WO2020202987A1 - 樹脂との密着性に優れたペプチドならびにそれを用いた生体適合機能材料 - Google Patents

樹脂との密着性に優れたペプチドならびにそれを用いた生体適合機能材料 Download PDF

Info

Publication number
WO2020202987A1
WO2020202987A1 PCT/JP2020/008958 JP2020008958W WO2020202987A1 WO 2020202987 A1 WO2020202987 A1 WO 2020202987A1 JP 2020008958 W JP2020008958 W JP 2020008958W WO 2020202987 A1 WO2020202987 A1 WO 2020202987A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
residue
peptide
biocompatible material
resin
Prior art date
Application number
PCT/JP2020/008958
Other languages
English (en)
French (fr)
Inventor
岩▲崎▼ 富生
優史 丸山
芹澤 武
敏樹 澤田
Original Assignee
株式会社日立製作所
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所, 国立大学法人東京工業大学 filed Critical 株式会社日立製作所
Priority to EP20784736.9A priority Critical patent/EP3954698A4/en
Priority to US17/600,636 priority patent/US20220211899A1/en
Priority to CN202080026945.4A priority patent/CN113646012B/zh
Publication of WO2020202987A1 publication Critical patent/WO2020202987A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/58Adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/44Medicaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/04Macromolecular materials
    • A61L29/041Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/08Materials for coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • A61L29/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/048Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/25Peptides having up to 20 amino acids in a defined sequence

