WO2020202908A1 - Thermally conductive sheet and method for manufacturing same - Google Patents

Thermally conductive sheet and method for manufacturing same Download PDF

Info

Publication number
WO2020202908A1
WO2020202908A1 PCT/JP2020/007617 JP2020007617W WO2020202908A1 WO 2020202908 A1 WO2020202908 A1 WO 2020202908A1 JP 2020007617 W JP2020007617 W JP 2020007617W WO 2020202908 A1 WO2020202908 A1 WO 2020202908A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive sheet
heat conductive
heat
graphite
sheet
Prior art date
Application number
PCT/JP2020/007617
Other languages
French (fr)
Japanese (ja)
Inventor
明 湯本
祥貴 手塚
茉由 安田
Original Assignee
阿波製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿波製紙株式会社 filed Critical 阿波製紙株式会社
Priority to JP2021511223A priority Critical patent/JP7358459B2/en
Publication of WO2020202908A1 publication Critical patent/WO2020202908A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/02Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising combinations of reinforcements, e.g. non-specified reinforcements, fibrous reinforcing inserts and fillers, e.g. particulate fillers, incorporated in matrix material, forming one or more layers and with or without non-reinforced or non-filled layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/88Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • B32B5/20Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material foamed in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon

Definitions

  • the present invention relates to a heat conductive sheet and a method for manufacturing the same.
  • a heat conductive sheet having high heat conductivity is used.
  • the heat dissipation from the heating element is enhanced, and the heat generated by the heating element is efficiently released to the cooler side, so that the equipment due to heat can be used. Problems can be prevented.
  • the heat conductive sheet installed in this way is required to have high heat conductivity in the thickness direction. Flexibility is also required from the viewpoint of reducing interfacial thermal resistance. For example, when installed in a device with vibration such as an in-vehicle battery, the flexibility of the heat conductive sheet is also required to prevent deterioration of the member due to vibration.
  • a member called a gap filler in which a thermally conductive filler is added to a soft matrix such as a silicone resin is generally used.
  • the orientation cannot be controlled by the gap filler, it is necessary to add a large amount of filler in order to increase the thermal conductivity in the thickness direction of the sheet, that is, in the vertical direction.
  • the density becomes high (for example, 1.0 g / cm 3 or more), the weight becomes heavy, and the flexibility of the matrix is lost.
  • an ultrasonic cutter or the like is generally known as a method for cutting a laminated product using a soft member such as a silicone resin.
  • a soft member such as a silicone resin.
  • it is not suitable for productivity because there is no actual machine capable of cutting a large ingot.
  • silicone adhesive having a large stickiness is used for such a material, there is a possibility that the silicone adhesive may adhere to the blade when the laminated product is cut to an arbitrary thickness. For this reason, the adverse effect on the processing machine becomes large, and it is expected that the cutting process will be difficult.
  • Japanese Unexamined Patent Publication No. 2010-003981 Japanese Patent No. 5454300 Japanese Patent No. 5843534 JP-A-2017-208458 JP-A-2017-025281
  • One of the objects of the present invention is to provide a heat conductive sheet having both weight reduction and flexibility while maintaining high heat conductivity, and a method for manufacturing the same.
  • the method for producing a heat conductive sheet there is a step of preparing a laminate in which a graphite heat radiating sheet layer produced by a wet papermaking method and a flexible adhesive layer are alternately laminated.
  • the heat conductive sheet obtained by the cutting step includes a step of cutting the laminated body to a predetermined thickness in the laminating direction, in a direction intersecting the laminating direction of the graphite radiating sheet layer and the laminated body.
  • the thermal conductivity can be 4 W / m ⁇ K or more, and the density can be 0.2 g / cm 3 to 1.0 g / cm 3 .
  • the composition of the laminated body has a volume ratio of the graphite heat radiating sheet layer of 5 to 50 vol% and the adhesive layer. Is 50 to 95 vol%.
  • the thickness of the graphite heat radiating sheet layer in the step of preparing the graphite heat radiating sheet layer and the laminate is determined. , 0.01 mm to 1.00 mm.
  • the step of preparing the laminate is a graphite filler exhibiting shape anisotropy and an organic material. It includes a step of wet-making fibers, a step of heat-pressing the wet-made sheet material, and a step of cutting the heat-pressed sheet material to a predetermined size to obtain a plurality of graphite heat-dissipating sheet layers. be able to.
  • the graphite fillers can be easily connected to each other to form a heat conduction path and the heat conductivity can be improved.
  • the composition of the graphite heat radiating sheet layer has a graphite content of 50 to 90 wt% and an organic fiber content.
  • the amount is 10 to 50 wt%.
  • the organic fiber may be paraaramid fiber, paraaramid pulp, metaaramid fiber, metaaramid pulp, polyphenylene sulfide. It can be any one or more of fibers, PET fibers, flame-retardant PET fibers, and flame-retardant rayon fibers.
  • the step of preparing the laminate is performed on the surface of the graphite heat radiating sheet layer with the adhesive layer.
  • the step of heating and expanding can be included.
  • the pressure-sensitive adhesive can be thinned by foaming with the foamable particles, and the amount of the pressure-sensitive adhesive applied can be reduced, so that the drying time of the pressure-sensitive adhesive layer can be shortened and the productivity can be improved.
  • the mixed solution contains effervescent particles with respect to the solid content of the pressure-sensitive adhesive. It can be added from 0% to 15.0%.
  • the graphite heat-dissipating sheet laminate before heating is tripled by heating. It can be expanded to the above thickness.
  • the pressure-sensitive adhesive can be made into a pressure-sensitive adhesive that exhibits tackiness by heating.
  • the pressure-sensitive adhesive can be a silicone-based resin.
  • the step of cutting the laminate is a multi-wire saw, a diamond wire saw, a CBN wire saw, and the like.
  • the laminate can be cut with any of the multi-blade saws.
  • the heat conductive sheet according to the thirteenth aspect of the present invention is a sheet-shaped heat conductive sheet having a main surface, and the main surface is provided with a wet-paper-made graphite heat-dissipating sheet layer and flexibility.
  • the adhesive layers having the adhesive layers appear alternately, and the thermal conductivity in the thickness direction is 4 W / m ⁇ K or more, and the density is 0.2 g / cm 3 to 1.0 g / cm 3 .
  • the thickness of the graphite heat radiating sheet layer on the main surface can be 0.01 mm to 1.00 mm.
  • the graphite heat radiating sheet layer may contain a graphite filler exhibiting shape anisotropy and organic fibers. it can.
  • the composition of the graphite heat radiating sheet layer is such that the graphite content is 50 to 90 wt% and the organic fiber content is 10. It can be ⁇ 50 wt%.
  • the wet-paper-made graphite heat-dissipating sheet layer can hold graphite using organic fibers, it can contain more graphite than a heat conductive sheet that holds graphite using a conventional resin as a matrix. The advantage of increasing thermal conductivity can be obtained.
  • the organic fiber is added to para-aramid fiber, para-aramid pulp, meta-aramid fiber, meta-aramid pulp, polyphenylene sulfide fiber, PET. It can be any one or more of fibers, flame-retardant PET fibers, and flame-retardant rayon fibers.
  • the pressure-sensitive adhesive contained in the pressure-sensitive adhesive layer is added to the solid content of the pressure-sensitive adhesive by 1 before coating. It can be made by adding 0.0% to 15.0% of effervescent particles.
  • FIG. 2A to 2C are diagrams showing a manufacturing process of the heat conductive sheet according to the first embodiment.
  • 3A to 3B are diagrams showing a step of preparing a graphite heat radiating sheet layer. It is sectional drawing which shows the appearance that the heat conduction sheet was installed between a radiator and a cooler. It is a photograph which shows the thickness before foaming and after foaming of a graphite heat-dissipating sheet laminate. It is a perspective view and cross-sectional view which shows the graphite heat dissipation sheet which dispersed graphite in the matrix resin.
  • each element constituting the present invention may be configured such that a plurality of elements are composed of the same member and the plurality of elements are combined with one member, or conversely, the function of one member is performed by the plurality of members. It can also be shared and realized.
  • the heat conductive sheet according to the present invention can be used as a heat radiating member for various heating elements.
  • Preferred examples of the radiator include a secondary battery cell, a transistor, a semiconductor element such as a light emitting diode (LED), a light source such as a halogen lamp, and a motor.
  • LED light emitting diode
  • a motor a motor.
  • the heat radiating sheet is applied to the power supply device as the first embodiment.
  • a heat radiating device in which a heat conductive sheet is thermally coupled to a secondary battery cell which is a heating element is configured.
  • the heat conductive sheet 100 according to the first embodiment is shown in the perspective view of FIG.
  • the heat conductive sheet 100 shown in this figure is formed in the form of a sheet having a main surface.
  • the wet-paper-made graphite heat-dissipating sheet layer 1 and the flexible adhesive layer 2 appear alternately.
  • the thermal conductivity in the thickness direction is 4 W / m ⁇ K or more.
  • the density is 0.2 g / cm 3 to 1.0 g / cm 3 .
  • the wet-paper-made graphite heat-dissipating sheet layer 1 obtained in the wet paper-making process can realize low density while maintaining flexibility.
  • the thickness of the graphite heat radiating sheet layer 1 on the main surface is appropriately determined according to the shape of the heating element or the heat radiating body in which the heat conductive sheet 100 is used, the required heat radiating performance, and the like. Generally, the thicker the thickness, the more the flexibility is impaired. Therefore, the thickness is preferably 0.01 mm to 1.00 mm. Further, the graphite heat radiating sheet layer 1 contains a graphite filler that exhibits shape anisotropy and organic fibers. (Manufacturing method of heat conductive sheet 100)
  • the method for manufacturing the heat conductive sheet 100 according to the first embodiment will be described with reference to FIGS. 2A to 2C.
  • the graphite heat radiating sheet layer 1 is prepared.
  • the adhesive layer 2 is applied to the graphite heat radiating sheet layer 1.
  • FIG. 2C such a graphite heat radiating sheet layer 1 and an adhesive layer 2 are alternately laminated to form a laminated body 10.
  • the laminated body 10 is cut in the laminating direction (vertical direction in FIG. 2C) to a predetermined thickness (position indicated by the alternate long and short dash line in FIG. 2C).
  • a heat conductive sheet 100 in which graphite heat radiating sheet layers 1 and adhesive layers 2 are alternately expressed on the main surface can be obtained.
  • the details of each step will be described below.
  • the composition of the graphite heat radiating sheet layer 1 preferably has a graphite content of 50 to 90 wt% and an organic fiber content of 10 to 50 wt%.
  • a larger amount of graphite can be contained as compared with a structure in which graphite is retained by a conventional matrix resin, which is advantageous from the viewpoint of thermal conductivity.
  • any one or more of para-aramid fiber, para-aramid pulp, meta-aramid fiber, meta-aramid pulp, polyphenylene sulfide fiber, PET fiber, flame-retardant PET fiber and flame-retardant rayon fiber can be used.
  • the wet papermaking sheet material is heat pressed. Further, the heat-pressed sheet material is cut into a predetermined size to obtain a plurality of graphite heat-dissipating sheet layers 1.
