ポリエステルフィルム8におけるケミカルリサイクルポリエステルの説明は、第二層82におけるケミカルリサイクルポリエステルの説明としても扱うことができる。 The explanation of the chemically recycled polyester in the second layer 82 is omitted because it overlaps with the above explanation (that is, the explanation of the chemically recycled polyester of the biaxially oriented polyester film 8). Therefore, the description of the chemically recycled polyester in the biaxially oriented polyester film 8 can also be treated as the description of the chemically recycled polyester in the second layer 82.
 ケミカルリサイクルポリエステルの含有量は、第二層82を100質量%としたとき、10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましい。10質量%以上であると、環境負荷をいっそう軽減することができる。いっぽう、ケミカルリサイクルポリエステルの含有量は、第二層82を100質量%としたとき、95質量%以下が好ましく、80質量%以下がより好ましく、70質量%以下がさらに好ましい。 The content of the chemically recycled polyester is preferably 10% by mass or more, more preferably 20% by mass or more, and even more preferably 30% by mass or more, when the second layer 82 is 100% by mass. When the content is 10% by mass or more, the environmental load can be further reduced. On the other hand, the content of the chemically recycled polyester is preferably 95% by mass or less, more preferably 80% by mass or less, and even more preferably 70% by mass or less, when the second layer 82 is 100% by mass.
 第二層82は、化石燃料由来ポリエステルを含むことが好ましい。第二層82における化石燃料由来ポリエステルの説明は、上述の説明(すなわち二軸配向ポリエステルフィルム8の化石燃料由来ポリエステルの説明)と重複するため省略する。よって、二軸配向ポリエステルフィルム8における化石燃料由来ポリエステルの説明は、第二層82における化石燃料由来ポリエステルの説明としても扱うことができる。 The second layer 82 preferably contains fossil fuel-derived polyester. The description of the fossil fuel-derived polyester in the second layer 82 is omitted because it overlaps with the above description (that is, the description of the fossil fuel-derived polyester of the biaxially oriented polyester film 8). Therefore, the description of the fossil fuel-derived polyester in the biaxially oriented polyester film 8 can also be treated as the description of the fossil fuel-derived polyester in the second layer 82.
 化石燃料由来ポリエステルの含有量は、第二層82を100質量%としたとき、5質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましい。5質量%以上であると、第二層82の物性を調整可能な幅をある程度確保できる。いっぽう、化石燃料由来ポリエステルの含有量は、第一層81を100質量%としたとき、90質量%以下が好ましく、80質量%以下がより好ましく、70質量%以下がさらに好ましい。 The content of the fossil fuel-derived polyester is preferably 5% by mass or more, more preferably 20% by mass or more, and even more preferably 30% by mass or more, when the second layer 82 is 100% by mass. When the content is 5% by mass or more, a certain amount of width in which the physical properties of the second layer 82 can be adjusted can be secured. On the other hand, the content of the fossil fuel-derived polyester is preferably 90% by mass or less, more preferably 80% by mass or less, and even more preferably 70% by mass or less, when the first layer 81 is 100% by mass.
 第二層82は、他のポリエステル、たとえば、メカニカルリサイクルポリエステル、バイオマスポリエステルを含んでいてもよい。 The second layer 82 may include other polyesters, such as mechanically recycled polyester or biomass polyester.
 第二層82を100質量%としたときポリエステルの含有量は、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましく、98質量%以上がさらに好ましい。 When the second layer 82 is 100% by mass, the polyester content is preferably 80% by mass or more, more preferably 90% by mass or more, even more preferably 95% by mass or more, and even more preferably 98% by mass or more.
 第二層82は、ポリエステル以外の樹脂を含んでいてもよい。 The second layer 82 may contain resin other than polyester.
 第二層82は粒子を含んでいてもよく、含んでいなくてもよい。第二層82における粒子の説明は、上述の説明(すなわち二軸配向ポリエステルフィルム8の粒子の説明)と重複するため省略する。よって、二軸配向ポリエステルフィルム8における粒子の説明は、第二層82における粒子の説明としても扱うことができる。なお、第二層82は粒子を含んでいないと、粒子の周囲に生じ得るボイドが発生しないため、におい成分が二軸配向ポリエステルフィルム8を抜けることを防止できる。これに加えて、製膜工程で発生するエッジ部分の回収原料や、他の製膜工程のリサイクル原料などを適時混合して使用することが容易となるため、コスト的にも優位である。 The second layer 82 may or may not contain particles. The explanation of the particles in the second layer 82 is omitted because it overlaps with the above explanation (that is, the explanation of the particles of the biaxially oriented polyester film 8). Therefore, the description of the particles in the biaxially oriented polyester film 8 can also be treated as a description of the particles in the second layer 82. Note that if the second layer 82 does not contain particles, voids that may occur around the particles will not occur, so that odor components can be prevented from passing through the biaxially oriented polyester film 8. In addition to this, it is easy to mix and use recovered raw materials from edge portions generated in the film forming process, recycled raw materials from other film forming processes, etc. in a timely manner, which is advantageous in terms of cost.
 第二層82における粒子の含有量は、3000ppm以下であってもよく、2000ppm以下であってもよく、1500ppm以下であってもよく、1000ppm以下であってもよく、500ppm以下であってもよく、100ppm以下であってもよく、50ppm以下であってもよく、0ppm以下であってもよい。
 ここで、粒子の含有量は、第二層82の質量に対する、粒子の質量(つまり、粒子の質量/第二層82の質量)である。
The content of particles in the second layer 82 may be 3000 ppm or less, 2000 ppm or less, 1500 ppm or less, 1000 ppm or less, or 500 ppm or less. , 100 ppm or less, 50 ppm or less, or 0 ppm or less.
Here, the content of particles is the mass of particles relative to the mass of second layer 82 (that is, mass of particles/mass of second layer 82).
 第二層82の厚みは、第一層81の厚みや、第三層83の厚みより大きいことが好ましい。第二層82の厚みは5μm以上が好ましく、8μm以上がより好ましく、9μm以上がさらに好ましい。5μm以上であると、二軸配向ポリエステルフィルム8の剛性に優れているため、二軸配向ポリエステルフィルム8を巻き取る際のシワの発生頻度を低減できる。いっぽう、二軸配向ポリエステルフィルム8の厚みは40μm以下が好ましく、30μm以下がより好ましく、20μm以下がさらに好ましい。厚みが薄いほど、コストを抑えることができる。 The thickness of the second layer 82 is preferably larger than the thickness of the first layer 81 and the thickness of the third layer 83. The thickness of the second layer 82 is preferably 5 μm or more, more preferably 8 μm or more, and even more preferably 9 μm or more. When the thickness is 5 μm or more, the biaxially oriented polyester film 8 has excellent rigidity, so that the frequency of wrinkles occurring when the biaxially oriented polyester film 8 is wound up can be reduced. On the other hand, the thickness of the biaxially oriented polyester film 8 is preferably 40 μm or less, more preferably 30 μm or less, and even more preferably 20 μm or less. The thinner the thickness, the lower the cost.
 第一層81、第二層82、第三層83の組成パターンをいくつか補足的に説明する。
 一つ目の組成パターン(以下、「組成パターンA」とも言う。)として、第一層81がケミカルリサイクルポリエステルを含み、第二層82がケミカルリサイクルポリエステルを含み、第三層83がケミカルリサイクルポリエステルを含む、というパターンを挙げることができる。組成パターンAによれば、不純物が少ないケミカルリサイクルポリエステルが、二軸配向ポリエステルフィルム8の両表層を構成するため、二軸配向ポリエステルフィルム8中の欠点を低減することができる。組成パターンAにおける第一層81や第二層82、第三層83の説明は、上述の説明(すなわち第一層81や第二層82、第三層83の説明)と重複するため省略する。よって、上述の説明は、組成パターンAにおける第一層81や第二層82、第三層83の説明としても扱うことができる。よって、第一層81が、ケミカルリサイクルポリエステル以外のポリエステルを含んでいてもよく、第二層82が、ケミカルリサイクルポリエステル以外のポリエステルを含んでいてもよく、第三層83がケミカルリサイクルポリエステル以外のポリエステルを含んでいてもよい。
 二つ目の組成パターン(以下、「組成パターンB」とも言う。)として、第一層81がケミカルリサイクルポリエステルを含み、第二層82も第三層83もケミカルリサイクルポリエステルを含まない、というパターンを挙げることができる。組成パターンBによれば、不純物が少ないケミカルリサイクルポリエステルが、二軸配向ポリエステルフィルム8の表層を構成するため、二軸配向ポリエステルフィルム8中の欠点を低減することができる。組成パターンBにおける第一層81や第二層82、第三層83の説明は、上述の説明(すなわち第一層81や第二層82、第三層83の説明)と重複するため省略する。よって、上述の説明は、組成パターンBにおける第一層81や第二層82、第三層83の説明としても扱うことができる。よって、第一層81が、ケミカルリサイクルポリエステル以外のポリエステルを含んでいてもよい。
 なお、組成パターンBにおいて、第二層82および/または第三層83がメカニカルリサイクルポリエステルを含むことが好ましい。これによれば、リサイクル原料比率をいっそう高めることができる。つまり、環境負荷をいっそう軽減することができる。
 三つ目の組成パターン(以下、「組成パターンC」とも言う。)として、第二層82がケミカルリサイクルポリエステルを含み、第一層81も第三層83もケミカルリサイクルポリエステルを含まない、というパターンを挙げることができる。組成パターンCにおける第一層81や第二層82、第三層83の説明は、上述の説明(すなわち第一層81や第二層82、第三層83の説明)と重複するため省略する。よって、上述の説明は、組成パターンCおける第一層81や第二層82、第三層83の説明としても扱うことができる。よって、第二層82が、ケミカルリサイクルポリエステル以外のポリエステルを含んでいてもよい。
 なお、組成パターンCにおいて、第一層81および/または第三層83がメカニカルリサイクルポリエステルを含むことが好ましい。これによれば、リサイクル原料比率をいっそう高めることができる。つまり、環境負荷をいっそう軽減することができる。
 四つ目の組成パターン(以下、「組成パターンD」とも言う。)として、第一層81がケミカルリサイクルポリエステルを含み、第二層82がケミカルリサイクルポリエステルを含み、第三層83がケミカルリサイクルポリエステルを含まない、というパターンを挙げることができる。組成パターンDによれば、不純物が少ないケミカルリサイクルポリエステルが、二軸配向ポリエステルフィルム8の表層を構成するため、二軸配向ポリエステルフィルム8中の欠点を低減することができる。組成パターンDにおける第一層81や第二層82、第三層83の説明は、上述の説明(すなわち第一層81や第二層82、第三層83の説明)と重複するため省略する。よって、上述の説明は、組成パターンDおける第一層81や第二層82、第三層83の説明としても扱うことができる。よって、第一層81が、ケミカルリサイクルポリエステル以外のポリエステルを含んでいてもよく、第二層82が、ケミカルリサイクルポリエステル以外のポリエステルを含んでいてもよい。
 なお、組成パターンDにおいて、第三層83がメカニカルリサイクルポリエステルを含むことが好ましい。これによれば、リサイクル原料比率をいっそう高めることができる。つまり、環境負荷をいっそう軽減することができる。
 五つ目の組成パターン(以下、「組成パターンE」とも言う。)として、第一層81がケミカルリサイクルポリエステルを含み、第二層82がケミカルリサイクルポリエステル含まず、第三層83がケミカルリサイクルポリエステルを含む、というパターンを挙げることができる。組成パターンEによれば、不純物が少ないケミカルリサイクルポリエステルが、二軸配向ポリエステルフィルム8の両表層を構成するため、二軸配向ポリエステルフィルム8中の欠点を低減することができる。組成パターンEにおける第一層81や第二層82、第三層83の説明は、上述の説明(すなわち第一層81や第二層82、第三層83の説明)と重複するため省略する。よって、上述の説明は、組成パターンEおける第一層81や第二層82、第三層83の説明としても扱うことができる。よって、第一層81が、ケミカルリサイクルポリエステル以外のポリエステルを含んでいてもよく、第三層83がケミカルリサイクルポリエステル以外のポリエステルを含んでいてもよい。
 なお、組成パターンEにおいて、第二層82がメカニカルリサイクルポリエステルを含むことが好ましい。これによれば、リサイクル原料比率をいっそう高めることができる。つまり、環境負荷をいっそう軽減することができる。
Some composition patterns of the first layer 81, second layer 82, and third layer 83 will be supplementarily explained.
As a first composition pattern (hereinafter also referred to as "composition pattern A"), the first layer 81 contains chemically recycled polyester, the second layer 82 contains chemically recycled polyester, and the third layer 83 contains chemically recycled polyester. One example is a pattern that includes. According to composition pattern A, chemically recycled polyester with few impurities constitutes both surface layers of the biaxially oriented polyester film 8, so defects in the biaxially oriented polyester film 8 can be reduced. The description of the first layer 81, second layer 82, and third layer 83 in composition pattern A is omitted because it overlaps with the above description (i.e., the description of the first layer 81, second layer 82, and third layer 83). . Therefore, the above description can also be treated as a description of the first layer 81, second layer 82, and third layer 83 in composition pattern A. Therefore, the first layer 81 may contain polyester other than chemically recycled polyester, the second layer 82 may contain polyester other than chemically recycled polyester, and the third layer 83 may contain polyester other than chemically recycled polyester. It may also contain polyester.
The second composition pattern (hereinafter also referred to as "composition pattern B") is a pattern in which the first layer 81 contains chemically recycled polyester, and neither the second layer 82 nor the third layer 83 contains chemically recycled polyester. can be mentioned. According to composition pattern B, the surface layer of the biaxially oriented polyester film 8 is made of chemically recycled polyester containing few impurities, so that defects in the biaxially oriented polyester film 8 can be reduced. The explanation of the first layer 81, second layer 82, and third layer 83 in composition pattern B is omitted because it overlaps with the above explanation (i.e., the explanation of the first layer 81, second layer 82, and third layer 83). . Therefore, the above description can also be treated as a description of the first layer 81, second layer 82, and third layer 83 in composition pattern B. Therefore, the first layer 81 may contain polyester other than chemically recycled polyester.
In addition, in composition pattern B, it is preferable that the second layer 82 and/or the third layer 83 contain mechanically recycled polyester. According to this, the recycled raw material ratio can be further increased. In other words, the environmental load can be further reduced.
A third composition pattern (hereinafter also referred to as "composition pattern C") is a pattern in which the second layer 82 contains chemically recycled polyester, and neither the first layer 81 nor the third layer 83 contains chemically recycled polyester. can be mentioned. The description of the first layer 81, second layer 82, and third layer 83 in composition pattern C is omitted because it overlaps with the above description (i.e., the description of the first layer 81, second layer 82, and third layer 83). . Therefore, the above explanation can also be treated as explanation of the first layer 81, second layer 82, and third layer 83 in composition pattern C. Therefore, the second layer 82 may contain polyester other than chemically recycled polyester.
In addition, in composition pattern C, it is preferable that the first layer 81 and/or the third layer 83 contain mechanically recycled polyester. According to this, the recycled raw material ratio can be further increased. In other words, the environmental load can be further reduced.
As a fourth composition pattern (hereinafter also referred to as "composition pattern D"), the first layer 81 contains chemically recycled polyester, the second layer 82 contains chemically recycled polyester, and the third layer 83 contains chemically recycled polyester. One example is a pattern that does not include . According to composition pattern D, the surface layer of the biaxially oriented polyester film 8 is made of chemically recycled polyester containing few impurities, so that defects in the biaxially oriented polyester film 8 can be reduced. The description of the first layer 81, second layer 82, and third layer 83 in composition pattern D is omitted because it overlaps with the above description (i.e., the description of the first layer 81, second layer 82, and third layer 83). . Therefore, the above description can also be treated as a description of the first layer 81, second layer 82, and third layer 83 in composition pattern D. Therefore, the first layer 81 may contain polyester other than chemically recycled polyester, and the second layer 82 may contain polyester other than chemically recycled polyester.
In addition, in composition pattern D, it is preferable that the third layer 83 contains mechanically recycled polyester. According to this, the recycled raw material ratio can be further increased. In other words, the environmental load can be further reduced.
As a fifth composition pattern (hereinafter also referred to as "composition pattern E"), the first layer 81 contains chemically recycled polyester, the second layer 82 does not contain chemically recycled polyester, and the third layer 83 contains chemically recycled polyester. One example is a pattern that includes. According to composition pattern E, chemically recycled polyester with few impurities constitutes both surface layers of the biaxially oriented polyester film 8, so defects in the biaxially oriented polyester film 8 can be reduced. The description of the first layer 81, second layer 82, and third layer 83 in composition pattern E is omitted because it overlaps with the above description (i.e., the description of the first layer 81, second layer 82, and third layer 83). . Therefore, the above description can also be treated as a description of the first layer 81, second layer 82, and third layer 83 in composition pattern E. Therefore, the first layer 81 may contain polyester other than chemically recycled polyester, and the third layer 83 may contain polyester other than chemically recycled polyester.
Note that in composition pattern E, the second layer 82 preferably contains mechanically recycled polyester. According to this, the recycled raw material ratio can be further increased. In other words, the environmental load can be further reduced.
 第一層81を形成するための原料を第一の押出機に供給するとともに、第二層82を形成するための原料を第二の押出機に、第三層83を形成するための原料を第三の押出機に供給し、次いで、これらを溶融させたうえで、第一、第二および第三の押出機からTダイに導き、Tダイ内でこれらを積層したうえで、Tダイから押出し、冷却ドラムで固化し、二軸延伸する、といった手順で二軸配向ポリエステルフィルム8を作製することができる。もちろん、これらの原料を、第一、第二および第三の押出機からフィードブロックに導き、フィードブロックでこれらを積層したうえでTダイから押出ししてもよい。なお、Tダイ法以外の方法、たとえばチューブラー法を採用してもよい。 The raw material for forming the first layer 81 is supplied to the first extruder, the raw material for forming the second layer 82 is supplied to the second extruder, and the raw material for forming the third layer 83 is supplied to the second extruder. They are fed to a third extruder, then melted, guided from the first, second and third extruders to a T-die, laminated within the T-die, and then melted from the T-die. The biaxially oriented polyester film 8 can be produced by extruding, solidifying with a cooling drum, and biaxially stretching. Of course, these raw materials may be led from the first, second, and third extruders to the feed block, stacked in the feed block, and then extruded from the T-die. Note that a method other than the T-die method, such as a tubular method, may be employed.
 第一層81を形成するための原料として、たとえばケミカルリサイクルポリエステル、化石燃料由来ポリエステル、粒子含有マスターバッチ、アルカリ土類金属化合物・リン化合物含有マスターバッチ(以下、「MPマスターバッチ」と言うことがある)を挙げることができる。少なくともこれらを、第一層81を形成するための原料として用いることが好ましい。 Examples of raw materials for forming the first layer 81 include chemically recycled polyester, fossil fuel-derived polyester, particle-containing masterbatch, and alkaline earth metal compound/phosphorus compound-containing masterbatch (hereinafter referred to as "MP masterbatch"). ) can be mentioned. It is preferable to use at least these as raw materials for forming the first layer 81.
 粒子含有マスターバッチは、ポリエステルおよび粒子(たとえばシリカ)を含むことができる。粒子含有マスターバッチは、第一層81を形成するための個々の原料のうち、もっとも高濃度で粒子(たとえばシリカ)を含むことができる。 The particle-containing masterbatch can include polyester and particles (eg, silica). The particle-containing masterbatch may include particles (eg, silica) at the highest concentration of the individual ingredients used to form the first layer 81 .
 粒子含有マスターバッチのポリエステルは、ケミカルリサイクルポリエステルであってもよく、化石燃料由来ポリエステルであってもよく、メカニカルリサイクルポリエステルであってもよく、バイオマスポリエステルであってもよい。なかでも、ケミカルリサイクルポリエステル、化石燃料由来ポリエステルが好ましく、化石燃料由来ポリエステルがより好ましい。 The polyester of the particle-containing masterbatch may be chemically recycled polyester, fossil fuel-derived polyester, mechanically recycled polyester, or biomass polyester. Among these, chemically recycled polyester and fossil fuel-derived polyester are preferred, and fossil fuel-derived polyester is more preferred.
 粒子含有マスターバッチにおける粒子の含有量は、5000ppm以上が好ましく、10000ppm以上がより好ましく、20000ppm以上がさらに好ましい。いっぽう、粒子含有マスターバッチにおける粒子の含有量は、1000000ppm以下であってもよく、200000ppm以下であってもよく、100000ppm以下であってもよい。
 ここで、粒子の含有量は、粒子含有マスターバッチの質量に対する、粒子の質量(つまり、粒子の質量/粒子含有マスターバッチの質量)である。
The content of particles in the particle-containing masterbatch is preferably 5,000 ppm or more, more preferably 10,000 ppm or more, and even more preferably 20,000 ppm or more. On the other hand, the content of particles in the particle-containing masterbatch may be 1,000,000 ppm or less, 200,000 ppm or less, or 100,000 ppm or less.
Here, the content of particles is the mass of particles relative to the mass of masterbatch containing particles (that is, mass of particles/mass of masterbatch containing particles).
 いっぽう、MPマスターバッチ(すなわち、アルカリ土類金属化合物・リン化合物含有マスターバッチ)は、ポリエステル、アルカリ土類金属化合物およびリン化合物を含むことができる。MPマスターバッチは、第一層81を形成するための個々の原料のうち、もっとも高濃度でアルカリ土類金属化合物を含み、しかも、もっとも高濃度でリン化合物を含む。 On the other hand, the MP masterbatch (that is, the alkaline earth metal compound/phosphorus compound-containing masterbatch) can contain polyester, an alkaline earth metal compound, and a phosphorus compound. Among the individual raw materials for forming the first layer 81, the MP masterbatch contains the alkaline earth metal compound at the highest concentration and also contains the phosphorus compound at the highest concentration.
 MPマスターバッチのポリエステルは、ケミカルリサイクルポリエステルであってもよく、化石燃料由来ポリエステルであってもよく、メカニカルリサイクルポリエステルであってもよく、バイオマスポリエステルであってもよい。なかでも、ケミカルリサイクルポリエステル、化石燃料由来ポリエステルが好ましく、化石燃料由来ポリエステルがより好ましい。なお、MPマスターバッチは、たとえば、ポリエステルを重合する際に、アルカリ土類金属化合物およびリン化合物を、多めに添加することで作製することができる。 The polyester of the MP masterbatch may be chemically recycled polyester, fossil fuel-derived polyester, mechanically recycled polyester, or biomass polyester. Among these, chemically recycled polyester and fossil fuel-derived polyester are preferred, and fossil fuel-derived polyester is more preferred. Note that the MP masterbatch can be produced, for example, by adding a large amount of an alkaline earth metal compound and a phosphorus compound when polymerizing polyester.
 MPマスターバッチ中のアルカリ土類金属化合物の含有量は、アルカリ土類金属原子基準で(すなわちアルカリ土類金属原子換算で)、たとえば200ppm以上が好ましく、400ppm以上が好ましく、600ppm以上が好ましく、700ppm以上が好ましい。アルカリ土類金属化合物の含有量は、アルカリ土類金属原子基準で、たとえば3000ppm以下であってもよく、2000ppm以下であってもよく、1500ppm以下であってもよい。
 ここで、アルカリ土類金属化合物の含有量は、MPマスターバッチの質量に対する、アルカリ土類金属原子基準でのアルカリ土類金属化合物の質量(つまり、アルカリ土類金属原子基準でのアルカリ土類金属化合物の質量/MPマスターバッチの質量)である。
The content of the alkaline earth metal compound in the MP masterbatch is preferably 200 ppm or more, preferably 400 ppm or more, preferably 600 ppm or more, and 700 ppm on an alkaline earth metal atom basis (that is, in terms of alkaline earth metal atoms). The above is preferable. The content of the alkaline earth metal compound may be, for example, 3000 ppm or less, 2000 ppm or less, or 1500 ppm or less, based on alkaline earth metal atoms.
Here, the content of the alkaline earth metal compound is the mass of the alkaline earth metal compound on the basis of alkaline earth metal atoms (in other words, the content of the alkaline earth metal compound on the basis of alkaline earth metal atoms) with respect to the mass of the MP masterbatch. mass of compound/mass of MP masterbatch).
 MPマスターバッチ中のマグネシウム化合物の含有量は、マグネシウム化合物原子基準で(すなわちマグネシウム化合物原子換算で)、たとえば200ppm以上が好ましく、400ppm以上が好ましく、600ppm以上が好ましく、700ppm以上が好ましい。アルカリ土類金属化合物の含有量は、マグネシウム化合物原子基準で、たとえば3000ppm以下であってもよく、2000ppm以下であってもよく、1500ppm以下であってもよい。 The content of the magnesium compound in the MP masterbatch is, for example, preferably 200 ppm or more, preferably 400 ppm or more, preferably 600 ppm or more, and preferably 700 ppm or more, on a magnesium compound atom basis (that is, in terms of magnesium compound atoms). The content of the alkaline earth metal compound may be, for example, 3000 ppm or less, 2000 ppm or less, or 1500 ppm or less, based on magnesium compound atoms.
 MPマスターバッチ中のリン化合物の含有量は、リン原子基準で(すなわちリン原子換算で)、たとえば150ppm以上が好ましく、300ppm以上がより好ましく、350ppm以上がさらに好ましく、400ppm以上がさらに好ましい。いっぽう、リン化合物の含有量は、リン原子基準で、1000ppm以下であってもよく、800ppm以下であってもよく、700ppm以下であってもよい。
 ここで、リン化合物の含有量は、MPマスターバッチの質量に対する、リン原子基準でのリン化合物の質量(つまり、リン原子基準でのリン化合物の質量/MPマスターバッチの質量)である。
The content of the phosphorus compound in the MP masterbatch is preferably, for example, 150 ppm or more, more preferably 300 ppm or more, even more preferably 350 ppm or more, and even more preferably 400 ppm or more, on a phosphorus atom basis (that is, in terms of phosphorus atoms). On the other hand, the content of the phosphorus compound may be 1000 ppm or less, 800 ppm or less, or 700 ppm or less based on phosphorus atoms.
Here, the content of the phosphorus compound is the mass of the phosphorus compound on a phosphorus atom basis with respect to the mass of the MP masterbatch (that is, the mass of the phosphorus compound on a phosphorus atom basis/the mass of the MP masterbatch).
 なお、MPマスターバッチに代えて、アルカリ土類金属化合物含有マスターバッチと、リン化合物含有マスターバッチとを使用してもよい。アルカリ土類金属化合物含有マスターバッチは、ポリエステルおよびアルカリ土類金属化合物を含むことができる。このマスターバッチは、第一層81を形成するための個々の原料のうち、もっとも高濃度でアルカリ土類金属化合物を含む。リン化合物含有マスターバッチは、ポリエステルおよびリン化合物を含むことができる。このマスターバッチは、第一層81を形成するための個々の原料のうち、もっとも高濃度でリン化合物を含む。 Note that instead of the MP masterbatch, an alkaline earth metal compound-containing masterbatch and a phosphorus compound-containing masterbatch may be used. The alkaline earth metal compound-containing masterbatch can include a polyester and an alkaline earth metal compound. This masterbatch contains the alkaline earth metal compound at the highest concentration among the individual raw materials for forming the first layer 81. The phosphorus compound-containing masterbatch can include a polyester and a phosphorus compound. This masterbatch contains the highest concentration of phosphorus compounds among the individual raw materials for forming the first layer 81.
 第二層82を形成するための原料として、たとえばケミカルリサイクルポリエステル、化石燃料由来ポリエステル、アルカリ土類金属化合物・リン化合物含有マスターバッチ(すなわち、MPマスターバッチ)を挙げることができる。少なくともこれらを、第二層82を形成するための原料として用いることが好ましい。 Examples of raw materials for forming the second layer 82 include chemically recycled polyester, fossil fuel-derived polyester, and a masterbatch containing an alkaline earth metal compound and a phosphorus compound (that is, MP masterbatch). It is preferable to use at least these as raw materials for forming the second layer 82.
 第二層82におけるMPマスターバッチの説明は、上述の説明(すなわち第一層81におけるMPマスターバッチの説明)と重複するため省略する。よって、第一層81におけるMPマスターバッチの説明は、第二層82におけるMPマスターバッチの説明としても扱うことができる。 The description of the MP masterbatch in the second layer 82 is omitted because it overlaps with the above description (that is, the description of the MP masterbatch in the first layer 81). Therefore, the explanation of the MP masterbatch in the first layer 81 can also be treated as the explanation of the MP masterbatch in the second layer 82.
 第三層83を形成するための原料の説明は、第一層81を形成するための原料の説明と重複するため省略する。よって、第一層81を形成するための原料の説明は、第三層83を形成するための原料の説明としても扱うことができる。もちろん、第一層81を形成するための原料と、第三層83を形成するための原料とは、互いに独立していることができる。よって、たとえば、これらの原料が同じであってもよく、異なっていてもよい。 The description of the raw materials for forming the third layer 83 is omitted because it overlaps with the description of the raw materials for forming the first layer 81. Therefore, the description of the raw materials for forming the first layer 81 can also be treated as the description of the raw materials for forming the third layer 83. Of course, the raw material for forming the first layer 81 and the raw material for forming the third layer 83 can be independent from each other. Therefore, for example, these raw materials may be the same or different.
 これらの原料(具体的には、第一層81や第二層82、第三層83を形成するための原料)は、押出機に供給する前に乾燥させることが好ましい。乾燥のために、たとえば、ホッパードライヤー、パドルドライヤーなどの乾燥機や、真空乾燥機を用いることができる。 These raw materials (specifically, the raw materials for forming the first layer 81, second layer 82, and third layer 83) are preferably dried before being supplied to the extruder. For drying, for example, a dryer such as a hopper dryer or a paddle dryer, or a vacuum dryer can be used.
 第一層81を形成するための原料を第一の押出機に、第二層82を形成するための原料を第二の押出機に、第三層83を形成するための原料を第三の押出機に供給し、これらを溶融させたうえで、第一、第二および第三の押出機からTダイまたはフィードブロックに導き、そこでこれらを積層することができる。これらの原料は、原料中のポリエステルの融点以上、かつ200℃以上300℃以下で溶融することが好ましい。 The raw material for forming the first layer 81 is sent to the first extruder, the raw material for forming the second layer 82 is sent to the second extruder, and the raw material for forming the third layer 83 is sent to the third extruder. After being fed to an extruder and melted, they can be led from the first, second and third extruders to a T-die or feedblock where they can be laminated. It is preferable that these raw materials melt at a temperature not lower than the melting point of the polyester in the raw materials and not lower than 200°C and not higher than 300°C.
 Tダイからフィルム状のポリエステル組成物を押出し、冷却ドラムにキャストすることができる。これによって、ポリエステル組成物を急冷固化することができ、その結果、実質的に未配向の未延伸フィルムを得ることができる。なお、冷却ドラムの表面温度は40℃以下が好ましい。 A film-like polyester composition can be extruded from a T-die and cast onto a cooling drum. Thereby, the polyester composition can be rapidly solidified, and as a result, a substantially unoriented unstretched film can be obtained. Note that the surface temperature of the cooling drum is preferably 40° C. or lower.
 次いで、未延伸フィルムを二軸延伸することができる。二軸延伸によって、引張強さのような機械的性質を高めることができる。二軸延伸は、同時二軸延伸であってもよく、逐次二軸延伸であってもよい。なかでも、逐次二軸延伸が好ましい。逐次二軸延伸では、未延伸フィルムを、長手方向すなわちMDに延伸し、MD延伸後のシートを、幅方向すなわちTDに延伸することが好ましい。これによれば、比較的速い製膜速度で、厚み均一性に優れた二軸配向ポリエステルフィルム8を製造することができる。 Next, the unstretched film can be biaxially stretched. Biaxial stretching can enhance mechanical properties such as tensile strength. The biaxial stretching may be simultaneous biaxial stretching or sequential biaxial stretching. Among these, sequential biaxial stretching is preferred. In the sequential biaxial stretching, it is preferable that the unstretched film is stretched in the longitudinal direction, that is, MD, and the sheet after MD stretching is stretched in the width direction, that is, TD. According to this, the biaxially oriented polyester film 8 having excellent thickness uniformity can be manufactured at a relatively high film forming speed.
 未延伸フィルムを長手方向に延伸する際の温度、すなわちMD延伸温度は、80℃以上130℃以下が好ましい。この際の延伸倍率、すなわちMD延伸倍率は3.3倍以上4.7倍以下が好ましい。80℃以上かつ4.7倍以下であると、長手方向の収縮応力を低減することができ、ボーイング現象を減少でき、二軸配向ポリエステルフィルム8の幅方向における分子配向性や熱収縮率のバラつきや歪みを低減することができる。 The temperature at which the unstretched film is stretched in the longitudinal direction, that is, the MD stretching temperature, is preferably 80°C or higher and 130°C or lower. The stretching ratio at this time, that is, the MD stretching ratio is preferably 3.3 times or more and 4.7 times or less. When the temperature is 80°C or more and 4.7 times or less, shrinkage stress in the longitudinal direction can be reduced, the bowing phenomenon can be reduced, and variations in molecular orientation and heat shrinkage rate in the width direction of the biaxially oriented polyester film 8 can be reduced. and distortion can be reduced.