Definitions

  • the present invention relates to a biocompatible functional material such as a peptide having excellent adhesion to a resin, a biocompatible material using the peptide, and a functional material.
  • Artificial materials may cause various biological reactions when they come into contact with living organisms.
  • devices using artificial materials, artificial organs, etc. are transplanted into the body, or when devices using artificial materials, medical products, etc. come into contact with the skin for a long period of time, various types of inflammation such as inflammation due to foreign body reaction and allergic reaction occur. Symptoms appear. Therefore, biocompatible materials are required as materials for various devices, medical products, and the like.
  • biocompatible materials in which peptides are attached to the surface of organic substances such as resins and inorganic substances are known.
  • peptides are attached to the surface of resin or inorganic substances that are artificial materials and coated, non-foreign substances, non-irritants, interfacial compatibility, etc., which are important for compatibility with living organisms, are improved. Therefore, artificial materials such as resins We are searching for and designing peptides that specifically adsorb to.
  • Non-Patent Document 1 discloses a peptide having an amino acid sequence represented by Glu-Leu-Trp-Arg-Pro-Thr-Arg (ELWRPTR).
  • This peptide has high affinity for isotactic poly (methyl-methacrylate) resin (it-PMMA), has a high peeling energy of 31 kJ / mol, and has a high value for it-PMMA. It shows high adhesion.
  • Non-Patent Document 1 when a peptide is adsorbed on a resin, biocompatibility can be efficiently imparted by simple treatment and operation. However, if the affinity / adhesion between the resin and the peptide is not sufficiently high, the peptide will be exfoliated from the resin during use in the living body or skin of the transplant destination, and the resin and the living body will come into contact with each other. Inflammation may occur. When the peptide is peeled off, it is necessary to replace the material on which the peptide is adsorbed. Therefore, the peeling energy is higher than that of Non-Patent Document 1, and the biocompatibility endurance life is extended. Biocompatible functional materials such as peptides having excellent properties and biocompatible materials and functional materials using the peptides are desired.
  • the present invention provides a biocompatible material having improved biocompatibility by adsorbing a peptide having high adhesion to the resin and difficult to peel off from the surface of the resin, and a functional material having the same. The purpose.
  • tryptophan residues and arginine residues are different from the methoxycarbonyl group and methyl group of it-PMMA. It was found that it is easy to form an interaction and is effective as an amino acid residue constituting a peptide.
  • tryptophan residues and arginine residues are used to stabilize the oxygen of the carbonyl group present in the main chain of the peptide at a position where the proline residue and glutamic acid residue easily interact with the methoxycarbonyl group of it-PMMA. We have found that it is effective as an amino acid residue to be used in combination with, and have completed the present invention.
  • the biocompatible material according to the present invention for solving the above-mentioned problems is a biocompatible material containing a resin and a peptide adsorbed on the resin, and the resin has a methoxycarbonyl group and a methoxycarbonyl group.
  • the peptide has a methyl group, and 70% or more of the amino acid residues are tryptophan residues or arginine residues.
  • the functional material according to the present invention is a functional material containing the biocompatible material and a functional substance that functions inside or on the surface of the living body, and the functional substance is the above-mentioned functional material. It is either retained on the surface of the biocompatible material or released from the surface of the biocompatible material.
  • the present invention it is possible to provide a biocompatible material having improved biocompatibility by adsorbing a peptide having high adhesion to the resin and difficult to peel off from the surface of the resin, and a functional material provided with the biocompatibility material. ..
  • 6 is a sensorgram showing the interaction between it-PMMA and an adsorbed peptide (EWWRPWR: SEQ ID NO: 1-4). 6 is a sensorgram showing the interaction between it-PMMA and an adsorbed peptide (RWWRPWR: SEQ ID NO: 1-5). It is an image which shows the atomic arrangement in the state where the adsorbed peptide (RWWRPWW: SEQ ID NO: 1-1) is adsorbed on it-PMMA. It is an image which shows the atomic arrangement in the state where the adsorbed peptide (RWWRRWW: SEQ ID NO: 1-2) is adsorbed on it-PMMA.
  • FIG. 1 is a diagram schematically showing the structure of a biocompatible material.
  • the biocompatible material 10 according to the present embodiment contains at least a resin 1 which is a main body of the material and an adsorbed peptide (peptide) 2 adsorbed on the resin 1.
  • biocompatible material 10 Since the biocompatible material 10 has a structure in which the adsorbed peptide 2, which is a substance close to the biological substance, is adsorbed on the resin 1, the material exhibits better biocompatibility as compared with the case where only the resin 1 is used as the material. ..
  • biocompatibility means a property that can coexist with a living body while fulfilling its original function without giving an adverse effect or a strong stimulus to the living body for a long period of time.
  • the article formed of the biocompatible material 10 include artificial organs, artificial tissues, implantable therapeutic devices, body surface fixed therapeutic devices, diagnostic devices, therapeutic instruments, surgical instruments, and surgical instruments.
  • Materials, osteosynthesis materials, dental materials, supplementary materials, orthodontic appliances, orthodontic appliances, other prostheses, contact lenses, eyeglasses, clothing, footwear, wound dressings such as adhesive plasters and gauze, bandages, patches, paps Agents and the like can be mentioned.
  • the resin 1 constituting the biocompatible material 10 may be in any state such as a molded body or a non-molded solid.
  • the shape of the resin 1 can be an appropriate shape according to the type, use, function, etc. of the article formed of the biocompatible material 10, and is not particularly limited.
  • the resin 1 may form the entire article or only a part of the article.
  • a resin having a methoxycarbonyl group and a methyl group, or a fluororesin is used as the resin 1, as described later.
  • the adsorbed peptide 2 constituting the biocompatible material 10 is adsorbed on the resin 1 by a non-covalent intermolecular force such as van der Waals force, hydrogen bond, dipole interaction, etc., and the surface of the resin 1 Is held in.
  • the adsorbed peptide 2 may be adsorbed on the entire surface of the resin 1 or may be adsorbed on a part of the surface of the resin 1.
  • a peptide having a predetermined amino acid sequence and exhibiting a specific affinity for a specific resin 1 is used as the adsorbed peptide 2, as described later.
  • the affinity (binding force) between the resin and the adsorbed peptide can be evaluated by the peeling energy value.
  • the peeling energy is defined as the energy difference between the state in which the resin and the adsorbed peptide are adsorbed to each other and the state in which the resin and the adsorbed peptide are dissociated from each other.
  • the concentration of the resin A at a certain time t is [A]
  • the concentration of the peptide B is [B]
  • the complex is [AB]
  • the peeling energy corresponds to the standard Gibbs energy ⁇ G in the adsorption reaction that produces the complex AB, it is obtained from the mathematical formulas (3) and (4) using the binding rate constant k 1 and the dissociation rate constant k -1. Can be done.
  • the binding rate constant k 1 and the dissociation rate constant k -1 can be measured by the surface plasmon resonance method using a resin as a ligand and a solution of an adsorbed peptide as an analysis solution.
  • the PMMA-adsorbed peptide is a residual amino acid of one or more of tryptophan residue (Trp: W), arginine residue (Arg: R), proline residue (Pro: P), and glutamic acid residue (Glu: E). It is formed with an amino acid sequence containing a group.
  • Table 1 shows the exfoliation energy, binding rate constant, dissociation rate constant, tryptophan residue (W), and arginine residue of the adsorption reaction between the peptide and the isotactic polymethyl methacrylate resin (it-PMMA). The abundance of (R), proline residue (P) and glutamic acid residue (E) is shown.
  • the measured values for SEQ ID NOs: 1-1 to 1-5 were not measured because the peptide had a high affinity and did not cause dissociation.
  • the measured values for SEQ ID NOs: 1-6 to 1-19 are calculated from the binding rate constant k 1 and the dissociation rate constant k -1 published in Non-Patent Document 1.
  • ReaxFF reaction molecular dynamics calculation program
  • a glass slide to which gold of the sensor chip was adhered was coated with a thickness of about 10 nm, and the sensor chip coated with it-PMMA was attached to the analyzer.
  • peptide As the peptide, a peptide having the amino acid sequence shown in Table 1, having a free N-terminal, and having the C-terminal amidated was used.
  • the peptide was purified by high performance liquid chromatography and then dissolved in a 10 mM HEPES buffer (pH 7.4) in which 150 mM NaCl was dissolved to prepare an analysis solution.
  • the sensorgrams measured for a plurality of concentrations different from each other are simultaneously globally fitted using the analysis software "BIA evolution ver. 4.1" (manufactured by GE Healthcare Japan), and the resonance unit RU corresponding to the mathematical formula (2).
  • the binding rate constant k 1 and the dissociation rate constant k -1 were obtained from the linear relationship between the resonance unit and the time change amount d (RU) / dt of the resonance unit.
  • the binding rate constants of SEQ ID NOs: 1-1 to 1-5 were generally larger than those of SEQ ID NO: 1-6, which had the maximum peeling energy in Non-Patent Document 1.
  • the dissociation rate constants of SEQ ID NOs: 1-1 to 1-5 did not reach a finite value exceeding 0 because the affinity between it-PMMA and the peptide was high and dissociation was not observed.
  • SEQ ID NOs: 1-1 to 1-5 are easy to bind to it-PMMA, but difficult to dissociate from it-PMMA. It is clear that the measured values of the peeling energies of SEQ ID NOs: 1-1 to 1-5 are larger than those of SEQ ID NO: 1-6, and it is possible to confirm the high affinity for it-PMMA. it can.
  • FIG. 2 is a diagram showing the relationship between the calculated value of the peeling energy by the molecular dynamics simulation and the measured value calculated based on the measurement experiment.
  • the horizontal axis shows the calculated value [kJ / mol] by the molecular dynamics simulation of the peeling energy
  • the vertical axis shows the measured value [kJ / mol] calculated based on the measurement experiment of the peeling energy.
  • FIG. 2 plots the results of the peptides (SEQ ID NOs: 1-6 to 1-19) described in Non-Patent Document 1.
  • the calculated value by the molecular dynamics simulation of the peeling energy fits well with the measured value calculated based on the measurement experiment. From this result, it can be seen that the adsorption reaction between the resin and the peptide can be simulated with high accuracy by a program such as ReaxFF that provides a reaction force field that describes the cleavage and formation of the bond.
  • SEQ ID NOs: 1-1 to 1-5 have significantly improved peeling energy calculation values as compared with SEQ ID NO: 1-6, which has the maximum peeling energy in Non-Patent Document 1, and have an affinity for it-PMMA. It can be said that it is a peptide having high adhesion to it-PMMA.
  • FIG. 3 is a diagram showing an example of a sensorgram obtained by measurement by the surface plasmon resonance method.
  • the signal due to surface plasmon resonance increases.
  • the PMMA-adsorbed peptide adsorbed on it-PMMA dissociates from it-PMMA, and the signal shows a decrease. From these results, the binding rate constant k 1 and the dissociation rate constant k -1 can be obtained.
  • FIG. 4 is a sensorgram showing the interaction between it-PMMA and the adsorbed peptide (RWWRPWW: SEQ ID NO: 1-1).
  • FIG. 5 is a sensorgram showing the interaction between it-PMMA and an adsorbed peptide (RWWRRWW: SEQ ID NO: 1-2).
  • FIG. 6 is a sensorgram showing the interaction between it-PMMA and an adsorbed peptide (EWWRPWR: SEQ ID NO: 1-4).
  • FIG. 7 is a sensorgram showing the interaction between it-PMMA and an adsorbed peptide (RWWRPWR: SEQ ID NO: 1-5).
  • the signal does not decrease and is constant even when a solution containing no PMMA-adsorbed peptide is flowed, and dissociation of the PMMA-adsorbed peptide is observed. There wasn't. Therefore, it can be said that these PMMA-adsorbed peptides are difficult to dissociate from it-PMMA, have extremely high exfoliation energy, and have sufficiently high affinity and adhesion between the resin and the peptide.
  • FIG. 8 is an image showing the atomic arrangement of the adsorbed peptide (RWWRPWW: SEQ ID NO: 1-2) adsorbed on it-PMMA.
  • FIG. 9 is an image showing the atomic arrangement of the adsorbed peptide (RWWRRWW: SEQ ID NO: 1-2) adsorbed on it-PMMA.
  • FIG. 10 is an image showing the atomic arrangement of the adsorbed peptide (EWWRPWR: SEQ ID NO: 1-4) adsorbed on it-PMMA.
  • FIG. 11 is an image showing the atomic arrangement of the adsorbed peptide (RWWRPWR: SEQ ID NO: 1-5) adsorbed on it-PMMA.
  • FIGS. 8 to 11 show three-dimensional modeling images of the interface of it-PMMA adsorbed by the PMMA-adsorbed peptide as viewed from the side of the PMMA-adsorbed peptide.
  • the thin stick indicates the molecular chain of it-PMMA
  • the thick stick indicates the main chain of the adsorbed peptide
  • the medium-thick stick indicates the side chain of the adsorbed peptide.
  • the largest sphere in the PMMA-adsorbed peptide indicates the oxygen of the carbonyl group present in the main chain.
  • the molecular chains are oriented in parallel with each other, and the methoxycarbonyl groups and the methyl groups are in a state of facing each other.
  • a region mainly in which a methoxycarbonyl group is located CH 3 OCO region
  • a region in which a methyl group is mainly located CH 3 region
  • the main chain of the PMMA-adsorbed peptide is oriented substantially parallel to the molecular chain of it-PMMA, forming a ⁇ -strand-like zigzag structure.
  • the oxygen (largest sphere) of the carbonyl group present in the main chain of the PMMA-adsorbed peptide is located on the base end side (near the ester group) of the methoxycarbonyl group of it-PMMA.
  • the side chain of the amino acid residue located at the odd position from the N-terminal to the C-terminal is located in the CH 3 OCO region and is closest to the main chain. It is close to the methoxycarbonyl group of another it-PMMA adjacent to it-PMMA.
  • the side chain of the amino acid residues located in even-numbered from N-terminal to C-terminal is located in CH 3 region, closest to the main chain it -It is close to the main chain and methyl group of it-PMMA on the opposite side adjacent to PMMA.
  • the side chain of the amino acid residue located evenly from the N-terminal to the C-terminal is that of it-PMMA adjacent to it-PMMA closest to the main chain. It is thought to form intermolecular interactions with the main chain and methyl groups.
  • tryptophan residues and arginine residues are effective as amino acid residues constituting the PMMA-adsorbed peptide in that they have high adsorption power to methoxycarbonyl groups and methyl groups. It can be said that.
  • proline residues and glutamic acid residues are inferior to tryptophan residues and arginine residues in adsorption power, they are effective in contributing to the stabilization of the main chain structure and side chain orientation of PMMA-adsorbed peptides. I can say.
  • the PMMA-adsorbed peptide contains one or more amino acid residues among the tryptophan residue (W), arginine residue (R), proline residue (P), and glutamate residue (E), and the tryptophan residue. It is preferably an amino acid sequence having a high abundance ratio of group or arginine residue.
  • the exfoliation energy of the PMMA adsorbed peptide is preferably 35.0 kJ / mol or more, more preferably 36.0 kJ / mol or more, still more preferably 37.0 kJ / mol or more, still more preferably 38.0 kJ / mol or more.
  • the length of the PMMA adsorbed peptide is preferably 5 or more, and more preferably 6 or more, for amino acid residues.
  • the number of amino acid residues is preferably 100 or less, more preferably 20 or less, further preferably 15 or less, and even more preferably 10 or less.
  • the longer the PMMA-adsorbed peptide the higher the affinity for the resin.
  • the shorter the PMMA-adsorbed peptide the less likely it is to aggregate within or between molecules, so that modifications such as chemical modification and clustering become easier.
  • the length of the PMMA-adsorbed peptide is particularly preferably 7 amino acid residues.
  • 70% or more of the amino acid residues of the PMMA adsorbed peptide are tryptophan residues or arginine residues.
  • the abundance of tryptophan residue and arginine residue with respect to the total length of the amino acid sequence is more preferably 75% or more, further preferably 80% or more, further preferably 85% or more, still more preferably 90% or more.
  • the abundance of tryptophan residue and arginine residue may be 100%, less than 95%, or less than 90%.
  • the tryptophan residue and arginine residue have relatively long side chains and can form a relatively strong interaction with the methoxycarbonyl group and methyl group of the resin.
  • tryptophan residues have relatively rigid side chains and tend to stabilize the structure of the main chain and the orientation of the side chains of the PMMA-adsorbed peptide.
  • the arginine residue since the arginine residue has a longer side chain than the tryptophan residue, it can form an interaction different from that of the tryptophan residue. Therefore, when the abundance of tryptophan residue and arginine residue is increased, a PMMA-adsorbed peptide showing high affinity for a resin having a methoxycarbonyl group and a methyl group can be obtained.
  • the proline residue has a ring structure, and the bond angle and dihedral angle of the peptide bond are restricted and fixed, so it has the effect of stabilizing the structure of the main chain.
  • the glutamic acid residue has a relatively long side chain and has a polar group in the side chain. Therefore, when a proline residue or a glutamic acid residue is interposed, the ⁇ -strand-like zigzag structure is less likely to collapse, and the structure of the main chain and the orientation of the side chains may be stabilized.
  • the amino acid residues located at the odd-th position from the N-terminal to the C-terminal of the PMMA-adsorbed peptide and the amino acid residues located at the even-order are of the same type. It is preferable that the sequence is not two or more consecutive.
  • the amino acid residues located at even positions from the N-terminal to the C-terminal of the PMMA-adsorbed peptide are in the order of Trp, Arg, and Trp (Trp-Xaa-Arg-Xaa-Trp), or It is preferable that the sequence is in the order of Arg, Trp, Arg (Arg-Xaa-Trp-Xaa-Arg) (however, the third amino acid residue is the last even-th amino acid residue located on the C-terminal side. Or, the next even-th amino acid residue is an intermediate amino acid residue that is a different type of amino acid residue.)
  • amino acid residues of the same type are not continuous, the structure of the main chain and the orientation of the side chain of the PMMA-adsorbed peptide are stabilized, and between the side chain of the amino acid residue and the methyl group of the resin. Since the interaction is likely to be formed in the resin, the affinity for the resin tends to be high.
  • the PMMA-adsorbed peptide becomes stable with even-numbered amino acid residues close to the methyl group of it-PMMA.
  • the side chain of arginine is longer than that of the methyl group, the side chain of the even-numbered arginine residue tends to be easily bent and difficult to be oriented toward the molecular chain of the adjacent resin.
  • the even-positioned amino acid residues are in the order of Arg, Trp, and Arg, the side chains of the arginine residues may interfere with each other beyond the adjacent even-th amino acid residues.
  • the structure of the main chain of the PMMA-adsorbed peptide tends to collapse.
  • the affinity for the resin is increased and the structure of the main chain and the orientation of the side chains of the PMMA-adsorbed peptide are stabilized. Can be transformed into.
  • the 2m-1st amino acid residue from the N-terminal is the arginine (R) residue
  • the 2m + 1st amino acid residue is the tryptophan (W) residue
  • the 2m + 3rd amino acid residue is the proline (P) residue.
  • the group or the 2m-1st amino acid residue from the N-terminal is the arginine (R) residue
  • the 2m + 1st amino acid residue is the tryptophan (W) residue
  • the 2m + 3rd amino acid residue is the arginine (R).
  • Residue or the 2m-1st amino acid residue from the N-terminal is the tryptophan (W) residue, the 2m + 1st amino acid residue is the tryptophan (W) residue, and the 2m + 3rd amino acid residue is proline.
  • the (P) residue is the residue, or the 2m-1st amino acid residue from the N-terminal is the glutamate (E) residue, the 2m + 1st amino acid residue is the tryptophan (W) residue, and the 2m + 3rd amino acid residue.
  • Is preferably a proline (P) residue (where m represents a natural number).
  • the PMMA-adsorbed peptide becomes stable with the odd-numbered amino acid residue close to the methoxycarbonyl group of it-PMMA.
  • the side chains of the arginine residue are adjacent to each other even if the amino acid residue located at the odd position is in the order of Arg, Trp, Arg.
  • the structure of the main chain of the PMMA-adsorbed peptide is less likely to be disrupted because it is less likely to interfere beyond the odd-th amino acid residue. If the amino acid residue located at the odd number is in the order of Arg, Trp, Arg, the side chain of arginine, which is longer than tryptophan, forms an intermolecular interaction, which may increase the affinity for the resin. it can.
  • the 2m + 3rd amino acid residue from the N-terminal is a proline (P) residue
  • the 2m + 5th amino acid residue is a tryptophan (R) residue or an arginine (R) residue. Is more preferable.
  • the zigzag structure of the main chain of the PMMA-adsorbed peptide is stabilized by the molecular structure of Pro, and the 2m + 5th Trp or The side chains of Arg tend to be oriented towards the methoxycarbonyl group side of the adjacent molecular chain. Therefore, if the 2m + 5th amino acid residue is Trp or Arg, the affinity for the resin may be increased.
  • the PMMA-adsorbed peptide includes such an even-numbered predetermined amino acid sequence (WRW, RWR) and an odd-numbered predetermined amino acid sequence (R / W / P, RW / R).
  • R, W / W / P, E / W / P) may be present on the most N-terminal side of all amino acid residues, or may be present at an intermediate position among all amino acid residues.
  • the PMMA-adsorbed peptide has such an even-numbered predetermined amino acid sequence (WRW, RWR) or an odd-numbered predetermined amino acid sequence (RWP, RW).
  • R, W / W / P, E / W / P) may be provided by one in the entire length, or may have a plurality of them in the total length.
  • the PMMA-adsorbed peptide preferably has as short as 10 or less amino acid residues, and in this case, preferably has one amino acid residue in the entire length.
  • the PMMA-adsorbed peptide has such an even-numbered predetermined amino acid sequence (WRW, RWR) or an odd-numbered predetermined amino acid sequence (RWP, RW).
  • RWWRPWW ... (1-1) RWWRRWW ... (1-2) WWWRPWW ... (1-3) EWWRPWR ... (1-4) RWWRPWR ... (1-5)
  • the PMMA adsorbed peptide may have an amino acid sequence having a specific function in addition to the amino acid sequences of SEQ ID NOs: 1-1 to 1-5.
  • the PMMA-adsorbed peptide may have these amino acid sequences on the most N-terminal side of all amino acid residues, or may have them at an intermediate position among all amino acid residues.
  • the PMMA adsorbed peptide may have one amino acid sequence of SEQ ID NOs: 1-1 to 1-5 in the entire length, or may have a plurality of amino acid sequences in the entire length.
  • the PMMA adsorbed peptide may have one kind or a plurality of kinds among these amino acid sequences.
  • the N-terminal and C-terminal of the PMMA-adsorbed peptide may be chemically modified or may be in an arbitrary ionized state.
  • the N-terminal is -NH 2 , -NH 3 + , -CH 3 CO, 9-fluorenylmethyloxycarbonyl (Fmoc) group, tert-butoxycarbonyl (Boc) group, etc. It may be any of.
  • C-terminus, -COOH, -COO -, -CONH 2 may be any of -CONH 3 +, and the like.
  • the PMMA-adsorbed peptide is a peptide containing an amino acid sequence represented by any one of SEQ ID NOs: 1-1 to 1-5 or an amino acid sequence similar to the amino acid sequence, it refers to a resin having a methoxycarbonyl group and a methyl group.
  • the theoretical value of the peeling energy becomes high, and a high affinity for the resin can be obtained. Therefore, the peptide adsorbed on the resin is less likely to peel off, and a biocompatible material that maintains biocompatibility for a longer period of time can be obtained.
  • the PMMA-adsorbed peptide can be synthesized by using, for example, a chemical synthesis method such as a liquid phase synthesis method or a solid phase synthesis method, or various synthetic methods such as a genetic engineering synthesis method.
  • a chemical synthesis method such as a liquid phase synthesis method or a solid phase synthesis method
  • various synthetic methods such as a genetic engineering synthesis method.
  • the liquid phase synthesis method include a synthesis method using a soluble anchor described in non-patent documents (Keisuke Aihara et al., Organic Letters, 2015, 17 (3), p.696-699) and non-patented methods.
  • Literature Noboru Yanaihara and 2 others, "Chemical synthesis of peptides and their applications", Journal of Synthetic Organic Chemistry, Society of Synthetic Organic Chemistry, November 1, 1998, Vol. 46, No.
  • any resin can be used as long as it is a resin having a methoxycarbonyl group and a methyl group.
  • the resin that adsorbs the PMMA-adsorbed peptide may be a polymer of a monomer having a methoxycarbonyl group and a methyl group, or a copolymer of a monomer having a methoxycarbonyl group and a monomer having a methyl group. It may be a polymer, or it may be a copolymer of a monomer having a methoxycarbonyl group or a methyl group and another monomer.
  • the copolymer may be any of a block copolymer, a random copolymer, and a graft copolymer.
  • a polymethyl methacrylate resin PMMA
  • an isotactic polymethyl methacrylate resin (it-PMMA) is particularly preferable.
  • the resin is PMMA
  • high affinity can be obtained because the monomer has a methoxycarbonyl group and a methyl group.
  • the resin is it-PMMA, a higher affinity can be obtained because the methoxycarbonyl group and the methyl group have a stereoregular and uniform arrangement.