  • the thickness of the graphite heat radiating sheet layer 1 is adjusted by pressing. The thickness of the graphite heat radiating sheet layer 1 is preferably 0.01 mm to 1.00 mm.
  • the graphite heat-dissipating sheet layer 1 has high thermal conductivity in the lateral direction shown in FIG. 3B, but is inferior in thermal conductivity in the thickness direction. Therefore, as shown in FIG. 2C described above, a plurality of graphite heat radiating sheet layers 1 are laminated to form a heat conductive sheet cut in a direction intersecting the direction of the laminated layer.
  • a cross-sectional view of FIG. 4 shows how the heat conductive sheet is installed between the radiator HG and the cooler HS. As shown in this figure, by changing the paper making direction to the thickness direction of the heat conductive sheet (indicated by the arrow in the figure), it is possible to exhibit high heat conductivity in the thickness direction, and the heat conductive sheet. It can exhibit advantageous characteristics.
  • this heat conductive sheet has achieved weight reduction by mixing foamable particles with the adhesive material.
  • a procedure for laminating the graphite heat radiating sheet layer 1 to produce the laminated body 10 will be described.
  • a mixed solution of an adhesive and effervescent particles is applied as the adhesive layer 2 to the surfaces of the plurality of graphite heat-dissipating sheet layers 1 obtained in the above-mentioned steps.
  • the pressure-sensitive adhesive it is preferable to use a pressure-sensitive adhesive that develops tackiness when heated.
  • a silicone-based resin adhesive is used.
  • 1.0% to 15.0% of effervescent particles are added to the solid content of the pressure-sensitive adhesive.
  • the effervescent particles heat-expandable particles are used. By foaming with the effervescent particles that expand due to heat in this way, the pressure-sensitive adhesive can be made relatively thin, so that the amount of the pressure-sensitive adhesive applied to the graphite heat-dissipating sheet layer 1 can be reduced. As a result, the drying time of the pressure-sensitive adhesive is shortened and the productivity is improved.
  • the composition of the laminated body 10 preferably has a volume ratio of the graphite heat radiating sheet layer 1 of 5 to 50 vol% and an adhesive layer 2 of 50 to 95 vol%.
  • the graphite heat radiating sheet laminated body in which the graphite heat radiating sheet layer 1 is laminated is heated and expanded.
  • the graphite heat-dissipating sheet laminate before heating is expanded to a thickness of three times or more by heating.
  • the state of the graphite heat-dissipating sheet laminate tested by the present inventors before and after foaming is shown in the photograph of FIG.
  • graphite manufactured by Chuetsu Graphite Industry Co., Ltd. paraaramide fiber and PET fiber 1.2 dtex ⁇ 5 mm manufactured by Teijin Co., Ltd. and polyphenylene sulfide fiber 1.7 dtex ⁇ 5 mm manufactured by KB Seiren Co., Ltd.
  • the laminate 10 thus obtained is cut to a predetermined thickness as shown in FIG. 2C.
  • a multi-wire saw, a diamond wire saw, a CBN wire saw, a multi-blade saw and the like can be used for cutting.
  • the heat conductive sheet can be efficiently manufactured by cutting using equipment having relatively high productivity.
  • the obtained heat conductive sheet is flexible and lightweight, and has high heat conductivity in a direction intersecting the laminating direction, that is, a direction in which the heat conductive sheet is thick (direction indicated by an arrow in FIG. 4). (Graphite heat dissipation sheet)
  • the heat dissipation sheet using graphite has been used conventionally.
  • the graphite filler 91 is often dispersed in the matrix resin 92 (gap filler) to form a sheet.
  • the resin is used as a matrix, so that the sheet is a hard sheet filled with the resin, which has a high density and a heavy weight.
  • the wet-paper-made graphite heat-dissipating sheet layer used in the heat conductive sheet according to the present embodiment which has been obtained in the wet paper-making process, can be held so as to entangle graphite by using organic fibers, and therefore has many voids.
  • the advantage of being able to reduce the weight can be obtained because the density can be reduced.
  • the weight reduction of the graphite heat radiating sheet is preferable from the viewpoint of improving fuel efficiency, especially in the field of an in-vehicle power supply device.
  • electronic devices for mobile use such as smartphones and tablets, are also strongly required to be lightweight from the viewpoint of portability, and are similarly advantageous.
  • the amount of the resin that functions as an adhesive is required to some extent, and the ratio of graphite that can be contained in the heat dissipation sheet is relatively reduced.
  • a larger amount of graphite can be mixed because a resin having a large volume is not required.
  • the uncured resin since the uncured resin has a certain degree of viscosity, it is not easy to uniformly disperse graphite in the resin. If the density of graphite is uneven, the thermal conductivity will not be constant, and the thermal conductivity of the graphite heat dissipation sheet will fluctuate from place to place.
  • graphite in the paper-made graphite heat-dissipating sheet that has undergone the paper-making process according to the present embodiment, graphite can be dispersed in a low-viscosity liquid such as water, so that graphite is more evenly dispersed throughout the sheet. As a result, it is possible to make the thermal conductivity uniform, and it is possible to obtain the advantage that the reliability of the graphite heat-dissipating sheet with less unevenness in thermal conductivity is enhanced.
  • the graphite heat radiating sheet according to the present embodiment as described above, the graphite dispersed in the papermaking process is heat-pressed to form a heat conduction path with a high aspect ratio as shown in FIG. 3B, and the heat conductivity is further increased. I'm raising it.
  • the direction of heat conduction is changed in the thickness direction by cutting the laminated body 10 in which a plurality of graphite heat radiating sheets are laminated in the laminating direction.
  • ideal characteristics can be exhibited as a heat conductive sheet interposed between the radiator HG and the cooler HS.
  • the heat conductive sheet according to Examples 1 to 5 and the heat conductive sheet according to Comparative Example 1 were prototyped and their characteristics were measured.
  • Examples 1 to 5 as graphite and organic fiber manufactured by Chuetsu Graphite Industry Co., Ltd., para-aramid fiber and PET fiber (1.2 dtex ⁇ 5 mm) manufactured by Teijin Co., Ltd. and polyphenylene sulfide fiber manufactured by KB Seiren Co., Ltd. (1.
  • a graphite heat-dissipating sheet layer was prepared by wet papermaking using 7 dtex ⁇ 5 mm). Table 1 shows the mixing ratios of the graphite heat radiating sheets used in Examples 1 to 4.
  • a silicone resin was used as the pressure-sensitive adhesive, and Expancel 920DU120 was used as the effervescent particles.
  • the thickness and the number of laminated sheets are changed.
  • a silicone resin in which alumina particles were dispersed was placed in a mold and heated at 90 ° C. for 1 hour using a thermostat (PH-101) manufactured by Tabie Spec Co., Ltd. to form a sheet. I used the one.
  • Example 1 base paper basis weight: 100 g / m 2 , base paper thickness: 0.075 mm
  • Example 5 base paper basis weight: 400 g
  • the components and blending ratios of the mixed solution at / m 2 and the thickness of the base paper 0.23 mm) are shown in Table 2 below.
  • the mixed solution having the above components and compounding ratio was adjusted as follows. First, as the organic solvent, a solvent such as MEK that can dissolve the curing acceleration catalyst was used. Benzoyl peroxide was added to this as a pressure-sensitive adhesive curing accelerating catalyst, and the mixture was mixed until the catalyst was dissolved. Further, the silicone resin and the heat-expandable particles were mixed until uniform. Further, the silicone resin was mixed until uniform, and the mixed solution was adjusted.
  • the method for preparing the mixed solution is only an example, and in the present invention, a known preparation method capable of uniformly mixing each raw material can be appropriately used.
  • the manufacturing method when the volume ratio of the graphite heat radiating sheet was 20% was as follows. First, as the graphite heat radiating sheet, one having a thickness of 0.075 mm (Examples 1 to 4) and one having a thickness of 0.23 mm (Example 5) were produced by wet papermaking, respectively. Next, an adhesive is applied to these graphite heat radiating sheets.
  • the adhesive can be applied either on one side or on both sides.
  • one-sided coating was performed using a bar coater. However, a kiss coater or the like can be used or impregnated.
  • the applied adhesive was dried.
  • the coating amount was 50 g / m 2 (solid content), and in Example 5, 90 g / m 2 (solid content).
  • it was air-dried for 20 to 30 minutes.
  • a drying furnace below the expansion start temperature of the heat-expandable particles may be passed by roll-to-roll.
  • graphite heat-dissipating sheets coated with these adhesives were laminated.
  • the number of laminated sheets was 400 in Examples 1 to 4 and 130 in Example 5.
  • the thickness after lamination was about 4 cm in both Examples 1 to 4 and Example 5.
  • the obtained laminate was cut into plain ingots.
  • a 20 cm square plain ingot was cut into 15 cm squares with a running saw.
  • heat foaming was performed.
  • it was heated and foamed under the condition of 180 ° C. for about 30 to 40 minutes until the thickness of the plain ingot became about 15 cm.
  • heating and foaming may be performed in a continuous facility such as a container furnace.
  • the ingot was cut after foaming.
  • the ingot after heating and foaming is cut to an arbitrary thickness with a multi-wire saw or the like. Here, it was 1.0 mm in Example 1, 2 mm in Example 2, and 3.0 mm in Examples 3, 4, and 5.
  • thermometer JSD424 manufactured by Taiwan Mospec Co., Ltd.
  • a heat sink 413K
  • Wakefield-Vette is used as a radiator, and a sample is sandwiched between them, and a torque of 4 cN is measured.
  • the temperature of the heater and heat sink when driven at a rated power of 10 W after tightening with m was measured with a thermometer (JCS-33A) manufactured by Shinko Technos.
  • the thermal conductivity was calculated by substituting the measured temperature and various conditions into the following equations 1 and 2 obtained.
  • T1 Transistor temperature (° C)
  • T2 Heat sink temperature (° C) It is said. The above results are shown in Table 4.
  • the thermal conductivity in the thickness direction could be achieved at 4 W / m ⁇ K or more in Examples 2 to 5.
  • the density could be 0.2 g / cm 3 to 1.0 g / cm 3 .
  • Comparative Example 1 the density was high and the thermal conductivity was low.
  • the graphite heat-dissipating sheet layer obtained in the wet papermaking process can uniformly disperse the graphite filler in the paper sheet obtained from the organic fibers. Uniform thermal conductivity can be exhibited in the surface direction of the sheet, and highly reliable heat dissipation performance can be stably exhibited. It is possible to obtain a flexible and lightweight heat conductive sheet laminate while exhibiting particularly high heat conductivity.
  • the heat conductive sheet and its manufacturing method according to the present invention include a heat radiating device that dissipates heat from a power supply device for an electric vehicle such as an electric vehicle or a hybrid vehicle, electronic components such as a CPU built in a computer, LEDs, liquid crystal, PDP, and EL. , Can be suitably used as a heat conductive sheet that dissipates heat generated from electronic components such as light emitting elements such as mobile phones.

Abstract

Provided is a thermally conductive sheet, etc., that is both flexible and lightweight while retaining high thermal conductivity. A method for manufacturing the thermally conductive sheet 100 comprises a step for preparing a laminate 10 in which wet-laid graphite heat-dissipating sheet layers 1 and flexible adhesive layers 2 are layered in alternation, and a step for cutting the laminate 10 to a prescribed thickness in the layering direction. The thermally conductive sheet 100 obtained in the cutting step has a thermal conductivity of 4 W/m·K or greater in a direction intersecting the layering direction of the graphite heat-dissipating sheet layers 1 and the laminate 10, and a density of 0.2 g/cm3 to 1.0 g/cm3.