 なお、未延伸フィルムを長手方向に延伸する方法は、たとえば、複数のロール間で多段階に延伸する方法であっても、赤外線ヒーターなどにより加熱して延伸する方法であってもよい。温度を上げやすく、しかも局部加熱が容易であり、ロールに起因する傷欠点を低減できるという理由から後者が好ましい。 Note that the method for stretching the unstretched film in the longitudinal direction may be, for example, a method of stretching in multiple stages between a plurality of rolls, or a method of stretching by heating with an infrared heater or the like. The latter is preferred because it is easy to raise the temperature, local heating is easy, and scratches and defects caused by the roll can be reduced.
 長手方向に延伸されたフィルムの少なくとも一方の面に、必要に応じてコロナ処理やプラズマ処理などの表面処理を施してもよい。長手方向に延伸されたフィルムの少なくとも一方の面に、必要に応じて樹脂分散液または樹脂溶解液を塗布してもよい。これによって、たとえば、易滑性や易接着性、帯電防止性などの機能を付与することができる。なお、コロナ処理やプラズマ処理などの表面処理と、樹脂分散液または樹脂溶解液の塗布との両者をおこなってもよい。 At least one surface of the longitudinally stretched film may be subjected to surface treatment such as corona treatment or plasma treatment, if necessary. If necessary, a resin dispersion or a resin solution may be applied to at least one surface of the film stretched in the longitudinal direction. As a result, functions such as easy slipping, easy adhesion, and antistatic properties can be imparted. Note that both surface treatment such as corona treatment or plasma treatment and application of a resin dispersion or resin solution may be performed.
 長手方向に延伸されたフィルムをテンター装置に導き、フィルムの両端をクリップで把持して、熱風によりフィルムを所定の温度まで加熱した後、長手方向に搬送しながらクリップ間の距離を広げることでフィルムを幅方向に延伸することができる。 The film stretched in the longitudinal direction is guided into a tenter device, both ends of the film are gripped with clips, the film is heated to a predetermined temperature with hot air, and the distance between the clips is widened while being conveyed in the longitudinal direction. can be stretched in the width direction.
 フィルムを幅方向に延伸する際の予熱温度は、100℃以上130℃以下が好ましい。100℃以上であると、長手方向に延伸した際に生じた収縮応力を低減することができ、ボーイング現象を減少でき、二軸配向ポリエステルフィルム8の幅方向における分子配向性や熱収縮率のバラつきや歪みを低減することができる。 The preheating temperature when stretching the film in the width direction is preferably 100°C or more and 130°C or less. When the temperature is 100°C or higher, the shrinkage stress generated when stretching in the longitudinal direction can be reduced, the bowing phenomenon can be reduced, and variations in molecular orientation and heat shrinkage rate in the width direction of the biaxially oriented polyester film 8 can be reduced. and distortion can be reduced.
 フィルムを幅方向に延伸する際の温度、すなわちTD延伸温度は、105℃以上135℃以下が好ましい。105℃以上であると、TD延伸によって生じる長手方向の延伸応力を低減することができ、ボーイング現象の増加を抑えることができる。135℃以下であると、昇温結晶化温度が130℃程度であるポリエステル(たとえばケミカルリサイクルポリエステル)を用いた場合でも、延伸時に生じ得るフィルムの破断を抑制または低減することができる。 The temperature at which the film is stretched in the width direction, that is, the TD stretching temperature, is preferably 105°C or more and 135°C or less. When the temperature is 105° C. or higher, stretching stress in the longitudinal direction caused by TD stretching can be reduced, and an increase in the bowing phenomenon can be suppressed. When the temperature is 135° C. or lower, even when polyester (for example, chemically recycled polyester) whose heating crystallization temperature is about 130° C. is used, breakage of the film that may occur during stretching can be suppressed or reduced.
 フィルムを幅方向に延伸する際の延伸倍率、すなわちTD延伸倍率は3.5倍以上5.0倍以下が好ましい。3.5倍以上であると、物質収支的に高い収率が得られやすいうえ、力学強度の低下も抑制でき、しかも、幅方向の厚みムラの増大も抑制できる。5.0倍以下であると、延伸時に生じ得るフィルムの破断を抑制または低減することができる。 The stretching ratio when stretching the film in the width direction, that is, the TD stretching ratio, is preferably 3.5 times or more and 5.0 times or less. When it is 3.5 times or more, it is easy to obtain a high yield in terms of material balance, and it is also possible to suppress a decrease in mechanical strength, and also to suppress an increase in thickness unevenness in the width direction. If it is 5.0 times or less, breakage of the film that may occur during stretching can be suppressed or reduced.
 二軸延伸されたフィルムを、熱固定のために加熱することができる。熱固定温度は220℃以上250℃以下が好ましい。220℃以上であると、長手方向も幅方向も熱収縮率が過度に高くなることを防止できる。したがって、二次加工時の熱寸法安定性を向上することができる。250℃以下であると、ボーイング現象の増加を抑えることができ、二軸配向ポリエステルフィルム8の幅方向における分子配向性や熱収縮率のバラつきや歪みを低減することができる。 The biaxially stretched film can be heated for heat setting. The heat setting temperature is preferably 220°C or more and 250°C or less. When the temperature is 220° C. or higher, it is possible to prevent the thermal shrinkage rate from becoming excessively high in both the longitudinal direction and the width direction. Therefore, thermal dimensional stability during secondary processing can be improved. When the temperature is 250° C. or lower, an increase in the bowing phenomenon can be suppressed, and variations and distortions in the molecular orientation and thermal shrinkage rate in the width direction of the biaxially oriented polyester film 8 can be reduced.
 熱固定処理とあわせて、または熱固定処理とは別に、熱弛緩処理をおこなうことができる。熱弛緩処理における幅方向の弛緩率は4%以上8%以下が好ましい。4%以上であると、幅方向の熱収縮率が過度に高くなることを防止できる。したがって、二次加工時の熱寸法安定性を向上することができる。8%以下であると、フィルムの幅方向中央部の長手方向の延伸応力が過度に大きくなることを防止でき、ボーイング現象の増加を抑えることができる。 A heat relaxation treatment can be performed in conjunction with the heat setting treatment or separately from the heat setting treatment. The relaxation rate in the width direction in the thermal relaxation treatment is preferably 4% or more and 8% or less. When it is 4% or more, it is possible to prevent the heat shrinkage rate in the width direction from becoming excessively high. Therefore, thermal dimensional stability during secondary processing can be improved. When it is 8% or less, it is possible to prevent the stretching stress in the longitudinal direction at the center portion in the width direction of the film from becoming excessively large, and it is possible to suppress an increase in the bowing phenomenon.
 熱弛緩処理の際、二軸延伸されたフィルムが熱緩和により収縮するまでの間、幅方向の拘束力が減少してフィルムが自重により弛んだり、フィルム上下に設置されたノズルから吹き出す熱風の随伴気流によってフィルムが膨らんでしまうことがある。このように、フィルムが上下に変動しやすい状況下にあるため、二軸配向ポリエステルフィルム8の配向角の変化量が大きく変動しやすい。フィルムが平行を保つことができるように、たとえば、ノズルから吹き出す熱風の風速を調整することができる。 During thermal relaxation treatment, until the biaxially stretched film shrinks due to thermal relaxation, the binding force in the width direction decreases and the film loosens due to its own weight, and hot air blows out from nozzles installed above and below the film. Air currents may cause the film to swell. As described above, since the film is likely to fluctuate up and down, the amount of change in the orientation angle of the biaxially oriented polyester film 8 tends to fluctuate greatly. For example, the speed of the hot air blown from the nozzle can be adjusted so that the film can remain parallel.
 コロナ放電処理、グロー放電処理、火炎処理、表面粗面化処理が施されてもよい。また、アンカーコート処理などが施されてもよい。 Corona discharge treatment, glow discharge treatment, flame treatment, and surface roughening treatment may be performed. Furthermore, anchor coating treatment or the like may be performed.
 このような手順で延伸製膜された幅広の二軸配向ポリエステルフィルム8を、ワインダー装置により巻き取り、ロール状としてもよい。つまりマスターロールを作製してもよい。 The wide biaxially oriented polyester film 8 stretched and formed by such a procedure may be wound up using a winder device to form a roll. In other words, a master roll may be produced.
 マスターロールの幅は5000mm以上10000mm以下が好ましい。5000mm以上であると、その後スリット工程、蒸着加工や印刷加工などの二次加工においてフィルム面積あたりのコストを抑えることができる。 The width of the master roll is preferably 5000 mm or more and 10000 mm or less. When it is 5000 mm or more, the cost per film area can be suppressed in subsequent secondary processing such as slitting process, vapor deposition process, and printing process.
 マスターロールの巻長は10000m以上100000m以下が好ましい。10000m以上であると、その後スリット工程、蒸着加工や印刷加工などの二次加工においてフィルム面積あたりのコストを抑えることができる。 The winding length of the master roll is preferably 10,000 m or more and 100,000 m or less. When the length is 10,000 m or more, the cost per film area can be suppressed in subsequent secondary processing such as slitting process, vapor deposition process, and printing process.
 マスターロールをスリットしたうえで巻き取り、ロール状としてもよい。つまりフィルムロールを作製してもよい。 It is also possible to slit the master roll and wind it up to form a roll. In other words, a film roll may be produced.
 フィルムロールの巻幅は400mm以上3000mm以下が好ましい。400mm以上であると、印刷工程においてフィルムロールを交換する頻度を下げることができ、コストを抑えることができる。3000mm以下であると、ロール幅が過度に大きくはなく、ロール重量が過度に重くなることを防止できる。つまり、ハンドリング性が良好である。 The winding width of the film roll is preferably 400 mm or more and 3000 mm or less. If it is 400 mm or more, the frequency of replacing the film roll in the printing process can be reduced, and costs can be reduced. When it is 3000 mm or less, the roll width is not excessively large and the roll weight can be prevented from becoming excessively heavy. In other words, the handling property is good.
 フィルムロールの巻長は2000m以上65000m以下が好ましい。2000m以上であると、印刷工程においてフィルムロールを交換する頻度を下げることができ、コストを抑えることができる。65000m以下であると、ロール径が過度に大きくはなく、ロール重量が過度に重くなることを防止できる。つまり、ハンドリング性が良好である。 The winding length of the film roll is preferably 2000 m or more and 65000 m or less. When the length is 2000 m or more, the frequency of replacing the film roll in the printing process can be reduced, and costs can be reduced. When it is 65,000 m or less, the roll diameter is not excessively large and the roll weight can be prevented from becoming excessively heavy. In other words, the handling property is good.
 フィルムロールに用いる巻芯は、特に限定されるものではなく、たとえば、直径3インチ(37.6mm)、6インチ(152.2mm)、8インチ(203.2mm)などのサイズのプラスチック製、金属製、あるいは紙製の筒状の巻芯を使用することができる。 The core used for the film roll is not particularly limited, and may be made of plastic or metal with a diameter of 3 inches (37.6 mm), 6 inches (152.2 mm), 8 inches (203.2 mm), etc. A cylindrical winding core made of aluminum or paper can be used.
 二軸配向ポリエステルフィルム8は、さまざまな用途に使用できる。たとえば、包装容器、ラベル(たとえば、ペットボトルの胴巻き用ラベル)、リチウムイオン電池の外装をはじめとした電子部品の外装用フィルムとして好適に使用できる。なかでも包装容器に好適に使用できる。とりわけ食品包装容器に好適に使用できる。 The biaxially oriented polyester film 8 can be used for various purposes. For example, it can be suitably used as a packaging container, a label (for example, a label for wrapping around a PET bottle), and an exterior film for electronic components such as the exterior for lithium ion batteries. Among these, it can be suitably used for packaging containers. In particular, it can be suitably used for food packaging containers.
 <3.積層体>
 図2に示すように、一実施形態において、積層体9は、二軸配向ポリエステルフィルム8とシーラント層21とを含む。積層体9がシーラント層21を含むため、積層体9を含む製品(たとえば包装容器)をヒートシールによって製造することができる。
<3. Laminated body>
As shown in FIG. 2, in one embodiment, the laminate 9 includes a biaxially oriented polyester film 8 and a sealant layer 21. Since the laminate 9 includes the sealant layer 21, a product (for example, a packaging container) including the laminate 9 can be manufactured by heat sealing.
 シーラント層21は、二軸配向ポリエステルフィルム8よりも低い温度で軟化することができる層である。すなわち、シーラント層21は、二軸配向ポリエステルフィルム8よりも低い温度で溶融することができる。シーラント層21は、たとえば、ホットメルト接着剤で形成してもよいし、フィルムで形成してもよいし、これら以外で形成してもよい。シーラント層21を構成する材料として、熱可塑性樹脂を挙げることができる。シーラント層21を構成する材料として、たとえば、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)といったポリエチレン樹脂、ポリプロピレン樹脂、エチレン-酢酸ビニル共重合体、エチレン-α-オレフィンランダム共重合体、アイオノマー樹脂を挙げることができる。なお、シーラント層21は、これらのうち一種を含んでいてもよく、二種以上を含んでいてもよい。 The sealant layer 21 is a layer that can be softened at a lower temperature than the biaxially oriented polyester film 8. That is, the sealant layer 21 can be melted at a lower temperature than the biaxially oriented polyester film 8. The sealant layer 21 may be formed of, for example, a hot melt adhesive, a film, or a material other than these. Thermoplastic resin can be used as a material constituting the sealant layer 21. Examples of materials constituting the sealant layer 21 include polyethylene resins such as high-density polyethylene (HDPE), low-density polyethylene (LDPE), and linear low-density polyethylene (LLDPE), polypropylene resins, ethylene-vinyl acetate copolymers, and ethylene. -α-olefin random copolymers and ionomer resins can be mentioned. In addition, the sealant layer 21 may contain one kind of these, and may contain two or more kinds.
 なお、ポリエチレンとしては、環境負荷をいっそう低減できるという観点でバイオマスポリエチレンが好ましい。バイオマスポリエチレンは、バイオマスエタノールを原料として製造されたポリエチレンである。とりわけ、植物原料から得られるバイオマス由来の発酵エタノールを原料として製造されたバイオマスポリエチレンが好ましい。植物原料として、たとえば、トウモロコシ、サトウキビ、ビート、マニオクを挙げることができる。 Note that biomass polyethylene is preferable as the polyethylene from the viewpoint of further reducing environmental load. Biomass polyethylene is polyethylene manufactured using biomass ethanol as a raw material. In particular, biomass polyethylene produced using fermented ethanol derived from biomass obtained from plant materials as a raw material is preferred. As plant materials, mention may be made, for example, of corn, sugar cane, beets and manioc.
 シーラント層21は添加剤を含むことができる。添加剤として、たとえば、酸素吸収剤、可塑剤、紫外線安定化剤、酸化防止剤、着色防止剤、艶消し剤、消臭剤、難燃剤、耐候剤、帯電防止剤、摩擦低減剤、スリップ剤、離型剤、抗酸化剤、イオン交換剤、アンチブロッキング剤、着色剤を挙げることができる。 The sealant layer 21 can contain additives. As additives, for example, oxygen absorbers, plasticizers, UV stabilizers, antioxidants, color inhibitors, matting agents, deodorants, flame retardants, weathering agents, antistatic agents, friction reducers, slip agents. , a mold release agent, an antioxidant, an ion exchange agent, an anti-blocking agent, and a coloring agent.
 シーラント層21の厚みは、たとえば5μm以上であっても、7μm以上であってもよい。シーラント層21の厚みは、たとえば50μm以下であっても、30μm以下であってもよい。なお、シーラント層21は、単層構成であってもよく、二層以上の構成であってもよい。 The thickness of the sealant layer 21 may be, for example, 5 μm or more, or 7 μm or more. The thickness of the sealant layer 21 may be, for example, 50 μm or less or 30 μm or less. Note that the sealant layer 21 may have a single layer structure or may have a two or more layer structure.
 図3に示すように、積層体9は印刷層11をさらに含むことができる。積層体9は、印刷層11と、二軸配向ポリエステルフィルム8と、シーラント層21とを含むことができる。積層体9の少なくとも一部において、印刷層11、二軸配向ポリエステルフィルム8、シーラント層21が、積層体9の厚み方向でこの順に並んでいることができる。 As shown in FIG. 3, the laminate 9 can further include a printed layer 11. The laminate 9 can include a printed layer 11 , a biaxially oriented polyester film 8 , and a sealant layer 21 . In at least a portion of the laminate 9, the printed layer 11, the biaxially oriented polyester film 8, and the sealant layer 21 can be arranged in this order in the thickness direction of the laminate 9.
 印刷層11、すなわちインク層11は、積層体9にデザインを付与することができる。デザインは、たとえば、模様や柄、絵、写真、図形のような図案状であってもよく、文字や符号、標章のような記号状であってもよく、これらのうちの二種以上の任意の組み合わせであってもよい。デザインは、無地であってもよい。 The printing layer 11, that is, the ink layer 11 can impart a design to the laminate 9. The design may be, for example, a design such as a pattern, a picture, a photograph, or a figure, or a symbol such as a letter, code, or mark, or it may be a combination of two or more of these. Any combination may be used. The design may be plain.
 積層体9を垂線方向で見た場合の印刷層11の形状は適宜設定できる。積層体9を垂線方向で見た場合、印刷層11の大きさは、二軸配向ポリエステルフィルム8の大きさと同じであってもよく、二軸配向ポリエステルフィルム8よりも小さくてもよい。 The shape of the printed layer 11 when the laminate 9 is viewed in the perpendicular direction can be set as appropriate. When the laminate 9 is viewed in the perpendicular direction, the size of the printed layer 11 may be the same as the size of the biaxially oriented polyester film 8 or may be smaller than the biaxially oriented polyester film 8.
 印刷層11は樹脂を含むことができる。樹脂として、たとえば、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂、酢酸ビニル共重合樹脂、これらの二種以上の混合物を挙げることができる。印刷層11は、着色剤を含むことができる。着色剤として、たとえば、顔料、染料を挙げることができる。印刷層11が添加剤を含むことができる。添加剤として、たとえば、帯電防止剤、光線遮断剤、紫外線吸収剤、可塑剤、滑剤、フィラー、安定剤、潤滑剤、消泡剤、架橋剤、耐ブロッキング剤、酸化防止剤などを挙げることができる。 The printing layer 11 can contain resin. Examples of the resin include acrylic resin, urethane resin, polyester resin, vinyl chloride resin, vinyl acetate copolymer resin, and mixtures of two or more of these resins. Print layer 11 can contain a colorant. Examples of colorants include pigments and dyes. The printed layer 11 can contain additives. Examples of additives include antistatic agents, light blocking agents, ultraviolet absorbers, plasticizers, lubricants, fillers, stabilizers, lubricants, antifoaming agents, crosslinking agents, antiblocking agents, antioxidants, etc. can.
 印刷層11はインクで形成することができる。インクは、上述した成分に加えて、たとえば溶剤を含むことができる。なお、インクは、バイオマス由来の原料が使用されたインクであってもよい。 The printed layer 11 can be formed using ink. In addition to the above-mentioned components, the ink can include, for example, a solvent. Note that the ink may be an ink using raw materials derived from biomass.
 印刷層11は、インクを印刷し、乾燥することによって形成することができる。印刷方法として、たとえば、オフセット印刷法、グラビア印刷法、スクリーン印刷を挙げることができる。印刷後の乾燥方法として、たとえば、熱風乾燥、熱ロール乾燥、赤外線乾燥を挙げることができる。 The printed layer 11 can be formed by printing ink and drying it. Examples of printing methods include offset printing, gravure printing, and screen printing. Examples of drying methods after printing include hot air drying, hot roll drying, and infrared drying.
 積層体9は紙層をさらに含んでいてもよい。たとえば、積層体9は、二軸配向ポリエステルフィルム8と印刷層11との間に紙層を含んでいてもよく、印刷層11とシーラント層21との間に紙層を含んでいてもよい。なかでも、二軸配向ポリエステルフィルム8と印刷層11との間に紙層を含むことが好ましい。この場合、積層体9の少なくとも一部において、二軸配向ポリエステルフィルム8、紙層、印刷層11、シーラント層21が、積層体9の厚み方向でこの順に並んでいることができる(図示していない)。 The laminate 9 may further include a paper layer. For example, the laminate 9 may include a paper layer between the biaxially oriented polyester film 8 and the printed layer 11, or may include a paper layer between the printed layer 11 and the sealant layer 21. Among these, it is preferable to include a paper layer between the biaxially oriented polyester film 8 and the printing layer 11. In this case, in at least a portion of the laminate 9, the biaxially oriented polyester film 8, the paper layer, the printing layer 11, and the sealant layer 21 may be arranged in this order in the thickness direction of the laminate 9 (not shown). do not have).
 紙層として、たとえば、上質紙、アート紙、コート紙、レジンコート紙、キャストコート紙、板紙、合成紙、含浸紙などを使用することができる。紙層の厚みは、たとえば30g/m以上400g/m以下であることが好ましい。 As the paper layer, for example, high quality paper, art paper, coated paper, resin coated paper, cast coated paper, paperboard, synthetic paper, impregnated paper, etc. can be used. The thickness of the paper layer is preferably, for example, 30 g/m 2 or more and 400 g/m 2 or less.
 紙層は、他の層(たとえば、接着剤層、接着樹脂層、アンカーコート層)を介して二軸配向ポリエステルフィルム8に積層することができる。 The paper layer can be laminated to the biaxially oriented polyester film 8 via other layers (for example, an adhesive layer, an adhesive resin layer, an anchor coat layer).
 接着剤層は、接着剤、すなわちラミネート接着剤で形成することができる。たとえば、ラミネート接着剤を、二軸配向ポリエステルフィルム8および/または紙層に塗布し、乾燥することによって形成することができる。ラミネート接着剤は、1液硬化型であってもよく、2液型硬化型であってもよい。ラミネート接着剤は、溶剤型であってもよく、水性型であってもよく、エマルジョン型であってもよい。ラミネート接着剤として、たとえば、ビニル系接着剤、(メタ)アクリル系接着剤、ポリアミド系接着剤、ポリエステル系接着剤、ポリエーテル系接着剤、ポリウレタン系接着剤、エポキシ系接着剤、ゴム系接着剤を挙げることができる。なお、これらは単独で用いてもよく、二種以上を用いてもよい。 The adhesive layer can be formed with an adhesive, ie, a laminating adhesive. For example, it can be formed by applying a laminating adhesive to the biaxially oriented polyester film 8 and/or the paper layer and drying. The laminating adhesive may be a one-component curing type or a two-component curing type. The laminating adhesive may be solvent-based, water-based, or emulsion-based. Examples of laminating adhesives include vinyl adhesives, (meth)acrylic adhesives, polyamide adhesives, polyester adhesives, polyether adhesives, polyurethane adhesives, epoxy adhesives, and rubber adhesives. can be mentioned. Note that these may be used alone or in combination of two or more.
 接着剤層の厚みは、たとえば0.1μm以上であってもよく、1μm以上であってもよい。接着剤層の厚みは、たとえば10μm以下であってもよく、5μm以下であってもよい。 The thickness of the adhesive layer may be, for example, 0.1 μm or more, or 1 μm or more. The thickness of the adhesive layer may be, for example, 10 μm or less, or 5 μm or less.
 接着樹脂層は熱可塑性樹脂を含む。熱可塑性樹脂として、たとえば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、エチレン-アクリル酸共重合体、エチレン-アクリル酸エチル共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-マレイン酸共重合体、アイオノマー樹脂を挙げることができる。これに加えて、不飽和カルボン酸、不飽和カルボン酸、不飽和カルボン酸無水物、エステル単量体の少なくとも一種をポリオレフィン樹脂にグラフト重合および/または共重合した樹脂を挙げることもできる。無水マレイン酸をポリオレフィン樹脂にグラフト変性した樹脂を挙げることもできる。なお、これらは単独で用いてもよく、二種以上を用いてもよい。 The adhesive resin layer contains a thermoplastic resin. Examples of thermoplastic resins include low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear low-density polyethylene, ethylene-acrylic acid copolymer, ethylene-ethyl acrylate copolymer, and ethylene-methacrylic acid copolymer. , ethylene-methyl methacrylate copolymer, ethylene-maleic acid copolymer, and ionomer resin. In addition, resins in which at least one of an unsaturated carboxylic acid, an unsaturated carboxylic acid, an unsaturated carboxylic acid anhydride, and an ester monomer is graft-polymerized and/or copolymerized with a polyolefin resin can also be mentioned. A resin obtained by graft-modifying maleic anhydride onto a polyolefin resin can also be mentioned. Note that these may be used alone or in combination of two or more.
 接着樹脂層の厚みは、たとえば0.1μm以上であってもよく、1μm以上であってもよく、5μm以上であってもよく、10μm以上であってもよい。接着樹脂層の厚みは、たとえば100μm以下であってもよく、50μm以下であってもよく、10μm以下であってもよく、5μm以下であってもよい。 The thickness of the adhesive resin layer may be, for example, 0.1 μm or more, 1 μm or more, 5 μm or more, or 10 μm or more. The thickness of the adhesive resin layer may be, for example, 100 μm or less, 50 μm or less, 10 μm or less, or 5 μm or less.
 アンカーコート層は、樹脂と硬化剤とを含む組成物で形成することができる。樹脂として、たとえば、ウレタン系、ポリエステル系、アクリル系、チタン系、イソシアネート系、イミン系、ポリブタジエン系樹脂を挙げることができる。なかでも、ウレタン系、ポリエステル系、アクリル系樹脂が好ましい。密着の観点ではウレタン樹脂が好ましい。いっぽう、耐水性の観点ではアクリル樹脂が好ましい。なお、これらは単独で用いてもよく、二種以上を用いてもよい。硬化剤として、たとえば、エポキシ系、イソシアネート系、メラミン系硬化剤を挙げることができる。なお、これらは単独で用いてもよく、二種以上を用いてもよい。 The anchor coat layer can be formed from a composition containing a resin and a curing agent. Examples of the resin include urethane-based, polyester-based, acrylic-based, titanium-based, isocyanate-based, imine-based, and polybutadiene-based resins. Among these, urethane-based, polyester-based, and acrylic-based resins are preferred. From the viewpoint of adhesion, urethane resin is preferred. On the other hand, acrylic resin is preferred from the viewpoint of water resistance. Note that these may be used alone or in combination of two or more. Examples of the curing agent include epoxy, isocyanate, and melamine curing agents. Note that these may be used alone or in combination of two or more.
 アンカーコート層を形成するための組成物はシランカップリング剤を含むことが好ましい。シランカップリング剤は、分子内に、有機官能基を一つ以上有することが好ましい。シランカップリング剤が、分子内に、有機官能基を複数(すなわち一つ以上)有する場合、複数の有機官能基は、それぞれ同じであっても、異なっていてもよい。つまり、複数の有機官能基はそれぞれ独立していることができる。有機官能基として、たとえばアルコキシ基、アミノ基、エポキシ基、イソシアネート基を挙げることができる。 The composition for forming the anchor coat layer preferably contains a silane coupling agent. It is preferable that the silane coupling agent has one or more organic functional groups in the molecule. When the silane coupling agent has a plurality of organic functional groups (that is, one or more) in the molecule, the plurality of organic functional groups may be the same or different. In other words, each of the plurality of organic functional groups can be independent. Examples of organic functional groups include alkoxy groups, amino groups, epoxy groups, and isocyanate groups.
 アンカーコート層を形成するための組成物は溶媒を含んでいてもよい。溶媒として、たとえば、ベンゼン、トルエンといった芳香族系溶剤、メタノール、エタノールといったアルコール系溶剤、アセトン、メチルエチルケトンといったケトン系溶剤、酢酸エチル、酢酸ブチルといったエステル系溶剤、エチレングリコールモノメチルエーテルのような多価アルコール誘導体を挙げることができる。 The composition for forming the anchor coat layer may contain a solvent. Examples of solvents include aromatic solvents such as benzene and toluene, alcohol solvents such as methanol and ethanol, ketone solvents such as acetone and methyl ethyl ketone, ester solvents such as ethyl acetate and butyl acetate, and polyhydric alcohols such as ethylene glycol monomethyl ether. Derivatives can be mentioned.
 アンカーコート層は、アンカーコート層を形成するための組成物を二軸配向ポリエステルフィルム8に塗布し、乾燥することによって形成することができる。 The anchor coat layer can be formed by applying a composition for forming the anchor coat layer to the biaxially oriented polyester film 8 and drying it.
 アンカーコート層の厚みは、たとえば0.1μm以上であってもよく、0.2μm以上であってもよい。アンカーコート層の厚みは、たとえば2μm以下であってもよく、1μm以下であってもよい。 The thickness of the anchor coat layer may be, for example, 0.1 μm or more, or 0.2 μm or more. The thickness of the anchor coat layer may be, for example, 2 μm or less, or 1 μm or less.
 図4Aに示すように、積層体9は無機薄膜層31、すなわち蒸着層31をさらに含んでいてもよい。たとえば、積層体9は、印刷層11と、二軸配向ポリエステルフィルム8と、無機薄膜層31と、シーラント層21とを含んでいてもよい。積層体9の少なくとも一部において、印刷層11、二軸配向ポリエステルフィルム8、無機薄膜層31、シーラント層21が、積層体9の厚み方向でこの順に並んでいることができる。積層体9が無機薄膜層31を含むため、ガスバリア性を向上することができる。 As shown in FIG. 4A, the laminate 9 may further include an inorganic thin film layer 31, that is, a vapor deposition layer 31. For example, the laminate 9 may include a printed layer 11 , a biaxially oriented polyester film 8 , an inorganic thin film layer 31 , and a sealant layer 21 . In at least a portion of the laminate 9, the printed layer 11, the biaxially oriented polyester film 8, the inorganic thin film layer 31, and the sealant layer 21 can be arranged in this order in the thickness direction of the laminate 9. Since the laminate 9 includes the inorganic thin film layer 31, gas barrier properties can be improved.
 無機薄膜層31は、無機酸化物を含むことができる。無機酸化物として、たとえば、ケイ素(Si)、アルミニウム(Al)、マグネシウム(Mg)、カルシウム(Ca)、カリウム(K)、スズ(Sn)、ナトリウム(Na)、ホウ素(B)、チタン(Ti)、鉛(Pb)、ジルコニウム(Zr)、イットリウム(Y)の酸化物を挙げることができる。無機薄膜層31を形成する材料として、酸化ケイ素(すなわちシリカ)、酸化アルミニウム(すなわちアルミナ)、酸化ケイ素と酸化アルミニウムとの混合物が好ましい。なかでも、無機薄膜層31の柔軟性と緻密性を両立できるという理由で、酸化ケイ素と酸化アルミニウムとの複合酸化物がより好ましい。この複合酸化物において、酸化ケイ素と酸化アルミニウムとの混合比は、金属原子換算の質量比、すなわち金属原子換算の質量比で、Alは、20質量%以上70質量%以下が好ましい。20質量%以上であると、ガスバリア性に優れる。70質量%以下であると、無機薄膜層31が過度に硬くなることを防止できる。なお、ここでいう酸化ケイ素とは、SiOやSiOなどの各種珪素酸化物またはそれらの混合物であり、酸化アルミニウムとは、AlOやAlなどの各種アルミニウム酸化物またはそれらの混合物である。 The inorganic thin film layer 31 can contain an inorganic oxide. Examples of inorganic oxides include silicon (Si), aluminum (Al), magnesium (Mg), calcium (Ca), potassium (K), tin (Sn), sodium (Na), boron (B), and titanium (Ti). ), lead (Pb), zirconium (Zr), and yttrium (Y) oxides. Preferable materials for forming the inorganic thin film layer 31 include silicon oxide (ie, silica), aluminum oxide (ie, alumina), and a mixture of silicon oxide and aluminum oxide. Among these, a composite oxide of silicon oxide and aluminum oxide is more preferable because it can achieve both flexibility and denseness of the inorganic thin film layer 31. In this composite oxide, the mixing ratio of silicon oxide and aluminum oxide is a mass ratio in terms of metal atoms, that is, a mass ratio in terms of metal atoms, and Al is preferably 20% by mass or more and 70% by mass or less. When the content is 20% by mass or more, gas barrier properties are excellent. When the content is 70% by mass or less, the inorganic thin film layer 31 can be prevented from becoming excessively hard. Note that silicon oxide herein refers to various silicon oxides such as SiO and SiO 2 or mixtures thereof, and aluminum oxide refers to various aluminum oxides such as AlO and Al 2 O 3 or mixtures thereof. .
 無機薄膜層31は金属蒸着層であってもよい。金属蒸着層の金属として、たとえば、マグネシウム、アルミニウム、チタン、クロム、鉄、ニッケル、銅、亜鉛、銀、錫、白金、金などを挙げることができる。なかでも、アルミニウムが好ましい。つまり、無機薄膜層31がアルミニウム蒸着層であることが好ましい。 The inorganic thin film layer 31 may be a metal vapor deposition layer. Examples of the metal of the metal vapor deposition layer include magnesium, aluminum, titanium, chromium, iron, nickel, copper, zinc, silver, tin, platinum, and gold. Among them, aluminum is preferred. That is, it is preferable that the inorganic thin film layer 31 is an aluminum vapor deposited layer.
 無機薄膜層31の厚みは、たとえば1nm以上であってもよく、5nm以上であってもよく、10nm以上であってもよく、20nm以上であってもよい。無機薄膜層31の厚みは、たとえば200nm以下であってもよく、100nm以下であってもよく、50nm以下であってもよい。 The thickness of the inorganic thin film layer 31 may be, for example, 1 nm or more, 5 nm or more, 10 nm or more, or 20 nm or more. The thickness of the inorganic thin film layer 31 may be, for example, 200 nm or less, 100 nm or less, or 50 nm or less.
 無機薄膜層31は、単層構成であってもよく、二層以上の構成であってもよい。無機薄膜層31が二層以上である場合、それらの層は、組成や物性(たとえば厚み)などについて、互いに独立していることができる。 The inorganic thin film layer 31 may have a single layer structure, or may have a two or more layer structure. When the inorganic thin film layer 31 has two or more layers, these layers can be independent from each other in terms of composition, physical properties (for example, thickness), and the like.
 無機薄膜層31は、たとえば、真空蒸着法、スパッタリング法、イオンプレ-ティング法といった物理気相成長法(PVD法)や、プラズマ化学気相成長法、熱化学気相成長法、光化学気相成長法といった化学気相成長法(CVD法)で形成することができる。なお、酸化ケイ素・酸化アルミニウム系薄膜を真空蒸着法で形成する場合、蒸着原料として、たとえば、SiOとAlの混合物、SiOとAlの混合物を用いることができる。これら蒸着原料は粒子状をなすことが好ましい。粒子の大きさは、蒸着時の圧力が変化しない程度の大きさであることが望ましい。たとえば、粒子径は1mm~5mmが好ましい。加熱には、抵抗加熱、高周波誘導加熱、電子ビーム加熱、レーザー加熱などの方式を採用することができる。また、反応ガスとして酸素、窒素、水素、アルゴン、炭酸ガス、水蒸気等を導入したり、オゾン添加、イオンアシストなどの手段を用いた反応性蒸着を採用することも可能である。さらに、被蒸着体(蒸着に供する積層フィルム)にバイアスを印加したり、被蒸着体を加熱もしくは冷却するなど、成膜条件も任意に変更することができる。このような蒸着材料、反応ガス、被蒸着体のバイアス、加熱・冷却などは、スパッタリング法やCVD法を採用する場合にも同様に変更可能である。 The inorganic thin film layer 31 can be formed by, for example, a physical vapor deposition method (PVD method) such as a vacuum evaporation method, a sputtering method, or an ion plating method, a plasma chemical vapor deposition method, a thermal chemical vapor deposition method, or a photochemical vapor deposition method. It can be formed by a chemical vapor deposition method (CVD method) such as. In addition, when forming a silicon oxide/aluminum oxide thin film by a vacuum evaporation method, a mixture of SiO 2 and Al 2 O 3 or a mixture of SiO 2 and Al can be used as the evaporation raw material, for example. These vapor deposition raw materials are preferably in the form of particles. The size of the particles is preferably such that the pressure during vapor deposition does not change. For example, the particle size is preferably 1 mm to 5 mm. For heating, methods such as resistance heating, high frequency induction heating, electron beam heating, laser heating, etc. can be adopted. It is also possible to introduce oxygen, nitrogen, hydrogen, argon, carbon dioxide, water vapor, etc. as a reactive gas, or to adopt reactive vapor deposition using means such as ozone addition or ion assist. Furthermore, the film forming conditions can also be changed arbitrarily, such as by applying a bias to the object to be deposited (the laminated film to be subjected to vapor deposition), heating or cooling the object to be deposited. The evaporation material, reaction gas, bias of the evaporation target, heating/cooling, etc. can be changed in the same way when sputtering or CVD is employed.