  • the low glass transition temperature facilitates the processing of biocompatible materials.
  • Polymethylmethacrylate resin can be synthesized, for example, by using the synthetic method described in Non-Patent Document 1. It-PMMA is obtained by anionic polymerization of methyl methacrylate in a non-polar solvent using a Grignard reagent having a bulky substituent such as a tert-butyl group as an initiator.
  • a non-polar solvent for example, diethyl ether, dichloromethane, toluene and the like can be used.
  • SEQ ID NOs: 2-1 to 2-22 are PTFE-adsorbing peptides according to the present invention, which have improved affinity for PTFE by molecular design.
  • SEQ ID NOs: 3-1 to 3-7 are PTFE-adsorbed peptides according to the present invention obtained by random screening based on affinity for PTFE.
  • SEQ ID NOs: 4-1 to 4-4 are 12mer peptides prepared as controls.
  • FIG. 12 is an image showing the atomic arrangement in which the adsorbed peptide (ZZXXXZZXXXZZXX: SEQ ID NO: 2-1) is adsorbed on PTFE.
  • FIG. 13 is an image showing an atomic arrangement in which an adsorbed peptide (STSTSTSTST: SEQ ID NO: 2-7) is adsorbed on PTFE.
  • FIG. 14 is an image showing an atomic arrangement in which an adsorbed peptide (STSTSPSTSTSTST: SEQ ID NO: 2-3) is adsorbed on PTFE.
  • FIG. 15 is an image showing an atomic arrangement in which an adsorbed peptide (HHHHHHHHH: SEQ ID NO: 2-11) is adsorbed on PTFE.
  • FIG. 16 is an image showing an atomic arrangement in which an adsorbed peptide (AAAAAAAAAAAAA: SEQ ID NO: 4-4) is adsorbed on PTFE.
  • FIGS. 12 to 16 show three-dimensional modeling images of the interface of PTFE on which the PTFE-adsorbed peptide is adsorbed, as viewed from the side of the PTFE-adsorbed peptide.
  • the thin stick indicates the molecular chain of PTFE
  • the thick stick indicates the main chain of the adsorbed peptide
  • the medium-thick stick indicates the side chain of the adsorbed peptide.
  • the largest sphere in the PTFE-adsorbed peptide indicates the oxygen of the carbonyl group present in the main chain.
  • the side chain of the amino acid residue located at the odd position from the N-terminal to the C-terminal is the molecular chain of another PTFE adjacent to the PTFE closest to the main chain. Is approaching.
  • the side chain of the amino acid residue located evenly from the N-terminal to the C-terminal is the molecule of the opposite PTFE adjacent to the PTFE closest to the main chain. Close to the chain.
  • the main chain of the PTFE-adsorbed peptide forms an intermolecular interaction with the molecular chain of PTFE.
  • the side chains of the amino acid residues constituting the PTFE-adsorbed peptide form an intermolecular interaction with the molecular chains of a plurality of PTFEs adjacent to the PTFE closest to the main chain.
  • the amino acid residues constituting the PTFE-adsorbing peptide are relatively short in that they have high adsorption power to PTFE, and have a side chain having polarity and electron-attracting properties. It can be said that amino acid residues are effective. Further, it can be said that the proline residue is effective in contributing to the stabilization of the structure of the main chain and the orientation of the side chains of the PTFE-adsorbed peptide. It can be said that the PTFE-adsorbed peptide preferably has a repeating structure in which the side chains are appropriately oriented.
  • FIG. 17 is a diagram showing the measurement results of the contact angle of PTFE on which the adsorbed peptide is adsorbed.
  • FIG. 18 is a diagram showing the result of dissociating the adsorbed peptide from PTFE on which the adsorbed peptide was adsorbed.
  • FIG. 17 shows the measurement results of the contact angle of the droplets of ultrapure water when a phage solution was prepared by expressing the peptide by a phage display and the PTFE was immersed in the phage solution for 1 hour.
  • a PTFE-adsorbed peptide of SEQ ID NOs: 3-1 to 3-7 and a wild-type (WT) structural protein of M13 phage were used.
  • FIG. 18 shows the results of quantifying the amount of dissociation of the peptide adsorbed on PTFE.
  • the peptide was expressed in phage and adsorbed on PTFE, and then the phage solution was replaced with an elution buffer to dissociate and elute to quantify the peptide.
  • the PTFE-adsorbed peptides of SEQ ID NOs: 3-1 to 3-7 have an abundance of S, T, H, D, E, F and N of 40% or more.
  • the wild-type peptide has an abundance of S, T, H, D, E, F and N of 30%.
  • the amino acid sequence of the wild-type structural protein is AEGDDPAKAAFNSLQATEYIGYAWAMVVVIVGATIGIKLFKKFTSKAS.
  • the PTFE-adsorbed peptides of SEQ ID NOs: 3-1 to 3-7 had a smaller contact angle than the wild-type peptides. It is considered that the hydrophilicity of the surface of PTFE was increased by adsorbing the highly polar PTFE-adsorbing peptide to PTFE. Since the abundance of S, T, H, D, E, F and N of the wild-type peptide is as low as 30%, the contact angle is relatively large, and it is considered that the wild-type peptide was not sufficiently adsorbed on PTFE. Be done.
  • the PTFE-adsorbed peptide of SEQ ID NO: 3-1 in which the abundance of S, T, H, D, E, F and N is 40% or more is S, T, H, D, E.
  • the amount of peptide dissociation was lower than that of wild-type peptides with low F and N abundance. It has been shown that a PTFE-adsorbed peptide having an abundance of S, T, H, D, E, F and N of 40% or more is difficult to dissociate from the adsorbed PTFE and has high affinity and adhesion to PTFE. ..
  • the PTFE-adsorbed peptide contains 2,3,4,5,6-pentafluorophenylalanine residue (Z), 3- (trifluoromethyl) alanine residue (X), serine residue (S), and threonine residue.
  • Z 2,3,4,5,6-pentafluorophenylalanine residue
  • X serine residue
  • S serine residue
  • T threonine residue
  • H histidine residue
  • aspartic acid residue D
  • glutamate residue E
  • phenylalanine residue F
  • aspartic acid residue N
  • the amino acid sequence has a repeating structure.
  • the PTFE-adsorbed peptide may be formed using only Z, X, S, T, H, D, E, F and N, or may be formed using other amino acid residues.
  • the amino acid residue constituting the PTFE-adsorbed peptide is preferably L-type.
  • the length of the PTFE-adsorbed peptide is preferably 5 or more, more preferably 8 or more, and even more preferably 10 or more as amino acid residues.
  • the number of amino acid residues is preferably 100 or less, more preferably 20 or less, and even more preferably 15 or less.
  • the longer the PTFE-adsorbed peptide the higher the affinity for the resin.
  • the shorter the PTFE-adsorbed peptide the less likely it is to aggregate within or between molecules, so that modifications such as chemical modification and clustering become easier.
  • the length of the PTFE-adsorbed peptide is particularly preferably 12 amino acid residues.
  • amino acid residues are 2,3,4,5,6-pentafluorophenylalanine residue (Z), 3- (trifluoromethyl) alanine residue (X), and serine residue ( S), threonine residue (T), histidine residue (H), aspartic acid residue (D), glutamate residue (E), phenylalanine residue (F), or aspartic acid residue (N).
  • Z 2,3,4,5,6-pentafluorophenylalanine residue
  • X serine residue
  • T histidine residue
  • aspartic acid residue D
  • glutamate residue E
  • phenylalanine residue (F) or aspartic acid residue (N).
  • the abundance of Z, X, S, T, H, D, E, F and N with respect to the total length of the amino acid sequence is more preferably 50% or more, further preferably 60% or more, further preferably 70% or more, and further preferably 80%.
  • the above is more preferable, and 90% or more is further preferable.
  • the PTFE-adsorbed peptide preferably has a repeating structure containing Z, X, S, T, H, D, E, F or N, and has a repeating structure containing Z, X, S, T, H, D or E. It is more preferable to have a repeating structure containing Z, X, S or T, and it is particularly preferable to have a repeating structure containing Z or X.
  • Z, X, S, T, H, D, E and N can form a relatively strong interaction with the resin because the side chains have polarity. Therefore, if the amino acid sequence contains Z, X, S, T, H, D, E or N, a PTFE-adsorbed peptide showing a high affinity for PTFE can be obtained. Further, when the amino acid sequence contains F, a PTFE-adsorbed peptide having a stable main chain structure and side chain orientation may be obtained.
  • the PTFE-adsorbed peptide preferably contains 5% or more of amino acid residues as proline residues.
  • the abundance of proline residues with respect to the total length of the amino acid sequence may be 10% or more, or 15% or more. Further, the abundance rate of the proline residue may be less than 20%, less than 15%, or less than 10%.
  • the PMMA-adsorbed peptide has the following SEQ ID NO: (A-1).
  • )-(A-21) is preferably a peptide containing an amino acid sequence in which one or two amino acid residues are added, inserted, substituted or deleted with respect to the amino acid sequence represented by any of (A-21). It is more preferable that the peptide contains the amino acid sequence represented by any of the numbers (A-1) to (A-21), and is represented by any of the numbers (A-1) to (A-21).
  • the peptide contains two or more amino acid sequences as repeating units.
  • ZZXXXZ ... (A-1) ZXXXZZ ... (A-2) XXZZX ... (A-3) XZZXX ... (A-4) STSTS ... (A-5) TSSTST ... (A-6) SSSSS ... (A-7) TTTTT ... (A-8) HHHHH ... (A-9) DSSDD ... (A-10) SDSDS ... (A-11) DHDHD ... (A-12) HDHDH ... (A-13) DEDED ... (A-14) EDIDE ... (A-15) FFHHF ... (A-16) FHHFF ... (A-17) HHFFF ... (A-18) HFFHH ... (A-19) NENEN ... (A-20) ENENE ... (A-21)
  • the PMMA-adsorbed peptide has one or two amino acid residues added, inserted, substituted, or added to the amino acid sequence represented by any of the following SEQ ID NOs: (2-1) to (2-22).
  • a peptide containing the deleted amino acid sequence is more preferable, and a peptide containing the amino acid sequence represented by any one of SEQ ID NOs: (2-1) to (2-22) is more preferable. It is particularly preferable that the amino acid sequence is represented by any one of 2-1) to (2-22).
  • the PMMA-adsorbed peptide is a peptide containing an amino acid sequence having 80% or more identity with respect to the amino acid sequence represented by any of the following SEQ ID NOs: (3-1) to (3-7). May be good.
  • the amino acid sequence identity is preferably 85% or higher, more preferably 90% or higher, even more preferably 95% or higher, and particularly preferably 100%.
  • VHFPTKISEGDDM ... (3-1) TFTLNSVHRSVH ... (3-2) SPHLHTSSPWER ... (3-3) FIESKTPVDPDG ... (3-4) GSESRTLFPEG ... (3-5) EALTVNIKREME ... (3-6) SMIVEPRMLSTH ... (3-7)
  • the PTFE-adsorbed peptide has an amino acid sequence having a specific function in addition to the amino acid sequences of SEQ ID NOs: A-1 to A-21, SEQ ID NOs: 2-1 to 2-22, and SEQ ID NOs: 3-1 to 3-7. You may have.
  • the PTFE-adsorbed peptide may have these amino acid sequences on the most N-terminal side of all amino acid residues, or may have them at an intermediate position among all amino acid residues.
  • the PTFE-adsorbed peptide has one amino acid sequence of SEQ ID NOs: A-1 to A-21, SEQ ID NOs: 2-1 to 2-22, and SEQ ID NO: 3-1 to 3-7 in the entire length. It may be present, or a plurality of them may be present in the entire length.
  • the PTFE-adsorbed peptide may have one kind or a plurality of kinds among these amino acid sequences.
  • the N-terminal and C-terminal of the PTFE-adsorbed peptide may be chemically modified or may be in an arbitrary ionized state.
  • the N-terminal is -NH 2 , -NH 3 + , -CH 3 CO, 9-fluorenylmethyloxycarbonyl (Fmoc) group, tert-butoxycarbonyl (Boc) group, etc. It may be any of.
  • C-terminus, -COOH, -COO -, -CONH 2 may be any of -CONH 3 +, and the like.
  • the PTFE-adsorbed peptide has the amino acid sequences of SEQ ID NOs: A-1 to A-21, SEQ ID NOs: 2-1 to 2-22, SEQ ID NOs: 3-1 to 3-7, and amino acid sequences similar to those amino acid sequences.
  • the peptide contains the peptide, the theoretical value of the peeling energy for the fluorine resin becomes high, and a high affinity for the fluorine resin can be obtained. Therefore, the peptide adsorbed on the fluororesin is less likely to peel off, and a biocompatible material that maintains biocompatibility for a longer period of time can be obtained.
  • the PTFE-adsorbed peptide can be synthesized by using various synthetic methods such as a liquid phase synthesis method and a solid-phase synthesis method, and a genetic engineering synthesis method.
  • any resin can be used as long as it is a fluororesin having a fluorinated olefin unit.
  • the resin that adsorbs the PTFE-adsorbed peptide may be a polymer of a fluorinated monomer or a copolymer of a fluorinated monomer and another monomer.
  • the copolymer may be any of a block copolymer, a random copolymer, and a graft copolymer.
  • Polytetrafluoroethylene is particularly preferable as the resin that adsorbs the PTFE-adsorbed peptide.
  • PTFE Polytetrafluoroethylene
  • the resin that adsorbs the PTFE-adsorbed peptide is PTFE, high affinity can be obtained because the fluorine atoms as substituents have a stereoregular and uniform arrangement.
  • Fluororesin can be synthesized by using a general synthetic method. For example, when a fluorinated olefin such as tetrafluoroethylene is radically polymerized, a powdery fluororesin can be obtained. Fluororesin has a high viscosity at the time of melting and low fluidity, but when a fluororesin such as powder is melted and then cooled, a fluororesin molded product, a non-molded solid, or the like can be obtained.
  • the method of radical polymerization for example, any of emulsion polymerization, suspension polymerization, bulk polymerization, solution polymerization and the like can be used.
  • the biocompatible material 10 according to the present embodiment can be produced, for example, by a method in which a liquid in which the adsorbed peptide 2 is dispersed is brought into contact with the resin 1 which is the main body of the material.
  • a buffer to which various additives such as a pH adjuster, a buffer, a salt, a reducing agent, and an organic solvent are added, water, and the like can be used.
  • a method of bringing the liquid into contact with the resin for example, various methods such as a method of applying the liquid to the resin 1, a method of spraying the liquid on the resin 1, and a method of immersing the resin 1 in the liquid can be used.
  • a method of applying the liquid to the resin 1 a method of spraying the liquid on the resin 1
  • a method of immersing the resin 1 in the liquid can be used.
  • the efficiency of adsorption of the adsorbed peptide 2 is increased when the flow rate of the liquid is 20 ⁇ L / min or less.
  • the biocompatible material 10 has a form in which the resin 1 which is the main body of the material is composited with a fiber material or a filler, or the resin 1 is laminated on the surface of an adherend material different from the resin 1. It can also be used as a form in which the resin 1 constitutes the housing of the device.
  • FIG. 19 is a diagram schematically showing a biocompatible material composited with a fiber material.
  • the biocompatible material 10A composited with the fiber material was embedded in the resin 1 which is the main body of the material, the adsorbed peptide (peptide) 2 adsorbed on the resin 1, and the resin 1. Includes fiber material 4.
  • the fiber material 4 is embedded in the matrix of the resin 1.
  • the fiber material 4 may be dispersed in the matrix in the form of a short whisker or the like, or a knitted fabric, a woven fabric, a braid or the like may be formed and embedded in the matrix.
  • the fiber material 4 can be dispersed and arranged in the resin 1 to be composited before the resin 1 is polymerized or before the preformed powdery resin 1 is melt-molded.
  • any of organic fiber, inorganic fiber, and metal fiber may be used.
  • the organic fiber include polyamide fiber, polyester fiber, aramid fiber, cellulose fiber, fluororesin fiber and the like.
  • examples of the inorganic fiber include carbon fiber, silicon carbide fiber, glass fiber, boron fiber, alumina fiber, zirconia fiber, mulite fiber, rock wool and the like.
  • the fiber material 4 one type may be used, or a plurality of types may be used.
  • the fiber material 4 to be composited with the fluororesin inorganic fibers and metal fibers having a higher melting point than the fluororesin are preferable.
  • FIG. 20 is a diagram schematically showing a biocompatible material compounded with a filler. As shown in FIG. 20, the biocompatible material 10B composited with the filler was embedded in the resin 1 which is the main body of the material, the adsorbed peptide (peptide) 2 adsorbed on the resin 1, and the resin 1. Includes filler 5.
  • the filler 5 is embedded in the matrix of the resin 1.
  • the filler 5 may have any shape such as a particle (sphere) shape, a flake shape, and a plate shape. Further, the filler 5 may have a solid shape or a hollow shape.
  • the filler 5 can be dispersed and composited in the resin 1 before the resin 1 is polymerized, before the preformed powdery resin 1 is melt-molded, and the like.
  • any of an organic material, an inorganic material, and a metal material may be used.
  • the organic material include polyamide, polyester, aramid, fluororesin and the like.
  • the inorganic material include graphite, carbon black, silicon carbide, glass, silica, alumina, zirconia, mullite, mica, talc, kaolin, calcium carbonate, magnesium carbonate, aluminum hydroxide, titanium oxide, iron oxide, ferrite and the like. Can be mentioned.
  • one type may be used, or a plurality of types may be used.
  • an inorganic material or a metal material having a melting point higher than that of the fluororesin is preferable.
  • the biocompatible material 10A shown in FIG. 19 and the biocompatible material 10B shown in FIG. 20 in addition to the improvement of biocompatibility by the action of the adsorbed peptide 2, the improvement of rigidity by the fiber material 4 and the filler 5.
  • Various effects such as improvement of dielectric properties and improvement of withstand voltage performance can be obtained. Therefore, it is possible to obtain a biocompatible material in which biocompatibility is maintained for a long period of time and the rigidity of the material itself and the performance according to the application of the material are improved.
  • FIG. 21 is a diagram schematically showing a biocompatible material laminated on the surface of the adherend material.
  • the biocompatible material 10 laminated on the surface of the adherend material 20 includes the resin 1, the adsorbed peptide (peptide) 2 adsorbed on the resin 1, and the adherend material 20 different from the resin 1.
  • the composite material 100 can be used as a material for any article that may come into contact with a living body.
  • the type, use, function, and the like of the article formed of the composite material 100 are not particularly limited as long as it may come into contact with a living body.
  • the composite material 100 can form the articles mentioned as specific examples, similarly to the biocompatible material 10 itself.
  • the adsorbed peptide 2 is adsorbed on the surface of the biocompatible material 10, and the adherend material 20 is bonded to the back surface of the biocompatible material 10 to which the adsorbed peptide 2 is not adsorbed.
  • the bonding between the biocompatible material 10 and the adherend material 20 is performed by a method of polymerizing the resin 1 on the surface of the adherend material 20 or an appropriate method such as pressure bonding, welding, or adhesion, depending on the type of the adherend material 20. Can be done with.
  • the adherend material 20 includes organic materials such as natural polymers, synthetic polymers and foamed resins, inorganic materials such as alumina, zirconia and glass, and stainless steel, aluminum alloys, copper alloys, cobalt alloys, titanium alloys and the like. Any of the metal materials may be used.
  • the adherend material 20 may or may not be biocompatible in itself. When the adherend material 20 itself has biocompatibility, the adherend material 20 may be partially covered with the biocompatible material 10 or may be entirely covered with the surface.
  • the composite material 100 having biocompatibility is obtained by utilizing the adherend material 20 having desired properties different from the resin having a methoxycarbonyl group and a methyl group and the fluororesin. Can be formed. Since the adherend material 20 is not required to have affinity and biocompatibility with the adsorbed peptide 2, the degree of freedom in selecting the adherend material 20 is high, and the rigidity is improved, the dielectric properties are improved, and the pressure resistance is improved. , Various effects such as cost reduction can be obtained. Therefore, it is possible to obtain a composite material having biocompatibility for a long period of time and having performance according to the application of the material with less restrictions.
  • FIG. 22 is a diagram schematically showing a biocompatible material constituting the housing of the device.
  • the biocompatible material 10 constituting the housing of the device 30 is a housing composed of the resin 1 and the adsorbed peptide (peptide) 2 adsorbed on the resin 1 of the device 30. By covering the surface, the implantable device 200 is formed.
  • the implantable device 200 is implanted in the living body and operates for various purposes.
  • the type, use, function, and the like of the implantable device 200 are not particularly limited.
  • Specific examples of the implantable device 200 include non-patent documents (Tomoko Sugiyama and 4 others, "Histocompatibility evaluation in subcutaneous implantation experiment of long-term implantable device material", artificial organs, Japan Artificial Organ Society, Examples thereof include artificial hearts as described in April 15, 1998, Vol. 28, No. 2, p. 509-513).
  • artificial organs such as artificial pancreas and pacemaker, artificial tissues such as artificial joints and artificial muscles, and electronic devices such as IC (integrated circuit) tags and IC chips can be mentioned.
  • the adsorbed peptide 2 is adsorbed on the surface of the resin 1 constituting the housing, and the device 30 is built in the back surface side of the resin 1 on which the adsorbed peptide 2 is not adsorbed.
  • the device 30 can be bonded to the resin 1 by an appropriate method such as pressure bonding, welding, adhesion, mechanical bonding using fasteners, etc., and is covered with the resin 1 without being bonded to the resin 1. You can also do it.
  • the device 30 uses various mechanical parts and electronic parts using artificial materials and the like so as to operate for various purposes such as treatment, substitution of biological functions, assistance of biological functions, recording of information, calculation of information, and the like. Is formed by.
  • the device 30 can be appropriately shaped according to the type, use, function, etc. of the implantable device 200 in the body, and is not particularly limited.
  • the device 30 may be partially covered with a biocompatible material 10 or may be entirely covered with the surface. Further, the device 30 may operate independently in the body, or may operate in a state of being connected to a device outside the body by a pipe, a control line, or the like.
  • the device 30 that operates for various purposes is covered with a housing that exhibits biocompatibility to form an implantable device 200 that is less likely to adversely affect or stimulate the living body.
  • the housing in which the device 30 is built can be molded with a high degree of freedom by the resin 1, and biocompatibility can be efficiently imparted by the adsorbed peptide 2 regardless of the shape of the housing by simple treatment and operation. Can be done. Therefore, it is possible to efficiently manufacture an implantable device that maintains biocompatibility for a long period of time and performs a desired function in the body.
  • the material itself can be in the form of a functional material that fulfills a specific function.
  • the functional material 300 (300A, 300B, 300C) according to the present embodiment is a resin 1 which is the main body of the material and an adsorbed peptide (peptide) adsorbed on the resin 1. 2 and a functional substance 6 that functions inside the living body or on the surface of the living body.
  • the functional substance 6 for example, various substances such as a physiologically active substance and an antibacterial substance can be used.
  • the functional substance 6 may function while being held on the surface of the biocompatible material 10 when the functional material 300 is used, or may be released from the surface of the biocompatible material 10 to function. ..
  • the functional substance 6 may be adsorbed by physical adsorption or may be adsorbed by chemisorption.
  • physiologically active substance examples include proteins that suppress inflammation such as interleukin-10 and proteins that promote angiogenesis such as interleukin-8.
  • other cytokines such as interleukin, interferon, and chemokine, hormones, and the like can be mentioned.
  • antibiotics, anticoagulants, antihistamines, nutrients such as vitamins, sedatives, analgesics, anti-inflammatory agents, steroids, insulin and the like can be mentioned.
  • the functional material 300 has a form in which a part of the adsorbed peptide 2 adsorbed on the entire surface of the resin 1 is covered with the functional substance 6 and the adsorbed peptide 2 is exposed on the surface ( It can also be a functional material 300C).
  • the functional substance 6 may be physically adsorbed on the adsorbed peptide 2 or chemically adsorbed on the adsorbed peptide 2.
  • the present invention is not limited to the above-described embodiments and modifications, and various modifications can be made without departing from the spirit of the present invention.
  • the present invention is not necessarily limited to those having all the configurations included in the above-described embodiments and modifications.
  • Part of the configuration of a certain embodiment or modification is replaced with another configuration, a part of the configuration of a certain embodiment or modification is added to another configuration, or a configuration of a certain embodiment or modification. You can omit a part of.
  • the fiber material 4 and the filler 5 can be combined with the biocompatible material 10 that covers the adherend material 20 and the biocompatible material 10 that constitutes the housing of the device 30.
  • the adherend material 20 may be provided so as to be in contact with the surface of the biocompatible material 10 on the side on which the adsorbed peptide 2 is adsorbed.
  • the housing of the device 30 can also be formed of a biocompatible material 10 laminated on an adherend material 20 such as titanium.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Surgery (AREA)
  • Hematology (AREA)
  • Vascular Medicine (AREA)
  • Materials Engineering (AREA)
  • Dermatology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Transplantation (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本発明は、樹脂との密着性が高く樹脂の表面から剥離し難いペプチドを吸着させて生体適合性を向上させた生体適合性材料、及び、これを備える機能性材料を提供するものである。生体適合性材料(10)は、樹脂(1)と、樹脂(1)に吸着したペプチド(2)とを含み、樹脂(1)はメトキシカルボニル基及びメチル基を有し、ペプチド(2)はアミノ酸残基の70%以上がトリプトファン残基又はアルギニン残基であるか、または、樹脂1はフッ素樹脂であり、ペプチド(2)はアミノ酸残基の40%以上が2,3,4,5,6-ペンタフルオロフェニルアラニン残基、3-(トリフルオロメチル)アラニン残基、セリン残基、トレオニン残基、ヒスチジン残基、アスパラギン酸残基、グルタミン酸残基、フェニルアラニン残基又はアスパラギン残基である。機能性材料は、生体適合性材料(10)と機能性物質とを含み、機能性物質は、生体適合性材料(10)の表面に保持されるか、又は、生体適合性材料(10)の表面から放出される。