Description

熱伝導シート及びその製造方法Heat conductive sheet and its manufacturing method
 本発明は、熱伝導シート及びその製造方法に関する。 The present invention relates to a heat conductive sheet and a method for manufacturing the same.
 近年、車載電池や電子機器等の使用時に発生する熱への対策が急務となっている。このため、高い熱伝導性を有する熱伝導シートが使用されている。熱伝導シートを、発熱体と冷却器の間に介在させることで、発熱体からの放熱性が高められ、発熱体で生じた熱を効率的に冷却器側に放出して、熱による機器の不具合を防止できる。 In recent years, there is an urgent need to take measures against the heat generated when using in-vehicle batteries and electronic devices. Therefore, a heat conductive sheet having high heat conductivity is used. By interposing a heat conductive sheet between the heating element and the cooler, the heat dissipation from the heating element is enhanced, and the heat generated by the heating element is efficiently released to the cooler side, so that the equipment due to heat can be used. Problems can be prevented.
 このように設置される熱伝導シートは、厚み方向に高い熱伝導性を持つことが求められる。また界面熱抵抗低減の観点から、柔軟性も求められる。例えば、車載電池のような振動を伴う機器に設置する場合において、熱伝導シートの柔軟性は、振動に伴う部材の劣化を防止するためにも必要となる。 The heat conductive sheet installed in this way is required to have high heat conductivity in the thickness direction. Flexibility is also required from the viewpoint of reducing interfacial thermal resistance. For example, when installed in a device with vibration such as an in-vehicle battery, the flexibility of the heat conductive sheet is also required to prevent deterioration of the member due to vibration.
 このような用途として、一般にはシリコーン樹脂のような柔らかいマトリックス中に熱伝導性フィラーを添加したギャップフィラーと呼ばれる部材が使用されている。 For such applications, a member called a gap filler in which a thermally conductive filler is added to a soft matrix such as a silicone resin is generally used.
 しかしながら、ギャップフィラーでは配向性を制御できないため、シートの厚み方向、すなわち垂直方向の熱伝導率を上げるためには、フィラーを多量に配合する必要がある。この結果、高密度(例えば1.0g/cm3以上)になって重量が重くなる上、マトリックスの柔軟性が失われるという問題があった。 However, since the orientation cannot be controlled by the gap filler, it is necessary to add a large amount of filler in order to increase the thermal conductivity in the thickness direction of the sheet, that is, in the vertical direction. As a result, there is a problem that the density becomes high (for example, 1.0 g / cm 3 or more), the weight becomes heavy, and the flexibility of the matrix is lost.
 これに対して、面内配向させた熱伝導性フィラーとシリコーン樹脂との複合シートを積層した後、切断したものが提案されている。しかしながら、この場合もシリコーン樹脂の密度が高いことや、熱伝導性を向上させるために添加される金属や無機フィラーの影響により、依然としてシート部材が重く、また全体が硬くなるという課題が残っていた。 On the other hand, it has been proposed that a composite sheet of an in-plane oriented heat conductive filler and a silicone resin is laminated and then cut. However, even in this case, there still remains a problem that the sheet member is heavy and the whole is hard due to the high density of the silicone resin and the influence of the metal and the inorganic filler added to improve the thermal conductivity. ..
 さらに、グラファイトシートや炭素繊維からなるシートを積層した部材も存在するが、これらは一般に部材の原料が高価であり、またグラファイトや繊維の配向性の問題から厚さ方向の熱伝導性が低くなる傾向があった。 Further, there are members in which graphite sheets and sheets made of carbon fibers are laminated, but these are generally expensive raw materials for the members, and the thermal conductivity in the thickness direction becomes low due to the problem of the orientation of graphite and fibers. There was a tendency.
 さらにまた、シリコーン樹脂のような柔らかい部材を使用した積層品のカット方法として、一般に超音波カッター等が知られている。しかしながら、大型のインゴットをカット可能な実機が存在しないことから、生産性に適していないという問題もあった。また、このような材質はネバツキが大きいシリコーン粘着剤を使用した場合、積層品を任意の厚みに切断する際に、刃にシリコーン粘着剤が付着する可能性があった。このため、加工機への悪影響が大きくなり、切断加工工程の困難性が予想される。 Furthermore, an ultrasonic cutter or the like is generally known as a method for cutting a laminated product using a soft member such as a silicone resin. However, there is also a problem that it is not suitable for productivity because there is no actual machine capable of cutting a large ingot. Further, when a silicone adhesive having a large stickiness is used for such a material, there is a possibility that the silicone adhesive may adhere to the blade when the laminated product is cut to an arbitrary thickness. For this reason, the adverse effect on the processing machine becomes large, and it is expected that the cutting process will be difficult.
特開2010-003981号公報Japanese Unexamined Patent Publication No. 2010-003981 特許5454300号公報Japanese Patent No. 5454300 特許5843534号公報Japanese Patent No. 5843534 特開2017-208458号公報JP-A-2017-208458 特開2017-025281号公報JP-A-2017-025281
 本発明の目的の一は、高い熱伝導性を維持しながら、軽量化と柔軟性を両立させた熱伝導シート及びその製造方法を提供することにある。 One of the objects of the present invention is to provide a heat conductive sheet having both weight reduction and flexibility while maintaining high heat conductivity, and a method for manufacturing the same.
課題を解決するための手段及び発明の効果Means for Solving Problems and Effects of Invention
 本発明の第1の側面に係る熱伝導シートの製造方法によれば、湿式抄紙法により作製される黒鉛放熱シート層と、柔軟性を有する粘着層を交互に積層した積層体を準備する工程と、前記積層体を、積層方向に所定の厚さで切断する工程とを含み、前記切断工程により得られた熱伝導シートは、前記黒鉛放熱シート層と積層体との積層方向と交差する方向における熱伝導率が、4W/m・K以上であり、かつ密度を、0.2g/cm3~1.0g/cm3とすることができる。これにより、湿式抄紙済み黒鉛放熱シート層としたことで柔軟性を維持しつつも低密度化が実現され、軽量化と柔軟性の両立を図った熱伝導シートを達成できる。 According to the method for producing a heat conductive sheet according to the first aspect of the present invention, there is a step of preparing a laminate in which a graphite heat radiating sheet layer produced by a wet papermaking method and a flexible adhesive layer are alternately laminated. The heat conductive sheet obtained by the cutting step includes a step of cutting the laminated body to a predetermined thickness in the laminating direction, in a direction intersecting the laminating direction of the graphite radiating sheet layer and the laminated body. The thermal conductivity can be 4 W / m · K or more, and the density can be 0.2 g / cm 3 to 1.0 g / cm 3 . As a result, the wet-papered graphite heat-dissipating sheet layer realizes low density while maintaining flexibility, and can achieve a heat conductive sheet that achieves both weight reduction and flexibility.
 また、本発明の第2の側面に係る熱伝導シートの製造方法によれば、上記に加えて、前記積層体の組成は、前記黒鉛放熱シート層の体積比率が5~50vol%、前記粘着層が50~95vol%である。 Further, according to the method for producing a heat conductive sheet according to the second aspect of the present invention, in addition to the above, the composition of the laminated body has a volume ratio of the graphite heat radiating sheet layer of 5 to 50 vol% and the adhesive layer. Is 50 to 95 vol%.
 さらに、本発明の第3の側面に係る熱伝導シートの製造方法によれば、上記いずれかに加えて、前記黒鉛放熱シート層と積層体を準備する工程における前記黒鉛放熱シート層の厚さを、0.01mm~1.00mmとできる。 Further, according to the method for producing a heat conductive sheet according to the third aspect of the present invention, in addition to any of the above, the thickness of the graphite heat radiating sheet layer in the step of preparing the graphite heat radiating sheet layer and the laminate is determined. , 0.01 mm to 1.00 mm.
 さらにまた、本発明の第4の側面に係る熱伝導シートの製造方法によれば、上記いずれかに加えて、前記積層体を準備する工程が、形状異方性を発揮する黒鉛フィラーと、有機繊維を湿式抄紙する工程と、湿式抄紙されたシート材を、熱プレスする工程と、熱プレスされたシート材を、所定の大きさにカットして、複数の黒鉛放熱シート層を得る工程を含むことができる。これにより、黒鉛フィラー同士を互いにつながりやすくして熱伝導パスを構成し、熱伝導性を向上できる利点が得られる。 Furthermore, according to the method for producing a heat conductive sheet according to the fourth aspect of the present invention, in addition to any of the above, the step of preparing the laminate is a graphite filler exhibiting shape anisotropy and an organic material. It includes a step of wet-making fibers, a step of heat-pressing the wet-made sheet material, and a step of cutting the heat-pressed sheet material to a predetermined size to obtain a plurality of graphite heat-dissipating sheet layers. be able to. As a result, there is an advantage that the graphite fillers can be easily connected to each other to form a heat conduction path and the heat conductivity can be improved.
 さらにまた、本発明の第5の側面に係る熱伝導シートの製造方法によれば、上記いずれかに加えて、前記黒鉛放熱シート層の組成は、黒鉛含有量が50~90wt%、有機繊維含有量が10~50wt%である。これにより、湿式抄紙工程で得られた黒鉛放熱シート層は、有機繊維を用いて黒鉛を保持できるため、従来の樹脂をマトリックスとして黒鉛を保持する熱伝導シートと比べ、より多くの黒鉛を含有させることができ、熱伝導性を高くできる利点が得られる。 Furthermore, according to the method for producing a heat conductive sheet according to the fifth aspect of the present invention, in addition to any of the above, the composition of the graphite heat radiating sheet layer has a graphite content of 50 to 90 wt% and an organic fiber content. The amount is 10 to 50 wt%. As a result, the graphite heat-dissipating sheet layer obtained in the wet papermaking process can hold graphite using organic fibers, so that it contains more graphite than the heat conductive sheet that holds graphite using a conventional resin as a matrix. This has the advantage of increasing thermal conductivity.
 さらにまた、本発明の第6の側面に係る熱伝導シートの製造方法によれば、上記いずれかに加えて、前記有機繊維を、パラアラミド繊維、パラアラミドパルプ、メタアラミド繊維、メタアラミドパルプ、ポリフェニレンサルファイド繊維、PET繊維、難燃PET繊維、難燃レーヨン繊維のいずれか一以上とできる。 Furthermore, according to the method for producing a heat conductive sheet according to the sixth aspect of the present invention, in addition to any of the above, the organic fiber may be paraaramid fiber, paraaramid pulp, metaaramid fiber, metaaramid pulp, polyphenylene sulfide. It can be any one or more of fibers, PET fibers, flame-retardant PET fibers, and flame-retardant rayon fibers.
 さらにまた、本発明の第7の側面に係る熱伝導シートの製造方法によれば、上記いずれかに加えて、前記積層体を準備する工程が、前記黒鉛放熱シート層の表面に、前記粘着層として、粘着剤と発泡性粒子の混合液を塗布する工程と、前記混合液を塗布した黒鉛放熱シート層を複数枚、積層する工程と、前記黒鉛放熱シート層を積層した黒鉛放熱シート積層体を、加熱して膨張させる工程とを含むことができる。これにより、発泡性粒子で発泡させることで粘着剤を薄くでき、粘着剤の塗布量を減らせるため、粘着層の乾燥時間を短くして生産性を向上させることができる。 Furthermore, according to the method for producing a heat conductive sheet according to the seventh aspect of the present invention, in addition to any of the above, the step of preparing the laminate is performed on the surface of the graphite heat radiating sheet layer with the adhesive layer. A step of applying a mixed solution of an adhesive and foamable particles, a step of laminating a plurality of graphite heat-dissipating sheet layers coated with the mixed solution, and a graphite heat-dissipating sheet laminate in which the graphite heat-dissipating sheet layers are laminated. , The step of heating and expanding can be included. As a result, the pressure-sensitive adhesive can be thinned by foaming with the foamable particles, and the amount of the pressure-sensitive adhesive applied can be reduced, so that the drying time of the pressure-sensitive adhesive layer can be shortened and the productivity can be improved.
 さらにまた、本発明の第8の側面に係る熱伝導シートの製造方法によれば、上記いずれかに加えて、前記混合液は、前記粘着剤の固形分に対して、発泡性粒子を1.0%~15.0%添加したものとできる。 Furthermore, according to the method for producing a heat conductive sheet according to the eighth aspect of the present invention, in addition to any of the above, the mixed solution contains effervescent particles with respect to the solid content of the pressure-sensitive adhesive. It can be added from 0% to 15.0%.
 さらにまた、本発明の第9の側面に係る熱伝導シートの製造方法によれば、上記いずれかに加えて、前記加熱膨張工程で、加熱前の前記黒鉛放熱シート積層体を、加熱により3倍以上の厚さに膨張させることができる。 Furthermore, according to the method for producing a heat conductive sheet according to the ninth aspect of the present invention, in addition to any of the above, in the heating expansion step, the graphite heat-dissipating sheet laminate before heating is tripled by heating. It can be expanded to the above thickness.
