WO2020203020A1 - Biological information measurer and biological information measurement method using same - Google Patents

Biological information measurer and biological information measurement method using same Download PDF

Info

Publication number
WO2020203020A1
WO2020203020A1 PCT/JP2020/009443 JP2020009443W WO2020203020A1 WO 2020203020 A1 WO2020203020 A1 WO 2020203020A1 JP 2020009443 W JP2020009443 W JP 2020009443W WO 2020203020 A1 WO2020203020 A1 WO 2020203020A1
Authority
WO
WIPO (PCT)
Prior art keywords
posture state
parameter set
sensor
spo2
unit
Prior art date
Application number
PCT/JP2020/009443
Other languages
French (fr)
Japanese (ja)
Inventor
章宏 片桐
真士 山田
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2021511287A priority Critical patent/JP7228678B2/en
Publication of WO2020203020A1 publication Critical patent/WO2020203020A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters

Definitions

  • the present invention relates to a biological information measuring device and a biological information measuring method using the same.
  • Photoplethysmography is one of the methods for non-invasively monitoring the biological signal and biological information of a subject.
  • PPG is a method of monitoring changes in blood flow in a living tissue by irradiating the surface of the living body of a subject with light having a predetermined wavelength and measuring a time-series change in the amount of light reflected or transmitted therethrough. Since blood flow is affected by multiple biological systems, by measuring biological signals with PPG, for example, pulse rate (HB), heart rate variability (HRV), vascular elasticity (RI), arterial oxygen saturation Various biological indicators such as (SpO2) and local tissue oxygen saturation (rSO2) can be obtained.
  • HB pulse rate
  • HRV heart rate variability
  • RI vascular elasticity
  • rSO2 local tissue oxygen saturation
  • the vascular system changes depending on how each part of the body bends, and the body composition changes due to the movement of fat and muscle, depending on the posture and / or body movement of the subject.
  • the subject was assigned a resting posture and was forced to remain in that posture during the measurement. Therefore, if the posture of the subject changes during the measurement, the correct measurement result may not be obtained.
  • Patent Document 1 shown below discloses a technique for accurately obtaining a causal relationship between a subject's body movement and respiratory disease symptoms.
  • Patent Document 1 describes a sleep evaluation system composed of a pulse oximeter and a PC, and the pulse oximeter obtains measurement data regarding blood oxygen saturation information from a subject's measuring finger.
  • the PC includes a probe to be acquired, a 3-axis acceleration sensor that acquires measurement data related to the body movement information of the subject, and a storage unit that stores the measurement data measured by the probe and the 3-axis acceleration sensor.
  • a sleep evaluation system having a processing function of acquiring measurement data stored in the unit and analyzing the relationship between the fluctuation of blood oxygen saturation and the body movement of a subject is disclosed.
  • Patent Document 1 simply determines whether or not the blood oxygen saturation decreases in synchronization with the body movement of the subject in the diagnosis of the subject having a respiratory disease. It stopped and was not aimed at accurately determining the subject's blood oxygen saturation itself. That is, originally, the blood oxygen saturation concentration should be measured in a state where the subject takes a correct posture at rest, and the correct value should be obtained. However, in the above technique, the posture of the subject has changed. The blood oxygen saturation concentration measured and shown in this case deviates from the value that should be measured in the original ideal state.
  • the present invention provides a biological information measuring device capable of accurately calculating the biological information even when the posture and / or body movement of the subject changes, and a biological information measuring method using the same.
  • the purpose is.
  • one object of the present invention is to make a correction according to the posture and / or body movement of the subject even if the posture and / or body movement of the subject changes. It is an object of the present invention to provide a biological information measuring device capable of more accurately calculating the above and a biological information measuring method using the same.
  • the present invention for solving the above problems is configured to include the following invention-specific matters or technical features.
  • the present invention is a biological information measuring instrument.
  • the biological information measuring device may include a biological signal acquisition unit that acquires the biological signal of the subject and a posture state signal acquisition unit that acquires the posture state signal of the subject.
  • the biological signal of the subject can be output from a biological sensor including a PPG sensor. Further, the posture state signal of the subject can be output from the motion sensor.
  • the biological information measuring device further includes a posture state estimation unit that estimates the posture state of the subject based on the posture state signal acquired by the posture state signal acquisition unit, and the biological signal acquired by the biological signal acquisition unit.
  • the SpO2 calculation unit that calculates SpO2 in the reference posture state of the subject based on the posture state estimated by the posture state estimation unit.
  • the SpO2 calculation unit can calculate the SpO2 by applying a parameter set according to the estimated posture state to the absorbance ratio calculated based on the acquired biological signal.
  • the biological information measuring instrument may further include a parameter set storage unit that stores a plurality of parameter sets corresponding to a plurality of posture state models.
  • the biological information measuring device may further include a parameter set selection unit that selects one of the predetermined parameter sets corresponding to the estimated posture state from the parameter set storage unit. Then, the SpO2 calculation unit can correct the absorbance ratio based on the selected predetermined parameter set.
  • the biometric information measuring instrument selects one or two or more of the parameter sets corresponding to the estimated posture state from the parameter set storage unit, and performs interpolation based on the selected one or more parameter sets.
  • a parameter set estimation unit for estimating one parameter set may be provided by calculation. Then, the SpO2 calculation unit can correct the absorbance ratio based on the estimated one parameter set.
  • the SpO2 calculation unit can correct the absorbance ratio by the interpolation calculation using the probability density function.
  • the SpO2 calculation unit can correct the absorbance ratio by the interpolation calculation using a predetermined nonlinear function.
  • the biometric information measuring instrument may further include a parameter set estimation unit that estimates a parameter set corresponding to a specific posture state based on the estimated posture state and the absorbance ratio. Then, the parameter set estimation unit may store the estimated parameter set in the parameter set storage unit.
  • the posture state estimation unit can estimate the posture state of the subject based on the biological signal output from at least one biological sensor.
  • the at least one biosensor may include at least one of a blood pressure sensor, a pulse sensor, an ECG sensor and an myoelectric sensor.
  • the motion sensor includes at least one of a gravity sensor, an acceleration sensor, a gyro sensor, a geomagnetic sensor, a pressure sensitive sensor, an ultrasonic sensor, an infrared sensor, an image sensor, and a spectrum sensor.
  • the present invention can be a biometric information measuring method using a biometric information measuring device.
  • the method may include obtaining a biological signal of the subject and obtaining a posture state signal of the subject.
  • the biological signal of the subject can be output from a biological sensor including a PPG sensor.
  • the posture state signal of the subject can be output from the motion sensor.
  • the method also estimates the posture state of the subject based on the acquired posture state signal, and at the time of the reference posture state of the subject based on the acquired biological signal and the estimated posture state. It may include calculating SpO2.
  • the SpO2 is calculated by applying a parameter set according to the estimated posture state to the absorbance ratio calculated based on the acquired biological signal. May include.
  • the present invention can also be configured as a computer program for executing the method and a recording medium on which the method is executed in a computing device under the control of a processor.
  • the "means” does not simply mean a physical means, but also includes a means in which the function of the means is realized by software. Further, the function of one means may be realized by two or more physical means, or the function of two or more means may be realized by one physical means.
  • the "system” includes a device in which a plurality of devices (or functional modules that realize a specific function) are logically assembled, and each device or functional module is physically a single device. It does not matter whether it is composed or as a separate object.
  • the biological information can be accurately calculated.
  • FIG. 1 is a block diagram showing an example of the configuration of the biological information measuring instrument according to the embodiment of the present invention.
  • the biometric information measuring device 1 shown in the figure is a device for measuring SpO2, which is one of the biometric indexes of the subject.
  • the sensor unit 10, the control unit 20, and the user interface unit 30 communicate with each other. It includes components such as the interface unit 40.
  • the biological information measuring instrument 1 is generally referred to as a pulse oximeter, but is not limited thereto.
  • the biometric information measuring instrument 1 may be configured as an integrated type in which these components are housed in one housing (not shown), for example. Such an integrated biometric information measuring device 1 can be attached to, for example, the chest or a finger of a subject.
  • the biometric information measuring instrument 1 may be configured such that all or a part of the sensor unit 10 and the like is separate from the housing.
  • the control unit 20, the user interface unit 30, and the communication interface unit 40 may be integrally configured as one controller board or a control device main body.
  • the biometric information measuring device 1 may be configured such that a part of the functions of the control unit 20 is executed by an external device (for example, a computing device).
  • the sensor unit 10 includes, for example, at least one biosensor 12 and at least one motion sensor 14.
  • the biological sensor 12 is a sensor that observes a biological phenomenon of a subject, detects and outputs a biological signal based on the biological phenomenon.
  • the biosensor 12 typically includes a PPG sensor 12a for measuring SpO2 (see FIG. 2).
  • the PPG sensor 12a is an active unit including a light emitting unit for emitting light of two types of wavelengths (red light and infrared light) and a light receiving unit for receiving these lights. It is a sensor, and there are, for example, a transmissive type and a reflective type.
  • the PPG sensor 12a is a reflective type, but the present invention is not limited to this.
  • the reflection type PPG sensor 12a receives the reflected light (which may include scattered light, diffused light, etc.) from the living body irradiated with the light.
  • the biological signal detected by the PPG sensor 12a can be used to estimate the posture and / or body movement state (hereinafter referred to as “posture state”) of the subject.
  • the change in the biological signal detected by the PPG sensor 12a can be regarded as the change in the posture state of the subject.
  • the posture state may include a state of movement of a specific part such as raising and lowering the subject's hand and upper arm.
  • the biological sensor 12 may include at least one of a blood pressure sensor, a pulse sensor, an ECG sensor, and an electromyographic sensor. At least some of these biological sensors 12 are attached to, for example, a measurement site or location of a subject according to the characteristics of the sensor to detect biological signals. The biological signal detected by the biological sensor 12 is output to the control unit 20.
  • the motion sensor 14 is a sensor that observes the posture state of the subject, detects and outputs a signal related to the posture state (hereinafter referred to as "posture state signal").
  • a known motion sensor 14 can be used.
  • the motion sensor 14 includes a gravity sensor, an acceleration sensor, a gyro sensor (these may be collectively referred to as an "inertial sensor”), a geomagnetic sensor, a pressure sensor, an ultrasonic sensor, an infrared sensor, and an image sensor. , And at least one of the spectrum sensors.
  • the posture state signal detected by the motion sensor 14 is output to the control unit 20.
  • the motion sensors 14 are not directly attached to the subject, and may be configured and arranged so as to observe from a position away from the subject, for example.
  • the image sensor may be configured to image the subject as a camera and output the imaged signal to the biometric information measuring instrument 1 or an external computing device.
  • the control unit 20 is typically configured to include a processor 22 and a memory 24, and is a component that comprehensively controls the operation of the biometric information measuring device 1 under the control of the processor 22.
  • the memory 24 holds, for example, a processing program and various setting information.
  • the processing program may be configured to include, for example, several program modules.
  • the memory 24 is configured to store one or more parameter sets necessary for calculating SpO2, which will be described later, and to store the calculated SpO2 as a measurement result.
  • the control unit 20 collaborates with other components by executing a predetermined processing program under the control of the processor 22, calculates SpO2 based on the acquired biological signal and posture state signal, and calculates SpO2. This is stored in the memory 24 as a measurement result.
  • the control unit 20 functions as a computing device.
  • the measurement result may include, for example, a time stamp indicating the time when SpO2 was measured.
  • the calculated SpO2 is the SpO2 estimated in the reference posture state in consideration of the subject's current posture state. Details of the calculation of SpO2 will be described later.
  • the user interface unit 30 is a component that provides a user interface that functions interactively to a subject and / or a medical worker such as a doctor (hereinafter, these persons may be collectively referred to as a "user"). is there.
  • the user interface unit 30 receives, for example, an input operation from the user under the control of the processor 22, and / or displays, for example, the calculated SpO2 measurement result or the like to the user.
  • the user interface unit 30 may include a speaker, a vibrator, and the like.
  • the user interface unit 30 may be a touch panel.
  • the user can interactively operate the user interface unit 30 as a touch panel to display necessary information and make various settings of the biometric information measuring device 1.
  • the user interface unit 30 is configured as a part of the biometric information measuring device 1, but is not limited to this.
  • a part or all of the user interface unit 30 may be realized by an external computing device.
  • an external computing device is configured to be communicable with a control unit 20 via a communication interface unit 40, and a user operates a Web browser on the computing device to perform measurement results and / or the measurement results. You can refer to the analysis result for.
  • the biometric information measuring instrument 1 does not need to have the user interface unit 30, or may have a minimum configuration, and its housing size can be reduced.
  • the communication interface unit 40 is a component for connecting the biometric information measuring device 1 so as to be able to communicate with an external device.
  • the connection form between the communication interface unit 40 and the external device is not limited to wired and / or wireless, and the communication interface unit 40 adopts a configuration according to such a connection form.
  • the communication interface unit 40 may be designed in accordance with a USB standard, a Bluetooth (registered trademark) standard, a Wi-Fi (registered trademark) standard, or the like.
  • the communication interface unit 40 is defined as a USB mass storage class, and the measurement result stored in the memory 24 of the biometric information measuring device 1 is read out by an external device.
  • FIG. 2 is a block diagram for explaining the details of the control unit of the biometric information measuring instrument according to the embodiment of the present invention.
  • the control unit 20 of the biological information measuring device 1 includes, for example, a sensor control unit 201, a biological signal receiving unit 202, an attitude state signal receiving unit 203, an absorptivity ratio calculation unit 204, and an attitude state. It includes an estimation unit 205, a parameter set storage unit 206, a parameter set selection unit 207, a SpO2 calculation unit 208, and a measurement result storage unit 209.
  • the PPG sensor 12a is shown as the biosensor 12 of the sensor unit 10, and the inertial sensor 14a and the triaxial geomagnetic sensor 14b are shown as the motion sensor 14.
  • the inertial sensor 14a typically includes a 3-axis acceleration sensor and a 3-axis gyro sensor, and in combination with the 3-axis geomagnetic sensor 14b, functions as a 9-axis motion sensor.
  • the motion sensor 14 is not limited to these sensors, and may include a camera such as an image sensor or a spectrum sensor, for example.
  • the sensor control unit 201 controls the operation of the sensor unit 10. For example, the sensor control unit 201 performs light emission control for driving the light emitting unit of the PPG sensor 12a in order to start the measurement of SpO2 in accordance with the instruction from the user interface unit 30 based on the user's operation.
  • the first light emitting portion is typically a biological tissue (arterial blood).
  • the biological signal receiving unit 202 is an example of the biological signal acquisition unit, and the biological sensor 12 itself or the configuration including the biological sensor 12 and the biological signal receiving unit 202 can also be grasped as an example of the biological signal acquiring unit.
  • the biological signal receiving unit 202 outputs the received biological signal to the absorbance ratio calculation unit 204.
  • the attitude state signal receiving unit 203 receives or acquires attitude state signals output from various motion sensors 14 (in the example, the inertial sensor 14a and the geomagnetic sensor 14b), respectively.
  • the posture state signal receiving unit 203 is an example of the posture state signal acquisition unit, and the configuration including the motion sensor 14 itself or the motion sensor 14 and the posture state signal receiving unit 203 is also grasped as an example of the posture state signal acquisition unit. Can be done.
  • the attitude state signal receiving unit 203 outputs the received attitude state signal to the attitude state estimation unit 205.
  • the absorbance ratio calculation unit 204 calculates the absorbance ratio (R) to be used for calculating SpO2 based on the biological signal output from the biological signal receiving unit 202.
  • the absorbance ratio calculation unit 204 outputs the calculated absorbance ratio (R) to the SpO2 calculation unit.
  • the absorbance ratio (R) is a value calculated by a known method utilizing the difference in absorption coefficients of oxidized hemoglobin (O 2 Hb) and reduced hemoglobin (HHb) for light of different wavelengths. More specifically, the absorbance ratio (R) can be calculated by the following formula 1.
  • Red is the absorbance of the received red light (that is, the first reflected light)
  • IR is the absorbance of the received infrared light (that is, the second reflected light).
  • AC Red is the absorbance of the AC signal component (that is, the pulsating component) of the received red light Red
  • DC Red is the absorbance of the DC signal component of the received red light Red
  • AC IR is the AC signal of the received infrared light IR.
  • the absorbance of the component (that is, the pulsating component), DC IR is the absorbance of the DC signal component of the received infrared light IR.
  • the calculated absorbance ratio (R) is used for conversion to SpO2 according to the Beer-Lambert rule.
  • SpO2 is represented by the following definition formula. However, [O 2 Hb] is the oxidized hemoglobin concentration, and [HHb] is the reduced hemoglobin concentration. From this, SpO2 is calculated from the following theoretical formula in consideration of the Beer-Lambert law.
  • ⁇ HHb and Red are the molar extinction coefficient of red light Red with respect to reduced hemoglobin (HHb)
  • ⁇ O2Hb and Red are the molar extinction coefficient of red light Red with respect to oxidized hemoglobin (O 2 Hb)
  • ⁇ O2Hb and IR are hemoglobin oxide
  • ⁇ HHb, IR are the molar extinction coefficient of infrared light IR with respect to reduced hemoglobin (HHb).
  • SpO2 is calculated using a fixed parameter set linearly fitted to a region where SpO2 is 80 to 100%, for example, using the following formula and numerical value.
  • SpO2 ⁇ fix ⁇ fix ⁇ R... Equation 4
  • the biological information measuring instrument 1 of the present disclosure calculates SpO2 by using a parameter set in consideration of the posture state instead of the fixed parameter set, as described later.
  • the posture state estimation unit 205 estimates the posture state of the subject based on the posture signal output from the posture state signal receiving unit 203.
  • Postural states of the subject include, for example, the decubitus (supine and prone), sitting, and standing positions as well as the intermediate positions of these positions.
  • the posture state estimation unit 205 estimates one of the three posture states of the lying position, the sitting position (reclining), and the standing position.
  • the posture state estimation unit 205 sets the subject's posture state in a lying position. Presumed to be in a state.
  • the posture state estimation unit 205 sets the subject's posture state in a standing state. I presume.
  • the posture state estimation unit 205 sets the posture state of the subject in a sitting position. Presumed to be in a state.
  • the posture state estimation unit 205 may indicate the body position from the lying position to the standing position, for example, by an inclination angle.
  • the posture state estimation unit 205 outputs the estimated posture state to the parameter set selection unit 207. As described in other embodiments, the posture state estimation unit 205 may estimate the posture state of the subject based on the biological signal obtained from the biological sensor 12.
  • the parameter set storage unit 206 stores preset parameter sets corresponding to each of the plurality of posture state models.
  • the parameter set storage unit 206 can typically be formed as a storage area on the memory 24.
  • the parameter set includes, but is not limited to, some parameters for calculating SpO2 from the absorbance ratio (R), such as ⁇ , ⁇ , and ⁇ .
  • the parameter set is expressed as "parameter set ( ⁇ , ⁇ )" or "parameter set ( ⁇ , ⁇ , ⁇ )" as necessary.
  • the parameter set may include, for example, a recumbent parameter set corresponding to the recumbent model, a sitting parameter set corresponding to the sitting model, and a standing parameter set corresponding to the standing model. I can't.
  • these parameter sets are correction parameter sets for estimating SpO2 at the time of measurement in the reference posture state of the subject.
  • the parameter set can be defined, for example, from data empirically obtained in clinical trials and the like.
  • the parameter set selection unit 207 selects and reads at least one parameter from the plurality of parameter sets stored in the parameter set storage unit 206 based on the posture state estimated by the posture state estimation unit 205. For example, when the posture state output from the posture state estimation unit 205 indicates the sitting position state, the parameter set selection unit 207 extracts the sitting position parameter set from the parameter set storage unit 206. The parameter set selection unit 207 outputs the selected and read parameter set to the SpO2 calculation unit 208.
  • the parameter set ( ⁇ , ⁇ ) referred to here is composed of a value that considers the posture state of the subject, not a fixed value that does not consider the posture state as in the past. Therefore, by applying such a parameter set ( ⁇ , ⁇ ) to the absorbance ratio (R), SpO2 in the reference posture state, which is corrected for SpO2 in the posture state at the time of measurement, is calculated. become.
  • the SpO2 calculation unit 208 outputs the calculated SpO2 to the measurement result storage unit 209.
  • the measurement result storage unit 209 stores SpO2 output from the SpO2 calculation unit 208 as a measurement result.
  • the measurement result storage unit 209 can typically be formed as a storage area on the memory 24.
  • the user can, for example, operate the user interface unit 30 to browse the measurement results stored in the measurement result storage unit 209.
  • the posture state of the subject is observed, the optimum parameter set according to the observed posture state is selected, and the selected parameter set is calculated as the absorptivity. Since SpO2 is calculated by applying it to the ratio, it is possible to calculate SpO2 in the reference posture state, which is corrected for SpO2 in the posture state at the time of measurement.
  • the optimum parameter set is estimated from the preset parameter set according to the posture state estimated by the observation, and the estimated parameter set is calculated.
  • a biometric information measuring instrument for calculating SpO2 and a measuring method using the biometric information measuring instrument will be described by applying the absorptivity ratio.
  • FIG. 3 is a block diagram showing an example of the configuration of the biological information measuring instrument according to the embodiment of the present invention.
  • the biometric information measuring device 1 according to the present embodiment is different from the biometric information measuring device 1 according to the first embodiment in that a parameter set estimation unit 210 is provided instead of the parameter set selection unit 207. .. Further, the posture state estimation unit 205 of the present embodiment is configured to estimate the posture state based on the measured tilt angle, instead of selectively specifying the preset posture state.
  • the posture state estimation unit 205 estimates and outputs the posture state based on the posture state signal output from the posture state signal receiving unit 203. For example, the posture state estimation unit 205 identifies the posture state by the inclination angle between the lying position and the sitting position or the inclination angle between the sitting position and the standing position based on the posture state signal. The posture state estimation unit 205 outputs the posture state indicated by the tilt angle to the parameter set estimation unit 210.
  • the parameter set estimation unit 210 estimates the optimum parameter set to be used for calculating SpO2 based on the tilt angle output from the posture state estimation unit 205.
  • the parameter set estimation unit 210 is configured so that, for example, a parameter mixing ratio conversion map (hereinafter referred to as “mixing ratio conversion map”) as shown in FIG. 4A can be referred to.
  • the parameter mixing ratio indicates the ratio (weight) of mixing the corresponding parameters in different parameter sets.
  • the mixed ratio conversion map may be held in a predetermined storage area of the memory 24 with a predetermined data structure, or may be configured as a part of the parameter set estimation unit 210.
  • the mixing ratio conversion map is defined so that the mixing ratio changes non-linearly in relation to the tilt angle.
  • the parameter set estimation unit 210 extracts one or more parameter sets from the parameter set storage unit 206 according to the tilt angle. For example, when the tilt angle is 30 degrees between the recumbent position and the sitting position, the parameter set estimation unit 210 extracts the recumbent position parameter set and the sitting position parameter set set adjacent to the tilt angle. Subsequently, the parameter set estimation unit 210 refers to the corresponding mixing ratio conversion map, determines the mixing ratio between the extracted parameter sets from the inclination angle, and calculates the parameter set according to the determined mixing ratio.
  • the parameter set estimation unit 210 outputs the calculated parameter set to the SpO2 calculation unit 208 in the same manner as in the first embodiment.
  • the SpO2 calculation unit 208 is based on the absorbance ratio (R) output from the absorbance ratio calculation unit 204 and the parameter set ( ⁇ , ⁇ ) output from the parameter set selection unit 207, as in the first embodiment. To calculate SpO2.
  • the posture state is estimated by the tilt angle based on the posture state signal, one or two or more parameter sets are extracted according to the estimated tilt angle, and the mixing ratio is obtained.
  • the mixing ratio is determined from the tilt angle with reference to the conversion map, and the optimum parameter set is estimated or calculated using the determined mixing ratio. Therefore, more accurate SpO2 can be obtained regardless of the posture state of the subject. You will be able to calculate.
  • Example 2-1 modeling of a non-linear mixing ratio conversion map as shown in FIG. 4B will be described. However, in this example, for the sake of simplification of the explanation, it is between the lying position and the standing position (however, the supine position to the standing position to the prone position (prone position), and the supine position to the standing position and the standing position to the lying position).
  • the parameter set estimation unit 210 estimates the optimum parameter set by using one or more parameter sets according to the estimation model described here.
  • the parameter set estimation unit 210 estimates the optimum parameter set with reference to such a mixing ratio conversion map.
  • Example 2-2 In this example, the case where the mixture distribution of the above parameter set is expanded into multiple variables will be described.
  • the distribution functions f (x, y) and g (x, x, calculated using the tilt angle of the subject's posture state as multiple variables in the vertical direction (pitch angle) x and the horizontal direction (roll angle) y are used.
  • the mixing ratio of each parameter set is determined according to the value of the inclination angle (x, y). Therefore, the parameter set estimation unit 210 determines a more realistic mixing ratio from the tilt angle (x, y) specified based on the posture state signal detected by the motion sensor 14, for example, and determines the determined mixing ratio. Since the optimum parameter set is estimated or calculated by using the method, more accurate SpO2 can be calculated regardless of the posture state of the subject.
  • Modeling of the nonlinear mixture ratio conversion map is also realized by using nonlinear functions based on various n-th order polynomials instead of the above mixture distribution function.
  • f (x) is represented by the following non-linear function.
  • f (x) is It may be.
  • SpO2 is based on the absorptivity ratio (R) calculated based on the detected biological signal and the parameter set ( ⁇ 1 , ⁇ 1 ) corresponding to the posture state estimated according to the posture state signal.
  • R absorptivity ratio
  • a biological information measuring instrument for estimating a parameter set ( ⁇ 2 , ⁇ 2 ) when changing to another posture state in a short period of time and a measuring method using the same will be described. That is, the present embodiment utilizes the characteristic that the SpO2 value does not change or changes very little immediately before and after the change in the posture state of the subject.
  • FIG. 7 is a block diagram showing an example of the configuration of the biological information measuring instrument according to the embodiment of the present invention.
  • the biological information measuring instrument 1 according to the present embodiment is configured so that the parameter set estimation unit 210 can newly estimate the parameter set based on the SpO2 calculated by the SpO2 calculation unit 208. It is different from the embodiment.
  • the functions and / or configurations of the other components in the figure are the same as those described above, and thus the description thereof will be omitted.
  • the parameter set storage unit 206 stores, for example, the sitting parameter set ( ⁇ Sitting , ⁇ Sitting ).
  • the parameter set estimation unit 210 estimates a new parameter set based on the above-mentioned sitting parameter set, SpO2 value, and absorbance ratio, and further based on the absorbance ratio calculated in the immediately preceding posture state. Is also good.
  • the parameter set estimation unit 210 may be configured to receive the absorbance ratio and the attitude state in time series from the absorbance ratio calculation unit 204 and the attitude state estimation unit 205, respectively.
  • the parameter set estimation unit 210 stores the newly estimated parameter set as a reclining parameter set in the parameter set storage unit 206.
  • the posture state of the subject changes to a state other than these during the measurement of SpO2. Even so, it is possible to estimate the parameter set and add the estimated new parameter set to the parameter set storage unit 206 at any time so that the parameter sets in various posture states can be accumulated. Become.
  • is a function according to the posture state and the absorbance ratio R.
  • the biological information measuring device 1 shown in the figure is the above-described embodiment in that the parameter set selection unit 207 receives the posture state estimated from the posture state estimation unit 205 and also receives the absorbance ratio from the absorbance ratio calculation unit 204. It is different from the configuration in.
  • the parameter set selection unit 207 is the lying state corresponding to the lying state and the absorbance ratio.
  • a parameter set ( ⁇ fix , ⁇ fix , ⁇ Lying ) including the position parameter ⁇ Lying is selected, and this is output to the SpO2 calculation unit 208.
  • the parameter set selection unit 207 selects the recumbent position parameter ⁇ Lying corresponding to the recumbent state and the absorbance ratio, and combines this with the fixed parameter set ( ⁇ fix , ⁇ fix ) to create a new parameter set ( ⁇ fix). , ⁇ fix , ⁇ Lying ).
  • the SpO2 calculation unit 208 of the present embodiment calculates SpO2 using the following formula.
  • SpO2 ⁇ fix + ⁇ fix ⁇ R + ⁇ ... Equation 19
  • the SpO2 calculation unit 208 calculates SpO2 according to the above formula based on the absorbance ratio (R) based on the detected biological signal and the selected parameter set ( ⁇ fix , ⁇ fix , ⁇ Lying ).
  • the biological information measuring device 1 may be configured by the parameter set estimation unit 210 instead of the parameter set selection unit 207. That is, the parameter set estimation unit 210 selects one or two or more parameters ⁇ according to the estimated posture state, estimates the optimum parameter ⁇ from these parameters ⁇ , and sets a parameter set based on the parameter ⁇ ( ⁇ fix , ⁇ fix , ⁇ ) may be output to SpO2.
  • the vessel and the measurement method using the vessel will be described.
  • the parameter set estimation unit 210 detects, for example, the SpO2 value calculated when the posture state stored in the measurement result storage unit 209 is the recumbent state, the fixed parameter set ( ⁇ fix , ⁇ fix ), and the detection. Based on the absorbance ratio (R) calculated based on the obtained biological signal, the parameter ⁇ when the posture state is the sitting state is estimated.
  • the posture state is estimated by using the biological signal obtained from the biological sensor 12 in addition to the posture state signal obtained from the motion sensor 14, and the optimum parameter set corresponding to the estimated posture state is selected.
  • a biological information measuring device to be estimated and a measuring method using the same will be described.
  • the biological signal receiving unit 202 receives the biological signal output from the biological sensor 12, it outputs it to the absorbance ratio calculation unit 204 and the posture state estimation unit 205, respectively. Further, when the posture state signal receiving unit 203 receives the posture state signal output from the motion sensor 14, the posture state signal receiving unit 203 outputs the posture state signal to each of the posture state estimation units 205. From this, the posture state estimation unit 205 estimates the posture state of the subject based on the biological signal and the posture state signal.
  • the posture state of the subject can generally be estimated using the posture state signal obtained by the motion sensor 14, but when comparing the standing position and the sitting position, for example, which of the posture state signals obtained from the inertial sensor is used alone. It is difficult to estimate whether it is in a postural state.
  • the present inventors have confirmed that the biological signal detected by the biological sensor 12 differs depending on the posture state of the subject. Therefore, for example, the posture state estimation unit 205 provisionally estimates the posture state of the subject based on the posture state signal, and finally estimates the posture state based on the biological signal for the provisionally estimated posture state. It is configured to do.
  • the posture state estimation unit 205 estimates the posture state by using the biological signal obtained from the biological sensor 12 in addition to the posture state signal obtained from the motion sensor 14. , A more accurate posture state will be obtained, and therefore the parameter set selected will also be more accurate.
  • the parameter set ( ⁇ , ⁇ , ⁇ ) including the parameters ⁇ , ⁇ , and ⁇ has been described, but the present invention is not limited to these parameters.
  • a parameter set including parameters considering such noise may be used.
  • steps, operations or functions may be performed in parallel or in a different order as long as the results are not inconsistent.
  • the steps, actions and functions described are provided by way of example only, and some of the steps, actions and functions can be omitted and combined with each other to the extent that they do not deviate from the gist of the invention. It may be one, or other steps, actions or functions may be added.
  • Biometric information measuring device 10 ... Sensor unit 12 ... Biological sensor 12a ... PPG sensor 14 ... Motion sensor 14a ... Inertial sensor 14b ... Geomagnetic sensor 20 ... Control unit 201 ... Sensor control unit 202 ... Biometric signal receiving unit 203 ... Attitude state signal Reception unit 204 ... Absorption ratio calculation unit 205 ... Attitude state estimation unit 206 ... Parameter set storage unit 207 ... Parameter set selection unit 208 ... SpO2 calculation unit 209 ... Measurement result storage unit 210 ... Parameter set estimation unit 30 ... User interface unit 40 ... Communication interface section

Abstract

The present invention provides a biological information measurer provided with: a biological signal acquisition unit which acquires a biological signal of a subject, which is output from a biosensor including a PPG sensor; a posture state signal acquisition unit which acquires a posture state signal of the subject, which is output from a motion sensor; a posture state estimation unit which estimates a posture state of the subject on the basis of the posture state signal acquired by the posture state signal acquisition unit; and an SpO2 calculation unit which calculates SpO2 of the subject at the time of being in a reference posture state on the basis of the biological signal acquired by the biological signal acquisition unit and the posture state estimated by the posture state estimation unit. The SpO2 calculation unit calculates the SpO2 by applying, to an absorbance ratio calculated on the basis of the acquired biological signal, a prescribed parameter set according to the estimated posture state.