Description

樹脂との密着性に優れたペプチドならびにそれを用いた生体適合機能材料
 本発明は、樹脂との密着性に優れたペプチド、それを用いた生体適合性材料、機能性材料等の生体適合機能材料に関する。
 近年、医療の分野では、バイオテクノロジの発展により、治療の形態が多様化している。各種の疾患や損傷を治療・処置するに際し、治療用のバイオデバイス、人工臓器等の利用が拡大しており、生体と人工材料が接触する機会が増えている。また、従来から、各種の医療用のデバイス、医療品、衛生用品等が皮膚に接触する状態で用いられている。
 人工材料は、生体と接触すると、種々の生体反応を引き起こすことがある。人工材料を用いたデバイス、人工臓器等が体内に移植されたり、人工材料を用いたデバイス、医療品等が皮膚に長期間にわたって接触したりすると、異物反応やアレルギ反応等により炎症等の種々の症状が現れる。そのため、各種のデバイス、医療品等の材料として、生体適合性を備えた材料が求められている。
 従来、樹脂等の有機物質や無機物質の表面にペプチドを付着させた生体適合性材料が知られている。人工材料である樹脂や無機物質の表面にペプチドを付着させて被覆すると、生体への適合に重要な、非異物性、非刺激性、界面的適合性等が向上するため、樹脂等の人工材料に特異的に吸着するペプチドの探索・設計が行われている。
 例えば、非特許文献1には、Glu-Leu-Trp-Arg-Pro-Thr-Arg(ELWRPTR)で表されるアミノ酸配列を持つペプチドが開示されている。このペプチドは、イソタクチックポリメタクリル酸メチル樹脂(isotactic poly(methyl-methacrylate) resin:it-PMMA)に対する親和性が高く、剥離エネルギが31kJ/molと高い数値を示し、it-PMMAに対して高い密着性を示している。
Takeshi Serizawa et al., Langmuir, 2007, 23(22), p.11127-11133
 非特許文献1に記載されているように、樹脂にペプチドを吸着させると、簡単な処理・操作で効率的に生体適合性を付与することができる。しかし、樹脂とペプチドとの親和性・密着性が十分に高くない場合には、移植先の生体内や皮膚上での使用中に、樹脂からペプチドが剥離し、樹脂と生体とが接触して炎症等が起こる虞がある。ペプチドが剥離すると、ペプチドを吸着させていた材料の取り換え等が必要になるため、非特許文献1よりも更に高い剥離エネルギを示し、生体適合性の耐久寿命が長くなるような、樹脂との密着性に優れたペプチドや、それを用いた生体適合性材料、機能性材料等の生体適合機能材料が望まれている。
 そこで、本発明は、樹脂との密着性が高く樹脂の表面から剥離し難いペプチドを吸着させて生体適合性を向上させた生体適合性材料、及び、これを備える機能性材料を提供することを目的とする。
 本発明者らは、it-PMMAに対して高い親和性や密着性を示すペプチドについて鋭意研究を行った結果、トリプトファン残基やアルギニン残基が、it-PMMAのメトキシカルボニル基やメチル基に対して相互作用を形成し易く、ペプチドを構成するアミノ酸残基として有効であることを見出した。また、プロリン残基やグルタミン酸残基が、ペプチドの主鎖に存在するカルボニル基の酸素をit-PMMAのメトキシカルボニル基に対して相互作用し易い位置に安定させるため、トリプトファン残基やアルギニン残基と併用するアミノ酸残基として有効であることを見出し、本発明を完成するに至った。
 また、本発明者らは、ポリテトラフルオロエチレン(polytetrafluoroethylene:PTFE)に対して高い親和性や密着性を示すペプチドについて鋭意研究を行った結果、2,3,4,5,6-ペンタフルオロフェニルアラニン残基、3-トリフルオロメチルアラニン残基、セリン残基、トレオニン残基、ヒスチジン残基、アスパラギン酸残基、グルタミン酸残基、フェニルアラニン残基、アスパラギン残基が、PTFEの分子鎖に対して相互作用を形成し易いため、ペプチドを構成するアミノ酸残基として有効であることを見出し、本発明を完成するに至った。
 すなわち、前記課題を解決するために本発明に係る生体適合性材料は、樹脂と、前記樹脂に吸着したペプチドと、を含む生体適合性材料であって、前記樹脂は、メトキシカルボニル基、及び、メチル基を有し、前記ペプチドは、アミノ酸残基の70%以上がトリプトファン残基又はアルギニン残基である。
 また、本発明に係る機能性材料は、前記の生体適合性材料と、生体の内部又は生体の表面で機能する機能性物質と、を含む機能性材料であって、前記機能性物質は、前記生体適合性材料の表面に保持されるか、又は、前記生体適合性材料の表面から放出される。
 本発明によると、樹脂との密着性が高く樹脂の表面から剥離し難いペプチドを吸着させて生体適合性を向上させた生体適合性材料、及び、これを備える機能性材料を提供することができる。
生体適合性材料の構造を模式的に示す図である。 剥離エネルギの分子動力学シミュレーションによる計算値と測定実験に基づいて計算した実測値との関係を示す図である。 表面プラズモン共鳴法による測定で得られるセンサグラムの一例を示す図である。 it-PMMAと吸着ペプチド(RWWRPWW:配列番号1-1)との相互作用を示すセンサグラムである。 it-PMMAと吸着ペプチド(RWWRRWW:配列番号1-2)との相互作用を示すセンサグラムである。 it-PMMAと吸着ペプチド(EWWRPWR:配列番号1-4)との相互作用を示すセンサグラムである。 it-PMMAと吸着ペプチド(RWWRPWR:配列番号1-5)との相互作用を示すセンサグラムである。 it-PMMAに吸着ペプチド(RWWRPWW:配列番号1-1)が吸着した状態の原子配列を示す画像である。 it-PMMAに吸着ペプチド(RWWRRWW:配列番号1-2)が吸着した状態の原子配列を示す画像である。 it-PMMAに吸着ペプチド(EWWRPWR:配列番号1-4)が吸着した状態の原子配列を示す画像である。 it-PMMAに吸着ペプチド(RWWRPWR:配列番号1-5)が吸着した状態の原子配列を示す画像である。 PTFEに吸着ペプチド(ZZXXZZXXZZXX:配列番号2-1)が吸着した状態の原子配列を示す画像である。 PTFEに吸着ペプチド(STSTSTSTSTST:配列番号2-7)が吸着した状態の原子配列を示す画像である。 PTFEに吸着ペプチド(STSTSPSTSTST:配列番号2-3)が吸着した状態の原子配列を示す画像である。 PTFEに吸着ペプチド(HHHHHHHHHHHH:配列番号2-11)が吸着した状態の原子配列を示す画像である。 PTFEに吸着ペプチド(AAAAAAAAAAAA:配列番号4-4)が吸着した状態の原子配列を示す画像である。 吸着ペプチドを吸着させたPTFEの接触角の測定結果を示す図である。 吸着ペプチドを吸着させたPTFEから吸着ペプチドを解離させた結果を示す図である。 繊維材と複合化された生体適合性材料を模式的に示す図である。 充填材と複合化された生体適合性材料を模式的に示す図である。 被着材料の表面に積層された生体適合性材料を模式的に示す図である。 デバイスの筐体を構成している生体適合性材料を模式的に示す図である。 機能性材料の構成例を模式的に示す図である。 機能性材料の構成例を模式的に示す図である。 機能性材料の構成例を模式的に示す図である。
 以下、本発明の一実施形態に係るペプチド、それを用いた生体適合性材料、及び、それを用いた機能性材料について、図を参照しながら説明する。なお、以下の各図において共通する構成については同一の符号を付し、重複した説明を省略する。
<生体適合性材料>
 図1は、生体適合性材料の構造を模式的に示す図である。
 図1に示すように、本実施形態に係る生体適合性材料10は、材料の本体である樹脂1と、樹脂1に吸着した吸着ペプチド(ペプチド)2と、を少なくとも含む。
 生体適合性材料10は、生体物質に近い物質である吸着ペプチド2が樹脂1に吸着した構造であるため、樹脂1のみを材料とする場合と比較して良好な生体適合性を示す材料となる。なお、本明細書において、生体適合性とは、長期間にわたって生体に悪影響や強い刺激を与えず、本来の機能を果たしながら生体と共存できる性質を意味する。
 生体適合性材料10は、生体と接触する可能性がある任意の物品の材料として用いることができる。生体適合性材料10で形成する物品は、生体と接触する可能性がある限り、種類、用途、機能等が、特に制限されるものではない。生体適合性材料10は、生体内、例えばヒトの体内や、生体の表面、例えば皮膚や、その他の組織や臓器に接触する用途に好適に用いられる。
 生体適合性材料10で形成する物品の具体例としては、人工臓器、人工組織、体内移植型治療用デバイス、体表固定型治療用デバイス、診断用デバイス、治療用器具、手術用器具、手術用材料、骨接合材料、歯科材料、補填材料、骨矯正器具、歯列矯正器具、その他の補装具、コンタクトレンズ、眼鏡、衣類、履物、絆創膏やガーゼ等の創傷被覆材、包帯、貼付剤、パップ剤等が挙げられる。
 生体適合性材料10を構成する樹脂1は、成形体、非成形固体等のいずれの状態であってもよい。樹脂1の形状は、生体適合性材料10で形成する物品の種類、用途、機能等に応じて適宜の形状とすることが可能であり、特に制限されるものではない。樹脂1は、物品の全体を構成してもよいし、物品の一部のみを構成してもよい。樹脂1としては、後記するとおり、メトキシカルボニル基とメチル基を有する樹脂、又は、フッ素樹脂が用いられる。
 生体適合性材料10を構成する吸着ペプチド2は、樹脂1に対して、ファンデルワールス力、水素結合、双極子相互作用等の非共有結合性の分子間力で吸着して、樹脂1の表面に保持される。吸着ペプチド2は、樹脂1の表面の全部に吸着していてもよいし、樹脂1の表面の一部に吸着していてもよい。吸着ペプチド2としては、後記するとおり、所定のアミノ酸配列を有しており、特定の樹脂1に対して特異的な親和性を示すペプチドが用いられる。
<剥離エネルギ>
 樹脂と吸着ペプチドとの親和性(結合力)は、剥離エネルギ値によって評価することができる。剥離エネルギは、樹脂と吸着ペプチドとが互いに吸着している状態と、樹脂と吸着ペプチドとが互いに解離した状態とのエネルギ差として定義される。
 樹脂AとペプチドBとの相互作用によって複合体ABを生成する吸着反応(結合反応及び解離反応)は、次の反応式(1)で表すことができる。但し、反応式(1)中、kは結合速度定数[M-1・s-1]、k-1は解離速度定数[s-1]を表す。
Figure JPOXMLDOC01-appb-C000001
 複合体ABを生成する吸着反応の速度式は、樹脂A及びペプチドBが1次反応に従うとすると、ある時間tにおける樹脂Aの濃度を[A]、ペプチドBの濃度を[B]、複合体ABの濃度を[AB]としたとき、次の数式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 反応式(1)の平衡定数Kaは、数式(2)の左辺=0として計算すると、次の数式(3)が成り立つ。
Figure JPOXMLDOC01-appb-M000003
 複合体ABを生成する吸着反応における標準ギブズエネルギΔG[J/mol]は、気体定数をR[J・K-1・mol-1]、絶対温度をT[K]としたとき、次の数式(4)で表される。
Figure JPOXMLDOC01-appb-M000004
 剥離エネルギは、複合体ABを生成する吸着反応における標準ギブズエネルギΔGに相当するので、結合速度定数kと解離速度定数k-1とを用いて、数式(3)及び(4)から求めることができる。結合速度定数kと解離速度定数k-1は、樹脂をリガンド、吸着ペプチドの溶液をアナライト溶液として、表面プラズモン共鳴法によって測定することができる。
<PMMA吸着ペプチド>
 はじめに、吸着ペプチドの一例として、ポリメタクリル酸メチル樹脂(PMMA)等のメトキシカルボニル基とメチル基を有する樹脂に対して高い親和性を示すPMMA吸着ペプチドについて説明する。
 PMMA吸着ペプチドは、トリプトファン残基(Trp:W)、アルギニン残基(Arg:R)、プロリン残基(Pro:P)、及び、グルタミン酸残基(Glu:E)のうち、一種以上のアミノ酸残基を含むアミノ酸配列で形成される。
 表1は、ペプチドとイソタクチックポリメタクリル酸メチル樹脂(it-PMMA)との吸着反応の剥離エネルギ、結合速度定数、解離速度定数と、アミノ酸配列中のトリプトファン残基(W)、アルギニン残基(R)、プロリン残基(P)及びグルタミン酸残基(E)の存在率を示している。
Figure JPOXMLDOC01-appb-T000005
 配列番号1-1~1-5は、分子設計によってit-PMMAに対する親和性を向上させた本発明に係るPMMA吸着ペプチドである。配列番号1-6~1-19は、it-PMMAに対する親和性が高い非特許文献1に記載されたペプチドである。
 表1において、剥離エネルギとしては、分子動力学シミュレーションによる計算値(SIM計算値)と、測定実験に基づいて計算した実測値とを示している。実測値は、表面プラズモン共鳴法により測定した結合速度定数kと解離速度定数k-1とを用いて、数式(3)及び(4)から計算している。
 なお、配列番号1-1~1-5についての実測値は、ペプチドの親和性が高く、解離を生じなかったため、測定されていない。配列番号1-6~1-19についての実測値は、非特許文献1に掲載されている結合速度定数kと解離速度定数k-1から計算している。気体定数R=8.314[m・kg・s-2・K-1・mol-1]、絶対温度T=300[K]である。
 分子動力学シミュレーションは、非特許文献(Akbar Bagri et al., Nature Chemistry, 2010, 2, p.581-587)と同様に、反応分子動力学計算プログラム「ReaxFF」を用いて、水中における原子・分子の挙動を模擬して行った。ReaxFFは、結合距離と結合次数の関係と、結合次数と結合エネルギの関係との両方を計算に用いるプログラムであり、炭化水素-酸素系における結合の開裂と生成を記述する反応力場を提供するという特徴がある。ReaxFFでは、全原子対間で接続状態を変えて計算を行うことにより、非結合性の相互作用が解析される。
 表面プラズモン共鳴法による測定実験は、非特許文献(新井盛夫、「表面プラズモン共鳴を用いたバイオセンサー(BIACORETM)による生体分子相互作用の解析」、日本血栓止血学会誌、一般社団法人日本血栓止血学会、1997年10月1日、第8巻、第5号、p.397-405)と同様に、分子間相互作用解析装置「Biacore X」(GEヘルスケア社製)を用いて行った。
 it-PMMAとしては、数平均分子量Mn=32900、重量平均分子量Mw/数平均分子量Mn=1.3、トライアッド存在比がmm:mr:rr=97:3:0である樹脂を用いた。it-PMMAは、センサチップの金を接着させたガラススライドに約10nmの厚さで被覆し、it-PMMAを被覆したセンサチップを解析装置に取り付けた。
 ペプチドとしては、表1に示すアミノ酸配列であり、遊離のN末端を有し、C末端がアミド化されているペプチドを用いた。ペプチドは、高速液体クロマトグラフィで精製した後、150mMのNaClを溶解した10mMのHEPESバッファ(pH7.4)に溶解させてアナライト溶液とした。
 表面プラズモン共鳴法による測定実験では、はじめに、ペプチドを溶解したアナライト溶液を、it-PMMAの表面に温度25℃、流量20μm/minで2分間流して、結合反応を生じさせた。その後、ペプチドを含まないバッファを、同様の条件で2分間流して、解離反応を生じさせた。
 そして、互いに異なる複数の濃度について測定されたセンサグラムを、解析ソフト「BIAevaluation ver.4.1」(GEヘルスケア社製)を用いて同時にグローバルフィッティングし、数式(2)に対応するレゾナンスユニットRUとレゾナンスユニットの時間変化量d(RU)/dtとの直線関係から、結合速度定数kと解離速度定数k-1を求めた。
 表1に示すように、配列番号1-1~1-5の結合速度定数は、非特許文献1で剥離エネルギが最大である配列番号1-6と比較して概ね大きい数値であった。また、配列番号1-1~1-5の解離速度定数は、it-PMMAとペプチドとの親和性が高く、解離が観測されなかったため、0を超える有限の値とならなかった。
 分子動力学シミュレーションと測定実験の結果から、配列番号1-1~1-5は、it-PMMAに対して結合し易い一方で、it-PMMAから解離し難いことが分かる。配列番号1-1~1-5の剥離エネルギの実測値は、配列番号1-6と比較して大きい数値であることが明らかであり、it-PMMAに対する親和性の高さを確認することができる。
 図2は、剥離エネルギの分子動力学シミュレーションによる計算値と測定実験に基づいて計算した実測値との関係を示す図である。
 図2において、横軸は、剥離エネルギの分子動力学シミュレーションによる計算値[kJ/mol]、縦軸は、剥離エネルギの測定実験に基づいて計算した実測値[kJ/mol]を示す。図2には、非特許文献1に記載されたペプチド(配列番号1-6~1-19)の結果をプロットしている。
 図2に示すように、剥離エネルギの分子動力学シミュレーションによる計算値は、測定実験に基づいて計算した実測値に対して、良くあてはまっている。この結果から、ReaxFFのような結合の開裂と生成を記述する反応力場を提供するプログラムによると、樹脂とペプチドとの吸着反応を高精度に模擬できることが分かる。
 配列番号1-1~1-5は、非特許文献1で剥離エネルギが最大である配列番号1-6と比較して、剥離エネルギの計算値が大きく向上しており、it-PMMAに対する親和性が高く、it-PMMAに対する密着性が優れたペプチドであるといえる。
 次に、it-PMMAとPMMA吸着ペプチドとの相互作用を表面プラズモン共鳴法によって測定した結果を示す。
 図3は、表面プラズモン共鳴法による測定で得られるセンサグラムの一例を示す図である。
 図3に示すように、センサチップ上にアナライト溶液を流し、it-PMMAにPMMA吸着ペプチドを吸着(結合)させると、表面プラズモン共鳴によるシグナルが上昇を示す。そして、PMMA吸着ペプチドを含まない溶液が流されると、it-PMMAに吸着しているPMMA吸着ペプチドがit-PMMAから解離し、シグナルが下降を示す。これらの結果から、結合速度定数kや解離速度定数k-1を求めることができる。