 さらにまた、本発明の第10の側面に係る熱伝導シートの製造方法によれば、上記いずれかに加えて、前記粘着剤を、加熱することでタック性が発現する粘着剤とできる。 Furthermore, according to the method for producing a heat conductive sheet according to the tenth aspect of the present invention, in addition to any of the above, the pressure-sensitive adhesive can be made into a pressure-sensitive adhesive that exhibits tackiness by heating.
 さらにまた、本発明の第11の側面に係る熱伝導シートの製造方法によれば、上記いずれかに加えて、前記粘着剤を、シリコーン系樹脂とできる。 Furthermore, according to the method for producing a heat conductive sheet according to the eleventh aspect of the present invention, in addition to any of the above, the pressure-sensitive adhesive can be a silicone-based resin.
 さらにまた、本発明の第12の側面に係る熱伝導シートの製造方法によれば、上記いずれかに加えて、前記積層体を切断する工程が、マルチワイヤーソー、ダイヤモンドワイヤーソー、CBNワイヤーソー、マルチブレードソーのいずれかでもって前記積層体を切断することができる。 Furthermore, according to the method for producing a heat conductive sheet according to the twelfth aspect of the present invention, in addition to any of the above, the step of cutting the laminate is a multi-wire saw, a diamond wire saw, a CBN wire saw, and the like. The laminate can be cut with any of the multi-blade saws.
 さらにまた、本発明の第13の側面に係る熱伝導シートによれば、主面を有するシート状の熱伝導シートであって、前記主面に、湿式抄紙済み黒鉛放熱シート層と、柔軟性を有する粘着層とが交互に表れており、厚さ方向における熱伝導率が、4W/m・K以上であり、かつ密度が、0.2g/cm3~1.0g/cm3である。上記構成により、湿式抄紙済み黒鉛放熱シート層としたことで柔軟性を維持しつつも低密度化が実現され、軽量化と柔軟性の両立を図った熱伝導シートを達成できる。 Furthermore, according to the heat conductive sheet according to the thirteenth aspect of the present invention, it is a sheet-shaped heat conductive sheet having a main surface, and the main surface is provided with a wet-paper-made graphite heat-dissipating sheet layer and flexibility. The adhesive layers having the adhesive layers appear alternately, and the thermal conductivity in the thickness direction is 4 W / m · K or more, and the density is 0.2 g / cm 3 to 1.0 g / cm 3 . With the above configuration, the wet-papered graphite heat-dissipating sheet layer realizes low density while maintaining flexibility, and can achieve a heat conductive sheet that achieves both weight reduction and flexibility.
 さらにまた、本発明の第14の側面に係る熱伝導シートによれば、上記に加えて、前記主面における黒鉛放熱シート層の厚さを、0.01mm~1.00mmとできる。 Furthermore, according to the heat conductive sheet according to the fourteenth aspect of the present invention, in addition to the above, the thickness of the graphite heat radiating sheet layer on the main surface can be 0.01 mm to 1.00 mm.
 さらにまた、本発明の第15の側面に係る熱伝導シートによれば、上記いずれかに加えて、前記黒鉛放熱シート層が、形状異方性を発揮する黒鉛フィラーと、有機繊維を含むことができる。 Furthermore, according to the heat conductive sheet according to the fifteenth aspect of the present invention, in addition to any of the above, the graphite heat radiating sheet layer may contain a graphite filler exhibiting shape anisotropy and organic fibers. it can.
 さらにまた、本発明の第16の側面に係る熱伝導シートによれば、上記いずれかに加えて、前記黒鉛放熱シート層の組成を、黒鉛含有量は50~90wt%、有機繊維含有量は10~50wt%とできる。上記構成により、湿式抄紙済み黒鉛放熱シート層は有機繊維を用いて黒鉛を保持できるため、従来の樹脂をマトリックスとして黒鉛を保持する熱伝導シートと比べ、より多くの黒鉛を含有させることができ、熱伝導性を高くできる利点が得られる。 Furthermore, according to the heat conductive sheet according to the sixteenth aspect of the present invention, in addition to any of the above, the composition of the graphite heat radiating sheet layer is such that the graphite content is 50 to 90 wt% and the organic fiber content is 10. It can be ~ 50 wt%. With the above configuration, since the wet-paper-made graphite heat-dissipating sheet layer can hold graphite using organic fibers, it can contain more graphite than a heat conductive sheet that holds graphite using a conventional resin as a matrix. The advantage of increasing thermal conductivity can be obtained.
 さらにまた、本発明の第17の側面に係る熱伝導シートによれば、上記いずれかに加えて、前記有機繊維を、パラアラミド繊維、パラアラミドパルプ、メタアラミド繊維、メタアラミドパルプ、ポリフェニレンサルファイド繊維、PET繊維、難燃PET繊維、難燃レーヨン繊維のいずれか一以上とできる。 Furthermore, according to the heat conductive sheet according to the seventeenth aspect of the present invention, in addition to any of the above, the organic fiber is added to para-aramid fiber, para-aramid pulp, meta-aramid fiber, meta-aramid pulp, polyphenylene sulfide fiber, PET. It can be any one or more of fibers, flame-retardant PET fibers, and flame-retardant rayon fibers.
 さらにまた、本発明の第18の側面に係る熱伝導シートによれば、上記いずれかに加えて、前記粘着層に含まれる粘着剤を、塗布前に該粘着剤の固形分に対して、1.0%~15.0%の発泡性粒子を添加したものとできる。 Furthermore, according to the heat conductive sheet according to the eighteenth aspect of the present invention, in addition to any of the above, the pressure-sensitive adhesive contained in the pressure-sensitive adhesive layer is added to the solid content of the pressure-sensitive adhesive by 1 before coating. It can be made by adding 0.0% to 15.0% of effervescent particles.
実施形態1に係る熱伝導シートを示す斜視図である。It is a perspective view which shows the heat conduction sheet which concerns on Embodiment 1. FIG. 図2A~図2Cは、実施形態1に係る熱伝導シートの製造工程を示す図である。2A to 2C are diagrams showing a manufacturing process of the heat conductive sheet according to the first embodiment. 図3A~図3Bは、黒鉛放熱シート層を準備する工程を示す図である。3A to 3B are diagrams showing a step of preparing a graphite heat radiating sheet layer. 熱伝導シートを放熱体と冷却器の間に設置した様子を示す断面図である。It is sectional drawing which shows the appearance that the heat conduction sheet was installed between a radiator and a cooler. 黒鉛放熱シート積層体の発泡前と発泡後の厚さを示す写真である。It is a photograph which shows the thickness before foaming and after foaming of a graphite heat-dissipating sheet laminate. 黒鉛をマトリックス樹脂に分散させた黒鉛放熱シートを示す斜視図及び断面図である。It is a perspective view and cross-sectional view which shows the graphite heat dissipation sheet which dispersed graphite in the matrix resin.
 以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための例示であって、本発明は以下のものに限定されない。また、本明細書は特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiments shown below are examples for embodying the technical idea of the present invention, and the present invention is not limited to the following. Further, the present specification does not specify the member shown in the claims as the member of the embodiment. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the components described in the embodiments are not intended to limit the scope of the present invention to the specific description, and are merely explanatory examples. It's just that. The size and positional relationship of the members shown in each drawing may be exaggerated to clarify the explanation. Further, in the following description, members of the same or the same quality are shown with the same name and reference numeral, and detailed description thereof will be omitted as appropriate. Further, each element constituting the present invention may be configured such that a plurality of elements are composed of the same member and the plurality of elements are combined with one member, or conversely, the function of one member is performed by the plurality of members. It can also be shared and realized.
 本発明に係る熱伝導シートは、様々な発熱体の放熱部材として利用することができる。放熱体には、例えば二次電池セルやトランジスタ、発光ダイオード(LED)等の半導体素子、ハロゲンランプ等の光源、モータ等が好適に挙げられる。ここでは、実施形態1として放熱シートを電源装置に適用した例を説明する。ここでは、発熱体である二次電池セルに熱伝導シートを熱的に結合した放熱装置を構成している。
[実施形態1]
The heat conductive sheet according to the present invention can be used as a heat radiating member for various heating elements. Preferred examples of the radiator include a secondary battery cell, a transistor, a semiconductor element such as a light emitting diode (LED), a light source such as a halogen lamp, and a motor. Here, an example in which the heat radiating sheet is applied to the power supply device as the first embodiment will be described. Here, a heat radiating device in which a heat conductive sheet is thermally coupled to a secondary battery cell which is a heating element is configured.
[Embodiment 1]
 実施形態1に係る熱伝導シート100を、図1の斜視図に示す。この図に示す熱伝導シート100は、主面を有するシート状に形成されている。この熱伝導シート100は、主面に、湿式抄紙済み黒鉛放熱シート層1と、柔軟性を有する粘着層2とが交互に表れている。また厚さ方向における熱伝導率は、4W/m・K以上である。さらに密度は、0.2g/cm3~1.0g/cm3である。このような構成により、湿式抄紙工程で得られた湿式抄紙済み黒鉛放熱シート層1により、柔軟性を維持しつつも低密度化を実現できる。また高い熱伝導性を達成しながらも、軽量化と柔軟性を発揮させ、放熱体や放熱器の表面に熱結合状態に密着させやすい熱伝導シート100が得られる。 The heat conductive sheet 100 according to the first embodiment is shown in the perspective view of FIG. The heat conductive sheet 100 shown in this figure is formed in the form of a sheet having a main surface. On the main surface of the heat conductive sheet 100, the wet-paper-made graphite heat-dissipating sheet layer 1 and the flexible adhesive layer 2 appear alternately. The thermal conductivity in the thickness direction is 4 W / m · K or more. Further, the density is 0.2 g / cm 3 to 1.0 g / cm 3 . With such a configuration, the wet-paper-made graphite heat-dissipating sheet layer 1 obtained in the wet paper-making process can realize low density while maintaining flexibility. Further, it is possible to obtain a heat conductive sheet 100 which can easily adhere to the surface of a radiator or a radiator in a heat-bonded state by exhibiting weight reduction and flexibility while achieving high heat conductivity.
 また主面における黒鉛放熱シート層1の厚さは、熱伝導シート100が用いられる発熱体や放熱体の形状や、求められる放熱性能などに応じて適宜決定される。一般に厚くなるほど、柔軟性が損なわれるため、0.01mm~1.00mmとすることが好ましい。さらに黒鉛放熱シート層1は、形状異方性を発揮する黒鉛フィラーと、有機繊維を含む。
(熱伝導シート100の製造方法)
Further, the thickness of the graphite heat radiating sheet layer 1 on the main surface is appropriately determined according to the shape of the heating element or the heat radiating body in which the heat conductive sheet 100 is used, the required heat radiating performance, and the like. Generally, the thicker the thickness, the more the flexibility is impaired. Therefore, the thickness is preferably 0.01 mm to 1.00 mm. Further, the graphite heat radiating sheet layer 1 contains a graphite filler that exhibits shape anisotropy and organic fibers.
(Manufacturing method of heat conductive sheet 100)
 ここで、実施形態1に係る熱伝導シート100の製造方法を図2A~図2Cに基づいて説明する。まず、図2Aに示すように、黒鉛放熱シート層1を準備する。次に、図2Bに示すように、黒鉛放熱シート層1に、粘着層2を塗布する。そして図2Cに示すように、このような黒鉛放熱シート層1と粘着層2とを交互に積層して、積層体10を作成する。さらに、この積層体10を積層方向(図2Cにおいて縦方向)に所定の厚さ(同図において一点鎖線で示す位置)で切断する。このようにして、図1に示すような、主面に黒鉛放熱シート層1と粘着層2とが交互に表出された熱伝導シート100が得られる。以下、各工程の詳細について説明する。 Here, the method for manufacturing the heat conductive sheet 100 according to the first embodiment will be described with reference to FIGS. 2A to 2C. First, as shown in FIG. 2A, the graphite heat radiating sheet layer 1 is prepared. Next, as shown in FIG. 2B, the adhesive layer 2 is applied to the graphite heat radiating sheet layer 1. Then, as shown in FIG. 2C, such a graphite heat radiating sheet layer 1 and an adhesive layer 2 are alternately laminated to form a laminated body 10. Further, the laminated body 10 is cut in the laminating direction (vertical direction in FIG. 2C) to a predetermined thickness (position indicated by the alternate long and short dash line in FIG. 2C). In this way, as shown in FIG. 1, a heat conductive sheet 100 in which graphite heat radiating sheet layers 1 and adhesive layers 2 are alternately expressed on the main surface can be obtained. The details of each step will be described below.