Description

生体情報測定器及びこれを用いた生体情報測定方法Biometric information measuring instrument and biometric information measuring method using it
 本発明は、生体情報測定器及びこれを用いた生体情報測定方法に関する。 The present invention relates to a biological information measuring device and a biological information measuring method using the same.
 被験者の生体信号及び生体情報を非侵襲的にモニタリングする手法の一つとして、光電式容積脈波測定法(Photoplethysmography:PPG)がある。PPGは、被験者の生体表面に所定の波長を有する光を照射し、そこを反射又は透過する光量の時系列変化を測定することで、生体組織内の血流の変化をモニタリングする手法である。血流は、複数の生体システムによる影響を受けることから、PPGにより生体信号を測定することより、例えば、脈拍数(HB)、心拍変動(HRV)、血管伸縮性(RI)、動脈血酸素飽和度(SpO2)、局所組織酸素飽和度(rSO2)といった様々な生体指標を得ることができる。 Photoplethysmography (PPG) is one of the methods for non-invasively monitoring the biological signal and biological information of a subject. PPG is a method of monitoring changes in blood flow in a living tissue by irradiating the surface of the living body of a subject with light having a predetermined wavelength and measuring a time-series change in the amount of light reflected or transmitted therethrough. Since blood flow is affected by multiple biological systems, by measuring biological signals with PPG, for example, pulse rate (HB), heart rate variability (HRV), vascular elasticity (RI), arterial oxygen saturation Various biological indicators such as (SpO2) and local tissue oxygen saturation (rSO2) can be obtained.
 PPGによる測定においては、被験者の姿勢及び/又は体動に依存して、体の各部位の曲がり方による血管系が変化し、また、脂肪や筋肉の移動による体組成が変化してしまうため、精度の高い測定が要求される場合にあっては、従前、被験者は、安静な姿勢が指定され、測定中、その姿勢のままでいることが強いられていた。したがって、測定中に、被験者の姿勢が変化した場合には、正しい測定結果が得られないおそれがある。 In the measurement by PPG, the vascular system changes depending on how each part of the body bends, and the body composition changes due to the movement of fat and muscle, depending on the posture and / or body movement of the subject. In the past, when highly accurate measurements were required, the subject was assigned a resting posture and was forced to remain in that posture during the measurement. Therefore, if the posture of the subject changes during the measurement, the correct measurement result may not be obtained.
 下記に示す特許文献1には、被験者の体動と呼吸器系疾患症状との因果関係を正確に求めるための技術が開示されている。具体的には、かかる特許文献1には、パルスオキシメータとPCとから構成される睡眠評価システムであって、該パルスオキシメータが、被験者の測定指から血中酸素飽和度情報に関する計測データを取得するプローブと、被験者の体動情報に関する計測データを取得する3軸加速度センサと、該プローブ及び3軸加速度センサにより計測される計測データを格納する記憶部とを備え、該PCが、該記憶部に格納されている計測データを取得して、該血中酸素飽和度の変動と被験者の体動との関係を解析する処理機能を備える睡眠評価システムが開示されている。 Patent Document 1 shown below discloses a technique for accurately obtaining a causal relationship between a subject's body movement and respiratory disease symptoms. Specifically, Patent Document 1 describes a sleep evaluation system composed of a pulse oximeter and a PC, and the pulse oximeter obtains measurement data regarding blood oxygen saturation information from a subject's measuring finger. The PC includes a probe to be acquired, a 3-axis acceleration sensor that acquires measurement data related to the body movement information of the subject, and a storage unit that stores the measurement data measured by the probe and the 3-axis acceleration sensor. A sleep evaluation system having a processing function of acquiring measurement data stored in the unit and analyzing the relationship between the fluctuation of blood oxygen saturation and the body movement of a subject is disclosed.
特開2006-263054号公報Japanese Unexamined Patent Publication No. 2006-263504
 しかしながら、特許文献1に示される上記の技術は、呼吸器系疾患を有する被験者の診断において、被験者の体動に同期して、単に、血中酸素飽和度が低下するか否かを把握するに止まり、被験者の血中酸素飽和度そのものを正確に求めることに向けられたものではなかった。つまり、本来、血中酸素飽和濃度は、被験者が安静な正しい姿勢をとった状態で測定されることにより、その正しい値が得られるべきところ、上記の技術において、被験者の姿勢に変化があった場合に測定され示される血中酸素飽和濃度は、本来の理想的な状態で測定されるべき値からずれが生じたものとなる。 However, the above technique shown in Patent Document 1 simply determines whether or not the blood oxygen saturation decreases in synchronization with the body movement of the subject in the diagnosis of the subject having a respiratory disease. It stopped and was not aimed at accurately determining the subject's blood oxygen saturation itself. That is, originally, the blood oxygen saturation concentration should be measured in a state where the subject takes a correct posture at rest, and the correct value should be obtained. However, in the above technique, the posture of the subject has changed. The blood oxygen saturation concentration measured and shown in this case deviates from the value that should be measured in the original ideal state.
 そこで、本発明は、被験者の姿勢及び/又は体動が変化した場合であっても、その生体情報を正確に算出することができる生体情報測定器及びこれを用いた生体情報測定方法を提供することを目的とする。 Therefore, the present invention provides a biological information measuring device capable of accurately calculating the biological information even when the posture and / or body movement of the subject changes, and a biological information measuring method using the same. The purpose is.
 より具体的には、本発明の一つの目的は、被験者の姿勢及び/又は体動が変化した場合であっても、その姿勢及び/又は体動に応じた補正を行うことにより、被験者のSpO2をより正確に算出することができる生体情報測定器及びこれを用いた生体情報測定方法を提供することを目的とする。 More specifically, one object of the present invention is to make a correction according to the posture and / or body movement of the subject even if the posture and / or body movement of the subject changes. It is an object of the present invention to provide a biological information measuring device capable of more accurately calculating the above and a biological information measuring method using the same.
 上記課題を解決するための本発明は、以下に示す発明特定事項又は技術的特徴を含んで構成される。 The present invention for solving the above problems is configured to include the following invention-specific matters or technical features.
 ある観点に従う本発明は、生体情報測定器である。前記生体情報測定器は、被験者の生体信号を取得する生体信号取得部と、前記被験者の姿勢状態信号を取得する姿勢状態信号取得部とを備え得る。前記被験者の生体信号は、PPGセンサを含む生体センサから出力され得る。また、前記被験者の姿勢状態信号は、モーションセンサから出力され得る。前記生体情報測定器は、更に、前記姿勢状態信号取得部により取得した姿勢状態信号に基づいて、前記被験者の姿勢状態を推定する姿勢状態推定部と、前記生体信号取得部により取得した前記生体信号と前記姿勢状態推定部により推定された前記姿勢状態に基づいて、前記被験者の基準姿勢状態時におけるSpO2を算出するSpO2算出部とを備え得る。前記SpO2算出部は、前記取得した生体信号に基づいて算出される吸光度比に対して、前記推定された姿勢状態に応じたパラメータセットを適用することにより、前記SpO2を算出し得る。 The present invention according to a certain viewpoint is a biological information measuring instrument. The biological information measuring device may include a biological signal acquisition unit that acquires the biological signal of the subject and a posture state signal acquisition unit that acquires the posture state signal of the subject. The biological signal of the subject can be output from a biological sensor including a PPG sensor. Further, the posture state signal of the subject can be output from the motion sensor. The biological information measuring device further includes a posture state estimation unit that estimates the posture state of the subject based on the posture state signal acquired by the posture state signal acquisition unit, and the biological signal acquired by the biological signal acquisition unit. And the SpO2 calculation unit that calculates SpO2 in the reference posture state of the subject based on the posture state estimated by the posture state estimation unit. The SpO2 calculation unit can calculate the SpO2 by applying a parameter set according to the estimated posture state to the absorbance ratio calculated based on the acquired biological signal.
 前記生体情報測定器は、複数の姿勢状態モデルに対応する複数のパラメータセットを記憶するパラメータセット記憶部を更に備え得る。 The biological information measuring instrument may further include a parameter set storage unit that stores a plurality of parameter sets corresponding to a plurality of posture state models.
 また、前記生体情報測定器は、前記パラメータセット記憶部から、前記推定された姿勢状態に対応する一の前記所定のパラメータセットを選択するパラメータセット選択部を更に備え得る。そして、前記SpO2算出部は、前記選択された一の所定のパラメータセットに基づいて、前記吸光度比を補正し得る。 Further, the biological information measuring device may further include a parameter set selection unit that selects one of the predetermined parameter sets corresponding to the estimated posture state from the parameter set storage unit. Then, the SpO2 calculation unit can correct the absorbance ratio based on the selected predetermined parameter set.
 また、前記生体情報測定器は、前記パラメータセット記憶部から、前記推定された姿勢状態に対応する1又は2以上の前記パラメータセットを選択し、前記選択した1又は2以上のパラメータセットに基づく補間計算により、一のパラメータセットを推定するパラメータセット推定部を更に備え得る。そして、前記SpO2算出部は、前記推定された一のパラメータセットに基づいて、前記吸光度比を補正し得る。 Further, the biometric information measuring instrument selects one or two or more of the parameter sets corresponding to the estimated posture state from the parameter set storage unit, and performs interpolation based on the selected one or more parameter sets. Further, a parameter set estimation unit for estimating one parameter set may be provided by calculation. Then, the SpO2 calculation unit can correct the absorbance ratio based on the estimated one parameter set.
 また、前記SpO2算出部は、確率密度関数を用いた前記補間計算により、前記吸光度比を補正し得る。或いは、前記SpO2算出部は、所定の非線形関数を用いた前記補間計算により、前記吸光度比を補正し得る。 Further, the SpO2 calculation unit can correct the absorbance ratio by the interpolation calculation using the probability density function. Alternatively, the SpO2 calculation unit can correct the absorbance ratio by the interpolation calculation using a predetermined nonlinear function.
 また、前記生体情報測定器は、前記推定された姿勢状態及び前記吸光度比に基づいて、特定の姿勢状態に対応するパラメータセットを推定するパラメータセット推定部を更に備え得る。そして、前記パラメータセット推定部は、前記推定したパラメータセットを前記パラメータセット記憶部に格納し得る。 Further, the biometric information measuring instrument may further include a parameter set estimation unit that estimates a parameter set corresponding to a specific posture state based on the estimated posture state and the absorbance ratio. Then, the parameter set estimation unit may store the estimated parameter set in the parameter set storage unit.
 また、前記姿勢状態推定部は、前記少なくとも1つの生体センサから出力される前記生体信号に基づいて、前記被験者の姿勢状態を推定し得る。 Further, the posture state estimation unit can estimate the posture state of the subject based on the biological signal output from at least one biological sensor.
 また、前記少なくとも1つの生体センサは、血圧センサ、脈拍センサ 、ECGセンサ及び筋電センサの少なくとも1つを含み得る。 Further, the at least one biosensor may include at least one of a blood pressure sensor, a pulse sensor, an ECG sensor and an myoelectric sensor.
 また、前記モーションセンサは、重力センサ、加速度センサ、ジャイロセンサ、地磁気センサ、感圧センサ、超音波センサ、赤外センサ、イメージセンサ、及びスペクトルセンサのうちの少なくとも1つを含む。 Further, the motion sensor includes at least one of a gravity sensor, an acceleration sensor, a gyro sensor, a geomagnetic sensor, a pressure sensitive sensor, an ultrasonic sensor, an infrared sensor, an image sensor, and a spectrum sensor.
 また、別の観点に従う本発明は、生体情報測定器を用いた生体情報測定方法であり得る。前記方法は、被験者の生体信号を取得することと、前記被験者の姿勢状態信号を取得することとを含み得る。前記被験者の生体信号は、PPGセンサを含む生体センサから出力され得る。また、前記被験者の姿勢状態信号は、モーションセンサから出力され得る。前記方法はまた、前記取得した姿勢状態信号に基づいて、前記被験者の姿勢状態を推定することと、前記取得した生体信号と前記推定された姿勢状態に基づいて、前記被験者の基準姿勢状態時におけるSpO2を算出することとを含み得る。そして、前記SpO2を算出することは、前記取得した生体信号に基づいて算出される吸光度比に対して、前記推定された姿勢状態に応じたパラメータセットを適用することにより、前記SpO2を算出することを含み得る。 Further, the present invention according to another viewpoint can be a biometric information measuring method using a biometric information measuring device. The method may include obtaining a biological signal of the subject and obtaining a posture state signal of the subject. The biological signal of the subject can be output from a biological sensor including a PPG sensor. Further, the posture state signal of the subject can be output from the motion sensor. The method also estimates the posture state of the subject based on the acquired posture state signal, and at the time of the reference posture state of the subject based on the acquired biological signal and the estimated posture state. It may include calculating SpO2. Then, to calculate the SpO2, the SpO2 is calculated by applying a parameter set according to the estimated posture state to the absorbance ratio calculated based on the acquired biological signal. May include.
 更に、別の観点に従う本発明は、コンピューティングデバイスにおいて、プロセッサの制御の下、前記方法を実行するためのコンピュータプログラム及びこれを記録した記録媒体としても構成され得る。 Furthermore, the present invention according to another viewpoint can also be configured as a computer program for executing the method and a recording medium on which the method is executed in a computing device under the control of a processor.
 なお、本明細書等において、「手段」とは、単に物理的手段を意味するものではなく、その手段が有する機能をソフトウェアによって実現されるものも含む。また、1つの手段が有する機能が2つ以上の物理的手段により実現されても良いし、2つ以上の手段の機能が1つの物理的手段により実現されてもよい。 Note that, in the present specification and the like, the "means" does not simply mean a physical means, but also includes a means in which the function of the means is realized by software. Further, the function of one means may be realized by two or more physical means, or the function of two or more means may be realized by one physical means.
 また、本開示において、「システム」とは、複数の装置(又は特定の機能を実現する機能モジュール)が論理的に集合した物を含み、各装置や機能モジュールが物理的に単一の物として構成されるか又は別体の物として構成されるかは問わない。 Further, in the present disclosure, the "system" includes a device in which a plurality of devices (or functional modules that realize a specific function) are logically assembled, and each device or functional module is physically a single device. It does not matter whether it is composed or as a separate object.
 本発明によれば、被験者の姿勢及び/又は体動が変化した場合であっても、その生体情報を正確に算出することができるようになる。 According to the present invention, even when the posture and / or body movement of the subject changes, the biological information can be accurately calculated.
 本発明の他の技術的特徴、目的、及び作用効果及び利点は、添付した図面を参照して説明される以下の実施形態により明らかにされる。 Other technical features, objectives, effects and advantages of the present invention will be clarified by the following embodiments described with reference to the accompanying drawings.
本発明の一実施形態に係る生体情報測定器の構成の一例を示すブロックダイアグラムである。It is a block diagram which shows an example of the structure of the biological information measuring instrument which concerns on one Embodiment of this invention. 本発明の一実施形態に係る生体情報測定器の制御部の詳細を説明するためのブロックダイアグラムである。It is a block diagram for demonstrating the detail of the control part of the biological information measuring instrument which concerns on one Embodiment of this invention. 本発明の一実施形態に係る生体情報測定器の構成の一例を示すブロックダイアグラムである。It is a block diagram which shows an example of the structure of the biological information measuring instrument which concerns on one Embodiment of this invention. 本発明の一実施形態に係る生体情報測定器におけるパラメータ混合比率マップの一例を示す図である。It is a figure which shows an example of the parameter mixing ratio map in the biological information measuring instrument which concerns on one Embodiment of this invention. 被験者の姿勢状態に応じて仮定された体組成分布の一例を示す図である。It is a figure which shows an example of the body composition distribution assumed according to the posture state of a subject. 被験者の姿勢状態に応じて仮定された体組成分布の一例を示す図である。It is a figure which shows an example of the body composition distribution assumed according to the posture state of a subject. 本発明の一実施形態に係る生体情報測定器の構成の一例を示すブロックダイアグラムである。It is a block diagram which shows an example of the structure of the biological information measuring instrument which concerns on one Embodiment of this invention. 本発明の一実施形態に係る生体情報測定器の構成の一例を示すブロックダイアグラムである。It is a block diagram which shows an example of the structure of the biological information measuring instrument which concerns on one Embodiment of this invention.