 なお、図4Bに示すように、積層体9は、二軸配向ポリエステルフィルム8と、無機薄膜層31と、シーラント層21とを含んでいてもよい。積層体9の少なくとも一部において、二軸配向ポリエステルフィルム8、無機薄膜層31、シーラント層21が、積層体9の厚み方向でこの順に並んでいることができる。 Note that, as shown in FIG. 4B, the laminate 9 may include the biaxially oriented polyester film 8, the inorganic thin film layer 31, and the sealant layer 21. In at least a portion of the laminate 9, the biaxially oriented polyester film 8, the inorganic thin film layer 31, and the sealant layer 21 can be arranged in this order in the thickness direction of the laminate 9.
 図5Aに示すように、積層体9はアンカーコート層32、すなわち被覆層32をさらに含んでいてもよい。たとえば、積層体9は、印刷層11と、二軸配向ポリエステルフィルム8と、アンカーコート層32と、無機薄膜層31と、シーラント層21とを含んでいてもよい。積層体9の少なくとも一部において、印刷層11、二軸配向ポリエステルフィルム8、アンカーコート層32、無機薄膜層31、シーラント層21が、積層体9の厚み方向でこの順に並んでいることができる。アンカーコート層32は、二軸配向ポリエステルフィルム8と無機薄膜層31とを接続することができる。 As shown in FIG. 5A, the laminate 9 may further include an anchor coat layer 32, that is, a covering layer 32. For example, the laminate 9 may include a printed layer 11 , a biaxially oriented polyester film 8 , an anchor coat layer 32 , an inorganic thin film layer 31 , and a sealant layer 21 . In at least a portion of the laminate 9, the printed layer 11, the biaxially oriented polyester film 8, the anchor coat layer 32, the inorganic thin film layer 31, and the sealant layer 21 may be arranged in this order in the thickness direction of the laminate 9. . The anchor coat layer 32 can connect the biaxially oriented polyester film 8 and the inorganic thin film layer 31.
 アンカーコート層32を包含する用語「アンカーコート層」については既に説明したものの、アンカーコート層32に特有の好適例があるため説明を追加する。 Although the term "anchor coat layer" that includes the anchor coat layer 32 has already been explained, an explanation will be added because there are suitable examples specific to the anchor coat layer 32.
 アンカーコート層32は、樹脂と硬化剤とを含む組成物で形成することができる。樹脂として、たとえば、ウレタン系、ポリエステル系、アクリル系、チタン系、イソシアネート系、イミン系、ポリブタジエン系樹脂を挙げることができる。なかでも、ウレタン系、ポリエステル系、アクリル系樹脂が好ましい。密着の観点ではウレタン樹脂が好ましい。いっぽう、耐水性の観点ではアクリル樹脂が好ましい。なお、これらは単独で用いてもよく、二種以上を用いてもよい。硬化剤として、たとえば、エポキシ系、イソシアネート系、メラミン系硬化剤を挙げることができる。なお、これらは単独で用いてもよく、二種以上を用いてもよい。 The anchor coat layer 32 can be formed from a composition containing a resin and a curing agent. Examples of the resin include urethane-based, polyester-based, acrylic-based, titanium-based, isocyanate-based, imine-based, and polybutadiene-based resins. Among these, urethane-based, polyester-based, and acrylic-based resins are preferred. From the viewpoint of adhesion, urethane resin is preferred. On the other hand, acrylic resin is preferred from the viewpoint of water resistance. Note that these may be used alone or in combination of two or more. Examples of the curing agent include epoxy, isocyanate, and melamine curing agents. Note that these may be used alone or in combination of two or more.
 アンカーコート層32を形成するための組成物はシランカップリング剤を含むことが好ましい。シランカップリング剤は、分子内に、有機官能基を一つ以上有することが好ましい。シランカップリング剤が、分子内に、有機官能基を複数(すなわち一つ以上)有する場合、複数の有機官能基は、それぞれ同じであっても、異なっていてもよい。つまり、複数の有機官能基はそれぞれ独立していることができる。有機官能基として、たとえばアルコキシ基、アミノ基、エポキシ基、イソシアネート基を挙げることができる。 The composition for forming the anchor coat layer 32 preferably contains a silane coupling agent. It is preferable that the silane coupling agent has one or more organic functional groups in the molecule. When the silane coupling agent has a plurality of organic functional groups (that is, one or more) in the molecule, the plurality of organic functional groups may be the same or different. In other words, each of the plurality of organic functional groups can be independent. Examples of organic functional groups include alkoxy groups, amino groups, epoxy groups, and isocyanate groups.
 アンカーコート層32を形成するための組成物は、オキサゾリン基を含む樹脂、つまり、オキサゾリン基を含む重合体を含むことが好ましい。オキサゾリン基は、無機薄膜層31との親和性が高く、しかも無機薄膜層31形成時に発生し得る無機酸化物の酸素欠損部分や金属水酸化物と反応することができるため、無機薄膜層31と強固に密着することができる。これに加えて、アンカーコート層32中に存在する未反応のオキサゾリン基は、二軸配向ポリエステルフィルム8およびアンカーコート層32に生じ得るカルボン酸末端(たとえば、加水分解により生じ得るカルボン酸末端)と反応することができるので、架橋を形成することができる。 The composition for forming the anchor coat layer 32 preferably contains a resin containing an oxazoline group, that is, a polymer containing an oxazoline group. The oxazoline group has a high affinity with the inorganic thin film layer 31 and can react with the oxygen-deficient parts of the inorganic oxide and metal hydroxide that may be generated during the formation of the inorganic thin film layer 31. Can be firmly attached. In addition, the unreacted oxazoline groups present in the anchor coat layer 32 are free from carboxylic acid terminals that may occur in the biaxially oriented polyester film 8 and the anchor coat layer 32 (for example, carboxylic acid terminals that may occur due to hydrolysis). Because they can react, crosslinks can be formed.
 アンカーコート層32を形成するための組成物は溶媒を含んでいてもよい。溶媒として、たとえば、ベンゼン、トルエンといった芳香族系溶剤、メタノール、エタノールといったアルコール系溶剤、アセトン、メチルエチルケトンといったケトン系溶剤、酢酸エチル、酢酸ブチルといったエステル系溶剤、エチレングリコールモノメチルエーテルのような多価アルコール誘導体を挙げることができる。 The composition for forming the anchor coat layer 32 may contain a solvent. Examples of solvents include aromatic solvents such as benzene and toluene, alcohol solvents such as methanol and ethanol, ketone solvents such as acetone and methyl ethyl ketone, ester solvents such as ethyl acetate and butyl acetate, and polyhydric alcohols such as ethylene glycol monomethyl ether. Derivatives can be mentioned.
 アンカーコート層32は、アンカーコート層32を形成するための組成物を二軸配向ポリエステルフィルム8に塗布し、乾燥することによって形成することができる。 The anchor coat layer 32 can be formed by applying a composition for forming the anchor coat layer 32 to the biaxially oriented polyester film 8 and drying it.
 なお、図5Bに示すように、積層体9は、二軸配向ポリエステルフィルム8と、アンカーコート層32と、無機薄膜層31と、シーラント層21とを含んでいてもよい。積層体9の少なくとも一部において、二軸配向ポリエステルフィルム8、アンカーコート層32、無機薄膜層31、シーラント層21が、積層体9の厚み方向でこの順に並んでいることができる。 Note that, as shown in FIG. 5B, the laminate 9 may include the biaxially oriented polyester film 8, the anchor coat layer 32, the inorganic thin film layer 31, and the sealant layer 21. In at least a portion of the laminate 9, the biaxially oriented polyester film 8, the anchor coat layer 32, the inorganic thin film layer 31, and the sealant layer 21 can be arranged in this order in the thickness direction of the laminate 9.
 図6Aに示すように、積層体9は、無機薄膜層31上に保護層33さらに含んでいてもよい。すなわち、積層体9は、無機薄膜層31に隣接する保護層33をさらに含んでいてもよい。たとえば、積層体9は、印刷層11と、二軸配向ポリエステルフィルム8と、アンカーコート層32と、無機薄膜層31と、保護層33と、シーラント層21とを含んでいてもよい。積層体9の少なくとも一部において、印刷層11、二軸配向ポリエステルフィルム8、アンカーコート層32、無機薄膜層31、保護層33、シーラント層21が、積層体9の厚み方向でこの順に並んでいることができる。積層体9は保護層33を含むことによってガスの透過を抑制または低減できる。保護層33は、積層体9のガスバリア性を向上する役割を担う。 As shown in FIG. 6A, the laminate 9 may further include a protective layer 33 on the inorganic thin film layer 31. That is, the laminate 9 may further include a protective layer 33 adjacent to the inorganic thin film layer 31. For example, the laminate 9 may include a printed layer 11 , a biaxially oriented polyester film 8 , an anchor coat layer 32 , an inorganic thin film layer 31 , a protective layer 33 , and a sealant layer 21 . In at least a portion of the laminate 9, the printed layer 11, the biaxially oriented polyester film 8, the anchor coat layer 32, the inorganic thin film layer 31, the protective layer 33, and the sealant layer 21 are arranged in this order in the thickness direction of the laminate 9. I can be there. By including the protective layer 33, the laminate 9 can suppress or reduce gas permeation. The protective layer 33 plays a role in improving the gas barrier properties of the laminate 9.
 保護層33を、樹脂と硬化剤とを含む組成物で形成することによって、積層体9のガスバリア性を向上することができる。これについて説明する。一般に、無機薄膜層31には微小な欠損部分が点在する。無機薄膜層31上に、このような組成物を塗工して保護層33を形成することにより、無機薄膜層31の欠損部分に組成物を浸透させることができ、その結果、積層体9のガスバリア性を向上することができる。 By forming the protective layer 33 with a composition containing a resin and a curing agent, the gas barrier properties of the laminate 9 can be improved. This will be explained. Generally, the inorganic thin film layer 31 is dotted with minute defects. By coating such a composition on the inorganic thin film layer 31 to form the protective layer 33, the composition can be penetrated into the defective parts of the inorganic thin film layer 31, and as a result, the laminate 9 is Gas barrier properties can be improved.
 樹脂として、たとえば、ウレタン系、ポリエステル系、アクリル系、チタン系、イソシアネート系、イミン系、ポリブタジエン系樹脂を挙げることができる。なお、これらは単独で用いてもよく、二種以上を用いてもよい。硬化剤として、たとえば、エポキシ系、イソシアネート系、メラミン系硬化剤を挙げることができる。なお、これらは単独で用いてもよく、二種以上を用いてもよい。 Examples of the resin include urethane-based, polyester-based, acrylic-based, titanium-based, isocyanate-based, imine-based, and polybutadiene-based resins. Note that these may be used alone or in combination of two or more. Examples of the curing agent include epoxy, isocyanate, and melamine curing agents. Note that these may be used alone or in combination of two or more.
 なかでも、ウレタン系樹脂、すなわちウレタン樹脂が好ましい。ウレタン樹脂はウレタン結合の極性基が無機薄膜層31と相互作用するとともに、ウレタン樹脂中の非晶部分が柔軟性を発揮するため、屈曲負荷がかかった際に無機薄膜層31へのダメージを抑えることができる。 Among these, urethane-based resins, that is, urethane resins are preferred. In the urethane resin, the polar group of the urethane bond interacts with the inorganic thin film layer 31, and the amorphous portion in the urethane resin exhibits flexibility, so damage to the inorganic thin film layer 31 is suppressed when bending load is applied. be able to.
 ウレタン樹脂の酸価は10mgKOH/g以上60mgKOH/g以下の範囲内であるのが好ましい。より好ましくは15mgKOH/g以上55mgKOH/g以下の範囲内、さらに好ましくは20mgKOH/g以上50mgKOH/g以下の範囲内である。ウレタン樹脂の酸価が前記範囲であると、水分散液とした際に液安定性が向上し、また保護層33を、高極性の無機薄膜上に均一に堆積することができるため、コート外観が良好となる。 The acid value of the urethane resin is preferably within the range of 10 mgKOH/g or more and 60 mgKOH/g or less. More preferably, it is within the range of 15 mgKOH/g or more and 55 mgKOH/g or less, and even more preferably within the range of 20 mgKOH/g or more and 50 mgKOH/g or less. When the acid value of the urethane resin is within the above range, the liquid stability is improved when it is made into an aqueous dispersion, and the protective layer 33 can be uniformly deposited on the highly polar inorganic thin film, so that the coat appearance is improved. becomes good.
 ウレタン樹脂は、ガラス転移温度(Tg)が80℃以上であることが好ましく、より好ましくは90℃以上である。Tgを80℃以上にすることで、湿熱処理過程(昇温~保温~降温)における分子運動による保護層33の膨潤を低減できる。 The glass transition temperature (Tg) of the urethane resin is preferably 80°C or higher, more preferably 90°C or higher. By setting Tg to 80° C. or higher, it is possible to reduce swelling of the protective layer 33 due to molecular movement during the moist heat treatment process (temperature increase, temperature retention, and temperature decrease).
 ウレタン樹脂は、ガスバリア性向上の面から、芳香族または芳香脂肪族ジイソシアネート成分を主な構成成分として含有することが好ましい。その中でも、メタキシリレンジイソシアネート成分を含有することが特に好ましい。このようなウレタン樹脂を用いることで、芳香環同士のスタッキング効果によりウレタン結合の凝集力を一層高めることができ、結果として良好なガスバリア性が得られる。 From the viewpoint of improving gas barrier properties, the urethane resin preferably contains an aromatic or araliphatic diisocyanate component as a main component. Among these, it is particularly preferable to contain a metaxylylene diisocyanate component. By using such a urethane resin, the cohesive force of urethane bonds can be further increased due to the stacking effect of aromatic rings, and as a result, good gas barrier properties can be obtained.
 ウレタン樹脂中の芳香族または芳香脂肪族ジイソシアネートの割合を、ポリイソシアネート成分100モル%中、50モル%以上(すなわち50モル%以上100モル%以下)の範囲とすることが好ましい。芳香族または芳香脂肪族ジイソシアネートの合計量の割合は、60モル%以上100モル%以下が好ましく、より好ましくは70モル%以上100モル%以下、さらに好ましくは80モル%以上100モル%以下である。このような樹脂として、三井化学社から市販されている「タケラック(登録商標)WPB」シリーズは好適に用いることができる。芳香族または芳香脂肪族ジイソシアネートの合計量の割合が50モル%以上であると、良好なガスバリア性が得られる。 The proportion of aromatic or araliphatic diisocyanate in the urethane resin is preferably in the range of 50 mol% or more (that is, 50 mol% or more and 100 mol% or less) based on 100 mol% of the polyisocyanate component. The proportion of the total amount of aromatic or araliphatic diisocyanates is preferably 60 mol% or more and 100 mol% or less, more preferably 70 mol% or more and 100 mol% or less, and still more preferably 80 mol% or more and 100 mol% or less. . As such a resin, the "Takelac (registered trademark) WPB" series commercially available from Mitsui Chemicals, Inc. can be suitably used. When the total amount of aromatic or araliphatic diisocyanate is 50 mol% or more, good gas barrier properties can be obtained.
 ウレタン樹脂は、無機薄膜層31との親和性向上の観点から、カルボン酸基(カルボキシル基)を有することが好ましい。ウレタン樹脂にカルボン酸(塩)基を導入するためには、たとえば、ポリオール成分として、ジメチロールプロピオン酸、ジメチロールブタン酸等のカルボン酸基を有するポリオール化合物を共重合成分として導入すればよい。また、カルボン酸基含有ウレタン樹脂を合成後、塩形成剤により中和すれば、水分散体のウレタン樹脂を得ることができる。塩形成剤として、たとえば、アンモニア、トリメチルアミン、トリエチルアミン、トリイソプロピルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミンなどのトリアルキルアミン類、N-メチルモルホリン、N-エチルモルホリンなどのN-アルキルモルホリン類、N-ジメチルエタノールアミン、N-ジエチルエタノールアミンなどのN-ジアルキルアルカノールアミン類を挙げることができる。これらは単独で使用してもよいし、2種以上を併用してもよい。 It is preferable that the urethane resin has a carboxylic acid group (carboxyl group) from the viewpoint of improving affinity with the inorganic thin film layer 31. In order to introduce a carboxylic acid (salt) group into the urethane resin, for example, a polyol compound having a carboxylic acid group such as dimethylolpropionic acid or dimethylolbutanoic acid may be introduced as a copolymerization component as a polyol component. Moreover, if a carboxylic acid group-containing urethane resin is synthesized and then neutralized with a salt forming agent, an aqueous dispersion of the urethane resin can be obtained. As a salt forming agent, for example, ammonia, trialkylamines such as trimethylamine, triethylamine, triisopropylamine, tri-n-propylamine, tri-n-butylamine, N-alkyl such as N-methylmorpholine, N-ethylmorpholine, etc. Examples include morpholines, N-dialkylalkanolamines such as N-dimethylethanolamine, and N-diethylethanolamine. These may be used alone or in combination of two or more.
 保護層33を形成するための組成物は溶媒を含んでいてもよい。溶媒として、たとえば、ベンゼン、トルエンといった芳香族系溶剤、メタノール、エタノールといったアルコール系溶剤、アセトン、メチルエチルケトンといったケトン系溶剤、酢酸エチル、酢酸ブチルといったエステル系溶剤、エチレングリコールモノメチルエーテルのような多価アルコール誘導体を挙げることができる。 The composition for forming the protective layer 33 may contain a solvent. Examples of solvents include aromatic solvents such as benzene and toluene, alcohol solvents such as methanol and ethanol, ketone solvents such as acetone and methyl ethyl ketone, ester solvents such as ethyl acetate and butyl acetate, and polyhydric alcohols such as ethylene glycol monomethyl ether. Derivatives can be mentioned.
 いっぽう、ゾルゲル法によって重縮合する組成物で保護層33を形成してもよい。これによれば、ガスバリア性の高い保護層33を形成できるのため、積層体9のガスバリア性を向上することができる。このような組成物は、式1で表されるアルコキシドと、ポリビニルアルコ-ル系樹脂およびエチレン・ビニルアルコ-ル共重合体の少なくとも一方とを含むことができる。
   式1 R M(OR
 Rは、炭素数1~8の有機基を表す。Rは、炭素数1~8の有機基を表す。Mは金属原子を表す。nは0以上の整数を表す。mは1以上の整数を表す。n+mは、Mの原子価を表す。
 なお、式1において、Rが複数ある場合、複数のRはそれぞれ独立していることができる。式1において、Rが複数ある場合、複数のRはそれぞれ独立していることができる。
On the other hand, the protective layer 33 may be formed of a composition that is polycondensed by a sol-gel method. According to this, since the protective layer 33 with high gas barrier properties can be formed, the gas barrier properties of the laminate 9 can be improved. Such a composition can contain the alkoxide represented by Formula 1 and at least one of a polyvinyl alcohol resin and an ethylene-vinyl alcohol copolymer.
Formula 1 R 1 n M(OR 2 ) m
R 1 represents an organic group having 1 to 8 carbon atoms. R 2 represents an organic group having 1 to 8 carbon atoms. M represents a metal atom. n represents an integer of 0 or more. m represents an integer of 1 or more. n+m represents the valence of M.
Note that in Formula 1, when there is a plurality of R 1 s , each of the plural R 1s can be independent. In Formula 1, when there is a plurality of R 2 s, each of the plural R 2s can be independent.
 式1で表されるアルコキシドとして、アルコキシドの部分加水分解物、アルコキシドの加水分解の縮合物の少なくとも一種以上を使用できる。アルコキシドの部分加水分解物は、アルコキシ基のすべてが加水分解されている必要はない。アルコキシドの加水分解の縮合物として、部分加水分解アルコキシドの2量体以上のもの、具体的には、2~6量体のものを使用できる。 As the alkoxide represented by Formula 1, at least one of a partial hydrolyzate of an alkoxide and a condensate of hydrolysis of an alkoxide can be used. In the alkoxide partial hydrolyzate, not all of the alkoxy groups need to be hydrolyzed. As the condensate of alkoxide hydrolysis, a dimer or more of partially hydrolyzed alkoxide, specifically a dimer to hexamer, can be used.
 Mで表される金属原子として、たとえば、ケイ素、ジルコニウム、チタン、アルミニウムを挙げることができる。なかでも、ケイ素、チタンが好ましい。なお、単独または二種以上の異なる金属原子のアルコキシドを混合して用いてもよい。 Examples of the metal atom represented by M include silicon, zirconium, titanium, and aluminum. Among these, silicon and titanium are preferred. Note that alkoxides of two or more different metal atoms may be used alone or in combination.
 Rで表される炭素数1~8の有機基として、たとえば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、n-ヘキシル基、n-オクチル基といったアルキル基を挙げることができる。 Examples of the organic group having 1 to 8 carbon atoms represented by R 1 include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, t Examples include alkyl groups such as -butyl group, n-hexyl group, and n-octyl group.
 Rで表される有機基として、たとえば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、n-ヘキシル基、n-オクチル基といったアルキル基を挙げることができる。 Examples of the organic group represented by R 2 include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, t-butyl group, n- Examples include alkyl groups such as hexyl and n-octyl groups.
 この組成物はシランカップリング剤を含んでいてもよい。シランカップリング剤として、有機反応性基含有オルガノアルコキシシランを挙げることができる。とりわけ、エポキシ基を有するオルガノアルコキシシランが好ましい。エポキシ基を有するオルガノアルコキシシランとして、たとえば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3、4-エポキシシクロヘキシル)エチルトリメトキシシランを挙げることができる。なお、これらは単独で用いてもよく、二種以上を用いてもよい。 This composition may contain a silane coupling agent. Examples of the silane coupling agent include organoalkoxysilane containing an organic reactive group. Particularly preferred are organoalkoxysilanes having epoxy groups. Examples of the organoalkoxysilane having an epoxy group include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, and β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane. can. Note that these may be used alone or in combination of two or more.
 なお、この組成物は、たとえば、ゾルゲル法触媒、酸、水、および、有機溶剤をさらに含むことができる。 Note that this composition can further contain, for example, a sol-gel method catalyst, an acid, water, and an organic solvent.
 なお、図6Bに示すように、積層体9は、二軸配向ポリエステルフィルム8と、アンカーコート層32と、無機薄膜層31と、保護層33と、シーラント層21とを含んでいてもよい。積層体9の少なくとも一部において、二軸配向ポリエステルフィルム8、アンカーコート層32、無機薄膜層31、保護層33、シーラント層21が、積層体9の厚み方向でこの順に並んでいることができる。 Note that, as shown in FIG. 6B, the laminate 9 may include the biaxially oriented polyester film 8, the anchor coat layer 32, the inorganic thin film layer 31, the protective layer 33, and the sealant layer 21. In at least a portion of the laminate 9, the biaxially oriented polyester film 8, the anchor coat layer 32, the inorganic thin film layer 31, the protective layer 33, and the sealant layer 21 can be arranged in this order in the thickness direction of the laminate 9. .
 図7に示すように、積層体9はシーラント層22をさらに含んでいてもよい。たとえば、積層体9は、シーラント層22と、二軸配向ポリエステルフィルム8と、シーラント層21とを含んでいてもよい。積層体9の少なくとも一部において、シーラント層22、二軸配向ポリエステルフィルム8、シーラント層21が、積層体9の厚み方向でこの順に並んでいることができる。もちろん、図3~図6Bに示した積層構成を有する積層体9が、シーラント層22をさらに含んでいてもよい。積層体9の両面のうち、一方の面がシーラント層21によって構成され、他方の面がシーラント層22によって構成されることが好ましい。つまり、積層体9の一対の最外層のうち、一方の最外層がシーラント層21であり、他方の最外層がシーラント層22であることが好ましい。シーラント層22の説明は、シーラント層21の説明と重複するため省略する。よって、シーラント層21の説明はシーラント層22の説明としても扱うことができる。 As shown in FIG. 7, the laminate 9 may further include a sealant layer 22. For example, the laminate 9 may include a sealant layer 22, a biaxially oriented polyester film 8, and a sealant layer 21. In at least a portion of the laminate 9, the sealant layer 22, the biaxially oriented polyester film 8, and the sealant layer 21 can be arranged in this order in the thickness direction of the laminate 9. Of course, the laminate 9 having the laminate configuration shown in FIGS. 3 to 6B may further include the sealant layer 22. It is preferable that one surface of both surfaces of the laminate 9 be constituted by the sealant layer 21 and the other surface be constituted by the sealant layer 22. That is, it is preferable that one of the pair of outermost layers of the laminate 9 is the sealant layer 21 and the other outermost layer is the sealant layer 22. The description of the sealant layer 22 is omitted because it overlaps with the description of the sealant layer 21. Therefore, the description of the sealant layer 21 can also be treated as the description of the sealant layer 22.
 図3や図4A,図5A、図6Aでは、印刷層11、二軸配向ポリエステルフィルム8、シーラント層21が、積層体9の厚み方向でこの順に並んでいる、という構成を説明したものの、もちろん、これらがその順に並んでいなくてもよい。 3, FIG. 4A, FIG. 5A, and FIG. 6A, the configuration in which the printing layer 11, the biaxially oriented polyester film 8, and the sealant layer 21 are arranged in this order in the thickness direction of the laminate 9 is explained, but of course , these do not need to be arranged in that order.
 たとえば、図8に示すように、積層体9の少なくとも一部において、二軸配向ポリエステルフィルム8、印刷層11、シーラント層21が、積層体9の厚み方向でこの順に並んでいてもよい。積層体9は、二軸配向ポリエステルフィルム8と、印刷層11と、シーラント層21とを含むことができる。 For example, as shown in FIG. 8, in at least a portion of the laminate 9, the biaxially oriented polyester film 8, the printed layer 11, and the sealant layer 21 may be arranged in this order in the thickness direction of the laminate 9. The laminate 9 can include a biaxially oriented polyester film 8 , a printed layer 11 , and a sealant layer 21 .
 図9に示すように、積層体9の少なくとも一部において、二軸配向ポリエステルフィルム8、印刷層11、無機薄膜層31、シーラント層21が、積層体9の厚み方向でこの順に並んでいてもよい。積層体9は、二軸配向ポリエステルフィルム8と、印刷層11と、無機薄膜層31と、シーラント層21とを含むことができる。 As shown in FIG. 9, in at least a portion of the laminate 9, the biaxially oriented polyester film 8, the printed layer 11, the inorganic thin film layer 31, and the sealant layer 21 are arranged in this order in the thickness direction of the laminate 9. good. The laminate 9 can include a biaxially oriented polyester film 8 , a printed layer 11 , an inorganic thin film layer 31 , and a sealant layer 21 .
 図10に示すように、積層体9の少なくとも一部において、二軸配向ポリエステルフィルム8、印刷層11、アンカーコート層32、無機薄膜層31、シーラント層21が、積層体9の厚み方向でこの順に並んでいてもよい。積層体9は、二軸配向ポリエステルフィルム8と、印刷層11と、アンカーコート層32と、無機薄膜層31と、シーラント層21とを含むことができる。 As shown in FIG. 10, in at least a portion of the laminate 9, the biaxially oriented polyester film 8, the printed layer 11, the anchor coat layer 32, the inorganic thin film layer 31, and the sealant layer 21 are arranged in the thickness direction of the laminate 9. They may be arranged in order. The laminate 9 can include a biaxially oriented polyester film 8 , a printing layer 11 , an anchor coat layer 32 , an inorganic thin film layer 31 , and a sealant layer 21 .
 図11に示すように、積層体9の少なくとも一部において、二軸配向ポリエステルフィルム8、印刷層11、アンカーコート層32、無機薄膜層31、保護層33、シーラント層21が、積層体9の厚み方向でこの順に並んでいてもよい。積層体9は、二軸配向ポリエステルフィルム8と、印刷層11と、アンカーコート層32と、無機薄膜層31と、保護層33と、シーラント層21とを含むことができる。 As shown in FIG. 11, in at least a portion of the laminate 9, the biaxially oriented polyester film 8, the printed layer 11, the anchor coat layer 32, the inorganic thin film layer 31, the protective layer 33, and the sealant layer 21 are included in the laminate 9. They may be arranged in this order in the thickness direction. The laminate 9 can include a biaxially oriented polyester film 8 , a printing layer 11 , an anchor coat layer 32 , an inorganic thin film layer 31 , a protective layer 33 , and a sealant layer 21 .
 図12に示すように、積層体9はシーラント層22をさらに含んでいてもよい。たとえば、積層体9は、シーラント層22と、二軸配向ポリエステルフィルム8と、印刷層11と、シーラント層21とを含んでいてもよい。積層体9の少なくとも一部において、シーラント層22、二軸配向ポリエステルフィルム8、印刷層11、シーラント層21が、積層体9の厚み方向でこの順に並んでいることができる。もちろん、図9~図11に示した積層構成を有する積層体9が、シーラント層22をさらに含んでいてもよい。積層体9の両面のうち、一方の面がシーラント層21によって構成され、他方の面がシーラント層22によって構成されることが好ましい。つまり、積層体9の一対の最外層のうち、一方の最外層がシーラント層21であり、他方の最外層がシーラント層22であることが好ましい。 As shown in FIG. 12, the laminate 9 may further include a sealant layer 22. For example, the laminate 9 may include a sealant layer 22, a biaxially oriented polyester film 8, a printed layer 11, and a sealant layer 21. In at least a portion of the laminate 9, the sealant layer 22, the biaxially oriented polyester film 8, the printed layer 11, and the sealant layer 21 can be arranged in this order in the thickness direction of the laminate 9. Of course, the laminate 9 having the laminate configuration shown in FIGS. 9 to 11 may further include the sealant layer 22. It is preferable that one surface of both surfaces of the laminate 9 be constituted by the sealant layer 21 and the other surface be constituted by the sealant layer 22. That is, it is preferable that one of the pair of outermost layers of the laminate 9 is the sealant layer 21 and the other outermost layer is the sealant layer 22.
 積層体9において、二軸配向ポリエステルフィルム8が担う役割は特に限定されない。たとえば、二軸配向ポリエステルフィルム8は、上述の層(たとえばシーラント層21、印刷層11、無機薄膜層31)を保持する役割、つまり基材としての役割を担ってもよい。いっぽう、二軸配向ポリエステルフィルム8は、基材としてではなく、積層体9のなんらかの物性、たとえば強度を向上する目的で使用されてもよい。その目的で使用される二軸配向ポリエステルフィルム8は、支持体としての役割を担う、と言い換えることができる。つまり、二軸配向ポリエステルフィルム8は、支持体としての役割を担ってもよい。
 なお、二軸配向ポリエステルフィルム8が、支持体としての役割を担う場合、他の層(たとえば、樹脂フィルム、紙層)が、基材としての役割を担うことができる。
In the laminate 9, the role played by the biaxially oriented polyester film 8 is not particularly limited. For example, the biaxially oriented polyester film 8 may play the role of holding the above-mentioned layers (eg, the sealant layer 21, the printing layer 11, the inorganic thin film layer 31), that is, the role of a base material. On the other hand, the biaxially oriented polyester film 8 may be used not as a base material but for the purpose of improving some physical properties of the laminate 9, such as strength. In other words, the biaxially oriented polyester film 8 used for that purpose plays the role of a support. That is, the biaxially oriented polyester film 8 may serve as a support.
In addition, when the biaxially oriented polyester film 8 plays a role as a support body, another layer (for example, a resin film, a paper layer) can play a role as a base material.
 なお、二軸配向ポリエステルフィルム8が、基材としての役割を担う場合、積層体9は、支持体としての役割を担う層(以下、「支持体層」と言う。)をさらに含んでいてもよい。いっぽう、二軸配向ポリエステルフィルム8が、支持体としての役割を担う場合(つまり支持体層である場合)、積層体9は、基材としての役割を担う層(以下、「基材層」と言う。)をさらに含んでいてもよい。 Note that when the biaxially oriented polyester film 8 serves as a base material, the laminate 9 may further include a layer that serves as a support (hereinafter referred to as a "support layer"). good. On the other hand, when the biaxially oriented polyester film 8 plays a role as a support (that is, when it is a support layer), the laminate 9 is a layer that plays a role as a base material (hereinafter referred to as a "base material layer"). ) may also be included.
 図2~図12では、二軸配向ポリエステルフィルム8に着目したうえで、積層体9を説明してきたものの、ここからは、二軸配向ポリエステルフィルム8よりむしろ基材層や支持体層に着目したうえで積層体9を説明する。つまり、切り口を変えて積層体9を説明する。よって、ここからの説明には、これまでの説明と重複する部分があり得る。 In FIGS. 2 to 12, the laminate 9 has been explained by focusing on the biaxially oriented polyester film 8, but from here on, we will focus on the base material layer and support layer rather than the biaxially oriented polyester film 8. Next, the laminate 9 will be explained. That is, the laminate 9 will be explained from a different perspective. Therefore, the explanation from here may have some overlap with the previous explanation.
 図13に示すように、積層体9は、基材層51とシーラント層21とを含む。積層体9がシーラント層21を含むため、積層体9を含む製品(たとえば包装容器)をヒートシールによって製造することができる。 As shown in FIG. 13, the laminate 9 includes a base layer 51 and a sealant layer 21. Since the laminate 9 includes the sealant layer 21, a product (for example, a packaging container) including the laminate 9 can be manufactured by heat sealing.
 基材層51として、二軸配向ポリエステルフィルム8を用いる。すなわち、基材層51は二軸配向ポリエステルフィルム8である。いっぽう、基材層51は、単層構成であってもよく、二層以上の構成であってもよいところ、たとえば、基材層51は、二軸配向ポリエステルフィルム8と樹脂フィルム(たとえば二軸延伸ナイロンフィルム)との積層構成であってもよい。 A biaxially oriented polyester film 8 is used as the base layer 51. That is, the base material layer 51 is the biaxially oriented polyester film 8. On the other hand, the base material layer 51 may have a single layer structure or may have a two or more layer structure. It may also have a laminated structure with a stretched nylon film).
 図14に示すように、積層体9は印刷層11をさらに含むことができる。積層体9は、印刷層11と、基材層51と、シーラント層21とを含むことができる。積層体9の少なくとも一部において、印刷層11、基材層51、シーラント層21が、積層体9の厚み方向でこの順に並んでいることができる。 As shown in FIG. 14, the laminate 9 can further include a printed layer 11. The laminate 9 can include a printed layer 11 , a base layer 51 , and a sealant layer 21 . In at least a portion of the laminate 9, the printed layer 11, the base material layer 51, and the sealant layer 21 can be arranged in this order in the thickness direction of the laminate 9.