 黒鉛放熱シート層1を準備する工程においては、まず、図3Aに示すように、形状異方性を発揮する黒鉛フィラーと、有機繊維を湿式抄紙する。このとき、黒鉛放熱シート層1の組成は、黒鉛含有量を50~90wt%、有機繊維含有量を10~50wt%とすることが好ましい。ここでは、有機繊維を湿式抄紙することで、従来のマトリックス樹脂で黒鉛を保持する構成と比べ、より多くの黒鉛を含有させることができるので、熱伝導性の観点から有利となる。また有機繊維は、パラアラミド繊維、パラアラミドパルプ、メタアラミド繊維、メタアラミドパルプ、ポリフェニレンサルファイド繊維、PET繊維、難燃PET繊維、難燃レーヨン繊維のいずれか一以上を利用できる。 In the step of preparing the graphite heat radiating sheet layer 1, first, as shown in FIG. 3A, a graphite filler exhibiting shape anisotropy and organic fibers are wet-papered. At this time, the composition of the graphite heat radiating sheet layer 1 preferably has a graphite content of 50 to 90 wt% and an organic fiber content of 10 to 50 wt%. Here, by wet-making organic fibers, a larger amount of graphite can be contained as compared with a structure in which graphite is retained by a conventional matrix resin, which is advantageous from the viewpoint of thermal conductivity. Further, as the organic fiber, any one or more of para-aramid fiber, para-aramid pulp, meta-aramid fiber, meta-aramid pulp, polyphenylene sulfide fiber, PET fiber, flame-retardant PET fiber and flame-retardant rayon fiber can be used.
 次に、図3Bに示すように湿式抄紙されたシート材を、熱プレスする。さらに、熱プレスされたシート材を、所定の大きさにカットして、複数の黒鉛放熱シート層1を得る。このように、湿式抄紙されたシート材を熱プレスすることで、黒鉛フィラー同士の接触面積を大きくして熱伝導パスが構成され易くなり、結果としてプレス方向と交差する方向への熱伝導性が向上される。また黒鉛放熱シート層1の厚さは、プレスにより調整される。なお黒鉛放熱シート層1の厚さは、0.01mm~1.00mmとすること好ましい。 Next, as shown in FIG. 3B, the wet papermaking sheet material is heat pressed. Further, the heat-pressed sheet material is cut into a predetermined size to obtain a plurality of graphite heat-dissipating sheet layers 1. By hot-pressing the wet-paper-made sheet material in this way, the contact area between the graphite fillers is increased to facilitate the formation of a heat conduction path, and as a result, heat conductivity in the direction intersecting the pressing direction is increased. It will be improved. The thickness of the graphite heat radiating sheet layer 1 is adjusted by pressing. The thickness of the graphite heat radiating sheet layer 1 is preferably 0.01 mm to 1.00 mm.
 一方で、この黒鉛放熱シート層1は、図3Bに示す横方向への熱伝導性は高いものの、厚さ方向への熱伝導性に劣る。そこで、上述した図2Cのように、複数枚の黒鉛放熱シート層1を積層して、積層層方向と交差する方向に切断した熱伝導シートとしている。この熱伝導シートを、放熱体HGと冷却器HSの間に設置した様子を、図4の断面図に示す。この図に示すように、抄紙方向を熱伝導シートの厚さ方向(図において矢印で示す)に変化させたことで、厚さ方向に高い熱伝導性を発揮させることが可能となり、熱伝導シートとして有利な特性を発揮できる。 On the other hand, the graphite heat-dissipating sheet layer 1 has high thermal conductivity in the lateral direction shown in FIG. 3B, but is inferior in thermal conductivity in the thickness direction. Therefore, as shown in FIG. 2C described above, a plurality of graphite heat radiating sheet layers 1 are laminated to form a heat conductive sheet cut in a direction intersecting the direction of the laminated layer. A cross-sectional view of FIG. 4 shows how the heat conductive sheet is installed between the radiator HG and the cooler HS. As shown in this figure, by changing the paper making direction to the thickness direction of the heat conductive sheet (indicated by the arrow in the figure), it is possible to exhibit high heat conductivity in the thickness direction, and the heat conductive sheet. It can exhibit advantageous characteristics.
 さらにこの熱伝導シートは、粘着材に発泡性粒子を混合したことで、軽量化を実現している。ここで、黒鉛放熱シート層1を積層して積層体10を作製する手順を説明する。まず、上述した工程で得られた複数の黒鉛放熱シート層1の表面に、粘着層2として、粘着剤と発泡性粒子の混合液を塗布する。粘着剤は、加熱することでタック性が発現する粘着剤を使用することが好ましい。好適には、シリコーン系樹脂の粘着剤を使用する。また混合液は、粘着剤の固形分に対して、発泡性粒子を1.0%~15.0%添加する。また発泡性粒子は、熱による熱膨張性粒子を用いる。このように熱により膨張する発泡性粒子で発泡させることで、相対的に粘着剤を薄くできるので、黒鉛放熱シート層1への粘着剤の塗布量を低減できる。この結果として、粘着剤の乾燥時間が短くなり、生産性が向上される。 Furthermore, this heat conductive sheet has achieved weight reduction by mixing foamable particles with the adhesive material. Here, a procedure for laminating the graphite heat radiating sheet layer 1 to produce the laminated body 10 will be described. First, a mixed solution of an adhesive and effervescent particles is applied as the adhesive layer 2 to the surfaces of the plurality of graphite heat-dissipating sheet layers 1 obtained in the above-mentioned steps. As the pressure-sensitive adhesive, it is preferable to use a pressure-sensitive adhesive that develops tackiness when heated. Preferably, a silicone-based resin adhesive is used. In the mixed solution, 1.0% to 15.0% of effervescent particles are added to the solid content of the pressure-sensitive adhesive. As the effervescent particles, heat-expandable particles are used. By foaming with the effervescent particles that expand due to heat in this way, the pressure-sensitive adhesive can be made relatively thin, so that the amount of the pressure-sensitive adhesive applied to the graphite heat-dissipating sheet layer 1 can be reduced. As a result, the drying time of the pressure-sensitive adhesive is shortened and the productivity is improved.
 次に、混合液を塗布した黒鉛放熱シート層1を複数枚、積層する。この積層体10の組成は、黒鉛放熱シート層1の体積比率を5~50vol%、粘着層2を50~95vol%とすることが好ましい。 Next, a plurality of graphite heat radiating sheet layers 1 coated with the mixed solution are laminated. The composition of the laminated body 10 preferably has a volume ratio of the graphite heat radiating sheet layer 1 of 5 to 50 vol% and an adhesive layer 2 of 50 to 95 vol%.
 さらに、黒鉛放熱シート層1を積層した黒鉛放熱シート積層体を、加熱して膨張させる。この加熱膨張工程では、加熱前の黒鉛放熱シート積層体を、加熱により3倍以上の厚さに膨張させる。ここで、本発明者らが試験した黒鉛放熱シート積層体の、発泡前と発泡後の様子を、図5の写真に示す。この例では、中越黒鉛工業所社製の黒鉛と、有機繊維として帝人社製のパラアラミド繊維及びPET繊維1.2dtex×5mm及びKBセーレン社製のポリフェニレンサルファイド繊維1.7dtex×5mmを表1の(1)に記載した混合比率で湿式抄紙した0.075mm厚の黒鉛放熱シートを400枚積層している。また粘着剤にモメンティブ社製のPSA810、シリコーンレジンにモメンティブ社のSR545発泡性粒子はエクスパンセル社製のExpancel920DU120をそれぞれ表2の比率で混合することで混合液を調製している。このようにして得られた黒鉛放熱シート積層体の、発泡前の厚さは約40mmであった。これをタバイエスペック社製恒温器(PH-101)を用いて、195℃で40分間加熱して発泡させた結果、発泡後の厚さは約150mmとなった。このように、発泡によって体積を増すことにより、相対的に密度を低減でき、熱伝導シートの軽量化が実現される。 Further, the graphite heat radiating sheet laminated body in which the graphite heat radiating sheet layer 1 is laminated is heated and expanded. In this heating expansion step, the graphite heat-dissipating sheet laminate before heating is expanded to a thickness of three times or more by heating. Here, the state of the graphite heat-dissipating sheet laminate tested by the present inventors before and after foaming is shown in the photograph of FIG. In this example, graphite manufactured by Chuetsu Graphite Industry Co., Ltd., paraaramide fiber and PET fiber 1.2 dtex × 5 mm manufactured by Teijin Co., Ltd. and polyphenylene sulfide fiber 1.7 dtex × 5 mm manufactured by KB Seiren Co., Ltd. are shown in Table 1 ( 400 sheets of 0.075 mm-thick graphite heat-dissipating sheets, which were wet-papered at the mixing ratio described in 1), are laminated. Further, a mixed solution is prepared by mixing PSA810 manufactured by Momentive Co., Ltd. as an adhesive and EXPANCEL920DU120 manufactured by Expansel Co., Ltd. as a silicone resin and SR545 foaming particles manufactured by Momentive Co., Ltd. at the ratios shown in Table 2. The thickness of the graphite heat-dissipating sheet laminate thus obtained before foaming was about 40 mm. As a result of foaming this by heating it at 195 ° C. for 40 minutes using a thermostat (PH-101) manufactured by Tabei ESPEC, the thickness after foaming was about 150 mm. In this way, by increasing the volume by foaming, the density can be relatively reduced, and the weight of the heat conductive sheet can be reduced.
 さらに、このようにして得られた積層体10を、図2Cに示すように所定厚さに切断する。切断には、マルチワイヤーソー、ダイヤモンドワイヤーソー、CBNワイヤーソー、マルチブレードソー等が利用できる。このように、比較的生産性の高い設備を利用して切断することで、効率良く熱伝導シートを製造できる。また得られた熱伝導シートは、柔軟かつ軽量で、積層方向に対して交差する方向、すなわち熱伝導シートの厚さ方向(図4において矢印で示す方向)への熱伝導性が高い。
(黒鉛放熱シート)
Further, the laminate 10 thus obtained is cut to a predetermined thickness as shown in FIG. 2C. For cutting, a multi-wire saw, a diamond wire saw, a CBN wire saw, a multi-blade saw and the like can be used. In this way, the heat conductive sheet can be efficiently manufactured by cutting using equipment having relatively high productivity. Further, the obtained heat conductive sheet is flexible and lightweight, and has high heat conductivity in a direction intersecting the laminating direction, that is, a direction in which the heat conductive sheet is thick (direction indicated by an arrow in FIG. 4).
(Graphite heat dissipation sheet)
 黒鉛を用いた放熱シートは、従来より使用されている。一般には、図6に示すように黒鉛フィラー91をマトリックス樹脂92(ギャップフィラー)中に分散させて、シート状とした物が多い。しかしながら、このように樹脂中に黒鉛を分散させる構成においては、樹脂をマトリックスとして用いる構成上、樹脂で充填された硬質のシートとなり、密度が高く重量が重くなる。 The heat dissipation sheet using graphite has been used conventionally. In general, as shown in FIG. 6, the graphite filler 91 is often dispersed in the matrix resin 92 (gap filler) to form a sheet. However, in the configuration in which graphite is dispersed in the resin in this way, the resin is used as a matrix, so that the sheet is a hard sheet filled with the resin, which has a high density and a heavy weight.
 これに対し、本実施形態に係る熱伝導シートで用いる、湿式抄紙工程で得られた湿式抄紙済み黒鉛放熱シート層は、有機繊維を用いて黒鉛を絡め取るように保持できるため、空隙が多く存在し、低密度化できる分、軽量化できるという利点が得られる。黒鉛放熱シートの軽量化は、特に車載用の電源装置などの分野においては、燃費向上の観点から好ましい。また、モバイル用途の電子機器、例えばスマートフォンやタブレットも、携行性の観点から、軽量化が強く求められており、同様に有利となる。 On the other hand, the wet-paper-made graphite heat-dissipating sheet layer used in the heat conductive sheet according to the present embodiment, which has been obtained in the wet paper-making process, can be held so as to entangle graphite by using organic fibers, and therefore has many voids. However, the advantage of being able to reduce the weight can be obtained because the density can be reduced. The weight reduction of the graphite heat radiating sheet is preferable from the viewpoint of improving fuel efficiency, especially in the field of an in-vehicle power supply device. In addition, electronic devices for mobile use, such as smartphones and tablets, are also strongly required to be lightweight from the viewpoint of portability, and are similarly advantageous.
 また、マトリックス樹脂を用いる黒鉛放熱シートにおいては、樹脂をマトリックスとして用いる以上、接着剤として機能する樹脂の量がある程度必要となり、相対的に放熱シートに含めることのできる黒鉛の比率が低下する。これに対し、本実施形態に係る湿式抄紙工程で得られた湿式抄紙済み黒鉛放熱シート層では、体積の大きい樹脂が不要となる分、より多くの黒鉛を混入させることが可能となる。黒鉛の比率を大きくすることで、熱伝導性は向上されるため、放熱性の向上につながる。 Further, in the graphite heat dissipation sheet using the matrix resin, as long as the resin is used as the matrix, the amount of the resin that functions as an adhesive is required to some extent, and the ratio of graphite that can be contained in the heat dissipation sheet is relatively reduced. On the other hand, in the wet-paper-made graphite heat-dissipating sheet layer obtained in the wet-paper-making process according to the present embodiment, a larger amount of graphite can be mixed because a resin having a large volume is not required. By increasing the ratio of graphite, the thermal conductivity is improved, which leads to the improvement of heat dissipation.