 以下、図面を参照して本発明の実施の形態を説明する。ただし、以下に説明する実施形態は、あくまでも例示であり、以下に明示しない種々の変形や技術の適用を排除する意図はない。本発明は、その趣旨を逸脱しない範囲で種々変形(例えば各実施形態を組み合わせる等)して実施することができる。また、以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付して表している。図面は模式的なものであり、必ずしも実際の寸法や比率等とは一致しない。図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることがある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiments described below are merely examples, and there is no intention of excluding the application of various modifications and techniques not specified below. The present invention can be implemented in various modifications (for example, by combining each embodiment) without departing from the spirit of the present invention. Further, in the description of the following drawings, the same or similar parts are designated by the same or similar reference numerals. The drawings are schematic and do not necessarily match the actual dimensions and ratios. Even between drawings, parts with different dimensional relationships and ratios may be included.
[第1の実施形態]
 本実施形態では、SpO2の測定に際して、被験者の姿勢状態を観測し、観測された姿勢状態に応じた最適なパラメータセットを選択し、選択したパラメータセットを、算出された吸光度比に適用することにより、SpO2を算出する生体情報測定器及びこれを用いた測定方法が説明される。
[First Embodiment]
In the present embodiment, when measuring SpO2, the posture state of the subject is observed, the optimum parameter set according to the observed posture state is selected, and the selected parameter set is applied to the calculated absorptivity ratio. , A biological information measuring instrument for calculating SpO2 and a measuring method using the same will be described.
 図1は、本発明の一実施形態に係る生体情報測定器の構成の一例を示すブロックダイアグラムである。同図に示す生体情報測定器1は、被験者の生体指標の1つである、SpO2を測定するための装置であり、例えば、センサ部10と、制御部20と、ユーザインタフェース部30と、通信インタフェース部40といったコンポーネントを含み構成される。生体情報測定器1は、一般に、パルスオキシメータと称されることもあるが、これに限定されない。生体情報測定器1は、例えば、これらのコンポーネントが1つの筐体(図示せず)に収容された一体型として構成されても良い。このような一体型の生体情報測定器1は、被験者の例えば胸部や指に装着され得る。他の例として、生体情報測定器1は、センサ部10等の全部又はその一部が筐体とは別体となるように構成されても良い。或いは、幾つかのコンポーネント、例えば、制御部20、ユーザインタフェース部30、及び通信インタフェース部40が、1つのコントローラボード又は制御装置本体として一体的に構成されても良い。或いは、生体情報測定器1は、制御部20の機能の一部が外部の装置(例えばコンピューティングデバイス)により実行されるように構成されても良い。 FIG. 1 is a block diagram showing an example of the configuration of the biological information measuring instrument according to the embodiment of the present invention. The biometric information measuring device 1 shown in the figure is a device for measuring SpO2, which is one of the biometric indexes of the subject. For example, the sensor unit 10, the control unit 20, and the user interface unit 30 communicate with each other. It includes components such as the interface unit 40. The biological information measuring instrument 1 is generally referred to as a pulse oximeter, but is not limited thereto. The biometric information measuring instrument 1 may be configured as an integrated type in which these components are housed in one housing (not shown), for example. Such an integrated biometric information measuring device 1 can be attached to, for example, the chest or a finger of a subject. As another example, the biometric information measuring instrument 1 may be configured such that all or a part of the sensor unit 10 and the like is separate from the housing. Alternatively, several components, for example, the control unit 20, the user interface unit 30, and the communication interface unit 40 may be integrally configured as one controller board or a control device main body. Alternatively, the biometric information measuring device 1 may be configured such that a part of the functions of the control unit 20 is executed by an external device (for example, a computing device).
 センサ部10は、例えば、少なくとも1つの生体センサ12と、少なくとも1つのモーションセンサ14とを含み構成される。生体センサ12は、被験者の生体現象を観測し、生体現象に基づく生体信号を検出して出力するセンサである。生体センサ12は、典型的には、SpO2を測定するためのPPGセンサ12aを含む(図2参照)。PPGセンサ12aは、当業者にとって自明なように、2種類の波長の光(赤色光及び赤外光)を発光するための発光部とこれらの光を受光するための受光部とを備えたアクティブセンサであり、例えば、透過型及び反射型がある。本開示では、PPGセンサ12aは、反射型であるものとするが、これに限られない。反射型のPPGセンサ12aは、光が照射された生体からの反射光(散乱光や拡散光等を含み得る。)を受光する。また、後述されるように、PPGセンサ12aにより検出された生体信号は、被験者の姿勢及び/又は体動の状態(以下「姿勢状態」という。)を推定するために用いられ得る。言い換えれば、PPGセンサ12aにより検出された生体信号の変化は、被験者の姿勢状態の変化とみなされ得る。姿勢状態は、例えば、被験者の手や上腕の上げ下げといった特定部位の動きの状態を含み得る。また、生体センサ12は、血圧センサ、脈拍センサ、ECGセンサ、及び筋電センサの少なくとも何れかを含んでも良い。これらの生体センサ12の少なくとも幾つかは、例えば、そのセンサの特性に応じた被験者の測定部位又は箇所に装着され、生体信号を検出する。生体センサ12が検出した生体信号は、制御部20に出力される。 The sensor unit 10 includes, for example, at least one biosensor 12 and at least one motion sensor 14. The biological sensor 12 is a sensor that observes a biological phenomenon of a subject, detects and outputs a biological signal based on the biological phenomenon. The biosensor 12 typically includes a PPG sensor 12a for measuring SpO2 (see FIG. 2). As is obvious to those skilled in the art, the PPG sensor 12a is an active unit including a light emitting unit for emitting light of two types of wavelengths (red light and infrared light) and a light receiving unit for receiving these lights. It is a sensor, and there are, for example, a transmissive type and a reflective type. In the present disclosure, it is assumed that the PPG sensor 12a is a reflective type, but the present invention is not limited to this. The reflection type PPG sensor 12a receives the reflected light (which may include scattered light, diffused light, etc.) from the living body irradiated with the light. Further, as will be described later, the biological signal detected by the PPG sensor 12a can be used to estimate the posture and / or body movement state (hereinafter referred to as “posture state”) of the subject. In other words, the change in the biological signal detected by the PPG sensor 12a can be regarded as the change in the posture state of the subject. The posture state may include a state of movement of a specific part such as raising and lowering the subject's hand and upper arm. Further, the biological sensor 12 may include at least one of a blood pressure sensor, a pulse sensor, an ECG sensor, and an electromyographic sensor. At least some of these biological sensors 12 are attached to, for example, a measurement site or location of a subject according to the characteristics of the sensor to detect biological signals. The biological signal detected by the biological sensor 12 is output to the control unit 20.
 モーションセンサ14は、被験者の姿勢状態を観測し、姿勢状態に関する信号(以下「姿勢状態信号」という。)を検出して出力するセンサである。モーションセンサ14には、既知のものを用いることができる。一例として、モーションセンサ14は、重力センサ、加速度センサ、ジャイロセンサ(これらをまとめて「慣性センサ」と称することもある。)、地磁気センサ、感圧センサ、超音波センサ、赤外センサ、イメージセンサ、及びスペクトルセンサのうちの少なくとも1つを含み得る。モーションセンサ14が検出した姿勢状態信号は、制御部20に出力される。なお、モーションセンサ14の幾つかは、被験者に直接的に装着されず、例えば、被験者から離れた位置から観測するように構成され配置され得る。例えば、イメージセンサは、カメラとして被験者を撮像し、その撮像信号を生体情報測定器1又は外部のコンピューティングデバイスに出力するように構成され得る。 The motion sensor 14 is a sensor that observes the posture state of the subject, detects and outputs a signal related to the posture state (hereinafter referred to as "posture state signal"). A known motion sensor 14 can be used. As an example, the motion sensor 14 includes a gravity sensor, an acceleration sensor, a gyro sensor (these may be collectively referred to as an "inertial sensor"), a geomagnetic sensor, a pressure sensor, an ultrasonic sensor, an infrared sensor, and an image sensor. , And at least one of the spectrum sensors. The posture state signal detected by the motion sensor 14 is output to the control unit 20. Some of the motion sensors 14 are not directly attached to the subject, and may be configured and arranged so as to observe from a position away from the subject, for example. For example, the image sensor may be configured to image the subject as a camera and output the imaged signal to the biometric information measuring instrument 1 or an external computing device.
 制御部20は、典型的には、プロセッサ22とメモリ24とを含み構成され、プロセッサ22の制御の下、生体情報測定器1の動作を統括的に制御するコンポーネントである。メモリ24は、例えば、処理プログラムや各種の設定情報を保持する。処理プログラムは、例えば、幾つかのプログラムモジュールを含み構成され得る。また、本実施形態では、メモリ24は、後述するSpO2の算出に必要な1又は2以上のパラメータセットを記憶するとともに、算出したSpO2を測定結果として記憶するように構成される。例えば、制御部20は、プロセッサ22の制御の下、所定の処理プログラムを実行することにより、他のコンポーネントと協働し、取得した生体信号と姿勢状態信号とに基づいて、SpO2を算出し、これを測定結果としてメモリ24に保存する。この意味において、制御部20は、コンピューティングデバイスとして機能する。測定結果は、例えば、SpO2が測定された時刻を示すタイムスタンプを含み得る。本実施形態では、算出されるSpO2は、被験者の現在の姿勢状態を考慮して、基準となる姿勢状態において推定されるSpO2である。SpO2の算出の詳細については、後述する。 The control unit 20 is typically configured to include a processor 22 and a memory 24, and is a component that comprehensively controls the operation of the biometric information measuring device 1 under the control of the processor 22. The memory 24 holds, for example, a processing program and various setting information. The processing program may be configured to include, for example, several program modules. Further, in the present embodiment, the memory 24 is configured to store one or more parameter sets necessary for calculating SpO2, which will be described later, and to store the calculated SpO2 as a measurement result. For example, the control unit 20 collaborates with other components by executing a predetermined processing program under the control of the processor 22, calculates SpO2 based on the acquired biological signal and posture state signal, and calculates SpO2. This is stored in the memory 24 as a measurement result. In this sense, the control unit 20 functions as a computing device. The measurement result may include, for example, a time stamp indicating the time when SpO2 was measured. In the present embodiment, the calculated SpO2 is the SpO2 estimated in the reference posture state in consideration of the subject's current posture state. Details of the calculation of SpO2 will be described later.
 ユーザインタフェース部30は、被験者及び/又は医者等の医療従事者(以下、これらの者を総称して「ユーザ」ということもある。)に対して、インタラクティブに機能するユーザインタフェースを提供するコンポーネントである。ユーザインタフェース部30は、例えば、プロセッサ22の制御の下、ユーザからの入力操作を受け付けて、及び/又は、ユーザに対して例えば算出したSpO2の測定結果等を表示する。ユーザインタフェース部30の簡単な構成例としては、電源ボタンとLEDやLCD等の表示器とによって実現され得る。また、ユーザインタフェース部30は、スピーカやバイブレータ等を含んでいても良い。他の例として、ユーザインタフェース部30は、タッチパネルであっても良い。ユーザは、例えば、タッチパネルとしてのユーザインタフェース部30をインタラクティブに操作して、必要な情報を表示させたり、生体情報測定器1の各種の設定をしたりすることができる。 The user interface unit 30 is a component that provides a user interface that functions interactively to a subject and / or a medical worker such as a doctor (hereinafter, these persons may be collectively referred to as a "user"). is there. The user interface unit 30 receives, for example, an input operation from the user under the control of the processor 22, and / or displays, for example, the calculated SpO2 measurement result or the like to the user. As a simple configuration example of the user interface unit 30, it can be realized by a power button and a display such as an LED or an LCD. Further, the user interface unit 30 may include a speaker, a vibrator, and the like. As another example, the user interface unit 30 may be a touch panel. For example, the user can interactively operate the user interface unit 30 as a touch panel to display necessary information and make various settings of the biometric information measuring device 1.
 なお、本開示では、ユーザインタフェース部30は、生体情報測定器1の一部として構成されているが、これに限られない。例えば、ユーザインタフェース部30の一部又は全部は、外部のコンピューティングデバイスによって実現されても良い。一例として、外部のコンピューティングデバイスは、通信インタフェース部40を介して制御部20と通信可能に構成され、ユーザは、コンピューティングデバイス上のWebブラウザを操作して、測定結果及び/又は該測定結果に対する解析結果を参照し得る。このような構成により、生体情報測定器1は、ユーザインタフェース部30を有する必要がなく、又は最小構成で良く、その筐体サイズを小さくすることができる。 In the present disclosure, the user interface unit 30 is configured as a part of the biometric information measuring device 1, but is not limited to this. For example, a part or all of the user interface unit 30 may be realized by an external computing device. As an example, an external computing device is configured to be communicable with a control unit 20 via a communication interface unit 40, and a user operates a Web browser on the computing device to perform measurement results and / or the measurement results. You can refer to the analysis result for. With such a configuration, the biometric information measuring instrument 1 does not need to have the user interface unit 30, or may have a minimum configuration, and its housing size can be reduced.
 通信インタフェース部40は、生体情報測定器1が外部装置と通信可能に接続するためのコンポーネントである。通信インタフェース部40と外部装置との接続形態は、有線及び/又は無線に限られず、通信インタフェース部40は、そのような接続形態に応じた構成が採用される。例えば、通信インタフェース部40は、USB規格やBluetooth(登録商標)規格、Wi-Fi(登録商標)規格等に準拠して設計され得る。一例として、通信インタフェース部40は、USBマスストレージ・クラスとして定義され、生体情報測定器1のメモリ24に保存されている測定結果は、外部装置によって読み出される。 The communication interface unit 40 is a component for connecting the biometric information measuring device 1 so as to be able to communicate with an external device. The connection form between the communication interface unit 40 and the external device is not limited to wired and / or wireless, and the communication interface unit 40 adopts a configuration according to such a connection form. For example, the communication interface unit 40 may be designed in accordance with a USB standard, a Bluetooth (registered trademark) standard, a Wi-Fi (registered trademark) standard, or the like. As an example, the communication interface unit 40 is defined as a USB mass storage class, and the measurement result stored in the memory 24 of the biometric information measuring device 1 is read out by an external device.
 図2は、本発明の一実施形態に係る生体情報測定器の制御部の詳細を説明するためのブロックダイアグラムである。同図に示すように、生体情報測定器1の制御部20は、例えば、センサ制御部201と、生体信号受信部202と、姿勢状態信号受信部203と、吸光度比算出部204と、姿勢状態推定部205と、パラメータセット記憶部206と、パラメータセット選択部207と、SpO2算出部208と、測定結果記憶部209とを含み構成される。また、本例では、センサ部10の生体センサ12として、PPGセンサ12aが図示され、また、モーションセンサ14として、慣性センサ14aと3軸地磁気センサ14bとが図示されている。慣性センサ14aは、典型的には、3軸加速度センサ及び3軸ジャイロセンサを含み、3軸地磁気センサ14bと相俟って、9軸モーションセンサとして機能する。なお、上述したように、モーションセンサ14は、これらのセンサに限られず、例えばイメージセンサやスペクトルセンサ等のカメラを含んでも良い。 FIG. 2 is a block diagram for explaining the details of the control unit of the biometric information measuring instrument according to the embodiment of the present invention. As shown in the figure, the control unit 20 of the biological information measuring device 1 includes, for example, a sensor control unit 201, a biological signal receiving unit 202, an attitude state signal receiving unit 203, an absorptivity ratio calculation unit 204, and an attitude state. It includes an estimation unit 205, a parameter set storage unit 206, a parameter set selection unit 207, a SpO2 calculation unit 208, and a measurement result storage unit 209. Further, in this example, the PPG sensor 12a is shown as the biosensor 12 of the sensor unit 10, and the inertial sensor 14a and the triaxial geomagnetic sensor 14b are shown as the motion sensor 14. The inertial sensor 14a typically includes a 3-axis acceleration sensor and a 3-axis gyro sensor, and in combination with the 3-axis geomagnetic sensor 14b, functions as a 9-axis motion sensor. As described above, the motion sensor 14 is not limited to these sensors, and may include a camera such as an image sensor or a spectrum sensor, for example.
 センサ制御部201は、センサ部10の動作を制御する。例えば、センサ制御部201は、ユーザの操作に基づくユーザインタフェース部30からの指示に従い、SpO2の測定を開始するため、PPGセンサ12aの発光部を駆動するための発光制御を行う。 The sensor control unit 201 controls the operation of the sensor unit 10. For example, the sensor control unit 201 performs light emission control for driving the light emitting unit of the PPG sensor 12a in order to start the measurement of SpO2 in accordance with the instruction from the user interface unit 30 based on the user's operation.