 図15Aに示すように、積層体9は中間層61をさらに含むことができる。たとえば、積層体9は、印刷層11と、基材層51と、中間層61と、シーラント層21とを含むことができる。積層体9の少なくとも一部において、印刷層11、基材層51、中間層61、シーラント層21が、積層体9の厚み方向でこの順に並んでいることができる。 As shown in FIG. 15A, the laminate 9 can further include an intermediate layer 61. For example, the laminate 9 can include a printed layer 11 , a base layer 51 , an intermediate layer 61 , and a sealant layer 21 . In at least a portion of the laminate 9, the printed layer 11, the base layer 51, the intermediate layer 61, and the sealant layer 21 can be arranged in this order in the thickness direction of the laminate 9.
 中間層61は、支持体層を含んでいてもよく、ガスバリア層を含んでいてもよく、金属箔を含んでいてもよく、これらのうち二つ以上を含んでいてもよい。もちろん、これら以外の層、たとえば、接着剤層、接着樹脂層、アンカーコート層などを含んでいてもよい。中間層61は印刷層11を含んでいてもよい。中間層61が支持体を含むことによって、積層体9のなんらかの物性、たとえば強度を向上することができる。中間層61が、ガスバリア層や金属箔を含むことによって、積層体9のガスバリア性を向上することができる。 The intermediate layer 61 may include a support layer, a gas barrier layer, a metal foil, or two or more of these. Of course, layers other than these, such as an adhesive layer, an adhesive resin layer, and an anchor coat layer, may also be included. Intermediate layer 61 may include printed layer 11 . By including the support in the intermediate layer 61, some physical properties of the laminate 9, such as strength, can be improved. When the intermediate layer 61 includes a gas barrier layer or metal foil, the gas barrier properties of the laminate 9 can be improved.
 支持体層として、たとえば、樹脂フィルム、紙層を挙げることができる。樹脂フィルムとして、たとえば、ポリエステル、(メタ)アクリル樹脂、ポリオレフィン(たとえばポリエチレン、ポリプロピレン、ポリメチルペンテン)、ビニル樹脂、セルロース樹脂、アイオノマー樹脂、ポリアミド(ナイロン6、ナイロン6,6、ポリメタキシリレンアジパミド(MXD6))などの樹脂材料のうち1種または2種以上含むフィルムを挙げることができる。なかでもポリエステルが好ましい。つまり、樹脂フィルムはポリエステルを含むことが好ましい。樹脂フィルムは、延伸樹脂フィルムであってもよく、未延伸樹脂フィルムであってもよい。延伸樹脂フィルムとして、一軸延伸樹脂フィルムであってもよく、二軸延伸樹脂フィルムであってもよい。なかでも、寸法安定性に優れるという理由から二軸延伸樹脂フィルムが好ましい。 Examples of the support layer include a resin film and a paper layer. Examples of resin films include polyester, (meth)acrylic resin, polyolefin (e.g. polyethylene, polypropylene, polymethylpentene), vinyl resin, cellulose resin, ionomer resin, polyamide (nylon 6, nylon 6,6, polymethaxylylene adipate). Examples include films containing one or more resin materials such as Mido (MXD6). Among them, polyester is preferred. That is, it is preferable that the resin film contains polyester. The resin film may be a stretched resin film or an unstretched resin film. The stretched resin film may be a uniaxially stretched resin film or a biaxially stretched resin film. Among these, biaxially stretched resin films are preferred because they have excellent dimensional stability.
 支持体層は添加剤を含むことができる。添加剤としては、たとえば、酸素吸収剤、可塑剤、紫外線安定化剤、酸化防止剤、着色防止剤、艶消し剤、消臭剤、難燃剤、耐候剤、帯電防止剤、摩擦低減剤、スリップ剤、離型剤、抗酸化剤、イオン交換剤、アンチブロッキング剤、着色剤を挙げることができる。 The support layer can contain additives. Examples of additives include oxygen absorbers, plasticizers, ultraviolet stabilizers, antioxidants, color inhibitors, matting agents, deodorants, flame retardants, weathering agents, antistatic agents, friction reducers, and slip agents. agent, mold release agent, antioxidant, ion exchange agent, antiblocking agent, and coloring agent.
 支持体層として二軸配向ポリエステルフィルム8を用いてもよい。すなわち、支持体層は、二軸配向ポリエステルフィルム8であってもよい。 A biaxially oriented polyester film 8 may be used as the support layer. That is, the support layer may be a biaxially oriented polyester film 8.
 支持体層として二軸配向ポリエステルフィルム8を用いる場合、基材層51として、二軸配向ポリエステルフィルム8を用いてもよいし、樹脂フィルムを用いてもよいし、紙層を用いてもよい。このように、支持体層として二軸配向ポリエステルフィルム8を用いる場合、基材層51として二軸配向ポリエステルフィルム8を用いなくてもよい。 When the biaxially oriented polyester film 8 is used as the support layer, the biaxially oriented polyester film 8, a resin film, or a paper layer may be used as the base layer 51. In this way, when the biaxially oriented polyester film 8 is used as the support layer, it is not necessary to use the biaxially oriented polyester film 8 as the base layer 51.
 支持体層として二軸配向ポリエステルフィルム8を用いる場合、基材層51として、たとえば、二軸配向ポリエステルフィルム8、二軸配向ポリエステルフィルム8以外の樹脂フィルム、紙層を挙げることができる。樹脂フィルムとして、たとえば、ポリエステル、(メタ)アクリル樹脂、ポリオレフィン(たとえばポリエチレン、ポリプロピレン、ポリメチルペンテン)、ビニル樹脂、セルロース樹脂、アイオノマー樹脂、ポリアミド(ナイロン6、ナイロン6,6、ポリメタキシリレンアジパミド(MXD6))などの樹脂材料のうち1種または2種以上含むフィルムを挙げることができる。なかでもポリエステルが好ましい。つまり、樹脂フィルムはポリエステルを含むことが好ましい。樹脂フィルムは、延伸樹脂フィルムであってもよく、未延伸樹脂フィルムであってもよい。延伸樹脂フィルムとして、一軸延伸樹脂フィルムであってもよく、二軸延伸樹脂フィルムであってもよい。なかでも、寸法安定性に優れるという理由から二軸延伸樹脂フィルムが好ましい。 When the biaxially oriented polyester film 8 is used as the support layer, examples of the base layer 51 include the biaxially oriented polyester film 8, a resin film other than the biaxially oriented polyester film 8, and a paper layer. Examples of resin films include polyester, (meth)acrylic resin, polyolefin (e.g. polyethylene, polypropylene, polymethylpentene), vinyl resin, cellulose resin, ionomer resin, polyamide (nylon 6, nylon 6,6, polymethaxylylene adipate). Examples include films containing one or more resin materials such as Mido (MXD6). Among them, polyester is preferred. That is, it is preferable that the resin film contains polyester. The resin film may be a stretched resin film or an unstretched resin film. The stretched resin film may be a uniaxially stretched resin film or a biaxially stretched resin film. Among these, biaxially stretched resin films are preferred because they have excellent dimensional stability.
 なお、中間層61は、支持体層の少なくとも一方の面上にアンカーコート層32を含んでいてもよく、無機薄膜層31を含んでいてもよい。中間層61は保護層33を含んでいてもよい(図示していない)。 Note that the intermediate layer 61 may include the anchor coat layer 32 on at least one surface of the support layer, or may include the inorganic thin film layer 31. Intermediate layer 61 may include protective layer 33 (not shown).
 ガスバリア層はガスバリア性樹脂を含む。ガスバリア性樹脂として、たとえば、エチレン-ビニルアルコール共重合体(EVOH)、ポリビニルアルコール、ポリアクリロニトリル、ポリアミド(たとえばナイロン6、ナイロン6,6、ポリメタキシリレンアジパミド(MXD6))、ポリエステル、ポリウレタン、(メタ)アクリル樹脂を挙げることができる。ガスバリア層は、ガスバリア性樹脂を2種以上含んでいてもよい。ガスバリア層は、他の樹脂をさらに含んでいてもよく、添加剤をさらに含んでいてもよい。 The gas barrier layer contains a gas barrier resin. Examples of gas barrier resins include ethylene-vinyl alcohol copolymer (EVOH), polyvinyl alcohol, polyacrylonitrile, polyamide (for example, nylon 6, nylon 6,6, polymethaxylylene adipamide (MXD6)), polyester, polyurethane, (Meth)acrylic resin can be mentioned. The gas barrier layer may contain two or more kinds of gas barrier resins. The gas barrier layer may further contain other resins or additives.
 ガスバリア層の厚みは、たとえば3μm以上であってもよく、5μm以上であってもよく、7μm以上であってもよい。ガスバリア層の厚みは、たとえば30μm以下であってもよく、20μm以下であってもよい。 The thickness of the gas barrier layer may be, for example, 3 μm or more, 5 μm or more, or 7 μm or more. The thickness of the gas barrier layer may be, for example, 30 μm or less, or 20 μm or less.
 金属箔として、たとえば、アルミニウム箔、マグネシウム箔を挙げることができる。なかでもアルミニウム箔が好ましい。なかでも、耐ピンホール性や延展性の観点から、鉄を含むアルミニウム箔が好ましい。鉄の含有量は、アルミニウム箔100質量%中、0.1質量%以上が好ましく、0.5質量%以上がより好ましい。いっぽう、鉄の含有量は、9.0質量%以下が好ましく、2.0質量%以上がより好ましい。 Examples of the metal foil include aluminum foil and magnesium foil. Among these, aluminum foil is preferred. Among these, aluminum foil containing iron is preferred from the viewpoint of pinhole resistance and spreadability. The content of iron is preferably 0.1% by mass or more, more preferably 0.5% by mass or more in 100% by mass of the aluminum foil. On the other hand, the iron content is preferably 9.0% by mass or less, more preferably 2.0% by mass or more.
 金属箔は、前処理が施されていてもよい。前処理として、たとえば、脱脂、酸洗浄、アルカリ洗浄などを挙げることができる。 The metal foil may be pretreated. Examples of pretreatment include degreasing, acid cleaning, alkali cleaning, and the like.
 金属箔の厚みは、たとえば3μm以上であってもよく、6μm以上であってもよい。金属箔の厚みは、たとえば100μm以下であってもよく、25μm以下であってもよい。 The thickness of the metal foil may be, for example, 3 μm or more, or 6 μm or more. The thickness of the metal foil may be, for example, 100 μm or less, or 25 μm or less.
 ここでは、積層体9の少なくとも一部において、印刷層11、基材層51、中間層61、シーラント層21が、積層体9の厚み方向でこの順に並んでいる、という構成を説明したものの、印刷層11、中間層61、基材層51、シーラント層21が、積層体9の厚み方向でこの順に並んでいてもよい(図示していない)。 Here, in at least a portion of the laminate 9, the printed layer 11, the base material layer 51, the intermediate layer 61, and the sealant layer 21 are arranged in this order in the thickness direction of the laminate 9. The printed layer 11, the intermediate layer 61, the base material layer 51, and the sealant layer 21 may be arranged in this order in the thickness direction of the laminate 9 (not shown).
 なお、図15Bに示すように、積層体9は、基材層51と、中間層61と、シーラント層21とを含んでいてもよい。積層体9の少なくとも一部において、基材層51、中間層61、シーラント層21が、積層体9の厚み方向でこの順に並んでいることができる。 Note that, as shown in FIG. 15B, the laminate 9 may include a base layer 51, an intermediate layer 61, and a sealant layer 21. In at least a portion of the laminate 9, the base layer 51, the intermediate layer 61, and the sealant layer 21 can be arranged in this order in the thickness direction of the laminate 9.
 図14や図15Aでは、印刷層11、基材層51、シーラント層21が、積層体9の厚み方向でこの順に並んでいる、という構成を説明したものの、もちろん、これらがその順に並んでいなくてもよい。 In FIGS. 14 and 15A, a configuration in which the printing layer 11, the base material layer 51, and the sealant layer 21 are arranged in this order in the thickness direction of the laminate 9 has been explained, but of course, these are not arranged in that order. You don't have to.
 たとえば、図16に示すように、積層体9の少なくとも一部において、基材層51、印刷層11、シーラント層21が、積層体9の厚み方向でこの順に並んでいてもよい。積層体9は、基材層51と、印刷層11と、シーラント層21とを含むことができる。 For example, as shown in FIG. 16, in at least a portion of the laminate 9, the base layer 51, the print layer 11, and the sealant layer 21 may be arranged in this order in the thickness direction of the laminate 9. The laminate 9 can include a base layer 51 , a printed layer 11 , and a sealant layer 21 .
 図17Aに示すように、積層体9の少なくとも一部において、基材層51、印刷層11、中間層61、シーラント層21が、積層体9の厚み方向でこの順に並んでいてもよい。積層体9は、基材層51と、印刷層11と、中間層61と、シーラント層21とを含むことができる。 As shown in FIG. 17A, in at least a portion of the laminate 9, the base layer 51, the printed layer 11, the intermediate layer 61, and the sealant layer 21 may be arranged in this order in the thickness direction of the laminate 9. The laminate 9 can include a base layer 51 , a printed layer 11 , an intermediate layer 61 , and a sealant layer 21 .
 図17Bに示すように、積層体9の少なくとも一部において、基材層51、中間層61、シーラント層21が、積層体9の厚み方向でこの順に並んでいてもよい。積層体9は、基材層51と、中間層61と、シーラント層21とを含むことができる。 As shown in FIG. 17B, in at least a portion of the laminate 9, the base layer 51, the intermediate layer 61, and the sealant layer 21 may be arranged in this order in the thickness direction of the laminate 9. The laminate 9 can include a base layer 51 , an intermediate layer 61 , and a sealant layer 21 .
 図13~図17Bに示した積層構成を有する積層体9が、シーラント層22をさらに含んでいてもよい(図示していない)。積層体9の両面のうち、一方の面がシーラント層21によって構成され、他方の面がシーラント層22によって構成されることが好ましい。つまり、積層体9の一対の最外層のうち、一方の最外層がシーラント層21であり、他方の最外層がシーラント層22であることが好ましい。 The laminate 9 having the laminate configuration shown in FIGS. 13 to 17B may further include a sealant layer 22 (not shown). It is preferable that one surface of both surfaces of the laminate 9 be constituted by the sealant layer 21 and the other surface be constituted by the sealant layer 22. That is, it is preferable that one of the pair of outermost layers of the laminate 9 is the sealant layer 21 and the other outermost layer is the sealant layer 22.
 ここまで、積層体9が、シーラント層21、および、必要に応じてシーラント層22を含む、という構成を説明したものの、もちろん、これに限定されない。積層体9は、シーラント層21およびシーラント層22の少なくとも一方に代えて粘着層を含んでいてもよい。粘着層は、粘着剤によって形成することができる。粘着剤として、たとえば、スチレンブタジエンゴム、アクリロニトリル-ブタジエンゴム、ポリイソブチレンゴムなどの合成ゴムや、天然ゴム、アクリル系樹脂、シリコーン系樹脂、ポリプロピレンを挙げることができる。なお、これらは単独で用いてもよく、二種以上を用いてもよい。 Although the configuration has been described so far in which the laminate 9 includes the sealant layer 21 and, if necessary, the sealant layer 22, it is of course not limited to this. The laminate 9 may include an adhesive layer in place of at least one of the sealant layer 21 and the sealant layer 22. The adhesive layer can be formed using an adhesive. Examples of the adhesive include synthetic rubbers such as styrene-butadiene rubber, acrylonitrile-butadiene rubber, and polyisobutylene rubber, natural rubber, acrylic resins, silicone resins, and polypropylene. Note that these may be used alone or in combination of two or more.
 このように、積層体9は、
 基材層51と、シーラント層21または粘着層とを含み、
 基材層51が二軸配向ポリエステルフィルム8を含む、という構成であり得る。
In this way, the laminate 9 is
Including a base material layer 51 and a sealant layer 21 or an adhesive layer,
The base material layer 51 may include the biaxially oriented polyester film 8 .
 いっぽう、積層体9は、
 基材層51と、中間層61と、シーラント層21または粘着層とを含み、
 中間層61が二軸配向ポリエステルフィルム8を含む、という構成でもあり得る。
On the other hand, the laminate 9 is
Including a base material layer 51, an intermediate layer 61, a sealant layer 21 or an adhesive layer,
A configuration in which the intermediate layer 61 includes the biaxially oriented polyester film 8 is also possible.
 以上、図2~図17Bを参照して、積層体9ついて説明をした。ここからはより具体的な例を挙げる。
 それに先立ち、略語の意味を、次に示す。
   CRF 二軸配向ポリエステルフィルム8
   PET ポリエチレンテレフタレート
   ONY 延伸ナイロン
   OPP 延伸ポリプロピレン
   CPP 未延伸ポリプロピレン
   PVC ポリ塩化ビニル
   PE  ポリエチレン
   PEF ポリエチレンフィルム
   Al  アルミニウム
   MO  金属酸化物
   MOR 金属アルコキシド
The laminate 9 has been described above with reference to FIGS. 2 to 17B. Here's a more specific example.
Prior to that, the meanings of the abbreviations are shown below.
CRF biaxially oriented polyester film 8
PET Polyethylene terephthalate ONY Stretched nylon OPP Stretched polypropylene CPP Unstretched polypropylene PVC Polyvinyl chloride PE Polyethylene PEF Polyethylene film Al Aluminum MO Metal oxide MOR Metal alkoxide
 具体例を挙げる。ここに挙げる例は、基材層51が、二軸配向ポリエステルフィルム8である。
(1)基材層(CRF)/接着剤層/ヒートシール層(PEF)
(2)基材層(CRF)/ヒートシール層(PE)
(3)基材層(CRF)/アンカーコート層/ヒートシール層(PE)
(4)基材層(CRF)/アンカーコート層/接着樹脂層(PE)/ヒートシール層(PEF)
(5)基材層(CRF)/粘着層
(6)基材層(CRF)/無機薄膜層(MO)/保護層(MOR)/接着剤層/ヒートシール層(PEF)
(7)基材層(CRF)/無機薄膜層(MO)/保護層(MOR)/ヒートシール層(PE)
(8)基材層(CRF)/無機薄膜層(MO)/保護層(MOR)/アンカーコート層/ヒートシール層(PE)
(9)基材層(CRF)/無機薄膜層(MO)/保護層(MOR)/アンカーコート層/接着樹脂層(PE)/ヒートシール層(PEF)
(10)基材層(CRF)/無機薄膜層(Al)/粘着層
(11)基材層(CRF)/無機薄膜層(Al)/ヒートシール層(PE)
(12)基材層(CRF)/無機薄膜層(Al)/アンカーコート層/ヒートシール層(PE)
Here are some specific examples. In the example given here, the base material layer 51 is a biaxially oriented polyester film 8.
(1) Base material layer (CRF)/adhesive layer/heat seal layer (PEF)
(2) Base material layer (CRF)/heat seal layer (PE)
(3) Base material layer (CRF)/anchor coat layer/heat seal layer (PE)
(4) Base material layer (CRF)/anchor coat layer/adhesive resin layer (PE)/heat seal layer (PEF)
(5) Base material layer (CRF)/Adhesive layer (6) Base material layer (CRF)/Inorganic thin film layer (MO)/Protective layer (MOR)/Adhesive layer/Heat seal layer (PEF)
(7) Base material layer (CRF)/Inorganic thin film layer (MO)/Protective layer (MOR)/Heat seal layer (PE)
(8) Base material layer (CRF)/Inorganic thin film layer (MO)/Protective layer (MOR)/Anchor coat layer/Heat seal layer (PE)
(9) Base material layer (CRF) / Inorganic thin film layer (MO) / Protective layer (MOR) / Anchor coat layer / Adhesive resin layer (PE) / Heat seal layer (PEF)
(10) Base material layer (CRF)/Inorganic thin film layer (Al)/Adhesive layer (11) Base material layer (CRF)/Inorganic thin film layer (Al)/Heat seal layer (PE)
(12) Base material layer (CRF)/Inorganic thin film layer (Al)/Anchor coat layer/Heat seal layer (PE)
 具体例をさらに挙げる。ここに挙げる例も、基材層51が、二軸配向ポリエステルフィルム8である。
(1)基材層(CRF)/印刷層/接着剤層/ヒートシール層(PEF)
(2)基材層(CRF)/印刷層/ヒートシール層(PE)
(3)基材層(CRF)/印刷層/アンカーコート層/ヒートシール層(PE)
(4)基材層(CRF)/印刷層/アンカーコート層/接着樹脂層(PE)/ヒートシール層(PEF)
(5)基材層(CRF)/印刷層/粘着層
(6)印刷層/基材層(CRF)/無機薄膜層(Al)/粘着層
(7)印刷層/基材層(CRF)/無機薄膜層(Al)/ヒートシール層(PE)
(8)印刷層/基材層(CRF)/無機薄膜層(Al)/アンカーコート層/ヒートシール層(PE)
Here are some more specific examples. In the example given here as well, the base layer 51 is the biaxially oriented polyester film 8.
(1) Base material layer (CRF)/printing layer/adhesive layer/heat sealing layer (PEF)
(2) Base material layer (CRF)/printing layer/heat sealing layer (PE)
(3) Base material layer (CRF)/printing layer/anchor coat layer/heat sealing layer (PE)
(4) Base material layer (CRF)/Print layer/Anchor coat layer/Adhesive resin layer (PE)/Heat seal layer (PEF)
(5) Base layer (CRF)/Print layer/Adhesive layer (6) Print layer/Base layer (CRF)/Inorganic thin film layer (Al)/Adhesive layer (7) Print layer/Base layer (CRF)/ Inorganic thin film layer (Al)/heat seal layer (PE)
(8) Printing layer/base material layer (CRF)/inorganic thin film layer (Al)/anchor coat layer/heat seal layer (PE)
 具体例をさらに挙げる。ここに挙げる例も、基材層51が、二軸配向ポリエステルフィルム8である。
(1)基材層(CRF)/接着剤層/金属箔(Al)/接着剤層/支持体層(ONY)/接着剤層/ヒートシール層(PEF)
(2)基材層(CRF)/接着剤層/金属箔(Al)/接着剤層/ヒートシール層(CPP)
(3)基材層(CRF)/接着剤層/無機薄膜層(Al)/支持体層(PET)/接着剤層/ヒートシール層(PEF)
(4)基材層(CRF)/接着剤層/支持体層(ONY)/接着剤層/ヒートシール層(PEF)
(5)基材層(CRF)/接着剤層/保護層(MOR)/無機薄膜層(MO)/支持体層(PET)/接着剤層/ヒートシール層(CPP)
(6)基材層(CRF)/接着剤層/無機薄膜層(Al)/支持体層(PET)/接着剤層/ヒートシール層(CPP)
(7)基材層(CRF)/接着剤層/支持体層(ONY)/接着剤層/金属箔(Al)/接着剤層/ヒートシール層(CPP)
(8)基材層(CRF)/アンカーコート層/接着樹脂層(PE)/金属箔(Al)/ヒートシール層(PE)
(9)基材層(CRF)/アンカーコート層/接着樹脂層(PE)/金属箔(Al)/アンカーコート層/ヒートシール層(PE)
(10)基材層(CRF)/アンカーコート層/接着樹脂層(PE)/無機薄膜層(Al)/支持体層(PET)/アンカーコート層/接着樹脂層(PE)/ヒートシール層(PEF)
(11)基材層(CRF)/アンカーコート層/接着樹脂層(PE)/金属箔(Al)/アンカーコート層/接着樹脂層(PE)/ヒートシール層(PEF)
(12)基材層(CRF)/接着剤層/支持体層(PET)/接着剤層/ヒートシール層(PEF)/ホットメルト層(ホットメルト接着剤)
(13)基材層(CRF)/無機薄膜層(MO)/保護層(MOR)/接着剤層/支持体層(ONY)/接着剤層/ヒートシール層(CPP)
(14)基材層(CRF)/無機薄膜層(MO)/保護層(MOR)/接着剤層/支持体層(ONY)/接着剤層/ヒートシール層(PEF)
(15)基材層(CRF)/無機薄膜層(MO)/保護層(MOR)/接着剤層/保護層(MOR)/無機薄膜層(MO)/支持体層(PET)/接着剤層/ヒートシール層(CPP)
(16)基材層(CRF)/無機薄膜層(MO)/保護層(MOR)/接着剤層/無機薄膜層(Al)/支持体層(PET)/接着剤層/ヒートシール層(CPP)
(17)基材層(CRF)/無機薄膜層(MO)/保護層(MOR)/接着剤層/支持体層(ONY)/接着剤層/金属箔(Al)/接着剤層/ヒートシール層(CPP)
(18)基材層(CRF)/無機薄膜層(MO)/保護層(MOR)/接着剤層/支持体層(PET)/接着剤層/ヒートシール層(PEF)/ホットメルト層(ホットメルト接着剤)
(19)ヒートシール層(PEF)/接着剤層/基材層(CRF)/接着剤層/金属箔(Al)/接着剤層/ヒートシール層(PEF)
(20)ヒートシール層(PEF)/接着剤層/保護層(MOR)/無機薄膜層(MO)/基材層(CRF)/接着剤層/ヒートシール層(PEF)
(21)ヒートシール層(PE)/基材層(CRF)/接着剤層/支持体層(PEF)/接着剤層/金属箔(Al)/接着剤層/ヒートシール層(PEF)
(22)ヒートシール層(PEF)/接着剤層/基材層(CRF)/接着剤層/支持体層(PEF)/接着剤層/支持体層(PET)/無機薄膜層(MO)/保護層(MOR)/接着剤層/ヒートシール層(PEF)
(23)ヒートシール層(PEF)/接着剤層/基材層(CRF)/接着剤層/支持体層(PEF)/接着剤層/保護層(MOR)/無機薄膜層(MO)/支持体層(PET)/接着剤層/ヒートシール層(PEF)
Here are some more specific examples. In the example given here as well, the base layer 51 is the biaxially oriented polyester film 8.
(1) Base material layer (CRF)/adhesive layer/metal foil (Al)/adhesive layer/support layer (ONY)/adhesive layer/heat seal layer (PEF)
(2) Base material layer (CRF)/adhesive layer/metal foil (Al)/adhesive layer/heat seal layer (CPP)
(3) Base material layer (CRF)/adhesive layer/inorganic thin film layer (Al)/support layer (PET)/adhesive layer/heat seal layer (PEF)
(4) Base material layer (CRF)/adhesive layer/support layer (ONY)/adhesive layer/heat seal layer (PEF)
(5) Base material layer (CRF) / adhesive layer / protective layer (MOR) / inorganic thin film layer (MO) / support layer (PET) / adhesive layer / heat seal layer (CPP)
(6) Base material layer (CRF)/adhesive layer/inorganic thin film layer (Al)/support layer (PET)/adhesive layer/heat seal layer (CPP)
(7) Base material layer (CRF)/adhesive layer/support layer (ONY)/adhesive layer/metal foil (Al)/adhesive layer/heat seal layer (CPP)
(8) Base material layer (CRF)/anchor coat layer/adhesive resin layer (PE)/metal foil (Al)/heat seal layer (PE)
(9) Base material layer (CRF)/anchor coat layer/adhesive resin layer (PE)/metal foil (Al)/anchor coat layer/heat seal layer (PE)
(10) Base material layer (CRF)/anchor coat layer/adhesive resin layer (PE)/inorganic thin film layer (Al)/support layer (PET)/anchor coat layer/adhesive resin layer (PE)/heat seal layer ( PEF)
(11) Base material layer (CRF)/anchor coat layer/adhesive resin layer (PE)/metal foil (Al)/anchor coat layer/adhesive resin layer (PE)/heat seal layer (PEF)
(12) Base material layer (CRF)/adhesive layer/support layer (PET)/adhesive layer/heat seal layer (PEF)/hot melt layer (hot melt adhesive)
(13) Base material layer (CRF)/Inorganic thin film layer (MO)/Protective layer (MOR)/Adhesive layer/Support layer (ONY)/Adhesive layer/Heat seal layer (CPP)
(14) Base material layer (CRF)/Inorganic thin film layer (MO)/Protective layer (MOR)/Adhesive layer/Support layer (ONY)/Adhesive layer/Heat seal layer (PEF)
(15) Base material layer (CRF) / Inorganic thin film layer (MO) / Protective layer (MOR) / Adhesive layer / Protective layer (MOR) / Inorganic thin film layer (MO) / Support layer (PET) / Adhesive layer /Heat seal layer (CPP)
(16) Base material layer (CRF) / Inorganic thin film layer (MO) / Protective layer (MOR) / Adhesive layer / Inorganic thin film layer (Al) / Support layer (PET) / Adhesive layer / Heat seal layer (CPP )
(17) Base material layer (CRF)/Inorganic thin film layer (MO)/Protective layer (MOR)/Adhesive layer/Support layer (ONY)/Adhesive layer/Metal foil (Al)/Adhesive layer/Heat seal layer (CPP)
(18) Base material layer (CRF) / Inorganic thin film layer (MO) / Protective layer (MOR) / Adhesive layer / Support layer (PET) / Adhesive layer / Heat seal layer (PEF) / Hot melt layer (Hot melt adhesive)
(19) Heat seal layer (PEF) / adhesive layer / base material layer (CRF) / adhesive layer / metal foil (Al) / adhesive layer / heat seal layer (PEF)
(20) Heat seal layer (PEF) / adhesive layer / protective layer (MOR) / inorganic thin film layer (MO) / base material layer (CRF) / adhesive layer / heat seal layer (PEF)
(21) Heat seal layer (PE)/base material layer (CRF)/adhesive layer/support layer (PEF)/adhesive layer/metal foil (Al)/adhesive layer/heat seal layer (PEF)
(22) Heat seal layer (PEF) / adhesive layer / base material layer (CRF) / adhesive layer / support layer (PEF) / adhesive layer / support layer (PET) / inorganic thin film layer (MO) / Protective layer (MOR)/Adhesive layer/Heat seal layer (PEF)
(23) Heat seal layer (PEF) / adhesive layer / base material layer (CRF) / adhesive layer / support layer (PEF) / adhesive layer / protective layer (MOR) / inorganic thin film layer (MO) / support Body layer (PET)/adhesive layer/heat seal layer (PEF)
 具体例をさらに挙げる。ここに挙げる例も、基材層51が、二軸配向ポリエステルフィルム8である。
(1)基材層(CRF)/印刷層/接着剤層/金属箔(Al)/接着剤層/支持体層(ONY)/接着剤層/ヒートシール層(PEF)
(2)基材層(CRF)/印刷層/接着剤層/金属箔(Al)/接着剤層/ヒートシール層(CPP)
(3)基材層(CRF)/印刷層/接着剤層/無機薄膜層(Al)/支持体層(PET)/接着剤層/ヒートシール層(PEF)
(4)基材層(CRF)/印刷層/接着剤層/支持体層(ONY)/接着剤層/ヒートシール層(PEF)
(5)基材層(CRF)/印刷層/接着剤層/保護層(MOR)/無機薄膜層(MO)/支持体層(PET)/接着剤層/ヒートシール層(CPP)
(6)基材層(CRF)/印刷層/接着剤層/無機薄膜層(Al)/支持体層(PET)/接着剤層/ヒートシール層(CPP)
(7)基材層(CRF)/印刷層/接着剤層/支持体層(ONY)/接着剤層/金属箔(Al)/接着剤層/ヒートシール層(CPP)
(8)基材層(CRF)/印刷層/アンカーコート層/接着樹脂層(PE)/金属箔(Al)/ヒートシール層(PE)
(9)基材層(CRF)/印刷層/アンカーコート層/接着樹脂層(PE)/金属箔(Al)/アンカーコート層/ヒートシール層(PE)
(10)基材層(CRF)/印刷層/アンカーコート層/接着樹脂層(PE)/無機薄膜層(Al)/支持体層(PET)/アンカーコート層/接着樹脂層(PE)/ヒートシール層(PEF)
(11)基材層(CRF)/印刷層/アンカーコート層/接着樹脂層(PE)/金属箔(Al)/アンカーコート層/接着樹脂層(PE)/ヒートシール層(PEF)
(12)基材層(CRF)/印刷層/接着剤層/支持体層(PET)/接着剤層/ヒートシール層(PEF)/ホットメルト層(ホットメルト接着剤)
(13)ヒートシール層(PEF)/接着剤層/基材層(CRF)/印刷層/接着剤層/金属箔(Al)/接着剤層/ヒートシール層(PEF)
(14)ヒートシール層(PEF)/接着剤層/保護層(MOR)/無機薄膜層(MO)/基材層(CRF)/印刷層/接着剤層/ヒートシール層(PEF)
(15)ヒートシール層(PE)/基材層(CRF)/印刷層/接着剤層/支持体層(PEF)/接着剤層/金属箔(Al)/接着剤層/ヒートシール層(PEF)
(16)ヒートシール層(PEF)/接着剤層/基材層(CRF)/印刷層/接着剤層/支持体層(PEF)/接着剤層/支持体層(PET)/無機薄膜層(MO)/保護層(MOR)/接着剤層/ヒートシール層(PEF)
(17)ヒートシール層(PEF)/接着剤層/基材層(CRF)/印刷層/接着剤層/支持体層(PEF)/接着剤層/保護層(MOR)/無機薄膜層(MO)/支持体層(PET)/接着剤層/ヒートシール層(PEF)
Here are some more specific examples. In the example given here as well, the base layer 51 is the biaxially oriented polyester film 8.
(1) Base layer (CRF)/Print layer/Adhesive layer/Metal foil (Al)/Adhesive layer/Support layer (ONY)/Adhesive layer/Heat seal layer (PEF)
(2) Base material layer (CRF)/Print layer/Adhesive layer/Metal foil (Al)/Adhesive layer/Heat seal layer (CPP)
(3) Base layer (CRF)/Print layer/Adhesive layer/Inorganic thin film layer (Al)/Support layer (PET)/Adhesive layer/Heat seal layer (PEF)
(4) Base layer (CRF)/Print layer/Adhesive layer/Support layer (ONY)/Adhesive layer/Heat seal layer (PEF)
(5) Base material layer (CRF) / Printing layer / Adhesive layer / Protective layer (MOR) / Inorganic thin film layer (MO) / Support layer (PET) / Adhesive layer / Heat seal layer (CPP)
(6) Base material layer (CRF)/Printing layer/Adhesive layer/Inorganic thin film layer (Al)/Support layer (PET)/Adhesive layer/Heat seal layer (CPP)
(7) Base material layer (CRF)/Print layer/Adhesive layer/Support layer (ONY)/Adhesive layer/Metal foil (Al)/Adhesive layer/Heat seal layer (CPP)
(8) Base material layer (CRF)/Print layer/Anchor coat layer/Adhesive resin layer (PE)/Metal foil (Al)/Heat seal layer (PE)
(9) Base material layer (CRF)/Print layer/Anchor coat layer/Adhesive resin layer (PE)/Metal foil (Al)/Anchor coat layer/Heat seal layer (PE)
(10) Base material layer (CRF) / Printing layer / Anchor coat layer / Adhesive resin layer (PE) / Inorganic thin film layer (Al) / Support layer (PET) / Anchor coat layer / Adhesive resin layer (PE) / Heat Seal layer (PEF)
(11) Base material layer (CRF) / Printing layer / Anchor coat layer / Adhesive resin layer (PE) / Metal foil (Al) / Anchor coat layer / Adhesive resin layer (PE) / Heat seal layer (PEF)
(12) Base material layer (CRF)/Print layer/Adhesive layer/Support layer (PET)/Adhesive layer/Heat seal layer (PEF)/Hot melt layer (Hot melt adhesive)
(13) Heat seal layer (PEF) / adhesive layer / base material layer (CRF) / printing layer / adhesive layer / metal foil (Al) / adhesive layer / heat seal layer (PEF)
(14) Heat seal layer (PEF) / adhesive layer / protective layer (MOR) / inorganic thin film layer (MO) / base material layer (CRF) / printing layer / adhesive layer / heat seal layer (PEF)
(15) Heat seal layer (PE) / Base material layer (CRF) / Printing layer / Adhesive layer / Support layer (PEF) / Adhesive layer / Metal foil (Al) / Adhesive layer / Heat seal layer (PEF) )
(16) Heat seal layer (PEF) / adhesive layer / base material layer (CRF) / printing layer / adhesive layer / support layer (PEF) / adhesive layer / support layer (PET) / inorganic thin film layer ( MO) / Protective layer (MOR) / Adhesive layer / Heat seal layer (PEF)
(17) Heat seal layer (PEF) / adhesive layer / base material layer (CRF) / printing layer / adhesive layer / support layer (PEF) / adhesive layer / protective layer (MOR) / inorganic thin film layer (MO )/Support layer (PET)/Adhesive layer/Heat seal layer (PEF)
 具体例をさらに挙げる。ここに挙げる例は、支持体層が、二軸配向ポリエステルフィルム8である。
(1)基材層(紙)/接着剤層/金属箔(Al)/接着剤層/支持体層(CRF)/接着剤層/ヒートシール層(PVC)
(2)基材層(ONY)/接着剤層/支持体層(CRF)/接着剤層/金属箔(Al)/接着剤層/ヒートシール層(PEF)
(3)基材層(PET)/無機薄膜層(MO)/保護層(MOR)/接着剤層/支持体層(CRF)/接着剤層/ヒートシール層(PEF)
(4)基材層(紙)/接着剤層/支持体層(CRF)/接着剤層/ヒートシール層(CPP)
(5)基材層(OPP)/接着剤層/支持体層(CRF)/接着剤層/ヒートシール層(CPP)
(6)基材層(ONY)/接着剤層/支持体層(CRF)/接着剤層/ヒートシール層(CPP)
(7)基材層(PET)/接着剤層/支持体層(CRF)/接着剤層/ヒートシール層(PEF)/ホットメルト層(ホットメルト接着剤)
(8)基材層(OPP)/接着剤層/支持体層(CRF)/接着剤層/ヒートシール層(PEF)
(9)基材層(PET)/無機薄膜層(MO)/保護層(MOR)/接着剤層/支持体層(CRF)/接着剤層/ヒートシール層(CPP)
(10)ヒートシール層(PE)/基材層(紙)/接着樹脂層(PE)/アンカーコート層/金属箔(Al)/接着剤層/支持体層(CRF)/アンカーコート層/接着樹脂層(PE)/ヒートシール層(PEF)
(11)基材層(紙)/接着樹脂層(PE)/支持体層(CRF)/ヒートシール層(PE)
(12)基材層(紙)/接着樹脂層(PE)/支持体層(CRF)/アンカーコート層/ヒートシール層(PE)
(13)基材層(OPP)/接着剤層/支持体層(CRF)/接着剤層/ヒートシール層(OPP)
(14)基材層(PET)/接着剤層/無機薄膜層(Al)/支持体層(CRF)/接着剤層/ヒートシール層(PEF)
(15)基材層(ONY)/アンカーコート層/接着樹脂層(PE)/無機薄膜層(Al)/支持体層(CRF)/アンカーコート層/接着樹脂層(PE)/ヒートシール層(PEF)
(16)基材層(紙)/接着剤層/保護層(MOR)/無機薄膜層(MO)/支持体層(CRF)/接着剤層/ヒートシール層(CPP)
(17)基材層(OPP)/接着剤層/保護層(MOR)/無機薄膜層(MO)/支持体層(CRF)/接着剤層/ヒートシール層(CPP)
(18)基材層(PET)/無機薄膜層(MO)/保護層(MOR)/接着剤層/保護層(MOR)/無機薄膜層(MO)/支持体層(CRF)/接着剤層/ヒートシール層(PEF)
(19)基材層(ONY)/接着剤層/保護層(MOR)/無機薄膜層(MO)/支持体層(CRF)/接着剤層/ヒートシール層(CPP)
(20)基材層(PET)/接着剤層/保護層(MOR)/無機薄膜層(MO)/支持体層(CRF)/接着剤層/ヒートシール層(PEF)/ホットメルト層(ホットメルト接着剤)
(21)基材層(OPP)/接着剤層/保護層(MOR)/無機薄膜層(MO)/支持体層(CRF)/接着剤層/ヒートシール層(PEF)
(22)基材層(PET)/接着剤層/保護層(MOR)/無機薄膜層(MO)/支持体層(CRF)/接着剤層/ヒートシール層(CPP)
(23)基材層(紙)/接着樹脂層(PE)/保護層(MOR)/無機薄膜層(MO)/支持体層(CRF)/アンカーコート層/ヒートシール層(PE)
(24)基材層(OPP)/接着剤層/保護層(MOR)/無機薄膜層(MO)/支持体層(CRF)/接着剤層/ヒートシール層(OPP)
(25)基材層(PET)/接着剤層/支持体層(CRF)/ヒートシール層(PE)
(26)基材層(PET)/接着剤層/支持体層(CRF)/アンカーコート層/ヒートシール層(PE)
(27)ヒートシール層(PE)/基材層(紙)/接着樹脂層(PE)/支持体層(CRF)/接着剤層/ヒートシール層(PEF)
(28)ヒートシール層(PE)/基材層(紙)/接着樹脂層(PE)/支持体層(CRF)/ヒートシール層(PE)
(29)ヒートシール層(PE)/基材層(紙)/接着樹脂層(PE)/支持体層(CRF)/アンカーコート層/ヒートシール層(PE)
Here are some more specific examples. In the example given here, the support layer is a biaxially oriented polyester film 8.
(1) Base material layer (paper)/adhesive layer/metal foil (Al)/adhesive layer/support layer (CRF)/adhesive layer/heat seal layer (PVC)
(2) Base material layer (ONY)/adhesive layer/support layer (CRF)/adhesive layer/metal foil (Al)/adhesive layer/heat seal layer (PEF)
(3) Base material layer (PET) / Inorganic thin film layer (MO) / Protective layer (MOR) / Adhesive layer / Support layer (CRF) / Adhesive layer / Heat seal layer (PEF)
(4) Base material layer (paper)/adhesive layer/support layer (CRF)/adhesive layer/heat seal layer (CPP)
(5) Base material layer (OPP)/adhesive layer/support layer (CRF)/adhesive layer/heat seal layer (CPP)
(6) Base material layer (ONY)/adhesive layer/support layer (CRF)/adhesive layer/heat seal layer (CPP)