 さらに、マトリックス樹脂を用いる黒鉛放熱シートにおいては、未硬化の樹脂がある程度粘性を有するため、樹脂中に黒鉛を均一に分散させることが容易でない。黒鉛の密度にムラがあると、熱伝導性も一定でなくなり、黒鉛放熱シートの熱伝導性が場所毎に変動することとなる。これに対して、本実施形態に係る抄紙工程を経た抄紙済み黒鉛放熱シートでは、水のような粘度の低い液体中に黒鉛を分散できるため、シートの全体に渡ってより均一に黒鉛を分散して、熱伝導性の均一化を図ることが可能となり、熱伝導性のムラの少ない黒鉛放熱シートとして、その信頼性が高められるという利点も得られる。 Further, in the graphite heat dissipation sheet using the matrix resin, since the uncured resin has a certain degree of viscosity, it is not easy to uniformly disperse graphite in the resin. If the density of graphite is uneven, the thermal conductivity will not be constant, and the thermal conductivity of the graphite heat dissipation sheet will fluctuate from place to place. On the other hand, in the paper-made graphite heat-dissipating sheet that has undergone the paper-making process according to the present embodiment, graphite can be dispersed in a low-viscosity liquid such as water, so that graphite is more evenly dispersed throughout the sheet. As a result, it is possible to make the thermal conductivity uniform, and it is possible to obtain the advantage that the reliability of the graphite heat-dissipating sheet with less unevenness in thermal conductivity is enhanced.
 さらに本実施形態に係る黒鉛放熱シートは、上述の通り抄紙工程で分散させた黒鉛を熱プレスすることで、図3Bに示すように高アスペクト比として熱伝導パスを形成し、熱伝導率をさらに高めている。加えて、図2A~図2Cに示したとおり、黒鉛放熱シートを複数枚積層した積層体10を、積層方向にカットすることで、熱伝導の方向を厚さ方向に変化させている。この結果、図4に示すように放熱体HGと冷却器HSの間に介在させる熱伝導シートとして、理想的な特性を発揮できるようになる。
[実施例]
Further, in the graphite heat radiating sheet according to the present embodiment, as described above, the graphite dispersed in the papermaking process is heat-pressed to form a heat conduction path with a high aspect ratio as shown in FIG. 3B, and the heat conductivity is further increased. I'm raising it. In addition, as shown in FIGS. 2A to 2C, the direction of heat conduction is changed in the thickness direction by cutting the laminated body 10 in which a plurality of graphite heat radiating sheets are laminated in the laminating direction. As a result, as shown in FIG. 4, ideal characteristics can be exhibited as a heat conductive sheet interposed between the radiator HG and the cooler HS.
[Example]
 ここで、実施例1~5に係る熱伝導シートと、比較例1に係る熱伝導シートを試作し、その特性を測定した。ここでは実施例1~5においては、中越黒鉛工業所社製の黒鉛と有機繊維として帝人社製のパラアラミド繊維及びPET繊維(1.2dtex×5mm)及びKBセーレン社製のポリフェニレンサルファイド繊維(1.7dtex×5mm)を用いて、湿式抄紙して黒鉛放熱シート層を作製した。なお実施例1~4で使用した黒鉛放熱シートの配合率は表1の通りである。また粘着剤にはシリコーン樹脂を、発泡性粒子にはExpancel920DU120をそれぞれ用いた。各実施例においては、厚さと積層枚数を変化させている。また比較例においては、シリコーン樹脂中にアルミナ粒子を分散させたものを型に入れ、タバイエスペック社製恒温器(PH-101)を用いて、90℃で1時間加熱してシート状に成型したものを用いた。 Here, the heat conductive sheet according to Examples 1 to 5 and the heat conductive sheet according to Comparative Example 1 were prototyped and their characteristics were measured. Here, in Examples 1 to 5, as graphite and organic fiber manufactured by Chuetsu Graphite Industry Co., Ltd., para-aramid fiber and PET fiber (1.2 dtex × 5 mm) manufactured by Teijin Co., Ltd. and polyphenylene sulfide fiber manufactured by KB Seiren Co., Ltd. (1. A graphite heat-dissipating sheet layer was prepared by wet papermaking using 7 dtex × 5 mm). Table 1 shows the mixing ratios of the graphite heat radiating sheets used in Examples 1 to 4. Further, a silicone resin was used as the pressure-sensitive adhesive, and Expancel 920DU120 was used as the effervescent particles. In each embodiment, the thickness and the number of laminated sheets are changed. Further, in the comparative example, a silicone resin in which alumina particles were dispersed was placed in a mold and heated at 90 ° C. for 1 hour using a thermostat (PH-101) manufactured by Tabie Spec Co., Ltd. to form a sheet. I used the one.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~4(原紙の坪量:100g/m2、原紙の厚み:0.075mm)における混合液の成分と配合比率を、以下の表1、また実施例5(原紙の坪量:400g/m2、原紙の厚み0.23mm)における混合液の成分と配合比率を、以下の表2に、それぞれ示す。 The components and compounding ratios of the mixed liquids in Examples 1 to 4 (base paper basis weight: 100 g / m 2 , base paper thickness: 0.075 mm) are shown in Table 1 below and Example 5 (base paper basis weight: 400 g). The components and blending ratios of the mixed solution at / m 2 and the thickness of the base paper 0.23 mm) are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 以上の成分と配合比率を有する、混合液は、以下のようにして調整した。まず有機溶媒として、MEK等のように硬化促進触媒を溶かすことができるものを用いた。これに、粘着剤硬化促進触媒として過酸化ベンゾイルを添加し、触媒が溶解するまで混合した。さらにシリコーンレジン、熱膨張性粒子を、均一になるまで混合した。さらにシリコーン樹脂を均一になるまで混合し、混合液を調整した。なお、混合液の調製方法は一例にすぎず、本発明においては各原料を均一に混合できる既知の調製方法を適宜利用できる。 The mixed solution having the above components and compounding ratio was adjusted as follows. First, as the organic solvent, a solvent such as MEK that can dissolve the curing acceleration catalyst was used. Benzoyl peroxide was added to this as a pressure-sensitive adhesive curing accelerating catalyst, and the mixture was mixed until the catalyst was dissolved. Further, the silicone resin and the heat-expandable particles were mixed until uniform. Further, the silicone resin was mixed until uniform, and the mixed solution was adjusted. The method for preparing the mixed solution is only an example, and in the present invention, a known preparation method capable of uniformly mixing each raw material can be appropriately used.
 また黒鉛放熱シートの体積比率が20%のときの作製方法は、以下の通りとした。まず、黒鉛放熱シートとして厚さ0.075mmのもの(実施例1~4)、及び0.23mmのもの(実施例5)を、それぞれ湿式抄紙して作製した。次に、これら黒鉛放熱シートに、粘着剤を塗布する。粘着剤の塗布は片面塗布でも両面塗布でもできる。ここでは、バーコーターを用いて片面塗工した。ただ、キスコーター等を用いたり、含浸させることもできる。 The manufacturing method when the volume ratio of the graphite heat radiating sheet was 20% was as follows. First, as the graphite heat radiating sheet, one having a thickness of 0.075 mm (Examples 1 to 4) and one having a thickness of 0.23 mm (Example 5) were produced by wet papermaking, respectively. Next, an adhesive is applied to these graphite heat radiating sheets. The adhesive can be applied either on one side or on both sides. Here, one-sided coating was performed using a bar coater. However, a kiss coater or the like can be used or impregnated.
 次に、塗布した粘着剤を乾燥させた。実施例1~4では塗工量を50g/m2(固形分)とし、実施例5では90g/m2(固形分)とした。また、ここでは風乾で20~30分とした。なお、熱膨張性粒子の膨張開始温度以下の乾燥炉をロールトゥロールで通過させてもよい。 Next, the applied adhesive was dried. In Examples 1 to 4, the coating amount was 50 g / m 2 (solid content), and in Example 5, 90 g / m 2 (solid content). In addition, here, it was air-dried for 20 to 30 minutes. In addition, a drying furnace below the expansion start temperature of the heat-expandable particles may be passed by roll-to-roll.
 さらに、これらの粘着剤を塗布した黒鉛放熱シートの積層を行った。積層枚数は、実施例1~4では400枚、実施例5では130枚とした。また積層後の厚みは、実施例1~4、実施例5ともに約4cm程度とした。 Furthermore, graphite heat-dissipating sheets coated with these adhesives were laminated. The number of laminated sheets was 400 in Examples 1 to 4 and 130 in Example 5. The thickness after lamination was about 4 cm in both Examples 1 to 4 and Example 5.
 さらに、得られた積層体のプレインゴット切断を行った。ここでは、ランニングソーにて20cm角プレインゴットを15cm角に切断した。 Further, the obtained laminate was cut into plain ingots. Here, a 20 cm square plain ingot was cut into 15 cm squares with a running saw.
 次に、加熱発泡を行った。ここでは、金型にプレインゴットを入れた後、180℃の条件で30~40分程度、プレインゴットの厚さが15cm程度になるまで加熱発泡させた。なお、コンテナ炉のような連続式の設備で加熱発泡させてもよい。 Next, heat foaming was performed. Here, after putting the plain ingot in the mold, it was heated and foamed under the condition of 180 ° C. for about 30 to 40 minutes until the thickness of the plain ingot became about 15 cm. It should be noted that heating and foaming may be performed in a continuous facility such as a container furnace.
 最後に、発泡後にインゴットの切断を行った。ここでは、加熱発泡後のインゴットを、マルチワイヤーソー等で任意の厚みに切断する。ここでは、実施例1では1.0mm、実施例2では2mm、実施例3、4、5では3.0mmとした。 Finally, the ingot was cut after foaming. Here, the ingot after heating and foaming is cut to an arbitrary thickness with a multi-wire saw or the like. Here, it was 1.0 mm in Example 1, 2 mm in Example 2, and 3.0 mm in Examples 3, 4, and 5.
 さらに、各試料について熱伝導率を測定した。熱伝導率の測定方法は、図4において発熱体に台湾モスペック社製トランジスタ(2SD424)を、放熱器にWakefield-Vette社製ヒートシンク(413K)を用いて、これらの間にサンプルを挟み、トルク4cN・m(面圧0.2N/m2)で締め付けた後、定格電力10Wで駆動したときの、ヒーターとヒートシンクの温度を、神港テクノス社製温度計(JCS-33A)で測定した。熱伝導率は、得られた以下の数1、数2に測定温度と諸条件を代入して算出した。 Furthermore, the thermal conductivity was measured for each sample. In FIG. 4, a transistor (2SD424) manufactured by Taiwan Mospec Co., Ltd. is used as a heating element and a heat sink (413K) manufactured by Wakefield-Vette is used as a radiator, and a sample is sandwiched between them, and a torque of 4 cN is measured. -The temperature of the heater and heat sink when driven at a rated power of 10 W after tightening with m (surface pressure 0.2 N / m 2 ) was measured with a thermometer (JCS-33A) manufactured by Shinko Technos. The thermal conductivity was calculated by substituting the measured temperature and various conditions into the following equations 1 and 2 obtained.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 上式において、
T1:トランジスタの温度(℃)
T2:ヒートシンクの温度(℃)
としている。以上の結果を、表4に示す
In the above formula
T1: Transistor temperature (° C)
T2: Heat sink temperature (° C)
It is said. The above results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 この表に示すように、厚さ方向の熱伝導率を、実施例2乃至実施例5では4W/m・K以上を達成することができた。また密度は、0.2g/cm3~1.0g/cm3とすることができた。一方、比較例1では、密度が高く、熱伝導率も低かった。 As shown in this table, the thermal conductivity in the thickness direction could be achieved at 4 W / m · K or more in Examples 2 to 5. The density could be 0.2 g / cm 3 to 1.0 g / cm 3 . On the other hand, in Comparative Example 1, the density was high and the thermal conductivity was low.
 以上の通り、本発明の実施例に係る熱伝導シートによれば、湿式抄紙工程で得られた黒鉛放熱シート層は、有機繊維で得られた紙のシートに黒鉛フィラーを均一に分散できるため、シートの面方向に均一な熱伝導性を発揮でき、信頼性の高い放熱性能を安定的に発揮できる。特に高い熱伝導性を発揮させながら、柔軟かつ軽量な熱伝導シート積層体を得ることができる。 As described above, according to the heat conductive sheet according to the embodiment of the present invention, the graphite heat-dissipating sheet layer obtained in the wet papermaking process can uniformly disperse the graphite filler in the paper sheet obtained from the organic fibers. Uniform thermal conductivity can be exhibited in the surface direction of the sheet, and highly reliable heat dissipation performance can be stably exhibited. It is possible to obtain a flexible and lightweight heat conductive sheet laminate while exhibiting particularly high heat conductivity.
 本発明に係る熱伝導シート及びその製造方法は、電気自動車やハイブリッド自動車等の電動車両用の電源装置を放熱する放熱装置、コンピューターに内蔵されるCPU等の電子部品やLED、液晶、PDP、EL、携帯電話等の発光素子等の電子部品からの発熱を放熱する熱伝導シートとして好適に利用できる。 The heat conductive sheet and its manufacturing method according to the present invention include a heat radiating device that dissipates heat from a power supply device for an electric vehicle such as an electric vehicle or a hybrid vehicle, electronic components such as a CPU built in a computer, LEDs, liquid crystal, PDP, and EL. , Can be suitably used as a heat conductive sheet that dissipates heat generated from electronic components such as light emitting elements such as mobile phones.
100…熱伝導シート
1…黒鉛放熱シート層
2…粘着層
10…積層体
91…黒鉛フィラー
92…マトリックス樹脂
HS…冷却器
HG…放熱体
100 ... Heat conductive sheet 1 ... Graphite heat dissipation sheet layer 2 ... Adhesive layer 10 ... Laminated body 91 ... Graphite filler 92 ... Matrix resin HS ... Cooler HG ... Heat radiator