 生体信号受信部202と、PPGセンサ12aから出力される生体信号を受信又は取得する。PPGセンサ12aから出力される生体信号は、典型的には、第1の発光部(図示せず)が発光した赤色光(例えば、波長λ1=660~670nm又はその近傍)が生体組織(動脈血)に照射されることにより得られる第1の反射光に基づく信号成分と、第2の発光部(図示せず)が発光した赤外光(例えば、波長λ2=880~940nm又はその近傍)が生体組織に照射されることにより得られる第2の反射光に基づく信号成分とを含む。生体信号受信部202は、生体信号取得部の一例であり、生体センサ12それ自体又は生体センサ12と生体信号受信部202とからなる構成もまた、生体信号取得部の一例として把握され得る。生体信号受信部202は、受信した生体信号を吸光度比算出部204に出力する。 Receives or acquires the biological signal output from the biological signal receiving unit 202 and the PPG sensor 12a. In the biological signal output from the PPG sensor 12a, the red light (for example, wavelength λ1 = 660 to 670 nm or its vicinity) emitted by the first light emitting portion (not shown) is typically a biological tissue (arterial blood). The signal component based on the first reflected light obtained by irradiating the living body and the infrared light (for example, wavelength λ2 = 880 to 940 nm or its vicinity) emitted by the second light emitting portion (not shown) are living organisms. It includes a signal component based on the second reflected light obtained by irradiating the tissue. The biological signal receiving unit 202 is an example of the biological signal acquisition unit, and the biological sensor 12 itself or the configuration including the biological sensor 12 and the biological signal receiving unit 202 can also be grasped as an example of the biological signal acquiring unit. The biological signal receiving unit 202 outputs the received biological signal to the absorbance ratio calculation unit 204.
 姿勢状態信号受信部203は、各種のモーションセンサ14(本例では、慣性センサ14a及び地磁気センサ14b)からそれぞれ出力される姿勢状態信号を受信又は取得する。姿勢状態信号受信部203は、姿勢状態信号取得部の一例であり、モーションセンサ14それ自体又はモーションセンサ14と姿勢状態信号受信部203とからなる構成もまた、姿勢状態信号取得部の一例として把握され得る。姿勢状態信号受信部203は、受信した姿勢状態信号を姿勢状態推定部205に出力する。 The attitude state signal receiving unit 203 receives or acquires attitude state signals output from various motion sensors 14 (in the example, the inertial sensor 14a and the geomagnetic sensor 14b), respectively. The posture state signal receiving unit 203 is an example of the posture state signal acquisition unit, and the configuration including the motion sensor 14 itself or the motion sensor 14 and the posture state signal receiving unit 203 is also grasped as an example of the posture state signal acquisition unit. Can be done. The attitude state signal receiving unit 203 outputs the received attitude state signal to the attitude state estimation unit 205.
 吸光度比算出部204は、生体信号受信部202から出力される生体信号に基づいて、SpO2の算出に用いるための吸光度比(R)を算出する。吸光度比算出部204は、算出した吸光度比(R)をSpO2算出部に出力する。 The absorbance ratio calculation unit 204 calculates the absorbance ratio (R) to be used for calculating SpO2 based on the biological signal output from the biological signal receiving unit 202. The absorbance ratio calculation unit 204 outputs the calculated absorbance ratio (R) to the SpO2 calculation unit.
 吸光度比(R)は、酸化ヘモグロビン(OHb)及び還元ヘモグロビン(HHb)の異なる波長の光に対する吸収係数の違いを利用した既知の手法により、算出される値である。より具体的には、吸光度比(R)は、以下の式1により算出され得る。
  R=Red/IR=(ACRed/DCRed)/(ACIR/DCIR)  …式1
 ただし、Redは受信した赤色光(すなわち、第1の反射光)の吸光度、IRは受信した赤外光(すなわち、第2の反射光)の吸光度である。また、ACRedは受信した赤色光Redの交流信号成分(すなわち、脈動成分)の吸光度、DCRedは受信した赤色光Redの直流信号成分の吸光度、ACIRは受信した赤外光IRの交流信号成分(すなわち、脈動成分)の吸光度、DCIRは受信した赤外光IRの直流信号成分の吸光度である。
The absorbance ratio (R) is a value calculated by a known method utilizing the difference in absorption coefficients of oxidized hemoglobin (O 2 Hb) and reduced hemoglobin (HHb) for light of different wavelengths. More specifically, the absorbance ratio (R) can be calculated by the following formula 1.
R = Red / IR = (AC Red / DC Red ) / (AC IR / DC IR )… Equation 1
However, Red is the absorbance of the received red light (that is, the first reflected light), and IR is the absorbance of the received infrared light (that is, the second reflected light). Further, AC Red is the absorbance of the AC signal component (that is, the pulsating component) of the received red light Red, DC Red is the absorbance of the DC signal component of the received red light Red, and AC IR is the AC signal of the received infrared light IR. The absorbance of the component (that is, the pulsating component), DC IR, is the absorbance of the DC signal component of the received infrared light IR.
 算出された吸光度比(R)は、Beer-Lambert則に従って、SpO2への変換に用いられる。SpO2は、以下の定義式で表される。
Figure JPOXMLDOC01-appb-M000001
 ただし、[OHb]は酸化ヘモグロビン濃度、[HHb]は還元ヘモグロビン濃度である。
 これより、SpO2は、Beer-Lambert則を考慮して、SpO2は、以下の理論式から算出される。
Figure JPOXMLDOC01-appb-M000002
 ただし、εHHb,Redは還元ヘモグロビン(HHb)に対する赤色光Redのモル吸光係数、εO2Hb,Redは酸化ヘモグロビン(OHb)に対する赤色光Redのモル吸光係数、εO2Hb,IRは酸化ヘモグロビン(OHb)に対する赤外光IRのモル吸光係数、及びεHHb,IRは還元ヘモグロビン(HHb)に対する赤外光IRのモル吸光係数である。
The calculated absorbance ratio (R) is used for conversion to SpO2 according to the Beer-Lambert rule. SpO2 is represented by the following definition formula.
Figure JPOXMLDOC01-appb-M000001
However, [O 2 Hb] is the oxidized hemoglobin concentration, and [HHb] is the reduced hemoglobin concentration.
From this, SpO2 is calculated from the following theoretical formula in consideration of the Beer-Lambert law.
Figure JPOXMLDOC01-appb-M000002
However, ε HHb and Red are the molar extinction coefficient of red light Red with respect to reduced hemoglobin (HHb), ε O2Hb and Red are the molar extinction coefficient of red light Red with respect to oxidized hemoglobin (O 2 Hb), and ε O2Hb and IR are hemoglobin oxide ( The molar extinction coefficient of infrared light IR with respect to O 2 Hb) and ε HHb, IR are the molar extinction coefficient of infrared light IR with respect to reduced hemoglobin (HHb).
 ところで、Beer-Lambert則は、理論式と実験値との間の乖離が大きいことが知られている。したがって、従前、実際のSpO2は、SpO2が80~100%の領域に合わせて線形フィッティングした固定パラメータセットを用いて、例えば以下のような式及び数値を用いて、SpO2が算出される。
  SpO2=αfix-βfix×R   …式4
 ただし、αfix=110、βfix=25である。
By the way, it is known that the Beer-Lambert law has a large discrepancy between the theoretical formula and the experimental value. Therefore, conventionally, in the actual SpO2, SpO2 is calculated using a fixed parameter set linearly fitted to a region where SpO2 is 80 to 100%, for example, using the following formula and numerical value.
SpO2 = α fix −β fix × R… Equation 4
However, α fix = 110 and β fix = 25.
 しかしながら、従前の上記固定パラメータセットは、被験者が基準姿勢状態にあることを前提に、かつ、その姿勢状態が変化していない(すなわち安静状態である)ことを前提にしている。このため、被験者の姿勢状態が基準姿勢状態以外である場合には、上記固定パラメータセットを用いて算出されるSpO2は、必ずしも正確であるとはいえない。そこで、本開示の生体情報測定器1は、後記するように、固定パラメータセットに代えて、姿勢状態を考慮したパラメータセットを用いてSpO2を算出する。 However, the above-mentioned fixed parameter set has been based on the premise that the subject is in the reference posture state and that the posture state has not changed (that is, it is in the resting state). Therefore, when the posture state of the subject is other than the reference posture state, SpO2 calculated by using the fixed parameter set is not always accurate. Therefore, the biological information measuring instrument 1 of the present disclosure calculates SpO2 by using a parameter set in consideration of the posture state instead of the fixed parameter set, as described later.
 図2をなお参照して、姿勢状態推定部205は、姿勢状態信号受信部203から出力される姿勢信号に基づいて、被験者の姿勢状態を推定する。被験者の姿勢状態は、例えば、臥位(仰臥位や腹臥位)、座位、及び立位並びにこれらの体位の中間体位の状態を含む。本実施形態では、姿勢状態推定部205は、臥位、座位(リクライニング)、及び立位の3つの姿勢状態のうちのいずれかの姿勢状態を推定するものとする。一例として、被験者の胸部に装着されたモーションセンサ14から水平方向(傾斜角度(仰角)=0度)を示す姿勢信号が取得された場合、姿勢状態推定部205は、被験者の姿勢状態を臥位状態と推定する。他の例として、被験者の胸部に装着されたモーションセンサ14から垂直方向(傾斜角度=90度)を示す姿勢信号が取得された場合、姿勢状態推定部205は、被験者の姿勢状態を立位状態と推定する。更に他の例として、被験者の胸部に装着されたモーションセンサ14から斜め方向(例えば傾斜角度=60度)を示す姿勢信号が取得された場合、姿勢状態推定部205は、被験者の姿勢状態を座位状態と推定する。さらに、他の実施形態で説明されるように、姿勢状態推定部205は、臥位から立位までの体位を例えば傾斜角度で示し得る。姿勢状態推定部205は、推定した姿勢状態をパラメータセット選択部207に出力する。なお、他の実施形態で説明されるように、姿勢状態推定部205は、生体センサ12から得られる生体信号を更に基づいて、被験者の姿勢状態を推定しても良い。 Still referring to FIG. 2, the posture state estimation unit 205 estimates the posture state of the subject based on the posture signal output from the posture state signal receiving unit 203. Postural states of the subject include, for example, the decubitus (supine and prone), sitting, and standing positions as well as the intermediate positions of these positions. In the present embodiment, the posture state estimation unit 205 estimates one of the three posture states of the lying position, the sitting position (reclining), and the standing position. As an example, when a posture signal indicating a horizontal direction (tilt angle (elevation angle) = 0 degree) is acquired from a motion sensor 14 mounted on the subject's chest, the posture state estimation unit 205 sets the subject's posture state in a lying position. Presumed to be in a state. As another example, when a posture signal indicating a vertical direction (tilt angle = 90 degrees) is acquired from a motion sensor 14 mounted on the subject's chest, the posture state estimation unit 205 sets the subject's posture state in a standing state. I presume. As yet another example, when a posture signal indicating an oblique direction (for example, tilt angle = 60 degrees) is acquired from a motion sensor 14 mounted on the chest of the subject, the posture state estimation unit 205 sets the posture state of the subject in a sitting position. Presumed to be in a state. Further, as described in other embodiments, the posture state estimation unit 205 may indicate the body position from the lying position to the standing position, for example, by an inclination angle. The posture state estimation unit 205 outputs the estimated posture state to the parameter set selection unit 207. As described in other embodiments, the posture state estimation unit 205 may estimate the posture state of the subject based on the biological signal obtained from the biological sensor 12.
 パラメータセット記憶部206は、予め設定された、複数の姿勢状態モデルのそれぞれに対応するパラメータセットを記憶する。パラメータセット記憶部206は、典型的には、メモリ24上のある記憶領域として形成され得る。パラメータセットは、吸光度比(R)からSpO2を算出するための幾つかのパラメータ、例えばα,β,及びγを含み構成されるが、これらに限られない。本開示では、必要に応じて、パラメータセットを「パラメータセット(α,β)」や「パラメータセット(α,β,γ)」というように表記するものとする。パラメータセットは、例えば、臥位状態モデルに対応する臥位パラメータセットと、座位状態モデルに対応する座位パラメータセットと、立位状態モデルに対応する立位パラメータセットとを含み得るが、これらに限られない。言い換えれば、これらのパラメータセットは、被験者の基準姿勢状態における測定時のSpO2を推定するための補正パラメータセットである。パラメータセットは、例えば、臨床試験等により実証的に得られたデータから定義され得る。 The parameter set storage unit 206 stores preset parameter sets corresponding to each of the plurality of posture state models. The parameter set storage unit 206 can typically be formed as a storage area on the memory 24. The parameter set includes, but is not limited to, some parameters for calculating SpO2 from the absorbance ratio (R), such as α, β, and γ. In the present disclosure, the parameter set is expressed as "parameter set (α, β)" or "parameter set (α, β, γ)" as necessary. The parameter set may include, for example, a recumbent parameter set corresponding to the recumbent model, a sitting parameter set corresponding to the sitting model, and a standing parameter set corresponding to the standing model. I can't. In other words, these parameter sets are correction parameter sets for estimating SpO2 at the time of measurement in the reference posture state of the subject. The parameter set can be defined, for example, from data empirically obtained in clinical trials and the like.
 パラメータセット選択部207は、姿勢状態推定部205によって推定された姿勢状態に基づいて、パラメータセット記憶部206に記憶された複数のパラメータセットの中から、少なくとも1つのパラメータを選択し、読み出す。例えば、姿勢状態推定部205から出力される姿勢状態が座位状態を示す場合、パラメータセット選択部207は、座位パラメータセットをパラメータセット記憶部206から抽出する。パラメータセット選択部207は、選択し読み出したパラメータセットをSpO2算出部208に出力する。 The parameter set selection unit 207 selects and reads at least one parameter from the plurality of parameter sets stored in the parameter set storage unit 206 based on the posture state estimated by the posture state estimation unit 205. For example, when the posture state output from the posture state estimation unit 205 indicates the sitting position state, the parameter set selection unit 207 extracts the sitting position parameter set from the parameter set storage unit 206. The parameter set selection unit 207 outputs the selected and read parameter set to the SpO2 calculation unit 208.
 SpO2算出部208は、吸光度比算出部204から出力される吸光度比(R)とパラメータセット選択部207から出力されるパラメータセット(α,β)とに基づいて、SpO2を算出する。具体的には、SpO2算出部208は、吸光度比(R)に対して、以下の式に従って、パラメータセット(α,β)を適用することにより、SpO2を算出する。
  SpO2=α+β×R  …式5
The SpO2 calculation unit 208 calculates SpO2 based on the absorbance ratio (R) output from the absorbance ratio calculation unit 204 and the parameter set (α, β) output from the parameter set selection unit 207. Specifically, the SpO2 calculation unit 208 calculates SpO2 by applying the parameter set (α, β) to the absorbance ratio (R) according to the following formula.
SpO2 = α + β × R… Equation 5
 すなわち、ここでいうパラメータセット(α,β)は、従前のような姿勢状態を何ら考慮していない固定値ではなく、被験者の姿勢状態を考慮した値により構成されている。したがって、かかるパラメータセット(α,β)を吸光度比(R)に対して適用することにより、測定時の姿勢状態時におけるSpO2に対して補正された、基準姿勢状態時におけるSpO2が算出されることになる。SpO2算出部208は、算出したSpO2を測定結果記憶部209に出力する。 That is, the parameter set (α, β) referred to here is composed of a value that considers the posture state of the subject, not a fixed value that does not consider the posture state as in the past. Therefore, by applying such a parameter set (α, β) to the absorbance ratio (R), SpO2 in the reference posture state, which is corrected for SpO2 in the posture state at the time of measurement, is calculated. become. The SpO2 calculation unit 208 outputs the calculated SpO2 to the measurement result storage unit 209.
 測定結果記憶部209は、SpO2算出部208から出力されるSpO2を測定結果として記憶する。測定結果記憶部209は、典型的には、メモリ24上のある記憶領域として形成され得る。ユーザは、例えば、ユーザインタフェース部30を操作して、測定結果記憶部209に記憶された測定結果を閲覧することができる。 The measurement result storage unit 209 stores SpO2 output from the SpO2 calculation unit 208 as a measurement result. The measurement result storage unit 209 can typically be formed as a storage area on the memory 24. The user can, for example, operate the user interface unit 30 to browse the measurement results stored in the measurement result storage unit 209.
 以上のように、本実施形態によれば、SpO2の測定に際して、被験者の姿勢状態を観測し、観測された姿勢状態に応じた最適なパラメータセットを選択し、選択したパラメータセットを算出された吸光度比に適用することにより、SpO2を算出しているので、測定時の姿勢状態時におけるSpO2に対して補正された、基準姿勢状態時におけるSpO2を算出することができる。 As described above, according to the present embodiment, when measuring SpO2, the posture state of the subject is observed, the optimum parameter set according to the observed posture state is selected, and the selected parameter set is calculated as the absorptivity. Since SpO2 is calculated by applying it to the ratio, it is possible to calculate SpO2 in the reference posture state, which is corrected for SpO2 in the posture state at the time of measurement.
[第2の実施形態]
 本実施形態では、SpO2の測定に際して、被験者の姿勢状態を観測し、これにより推定された姿勢状態に応じて、予め設定されたパラメータセットから最適なパラメータセットを推定し、推定したパラメータセットを算出された吸光度比に適用することにより、SpO2を算出する生体情報測定器及びこれを用いた測定方法が説明される。
[Second Embodiment]
In the present embodiment, when measuring SpO2, the posture state of the subject is observed, the optimum parameter set is estimated from the preset parameter set according to the posture state estimated by the observation, and the estimated parameter set is calculated. A biometric information measuring instrument for calculating SpO2 and a measuring method using the biometric information measuring instrument will be described by applying the absorptivity ratio.
 図3は、本発明の一実施形態に係る生体情報測定器の構成の一例を示すブロックダイアグラムである。本実施形態に係る生体情報測定器1は、パラメータセット選択部207に代えて、パラメータセット推定部210が設けられている点で、第1の実施形態に係る生体情報測定器1と異なっている。また、本実施形態の姿勢状態推定部205は、予め設定された姿勢状態を選択的に特定するのではなく、測定された傾斜角度により姿勢状態を推定するように構成されている。 FIG. 3 is a block diagram showing an example of the configuration of the biological information measuring instrument according to the embodiment of the present invention. The biometric information measuring device 1 according to the present embodiment is different from the biometric information measuring device 1 according to the first embodiment in that a parameter set estimation unit 210 is provided instead of the parameter set selection unit 207. .. Further, the posture state estimation unit 205 of the present embodiment is configured to estimate the posture state based on the measured tilt angle, instead of selectively specifying the preset posture state.