(7) Base material layer (PET)/adhesive layer/support layer (CRF)/adhesive layer/heat seal layer (PEF)/hot melt layer (hot melt adhesive)
(8) Base material layer (OPP)/adhesive layer/support layer (CRF)/adhesive layer/heat seal layer (PEF)
(9) Base material layer (PET) / Inorganic thin film layer (MO) / Protective layer (MOR) / Adhesive layer / Support layer (CRF) / Adhesive layer / Heat seal layer (CPP)
(10) Heat seal layer (PE) / Base material layer (paper) / Adhesive resin layer (PE) / Anchor coat layer / Metal foil (Al) / Adhesive layer / Support layer (CRF) / Anchor coat layer / Adhesion Resin layer (PE)/heat seal layer (PEF)
(11) Base material layer (paper)/adhesive resin layer (PE)/support layer (CRF)/heat seal layer (PE)
(12) Base material layer (paper)/adhesive resin layer (PE)/support layer (CRF)/anchor coat layer/heat seal layer (PE)
(13) Base material layer (OPP)/adhesive layer/support layer (CRF)/adhesive layer/heat seal layer (OPP)
(14) Base material layer (PET)/adhesive layer/inorganic thin film layer (Al)/support layer (CRF)/adhesive layer/heat seal layer (PEF)
(15) Base material layer (ONY) / Anchor coat layer / Adhesive resin layer (PE) / Inorganic thin film layer (Al) / Support layer (CRF) / Anchor coat layer / Adhesive resin layer (PE) / Heat seal layer ( PEF)
(16) Base material layer (paper) / adhesive layer / protective layer (MOR) / inorganic thin film layer (MO) / support layer (CRF) / adhesive layer / heat seal layer (CPP)
(17) Base material layer (OPP) / adhesive layer / protective layer (MOR) / inorganic thin film layer (MO) / support layer (CRF) / adhesive layer / heat seal layer (CPP)
(18) Base layer (PET) / Inorganic thin film layer (MO) / Protective layer (MOR) / Adhesive layer / Protective layer (MOR) / Inorganic thin film layer (MO) / Support layer (CRF) / Adhesive layer /Heat seal layer (PEF)
(19) Base layer (ONY)/Adhesive layer/Protective layer (MOR)/Inorganic thin film layer (MO)/Support layer (CRF)/Adhesive layer/Heat seal layer (CPP)
(20) Base material layer (PET) / adhesive layer / protective layer (MOR) / inorganic thin film layer (MO) / support layer (CRF) / adhesive layer / heat seal layer (PEF) / hot melt layer (hot melt adhesive)
(21) Base material layer (OPP)/adhesive layer/protective layer (MOR)/inorganic thin film layer (MO)/support layer (CRF)/adhesive layer/heat seal layer (PEF)
(22) Base material layer (PET) / adhesive layer / protective layer (MOR) / inorganic thin film layer (MO) / support layer (CRF) / adhesive layer / heat seal layer (CPP)
(23) Base material layer (paper) / Adhesive resin layer (PE) / Protective layer (MOR) / Inorganic thin film layer (MO) / Support layer (CRF) / Anchor coat layer / Heat seal layer (PE)
(24) Base material layer (OPP) / adhesive layer / protective layer (MOR) / inorganic thin film layer (MO) / support layer (CRF) / adhesive layer / heat seal layer (OPP)
(25) Base material layer (PET)/adhesive layer/support layer (CRF)/heat seal layer (PE)
(26) Base material layer (PET)/adhesive layer/support layer (CRF)/anchor coat layer/heat seal layer (PE)
(27) Heat sealing layer (PE)/base material layer (paper)/adhesive resin layer (PE)/support layer (CRF)/adhesive layer/heat sealing layer (PEF)
(28) Heat seal layer (PE)/base material layer (paper)/adhesive resin layer (PE)/support layer (CRF)/heat seal layer (PE)
(29) Heat seal layer (PE)/base material layer (paper)/adhesive resin layer (PE)/support layer (CRF)/anchor coat layer/heat seal layer (PE)
 具体例をさらに挙げる。ここに挙げる例も、支持体層が、二軸配向ポリエステルフィルム8である。
(1)印刷層/基材層(紙)/接着剤層/金属箔(Al)/接着剤層/支持体層(CRF)/接着剤層/ヒートシール層(PVC)
(2)基材層(ONY)/印刷層/接着剤層/支持体層(CRF)/接着剤層/金属箔(Al)/接着剤層/ヒートシール層(PEF)
(3)印刷層/基材層(紙)/接着剤層/支持体層(CRF)/接着剤層/ヒートシール層(CPP)
(4)基材層(OPP)/印刷層/接着剤層/支持体層(CRF)/接着剤層/ヒートシール層(CPP)
(5)基材層(ONY)/印刷層/接着剤層/支持体層(CRF)/接着剤層/ヒートシール層(CPP)
(6)基材層(PET)/印刷層/接着剤層/支持体層(CRF)/接着剤層/ヒートシール層(PEF)/ホットメルト層(ホットメルト接着剤)
(7)基材層(OPP)/印刷層/接着剤層/支持体層(CRF)/接着剤層/ヒートシール層(PEF)
(8)ヒートシール層(PE)/印刷層/基材層(紙)/接着樹脂層(PE)/アンカーコート層/金属箔(Al)/接着剤層/支持体層(CRF)/アンカーコート層/接着樹脂層(PE)/ヒートシール層(PEF)
(9)印刷層/基材層(紙)/接着樹脂層(PE)/支持体層(CRF)/ヒートシール層(PE)
(10)印刷層/基材層(紙)/接着樹脂層(PE)/支持体層(CRF)/アンカーコート層/ヒートシール層(PE)
(11)基材層(OPP)/接着剤層/支持体層(CRF)/印刷層/接着剤層/ヒートシール層(OPP)
(12)基材層(PET)/印刷層/接着剤層/無機薄膜層(Al)/支持体層(CRF)/接着剤層/ヒートシール層(PEF)
(13)基材層(ONY)/印刷層/アンカーコート層/接着樹脂層(PE)/無機薄膜層(Al)/支持体層(CRF)/アンカーコート層/接着樹脂層(PE)/ヒートシール層(PEF)
(14)印刷層/基材層(紙)/接着剤層/保護層(MOR)/無機薄膜層(MO)/支持体層(CRF)/接着剤層/ヒートシール層(CPP)
(15)基材層(OPP)/印刷層/接着剤層/保護層(MOR)/無機薄膜層(MO)/支持体層(CRF)/接着剤層/ヒートシール層(CPP)
(16)基材層(ONY)/印刷層/接着剤層/保護層(MOR)/無機薄膜層(MO)/支持体層(CRF)/接着剤層/ヒートシール層(CPP)
(17)基材層(PET)/印刷層/接着剤層/保護層(MOR)/無機薄膜層(MO)/支持体層(CRF)/接着剤層/ヒートシール層(PEF)/ホットメルト層(ホットメルト接着剤)
(18)基材層(OPP)/印刷層/接着剤層/保護層(MOR)/無機薄膜層(MO)/支持体層(CRF)/接着剤層/ヒートシール層(PEF)
(19)基材層(PET)/印刷層/接着剤層/保護層(MOR)/無機薄膜層(MO)/支持体層(CRF)/接着剤層/ヒートシール層(CPP)
(20)印刷層/基材層(紙)/接着樹脂層(PE)/保護層(MOR)/無機薄膜層(MO)/支持体層(CRF)/ヒートシール層(PE)
(21)印刷層/基材層(紙)/接着樹脂層(PE)/保護層(MOR)/無機薄膜層(MO)/支持体層(CRF)/アンカーコート層/ヒートシール層(PE)
(22)基材層(OPP)/印刷層/接着剤層/保護層(MOR)/無機薄膜層(MO)/支持体層(CRF)/接着剤層/ヒートシール層(OPP)
(23)基材層(PET)/接着剤層/印刷層/支持体層(CRF)/ヒートシール層(PE)
(24)基材層(PET)/印刷層/接着剤層/支持体層(CRF)/ヒートシール層(PE)
(25)基材層(PET)/接着剤層/印刷層/支持体層(CRF)/アンカーコート層/ヒートシール層(PE)
(26)基材層(PET)/印刷層/接着剤層/支持体層(CRF)/アンカーコート層/ヒートシール層(PE)
(27)ヒートシール層(PE)/印刷層/基材層(紙)/接着樹脂層(PE)/支持体層(CRF)/接着剤層/ヒートシール層(PEF)
(28)ヒートシール層(PE)/印刷層/基材層(紙)/接着樹脂層(PE)/支持体層(CRF)/ヒートシール層(PE)
(29)ヒートシール層(PE)/印刷層/基材層(紙)/接着樹脂層(PE)/支持体層(CRF)/アンカーコート層/ヒートシール層(PE)
Here are some more specific examples. In the example given here as well, the support layer is a biaxially oriented polyester film 8.
(1) Printing layer/base material layer (paper)/adhesive layer/metal foil (Al)/adhesive layer/support layer (CRF)/adhesive layer/heat seal layer (PVC)
(2) Base layer (ONY)/Print layer/Adhesive layer/Support layer (CRF)/Adhesive layer/Metal foil (Al)/Adhesive layer/Heat seal layer (PEF)
(3) Printing layer/base material layer (paper)/adhesive layer/support layer (CRF)/adhesive layer/heat seal layer (CPP)
(4) Base layer (OPP)/Print layer/Adhesive layer/Support layer (CRF)/Adhesive layer/Heat seal layer (CPP)
(5) Base layer (ONY)/Print layer/Adhesive layer/Support layer (CRF)/Adhesive layer/Heat seal layer (CPP)
(6) Base material layer (PET)/Printing layer/Adhesive layer/Support layer (CRF)/Adhesive layer/Heat seal layer (PEF)/Hot melt layer (Hot melt adhesive)
(7) Base layer (OPP)/Print layer/Adhesive layer/Support layer (CRF)/Adhesive layer/Heat seal layer (PEF)
(8) Heat seal layer (PE) / Printing layer / Base material layer (paper) / Adhesive resin layer (PE) / Anchor coat layer / Metal foil (Al) / Adhesive layer / Support layer (CRF) / Anchor coat Layer/Adhesive resin layer (PE)/Heat seal layer (PEF)
(9) Printing layer/base layer (paper)/adhesive resin layer (PE)/support layer (CRF)/heat seal layer (PE)
(10) Printing layer/base layer (paper)/adhesive resin layer (PE)/support layer (CRF)/anchor coat layer/heat seal layer (PE)
(11) Base material layer (OPP)/adhesive layer/support layer (CRF)/printing layer/adhesive layer/heat seal layer (OPP)
(12) Base layer (PET)/Print layer/Adhesive layer/Inorganic thin film layer (Al)/Support layer (CRF)/Adhesive layer/Heat seal layer (PEF)
(13) Base material layer (ONY) / Printing layer / Anchor coat layer / Adhesive resin layer (PE) / Inorganic thin film layer (Al) / Support layer (CRF) / Anchor coat layer / Adhesive resin layer (PE) / Heat Seal layer (PEF)
(14) Printing layer / Base material layer (paper) / Adhesive layer / Protective layer (MOR) / Inorganic thin film layer (MO) / Support layer (CRF) / Adhesive layer / Heat seal layer (CPP)
(15) Base material layer (OPP) / Printing layer / Adhesive layer / Protective layer (MOR) / Inorganic thin film layer (MO) / Support layer (CRF) / Adhesive layer / Heat seal layer (CPP)
(16) Base material layer (ONY) / Printing layer / Adhesive layer / Protective layer (MOR) / Inorganic thin film layer (MO) / Support layer (CRF) / Adhesive layer / Heat seal layer (CPP)
(17) Base material layer (PET) / Printing layer / Adhesive layer / Protective layer (MOR) / Inorganic thin film layer (MO) / Support layer (CRF) / Adhesive layer / Heat seal layer (PEF) / Hot melt layer (hot melt adhesive)
(18) Base material layer (OPP) / Printing layer / Adhesive layer / Protective layer (MOR) / Inorganic thin film layer (MO) / Support layer (CRF) / Adhesive layer / Heat seal layer (PEF)
(19) Base material layer (PET) / Printing layer / Adhesive layer / Protective layer (MOR) / Inorganic thin film layer (MO) / Support layer (CRF) / Adhesive layer / Heat seal layer (CPP)
(20) Printing layer / Base material layer (paper) / Adhesive resin layer (PE) / Protective layer (MOR) / Inorganic thin film layer (MO) / Support layer (CRF) / Heat seal layer (PE)
(21) Printing layer / Base material layer (paper) / Adhesive resin layer (PE) / Protective layer (MOR) / Inorganic thin film layer (MO) / Support layer (CRF) / Anchor coat layer / Heat seal layer (PE)
(22) Base material layer (OPP) / Printing layer / Adhesive layer / Protective layer (MOR) / Inorganic thin film layer (MO) / Support layer (CRF) / Adhesive layer / Heat seal layer (OPP)
(23) Base material layer (PET)/adhesive layer/printing layer/support layer (CRF)/heat seal layer (PE)
(24) Base layer (PET)/Print layer/Adhesive layer/Support layer (CRF)/Heat seal layer (PE)
(25) Base material layer (PET)/adhesive layer/printing layer/support layer (CRF)/anchor coat layer/heat seal layer (PE)
(26) Base layer (PET)/Print layer/Adhesive layer/Support layer (CRF)/Anchor coat layer/Heat seal layer (PE)
(27) Heat-sealing layer (PE)/printing layer/base material layer (paper)/adhesive resin layer (PE)/support layer (CRF)/adhesive layer/heat-sealing layer (PEF)
(28) Heat-sealing layer (PE)/printing layer/base layer (paper)/adhesive resin layer (PE)/support layer (CRF)/heat-sealing layer (PE)
(29) Heat-sealing layer (PE)/printing layer/base material layer (paper)/adhesive resin layer (PE)/support layer (CRF)/anchor coat layer/heat-sealing layer (PE)
 上述した具体例には、基材層51と無機薄膜層31とが隣接している積層体9がいくつかある。それらの積層体9において、基材層51と無機薄膜層31との間にアンカーコート層32が設けられていてもよい。 In the specific examples described above, there are several laminates 9 in which the base material layer 51 and the inorganic thin film layer 31 are adjacent to each other. In these laminates 9, an anchor coat layer 32 may be provided between the base material layer 51 and the inorganic thin film layer 31.
 上述した具体例には、支持体層と無機薄膜層31とが隣接している積層体9がいくつかある。それらの積層体9において、支持体層と無機薄膜層31との間にアンカーコート層32が設けられていてもよい。 In the specific examples described above, there are several laminates 9 in which the support layer and the inorganic thin film layer 31 are adjacent to each other. In these laminates 9, an anchor coat layer 32 may be provided between the support layer and the inorganic thin film layer 31.
 上述した具体例には、MOR、すなわち金属アルコキシドを含む組成物で形成された保護層33を含む積層体9がいくつかある。それらの積層体9において、保護層33は、樹脂と硬化剤とを含む組成物で形成されていてもよい。 In the specific examples mentioned above, there are several laminates 9 that include a protective layer 33 made of MOR, that is, a composition containing a metal alkoxide. In those laminates 9, the protective layer 33 may be formed of a composition containing a resin and a curing agent.
 上述した具体例のうち、基材層51と支持体層との両者を含む積層体9がいくつかある。それらの例において、基材層51と支持体層との両者が二軸配向ポリエステルフィルム8であってもよい。 Among the specific examples described above, there are some laminates 9 that include both the base material layer 51 and the support layer. In those examples, both the base layer 51 and the support layer may be biaxially oriented polyester films 8.
 積層体9は、さまざまな用途に使用できる。たとえば、包装容器、ラベル(たとえば、ペットボトルの胴巻き用ラベル)、リチウムイオン電池の外装をはじめとした電子部品の外装用フィルムとして好適に使用できる。なかでも包装容器に好適に使用できる。とりわけ食品包装容器に好適に使用できる。 The laminate 9 can be used for various purposes. For example, it can be suitably used as a packaging container, a label (for example, a label for wrapping around a PET bottle), and an exterior film for electronic components such as the exterior for lithium ion batteries. Among these, it can be suitably used for packaging containers. In particular, it can be suitably used for food packaging containers.
 <4.包装容器>
 本実施形態の包装容器は積層体9を含む。すなわち、本実施形態の包装容器は積層体9を用いて作製することができる。ここで、「包装容器は積層体9を含む」とは、包装容器が、複数の部材で構成される場合、少なくとも一つの部材が積層体9を含むことを意味する。包装容器として、たとえば、包装袋(すなわちパウチ)、蓋材、ラミネートチューブ、紙容器、紙カップを挙げることができる(たとえば特許第6984717号公報参照)。包装容器は、食品包装容器であってもよく、非食品用の包装容器であってもよい。つまり、内容品は食品であってもよく、非食品であってもよい。なかでも、包装容器は、食品包装容器であることが好ましい。
<4. Packaging container>
The packaging container of this embodiment includes a laminate 9. That is, the packaging container of this embodiment can be produced using the laminate 9. Here, "the packaging container includes the laminate 9" means that when the packaging container is composed of a plurality of members, at least one member includes the laminate 9. Examples of packaging containers include packaging bags (ie, pouches), lids, laminate tubes, paper containers, and paper cups (see, for example, Japanese Patent No. 6984717). The packaging container may be a food packaging container or a non-food packaging container. In other words, the contents may be food or non-food. Among these, the packaging container is preferably a food packaging container.
 包装袋として、たとえば、スタンディングパウチ、ピロー袋(すなわち合掌貼りシール型袋)、二方シール型袋、三方シール型袋、四方シール型袋、側面シール型袋、封筒貼りシール型袋、ひだ付シール型袋、平底シール型袋、角底シール型袋、ガセット付袋を挙げることができる。 Examples of packaging bags include standing pouches, pillow bags (i.e. gassho sticker bags), two-side seal bags, three-side seal bags, four-side seal bags, side seal bags, envelope sticker bags, and pleated sticker bags. Examples include molded bags, flat-bottom sealed bags, square-bottom sealed bags, and gusseted bags.
 <5.上述の実施形態には種々の変更を加えることができる>
 上述の実施形態には、種々の変更を加えることができる。たとえば、以下の変形例から、一つまたは複数を選択して、上述の実施形態に変更を加えることができる。
<5. Various changes can be made to the above embodiment>
Various modifications can be made to the embodiments described above. For example, the above-described embodiment can be modified by selecting one or more of the following modifications.
 上述の実施形態では、二軸配向ポリエステルフィルム8が、第一層81、第二層82、および第三層83で構成された三層構造である、という構成を説明した。しかしながら、上述の実施形態は、この構成に限定されない。二軸配向ポリエステルフィルム8が、単層構成であってもよく、第一層81および第二層82で構成された二層構成であってもよい。もちろん、二軸配向ポリエステルフィルム8は四層以上の構成であってもよい。 In the embodiment described above, the biaxially oriented polyester film 8 has a three-layer structure composed of the first layer 81, the second layer 82, and the third layer 83. However, the embodiments described above are not limited to this configuration. The biaxially oriented polyester film 8 may have a single-layer structure, or may have a two-layer structure composed of a first layer 81 and a second layer 82. Of course, the biaxially oriented polyester film 8 may have a structure of four or more layers.
 以下に実施例および比較例を挙げ、本発明をより具体的に説明する。以下、特に断りのない限り、「部」とあるのは「質量部」を、「%」とあるのは「質量%」を意味する。なお、後述するポリエステルA~Gを、原料ポリエステルと総称することがある。 The present invention will be explained in more detail with reference to Examples and Comparative Examples below. Hereinafter, unless otherwise specified, "parts" means "parts by mass" and "%" means "% by mass." Note that polyesters A to G, which will be described later, may be collectively referred to as raw material polyester.
 <各物性の測定方法>
 (固有粘度)
 試料(具体的には、原料ポリエステルおよび二軸配向ポリエステルフィルム)0.2gをフェノール/1,1,2,2-テトラクロルエタン(60/40(質量比))の混合溶媒50ml中に溶解したうえで、30℃でオストワルド粘度計を用いて固有粘度(IV)を測定した。なお、固有粘度の単位はdl/gである。
<Measurement method of each physical property>
(intrinsic viscosity)
0.2 g of the sample (specifically, raw material polyester and biaxially oriented polyester film) was dissolved in 50 ml of a mixed solvent of phenol/1,1,2,2-tetrachloroethane (60/40 (mass ratio)). Then, the intrinsic viscosity (IV) was measured at 30°C using an Ostwald viscometer. Note that the unit of intrinsic viscosity is dl/g.
 (テレフタル酸成分およびイソフタル酸成分の含有率)
 クロロホルムD(ユーリソップ社製)およびトリフルオロ酢酸-D1(ユーリソップ社製)を10:1(体積比)で混合した溶媒に試料(具体的には、原料ポリエステルおよび二軸配向ポリエステルフィルム)を溶解させた。この試料溶液について、核磁気共鳴(NMR)分光計(「GEMINI-200」Varian社製)を用いて、温度23℃、積算回数64回の測定条件でプロトンのNMRを測定した。このNMR測定では、所定のプロトンのピーク強度を算出したうえで、酸成分100モル%中のテレフタル酸成分およびイソフタル酸成分の含有率(モル%)を算出した。
(Content of terephthalic acid component and isophthalic acid component)
A sample (specifically, raw polyester and biaxially oriented polyester film) was dissolved in a solvent in which chloroform D (manufactured by Eurysop) and trifluoroacetic acid-D1 (manufactured by Eurysop) were mixed at a ratio of 10:1 (volume ratio). Ta. Regarding this sample solution, proton NMR was measured using a nuclear magnetic resonance (NMR) spectrometer ("GEMINI-200" manufactured by Varian) under the conditions of a temperature of 23° C. and a cumulative number of measurements of 64 times. In this NMR measurement, the peak intensity of a predetermined proton was calculated, and then the content (mol %) of the terephthalic acid component and the isophthalic acid component in 100 mol % of the acid component was calculated.
 (マグネシウムの定量分析)
 試料(具体的には、原料ポリエステルおよび二軸配向ポリエステルフィルム)を白金ルツボにて灰化分解したうえで、6モル/L塩酸を加え、蒸発乾固した。これを1.2モル/L塩酸で溶解したうえで、誘導結合プラズマ(ICP)発光分析装置(株式会社島津製作所製「ICPS-2000」)でマグネシウムを定量した。
(Quantitative analysis of magnesium)
A sample (specifically, a raw material polyester and a biaxially oriented polyester film) was incinerated and decomposed in a platinum crucible, and then 6 mol/L hydrochloric acid was added and evaporated to dryness. After dissolving this in 1.2 mol/L hydrochloric acid, magnesium was quantified using an inductively coupled plasma (ICP) emission spectrometer ("ICPS-2000" manufactured by Shimadzu Corporation).
 (リンの定量分析)
 試料(具体的には、原料ポリエステルおよび二軸配向ポリエステルフィルム)を炭酸ソーダ共存下において乾式灰化分解する方法、または、硫酸・硝酸・過塩素酸系および硫酸・過酸化水素水系のどちらかで湿式分解する方法によってリンを正リン酸とした。次いで、1モル/L硫酸溶液中においてモリブデン酸塩を反応させてリンモリブデン酸とし、これを硫酸ヒドラジンで還元して生ずるヘテロポリ青の830nmの吸光度を吸光光度計(株式会社島津製作所製「UV-150-02」)で測定した(つまり比色定量をおこなった)。
(Quantitative analysis of phosphorus)
Samples (specifically, raw polyester and biaxially oriented polyester films) are decomposed by dry ashing in the coexistence of sodium carbonate, or using either sulfuric acid/nitric acid/perchloric acid systems or sulfuric acid/hydrogen peroxide aqueous systems. Phosphorus was converted to orthophosphoric acid by a wet decomposition method. Next, molybdate was reacted in a 1 mol/L sulfuric acid solution to form phosphomolybdic acid, and this was reduced with hydrazine sulfate. 150-02'') (that is, colorimetric determination was performed).
 (溶融比抵抗)
 試料(具体的には、原料ポリエステルおよび二軸配向ポリエステルフィルム)を285℃で溶融したうえで、これに一対の電極板を挿入し、120Vの電圧を印加した。その際の電流を測定し、下記式に基づいて溶融比抵抗Si(Ω・cm)を算出した。
   Si=(A/I)×(V/io)
 ここで、Aは、電極の面積(cm)であり、Iは、電極間距離(cm)であり、Vは電圧(V)であり、ioは電流(A)である。
(Melting specific resistance)
A sample (specifically, a raw material polyester and a biaxially oriented polyester film) was melted at 285° C., a pair of electrode plates was inserted into the sample, and a voltage of 120 V was applied. The current at that time was measured, and melt specific resistance Si (Ω·cm) was calculated based on the following formula.
Si=(A/I)×(V/io)
Here, A is the area of the electrode (cm 2 ), I is the distance between the electrodes (cm), V is the voltage (V), and io is the current (A).
 (分子量1000以下の領域の面積割合)
 試料(具体的には、原料ポリエステルおよび二軸配向ポリエステルフィルム)10gを30mLバイアル瓶に入れたうえで秤量した。このバイアル瓶内に、クロロホルム/HFIP=98/2(体積比)の混合液を加えたうえで12時間静置することによって試料を溶解させた。次いで、これを、クロロホルム/ヘキサフルオロイソプロパノール(HFIP)=98/2(体積比)で希釈し、0.1%溶液に調製した。0.1%溶液を、0.45μmのフィルター(GLサイエンス社製 GLクロマトディスク非水系Nタイプ 13N)でろ過した。ろ液について、以下の条件で、ゲル浸透クロマトグラフィー(GPC)測定をおこなった。
   使用カラム:東ソー株式会社製、TSKgel SuperHM-H×2、およびTSKgel SuperH2000
   カラム温度:40℃
   移動相:クロロホルム/HFIP=98/2(体積比)
   流量:0.6mL/min
   注入量:20μL
   検出:254nm(紫外可視検出器)
   分子量較正:単分散ポリスチレン(東ソー株式会社製)
   装置:東ソー株式会社製 HLC-8300GPC
 GPC測定によって得られた分子量分布曲線において、分子量1000以下の領域の面積割合を求めた。
 なお、通常、GPC解析では、検量線の圏外は、GPC解析の算出範囲から外すことが一般的であるものの、このたびの解析においては、分子量1000以下の領域の面積割合をより正確に求めるために、検量線の圏内だけでなく検量線の圏外も含めてGPCクロマトグラム面積(すなわち全ピーク面積)を算出した。
(Area ratio of area with molecular weight 1000 or less)
10 g of the sample (specifically, raw material polyester and biaxially oriented polyester film) was placed in a 30 mL vial and weighed. A mixed solution of chloroform/HFIP=98/2 (volume ratio) was added to the vial, and the sample was dissolved by standing for 12 hours. Next, this was diluted with chloroform/hexafluoroisopropanol (HFIP) = 98/2 (volume ratio) to prepare a 0.1% solution. The 0.1% solution was filtered with a 0.45 μm filter (GL Chromato Disc non-aqueous N type 13N manufactured by GL Science). Gel permeation chromatography (GPC) measurements were performed on the filtrate under the following conditions.
Column used: Tosoh Corporation, TSKgel SuperHM-H×2, and TSKgel SuperH2000
Column temperature: 40℃
Mobile phase: Chloroform/HFIP=98/2 (volume ratio)
Flow rate: 0.6mL/min
Injection volume: 20μL
Detection: 254nm (UV-visible detector)
Molecular weight calibration: Monodisperse polystyrene (manufactured by Tosoh Corporation)
Equipment: HLC-8300GPC manufactured by Tosoh Corporation
In the molecular weight distribution curve obtained by GPC measurement, the area ratio of the region having a molecular weight of 1000 or less was determined.
In general, in GPC analysis, areas outside the range of the calibration curve are generally excluded from the calculation range of GPC analysis, but in this analysis, in order to more accurately determine the area ratio of the area with a molecular weight of 1000 or less. Next, the GPC chromatogram area (ie, total peak area) was calculated, including not only the area within the calibration curve but also the area outside the calibration curve.
 (厚み)
 二軸配向ポリエステルフィルムの厚みを、JIS K7130-1999 A法に準拠しダイアルゲージを用いて測定した。
(thickness)
The thickness of the biaxially oriented polyester film was measured using a dial gauge in accordance with JIS K7130-1999 A method.
 (融点)
 試料(具体的には二軸配向ポリエステルフィルム)5mgについて示差走査熱量計(株式会社島津製作所製「DSC60」)を用いて、25℃から320℃に10℃/minで昇温し、融解に伴う吸熱曲線のメインピークトップ温度を融点として求めた。
(melting point)
Using a differential scanning calorimeter ("DSC60" manufactured by Shimadzu Corporation), 5 mg of a sample (specifically, a biaxially oriented polyester film) was heated from 25 °C to 320 °C at a rate of 10 °C/min, and as it melted, The main peak top temperature of the endothermic curve was determined as the melting point.
 (引張強さ)
 二軸配向ポリエステルフィルムから、15mm幅、100mm長の試験片を切り出した。JIS K 7127に準拠し、引張試験機(株式会社島津製作所製「オートグラフAG-I」)を用いて、標線間距離50mm、引張速度200mm/minで、この試験片を引っ張った。これによって得られた応力/ひずみ曲線から試験片の引張強さ、すなわち引張破断強度を算出した。この手順で、MD(すなわち0°方向)、45°方向、TD(すなわち90°方向)、および135°方向の引張強さを求めた。
(Tensile strength)
A test piece with a width of 15 mm and a length of 100 mm was cut from a biaxially oriented polyester film. In accordance with JIS K 7127, this test piece was pulled using a tensile tester ("Autograph AG-I" manufactured by Shimadzu Corporation) at a distance between gauge lines of 50 mm and a tension speed of 200 mm/min. The tensile strength of the test piece, that is, the tensile strength at break, was calculated from the stress/strain curve thus obtained. Using this procedure, the tensile strengths in the MD (ie, 0° direction), 45° direction, TD (ie, 90° direction), and 135° direction were determined.
 (熱収縮率)
 二軸配向ポリエステルフィルムから、幅10mm、長さ250mmの試験片を切り出した。この試験片の長さ方向に200mm間隔で一対の印(すなわちの一対の標線)を付け、5gfの張力下で標線間距離を測定した。この試験片を無荷重下の状態で、150℃で30分間加熱処理したうえで標線間距離を測定した。これらの測定結果から、下記式によって熱収縮率を求めた。
   熱収縮率(%)={(A-B)/A}×100
 ここで、Aは、加熱処理前の標線間距離であり、Bは、熱処理前の標線間距離である。
 この手順で、MDおよびTDの熱収縮率を求めた。
(Heat shrinkage rate)
A test piece with a width of 10 mm and a length of 250 mm was cut from a biaxially oriented polyester film. A pair of marks (that is, a pair of marked lines) was placed along the length of this test piece at intervals of 200 mm, and the distance between the marked lines was measured under a tension of 5 gf. This test piece was heat-treated at 150° C. for 30 minutes under no load, and then the distance between the gauge lines was measured. From these measurement results, the thermal shrinkage rate was determined using the following formula.
Heat shrinkage rate (%) = {(AB)/A} x 100
Here, A is the distance between gauge lines before heat treatment, and B is the distance between gauge lines before heat treatment.
Through this procedure, the heat shrinkage rates of MD and TD were determined.
 (カラーb値)
 二軸配向ポリエステルフィルム10枚を重ねた状態で測色色差計(日本電色工業株式会社製「ZE2000」)にセットし、反射方式でカラーb値を求めた。厚み1μm当たりのカラーb値を下記式で算出した。
   厚み1μm当たりのカラーb
   =(二軸配向ポリエステルフィルム10枚重ねでのカラーb値)/(10×二軸配向ポリエステルフィルムの厚み)
(color b * value)
A stack of 10 biaxially oriented polyester films was set in a colorimeter (ZE2000, manufactured by Nippon Denshoku Industries Co., Ltd.), and the color b * value was determined using a reflection method. The color b * value per 1 μm thickness was calculated using the following formula.
Color b * value per 1 μm thickness = (color b * value of 10 stacked biaxially oriented polyester films) / (10 x thickness of biaxially oriented polyester film)
 (表面結晶化度)
 二軸配向ポリエステルフィルムのコロナ処理面および非処理面の両面について、以下の条件でFT-IR ATR測定を行った。すなわち、フーリエ変換赤外分光光度計を用いて全反射減衰法でスペクトルを得た。
   FT-IR:Bio Rad DIGILAB社製 FTS-60A/896
   1回反射ATRアタッチメント:golden gate MKII(SPECAC製)
   内部反射エレメント:ダイヤモンド
   入射角:45°
   分解能:4cm-1
   積算回数:128回
 表面結晶化度は、1340cm-1付近に現れる吸収と、1410cm-1付近に現れる吸収との強度比(1340cm-1の強度/1410cm-1の強度)により算出した。1340cm-1付近に現れる吸収は、エチレングリコールのCH(トランス構造)の変角振動による吸収である。いっぽう、1410cm-1付近に現れる吸収は、結晶とも配向とも無関係の吸収である。
(Surface crystallinity)
FT-IR ATR measurements were performed on both the corona-treated and untreated surfaces of the biaxially oriented polyester film under the following conditions. That is, a spectrum was obtained by the attenuated total reflection method using a Fourier transform infrared spectrophotometer.
FT-IR: Bio Rad DIGILAB FTS-60A/896
Single reflection ATR attachment: golden gate MKII (manufactured by SPECAC)
Internal reflective element: Diamond Incident angle: 45°
Resolution: 4cm -1
Number of integrations: 128 times The surface crystallinity was calculated from the intensity ratio of the absorption appearing near 1340 cm -1 and the absorption appearing near 1410 cm -1 (intensity at 1340 cm -1 / intensity at 1410 cm -1 ). The absorption that appears around 1340 cm −1 is due to the bending vibration of CH 2 (trans structure) of ethylene glycol. On the other hand, the absorption that appears near 1410 cm -1 is unrelated to crystal or orientation.
 (突刺し強さ)
 二軸配向ポリエステルフィルムから切り出した5cm角の試験片の突刺し強さを、デジタルフォースゲージ(株式会社イマダ製「ZTS-500N」)、電動計測スタンド(株式会社イマダ製「MX2-500N」)、および、フィルム突刺し試験用治具(株式会社イマダ製「TKS-250N」)を用いて、JIS Z1707に準じて測定した。この測定によって求められた突刺し強さ(すなわち二軸配向ポリエステルフィルムの突刺し強さ)に基づいて、厚み1μm当たりの突刺し強さも算出した。
(Piercing strength)
The puncture strength of a 5 cm square test piece cut from a biaxially oriented polyester film was measured using a digital force gauge (“ZTS-500N” manufactured by Imada Co., Ltd.), an electric measuring stand (“MX2-500N” manufactured by Imada Co., Ltd.), Then, measurements were made in accordance with JIS Z1707 using a film puncture test jig ("TKS-250N" manufactured by Imada Co., Ltd.). Based on the puncture strength determined by this measurement (that is, the puncture strength of the biaxially oriented polyester film), the puncture strength per 1 μm of thickness was also calculated.
 (ラミネート強度)
 二軸配向ポリエステルフィルムのコロナ処理面側に、ウレタン系2液硬化型接着剤(具体的には、三井化学株式会社製「タケラック(登録商標)A525S」と、三井化学株式会社製「タケネート(登録商標)A50」とを13.5:1(質量比)で配合した接着剤)を用いてドライラミネート法で、ポリオレフィンシーラント層として厚み70μmの無延伸ポリプロピレンフィルム(東洋紡株式会社製「P1147」)を貼り合わせたうえで、40℃にて4日間エージングを施す、という手順で積層体を作製した。この積層体から切り出した幅15mm、長さ200mmの試験片について、二軸配向ポリエステルフィルムのコロナ処理面とポリオレフィン樹脂層との接合面のはく離強度(N/15mm)を測定した。はく離強度の測定は、温度23℃、相対湿度65%の条件下、株式会社東洋ボールドウイン製「テンシロンUMT-II-500型」を用いて、引張速度20cm/分、はく離角度180度でおこなった。
(laminate strength)
On the corona-treated side of the biaxially oriented polyester film, a urethane two-component curing adhesive (specifically, "Takelac (registered trademark) A525S" manufactured by Mitsui Chemicals, Inc. and "Takenate (registered trademark)" manufactured by Mitsui Chemicals, Inc. A 70 μm thick unstretched polypropylene film (P1147 manufactured by Toyobo Co., Ltd.) was used as a polyolefin sealant layer by dry laminating using an adhesive containing 13.5:1 (mass ratio) of A50 (Trademark). A laminate was produced by bonding them together and then aging them at 40° C. for 4 days. The peel strength (N/15 mm) of the bonded surface between the corona-treated surface of the biaxially oriented polyester film and the polyolefin resin layer was measured for a test piece having a width of 15 mm and a length of 200 mm cut out from this laminate. The peel strength was measured at a temperature of 23°C and a relative humidity of 65% using a Tensilon UMT-II-500 manufactured by Toyo Baldwin Co., Ltd. at a tensile rate of 20 cm/min and a peel angle of 180 degrees. .
 (最大キャスト速度)
 冷却ドラムの回転速度を段階的に変更しながら作製した未延伸フィルムについて、偏光板(西田工業株式会社製)を使用してピンナーバブルの有無を目視で判別した。これによって、ピンナーバブルが発生しなかった最大回転速度から最大キャスト速度を求めた。
(maximum cast speed)
The presence or absence of pinner bubbles was visually determined using a polarizing plate (manufactured by Nishida Kogyo Co., Ltd.) for unstretched films produced while changing the rotational speed of the cooling drum in stages. As a result, the maximum casting speed was determined from the maximum rotational speed at which pinner bubbles did not occur.