Claims (18)

  1.  熱伝導シートの製造方法であって、
     湿式抄紙法により作製される黒鉛放熱シート層と、柔軟性を有する粘着層を交互に積層した積層体を準備する工程と、
     前記積層体を、積層方向に所定の厚さで切断する工程と
    を含み、
     前記切断工程により得られた熱伝導シートは、前記黒鉛放熱シート層と積層体との積層方向と交差する方向における熱伝導率が、4W/m・K以上であり、かつ
     密度が、0.2g/cm3~1.0g/cm3である熱伝導シートの製造方法。
    It is a method of manufacturing a heat conductive sheet.
    A step of preparing a laminate in which a graphite heat-dissipating sheet layer produced by a wet papermaking method and an adhesive layer having flexibility are alternately laminated.
    The step of cutting the laminated body to a predetermined thickness in the laminating direction is included.
    The heat conductive sheet obtained by the cutting step has a thermal conductivity of 4 W / m · K or more in a direction intersecting the laminating direction of the graphite heat radiating sheet layer and the laminated body, and has a density of 0.2 g. A method for producing a heat conductive sheet having a temperature of / cm 3 to 1.0 g / cm 3 .
  2.  請求項1に記載の熱伝導シートの製造方法であって、
     前記積層体の組成は、
      前記黒鉛放熱シート層の体積比率が5~50vol%、
      前記粘着層が50~95vol%
    である熱伝導シートの製造方法。
    The method for manufacturing a heat conductive sheet according to claim 1.
    The composition of the laminate is
    The volume ratio of the graphite heat dissipation sheet layer is 5 to 50 vol%,
    The adhesive layer is 50 to 95 vol%
    A method for manufacturing a heat conductive sheet.
  3.  請求項1又は2に記載の熱伝導シートの製造方法であって、
     前記黒鉛放熱シート層と積層体を準備する工程における前記黒鉛放熱シート層の厚さが、0.01mm~1.00mmである熱伝導シートの製造方法。
    The method for producing a heat conductive sheet according to claim 1 or 2.
    A method for producing a heat conductive sheet in which the thickness of the graphite heat radiating sheet layer in the step of preparing the graphite heat radiating sheet layer and the laminate is 0.01 mm to 1.00 mm.
  4.  請求項3に記載の熱伝導シートの製造方法であって、
     前記積層体を準備する工程が、
      形状異方性を発揮する黒鉛フィラーと、有機繊維を湿式抄紙する工程と、
      湿式抄紙されたシート材を、熱プレスする工程と、
      熱プレスされたシート材を、所定の大きさにカットして、複数の黒鉛放熱シート層を得る工程を含む熱伝導シートの製造方法。
    The method for manufacturing a heat conductive sheet according to claim 3.
    The step of preparing the laminate is
    Graphite filler that exhibits shape anisotropy, process of wet papermaking of organic fibers, and
    The process of heat-pressing the wet-papered sheet material and
    A method for producing a heat conductive sheet, which comprises a step of cutting a heat-pressed sheet material into a predetermined size to obtain a plurality of graphite heat-dissipating sheet layers.
  5.  請求項4に記載の熱伝導シートの製造方法であって、
     前記黒鉛放熱シート層の組成は、黒鉛含有量が50~90wt%、有機繊維含有量が10~50wt%である熱伝導シートの製造方法。
    The method for manufacturing a heat conductive sheet according to claim 4.
    The composition of the graphite heat radiating sheet layer is a method for producing a heat conductive sheet having a graphite content of 50 to 90 wt% and an organic fiber content of 10 to 50 wt%.
  6.  請求項4~5のいずれか一項に記載の熱伝導シートの製造方法であって、
     前記有機繊維が、パラアラミド繊維、パラアラミドパルプ、メタアラミド繊維、メタアラミドパルプ、ポリフェニレンサルファイド繊維、PET繊維、難燃PET繊維、難燃レーヨン繊維のいずれか一以上である熱伝導シートの製造方法。
    The method for manufacturing a heat conductive sheet according to any one of claims 4 to 5.
    A method for producing a heat conductive sheet in which the organic fiber is any one or more of para-aramid fiber, para-aramid pulp, meta-aramid fiber, meta-aramid pulp, polyphenylene sulfide fiber, PET fiber, flame-retardant PET fiber, and flame-retardant rayon fiber.
  7.  請求項1~6のいずれか一項に記載の熱伝導シートの製造方法であって、
     前記積層体を準備する工程が、
      前記黒鉛放熱シート層の表面に、前記粘着層として、粘着剤と発泡性粒子の混合液を塗布する工程と、
      前記混合液を塗布した黒鉛放熱シート層を複数枚、積層する工程と、
      前記黒鉛放熱シート層を積層した黒鉛放熱シート積層体を、加熱して膨張させる工程とを含む熱伝導シートの製造方法。
    The method for manufacturing a heat conductive sheet according to any one of claims 1 to 6.
    The step of preparing the laminate is
    A step of applying a mixed solution of an adhesive and effervescent particles as the adhesive layer on the surface of the graphite heat radiating sheet layer.
    A step of laminating a plurality of graphite heat radiating sheet layers coated with the mixed solution, and
    A method for manufacturing a heat conductive sheet, which comprises a step of heating and expanding a graphite heat radiating sheet laminate in which the graphite heat radiating sheet layers are laminated.
  8.  請求項7に記載の熱伝導シートの製造方法であって、
     前記混合液は、前記粘着剤の固形分に対して、発泡性粒子を1.0%~15.0%添加したものである熱伝導シートの製造方法。
    The method for manufacturing a heat conductive sheet according to claim 7.
    A method for producing a heat conductive sheet, wherein the mixed solution is obtained by adding 1.0% to 15.0% of effervescent particles to the solid content of the pressure-sensitive adhesive.
  9.  請求項7又は8に記載の熱伝導シートの製造方法であって、
     前記加熱膨張工程で、加熱前の前記黒鉛放熱シート積層体を、加熱により3倍以上の厚さに膨張させてなる熱伝導シートの製造方法。
    The method for producing a heat conductive sheet according to claim 7 or 8.
    A method for producing a heat conductive sheet, in which the graphite heat-dissipating sheet laminate before heating is expanded to a thickness of three times or more by heating in the heating expansion step.
  10.  請求項7~9のいずれか一項に記載の熱伝導シートの製造方法であって、
     前記粘着剤は、加熱することでタック性が発現する粘着剤である熱伝導シートの製造方法。
    The method for manufacturing a heat conductive sheet according to any one of claims 7 to 9.
    The pressure-sensitive adhesive is a method for producing a heat-conducting sheet, which is a pressure-sensitive adhesive that exhibits tackiness when heated.
  11.  請求項7~10のいずれか一項に記載の熱伝導シートの製造方法であって、
     前記粘着剤は、シリコーン系樹脂を含む熱伝導シートの製造方法。
    The method for manufacturing a heat conductive sheet according to any one of claims 7 to 10.
    The pressure-sensitive adhesive is a method for producing a heat conductive sheet containing a silicone-based resin.
  12.  請求項1~11のいずれか一項に記載の熱伝導シートの製造方法であって、
     前記積層体を切断する工程が、マルチワイヤーソー、ダイヤモンドワイヤーソー、CBNワイヤーソー、マルチブレードソーのいずれかでもって前記積層体を切断してなる熱伝導シートの製造方法。
    The method for manufacturing a heat conductive sheet according to any one of claims 1 to 11.
    A method for producing a heat conductive sheet in which the step of cutting the laminate is formed by cutting the laminate with any one of a multi-wire saw, a diamond wire saw, a CBN wire saw, and a multi-blade saw.
  13.  主面を有するシート状の熱伝導シートであって、
     前記主面に、湿式抄紙済み黒鉛放熱シート層と、柔軟性を有する粘着層とが交互に表れており、
     厚さ方向における熱伝導率が、4W/m・K以上であり、かつ
     密度が、0.2g/cm3~1.0g/cm3である熱伝導シート。
    A sheet-like heat conductive sheet having a main surface
    Wet-papered graphite heat-dissipating sheet layers and flexible adhesive layers appear alternately on the main surface.
    A heat conductive sheet having a thermal conductivity of 4 W / m · K or more in the thickness direction and a density of 0.2 g / cm 3 to 1.0 g / cm 3 .
  14.  請求項13に記載の熱伝導シートであって、
     前記主面における黒鉛放熱シート層の厚さが、0.01mm~1.00mmである熱伝導シート。
    The heat conductive sheet according to claim 13.
    A heat conductive sheet having a thickness of a graphite heat radiating sheet layer on the main surface of 0.01 mm to 1.00 mm.
  15.  請求項13又は14に記載の熱伝導シートであって、
     前記黒鉛放熱シート層が、形状異方性を発揮する黒鉛フィラーと、有機繊維を含んでなる熱伝導シート。
    The heat conductive sheet according to claim 13 or 14.
    A heat conductive sheet in which the graphite heat radiating sheet layer contains a graphite filler exhibiting shape anisotropy and organic fibers.
  16.  請求項15に記載の熱伝導シートであって、
     前記黒鉛放熱シート層の組成が、黒鉛含有量は50~90wt%、有機繊維含有量は10~50wt%である熱伝導シート。
    The heat conductive sheet according to claim 15.
    A heat conductive sheet having a graphite heat dissipation sheet layer having a graphite content of 50 to 90 wt% and an organic fiber content of 10 to 50 wt%.
  17.  請求項16に記載の熱伝導シートであって、
     前記有機繊維が、パラアラミド繊維、パラアラミドパルプ、メタアラミド繊維、メタアラミドパルプ、ポリフェニレンサルファイド繊維、PET繊維、難燃PET繊維、難燃レーヨン繊維のいずれか一以上である熱伝導シート。
    The heat conductive sheet according to claim 16.
    A heat conductive sheet in which the organic fiber is any one or more of para-aramid fiber, para-aramid pulp, meta-aramid fiber, meta-aramid pulp, polyphenylene sulfide fiber, PET fiber, flame-retardant PET fiber, and flame-retardant rayon fiber.
  18.  請求項13~17のいずれか一項に記載の熱伝導シートであって、
     前記粘着層に含まれる粘着剤は、塗布前に該粘着剤の固形分に対して、1.0%~15.0%の発泡性粒子を添加したものである熱伝導シート。
    The heat conductive sheet according to any one of claims 13 to 17.
    The pressure-sensitive adhesive contained in the pressure-sensitive adhesive layer is a heat-conducting sheet obtained by adding 1.0% to 15.0% of foamable particles to the solid content of the pressure-sensitive adhesive before application.
PCT/JP2020/007617 2019-04-05 2020-02-26 Thermally conductive sheet and method for manufacturing same WO2020202908A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021511223A JP7358459B2 (en) 2019-04-05 2020-02-26 Thermal conductive sheet and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019073167 2019-04-05
JP2019-073167 2019-04-05