 すなわち、姿勢状態推定部205は、姿勢状態信号受信部203から出力される姿勢状態信号に基づいて、姿勢状態を推定し、出力する。例えば、姿勢状態推定部205は、姿勢状態信号に基づいて、姿勢状態を、臥位と座位との間の傾斜角度又は座位と立位との間の傾斜角度で特定する。姿勢状態推定部205は、傾斜角度で示される姿勢状態をパラメータセット推定部210に出力する。 That is, the posture state estimation unit 205 estimates and outputs the posture state based on the posture state signal output from the posture state signal receiving unit 203. For example, the posture state estimation unit 205 identifies the posture state by the inclination angle between the lying position and the sitting position or the inclination angle between the sitting position and the standing position based on the posture state signal. The posture state estimation unit 205 outputs the posture state indicated by the tilt angle to the parameter set estimation unit 210.
 パラメータセット推定部210は、姿勢状態推定部205から出力される傾斜角度に基づいて、SpO2の算出に用いる最適なパラメータセットを推定する。本実施形態では、パラメータセット推定部210は、例えば図4(a)に示すようなパラメータ混合比率変換マップ(以下「混合比率変換マップ」という。)を参照可能に構成される。パラメータの混合比率とは、異なるパラメータセットにおける対応するパラメータどうしをどのような比率(重み)で混合するかを示す。混合比率変換マップは、例えば、メモリ24の所定の記憶領域に所定のデータ構造で保持されても良いし、パラメータセット推定部210の一部として構成されても良い。同図(a)に示す混合比率変換マップは、例示的に、混合比率が、臥位と座位との間の傾斜角度との関係において、線形に変化するように定義されている。他の例では、例えば同図(b)に示すように、混合比率変換マップは、混合比率が、傾斜角度との関係において、非線形に変化するように定義される。 The parameter set estimation unit 210 estimates the optimum parameter set to be used for calculating SpO2 based on the tilt angle output from the posture state estimation unit 205. In the present embodiment, the parameter set estimation unit 210 is configured so that, for example, a parameter mixing ratio conversion map (hereinafter referred to as “mixing ratio conversion map”) as shown in FIG. 4A can be referred to. The parameter mixing ratio indicates the ratio (weight) of mixing the corresponding parameters in different parameter sets. The mixed ratio conversion map may be held in a predetermined storage area of the memory 24 with a predetermined data structure, or may be configured as a part of the parameter set estimation unit 210. The mixing ratio conversion map shown in FIG. 6A is exemplarily defined so that the mixing ratio changes linearly in relation to the inclination angle between the recumbent position and the sitting position. In another example, for example, as shown in FIG. (B), the mixing ratio conversion map is defined so that the mixing ratio changes non-linearly in relation to the tilt angle.
 より具体的には、パラメータセット推定部210は、傾斜角度に従って、パラメータセット記憶部206から1又は2以上のパラメータセットを抽出する。例えば、傾斜角度が臥位と座位との間の30度である場合、パラメータセット推定部210は、傾斜角度に隣接して設定された臥位パラメータセットと座位パラメータセットとを抽出する。続いて、パラメータセット推定部210は、対応する混合比率変換マップを参照し、傾斜角度から、抽出したパラメータセットどうしの混合比率を決定し、決定した混合比率に従って、パラメータセットを算出する。例えば、臥位パラメータセットがαLying及びβLying、臥位パラメータセットαSitting及びβSittingであり、混合比率が67:33であるとすると、パラメータセット(α,β)は、
  α=αLying×.67+αSitting×.33
  β=βLying×.67+βSitting×.33
として、算出される。
 パラメータセット推定部210は、算出したパラメータセットを、上記第1の実施形態と同様に、SpO2算出部208に出力する。
More specifically, the parameter set estimation unit 210 extracts one or more parameter sets from the parameter set storage unit 206 according to the tilt angle. For example, when the tilt angle is 30 degrees between the recumbent position and the sitting position, the parameter set estimation unit 210 extracts the recumbent position parameter set and the sitting position parameter set set adjacent to the tilt angle. Subsequently, the parameter set estimation unit 210 refers to the corresponding mixing ratio conversion map, determines the mixing ratio between the extracted parameter sets from the inclination angle, and calculates the parameter set according to the determined mixing ratio. For example, if the recumbent parameter sets are α Lying and β Lying , the recumbent parameter sets α Sitting and β Sitting , and the mixing ratio is 67:33, the parameter sets (α, β) are
α = α Lying ×. 67 + α Sitting ×. 33
β = β Lying ×. 67 + β Sitting ×. 33
Is calculated as.
The parameter set estimation unit 210 outputs the calculated parameter set to the SpO2 calculation unit 208 in the same manner as in the first embodiment.
 SpO2算出部208は、上記第1の実施形態と同様に、吸光度比算出部204から出力される吸光度比(R)とパラメータセット選択部207から出力されるパラメータセット(α,β)とに基づいて、SpO2を算出する。 The SpO2 calculation unit 208 is based on the absorbance ratio (R) output from the absorbance ratio calculation unit 204 and the parameter set (α, β) output from the parameter set selection unit 207, as in the first embodiment. To calculate SpO2.
 以上のように、本実施形態によれば、姿勢状態信号に基づいて、傾斜角度により姿勢状態を推定し、推定した傾斜角度に応じて、1又は2以上のパラメータセットを抽出するとともに、混合比率変換マップを参照して、該傾斜角度から混合比率を決定し、決定した混合比率を用いて、最適なパラメータセットを推定乃至は算出するので、被験者の姿勢状態に拘わらず、より正確なSpO2を算出することができるようになる。 As described above, according to the present embodiment, the posture state is estimated by the tilt angle based on the posture state signal, one or two or more parameter sets are extracted according to the estimated tilt angle, and the mixing ratio is obtained. The mixing ratio is determined from the tilt angle with reference to the conversion map, and the optimum parameter set is estimated or calculated using the determined mixing ratio. Therefore, more accurate SpO2 can be obtained regardless of the posture state of the subject. You will be able to calculate.
(実施例2-1)
 本例では、例えば図4(b)に示したような非線形の混合比率変換マップのモデル化について、説明する。ただし、本例では、説明の簡略化のため、臥位と立位との間(ただし、仰臥位~立位~伏臥位(腹臥位)であり、仰臥位~立位と立位~伏臥位とは対称とする。)の推定モデルを考える。パラメータセット推定部210は、ここで説明する推定モデルに従って、1又は2以上のパラメータセットを用いて、最適なパラメータセットを推定する。
(Example 2-1)
In this example, for example, modeling of a non-linear mixing ratio conversion map as shown in FIG. 4B will be described. However, in this example, for the sake of simplification of the explanation, it is between the lying position and the standing position (however, the supine position to the standing position to the prone position (prone position), and the supine position to the standing position and the standing position to the lying position). Consider an estimation model of the standing position. The parameter set estimation unit 210 estimates the optimum parameter set by using one or more parameter sets according to the estimation model described here.
 まず、被験者の各姿勢状態での体組成は、正規分布に従う形でその確かさを持つものと仮定し、図5に示すように、この確かさが各姿勢状態で重なり合うように存在していると考える。また、各パラメータセットは平均μ=n、分散σ=1/2の正規分布に従うとし、臥位及び立位の2つの分布が存在する場合を考える。 First, it is assumed that the body composition of the subject in each posture state has its certainty in a form that follows a normal distribution, and as shown in FIG. 5, this certainty exists so as to overlap in each posture state. I think. Further, it is assumed that each parameter set follows a normal distribution with a mean μ = n and a variance σ = 1/2, and a case where two distributions of a lying position and a standing position exist is considered.
 今、臥位パラメータセット分布に従う関数をf(x)、立位パラメータセット分布に従う関数をg(x)とすると、それぞれ、以下のように表される。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Now, assuming that the function that follows the lying parameter set distribution is f (x) and the function that follows the standing parameter set distribution is g (x), they are expressed as follows.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 図5を参照して、傾斜角度x=0(rad)のときの最適なパラメータセットを考えた場合、完全に横になっている姿勢状態のため、臥位パラメータセットのみが選択されても良いが、本例では、混合分布の概念を導入する。すなわち、x=0のときの、f(x)及びg(x)の分布の重なりを考慮する。具体的には、f(0)及びg(0)は、
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
であるから、f(0):g(0)は、
Figure JPOXMLDOC01-appb-M000007
となる。つまり、傾斜角度x=0のときの最適パラメータセットは、臥位パラメータセットを92%、立位パラメータセットを8%の割合で混合した値となる。
When considering the optimum parameter set when the tilt angle x = 0 (rad) with reference to FIG. 5, only the recumbent parameter set may be selected because of the completely lying posture state. However, this example introduces the concept of mixture distribution. That is, the overlap of the distributions of f (x) and g (x) when x = 0 is considered. Specifically, f (0) and g (0) are
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Therefore, f (0): g (0) is
Figure JPOXMLDOC01-appb-M000007
Will be. That is, the optimum parameter set when the inclination angle x = 0 is a value obtained by mixing the recumbent parameter set at a ratio of 92% and the standing parameter set at a ratio of 8%.
 同様にして、傾斜角度xに基づいて、混合分布関数を用いて、異なるパラメータセットの混合比率が決定され、これにより最適なパラメータセットが算出される。例えば、傾斜角度x=6/πのときの最適パラメータセットの混合比率は、臥位パラメータセットは69%、立位パラメータセットは31%となる。 Similarly, based on the tilt angle x, the mixture ratio of different parameter sets is determined using the mixture distribution function, which calculates the optimum parameter set. For example, when the inclination angle x = 6 / π, the mixing ratio of the optimum parameter set is 69% for the recumbent parameter set and 31% for the standing parameter set.
 なお、傾斜角度x=0のときの混合比率がもっと臥位の方に偏っていると仮定したい場合、分散σが小さく設定されることで混合比率は任意に調整され得る。 If it is desired to assume that the mixing ratio when the inclination angle x = 0 is more biased toward the recumbent position, the mixing ratio can be arbitrarily adjusted by setting the variance σ to be small.
 上記のようにして算出される混合比率(例えば、臥位パラメータセット=69%、立位パラメータセット=31%)は、図6に示すように、同じ重みを付与した2混合正規分布の生起確率(f(x)+g(x)))/2における各正規分布f(x)/2,g(x)/2の寄与率と考えることもできる。
Figure JPOXMLDOC01-appb-M000008
The mixing ratio calculated as described above (for example, the recumbent parameter set = 69%, the standing parameter set = 31%) is the probability of occurrence of a two-mixed normal distribution with the same weight, as shown in FIG. It can also be considered as the contribution ratio of each normal distribution f (x) / 2, g (x) / 2 in (f (x) + g (x))) / 2.
Figure JPOXMLDOC01-appb-M000008
 これは、パラメータセットの分布数をN個に拡張することもできる。
Figure JPOXMLDOC01-appb-M000009
This can also extend the number of distributions in the parameter set to N.
Figure JPOXMLDOC01-appb-M000009
 以上のように、パラメータセットの分布を考慮することにより、例えば図4(b)に示したような非線形の混合比率変換マップをモデル化することができる。これにより、パラメータセット推定部210は、このような混合比率変換マップを参照して、最適なパラメータセットを推定する。 As described above, by considering the distribution of the parameter set, it is possible to model a non-linear mixing ratio conversion map as shown in FIG. 4B, for example. As a result, the parameter set estimation unit 210 estimates the optimum parameter set with reference to such a mixing ratio conversion map.
 なお、本実施例では、正規分布を用いた例を説明したが、これに限られるものではなく、他の分布、例えばガンマ分布やポアソン分布等を用いても良い。 In this embodiment, an example using a normal distribution has been described, but the present invention is not limited to this, and other distributions such as a gamma distribution and a Poisson distribution may be used.
(実施例2-2)
 本例では、上記のパラメータセットの混合分布を多変数に展開した場合について説明する。
(Example 2-2)
In this example, the case where the mixture distribution of the above parameter set is expanded into multiple variables will be described.
 すなわち、被験者の姿勢状態の傾斜角度を上下方向(ピッチ角)xと左右方向(ロール角)yの多変数として、これらを用いて算出される分布関数f(x,y)及びg(x,y)に基づく、臥位パラメータセット及び立位パラメータセットの混合比率は、それぞれ、以下のように定義される。
  臥位パラメータセットの混合比率=f(x,y)/(f(x,y)+g(x,y))
  立位パラメータセットの混合比率=g(x,y)/(f(x,y)+g(x,y))
 ただし、
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
である。ただし、本例では、g(x,y)は、f(x,y)よりもy軸方向に分散が大きい分布として定義している。
That is, the distribution functions f (x, y) and g (x, x, calculated using the tilt angle of the subject's posture state as multiple variables in the vertical direction (pitch angle) x and the horizontal direction (roll angle) y are used. The mixing ratio of the recumbent parameter set and the standing parameter set based on y) is defined as follows.
Mixing ratio of recumbent parameter set = f (x, y) / (f (x, y) + g (x, y))
Mixing ratio of standing parameter set = g (x, y) / (f (x, y) + g (x, y))
However,
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Is. However, in this example, g (x, y) is defined as a distribution having a larger variance in the y-axis direction than f (x, y).
 以上のように、傾斜角度(x,y)の値に応じて、各パラメータセットの混合比率が決定される。したがって、パラメータセット推定部210は、例えばモーションセンサ14により検出される姿勢状態信号に基づいて特定される傾斜角度(x,y)からより実態に即した混合比率を決定し、決定した混合比率を用いて、最適なパラメータセットを推定又は算出するので、被験者の姿勢状態に拘わらず、より正確なSpO2を算出することができるようになる。 As described above, the mixing ratio of each parameter set is determined according to the value of the inclination angle (x, y). Therefore, the parameter set estimation unit 210 determines a more realistic mixing ratio from the tilt angle (x, y) specified based on the posture state signal detected by the motion sensor 14, for example, and determines the determined mixing ratio. Since the optimum parameter set is estimated or calculated by using the method, more accurate SpO2 can be calculated regardless of the posture state of the subject.
(実施例2-3)
 非線形混合比率変換マップのモデル化は、上記の混合分布関数に代えて、様々なn次多項式に基づく非線形関数を用いることによっても実現される。一例として、f(x)は以下のような非線形関数によって表される。
Figure JPOXMLDOC01-appb-M000012
(Example 2-3)
Modeling of the nonlinear mixture ratio conversion map is also realized by using nonlinear functions based on various n-th order polynomials instead of the above mixture distribution function. As an example, f (x) is represented by the following non-linear function.
Figure JPOXMLDOC01-appb-M000012
 他の例として、f(x)は、
Figure JPOXMLDOC01-appb-M000013
であっても良い。更に他の例として、f(x)は、
  f(x)=0.9288x-2.2928x+0.673x+1.0043   …式17
であっても良い。
As another example, f (x) is
Figure JPOXMLDOC01-appb-M000013
It may be. As yet another example, f (x) is
f (x) = 0.9288x 3 -2.2928x 2 +0.673x + 1.0043 ... Equation 17
It may be.
 また、上述したように、非線形関数に基づくパラメータセットの分布は、多変数に展開されても良い。すなわち、算出された傾斜角度(x,y)とした場合の非線形関数は、本例では以下のように定義され得る。
  f(x,y)=0.9288x-2.2928x+0.673x+1.0043-y   …式18
Further, as described above, the distribution of the parameter set based on the nonlinear function may be expanded into multiple variables. That is, the nonlinear function when the calculated tilt angle (x, y) is used can be defined as follows in this example.
f (x, y) = 0.9288x 3 -2.2928x 2 + 0.673x + 1.43-y 2 ... Equation 18
[第3の実施形態]
 本実施形態では、検出された生体信号に基づいて算出された吸光度比(R)と、姿勢状態信号に従って推定された姿勢状態に対応するパラメータセット(α,β)とに基づいて、SpO2が算出された場合において、例えば短時間の間に別の姿勢状態に変化した場合のパラメータセット(α,β)を推定する生体情報測定器及びこれを用いた測定方法が説明される。つまり、本実施形態は、被験者の姿勢状態が変化した直後においては、その変化前後でSpO2の値が変化しないか又は変化が極僅かであるという特性を利用する。
[Third Embodiment]
In this embodiment, SpO2 is based on the absorptivity ratio (R) calculated based on the detected biological signal and the parameter set (α 1 , β 1 ) corresponding to the posture state estimated according to the posture state signal. In the case where is calculated, for example, a biological information measuring instrument for estimating a parameter set (α 2 , β 2 ) when changing to another posture state in a short period of time and a measuring method using the same will be described. That is, the present embodiment utilizes the characteristic that the SpO2 value does not change or changes very little immediately before and after the change in the posture state of the subject.
 図7は、本発明の一実施形態に係る生体情報測定器の構成の一例を示すブロックダイアグラムである。本実施形態に係る生体情報測定器1は、パラメータセット推定部210が、SpO2算出部208によって算出されたSpO2に基づいて新たにパラメータセットを推定し得るように構成されている点で、上記の実施形態と異なっている。同図における他のコンポーネントの機能及び/又は構成は、上記したものと同じであるので、説明を省略する。なお、以下の説明では、パラメータセット記憶部206は、例えば、座位パラメータセット(αSitting,βSitting)を記憶しているものとする。 FIG. 7 is a block diagram showing an example of the configuration of the biological information measuring instrument according to the embodiment of the present invention. The biological information measuring instrument 1 according to the present embodiment is configured so that the parameter set estimation unit 210 can newly estimate the parameter set based on the SpO2 calculated by the SpO2 calculation unit 208. It is different from the embodiment. The functions and / or configurations of the other components in the figure are the same as those described above, and thus the description thereof will be omitted. In the following description, it is assumed that the parameter set storage unit 206 stores, for example, the sitting parameter set (α Sitting , β Sitting ).