 (製膜性)
 二軸配向ポリエステルフィルムの製膜性を次の基準で評価した。
   ○:60分以上破断しなかった。すなわち60分以上の連続製膜が可能であった。
   △:30分以上60分未満の間に少なくとも一回破断した。
   ×:30分未満で少なくとも一回破断した。
(Film forming property)
The film formability of the biaxially oriented polyester film was evaluated based on the following criteria.
○: No breakage occurred for 60 minutes or more. That is, continuous film formation for 60 minutes or more was possible.
Δ: Broken at least once during 30 minutes or more and less than 60 minutes.
×: Broken at least once in less than 30 minutes.
 <原料ポリエステル>
 (ポリエステルB)
 分別収集・回収されたペットボトルベールを洗浄液(具体的には、水1000リッターに液体台所洗剤500gを加えた洗浄液)とともに湿式粉砕機内を循環させながら粉砕した。湿式粉砕機に接続している比重分離機によって金属、砂、ガラスなど、比重の大きい異物を沈殿させ、上層部からフレークを取り出した。このフレークを純水ですすぎ、遠心脱水した。このような手順で回収フレークを得た。
 回収フレークを未乾燥の状態で溶融したもの30kgを、予め加熱しておいた混合液、具体的には、エチレングリコール150kgおよび酢酸亜鉛2水和物150gの混合液と攪拌式オートクレーブ内で混ぜたうえで、水や酢酸の如きエチレングリコールよりも沸点の低い溜分を除去した。次いで、還流コンデンサーを用いて195℃~200℃の温度で4時間反応させた。
 反応終了後、反応器内容物温度が97℃~98℃になるまで降温したうえで、フィルターで熱時ろ過し、それによって浮遊物や沈殿物を除去した。
 ろ液をさらに冷却し、粗製BHETが完全に溶解していることを確認した後、ろ液を、50℃~51℃で活性炭床、次いでアニオン/カチオン交換混合床に30分間かけて通した。つまり前精製処理を施した。
 前精製処理液を攪拌式オートクレーブに仕込んだうえで、加熱して余剰のエチレングリコールを常圧留出させることによって濃縮BHETの溶融液を得た。
 濃縮BHETの溶融液を、窒素ガス雰囲気下で攪拌しつつ自然降温した後、攪拌式オートクレーブから取り出し、濃縮BHETの細片ブロックを得た。
 細片ブロックを130℃まで加熱し溶融させた後、これを定量ポンプで薄膜真空蒸発器に供給し、蒸発させ、冷却凝縮することによって精製BHETを得た。
 この精製BHETを2650kgを、窒素で置換した溶解槽に一度に供給し、再度窒素置換した後、溶解槽温度を150℃として溶解を行った。溶解完了後、撹拌機しながら同時に溶解槽温度を30分間掛けて230℃まで昇温した。得られたBHET溶液2650kgを重縮合反応槽に移送し、そのBHET溶液に、得られるPET量(BHET2650kgからは約2000kgのPETが得られる)に対し、三酸化アンチモン300ppm、酢酸コバルト170ppm、リン酸55ppm、二酸化チタン0.3重量%を添加し、10~40rpmで攪拌しながら重縮合反応槽温度を230℃から290℃まで徐々に昇温するとともに、圧力を40Paまで下げた。その後所定の撹拌トルクに到達したら重縮合反応槽を窒素パージして常圧に戻して重縮合反応を停止させ、ストランド状に吐出して冷却後、直ちにカッティングしてチップ状のポリエステルを得た。
 このような手順で、固有粘度0.59dl/gのケミカルリサイクルポリエステル、すなわちポリエステルBを得た。
<Raw material polyester>
(Polyester B)
The separated and recovered PET bottle bales were pulverized while being circulated in a wet pulverizer together with a cleaning solution (specifically, a cleaning solution prepared by adding 500 g of liquid kitchen detergent to 1000 liters of water). A gravity separator connected to the wet crusher precipitates foreign substances with high specific gravity, such as metals, sand, and glass, and extracts flakes from the upper layer. The flakes were rinsed with pure water and dehydrated by centrifugation. Recovered flakes were obtained by such a procedure.
30 kg of undried molten recovered flakes were mixed with a preheated mixed solution, specifically, a mixed solution of 150 kg of ethylene glycol and 150 g of zinc acetate dihydrate in a stirring autoclave. Then, fractions with boiling points lower than ethylene glycol, such as water and acetic acid, were removed. Then, the mixture was reacted for 4 hours at a temperature of 195°C to 200°C using a reflux condenser.
After the reaction was completed, the temperature of the reactor contents was lowered to 97° C. to 98° C., and then filtered while hot to remove suspended matter and precipitates.
After further cooling the filtrate and ensuring that the crude BHET was completely dissolved, the filtrate was passed through an activated carbon bed and then an anion/cation exchange mixed bed at 50° C. to 51° C. for 30 minutes. In other words, pre-purification treatment was performed.
The pre-purification treatment liquid was charged into a stirring autoclave, heated and excess ethylene glycol was distilled off at normal pressure to obtain a concentrated BHET molten liquid.
After the melt of concentrated BHET was allowed to cool down naturally while being stirred under a nitrogen gas atmosphere, it was taken out from the stirring autoclave to obtain a block of concentrated BHET strips.
After heating and melting the strip block to 130° C., it was supplied to a thin film vacuum evaporator using a metering pump, evaporated, and cooled and condensed to obtain purified BHET.
2,650 kg of this purified BHET was supplied at once to a dissolution tank purged with nitrogen, and after replacing the tank with nitrogen again, the temperature of the dissolution tank was set at 150° C. for dissolution. After the dissolution was completed, the temperature of the dissolution tank was raised to 230° C. for 30 minutes while using a stirrer. 2,650 kg of the obtained BHET solution was transferred to a polycondensation reaction tank, and 300 ppm of antimony trioxide, 170 ppm of cobalt acetate, and phosphoric acid were added to the BHET solution, based on the amount of PET obtained (approximately 2,000 kg of PET can be obtained from 2,650 kg of BHET). 55 ppm and 0.3% by weight of titanium dioxide were added, and while stirring at 10 to 40 rpm, the temperature of the polycondensation reactor was gradually raised from 230° C. to 290° C., and the pressure was lowered to 40 Pa. After that, when a predetermined stirring torque was reached, the polycondensation reaction tank was purged with nitrogen and returned to normal pressure to stop the polycondensation reaction, and the mixture was discharged in the form of a strand, cooled, and immediately cut to obtain polyester chips.
Through these procedures, a chemically recycled polyester having an intrinsic viscosity of 0.59 dl/g, ie, polyester B, was obtained.
 (ポリエステルA)
 ポリエステルB(すなわち固有粘度0.59dl/gのケミカルリサイクルポリエステル)を結晶化装置に連続的に供給し、150℃で結晶化させた後、乾燥機に供給し130℃で10時間乾燥させた。乾燥後のポリエステルBを、予備加熱器機に送り180℃まで加熱したうえで固相重合機へ供給した。窒素ガス下にて固相重合反応を190℃で24時間おこない、固有粘度が0.79dl/gのケミカルリサイクルポリエステル、すなわちポリエステルAを得た。
(Polyester A)
Polyester B (ie, a chemically recycled polyester with an intrinsic viscosity of 0.59 dl/g) was continuously fed to a crystallizer, crystallized at 150°C, and then fed to a dryer and dried at 130°C for 10 hours. The dried polyester B was sent to a preheater, heated to 180°C, and then supplied to a solid phase polymerization machine. A solid phase polymerization reaction was carried out at 190° C. for 24 hours under nitrogen gas to obtain a chemically recycled polyester, ie, polyester A, having an intrinsic viscosity of 0.79 dl/g.
 (ポリエステルC)
 固相重合反応のための時間を24時間から50時間に変更したこと以外はポリエステルAと同様の方法で、固有粘度0.83dl/gのケミカルリサイクルポリエステル、すなわちポリエステルCを得た。
(Polyester C)
A chemically recycled polyester having an intrinsic viscosity of 0.83 dl/g, that is, polyester C, was obtained in the same manner as polyester A, except that the time for the solid phase polymerization reaction was changed from 24 hours to 50 hours.
 (ポリエステルD)
 飲料用ペットボトルから、残りの飲料などの異物を洗い流した後、飲料用ペットボトルを粉砕することによってフレークを得た。フレークを、3.5質量%の水酸化ナトリウム溶液に混ぜ、フレーク濃度10質量%、85℃、30分の条件で攪拌することによって洗浄した(つまりアルカリ洗浄をおこなった)。アルカリ洗浄後に取り出したフレークを蒸留水を用いて、フレーク濃度10重量%、25℃、20分の条件で攪拌することによって洗浄した。この水洗を、都度蒸留水を交換して、さらに2回おこなった。水洗後のフレークを乾燥したうえで押出機で溶融し、それをフィルターに通すことによって異物をろ別した。フィルターは、目開きサイズが順次小さくなるように三段目のフィルターまで押出機内に設置された。三段目のフィルターの目開きサイズは50μmであった。このような手順で、固有粘度0.69dl/gのメカニカルリサイクルポリエステル、すなわちポリエステルDを得た。
(Polyester D)
After washing away foreign substances such as remaining beverage from the PET beverage bottle, flakes were obtained by crushing the PET beverage bottle. The flakes were washed by mixing them with a 3.5% by mass sodium hydroxide solution and stirring at a flake concentration of 10% by mass at 85° C. for 30 minutes (that is, alkaline washing was performed). The flakes taken out after alkaline washing were washed with distilled water by stirring at a flake concentration of 10% by weight at 25° C. for 20 minutes. This water washing was repeated two more times, replacing the distilled water each time. The flakes washed with water were dried and melted in an extruder, and then passed through a filter to remove foreign substances. The filters were installed in the extruder up to the third filter so that the opening size of the filters gradually decreased. The opening size of the third stage filter was 50 μm. Through these procedures, mechanically recycled polyester, ie, polyester D, having an intrinsic viscosity of 0.69 dl/g was obtained.
 (ポリエステルE-1)
 ポリエステルE-1として、すなわち化石燃料由来ポリエステルとして、固有粘度0.62dl/g、かつテレフタル酸/エチレングリコール=100モル%/100モル%のポリエステル(東洋紡製)を用いた。つまり、固有粘度0.62dl/gのホモポリエチレンテレフタレート(すなわちホモPET)を用いた。なお、テレフタル酸もエチレングリコールも、使用済みポリエステル製品由来ではなく、化石燃料由来であったことを念のため断っておく。
(Polyester E-1)
As the polyester E-1, that is, as the fossil fuel-derived polyester, a polyester (manufactured by Toyobo Co., Ltd.) with an intrinsic viscosity of 0.62 dl/g and a terephthalic acid/ethylene glycol ratio of 100 mol%/100 mol% was used. That is, homopolyethylene terephthalate (ie, homoPET) with an intrinsic viscosity of 0.62 dl/g was used. It should be noted that both terephthalic acid and ethylene glycol were not derived from used polyester products, but from fossil fuels.
 (ポリエステルE-2)
 ポリエステルE-2として、すなわち化石燃料由来ポリエステルとして、固有粘度0.75dl/g、かつテレフタル酸/エチレングリコール=100モル%/100モル%のポリエステル(東洋紡製)を用いた。つまり、固有粘度0.75dl/gのホモポリエチレンテレフタレート(すなわちホモPET)を用いた。なお、テレフタル酸もエチレングリコールも、使用済みポリエステル製品由来ではなく、化石燃料由来であったことを念のため断っておく。
(Polyester E-2)
As the polyester E-2, that is, as the fossil fuel-derived polyester, a polyester (manufactured by Toyobo Co., Ltd.) with an intrinsic viscosity of 0.75 dl/g and a terephthalic acid/ethylene glycol ratio of 100 mol%/100 mol% was used. That is, homopolyethylene terephthalate (ie, homoPET) with an intrinsic viscosity of 0.75 dl/g was used. It should be noted that both terephthalic acid and ethylene glycol were not derived from used polyester products, but from fossil fuels.
 (ポリエステルE-3)
 ポリエステルE-3として、すなわち化石燃料由来ポリエステルとして、固有粘度0.63dl/g、かつテレフタル酸/エチレングリコール/イソフタル酸=92.1モル%/98モル%/7.9モル%のポリエステル(東洋紡製)を用いた。つまり、固有粘度0.63dl/gのイソフタル酸共重合ポリエチレンテレフタレート(すなわちIPA共重合PET)を用いた。なお、テレフタル酸もエチレングリコールもイソフタル酸も、使用済みポリエステル製品由来ではなく、化石燃料由来であったことを念のため断っておく。
(Polyester E-3)
As polyester E-3, that is, as a fossil fuel-derived polyester, a polyester with an intrinsic viscosity of 0.63 dl/g and terephthalic acid/ethylene glycol/isophthalic acid = 92.1 mol%/98 mol%/7.9 mol% (Toyobo (manufactured by) was used. That is, isophthalic acid copolymerized polyethylene terephthalate (ie, IPA copolymerized PET) having an intrinsic viscosity of 0.63 dl/g was used. It should be noted that terephthalic acid, ethylene glycol, and isophthalic acid were not derived from used polyester products, but from fossil fuels.
 (ポリエステルF)
 エステル化反応缶を昇温して200℃に到達した時点で、テレフタル酸86.4質量部およびエチレングリコール64.4質量部からなるスラリーを仕込み、撹拌しながら、触媒として三酸化アンチモン0.017質量部およびトリエチルアミン0.16質量部を添加した。次いで加熱昇温をおこない、ゲージ圧0.34MPa、240℃の条件で加圧エステル化反応をおこなった。
 その後、エステル化反応缶内を常圧に戻し、酢酸マグネシウム4水塩0.071質量部、次いでリン酸トリメチル0.014質量部を添加した。15分かけて260℃に昇温した後、リン酸トリメチル0.012質量部、次いで酢酸ナトリウム0.0036質量部を添加した。これらを添加してから15分後に、平均粒子径2.7μmの不定形シリカ粒子のエチレングリコールスラリーを、粒子含有量を基準として3.0質量部添加した。得られたエステル化反応生成物を重縮合反応缶に移送し、280℃で減圧下重縮合反応をおこない、極限粘度0.61dl/gのポリエステルFを得た。
 ここで、上述した不定形シリカ粒子のエチレングリコールスラリーは、不定形シリカ粒子をエチレングリコールに混合し、高圧分散機で分散処理をおこなった後に遠心分離処理して粗粒部を35%カットし、その後、目開き5μmの金属フィルターでろ過処理をおこなって得られたスラリーである。
 なお、テレフタル酸もエチレングリコールも、使用済みポリエステル製品由来ではなく、化石燃料由来であったことを念のため断っておく。
(Polyester F)
When the temperature of the esterification reactor was raised to 200°C, a slurry consisting of 86.4 parts by mass of terephthalic acid and 64.4 parts by mass of ethylene glycol was charged, and while stirring, 0.017 parts of antimony trioxide was added as a catalyst. parts by weight and 0.16 parts by weight of triethylamine were added. Next, heating was carried out to raise the temperature, and a pressurized esterification reaction was carried out at a gauge pressure of 0.34 MPa and a temperature of 240°C.
Thereafter, the inside of the esterification reactor was returned to normal pressure, and 0.071 parts by mass of magnesium acetate tetrahydrate and then 0.014 parts by mass of trimethyl phosphate were added. After raising the temperature to 260° C. over 15 minutes, 0.012 parts by mass of trimethyl phosphate and then 0.0036 parts by mass of sodium acetate were added. Fifteen minutes after these were added, 3.0 parts by mass of ethylene glycol slurry of amorphous silica particles having an average particle diameter of 2.7 μm was added based on the particle content. The obtained esterification reaction product was transferred to a polycondensation reactor, and a polycondensation reaction was carried out at 280° C. under reduced pressure to obtain polyester F having an intrinsic viscosity of 0.61 dl/g.
Here, the above-mentioned ethylene glycol slurry of amorphous silica particles is prepared by mixing amorphous silica particles with ethylene glycol, performing a dispersion process using a high-pressure disperser, and then centrifuging to cut off 35% of the coarse particle portion. The slurry was then filtered through a metal filter with an opening of 5 μm.
It should be noted that both terephthalic acid and ethylene glycol were not derived from used polyester products, but from fossil fuels.
 (ポリエステルG)
 エステル化反応缶を昇温して200℃に到達した時点で、テレフタル酸86.4質量部およびエチレングリコール64.4質量部からなるスラリーを仕込み、撹拌しながら、触媒として三酸化アンチモン0.025質量部およびトリエチルアミン0.16質量部を添加した。次いで加熱昇温をおこない、ゲージ圧0.34MPa、240℃の条件で加圧エステル化反応をおこなった。
 その後、エステル化反応缶内を常圧に戻し、酢酸マグネシウム4水塩0.34質量部、次いでリン酸トリメチル0.042質量部を添加した。15分かけて260℃に昇温した後、リン酸トリメチル0.036質量部、次いで酢酸ナトリウム0.0036質量部を添加した。得られたエステル化反応生成物を重縮合反応缶に移送し、減圧下で260℃から280℃へ徐々に昇温した後、285℃で重縮合反応をおこなった。重縮合反応終了後、孔径5μm(初期ろ過効率95%)のステンレススチール焼結体製フィルターでろ過処理をおこない、極限粘度0.62dl/gのポリエステルGを得た。なお、テレフタル酸もエチレングリコールも、使用済みポリエステル製品由来ではなく、化石燃料由来であったことを念のため断っておく。
(Polyester G)
When the temperature of the esterification reactor was raised to 200°C, a slurry consisting of 86.4 parts by mass of terephthalic acid and 64.4 parts by mass of ethylene glycol was charged, and while stirring, 0.025 parts of antimony trioxide was added as a catalyst. parts by weight and 0.16 parts by weight of triethylamine were added. Next, heating was carried out to raise the temperature, and a pressurized esterification reaction was carried out at a gauge pressure of 0.34 MPa and a temperature of 240°C.
Thereafter, the inside of the esterification reactor was returned to normal pressure, and 0.34 parts by mass of magnesium acetate tetrahydrate and then 0.042 parts by mass of trimethyl phosphate were added. After raising the temperature to 260° C. over 15 minutes, 0.036 parts by mass of trimethyl phosphate and then 0.0036 parts by mass of sodium acetate were added. The obtained esterification reaction product was transferred to a polycondensation reactor, and the temperature was gradually raised from 260°C to 280°C under reduced pressure, followed by a polycondensation reaction at 285°C. After the polycondensation reaction was completed, filtration was performed using a stainless steel sintered filter with a pore size of 5 μm (initial filtration efficiency of 95%) to obtain polyester G with an intrinsic viscosity of 0.62 dl/g. It should be noted that both terephthalic acid and ethylene glycol were not derived from used polyester products, but from fossil fuels.
Figure JPOXMLDOC01-appb-T000001
 表1について補足説明する。TPAはテレフタル酸の略語である。EGはエチレングリコールの略語である。IPAはイソフタル酸の略語である。
 TPA、EG、およびIPAのカラムにおいて、「-」は未測定を意味する。
 Mgは、マグネシウム原子基準でのマグネシウム化合物の含有量を示す。この含有量は、ポリエステルの質量に対する、マグネシウム原子基準でのマグネシウム化合物の質量(つまり、マグネシウム原子基準でのマグネシウム化合物の質量/ポリエステルの質量)である。なお、ここでは、アルカリ土類金属化合物のうち、マグネシウム化合物の含有量だけを示す。なぜなら、原料ポリエステルが、マグネシウム化合物以外のアルカリ土類金属化合物を含まなかった(検出限界未満であった、とも言えるかもしれない)ためである。
 Pは、リン原子基準でのリン化合物の含有量を示す。この含有量は、ポリエステルの質量に対する、リン原子基準でのリン化合物の質量(つまり、リン原子基準でのリン化合物の質量/ポリエステルの質量)である。
Figure JPOXMLDOC01-appb-T000001
A supplementary explanation will be given regarding Table 1. TPA is an abbreviation for terephthalic acid. EG is an abbreviation for ethylene glycol. IPA is an abbreviation for isophthalic acid.
In the TPA, EG, and IPA columns, "-" means not measured.
Mg indicates the content of a magnesium compound on the basis of magnesium atoms. This content is the mass of the magnesium compound on a magnesium atom basis with respect to the mass of the polyester (that is, the mass of the magnesium compound on a magnesium atom basis/the mass of the polyester). In addition, only the content of the magnesium compound among the alkaline earth metal compounds is shown here. This is because the raw material polyester did not contain any alkaline earth metal compounds other than the magnesium compound (it could be said that it was below the detection limit).
P indicates the content of phosphorus compounds on the basis of phosphorus atoms. This content is the mass of the phosphorus compound on a phosphorus atom basis with respect to the mass of the polyester (that is, the mass of the phosphorus compound on a phosphorus atom basis/the mass of the polyester).
 表1に示すように、ポリエステルA、BおよびCのうち、ポリエステルCが、固有粘度が最も高く、低分子量成分が最も少なかった。ポリエステルBは、固有粘度が最も低く、低分子量成分が最も多かった。つまり、固有粘度が高いほど、低分子量成分の含有量が低かった。 As shown in Table 1, among polyesters A, B, and C, polyester C had the highest intrinsic viscosity and the lowest amount of low molecular weight components. Polyester B had the lowest intrinsic viscosity and the highest amount of low molecular weight components. In other words, the higher the intrinsic viscosity, the lower the content of low molecular weight components.
 ポリエステルB(すなわちケミカルリサイクルポリエステル)は、固有粘度がポリエステルE-1(すなわち化石燃料由来ポリエステル)よりも低かったものの、低分子量成分の含有量がポリエステルE-1と同程度であった。 Although polyester B (i.e., chemically recycled polyester) had a lower intrinsic viscosity than polyester E-1 (i.e., fossil fuel-derived polyester), the content of low molecular weight components was comparable to that of polyester E-1.
 いっぽう、ポリエステルD(すなわちメカニカルリサイクルポリエステル)は、固有粘度がポリエステルE-1(すなわち化石燃料由来ポリエステル)よりも高かったものの、ポリエステルE-1よりも低分子量成分の含有量が多かった。 On the other hand, although polyester D (i.e., mechanically recycled polyester) had a higher intrinsic viscosity than polyester E-1 (i.e., fossil fuel-derived polyester), it had a higher content of low molecular weight components than polyester E-1.
 <実施例1>
 三台の押出し機を用いて、三層構成の二軸配向ポリエステルフィルムを製膜した。二軸配向ポリエステルフィルムの基層、すなわちB層を形成するために、ポリエステルAを50.0質量%、ポリエステルE-1を42.0質量%、ポリエステルGを8.0質量%使用した。いっぽう、二軸配向ポリエステルフィルムの一対の表面層、すなわち、一対のA層を形成するために、ポリエステルAを50.0質量%、ポリエステルE-1を39.0質量%、ポリエステルFを3.0質量%、ポリエステルGを8.0質量%使用した。以下、製膜の手順を説明する。
 A層を形成するための原料ポリエステルを乾燥させたうえで、第一および第三の押出機に供給し、285℃で溶融させるとともに、B層を形成するための原料ポリエステルを乾燥させたうえで、第二の押出機に供給し、285℃で溶融させた。各押出機から溶融ポリエステルをTダイに導き、A層/B層/A層(厚み 1μm/10μm/1μm)となるようにTダイ内で積層したうえで、Tダイから押出し、表面温度25℃のキャスティングドラム、すなわち冷却ドラムで冷却固化させた。その際、Tダイから押出された、冷却ドラム密着前のフィルムを、直径0.15mmのワイヤー状電極で帯電させた。キャスト速度は70m/分であった。このような手順で未延伸フィルムを作製した。
 未延伸フィルムを赤外線ヒーターで120℃に加熱し、延伸倍率4.0倍で長手方向(すなわちMD)に一段延伸した。
 引き続き、テンター式横延伸機にて予熱温度120℃、延伸温度130℃、延伸倍率4.2倍にて幅方向(すなわちTD)に延伸し、245℃で熱固定し、幅方向に5%熱弛緩処理をおこなった。なお、幅方向延伸ゾーンの長さは12.2m、幅方向延伸速度(すなわちTD延伸倍率)は122.66%/秒であった。次いで、一対のA層のうち、冷却ドラムに接触したA層に、40W・min/mの条件でコロナ処理をおこなったうえで、ワインダーでロール状に巻取った。
 このような手順で厚み12μmの二軸配向ポリエステルフィルムのマスターロール(巻長60000m、幅8000mm)を得た。
 マスターロールから二軸配向ポリエステルフィルムを巻出し、800mm幅でスリットしながら、かつ、コンタクトロールで面圧を、2軸ターレットワインダーで張力をかけながら、スリットされた二軸配向ポリエステルフィルムを、直径6インチ(152.2mm)の巻芯にロール状に巻き取った。
 このような手順で、二軸配向ポリエステルフィルムを得た。
<Example 1>
A biaxially oriented polyester film having a three-layer structure was formed using three extruders. To form the base layer of the biaxially oriented polyester film, that is, layer B, 50.0% by mass of polyester A, 42.0% by mass of polyester E-1, and 8.0% by mass of polyester G were used. On the other hand, to form a pair of surface layers of the biaxially oriented polyester film, that is, a pair of A layers, 50.0% by mass of polyester A, 39.0% by mass of polyester E-1, and 3.0% by mass of polyester F were used. 0% by mass, and 8.0% by mass of polyester G was used. The film forming procedure will be explained below.
After drying the raw material polyester for forming layer A, it is supplied to the first and third extruders and melted at 285°C, and after drying the raw material polyester for forming layer B, , fed to a second extruder and melted at 285°C. The molten polyester is led from each extruder to the T-die, and the layers are laminated in the T-die to form layer A/layer B/layer A (thickness 1μm/10μm/1μm), and then extruded from the T-die at a surface temperature of 25°C. It was cooled and solidified in a casting drum, that is, a cooling drum. At that time, the film extruded from the T-die and before contact with the cooling drum was charged with a wire-shaped electrode having a diameter of 0.15 mm. Casting speed was 70 m/min. An unstretched film was produced by such a procedure.
The unstretched film was heated to 120° C. with an infrared heater and stretched once in the longitudinal direction (ie, MD) at a stretching ratio of 4.0 times.
Subsequently, it was stretched in the width direction (i.e. TD) using a tenter type horizontal stretching machine at a preheating temperature of 120°C, a stretching temperature of 130°C, and a stretching ratio of 4.2 times, heat setting at 245°C, and 5% heat treatment in the width direction. Relaxation treatment was performed. The length of the widthwise stretching zone was 12.2 m, and the widthwise stretching speed (ie, TD stretching ratio) was 122.66%/sec. Next, of the pair of A layers, the A layer in contact with the cooling drum was subjected to corona treatment at 40 W min/m 2 and then wound into a roll using a winder.
A master roll (winding length: 60,000 m, width: 8,000 mm) of a biaxially oriented polyester film having a thickness of 12 μm was obtained by such a procedure.
A biaxially oriented polyester film is unwound from a master roll, and while being slit to a width of 800 mm, while applying surface pressure with a contact roll and tension with a biaxial turret winder, the slit biaxially oriented polyester film is slit into a diameter of 6 mm. It was wound into a roll around an inch (152.2 mm) core.
A biaxially oriented polyester film was obtained by such a procedure.
 <実施例2~5と、比較例1~4および6>
 表2の処方にしたがって、原料ポリエステルの混合比や製膜条件を変更したこと以外は、実施例1と同様の方法で二軸配向ポリエステルフィルムを作製した。なお、キャスト速度は、これらすべての例で70m/分であった。これらすべての例で、幅方向延伸ゾーンの長さは12.2m、幅方向延伸速度(すなわちTD延伸倍率)は122.66%/秒であった。
<Examples 2 to 5 and Comparative Examples 1 to 4 and 6>
A biaxially oriented polyester film was produced in the same manner as in Example 1, except that the mixing ratio of raw polyesters and film forming conditions were changed according to the recipe in Table 2. Note that the casting speed was 70 m/min in all these examples. In all these examples, the length of the widthwise stretching zone was 12.2 m, and the widthwise stretching speed (i.e., TD stretching ratio) was 122.66%/sec.
 <比較例5>
 表2の処方にしたがって、原料ポリエステルの混合比や製膜条件を変更したこと以外は、実施例1と同様の方法で二軸配向ポリエステルフィルムを作製した。なお、キャスト速度は65m/分であった。幅方向延伸ゾーンの長さは12.2m、幅方向延伸速度(すなわちTD延伸倍率)は113.7%/秒であった。
<Comparative example 5>
A biaxially oriented polyester film was produced in the same manner as in Example 1, except that the mixing ratio of raw polyesters and film forming conditions were changed according to the recipe in Table 2. Note that the casting speed was 65 m/min. The length of the widthwise stretching zone was 12.2 m, and the widthwise stretching speed (ie, TD stretching ratio) was 113.7%/sec.
 <実施例6>
 表2の処方にしたがって、原料ポリエステルの混合比を変更したこと以外は、実施例1と同様の方法で未延伸フィルムを得た。なお、キャスト速度は70m/分であった。
 未延伸フィルムの端部をテンター式同時二軸延伸機のクリップで把持し、120℃の予熱ゾーンを走行させた後、130℃、長手方向(すなわちMD)4.0倍、幅方向(すなわちTD)4.2倍で同時二軸延伸した。次いで、幅方向の弛緩率を5%として、温度245℃で熱処理を施した後、室温まで冷却して巻き取り、厚み12μmの二軸配向ポリエステルフィルムを得た。
<Example 6>
An unstretched film was obtained in the same manner as in Example 1, except that the mixing ratio of the raw material polyester was changed according to the recipe in Table 2. Note that the casting speed was 70 m/min.
The ends of the unstretched film were gripped with the clips of a tenter-type simultaneous biaxial stretching machine, and after running through a 120°C preheating zone, the film was stretched at 130°C, 4.0 times in the longitudinal direction (i.e., MD), and 4.0 times in the width direction (i.e., TD). ) Simultaneous biaxial stretching was carried out at 4.2 times. Next, the film was heat-treated at a temperature of 245° C. with a relaxation rate in the width direction of 5%, and then cooled to room temperature and wound up to obtain a biaxially oriented polyester film with a thickness of 12 μm.
Figure JPOXMLDOC01-appb-T000002
 表2について補足説明する。表2に記載された「混合比」は、対象とする層を形成するために用いた原料ポリエステルの総質量を100質量%としたときの値で示されている。たとえば、実施例1のB層について、B層を形成するために用いたポリエステルA、E-1およびGの総質量100質量%中、ポリエステルAが50質量%であったことを示す。
 シリカ含有量は、対象とする層の質量に対する、シリカの質量(つまり、シリカの質量/対象とする層の質量)である。対象とする層の質量は、対象とする層を形成するための原料(たとえばポリエステルや粒子)の総質量を意味する。「CRPET」は、ポリエステルA、BおよびCの総称である。
 Mgは、マグネシウム原子基準でのマグネシウム化合物の含有量を示す。この含有量は、二軸配向ポリエステルフィルムの質量に対する、マグネシウム原子基準でのマグネシウム化合物の質量である。
 Pは、リン原子基準でのリン化合物の含有量を示す。この含有量は、二軸配向ポリエステルフィルムの質量に対する、リン原子基準でのリン化合物の質量である。
Figure JPOXMLDOC01-appb-T000002
A supplementary explanation will be given regarding Table 2. The "mixing ratio" listed in Table 2 is expressed as a value when the total mass of the raw material polyester used to form the target layer is 100% by mass. For example, for layer B in Example 1, it is shown that polyester A was 50% by mass out of 100% by mass of the total mass of polyesters A, E-1, and G used to form layer B.
The silica content is the mass of silica relative to the mass of the target layer (that is, the mass of silica/the mass of the target layer). The mass of the target layer means the total mass of raw materials (eg, polyester and particles) for forming the target layer. "CRPET" is a generic term for polyesters A, B and C.
Mg indicates the content of the magnesium compound on the basis of magnesium atoms. This content is the mass of the magnesium compound on the basis of magnesium atoms relative to the mass of the biaxially oriented polyester film.
P indicates the content of phosphorus compounds on the basis of phosphorus atoms. This content is the mass of the phosphorus compound on a phosphorus atom basis with respect to the mass of the biaxially oriented polyester film.
 ポリエステルE-1(すなわち、固有粘度0.62dl/gの化石燃料由来ホモPET)80質量%をポリエステルC(すなわち固有粘度0.83dl/gのケミカルリサイクルポリエステル)に置き換えることによって、表面結晶化度が過度に低下し、固有粘度が過度に高くなり、延伸時にフィルムが破断した(比較例1および3参照)。表面結晶化度が過度に低く、固有粘度が過度に高かった比較例5でも、延伸時にフィルムが破断した。 By replacing 80% by mass of polyester E-1 (i.e., fossil fuel-derived homo-PET with an intrinsic viscosity of 0.62 dl/g) with polyester C (i.e., a chemically recycled polyester with an intrinsic viscosity of 0.83 dl/g), the surface crystallinity was excessively reduced, the intrinsic viscosity was excessively high, and the film was broken during stretching (see Comparative Examples 1 and 3). Even in Comparative Example 5, which had an excessively low surface crystallinity and an excessively high intrinsic viscosity, the film broke during stretching.
 ポリエステルE-1(すなわち、固有粘度0.62dl/gの化石燃料由来ホモPET)91質量%をポリエステルB(すなわち固有粘度0.59dl/gのケミカルリサイクルポリエステル)に置き換えることによって、表面結晶化度が過度に高くなり、固有粘度が過度に低くなり、引張強さや突刺し強さが低下した(比較例1および比較例4参照)。これに加えて、カラーb値が過度に高くなった。 By replacing 91% by mass of polyester E-1 (i.e., fossil fuel-derived homo-PET with an intrinsic viscosity of 0.62 dl/g) with polyester B (i.e., a chemically recycled polyester with an intrinsic viscosity of 0.59 dl/g), the surface crystallinity was excessively high, the intrinsic viscosity was excessively low, and the tensile strength and puncture strength were decreased (see Comparative Examples 1 and 4). In addition to this, the color b * values were excessively high.
 イソフタル酸成分の含有率が過度に高かった比較例6の二軸配向ポリエステルフィルムは、融点や表面結晶化が過度に低く、引張強さや突刺し強さが劣っていた。 The biaxially oriented polyester film of Comparative Example 6, which had an excessively high content of isophthalic acid components, had an excessively low melting point and surface crystallization, and was inferior in tensile strength and puncture strength.
 いっぽう、ポリエステルE-1のいくらか(具体的には50質量%、20質量%、80質量%)をポリエステルA(すなわち固有粘度0.79dl/gのケミカルリサイクルポリエステル)に置き換えることによって、引張強さや、突刺し強さ、耐熱性に優れた二軸配向ポリエステルフィルムを破断なく製造することができた(比較例1および実施例1~3参照)。同時二軸延伸でも、二軸配向ポリエステルフィルムを破断なく製造することができた(実施例6参照)。 On the other hand, by replacing some of the polyester E-1 (specifically 50%, 20%, 80% by mass) with polyester A (i.e., a chemically recycled polyester with an intrinsic viscosity of 0.79 dl/g), the tensile strength and A biaxially oriented polyester film with excellent puncture strength and heat resistance could be produced without breakage (see Comparative Example 1 and Examples 1 to 3). Even with simultaneous biaxial stretching, a biaxially oriented polyester film could be produced without breakage (see Example 6).
 ポリエステルE-1のいくらか(具体的には50質量%、80質量%)をポリエステルB(すなわち固有粘度0.59dl/gのケミカルリサイクルポリエステル)に置き換えることによっても、引張強さや、突刺し強さ、耐熱性に優れた二軸配向ポリエステルフィルムを破断なく製造することができた(比較例1と、実施例4および5とを参照)。 By replacing some of the polyester E-1 (specifically 50% by mass, 80% by mass) with polyester B (i.e., chemically recycled polyester with an intrinsic viscosity of 0.59 dl/g), the tensile strength and puncture strength can be improved. , a biaxially oriented polyester film with excellent heat resistance could be produced without breakage (see Comparative Example 1 and Examples 4 and 5).
 本発明は二軸配向ポリエステルフィルムに関するため、本発明には産業上の利用可能性がある。 Since the present invention relates to a biaxially oriented polyester film, the present invention has industrial applicability.
 8…二軸配向ポリエステルフィルム、81…第一層、82…第二層、83…第三層、9…積層体、11…印刷層、21…シーラント層、22…シーラント層、31…無機薄膜層、32…アンカーコート層、33…保護層、51…基材層、61…中間層
 