 図4は、it-PMMAと吸着ペプチド(RWWRPWW:配列番号1-1)との相互作用を示すセンサグラムである。図5は、it-PMMAと吸着ペプチド(RWWRRWW:配列番号1-2)との相互作用を示すセンサグラムである。図6は、it-PMMAと吸着ペプチド(EWWRPWR:配列番号1-4)との相互作用を示すセンサグラムである。図7は、it-PMMAと吸着ペプチド(RWWRPWR:配列番号1-5)との相互作用を示すセンサグラムである。
 図4~図7に示すように、所定のアミノ酸配列を有するPMMA吸着ペプチドでは、PMMA吸着ペプチドを含まない溶液を流しても、シグナルが下降せず一定であり、PMMA吸着ペプチドの解離が観測されなかった。したがって、これらのPMMA吸着ペプチドは、it-PMMAから解離し難く、極めて高い剥離エネルギであり、樹脂とペプチドとの親和性・密着性が十分に高かったといえる。
 次に、it-PMMAとPMMA吸着ペプチドの原子配列を分子動力学シミュレーションで計算した結果を示す。
 図8は、it-PMMAに吸着ペプチド(RWWRPWW:配列番号1-2)が吸着した状態の原子配列を示す画像である。図9は、it-PMMAに吸着ペプチド(RWWRRWW:配列番号1-2)が吸着した状態の原子配列を示す画像である。図10は、it-PMMAに吸着ペプチド(EWWRPWR:配列番号1-4)が吸着した状態の原子配列を示す画像である。図11は、it-PMMAに吸着ペプチド(RWWRPWR:配列番号1-5)が吸着した状態の原子配列を示す画像である。
 図8~11では、PMMA吸着ペプチドが吸着しているit-PMMAの界面を、PMMA吸着ペプチドの側から見た三次元モデリング画像を示している。細いスティックはit-PMMAの分子鎖、太いスティックは吸着ペプチドの主鎖、中間の太さのスティックは吸着ペプチドの側鎖を示す。PMMA吸着ペプチド中で最大の球は、主鎖に存在するカルボニル基の酸素を示す。
 図8~11の画像上では、PMMA吸着ペプチド中の水素原子や、系内に存在する水和水等の水分子を、非表示としている。英数字で示される符号は、左字がN末端から数えたアミノ酸残基の番号、右字がアミノ酸残基の一文字表記である。
 図8~11に示すように、it-PMMAは、分子鎖同士が互いに平行に配向し、メトキシカルボニル基同士及びメチル基同士が、互いに向かい合う状態になっている。it-PMMAの分子鎖同士の間には、主としてメトキシカルボニル基が位置する領域(CHOCO領域)と、主としてメチル基が位置する領域(CH領域)とが生じている。
 これに対し、PMMA吸着ペプチドの主鎖は、it-PMMAの分子鎖と略平行に配向し、βストランド様のジグザグ構造を形成している。PMMA吸着ペプチドの主鎖に存在するカルボニル基の酸素(最大の球)は、いずれも、it-PMMAのメトキシカルボニル基の基端側(エステル基付近)に位置している。
 また、PMMA吸着ペプチドを構成するアミノ酸残基のうち、N末端からC末端に向かって奇数番目に位置するアミノ酸残基の側鎖は、CHOCO領域に位置しており、主鎖に最も近いit-PMMAに隣接した別のit-PMMAのメトキシカルボニル基に接近している。
 一方、PMMA吸着ペプチドを構成するアミノ酸残基のうち、N末端からC末端に向かって偶数番目に位置するアミノ酸残基の側鎖は、CH領域に位置しており、主鎖に最も近いit-PMMAに隣接した反対側のit-PMMAの主鎖やメチル基に接近している。
 図8~11に示すシミュレーション結果によると、PMMA吸着ペプチドの主鎖は、it-PMMAの分子鎖との間に、分子間の相互作用を形成すると考えられる。また、PMMA吸着ペプチドを構成するアミノ酸残基のうち、N末端からC末端に向かって奇数番目に位置するアミノ酸残基の側鎖は、主鎖に最も近いit-PMMAに隣接するit-PMMAのメトキシカルボニル基付近との間に、水素結合等の分子間の相互作用を形成すると考えられる。また、PMMA吸着ペプチドを構成するアミノ酸残基のうち、N末端からC末端に向かって偶数番目に位置するアミノ酸残基の側鎖は、主鎖に最も近いit-PMMAに隣接するit-PMMAの主鎖やメチル基との間に、分子間の相互作用を形成すると考えられる。
 特に、図8、図10~11に示すシミュレーション結果によると、PMMA吸着ペプチドにプロリン残基やグルタミン酸残基が存在している場合、PMMA吸着ペプチドの主鎖のジグザグ構造が崩れ難くなり、主鎖の構造や側鎖の配向が安定化されることが分かる。
 表1や図8~11の結果に基づくと、PMMA吸着ペプチドを構成するアミノ酸残基としては、メトキシカルボニル基やメチル基に対する吸着力が高い点で、トリプトファン残基やアルギニン残基が有効であるといえる。また、プロリン残基やグルタミン酸残基は、吸着力がトリプトファン残基やアルギニン残基に劣るものの、PMMA吸着ペプチドの主鎖の構造や側鎖の配向の安定化に寄与する点で有効であるといえる。
 したがって、PMMA吸着ペプチドは、トリプトファン残基(W)、アルギニン残基(R)、プロリン残基(P)、及び、グルタミン酸残基(E)のうち、一種以上のアミノ酸残基を含み、トリプトファン残基又はアルギニン残基の存在比率が高いアミノ酸配列であることが好ましい。
 PMMA吸着ペプチドは、W、R、P及びEのみを用いて形成してもよいし、その他のアミノ酸残基を用いて形成してもよい。PMMA吸着ペプチドを構成するアミノ酸残基は、L型であることが好ましい。
 PMMA吸着ペプチドの剥離エネルギは、好ましくは35.0kJ/mol以上、より好ましくは36.0kJ/mol以上、更に好ましくは37.0kJ/mol以上、更に好ましくは38.0kJ/mol以上である。
 PMMA吸着ペプチドの長さは、アミノ酸残基で5個以上であることが好ましく、6個以上であることがより好ましい。また、アミノ酸残基で100個以下であることが好ましく、20個以下であることがより好ましく、15個以下であることが更に好ましく、10個以下であることが更に好ましい。PMMA吸着ペプチドが長いほど、樹脂に対して高い親和性を得ることができる。一方、PMMA吸着ペプチドが短いほど、分子内や分子間で凝集し難くなるため、化学修飾、クラスタ化等の改変が容易になる。PMMA吸着ペプチドの長さは、アミノ酸残基が7個であることが特に好ましい。
 PMMA吸着ペプチドは、アミノ酸残基の70%以上がトリプトファン残基又はアルギニン残基であることが好ましい。アミノ酸配列の全長に対するトリプトファン残基及びアルギニン残基の存在率は、75%以上がより好ましく、80%以上が更に好ましく、85%以上が更に好ましく、90%以上が更に好ましい。また、トリプトファン残基及びアルギニン残基の存在率は、100%としてもよいし、95%未満としてもよいし、90%未満としてもよい。
 トリプトファン残基やアルギニン残基は、側鎖が比較的長く、樹脂のメトキシカルボニル基やメチル基に対して、比較的強い相互作用を形成することができる。また、トリプトファン残基は、側鎖が比較的剛直であり、PMMA吸着ペプチドの主鎖の構造や側鎖の配向を安定させる傾向がある。一方、アルギニン残基は、トリプトファン残基よりも側鎖が長いため、トリプトファン残基とは異なる相互作用を形成することができる。そのため、トリプトファン残基やアルギニン残基の存在率を高くすると、メトキシカルボニル基とメチル基を有する樹脂に対して高い親和性を示すPMMA吸着ペプチドが得られる。
 PMMA吸着ペプチドは、アミノ酸残基の10%以上がプロリン残基又はグルタミン酸残基であることが好ましい。アミノ酸配列の全長に対するプロリン残基及びグルタミン酸残基の存在率は、15%以上としてもよいし、20%以上としてもよい。また、プロリン残基及びグルタミン酸残基の存在率は、25%未満としてもよいし、20%未満としてもよいし、15%未満としてもよい。
 プロリン残基は、環構造を有しており、ペプチド結合の結合角や二面角が制約・固定されるため、主鎖の構造を安定化させる作用を示す。また、グルタミン酸残基は、側鎖が比較的長く、側鎖に極性基を有している。そのため、プロリン残基又はグルタミン酸残基を介在させると、βストランド様のジグザグ構造が崩れ難くなり、主鎖の構造や側鎖の配向が安定化する場合がある。
 PMMA吸着ペプチドを構成するアミノ酸残基のうち、PMMA吸着ペプチドのN末端からC末端に向かって奇数番目に位置するアミノ酸残基や、偶数番目に位置するアミノ酸残基は、同種のアミノ酸残基が2個以上連続した配列でないことが好ましい。
 例えば、Trp-Xaa-Trp-Xaa-Trp(但し、Xaaは任意のアミノ酸残基。)等のように、同種のアミノ酸残基が2個以上連続した配列であると、奇数番目の側鎖同士や偶数番目の側鎖同士が干渉して、主鎖の構造が崩れたり、分子内の相互作用で凝集化を生じたりする。これに対し、同種のアミノ酸残基が連続しない配列とすると、PMMA吸着ペプチドの主鎖の構造や側鎖の配向が安定化する傾向がある。
 PMMA吸着ペプチドは、PMMA吸着ペプチドのN末端からC末端に向かって偶数番目に位置するアミノ酸残基が、Trp、Arg、Trpの順の配列(Trp-Xaa-Arg-Xaa-Trp)、又は、Arg、Trp、Argの順の配列(Arg-Xaa-Trp-Xaa-Arg)であることが好ましい(但し、3番目のアミノ酸残基は、C末端側に位置する最後の偶数番目のアミノ酸残基であるか、又は、次の偶数番目のアミノ酸残基が異なる種類のアミノ酸残基である中間のアミノ酸残基である。)。
 このような配列であると、同種のアミノ酸残基が連続してなく、PMMA吸着ペプチドの主鎖の構造や側鎖の配向が安定化し、アミノ酸残基の側鎖と樹脂のメチル基との間に相互作用が形成され易いため、樹脂に対する親和性が高くなる傾向がある。
 PMMA吸着ペプチドは、N末端から2n番目のアミノ酸残基がトリプトファン(W)残基、2n+2番目のアミノ酸残基がアルギニン(R)残基、2n+4番目のアミノ酸残基がトリプトファン(W)残基であることが特に好ましい(但し、nは自然数を表す。2n+4番目のアミノ酸残基は、C末端側に位置する最後の偶数番目のアミノ酸残基であるか、又は、次の2n+6番目のアミノ酸残基がアルギニン残基以外のアミノ酸残基である中間のアミノ酸残基である。)。
 通常、PMMA吸着ペプチドは、偶数番目のアミノ酸残基がit-PMMAのメチル基に近接して安定になる。しかし、アルギニンの側鎖はメチル基と比較して長いため、偶数番目に位置するアルギニン残基の側鎖は、折れ曲がり易く、隣接する樹脂の分子鎖に向けて配向し難い傾向がある。偶数番目に位置するアミノ酸残基がArg、Trp、Argの順の配列であると、アルギニン残基の側鎖同士が、隣接している偶数番目のアミノ酸残基を超えて干渉することがあるため、PMMA吸着ペプチドの主鎖の構造が崩れ易くなる。これに対し、偶数番目に位置するアミノ酸残基がTrp、Arg、Trpの順の配列であると、樹脂に対する親和性を高くしつつ、PMMA吸着ペプチドの主鎖の構造や側鎖の配向を安定化させることができる。
 PMMA吸着ペプチドは、N末端から2m-1番目のアミノ酸残基がアルギニン(R)残基、2m+1番目のアミノ酸残基がトリプトファン(W)残基、2m+3番目のアミノ酸残基がプロリン(P)残基であるか、又は、N末端から2m-1番目のアミノ酸残基がアルギニン(R)残基、2m+1番目のアミノ酸残基がトリプトファン(W)残基、2m+3番目のアミノ酸残基がアルギニン(R)残基であるか、又は、N末端から2m-1番目のアミノ酸残基がトリプトファン(W)残基、2m+1番目のアミノ酸残基がトリプトファン(W)残基、2m+3番目のアミノ酸残基がプロリン(P)残基であるか、又は、N末端から2m-1番目のアミノ酸残基がグルタミン酸(E)残基、2m+1番目のアミノ酸残基がトリプトファン(W)残基、2m+3番目のアミノ酸残基がプロリン(P)残基であることが好ましい(但し、mは自然数を表す。)。
 通常、PMMA吸着ペプチドは、奇数番目のアミノ酸残基がit-PMMAのメトキシカルボニル基に近接して安定になる。しかし、メトキシカルボニル基はメチル基と比較して長いため、奇数番目に位置するアミノ酸残基がArg、Trp、Argの順の配列であっても、アルギニン残基の側鎖同士が、隣接している奇数番目のアミノ酸残基を超えて干渉するようなことが少なく、PMMA吸着ペプチドの主鎖の構造は崩れ難くなる。奇数番目に位置するアミノ酸残基がArg、Trp、Argの順の配列であると、トリプトファンよりも長いアルギニンの側鎖が分子間の相互作用を形成するため、樹脂に対する親和性を高くすることができる。
 また、PMMA吸着ペプチドは、N末端から2m+3番目のアミノ酸残基がプロリン(P)残基であるとき、2m+5番目のアミノ酸残基が、トリプトファン(R)残基、又は、アルギニン(R)残基であることがより好ましい。
 2m+3番目のアミノ酸残基がProであるとき、2m+5番目のアミノ酸残基がTrp又はArgであると、PMMA吸着ペプチドの主鎖のジグザグ構造が、Proの分子構造によって安定化し、2m+5番目のTrp又はArgの側鎖を、隣接する分子鎖のメトキシカルボニル基側に向けて配向させる傾向がある。そのため、2m+5番目のアミノ酸残基がTrp又はArgであると、樹脂に対する親和性を高くすることができる場合がある。
 なお、PMMA吸着ペプチドは、このような偶数番目の所定のアミノ酸配列(W・R・W,R・W・R)や、奇数番目の所定のアミノ酸配列(R・W・P,R・W・R,W・W・P,E・W・P)を、全アミノ酸残基中の最もN末端側に有していてもよいし、全アミノ酸残基中の中間の位置に有していてもよい。すなわち、前記のアミノ酸残基の番号について、n=1やm=1であってもよいし、n>1やm>1であってもよい。但し、PMMA吸着ペプチドは、アミノ酸残基が10個以下程度に短いことが好ましく、この場合、全アミノ酸残基中の最もN末端側(n=1やm=1のアミノ酸残基)に有していることが好ましい。
 また、PMMA吸着ペプチドは、このような偶数番目の所定のアミノ酸配列(W・R・W,R・W・R)や、奇数番目の所定のアミノ酸配列(R・W・P,R・W・R,W・W・P,E・W・P)を、全長中に1個有していてもよいし、全長中に複数個有していてもよい。但し、PMMA吸着ペプチドは、アミノ酸残基が10個以下程度に短いことが好ましく、この場合、全長中に1個有していることが好ましい。
 また、PMMA吸着ペプチドは、このような偶数番目の所定のアミノ酸配列(W・R・W,R・W・R)や、奇数番目の所定のアミノ酸配列(R・W・P,R・W・R,W・W・P,E・W・P)を、互いに連続する位置に有していてもよいし、互いにずれた位置に有していてもよい。すなわち、前記のアミノ酸残基の番号について、n=mであってもよいし、n≠mであってもよい。但し、PMMA吸着ペプチドは、アミノ酸残基が10個以下程度に短いことが好ましく、この場合、互いに連続する位置(n=mのアミノ酸残基)に有していることが好ましい。
 PMMA吸着ペプチドは、次の配列番号(1-1)~(1-5)のいずれかで表されるアミノ酸配列に対して1個又は2個のアミノ酸残基が付加、挿入、置換又は欠失したアミノ酸配列を含むペプチドであることが好ましく、配列番号(1-1)~(1-5)のいずれかで表されるアミノ酸配列を含むペプチドであることがより好ましく、配列番号(1-1)~(1-5)のいずれかで表されるアミノ酸配列であることが特に好ましい。
  RWWRPWW・・・(1-1)
  RWWRRWW・・・(1-2)
  WWWRPWW・・・(1-3)
  EWWRPWR・・・(1-4)
  RWWRPWR・・・(1-5)
 PMMA吸着ペプチドは、配列番号1-1~1-5のアミノ酸配列以外に、特定の機能を有するアミノ酸配列を有していてもよい。PMMA吸着ペプチドは、これらのアミノ酸配列を、全アミノ酸残基中の最もN末端側に有していてもよいし、全アミノ酸残基中の中間の位置に有していてもよい。
 また、PMMA吸着ペプチドは、配列番号1-1~1-5のアミノ酸配列を、全長中に1個有していてもよいし、全長中に複数個有していてもよい。PMMA吸着ペプチドは、これらのアミノ酸配列のうち、一種を有していてもよいし、複数種を有していてもよい。
 なお、PMMA吸着ペプチドのN末端やC末端は、化学修飾されていてもよいし、任意の電離状態であっていてもよい。例えば、N末端は、-NH、-NH 、-CHCO、9-フルオレニルメチルオキシカルボニル(9-fluorenylmethyloxycarbonyl:Fmoc)基、tert-ブトキシカルボニル(tert-butoxycarbonyl:Boc)基等のいずれであってもよい。C末端は、-COOH、-COO、-CONH、-CONH 等のいずれであってもよい。
 PMMA吸着ペプチドが、配列番号1-1~1-5のいずれかで表されるアミノ酸配列や、そのアミノ酸配列に類似したアミノ酸配列を含むペプチドであると、メトキシカルボニル基とメチル基を有する樹脂に対する剥離エネルギの理論値が高くなり、樹脂に対して高い親和性が得られる。そのため、樹脂に吸着させたペプチドが剥がれを起こし難くなり、より長期間にわたって生体適合性が持続する生体適合材料を得ることができる。
 PMMA吸着ペプチドは、例えば、液相合成法、固相合成法等の化学的合成法や、遺伝子工学的合成法等の各種の合成法を用いて合成することができる。液相合成法としては、例えば、非特許文献(Keisuke Aihara et al., Organic Letters, 2015, 17(3), p.696-699)に記載されている可溶性アンカを用いる合成法や、非特許文献(矢内原昇 他2名、「ペプチドの化学合成とその応用」、有機合成化学協会誌、公益社団法人有機合成化学協会、1998年11月1日、第46巻、第11号、p.1073-1084)に記載されているstepwise法やフラグメント縮合法等を用いることができる。また、固相合成法としては、例えば、前記の非特許文献(有機合成化学協会誌)に記載されている各種の合成法や、非特許文献(軒原清史、「ペプチド合成の新技術」、高分子、公益社団法人高分子学会、1994年9月1日、第43巻、第9号、p.611-615)に記載されている各種の合成法を用いることができる。
<メトキシカルボニル基とメチル基を有する樹脂>
 PMMA吸着ペプチドを吸着させる樹脂(生体適合性材料10を構成する樹脂1)としては、メトキシカルボニル基とメチル基を有する樹脂である限り、任意の樹脂を用いることができる。