 例えば、姿勢状態推定部205は、検出された姿勢信号に基づいて、被験者の姿勢状態が座位(傾斜角度=60度)であると推定していたところ、被験者の姿勢状態が変化して、これにより、リクライニング(傾斜角度=30度)であると推定したとする。パラメータセット選択部207は、リクライニングの場合のパラメータセットをパラメータセット記憶部206から抽出できないため、パラメータセット推定部210に、リクライニングの場合のパラメータセットの推定を依頼する。 For example, the posture state estimation unit 205 estimated that the posture state of the subject was the sitting position (tilt angle = 60 degrees) based on the detected posture signal, but the posture state of the subject changed, and this Therefore, it is estimated that the reclining (tilt angle = 30 degrees). Since the parameter set selection unit 207 cannot extract the parameter set in the case of reclining from the parameter set storage unit 206, the parameter set estimation unit 210 is requested to estimate the parameter set in the case of reclining.
 これを受けて、パラメータセット推定部210は、姿勢状態推定部205から新たな姿勢状態(すなわち、傾斜角度=30度)を与えられると、例えば、パラメータセット記憶部206から直前の姿勢状態に対応する座位パラメータセットを抽出するとともに、測定結果記憶部209に記憶されている姿勢状態が座位状態である場合に算出されたSpO2の値と、吸光度比算出部204により検出された生体信号に基づいて算出された吸光度比とを取得する。続いて、パラメータセット推定部210は、これら座位パラメータセット、SpO2の値及び吸光度比に基づいて、姿勢状態がリクライニングの場合のパラメータセット(αReclining,βReclining)を推定する。つまり、本実施形態では、姿勢状態が変化した直後(例えば数秒~数分)においては、SpO2の値は、姿勢状態の変化の前後で変化がないか又は小さいものと仮定されている。他の例として、パラメータセット推定部210は、上記の座位パラメータセット、SpO2の値及び吸光度比に加えて、直前の姿勢状態において算出された吸光度比に更に基づいて新たなパラメータセットを推定しても良い。この場合、例えば、パラメータセット推定部210は、吸光度比算出部204及び姿勢状態推定部205から時系列的に吸光度比及び姿勢状態をそれぞれ受け取るように構成され得る。パラメータセット推定部210は、新たに推定したパラメータセットをリクライニングパラメータセットとしてパラメータセット記憶部206に格納する。 In response to this, when the parameter set estimation unit 210 is given a new posture state (that is, tilt angle = 30 degrees) from the posture state estimation unit 205, for example, the parameter set storage unit 206 corresponds to the immediately preceding posture state. Based on the SpO2 value calculated when the posture state stored in the measurement result storage unit 209 is the sitting state and the biological signal detected by the absorptiometry ratio calculation unit 204, while extracting the sitting position parameter set. Obtain the calculated absorbance ratio. Subsequently, the parameter set estimation unit 210 estimates the parameter set (α Reclining , β Reclining ) when the posture state is reclining, based on the sitting parameter set, the SpO2 value, and the absorbance ratio. That is, in the present embodiment, it is assumed that the SpO2 value does not change or is small before and after the change in the posture state immediately after the change in the posture state (for example, several seconds to several minutes). As another example, the parameter set estimation unit 210 estimates a new parameter set based on the above-mentioned sitting parameter set, SpO2 value, and absorbance ratio, and further based on the absorbance ratio calculated in the immediately preceding posture state. Is also good. In this case, for example, the parameter set estimation unit 210 may be configured to receive the absorbance ratio and the attitude state in time series from the absorbance ratio calculation unit 204 and the attitude state estimation unit 205, respectively. The parameter set estimation unit 210 stores the newly estimated parameter set as a reclining parameter set in the parameter set storage unit 206.
 これにより、例えば、臥位、座位、及び立位のそれぞれのパラメータセットがパラメータセット記憶部206に予め用意されていた場合に、SpO2の測定中に、被験者の姿勢状態がこれら以外の状態に変化しても、パラメータセットの推定を行って、推定した新たなパラメータセットをパラメータセット記憶部206に随時に追加することができ、様々な姿勢状態のパラメータセットを蓄積していくことができるようになる。 As a result, for example, when the parameter sets of the lying position, the sitting position, and the standing position are prepared in advance in the parameter set storage unit 206, the posture state of the subject changes to a state other than these during the measurement of SpO2. Even so, it is possible to estimate the parameter set and add the estimated new parameter set to the parameter set storage unit 206 at any time so that the parameter sets in various posture states can be accumulated. Become.
[第4の実施形態]
 本実施形態では、従前の固定パラメータセット(αfix,βfix)に新たな補正パラメータγを加えたパラメータセット(αfix,βfix,γ)を用いて、SpO2を算出する生体情報測定器及びこれを用いた測定方法が説明される。ここで、γは、姿勢状態及び吸光度比Rに応じた関数である。
[Fourth Embodiment]
In the present embodiment, a biometric information measuring instrument that calculates SpO2 and a parameter set (α fix , β fix , γ) obtained by adding a new correction parameter γ to the conventional fixed parameter set (α fix , β fix ) and A measurement method using this will be described. Here, γ is a function according to the posture state and the absorbance ratio R.
 本発明の一実施形態に係る生体情報測定器の構成の一例を示すブロックダイアグラムである。同図に示す生体情報測定器1は、パラメータセット選択部207が、姿勢状態推定部205から推定した姿勢状態を受け取るとともに、吸光度比算出部204から吸光度比を受け取ること点で、上述の実施形態における構成とは異なっている。 It is a block diagram which shows an example of the structure of the biological information measuring instrument which concerns on one Embodiment of this invention. The biological information measuring device 1 shown in the figure is the above-described embodiment in that the parameter set selection unit 207 receives the posture state estimated from the posture state estimation unit 205 and also receives the absorbance ratio from the absorbance ratio calculation unit 204. It is different from the configuration in.
 例えば、姿勢状態推定部205が、検出された姿勢状態信号に基づいて、姿勢状態が臥位状態であると推定したとすると、パラメータセット選択部207は、臥位状態及び吸光度比に対応する臥位パラメータγLyingを含むパラメータセット(αfix,βfix,γLying)を選択し、これをSpO2算出部208に出力する。或いは、パラメータセット選択部207は、臥位状態及び吸光度比に対応する臥位パラメータγLyingを選択し、これを固定パラメータセット(αfix,βfix)と組み合わせて、新たなパラメータセット(αfix,βfix,γLying)としても良い。 For example, if the posture state estimation unit 205 estimates that the posture state is the lying position based on the detected posture state signal, the parameter set selection unit 207 is the lying state corresponding to the lying state and the absorbance ratio. A parameter set (α fix , β fix , γ Lying ) including the position parameter γ Lying is selected, and this is output to the SpO2 calculation unit 208. Alternatively, the parameter set selection unit 207 selects the recumbent position parameter γ Lying corresponding to the recumbent state and the absorbance ratio, and combines this with the fixed parameter set (α fix , β fix ) to create a new parameter set (α fix). , Β fix , γ Lying ).
 続いて、本実施形態のSpO2算出部208は、以下の式を用いて、SpO2を算出する。
  SpO2=αfix+βfix×R+γ   …式19
 ただし、αfix及びβfixは、動脈血中酸素飽和度が80~100%の領域に合わせて線形フィッティングした従前の固定値(例えばαfix=110、βfix=25)であり、γは姿勢状態及び吸光度比等に応じた補正パラメータである。
 これにより、SpO2算出部208は、検出された生体信号に基づく吸光度比(R)と選択されたパラメータセット(αfix,βfix,γLying)に基づいて、上記式に従い、SpO2を算出する。
Subsequently, the SpO2 calculation unit 208 of the present embodiment calculates SpO2 using the following formula.
SpO2 = α fix + β fix × R + γ… Equation 19
However, α- fix and β- fix are conventional fixed values (for example, α- fix = 110, β- fix = 25) linearly fitted to the region where the oxygen saturation in arterial blood is 80 to 100%, and γ is the posture state. It is a correction parameter according to the absorbance ratio and the like.
As a result, the SpO2 calculation unit 208 calculates SpO2 according to the above formula based on the absorbance ratio (R) based on the detected biological signal and the selected parameter set (α fix , β fix , γ Lying ).
 また、生体情報測定器1は、上記第2の実施形態で示したように、パラメータセット選択部207に代えて、パラメータセット推定部210により構成されても良い。すなわち、パラメータセット推定部210は、推定された姿勢状態に応じて1又は2以上のパラメータγを選択し、これらのパラメータγから最適なパラメータγを推定し、これに基づくパラメータセット(αfix,βfix,γ)をSpO2に出力しても良い。 Further, as shown in the second embodiment, the biological information measuring device 1 may be configured by the parameter set estimation unit 210 instead of the parameter set selection unit 207. That is, the parameter set estimation unit 210 selects one or two or more parameters γ according to the estimated posture state, estimates the optimum parameter γ from these parameters γ, and sets a parameter set based on the parameter γ (α fix , β fix , γ) may be output to SpO2.
[第5の実施形態]
 本実施形態では、被験者の姿勢状態が変化した直後においては、その変化前後でSpO2の値が変化しないか又は変化が極僅かであるという特性を考慮して、補正パラメータγを推定する生体情報測定器及びこれを用いた測定方法が説明される。
[Fifth Embodiment]
In the present embodiment, the biological information measurement for estimating the correction parameter γ in consideration of the characteristic that the SpO2 value does not change or changes very little immediately after the change in the posture state of the subject before and after the change. The vessel and the measurement method using the vessel will be described.
 例えば、図7に示したようなパラメータセット推定部210は、姿勢状態として臥位状態(傾斜角度=0度)が与えられたとする。パラメータセット推定部210は、例えば、測定結果記憶部209に記憶されている姿勢状態が臥位状態である場合に算出されたSpO2の値と、固定パラメータセット(αfix,βfix)と、検出された生体信号に基づいて算出された吸光度比(R)とに基づいて、姿勢状態が座位状態の場合のパラメータγを推定する。 For example, it is assumed that the parameter set estimation unit 210 as shown in FIG. 7 is given a lying position (tilt angle = 0 degrees) as a posture state. The parameter set estimation unit 210 detects, for example, the SpO2 value calculated when the posture state stored in the measurement result storage unit 209 is the recumbent state, the fixed parameter set (α fix , β fix ), and the detection. Based on the absorbance ratio (R) calculated based on the obtained biological signal, the parameter γ when the posture state is the sitting state is estimated.
[第6の実施形態]
 本実施形態では、モーションセンサ14から得られる姿勢状態信号に加えて、生体センサ12から得られる生体信号を用いて、姿勢状態を推定し、推定された姿勢状態に対応する最適なパラメータセットを選択又は推定する生体情報測定器及びこれを用いた測定方法が説明される。
[Sixth Embodiment]
In the present embodiment, the posture state is estimated by using the biological signal obtained from the biological sensor 12 in addition to the posture state signal obtained from the motion sensor 14, and the optimum parameter set corresponding to the estimated posture state is selected. Alternatively, a biological information measuring device to be estimated and a measuring method using the same will be described.
 すなわち、生体信号受信部202は、生体センサ12から出力される生体信号を受信すると、これを吸光度比算出部204及び姿勢状態推定部205のそれぞれに出力する。また、姿勢状態信号受信部203は、モーションセンサ14から出力される姿勢状態信号を受信すると、姿勢状態推定部205のそれぞれに出力する。これより、姿勢状態推定部205は、生体信号と姿勢状態信号とに基づいて、被験者の姿勢状態を推定する。 That is, when the biological signal receiving unit 202 receives the biological signal output from the biological sensor 12, it outputs it to the absorbance ratio calculation unit 204 and the posture state estimation unit 205, respectively. Further, when the posture state signal receiving unit 203 receives the posture state signal output from the motion sensor 14, the posture state signal receiving unit 203 outputs the posture state signal to each of the posture state estimation units 205. From this, the posture state estimation unit 205 estimates the posture state of the subject based on the biological signal and the posture state signal.
 上述したように、被験者の姿勢状態は、一般に、モーションセンサ14による姿勢状態信号を用いて推定され得るが、例えば、立位と座位とを比較した場合、慣性センサによる姿勢状態信号のみではどちらの姿勢状態であるかを推定することは困難である。一方、本発明者らは、生体センサ12によって検出される生体信号が、被験者の姿勢状態に応じて異なることを確認した。そこで、姿勢状態推定部205は、例えば、姿勢状態信号に基づいて被験者の姿勢状態を暫定的に推定し、暫定的に推定した姿勢状態について、生体信号に基づいて、最終的に姿勢状態を推定するように構成される。 As described above, the posture state of the subject can generally be estimated using the posture state signal obtained by the motion sensor 14, but when comparing the standing position and the sitting position, for example, which of the posture state signals obtained from the inertial sensor is used alone. It is difficult to estimate whether it is in a postural state. On the other hand, the present inventors have confirmed that the biological signal detected by the biological sensor 12 differs depending on the posture state of the subject. Therefore, for example, the posture state estimation unit 205 provisionally estimates the posture state of the subject based on the posture state signal, and finally estimates the posture state based on the biological signal for the provisionally estimated posture state. It is configured to do.
 以上のように、本実施形態によれば、姿勢状態推定部205が、モーションセンサ14から得られる姿勢状態信号に加えて、生体センサ12から得られる生体信号を用いて、姿勢状態を推定するので、より正確な姿勢状態が得られることになり、したがって、選択されるパラメータセットもより正確なものとなる。 As described above, according to the present embodiment, the posture state estimation unit 205 estimates the posture state by using the biological signal obtained from the biological sensor 12 in addition to the posture state signal obtained from the motion sensor 14. , A more accurate posture state will be obtained, and therefore the parameter set selected will also be more accurate.
 上記各実施形態は、本発明を説明するための例示であり、本発明をこれらの実施形態にのみ限定する趣旨ではない。本発明は、その要旨を逸脱しない限り、さまざまな形態で実施することができる。 Each of the above embodiments is an example for explaining the present invention, and the present invention is not intended to be limited only to these embodiments. The present invention can be implemented in various forms as long as it does not deviate from the gist thereof.
 例えば、上記実施形態では、パラメータα,β,及びγからなるパラメータセット(α,β,γ)について説明したが、これらのパラメータに限られない。例えば、被験者の姿勢状態に応じて生体信号に含まれるノイズの傾向も変化するため、かかるノイズを考慮したパラメータを含むパラメータセットを用いても良い。 For example, in the above embodiment, the parameter set (α, β, γ) including the parameters α, β, and γ has been described, but the present invention is not limited to these parameters. For example, since the tendency of noise included in the biological signal changes according to the posture state of the subject, a parameter set including parameters considering such noise may be used.
 また、例えば、本明細書に開示される方法においては、その結果に矛盾が生じない限り、ステップ、動作又は機能を並行して又は異なる順に実施しても良い。説明されたステップ、動作及び機能は、単なる例として提供されており、ステップ、動作及び機能のうちの幾つかは、発明の要旨を逸脱しない範囲で、省略でき、また、互いに結合させることで一つのものとしてもよく、また、他のステップ、動作又は機能を追加してもよい。 Further, for example, in the method disclosed in the present specification, steps, operations or functions may be performed in parallel or in a different order as long as the results are not inconsistent. The steps, actions and functions described are provided by way of example only, and some of the steps, actions and functions can be omitted and combined with each other to the extent that they do not deviate from the gist of the invention. It may be one, or other steps, actions or functions may be added.
 また、本明細書では、さまざまな実施形態が開示されているが、一の実施形態における特定のフィーチャ(技術的事項)を、適宜改良しながら、他の実施形態に追加し、又は該他の実施形態における特定のフィーチャと置換することができ、そのような形態も本発明の要旨に含まれる。 In addition, although various embodiments are disclosed in the present specification, specific features (technical matters) in one embodiment are added to other embodiments or other embodiments while being appropriately improved. It can be replaced with specific features in embodiments, such embodiments are also included in the gist of the invention.
1…生体情報測定器
10…センサ部
 12…生体センサ
 12a…PPGセンサ
 14…モーションセンサ
 14a…慣性センサ
 14b…地磁気センサ
20…制御部
 201…センサ制御部
 202…生体信号受信部
 203…姿勢状態信号受信部
 204…吸光度比算出部
 205…姿勢状態推定部
 206…パラメータセット記憶部
 207…パラメータセット選択部
 208…SpO2算出部
 209…測定結果記憶部
 210…パラメータセット推定部
30…ユーザインタフェース部
40…通信インタフェース部
1 ... Biometric information measuring device 10 ... Sensor unit 12 ... Biological sensor 12a ... PPG sensor 14 ... Motion sensor 14a ... Inertial sensor 14b ... Geomagnetic sensor 20 ... Control unit 201 ... Sensor control unit 202 ... Biometric signal receiving unit 203 ... Attitude state signal Reception unit 204 ... Absorption ratio calculation unit 205 ... Attitude state estimation unit 206 ... Parameter set storage unit 207 ... Parameter set selection unit 208 ... SpO2 calculation unit 209 ... Measurement result storage unit 210 ... Parameter set estimation unit 30 ... User interface unit 40 ... Communication interface section