Publications (1)

Publication Number Publication Date
WO2020202908A1 true WO2020202908A1 (en) 2020-10-08

Family

ID=72668305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007617 WO2020202908A1 (en) 2019-04-05 2020-02-26 Thermally conductive sheet and method for manufacturing same

Country Status (3)

Country Link
JP (1) JP7358459B2 (en)
TW (1) TW202106498A (en)
WO (1) WO2020202908A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049607A (en) * 2006-08-25 2008-03-06 Teijin Ltd Heat-conductive laminate with bonded thin film of electrical insulation
JP2010034422A (en) * 2008-07-30 2010-02-12 Awa Paper Mfg Co Ltd Method of manufacturing radiator sheet
JP2013145835A (en) * 2012-01-16 2013-07-25 Awa Paper Mfg Co Ltd Method for manufacturing heat dissipation sheet
JP2016022685A (en) * 2014-07-23 2016-02-08 豊通ケミプラス株式会社 Heat conductive laminate
JP2017130631A (en) * 2016-01-22 2017-07-27 阿波製紙株式会社 Heat radiation sheet and method for manufacturing the same
JP2017177533A (en) * 2016-03-30 2017-10-05 安積濾紙株式会社 Composite using phase change material, production method of same, and method for arranging the same
JP2018076963A (en) * 2016-10-28 2018-05-17 大阪ガスケミカル株式会社 Molded adiabatic material and process of manufacture thereof
JP2018094818A (en) * 2016-12-14 2018-06-21 株式会社Mozu Heat diffusion sheet, far infrared ray radiation sheet, manufacturing method and temperature control method of heat diffusion sheet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049607A (en) * 2006-08-25 2008-03-06 Teijin Ltd Heat-conductive laminate with bonded thin film of electrical insulation
JP2010034422A (en) * 2008-07-30 2010-02-12 Awa Paper Mfg Co Ltd Method of manufacturing radiator sheet
JP2013145835A (en) * 2012-01-16 2013-07-25 Awa Paper Mfg Co Ltd Method for manufacturing heat dissipation sheet
JP2016022685A (en) * 2014-07-23 2016-02-08 豊通ケミプラス株式会社 Heat conductive laminate
JP2017130631A (en) * 2016-01-22 2017-07-27 阿波製紙株式会社 Heat radiation sheet and method for manufacturing the same
JP2017177533A (en) * 2016-03-30 2017-10-05 安積濾紙株式会社 Composite using phase change material, production method of same, and method for arranging the same
JP2018076963A (en) * 2016-10-28 2018-05-17 大阪ガスケミカル株式会社 Molded adiabatic material and process of manufacture thereof
JP2018094818A (en) * 2016-12-14 2018-06-21 株式会社Mozu Heat diffusion sheet, far infrared ray radiation sheet, manufacturing method and temperature control method of heat diffusion sheet

Also Published As

Publication number Publication date
TW202106498A (en) 2021-02-16
JP7358459B2 (en) 2023-10-10
JPWO2020202908A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
JP6844806B2 (en) Thermal conductivity sheet and its manufacturing method
TWI658550B (en) Manufacturing method of heat conductive sheet, heat conductive sheet, and heat radiation member
TWI643946B (en) Manufacturing method of heat conduction sheet, heat conduction sheet, and heat radiating member
US11618247B2 (en) Thermally conductive sheet and production method for same
KR20110085991A (en) Heat conducting sheet, manufacturing method thereof, and heat radiator that utilizes same
CN107254172A (en) Heat conductive sheet
WO2020153346A1 (en) Method for producing thermally conductive sheet
JPH11302545A (en) Silicone rubber composite
WO2020162164A1 (en) Heat-conducting sheet, method for mounting heat-conducting sheet, and method for producing electronic equipment
WO2020017350A1 (en) Heat-conductive sheet, method for manufacturing same, and method for mounting heat-conductive sheet
JP2009066817A (en) Thermally-conductive sheet
JP2017092345A (en) Heat conduction sheet and method of manufacturing the same, and semiconductor device
WO2020261641A1 (en) Heat conductive sheet and manufacturing method for same
JP2014067924A (en) Method for manufacturing thermal conductive sheet
WO2020202908A1 (en) Thermally conductive sheet and method for manufacturing same
JP2006328213A (en) Heat-conductive sheet
CN114600567A (en) Heat radiating fin and preparation method thereof
JP2006332305A (en) Method of manufacturing thermal conductive sheet
WO2021060318A1 (en) Heat-dissipating sheet, heat-dissipating sheet laminate, structure, and heat-generating element heat dissipation treatment method
JP7473103B2 (en) Thermally conductive sheet and manufacturing method thereof
KR102068493B1 (en) Thermal diffusion sheet and the manufacturing method thereof
KR102068492B1 (en) Thermal diffusion sheet and the manufacturing method thereof
KR102075360B1 (en) Thermal diffusion sheet and the manufacturing method thereof
JP2024059256A (en) Thermally conductive sheet and method for manufacturing the same
WO2021019982A1 (en) Heat-conducting sheet and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20784845

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511223

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20784845

Country of ref document: EP

Kind code of ref document: A1