8... Biaxially oriented polyester film, 81... First layer, 82... Second layer, 83... Third layer, 9... Laminate, 11... Printing layer, 21... Sealant layer, 22... Sealant layer, 31... Inorganic thin film Layer, 32... Anchor coat layer, 33... Protective layer, 51... Base material layer, 61... Intermediate layer

Claims (12)

  1.  ケミカルリサイクルポリエステルを含み、
     少なくとも一方の面は、フーリエ変換赤外分光光度計を用いて全反射減衰法で求められる表面結晶化度が1.10以上1.31以下であり、
     融点が251℃以上である、
     二軸配向ポリエステルフィルム。
    Contains chemically recycled polyester
    At least one surface has a surface crystallinity of 1.10 or more and 1.31 or less as determined by the attenuated total reflection method using a Fourier transform infrared spectrophotometer,
    The melting point is 251°C or higher,
    Biaxially oriented polyester film.
  2.  前記二軸配向ポリエステルフィルム中の全ジカルボン酸成分のモル数を100モル%としたとき、イソフタル酸成分のモル数は0.1モル%以上3.0モル%以下である、請求項1に記載の二軸配向ポリエステルフィルム。 When the number of moles of all dicarboxylic acid components in the biaxially oriented polyester film is 100 mol%, the number of moles of the isophthalic acid component is 0.1 mol% or more and 3.0 mol% or less, according to claim 1. biaxially oriented polyester film.
  3.  前記二軸配向ポリエステルフィルムの突刺し強さが0.50N/μm以上である、請求項1に記載の二軸配向ポリエステルフィルム。 The biaxially oriented polyester film according to claim 1, wherein the biaxially oriented polyester film has a puncture strength of 0.50 N/μm or more.
  4.  前記二軸配向ポリエステルフィルムの固有粘度が0.50dl/g以上0.70dl/g以下である、請求項1に記載の二軸配向ポリエステルフィルム。 The biaxially oriented polyester film according to claim 1, wherein the biaxially oriented polyester film has an intrinsic viscosity of 0.50 dl/g or more and 0.70 dl/g or less.
  5.  前記ケミカルリサイクルポリエステルの含有量が20質量%以上である、請求項1に記載の二軸配向ポリエステルフィルム。 The biaxially oriented polyester film according to claim 1, wherein the content of the chemically recycled polyester is 20% by mass or more.
  6.  請求項1に記載の二軸配向ポリエステルフィルムと、
     シーラント層とを含む、
     積層体。
    The biaxially oriented polyester film according to claim 1,
    a sealant layer;
    laminate.
  7.  印刷層をさらに含み、
     前記積層体の少なくとも一部において、前記印刷層、前記二軸配向ポリエステルフィルム、前記シーラント層が、前記積層体の厚み方向でこの順に並んでいる、
     請求項6に記載の積層体。
    further comprising a printing layer;
    In at least a portion of the laminate, the printing layer, the biaxially oriented polyester film, and the sealant layer are arranged in this order in the thickness direction of the laminate.
    The laminate according to claim 6.
  8.  印刷層をさらに含み、
     前記積層体の少なくとも一部において、前記二軸配向ポリエステルフィルム、前記印刷層、前記シーラント層が、前記積層体の厚み方向でこの順に並んでいる、
     請求項6に記載の積層体。
    further comprising a printing layer;
    In at least a portion of the laminate, the biaxially oriented polyester film, the printing layer, and the sealant layer are arranged in this order in the thickness direction of the laminate.
    The laminate according to claim 6.
  9.  請求項1に記載の二軸配向ポリエステルフィルムと、
     粘着層とを含む、
     積層体。
    The biaxially oriented polyester film according to claim 1,
    including an adhesive layer;
    laminate.
  10.  印刷層をさらに含み、
     前記積層体の少なくとも一部において、前記印刷層、前記二軸配向ポリエステルフィルム、前記粘着層が、前記積層体の厚み方向でこの順に並んでいる、
     請求項9に記載の積層体。
    further comprising a printing layer;
    In at least a portion of the laminate, the printed layer, the biaxially oriented polyester film, and the adhesive layer are arranged in this order in the thickness direction of the laminate.
    The laminate according to claim 9.
  11.  印刷層をさらに含み、
     前記積層体の少なくとも一部において、前記二軸配向ポリエステルフィルム、前記印刷層、前記粘着層が、前記積層体の厚み方向でこの順に並んでいる、
     請求項9に記載の積層体。
    further comprising a printing layer;
    In at least a portion of the laminate, the biaxially oriented polyester film, the printing layer, and the adhesive layer are arranged in this order in the thickness direction of the laminate.
    The laminate according to claim 9.
  12.  請求項6~11のいずれかに記載の積層体を含む、包装容器。
     