Claims (11)

  1.  PPGセンサを含む生体センサから出力される被験者の生体信号を取得する生体信号取得部と、
     モーションセンサから出力される前記被験者の姿勢状態信号を取得する姿勢状態信号取得部と、
     前記姿勢状態信号取得部により取得した姿勢状態信号に基づいて、前記被験者の姿勢状態を推定する姿勢状態推定部と、
     前記生体信号取得部により取得した前記生体信号と前記姿勢状態推定部により推定された前記姿勢状態に基づいて、前記被験者の基準姿勢状態時におけるSpO2を算出するSpO2算出部と、を備え、
     前記SpO2算出部は、前記取得した生体信号に基づいて算出される吸光度比に対して、前記推定された姿勢状態に応じたパラメータセットを適用することにより、前記SpO2を算出する、
    生体情報測定器。
    A biological signal acquisition unit that acquires the biological signal of the subject output from the biological sensor including the PPG sensor,
    A posture state signal acquisition unit that acquires the posture state signal of the subject output from the motion sensor, and
    A posture state estimation unit that estimates the posture state of the subject based on the posture state signal acquired by the posture state signal acquisition unit, and a posture state estimation unit.
    A SpO2 calculation unit that calculates SpO2 in the reference posture state of the subject based on the biological signal acquired by the biological signal acquisition unit and the posture state estimated by the posture state estimation unit is provided.
    The SpO2 calculation unit calculates the SpO2 by applying a parameter set according to the estimated posture state to the absorbance ratio calculated based on the acquired biological signal.
    Biological information measuring instrument.
  2.  複数の姿勢状態モデルに対応する複数のパラメータセットを記憶するパラメータセット記憶部を更に備える、
    請求項1に記載の生体情報測定器。
    A parameter set storage unit for storing a plurality of parameter sets corresponding to a plurality of posture state models is further provided.
    The biometric information measuring device according to claim 1.
  3.  前記パラメータセット記憶部から、前記推定された姿勢状態に対応する一の前記パラメータセットを選択するパラメータセット選択部を更に備え、
     前記SpO2算出部は、前記選択された一の所定のパラメータセットに基づいて、前記吸光度比を補正する、
    請求項2に記載の生体情報測定器。
    A parameter set selection unit for selecting one of the parameter sets corresponding to the estimated posture state from the parameter set storage unit is further provided.
    The SpO2 calculation unit corrects the absorbance ratio based on the selected predetermined parameter set.
    The biometric information measuring device according to claim 2.
  4.  前記パラメータセット記憶部から、前記推定された姿勢状態に対応する1又は2以上の前記パラメータセットを選択し、前記選択した1又は2以上のパラメータセットに基づく補間計算により、一のパラメータセットを推定するパラメータセット推定部を更に備え、
     前記SpO2算出部は、前記推定された一のパラメータセットに基づいて、前記吸光度比を補正する、
    請求項2に記載の生体情報測定器。
    One or two or more of the parameter sets corresponding to the estimated posture state are selected from the parameter set storage unit, and one parameter set is estimated by interpolation calculation based on the selected one or more parameter sets. Further equipped with a parameter set estimation unit
    The SpO2 calculation unit corrects the absorbance ratio based on the estimated one parameter set.
    The biometric information measuring device according to claim 2.
  5.  前記SpO2算出部は、確率密度関数を用いた前記補間計算により、前記吸光度比を補正する、
    請求項4に記載の生体情報測定器。
    The SpO2 calculation unit corrects the absorbance ratio by the interpolation calculation using the probability density function.
    The biometric information measuring device according to claim 4.
  6.  前記SpO2算出部は、所定の非線形関数を用いた前記補間計算により、前記吸光度比を補正する、
    請求項4に記載の生体情報測定器。
    The SpO2 calculation unit corrects the absorbance ratio by the interpolation calculation using a predetermined nonlinear function.
    The biometric information measuring device according to claim 4.
  7.  前記推定された姿勢状態に基づいて、特定の姿勢状態及び前記吸光度比に対応するパラメータセットを推定するパラメータセット推定部を更に備え、
     前記パラメータセット推定部は、前記推定したパラメータセットを前記パラメータセット記憶部に格納する、
    請求項2に記載の生体情報測定器。
    Further, a parameter set estimation unit for estimating a parameter set corresponding to a specific posture state and the absorbance ratio based on the estimated posture state is provided.
    The parameter set estimation unit stores the estimated parameter set in the parameter set storage unit.
    The biometric information measuring device according to claim 2.
  8.  前記姿勢状態推定部は、前記少なくとも1つの生体センサから出力される前記生体信号に基づいて、前記被験者の姿勢状態を推定する、
    請求項1に記載の生体情報測定器。
    The posture state estimation unit estimates the posture state of the subject based on the biological signal output from at least one biological sensor.
    The biometric information measuring device according to claim 1.
  9.  前記少なくとも1つの生体センサは、血圧センサ、ECGセンサ及び筋電センサの少なくとも1つを含む、請求項8に記載の生体情報測定器。 The biometric information measuring device according to claim 8, wherein the at least one biosensor includes at least one of a blood pressure sensor, an ECG sensor, and an electromyographic sensor.
  10.  前記モーションセンサは、重力センサ、加速度センサ、ジャイロセンサ、地磁気センサ、感圧センサ、超音波センサ、赤外センサ、イメージセンサ、及びスペクトルセンサのうちの少なくとも1つを含む、
    請求項1に記載の生体情報測定器。
    The motion sensor includes at least one of a gravity sensor, an acceleration sensor, a gyro sensor, a geomagnetic sensor, a pressure sensitive sensor, an ultrasonic sensor, an infrared sensor, an image sensor, and a spectrum sensor.
    The biometric information measuring device according to claim 1.
  11.  生体センサから出力される、被験者の生体信号を取得することと、
     モーションセンサから出力される、前記被験者の姿勢状態信号を取得することと、
     前記取得した姿勢状態信号に基づいて、前記被験者の姿勢状態を推定することと、
     前記取得した生体信号と前記推定された姿勢状態に基づいて、前記被験者の基準姿勢状態時におけるSpO2を算出することと、を含み、
     前記SpO2を算出することは、前記取得した生体信号に基づいて算出される吸光度比に対して、前記推定された姿勢状態に応じたパラメータセットを適用することにより、前記SpO2を算出することを含む、
    生体情報測定方法。
    Acquiring the biological signal of the subject output from the biological sensor,
    Acquiring the posture state signal of the subject output from the motion sensor,
    To estimate the posture state of the subject based on the acquired posture state signal,
    Includes calculating SpO2 of the subject in the reference posture state based on the acquired biological signal and the estimated posture state.
    Calculating the SpO2 includes calculating the SpO2 by applying a parameter set according to the estimated posture state to the absorbance ratio calculated based on the acquired biological signal. ,
    Biological information measurement method.
PCT/JP2020/009443 2019-04-04 2020-03-05 Biological information measurer and biological information measurement method using same WO2020203020A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021511287A JP7228678B2 (en) 2019-04-04 2020-03-05 Biological information measuring instrument and biological information measuring method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019072197 2019-04-04
JP2019-072197 2019-04-04