 PMMA吸着ペプチドを吸着させる樹脂は、メトキシカルボニル基とメチル基とを有する単量体の重合体であってもよいし、メトキシカルボニル基を有する単量体とメチル基を有する単量体との共重合体であってもよいし、メトキシカルボニル基やメチル基を有する単量体とその他の単量体との共重合体であってもよい。共重合体としては、ブロック共重合体、ランダム共重合体、及び、グラフト共重合体のいずれであってもよい。
 PMMA吸着ペプチドを吸着させる樹脂としては、ポリメタクリル酸メチル樹脂(PMMA)が好ましく、イソタクチックポリメタクリル酸メチル樹脂(it-PMMA)が特に好ましい。樹脂がPMMAであると、単量体がメトキシカルボニル基とメチル基を有しているため、高い親和性が得られる。また、樹脂がit-PMMAであると、メトキシカルボニル基とメチル基が立体規則的且つ均一な配置であるため、より高い親和性が得られる。また、アタクチックポリメタクリル酸メチル樹脂(atactic poly(methyl-methacrylate) resin:at-PMMA)や、シンジオタクチックポリメタクリル酸メチル樹脂(syndiotactic poly(methyl-methacrylate) resin:st-PMMA)と比較して、ガラス転移温度が低いため、生体適合性材料の加工が容易になる。
 イソタクチックポリメタクリル酸メチル樹脂(it-PMMA)は、イソタクチックトライアッド分率(mm)が50%以上であり、好ましくは70%以上であり、より好ましくは90%以上であり、更に好ましくは95%以上である。it-PMMAは、メタクリル酸メチル以外の単量体を含んでいてもよい。
 ポリメタクリル酸メチル樹脂(PMMA)は、例えば、非特許文献1に記載されている合成法を用いて合成することができる。tert-ブチル基のような嵩高い置換基を有するグリニャール試薬を開始剤として用い、メタクリル酸メチルを非極性溶媒中でアニオン重合させるとit-PMMAが得られる。非極性溶媒としては、例えば、ジエチルエーテル、ジクロロメタン、トルエン等を用いることができる。
<PTFE吸着ペプチド>
 次に、吸着ペプチドの一例として、ポリテトラフルオロエチレン樹脂(PTFE)等に対して高い親和性を示すPTFE吸着ペプチドについて説明する。
 PTFE吸着ペプチドは、2,3,4,5,6-ペンタフルオロフェニルアラニン残基(Phe(5F):Zと表す。)、3-(トリフルオロメチル)アラニン残基(2-アミノ-4,4,4-トリフルオロ酪酸)(Abu(3F):Xと表す。)、セリン残基(Ser:S)、トレオニン残基(Thr:T)、ヒスチジン残基(His:H)、アスパラギン酸残基(Asp:D)、グルタミン酸残基(Glu:E)、フェニルアラニン残基(Phe:F)、アスパラギン残基(Asn:N)、及び、プロリン残基(Pro:P)のうち、一種以上のアミノ酸残基を含むアミノ酸配列で形成される。
 表2は、ペプチドとポリテトラフルオロエチレン樹脂(PTFE)との吸着反応の剥離エネルギと、アミノ酸配列中の2,3,4,5,6-ペンタフルオロフェニルアラニン残基(Z)、3-(トリフルオロメチル)アラニン残基(X)、セリン残基(S)、トレオニン残基(T)、ヒスチジン残基(H)、アスパラギン酸残基(D)、グルタミン酸残基(E)、フェニルアラニン残基(F)及びアスパラギン残基(N)の存在率を示している。
Figure JPOXMLDOC01-appb-T000006
 表2において、配列番号2-1~2-22は、分子設計によってPTFEに対する親和性を向上させた本発明に係るPTFE吸着ペプチドである。配列番号3-1~3-7は、PTFEに対する親和性に基づくランダム・スクリーニングによって取得した本発明に係るPTFE吸着ペプチドである。配列番号4-1~4-4は、対照として作製した12merのペプチドである。
 表2において、剥離エネルギとしては、分子動力学シミュレーションによる計算値(SIM計算値)を示している。分子動力学シミュレーションは、PMMA吸着ペプチドと同様に、反応分子動力学計算プログラム「ReaxFF」を用いて、水中における原子・分子の挙動を模擬して行った。
 表2に示すように、配列番号2-1~2-22、配列番号3-1~3-7は、9種のアミノ酸の存在率が40%以上であり、高い剥離エネルギを示している。9種のアミノ酸の存在率が40%以上70%以下である配列番号3-1~3-7と、9種のアミノ酸の存在率が90%以上である配列番号2-1~2-22とを比較すると、後者がより高い剥離エネルギを示している。これに対し、配列番号4-1~4-4は、9種のアミノ酸の存在率が40%未満であり、剥離エネルギが小さい。
 分子動力学シミュレーションの結果から、9種のアミノ酸の存在率が高く、適切な繰り返し構造を有するPTFE吸着ペプチドが、PTFEに対する高い親和性を示すことが分かる。
 次に、PTFEとPTFE吸着ペプチドの原子配列を分子動力学シミュレーションで計算した結果を示す。
 図12は、PTFEに吸着ペプチド(ZZXXZZXXZZXX:配列番号2-1)が吸着した状態の原子配列を示す画像である。図13は、PTFEに吸着ペプチド(STSTSTSTSTST:配列番号2-7)が吸着した状態の原子配列を示す画像である。図14は、PTFEに吸着ペプチド(STSTSPSTSTST:配列番号2-3)が吸着した状態の原子配列を示す画像である。図15は、PTFEに吸着ペプチド(HHHHHHHHHHHH:配列番号2-11)が吸着した状態の原子配列を示す画像である。図16は、PTFEに吸着ペプチド(AAAAAAAAAAAA:配列番号4-4)が吸着した状態の原子配列を示す画像である。
 図12~16では、PTFE吸着ペプチドが吸着しているPTFEの界面を、PTFE吸着ペプチドの側から見た三次元モデリング画像を示している。細いスティックはPTFEの分子鎖、太いスティックは吸着ペプチドの主鎖、中間の太さのスティックは吸着ペプチドの側鎖を示す。PTFE吸着ペプチド中で最大の球は、主鎖に存在するカルボニル基の酸素を示す。
 図12~16の画像上では、PTFE吸着ペプチド中の水素原子や、系内に存在する水和水等の水分子を、非表示としている。英数字で示される符号は、左字がN末端から数えたアミノ酸残基の番号、右字がアミノ酸残基の一文字表記である。
 図12~16に示すように、PTFEは、分子鎖同士が互いに平行に配向している。これに対し、PTFE吸着ペプチドの主鎖は、PTFEの分子鎖と略平行に配向し、βストランド様のジグザグ構造を形成している。PTFE吸着ペプチドの主鎖に存在するカルボニル基の酸素(最大の球)は、いずれも、PTFEの分子鎖の近傍に位置している。
 また、PTFE吸着ペプチドを構成するアミノ酸残基のうち、N末端からC末端に向かって奇数番目に位置するアミノ酸残基の側鎖は、主鎖に最も近いPTFEに隣接した別のPTFEの分子鎖に接近している。
 一方、PTFE吸着ペプチドを構成するアミノ酸残基のうち、N末端からC末端に向かって偶数番目に位置するアミノ酸残基の側鎖は、主鎖に最も近いPTFEに隣接した反対側のPTFEの分子鎖に接近している。
 図12~15に示すシミュレーション結果によると、PTFE吸着ペプチドの主鎖は、PTFEの分子鎖との間に、分子間の相互作用を形成すると考えられる。また、PTFE吸着ペプチドを構成するアミノ酸残基の側鎖は、主鎖に最も近いPTFEに隣接する複数のPTFEの分子鎖との間に、分子間の相互作用を形成すると考えられる。
 特に、図14に示すシミュレーション結果によると、PTFE吸着ペプチドにプロリン残基が存在している場合、PTFE吸着ペプチドの主鎖のジグザグ構造が伸ばされずに安定し、α炭素周りの結合角・二面角が変化して小さい角度が形成されることが分かる。また、PTFE吸着ペプチドにプロリン残基が存在している場合、PTFE吸着ペプチドが折れ曲がり、複数のPTFEの分子鎖のそれぞれと相互作用を形成することが分かる。
 また、図12や図15に示すシミュレーション結果によると、PTFE吸着ペプチドの側鎖に芳香環が存在する場合、プロリン残基が存在していなくても、PTFE吸着ペプチドの主鎖のジグザグ構造が伸ばされずに安定し、α炭素周りの結合角・二面角が変化して小さい角度が形成されることが分かる。
 一方、図16に示すシミュレーション結果によると、PTFE吸着ペプチドの側鎖が短い疎水性のアラニン残基である場合、PTFE吸着ペプチドの主鎖のジグザグ構造が伸ばされており、PTFE吸着ペプチドの主鎖の途中に歪みを生じることが分かる。
 表2や図12~16の結果に基づくと、PTFE吸着ペプチドを構成するアミノ酸残基としては、PTFEに対する吸着力が高い点で、比較的短く、極性や電子求引性がある側鎖を持つアミノ酸残基が有効であるといえる。また、プロリン残基は、PTFE吸着ペプチドの主鎖の構造や側鎖の配向の安定化に寄与する点で有効であるといえる。PTFE吸着ペプチドは、側鎖が適切に配向するような繰り返し構造を持つことが好ましいといえる。
 次に、PTFEとPTFE吸着ペプチドとの相互作用を吸着実験によって測定した結果を示す。
 図17は、吸着ペプチドを吸着させたPTFEの接触角の測定結果を示す図である。図18は、吸着ペプチドを吸着させたPTFEから吸着ペプチドを解離させた結果を示す図である。
 図17には、ペプチドをファージディスプレイによって発現させてファージ溶液を調製し、このファージ溶液にPTFEを1時間浸漬させたときの、超純水の液滴の接触角の測定結果を示す。ペプチドとしては、配列番号3-1~3-7のPTFE吸着ペプチドと、M13ファージの野生型(WT)の構造タンパクとを用いた。図18には、PTFEに吸着させたペプチドの解離量を定量した結果を示す。ペプチドは、ファージに発現させてPTFEに吸着させた後、ファージ溶液を溶出緩衝液(Elution buffer)と置換して解離・溶出させて定量した。
 配列番号3-1~3-7のPTFE吸着ペプチドは、S、T、H、D、E、F及びNの存在率が40%以上である。一方、野生型のペプチドは、S、T、H、D、E、F及びNの存在率が30%である。野生型の構造タンパクのアミノ酸配列は、AEGDDPAKAAFNSLQATEYIGYAWAMVVVIVGATIGIKLFKKFTSKASである。
 図17に示すように、配列番号3-1~3-7のPTFE吸着ペプチドでは、野生型のペプチドと比較して、接触角が小さくなった。極性が高いPTFE吸着ペプチドがPTFEに吸着することによって、PTFEの表面の親水性が高くなったものと考えられる。野生型のペプチドは、S、T、H、D、E、F及びNの存在率が30%と低いため、接触角が比較的大きい値であり、PTFEに対して十分に吸着しなかったと考えられる。
 図18に示すように、S、T、H、D、E、F及びNの存在率が40%以上である配列番号3-1のPTFE吸着ペプチドは、S、T、H、D、E、F及びNの存在率が低い野生型のペプチドと比較して、ペプチドの解離量が低くなった。S、T、H、D、E、F及びNの存在率が40%以上であるPTFE吸着ペプチドは、吸着したPTFEから解離し難く、PTFEに対する親和性・密着性が高いことが示されている。
 したがって、PTFE吸着ペプチドは、2,3,4,5,6-ペンタフルオロフェニルアラニン残基(Z)、3-(トリフルオロメチル)アラニン残基(X)、セリン残基(S)、トレオニン残基(T)、ヒスチジン残基(H)、アスパラギン酸残基(D)、グルタミン酸残基(E)、フェニルアラニン残基(F)又はアスパラギン残基(N)のうち、一種以上のアミノ酸残基を含み、繰り返し構造を持つアミノ酸配列であることが好ましい。
 PTFE吸着ペプチドは、Z、X、S、T、H、D、E、F及びNのみを用いて形成してもよいし、その他のアミノ酸残基を用いて形成してもよい。PTFE吸着ペプチドを構成するアミノ酸残基は、L型であることが好ましい。
 PTFE吸着ペプチドの剥離エネルギは、好ましくは25.0kJ/mol以上、より好ましくは30.0kJ/mol以上、更に好ましくは34.0kJ/mol以上、更に好ましくは35.0kJ/mol以上、更に好ましくは38.0kJ/mol以上、更に好ましくは40.0kJ/mol以上、更に好ましくは60.0kJ/mol以上である。
 PTFE吸着ペプチドの長さは、アミノ酸残基で5個以上であることが好ましく、8個以上であることがより好ましく、10個以上であることが更に好ましい。また、アミノ酸残基で100個以下であることが好ましく、20個以下であることがより好ましく、15個以下であることが更に好ましい。PTFE吸着ペプチドが長いほど、樹脂に対して高い親和性を得ることができる。一方、PTFE吸着ペプチドが短いほど、分子内や分子間で凝集し難くなるため、化学修飾、クラスタ化等の改変が容易になる。PTFE吸着ペプチドの長さは、アミノ酸残基が12個であることが特に好ましい。
 PMMA吸着ペプチドは、アミノ酸残基の40%以上が2,3,4,5,6-ペンタフルオロフェニルアラニン残基(Z)、3-(トリフルオロメチル)アラニン残基(X)、セリン残基(S)、トレオニン残基(T)、ヒスチジン残基(H)、アスパラギン酸残基(D)、グルタミン酸残基(E)、フェニルアラニン残基(F)、又は、アスパラギン残基(N)であることが好ましい。アミノ酸配列の全長に対するZ、X、S、T、H、D、E、F及びNの存在率は、50%以上がより好ましく、60%以上が更に好ましく、70%以上が更に好ましく、80%以上が更に好ましく、90%以上が更に好ましい。また、Z、X、S、T、H、D、E、F及びNの存在率は、100%としてもよいし、90%未満としてもよいし、80%未満としてもよい。
 PTFE吸着ペプチドは、Z、X、S、T、H、D、E、F又はNを含む繰り返し構造を有することが好ましく、Z、X、S、T、H、D又はEを含む繰り返し構造を有することがより好ましく、Z、X、S又はTを含む繰り返し構造を有することが更に好ましく、Z又はXを含む繰り返し構造を有することが特に好ましい。
 Z、X、S、T、H、D、E及びNは、側鎖が極性を有するため、樹脂に対して比較的強い相互作用を形成することができる。そのため、Z、X、S、T、H、D、E又はNを含むアミノ酸配列であると、PTFEに対して高い親和性を示すPTFE吸着ペプチドが得られる。また、Fを含むアミノ酸配列であると、主鎖の構造や側鎖の配向が安定したPTFE吸着ペプチドが得られる場合がある。
 PTFE吸着ペプチドは、アミノ酸残基の5%以上がプロリン残基であることが好ましい。アミノ酸配列の全長に対するプロリン残基の存在率は、10%以上としてもよいし、15%以上としてもよい。また、プロリン残基の存在率は、20%未満としてもよいし、15%未満としてもよいし、10%未満としてもよい。
 プロリン残基は、環構造を有しており、ペプチド結合の結合角や二面角が制約・固定されるため、主鎖の構造を安定化させる作用や、主鎖を折り曲げる作用を示す。そのため、プロリン残基を介在させると、主鎖の構造や側鎖の配向が安定したPTFE吸着ペプチドや、複数のPTFEの分子鎖のそれぞれと相互作用を形成するPTFE吸着ペプチドが得られる場合がある。
 PMMA吸着ペプチドは、2,3,4,5,6-ペンタフルオロフェニルアラニン残基をZで表し、3-(トリフルオロメチル)アラニン残基をXで表したとき、次の配列番号(A-1)~(A-21)のいずれかで表されるアミノ酸配列に対して1個又は2個のアミノ酸残基が付加、挿入、置換又は欠失したアミノ酸配列を含むペプチドであることが好ましく、配列番号(A-1)~(A-21)のいずれかで表されるアミノ酸配列を含むペプチドであることがより好ましく、配列番号(A-1)~(A-21)のいずれかで表されるアミノ酸配列を繰り返し単位として2個以上含むペプチドであることが更に好ましい。
  ZZXXZ・・・(A-1)
  ZXXZZ・・・(A-2)
  XXZZX・・・(A-3)
  XZZXX・・・(A-4)
  STSTS・・・(A-5)
  TSTST・・・(A-6)
  SSSSS・・・(A-7)
  TTTTT・・・(A-8)
  HHHHH・・・(A-9)
  DSDSD・・・(A-10)
  SDSDS・・・(A-11)
  DHDHD・・・(A-12)
  HDHDH・・・(A-13)
  DEDED・・・(A-14)
  EDEDE・・・(A-15)
  FFHHF・・・(A-16)
  FHHFF・・・(A-17)
  HHFFH・・・(A-18)
  HFFHH・・・(A-19)
  NENEN・・・(A-20)
  ENENE・・・(A-21)
 また、PMMA吸着ペプチドは、次の配列番号(2-1)~(2-22)のいずれかで表されるアミノ酸配列に対して1個又は2個のアミノ酸残基が付加、挿入、置換又は欠失したアミノ酸配列を含むペプチドであることがより好ましく、配列番号(2-1)~(2-22)のいずれかで表されるアミノ酸配列を含むペプチドであることが更に好ましく、配列番号(2-1)~(2-22)のいずれかで表されるアミノ酸配列であることが特に好ましい。
  ZZXXZZXXZZXX・・・(2-1)
  ZXXZZXXZZXXZ・・・(2-2)
  STSTSPSTSTST・・・(2-3)
  TSTSTPTSTSTS・・・(2-4)
  SSSSSPSSSSSS・・・(2-5)
  TTTTTPTTTTTT・・・(2-6)
  STSTSTSTSTST・・・(2-7)
  TSTSTSTSTSTS・・・(2-8)
  SSSSSSSSSSSS・・・(2-9)
  TTTTTTTTTTTT・・・(2-10)
  HHHHHHHHHHHH・・・(2-11)
  HHHHHPHHHHHH・・・(2-12)
  DSDSDPDSDSDS・・・(2-13)
  DSDSDSDSDSDS・・・(2-14)
  DHDHDHDHDHDH・・・(2-15)
  DHDHDPDHDHDH・・・(2-16)
  DEDEDPDEDEDE・・・(2-17)
  DEDEDEDEDEDE・・・(2-18)
  FHHFFHHFFHHF・・・(2-19)
  FFHHFFHHFFHH・・・(2-20)
  NENENPNENENE・・・(2-21)
  NENENENENENE・・・(2-22)
 また、PMMA吸着ペプチドは、次の配列番号(3-1)~(3-7)のいずれかで表されるアミノ酸配列に対して80%以上の同一性を有するアミノ酸配列を含むペプチドであってもよい。アミノ酸配列の同一性は、好ましくは85%以上、より好ましくは90%以上、更に好ましくは95%以上、特に好ましくは100%である。