    A packaging container comprising the laminate according to any one of claims 6 to 11.
PCT/JP2023/027795 2022-07-29 2023-07-28 Biaxially oriented polyester film, laminate, and packaging container WO2024024952A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-121327 2022-07-29
JP2022121327A JP2024018165A (en) 2022-07-29 2022-07-29 Biaxially oriented polyester film, laminate and packaging container

Publications (1)

Publication Number Publication Date
WO2024024952A1 true WO2024024952A1 (en) 2024-02-01

Family

ID=89706681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027795 WO2024024952A1 (en) 2022-07-29 2023-07-28 Biaxially oriented polyester film, laminate, and packaging container

Country Status (2)

Country Link
JP (1) JP2024018165A (en)
WO (1) WO2024024952A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021130301A (en) * 2020-02-19 2021-09-09 南亞塑膠工業股▲分▼有限公司 Recyclable retort pouch and recyclable retort polyester film thereof
WO2021200754A1 (en) * 2020-03-31 2021-10-07 ユニチカ株式会社 Biaxially-stretched polyester resin film and manufacturing method for same
WO2021210466A1 (en) * 2020-04-13 2021-10-21 東洋紡株式会社 Laminated layered body
JP2022007902A (en) * 2019-11-19 2022-01-13 大日本印刷株式会社 Vapor-deposited resin film, laminate having the vapor-deposited resin film and packaging container having the laminate
WO2022049998A1 (en) * 2020-09-03 2022-03-10 東洋紡株式会社 Biaxially-oriented polyester film roll and production method therefor
WO2022138484A1 (en) * 2020-12-23 2022-06-30 東洋紡株式会社 Mold release film for molding of resin sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022007902A (en) * 2019-11-19 2022-01-13 大日本印刷株式会社 Vapor-deposited resin film, laminate having the vapor-deposited resin film and packaging container having the laminate
JP2021130301A (en) * 2020-02-19 2021-09-09 南亞塑膠工業股▲分▼有限公司 Recyclable retort pouch and recyclable retort polyester film thereof
WO2021200754A1 (en) * 2020-03-31 2021-10-07 ユニチカ株式会社 Biaxially-stretched polyester resin film and manufacturing method for same
WO2021210466A1 (en) * 2020-04-13 2021-10-21 東洋紡株式会社 Laminated layered body
WO2022049998A1 (en) * 2020-09-03 2022-03-10 東洋紡株式会社 Biaxially-oriented polyester film roll and production method therefor
WO2022138484A1 (en) * 2020-12-23 2022-06-30 東洋紡株式会社 Mold release film for molding of resin sheet

Also Published As

Publication number Publication date
JP2024018165A (en) 2024-02-08

Similar Documents

Publication Publication Date Title
EP2292429B1 (en) Highly adhesive polyester film and packaging material using the same
CN108884249B (en) Polyester film
JP6944656B2 (en) Laminate
WO2021117736A1 (en) Biaxially oriented polyester film and production method therefor
TW201841976A (en) Laminate provided with heat-sealable resin layer and polyester film having furandicarboxylic acid unit, and packaging bag
WO2020195742A1 (en) Polyester film and production method therefor
JP2023145482A (en) Film, packaging bag constituted of film, laminate comprising film and packaging bag constituted of laminate
WO2024024952A1 (en) Biaxially oriented polyester film, laminate, and packaging container
WO2024024941A1 (en) Biaxially oriented polyester film, multilayer body, and packaging container
WO2024024947A1 (en) Biaxially-oriented polyester film, laminate, and packaging container
WO2024024130A1 (en) Biaxially-oriented polyester film, laminate, and packaging container
WO2024024960A1 (en) Gas barrier film, laminate, and packaging container
WO2024024954A1 (en) Gas-barrier film, layered product, and packaging container
WO2024024959A1 (en) Gas barrier film, laminate, and packaging container
JP7216353B1 (en) Biaxially oriented polyester films, laminates, and packaging containers
JP7216352B1 (en) Gas barrier films, laminates, and packaging containers
WO2020203105A1 (en) Polyester film and production method therefor
TW202413503A (en) Biaxially oriented polyester film, laminate, and packaging container
TW202413502A (en) Biaxially oriented polyester films, laminates, and packaging containers
TW202413118A (en) Biaxially oriented polyester film, laminate, and packaging container
TW202413504A (en) Biaxially oriented polyester film, laminate, and packaging container
TW202413101A (en) Gas barrier films, laminates, and packaging containers
TW202413099A (en) Gas barrier films, laminates, and packaging containers
TW202413100A (en) Gas barrier films, laminates, and packaging containers
TW202413102A (en) Gas barrier films, laminates, and packaging containers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846682

Country of ref document: EP

Kind code of ref document: A1