Publications (1)

Publication Number Publication Date
WO2020203020A1 true WO2020203020A1 (en) 2020-10-08

Family

ID=72668279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009443 WO2020203020A1 (en) 2019-04-04 2020-03-05 Biological information measurer and biological information measurement method using same

Country Status (2)

Country Link
JP (1) JP7228678B2 (en)
WO (1) WO2020203020A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022211272A1 (en) * 2021-03-31 2022-10-06 삼성전자 주식회사 Electronic device for measuring blood pressure on basis of user posture and control method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100127A (en) * 1993-10-08 1995-04-18 Chiesuto M I Kk Oxygen saturation recording apparatus
JP2001321361A (en) * 2000-05-18 2001-11-20 Nippon Koden Corp Physiological function examination device and display device for physiological function examination result
JP2005253865A (en) * 2004-03-15 2005-09-22 Seiko Epson Corp Biological evaluation device, biological evaluation method, biological evaluation program, and recording medium
JP2006026092A (en) * 2004-07-15 2006-02-02 Matsushita Electric Ind Co Ltd Acceleration information transmitting device, body exercise analyzing device, and body exercise analyzing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100127A (en) * 1993-10-08 1995-04-18 Chiesuto M I Kk Oxygen saturation recording apparatus
JP2001321361A (en) * 2000-05-18 2001-11-20 Nippon Koden Corp Physiological function examination device and display device for physiological function examination result
JP2005253865A (en) * 2004-03-15 2005-09-22 Seiko Epson Corp Biological evaluation device, biological evaluation method, biological evaluation program, and recording medium
JP2006026092A (en) * 2004-07-15 2006-02-02 Matsushita Electric Ind Co Ltd Acceleration information transmitting device, body exercise analyzing device, and body exercise analyzing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022211272A1 (en) * 2021-03-31 2022-10-06 삼성전자 주식회사 Electronic device for measuring blood pressure on basis of user posture and control method thereof

Also Published As

Publication number Publication date
JPWO2020203020A1 (en) 2021-12-23
JP7228678B2 (en) 2023-02-24

Similar Documents

Publication Publication Date Title
KR102615025B1 (en) Spot check measurement system
US8126526B2 (en) Pulse wave analyzing device
JP5456976B2 (en) Configurable physiological measurement system
EP2948059B1 (en) Device and method for determining a partial carbon dioxide pressure in a subject of interest
JP6073919B2 (en) Method and apparatus for monitoring baroreceptor reflexes of a user
CN110198663B (en) System for monitoring the health of a patient suffering from respiratory diseases
US20170202505A1 (en) Unobtrusive skin tissue hydration determining device and related method
US20210267550A1 (en) Mobile device applications to measure blood pressure
US20070299323A1 (en) Apparatus for measuring one or more physiological functions of a body and a method using the same
US11678809B2 (en) Apparatus and method for determining a calibration parameter for a blood pressure measurement device
DE102011088817A1 (en) Device designed to measure vital parameters of a patient
JP2011521702A (en) Method and apparatus for CO2 evaluation
JP6181576B2 (en) Hemodynamic measurement apparatus and hemodynamic measurement method
JP2016514983A (en) Automated assessment of peripheral vascular conditions
WO2020203020A1 (en) Biological information measurer and biological information measurement method using same
JP6665282B2 (en) Physiological monitoring kit with USB drive
US20220115125A1 (en) Evaluation support system and evaluation support method for supporting evaluation of state of circulatory system
CN108430317A (en) Method and device for the hemodynamic blood pressure of calculating optical
JP2021194260A (en) Hemodynamics analysis device and hemodynamics analysis program
Hemalatha IOT BASED HEALTH MONITORING SYSTEM
Vittal et al. A pilot study on patch sensor based Photo Plethysmography (PPG) for heart rate measurements
WO2023021970A1 (en) Biosensor and biological information measuring system
EP4147634A1 (en) Patient monitoring for alarm management
Mečiak et al. Sensor-based platform e-health connection with Matlab
JP2022167320A (en) Pulse wave analysis device, pulse wave analysis method, and pulse wave analysis program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20785382

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511287

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20785382

Country of ref document: EP

Kind code of ref document: A1