  VHFPTKISEGDM・・・(3-1)
  TFTLNSVHRSVH・・・(3-2)
  SPHLHTSSPWER・・・(3-3)
  FIESKTPVDPDG・・・(3-4)
  GSESRTLFHPEG・・・(3-5)
  EALTVNIKREME・・・(3-6)
  SMIVEPRMLSTH・・・(3-7)
 PTFE吸着ペプチドは、配列番号A-1~A-21や、配列番号2-1~2-22や、配列番号3-1~3-7のアミノ酸配列以外に、特定の機能を有するアミノ酸配列を有していてもよい。PTFE吸着ペプチドは、これらのアミノ酸配列を、全アミノ酸残基中の最もN末端側に有していてもよいし、全アミノ酸残基中の中間の位置に有していてもよい。
 また、PTFE吸着ペプチドは、配列番号A-1~A-21や、配列番号2-1~2-22や、配列番号3-1~3-7のアミノ酸配列を、全長中に1個有していてもよいし、全長中に複数個有していてもよい。PTFE吸着ペプチドは、これらのアミノ酸配列のうち、一種を有していてもよいし、複数種を有していてもよい。
 なお、PTFE吸着ペプチドのN末端やC末端は、化学修飾されていてもよいし、任意の電離状態であっていてもよい。例えば、N末端は、-NH、-NH 、-CHCO、9-フルオレニルメチルオキシカルボニル(9-fluorenylmethyloxycarbonyl:Fmoc)基、tert-ブトキシカルボニル(tert-butoxycarbonyl:Boc)基等のいずれであってもよい。C末端は、-COOH、-COO、-CONH、-CONH 等のいずれであってもよい。
 PTFE吸着ペプチドが、配列番号A-1~A-21や、配列番号2-1~2-22や、配列番号3-1~3-7のアミノ酸配列や、そのアミノ酸配列に類似したアミノ酸配列を含むペプチドであると、フッ素樹脂に対する剥離エネルギの理論値が高くなり、フッ素樹脂に対して高い親和性が得られる。そのため、フッ素樹脂に吸着させたペプチドが剥がれを起こし難くなり、より長期間にわたって生体適合性が持続する生体適合材料を得ることができる。
 PTFE吸着ペプチドは、PMMA吸着ペプチドと同様に、液相合成法、固相合成法等の化学的合成法や、遺伝子工学的合成法等の各種の合成法を用いて合成することができる。
<フッ素樹脂>
 PTFE吸着ペプチドを吸着させる樹脂(生体適合性材料10を構成する樹脂1)としては、フッ素化されたオレフィン単位を有するフッ素樹脂である限り、任意の樹脂を用いることができる。
 PTFE吸着ペプチドを吸着させる樹脂は、フッ素化された単量体の重合体であってもよいし、フッ素化された単量体とその他の単量体との共重合体であってもよい。共重合体としては、ブロック共重合体、ランダム共重合体、及び、グラフト共重合体のいずれであってもよい。
 PTFE吸着ペプチドを吸着させる樹脂としては、ポリテトラフルオロエチレン(PTFE)が特に好ましい。PTFE吸着ペプチドを吸着させる樹脂がPTFEであると、置換基であるフッ素原子が立体規則的且つ均一な配置であるため、高い親和性が得られる。
 フッ素樹脂は、一般的な合成法を用いて合成することができる。例えば、四フッ化エチレン等のフッ素化オレフィンをラジカル重合させると、粉末状等のフッ素樹脂が得られる。フッ素樹脂は溶融時の粘度が高く流動性が低いが、粉末状等のフッ素樹脂を溶融させた後に冷却すると、フッ素樹脂の成形体、非成形固体等が得られる。ラジカル重合の方法としては、例えば、乳化重合、懸濁重合、塊状重合、溶液重合等のいずれを用いることもできる。
<生体適合性材料の製造方法>
 本実施形態に係る生体適合性材料10は、例えば、吸着ペプチド2を分散させた液体を材料の本体である樹脂1に接触させる方法によって製造することができる。液体としては、pH調整剤、緩衝剤、塩、還元剤、有機溶媒等の各種の添加剤が添加されたバッファや、水等を用いることができる。
 液体を樹脂1に接触させる方法としては、例えば、樹脂1に液体を塗布する方法、樹脂1に液体を噴霧する方法、樹脂1を液体に浸漬する方法等の各種の方法を用いることができる。樹脂1上に液体を流して接触させる場合、液体の流量を20μL/min以下とすると、吸着ペプチド2の吸着の効率が高くなる。
<生体適合性材料の複合化>
 本実施形態に係る生体適合性材料10は、材料の本体である樹脂1が繊維材又は充填材と複合化されている形態や、樹脂1が樹脂1とは異なる被着材料の表面に積層されている形態や、樹脂1がデバイスの筐体を構成している形態として用いることもできる。
 図19は、繊維材と複合化された生体適合性材料を模式的に示す図である。
 図19に示すように、繊維材と複合化された生体適合性材料10Aは、材料の本体である樹脂1と、その樹脂1に吸着した吸着ペプチド(ペプチド)2と、樹脂1に埋設された繊維材4と、を含む。
 生体適合性材料10Aにおいて、繊維材4は、樹脂1のマトリックス中に埋設されている。繊維材4は、短いウィスカ状等としてマトリックス中に分散させてもよいし、編物、織物、組物等を形成させてマトリックス中に埋設してもよい。繊維材4は、樹脂1を重合する前や、予備成形した粉末状の樹脂1を溶融成形する前等に、樹脂1中に分散・配置して複合化することができる。
 繊維材4としては、有機繊維、無機繊維、及び、金属繊維のいずれを用いてもよい。有機繊維としては、例えば、ポリアミド繊維、ポリエステル繊維、アラミド繊維、セルロース繊維、フッ素樹脂繊維等が挙げられる。無機繊維としては、例えば、炭素繊維、炭化ケイ素繊維、ガラス繊維、ボロン繊維、アルミナ繊維、ジルコニア繊維、ムライト繊維、ロックウール等が挙げられる。繊維材4としては、一種を用いてもよいし、複数種を用いてもよい。フッ素樹脂と複合化する繊維材4としては、フッ素樹脂よりも融点が高い無機繊維や金属繊維が好ましい。
 図20は、充填材と複合化された生体適合性材料を模式的に示す図である。
 図20に示すように、充填材と複合化された生体適合性材料10Bは、材料の本体である樹脂1と、その樹脂1に吸着した吸着ペプチド(ペプチド)2と、樹脂1に埋設された充填材5と、を含む。
 生体適合性材料10Bにおいて、充填材5は、樹脂1のマトリックス中に埋設されている。充填材5は、粒子(球)状、フレーク状、板状等のいずれの形状であってもよい。また、充填材5は、中実形状であってもよいし、中空形状であってもよい。充填材5は、樹脂1を重合する前や、予備成形した粉末状の樹脂1を溶融成形する前等に、樹脂1中に分散させて複合化することができる。
 充填材5としては、有機材料、無機材料、及び、金属材料のいずれを用いてもよい。有機材料としては、例えば、ポリアミド、ポリエステル、アラミド、フッ素樹脂等が挙げられる。無機材料としては、例えば、黒鉛、カーボンブラック、炭化ケイ素、ガラス、シリカ、アルミナ、ジルコニア、ムライト、マイカ、タルク、カオリン、炭酸カルシウム、炭酸マグネシウム、水酸化アルミニウム、酸化チタン、酸化鉄、フェライト等が挙げられる。充填材5としては、一種を用いてもよいし、複数種を用いてもよい。フッ素樹脂と複合化する充填材5としては、フッ素樹脂よりも融点が高い無機材料や金属材料が好ましい。
 図19に示す生体適合性材料10Aや、図20に示す生体適合性材料10Bによると、吸着ペプチド2の作用による生体適合性の向上に加え、繊維材4や充填材5による、剛性の向上、誘電特性の改良、耐圧性能の向上等の各種の効果を得ることができる。そのため、長期間にわたって生体適合性が持続し、材料自体の剛性や材料の用途に応じた性能が向上した生体適合材料を得ることができる。
 図21は、被着材料の表面に積層された生体適合性材料を模式的に示す図である。
 図21に示すように、被着材料20の表面に積層された生体適合性材料10は、樹脂1と、樹脂1に吸着した吸着ペプチド(ペプチド)2と、樹脂1とは異なる被着材料20と、によって構成される多層構造の複合材100を形成する。
 複合材100は、生体と接触する可能性がある任意の物品の材料として用いることができる。複合材100で形成する物品は、生体と接触する可能性がある限り、種類、用途、機能等が、特に制限されるものではない。複合材100は、前記の生体適合性材料10自体と同様に、具体例として挙げた物品を形成することができる。
 複合材100において、吸着ペプチド2は、生体適合性材料10の表面に吸着しており、被着材料20は、吸着ペプチド2が吸着していない生体適合性材料10の裏面に接合している。生体適合性材料10と被着材料20との接合は、被着材料20の種類に応じて、被着材料20の表面で樹脂1を重合させる方法や、圧着、溶着、接着等の適宜の方法で行うことができる。
 被着材料20は、樹脂1とは異なる材料であり、複合材100の本体を構成する。被着材料20の形状は、複合材100で形成する物品の種類、用途、機能等に応じて適宜の形状とすることが可能であり、特に制限されるものではない。被着材料20は、フィルム状やシート状の樹脂1で被覆されて複合材100を構成してもよいし、被着材料20と同様に成形された樹脂1と貼り合わされて複合材100を構成してもよい。被着材料20と樹脂1とは、物品の全体を構成してもよいし、物品の一部のみを構成してもよい。
 被着材料20としては、天然高分子、合成高分子、発泡樹脂等の有機材料、アルミナ、ジルコニア、ガラス等の無機材料、及び、ステンレス鋼、アルミニウム合金、銅合金、コバルト合金、チタン合金等の金属材料のいずれを用いてもよい。被着材料20は、それ自体が生体適合性を有していてもよいし、それ自体が生体適合性を有していなくてもよい。被着材料20自体が生体適合性を有する場合、被着材料20は、生体適合性材料10で、表面の一部が覆われていてもよいし、表面の全部が覆われていてもよい。
 図21に示す生体適合性材料10によると、メトキシカルボニル基とメチル基を有する樹脂やフッ素樹脂とは異なる所望の特性を有する被着材料20を利用して、生体適合性を備える複合材100を形成することができる。被着材料20は、吸着ペプチド2との親和性や生体適合性を備えることが要求されないため、被着材料20の選定の自由度が高く、剛性の向上、誘電特性の改良、耐圧性能の向上、コストの低減等の各種の効果を得ることができる。そのため、長期間にわたって生体適合性が持続し、材料の用途に応じた性能を備える複合材を制約少なく得ることができる。
 図22は、デバイスの筐体を構成している生体適合性材料を模式的に示す図である。
 図22に示すように、デバイス30の筐体を構成した生体適合性材料10は、樹脂1と、その樹脂1に吸着した吸着ペプチド(ペプチド)2と、によって構成される筐体でデバイス30の表面を覆うことによって体内埋め込み型デバイス200を形成する。
 体内埋め込み型デバイス200は、生体内に埋植されて各種の目的で動作する。体内埋め込み型デバイス200の種類、用途、機能等は、特に制限されるものではない。体内埋め込み型デバイス200の具体例としては、非特許文献(杉山知子 他4名、「長期埋込み型デバイス材料の皮下埋植実験における組織適合性評価」、人工臓器、一般社団法人日本人工臓器学会、1998年4月15日、第28巻、第2号、p.509-513)に記載されるような人工心臓が挙げられる。また、その他、人工膵臓、ペースメーカ等の人工臓器や、人工関節、人工筋等の人工組織や、IC(integrated circuit)タグ、ICチップ等の電子機器等が挙げられる。
 体内埋め込み型デバイス200において、吸着ペプチド2は、筐体を構成する樹脂1の表面に吸着しており、デバイス30は、吸着ペプチド2が吸着していない樹脂1の裏面側に内蔵されている。デバイス30は、樹脂1に対して圧着、溶着、接着、締結具等を用いた機械的接合等の適宜の方法で接合することができるし、樹脂1に対して接合せずに樹脂1で覆うこともできる。
 デバイス30は、例えば、治療、生体機能の代替、生体機能の補助、情報の記録、情報の演算等の各種の目的で動作するように、人工材料等を用いた各種の機構部品や電子部品等で形成される。デバイス30は、体内埋め込み型デバイス200の種類、用途、機能等に応じて適宜の形状とすることが可能であり、特に制限されるものではない。デバイス30は、生体適合性材料10で、表面の一部が覆われていてもよいし、表面の全部が覆われていてもよい。また、デバイス30は、体内で自立的に動作してもよいし、体外の機器と配管、制御線等で接続された状態で動作してもよい。
 図22に示す生体適合性材料10によると、各種の目的で動作するデバイス30を、生体適合性を示す筐体で覆って、生体に悪影響や刺激を与え難い体内埋め込み型デバイス200を形成することができる。デバイス30を内蔵する筐体は、樹脂1によって高い自由度で成形することができるし、吸着ペプチド2によって簡単な処理・操作で筐体の形状に関わらず効率的に生体適合性を付与することができる。そのため、長期間にわたって生体適合性が持続し、体内で所望の機能を果たす体内埋め込み型デバイスを効率的に製造することができる。
<機能性材料>
 本実施形態に係る生体適合性材料10は、各種の機能性物質と複合化することにより、材料自体が特定の機能を果たす機能性材料の形態とすることもできる。
 図23、図24及び図25は、機能性材料の構成例を模式的に示す図である。
 図23、図24及び図25に示すように、本実施形態に係る機能性材料300(300A,300B,300C)は、材料の本体である樹脂1と、樹脂1に吸着した吸着ペプチド(ペプチド)2と、生体の内部又は生体の表面で機能する機能性物質6と、を含む。
 機能性物質6としては、生体の内部又は生体の表面において生物学的作用、化学的作用等によって特定の機能を果たす各種の物質が用いられる。機能性物質6は、樹脂1に吸着してもよいし、樹脂1に吸着した吸着ペプチド2に吸着してもよい。吸着ペプチド2は、機能性材料300の表面側の生体適合性を向上させる機能に加え、表面側に吸着する機能性物質6を接着・結合させる機能を備えることができる。
 機能性物質6としては、例えば、生理活性物質、抗菌性物質等の各種の物質を用いることができる。機能性物質6は、機能性材料300の使用時に、生体適合性材料10の表面に保持された状態で機能してもよいし、生体適合性材料10の表面から放出されて機能してもよい。機能性物質6は、物理吸着によって吸着してもよいし、化学吸着によって吸着してもよい。
 生理活性物質の具体例としては、インターロイキン-10等の炎症を抑制するタンパク質や、インターロイキン-8等の血管新生を促進するタンパク質が挙げられる。また、その他のインターロイキン、インターフェロン、ケモカイン等のサイトカインや、ホルモン等が挙げられる。また、抗生物質、抗凝固薬、抗ヒスタミン薬、ビタミン等の栄養素、鎮静薬、鎮痛薬、消炎薬、ステロイド、インスリン等が挙げられる。
 抗菌性物質の具体例としては、銀、銅、亜鉛、チタン、ジルコニウム、コバルト、ニッケル等の金属粒子や、これらの金属の無機化合物や、これらの金属をゼオライト等の担体に担持させた金属担体等が挙げられる。
 機能性材料300は、図23に示すように、樹脂1の表面の一部に吸着ペプチド2を吸着させて、樹脂1の表面の残部と吸着ペプチド2を機能性物質6で覆った形態(機能性材料300A)とすることができる。機能性物質6は、吸着ペプチド2に対して物理吸着してもよいし、吸着ペプチド2に対して化学吸着してもよいし、樹脂1に対して物理吸着してもよいし、樹脂1と吸着ペプチド2の両方に対して物理吸着してもよい。
 また、機能性材料300は、図24に示すように、樹脂1の表面の全体に吸着させた吸着ペプチド2を機能性物質6で覆った形態(機能性材料300B)とすることもできる。機能性物質6は、吸着ペプチド2に対して物理吸着してもよいし、吸着ペプチド2に対して化学吸着してもよい。
 このような機能性材料300A,300Bによると、樹脂1の表面に吸着している吸着ペプチド2によって良好な生体適合性が得られる。特に、機能性物質6が生体適合性材料10の表面から放出された場合に、樹脂1の表面が露出し難くなるため、樹脂1による生体に対する悪影響や刺激を抑制することができる。
 また、機能性材料300は、図25に示すように、樹脂1の表面の全体に吸着させた吸着ペプチド2の一部を機能性物質6で覆い、吸着ペプチド2を表面に露出させた形態(機能性材料300C)とすることもできる。機能性物質6は、吸着ペプチド2に対して物理吸着してもよいし、吸着ペプチド2に対して化学吸着してもよい。
 このような機能性材料300Cによると、機能性物質6の性質にかかわらず、表面に露出している吸着ペプチド2によって良好な生体適合性が得られる。特に、機能性物質6が生体適合性材料10の表面から放出された場合に、樹脂1の表面が露出しなくなるため、樹脂1による生体に対する悪影響や刺激を防止することができる。
 以上、本発明について説明したが、本発明は、前記の実施形態や変形例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更が可能である。例えば、本発明は、必ずしも前記の実施形態や変形例が備える全ての構成を備えるものに限定されない。或る実施形態や変形例の構成の一部を他の構成に置き換えたり、或る実施形態や変形例の構成の一部を他の形態に追加したり、或る実施形態や変形例の構成の一部を省略したりすることができる。
 例えば、前記の繊維材4や充填材5は、被着材料20を覆う生体適合性材料10や、デバイス30の筐体を構成する生体適合性材料10と、複合化することもできる。また、前記の被着材料20は、吸着ペプチド2が吸着している側の生体適合性材料10の表面に接するように設けることもできる。また、前記のデバイス30の筐体は、チタン等の被着材料20に積層されている生体適合性材料10で形成することもできる。
 また、前記の機能性材料300は、樹脂1と、樹脂1に吸着した吸着ペプチド2と、機能性物質6とを含む限り、吸着の状態や形状・構造等が、特に制限されるものではない。機能性物質6自体が、樹脂1に吸着するアミノ酸配列を有していてもよいし、吸着ペプチド2と吸着していてもよいし、吸着ペプチド2と共有結合等で結合していてもよい。
1   樹脂
2   吸着ペプチド
4   繊維材
5   充填材
6   機能性物質
10  生体適合性材料
20  被着材料
30  デバイス
100 複合材
200 体内埋め込み型デバイス
300 機能性材料

Claims (15)

  1.  樹脂と、前記樹脂に吸着したペプチドと、を含む生体適合性材料であって、
     前記樹脂は、メトキシカルボニル基、及び、メチル基を有し、
     前記ペプチドは、アミノ酸残基の70%以上がトリプトファン残基又はアルギニン残基である生体適合性材料。
  2.  請求項1に記載の生体適合性材料であって、
     前記ペプチドは、アミノ酸残基の10%以上がプロリン残基又はグルタミン酸残基である生体適合性材料。
  3.  請求項1に記載の生体適合性材料であって、
     前記ペプチドは、N末端から2n番目(但し、nは自然数を表す。以下同じ。)のアミノ酸残基がトリプトファン残基、2n+2番目のアミノ酸残基がアルギニン残基、2n+4番目のアミノ酸残基がトリプトファン残基である生体適合性材料。
  4.  請求項3に記載の生体適合性材料であって、
     前記ペプチドは、N末端から2m-1番目(但し、mは自然数を表す。以下同じ。)のアミノ酸残基がアルギニン残基、2m+1番目のアミノ酸残基がトリプトファン残基、2m+3番目のアミノ酸残基がプロリン残基であるか、又は、
     N末端から2m-1番目のアミノ酸残基がアルギニン残基、2m+1番目のアミノ酸残基がトリプトファン残基、2m+3番目のアミノ酸残基がアルギニン残基であるか、又は、
     N末端から2m-1番目のアミノ酸残基がトリプトファン残基、2m+1番目のアミノ酸残基がトリプトファン残基、2m+3番目のアミノ酸残基がプロリン残基であるか、又は、
     N末端から2m-1番目のアミノ酸残基がグルタミン酸残基、2m+1番目のアミノ酸残基がトリプトファン残基、2m+3番目のアミノ酸残基がプロリン残基である生体適合性材料。
  5.  請求項1に記載の生体適合性材料であって、
     前記ペプチドは、次の配列番号(1-1)~(1-5)のいずれかで表されるアミノ酸配列に対して1個又は2個のアミノ酸残基が付加、挿入、置換又は欠失したアミノ酸配列を含むペプチドである生体適合性材料。
      RWWRPWW・・・(1-1)
      RWWRRWW・・・(1-2)
      WWWRPWW・・・(1-3)
      EWWRPWR・・・(1-4)
      RWWRPWR・・・(1-5)
  6.  請求項1に記載の生体適合性材料であって、
     前記樹脂は、ポリメタクリル酸メチル樹脂である生体適合性材料。
  7.  請求項1に記載の生体適合性材料であって、
     前記樹脂は、イソタクチックポリメタクリル酸メチル樹脂である生体適合性材料。
  8.  樹脂と前記樹脂に吸着したペプチドを含む生体適合性材料であって、
     前記樹脂は、フッ素樹脂であり、
     前記ペプチドは、アミノ酸残基の40%以上が2,3,4,5,6-ペンタフルオロフェニルアラニン残基、3-(トリフルオロメチル)アラニン残基、セリン残基、トレオニン残基、ヒスチジン残基、アスパラギン酸残基、グルタミン酸残基、フェニルアラニン残基又はアスパラギン残基である生体適合性材料。
  9.  請求項8に記載の生体適合性材料であって、
     前記ペプチドは、2,3,4,5,6-ペンタフルオロフェニルアラニン残基をZで表し、3-(トリフルオロメチル)アラニン残基をXで表したとき、次の配列番号(A-1)~(A-21)のいずれかで表されるアミノ酸配列を含むペプチド、又は、次の配列番号(A-1)~(A-21)のいずれかで表されるアミノ酸配列に対して1個又は2個のアミノ酸残基が付加、挿入、置換又は欠失したアミノ酸配列を含むペプチドである生体適合性材料。
      ZZXXZ・・・(A-1)
      ZXXZZ・・・(A-2)
      XXZZX・・・(A-3)
      XZZXX・・・(A-4)
      STSTS・・・(A-5)
      TSTST・・・(A-6)
      SSSSS・・・(A-7)
      TTTTT・・・(A-8)
      HHHHH・・・(A-9)
      DSDSD・・・(A-10)
      SDSDS・・・(A-11)
      DHDHD・・・(A-12)
      HDHDH・・・(A-13)
      DEDED・・・(A-14)
      EDEDE・・・(A-15)
      FFHHF・・・(A-16)
      FHHFF・・・(A-17)
      HHFFH・・・(A-18)
      HFFHH・・・(A-19)
      NENEN・・・(A-20)
      ENENE・・・(A-21)
  10.  請求項8に記載の生体適合性材料であって、
     前記ペプチドは、次の配列番号(3-1)~(3-5)のいずれかで表されるアミノ酸配列を含むペプチド、又は、次の配列番号(3-1)~(3-5)のいずれかで表されるアミノ酸配列に対して80%以上の同一性を有するアミノ酸配列を含むペプチドである生体適合性材料。
      VHFPTKISEGDM・・・(3-1)
      SPHLHTSSPWER・・・(3-2)
      FIESKTPVDPDG・・・(3-3)
      EALTVNIKREME・・・(3-4)
      SMIVEPRMLSTH・・・(3-5)
  11.  請求項8に記載の生体適合性材料であって、
     前記樹脂は、ポリテトラフルオロエチレンである生体適合性材料。
  12.  請求項1~11のいずれか一項に記載の生体適合性材料であって、
     前記樹脂は、繊維材又は充填材と複合化されている生体適合性材料。
  13.  請求項1~11のいずれか一項に記載の生体適合性材料であって、
     前記樹脂は、前記樹脂とは異なる被着材料に積層されている生体適合性材料。
  14.  請求項1~11のいずれか一項に記載の生体適合性材料であって、
     前記樹脂は、機構部品又は電子部品を備えたデバイスの筐体を構成している生体適合性材料。
  15.  請求項1~11のいずれか一項に記載の生体適合性材料と、生体の内部又は生体の表面で機能する機能性物質と、を含む機能性材料であって、
     前記機能性物質は、前記生体適合性材料の表面に保持されるか、又は、前記生体適合性材料の表面から放出される機能性材料。
PCT/JP2020/008958 2019-04-04 2020-03-03 樹脂との密着性に優れたペプチドならびにそれを用いた生体適合機能材料 WO2020202987A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20784736.9A EP3954698A4 (en) 2019-04-04 2020-03-03 PEPTIDES WITH EXCELLENT ADHESION TO RESINS AND BIOCOMPATIBLE FUNCTIONAL MATERIAL THEREOF
US17/600,636 US20220211899A1 (en) 2019-04-04 2020-03-03 Peptide exhibiting excellent adhesion to resins and biocompatible functional material using same
CN202080026945.4A CN113646012B (zh) 2019-04-04 2020-03-03 与树脂密合性优异的肽以及使用其的生物相容性功能材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-071765 2019-04-04
JP2019071765A JP2020169141A (ja) 2019-04-04 2019-04-04 樹脂との密着性に優れたペプチドならびにそれを用いた生体適合機能材料

Publications (1)

Publication Number Publication Date
WO2020202987A1 true WO2020202987A1 (ja) 2020-10-08

Family

ID=72668710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008958 WO2020202987A1 (ja) 2019-04-04 2020-03-03 樹脂との密着性に優れたペプチドならびにそれを用いた生体適合機能材料

Country Status (5)

Country Link
US (1) US20220211899A1 (ja)
EP (1) EP3954698A4 (ja)
JP (1) JP2020169141A (ja)
CN (1) CN113646012B (ja)
WO (1) WO2020202987A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101807A1 (ja) * 2008-02-14 2009-08-20 National University Corporation Kyoto Institute Of Technology ペプチド、当該ペプチドの用途及び生産方法並びに当該ペプチドが固定化された固相及びその生産方法
JP2011517451A (ja) * 2008-03-28 2011-06-09 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア ポリペプチド−ポリマー抱合体およびその使用方法
JP2011168505A (ja) * 2010-02-16 2011-09-01 Kyoto Institute Of Technology ポリカーボネートおよび/またはポリメタクリル酸メチル親和性ペプチド、およびその利用
JP2018504167A (ja) * 2014-12-09 2018-02-15 タンジブル サイエンス, リミテッド ライアビリティ カンパニー 生体適合性層を有する医療デバイスコーティング

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010103887A1 (ja) * 2009-03-09 2010-09-16 株式会社メニコン 自己組織化ペプチドおよび高強度ペプチドゲル
GB201310921D0 (en) * 2013-06-19 2013-07-31 Chemical & Biopharmaceutical Lab Of Patras S A Peptide-resin conjugate and use thereof
CN109689679A (zh) * 2016-09-13 2019-04-26 第一三共株式会社 血小板反应蛋白1结合肽

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101807A1 (ja) * 2008-02-14 2009-08-20 National University Corporation Kyoto Institute Of Technology ペプチド、当該ペプチドの用途及び生産方法並びに当該ペプチドが固定化された固相及びその生産方法
JP2011517451A (ja) * 2008-03-28 2011-06-09 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア ポリペプチド−ポリマー抱合体およびその使用方法
JP2011168505A (ja) * 2010-02-16 2011-09-01 Kyoto Institute Of Technology ポリカーボネートおよび/またはポリメタクリル酸メチル親和性ペプチド、およびその利用
JP2018504167A (ja) * 2014-12-09 2018-02-15 タンジブル サイエンス, リミテッド ライアビリティ カンパニー 生体適合性層を有する医療デバイスコーティング

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
AKBAR BAGRI ET AL., NATURE CHEMISTRY, vol. 2, 2010, pages 581 - 587
BONNIE O.LEUNGA ,ADAM P. HITCHCOCK ,RENA M.CORNELIUS ,JOHN L.BRASH ,ANDREAS SCHOLL , ANDREW DORAN: "Using X-PEEM to study biomaterials : Protein and peptide adsorption to a polystyrene-poly(methyl methacrylate)-b-polyacrylic acid blend", JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, vol. 185, no. 10, 18 June 2012 (2012-06-18), pages 406 - 416, XP055745575, ISSN: 0368-2048, DOI: 10.1016/j.elspec.2012.06.004 *
HISAO MATSUNO, TAKESHI SERIZAWA: "Protein/Peptide Adsorption on Hydrophobic Polymer Material Surfaces", REVIEW OF POLAROGRAPHY, vol. 55, no. 1, 28 May 2009 (2009-05-28), pages 5 - 12, XP055745560, ISSN: 0034-6691, DOI: 10.5189/revpolarography.55.5 *
JOURNAL OF SYNTHETIC ORGANIC CHEMISTRY
KEISUKE AIHARA ET AL., ORGANIC LETTERS, vol. 17, no. 3, 2015, pages 696 - 699
KIYOSHI NOKIHARA: "KOBUNSHI", vol. 43, 1 September 1994, THE SOCIETY OF POLYMER SCIENCE, article "New Technology for Peptide Syntheses", pages: 611 - 615
MORIO ARAI: "The Japanese. Journal of Thrombosis and Hemostasis", vol. 8, 1 October 1997, THE JAPANESE SOCIETY ON THROMBOSIS AND HEMOSTASIS, article "Analysis of Biomolecular Interactions by Biosensor (BIACQRETM) Using Surface Plasmon Resonance", pages: 397 - 405
NOBORU YANAIHARA: "Journal of Synthetic Organic Chemistry", vol. 46, 1998, THE SOCIETY OF SYNTHETIC ORGANIC CHEMISTRY, article "Chemical Syntheses of Peptides and Their Applications", pages: 1073 - 1084
See also references of EP3954698A4
TAKAAKI DATE, TAKESHI SERIZAWA: "Fabrication of Functional Soft Interfaces Using Polymer-Binding Peptides", HYOMEN KAGAKU / SURFACE SCIENCE SOCIETY OF JAPAN, vol. 33, no. 1, 10 January 2012 (2012-01-10), pages 21 - 26, XP055745536, ISSN: 0388-5321, DOI: 10.1380/jsssj.33.21 *
TAKESHI SERIZAWA ET AL., LANGMUIR, vol. 23, no. 22, 2007, pages 11127 - 11133
TAKESHI SERIZAWA, TOSHIKI SAWADA, HISAO MATSUNO, TERUHIKO MATSUBARA, TOSHINORI SATO: "A Peptide Motif Recognizing a Polymer Stereoregularity", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 127, no. 40, 15 September 2005 (2005-09-15), pages 13780 - 13781, XP055745571, ISSN: 0002-7863, DOI: 10.1021/ja054402o *
TOMOKO SUGIYAMA ET AL.: "JINKO ZOKI", vol. 28, 15 April 1998, JAPAN SOCIETY FOR ARTIFICIAL ORGANS, article "Evaluation of Biocompatibility of Long-term Implantable Device Material in Subcutaneous Implantation Experiment", pages: 509 - 513
YOICHI KUMADA; SHO MURATA; YASUYUKI ISHIKAWA; KAZUKI NAKATSUKA; MICHIMASA KISHIMOTO: "Screening of PC and PMMA-binding peptides for site- specific immobilization of proteins", JOURNAL OF BIOTECHNOLOGY, vol. 160, no. 3, 16 March 2012 (2012-03-16), pages 222 - 228, XP028431932, ISSN: 0168-1656, DOI: 10.1016/j.jbiotec.2012.02.010 *

Also Published As

Publication number Publication date
EP3954698A4 (en) 2023-04-26
EP3954698A1 (en) 2022-02-16
CN113646012A (zh) 2021-11-12
CN113646012B (zh) 2022-08-19
US20220211899A1 (en) 2022-07-07
JP2020169141A (ja) 2020-10-15

Similar Documents

Publication Publication Date Title
Tang et al. Stimuli-responsive, pentapeptide, nanofiber hydrogel for tissue engineering
Harrington et al. Mussel byssus structure‐function and fabrication as inspiration for biotechnological production of advanced materials
Wang et al. Classical challenges in the physical chemistry of polymer networks and the design of new materials
Jin et al. Biomimetic self-templated hierarchical structures of collagen-like peptide amphiphiles
Anderson et al. Modulating the gelation properties of self-assembling peptide amphiphiles
Le et al. Self-assembly of elastin–mimetic double hydrophobic polypeptides
CN107735405B (zh) 具有胶原模拟肽结构的聚合肽和凝胶
US20090053252A1 (en) Bimer or an oligomer of a dimer, trimer, quatromer or pentamer of recombinant fusion proteins
Krishna et al. Supramolecular assembly of electrostatically stabilized, hydroxyproline-lacking collagen-mimetic peptides
CN111153984A (zh) T细胞受体
Gertler et al. Characterizing the adsorption of peptides to TiO2 in aqueous solutions by liquid chromatography
Desai et al. Elastin-based rubber-like hydrogels
CA2813557A1 (en) Method for activating helper t cell
IL188554A0 (en) Novel phage display technologies
JP2013538864A (ja) 生物活性アミノ酸配列及びその使用
Sun et al. Liquid–liquid phase separation of proteins and peptides derived from biological materials: Discovery, protein engineering, and emerging applications
Lefevre et al. Sea star-inspired recombinant adhesive proteins self-assemble and adsorb on surfaces in aqueous environments to form cytocompatible coatings
CN115260289B (zh) 一种炎症结肠靶向肽及其筛选方法
Yuan et al. Peptide sequence determines structural sensitivity to supramolecular polymerization pathways and bioactivity
Haemers et al. Coil dimensions of the mussel adhesive protein Mefp-1
WO2020202987A1 (ja) 樹脂との密着性に優れたペプチドならびにそれを用いた生体適合機能材料
Sun et al. Luminescent biofunctional collagen mimetic nanofibers
Xiang et al. Highly tough, stretchable, and enzymatically degradable hydrogels modulated by bioinspired hydrophobic β-sheet peptides
Juanes‐Gusano et al. Self‐assembling systems comprising intrinsically disordered protein polymers like elastin‐like recombinamers
Ranathunga et al. Molecular-level understanding of the influence of ions and water on HMGB1 adsorption induced by surface hydroxylation of titanium implants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20784736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020784736

Country of ref document: EP

Effective date: 20211104