WO2020202450A1 - Personality analysis method, personality analysis device, information processing method using personality data, and information processing device using personality data - Google Patents
Personality analysis method, personality analysis device, information processing method using personality data, and information processing device using personality data Download PDFInfo
- Publication number
- WO2020202450A1 WO2020202450A1 PCT/JP2019/014557 JP2019014557W WO2020202450A1 WO 2020202450 A1 WO2020202450 A1 WO 2020202450A1 JP 2019014557 W JP2019014557 W JP 2019014557W WO 2020202450 A1 WO2020202450 A1 WO 2020202450A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- personality
- lean vehicle
- analysis
- conversion
- Prior art date
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 405
- 230000010365 information processing Effects 0.000 title claims description 104
- 238000003672 processing method Methods 0.000 title claims description 33
- 238000006243 chemical reaction Methods 0.000 claims abstract description 279
- 230000006399 behavior Effects 0.000 description 86
- 238000000034 method Methods 0.000 description 29
- 238000012545 processing Methods 0.000 description 29
- 238000013500 data storage Methods 0.000 description 17
- 238000004891 communication Methods 0.000 description 13
- 230000006355 external stress Effects 0.000 description 8
- 230000007613 environmental effect Effects 0.000 description 6
- 230000005484 gravity Effects 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- 230000001133 acceleration Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 206010029333 Neurosis Diseases 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 230000001149 cognitive effect Effects 0.000 description 4
- 208000015238 neurotic disease Diseases 0.000 description 4
- 239000000470 constituent Substances 0.000 description 3
- 208000019901 Anxiety disease Diseases 0.000 description 2
- 241000282414 Homo sapiens Species 0.000 description 2
- 206010020751 Hypersensitivity Diseases 0.000 description 2
- 208000026935 allergic disease Diseases 0.000 description 2
- 230000036506 anxiety Effects 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000009610 hypersensitivity Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000006996 mental state Effects 0.000 description 2
- 230000002688 persistence Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 206010068829 Overconfidence Diseases 0.000 description 1
- 210000005252 bulbus oculi Anatomy 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 201000001119 neuropathy Diseases 0.000 description 1
- 230000007823 neuropathy Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 208000033808 peripheral neuropathy Diseases 0.000 description 1
- 208000020016 psychiatric disease Diseases 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000026676 system process Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/08—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
- B60W40/09—Driving style or behaviour
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
Definitions
- the present invention relates to a personality analysis method for analyzing the personality of an analysis subject, a personality analyzer, an information processing method using personality data, and an information processing device using personality data.
- Information processing devices that perform information processing using the customer's personality are known.
- a configuration for performing information processing using the personality of the customer for example, the configurations disclosed in Patent Documents 1 to 4 are known.
- Patent Document 1 discloses a gift advice method that determines a user's interest level based on the product content selected by the user and recommends a gift to the user according to the interest level.
- Patent Document 2 discloses an online matching system. Specifically, in this matching system, a participant profile number is determined for each participant, and the participant attends an online meeting according to the number. In this online conference, feedback on other participants is received from a participant to determine whether there is a two-way match between the participants in the online conference.
- Patent Document 3 discloses a system for determining an individual's risk level. Specifically, this system processes personal information such as eyeball-related information to generate cognitive information about an individual, and uses the cognitive information to determine an individual's risk level. The cognitive information is compared to the individual's baseline cognitive information to determine the level of risk for the individual.
- Patent Document 4 discloses a system for selecting and customizing an advertisement provided to a user. Specifically, this system monitors the user's dialogue in the virtual game environment and indirectly determines the user characteristics based on the dialogue content. The system customizes selected advertisements for users based on user profiles generated from user characteristics and displays them to users in a virtual game environment.
- a configuration is also known in which the personality data is acquired in a question-and-answer format for the user.
- a configuration for acquiring personality data in a question-and-answer format for a user for example, a configuration disclosed in Patent Documents 5 and 6 is known.
- Patent Document 5 discloses a method for evaluating an economic personality. Specifically, in this method, a questionnaire is given to the user to evaluate the financial personality. Then, in the above method, the investment-related attitude of the user is evaluated based on the result of the questionnaire, and multidimensional economic personal information is generated. In the method, a user's risk profile is constructed from the multidimensional economic personal information.
- Patent Document 6 discloses a method of measuring and managing risk in consideration of human behavior. This method uses objective and subjective data to measure and manage operational risk, credit risk and / or market risk within an organization. Specifically, in this method, psychological measurement and / or other personality assessment tools are applied to the selected person, and the results are accumulated as subjective data in the measurement and management system, along with objective data. ..
- An object of the present invention is to provide a personality analysis method capable of acquiring personality data while increasing the degree of freedom in designing hardware resources.
- the personality analysis method is a personality analysis method for analyzing the personality of the person to be analyzed.
- This personality analysis method is a method of analyzing a lean vehicle for data conversion obtained when a plurality of drivers operate a lean vehicle for data conversion that tilts to the right when turning right and tilts to the left when turning left.
- the personality conversion data generated by associating the personality data indicating the personality with the lean vehicle driving data which is the driving data of the lean vehicle is acquired.
- the personality analysis method is a traveling of the lean vehicle for analysis obtained when the person to be analyzed drives and operates a lean vehicle for analysis that tilts to the right when turning right and tilts to the left when turning left.
- Acquire lean vehicle driving data for analysis related to the data is converted into conversion personality data related to the personality of the analysis target person.
- the personality analysis method uses the converted converted personality data to generate output personality data for output.
- the personality data for the generated output is output.
- the lean vehicle driving data which is the driving data of the lean vehicle driven by the driver, is less arbitrariness and tends to strongly show the essential personality of the driver.
- the personality of the analysis target person can be acquired.
- the running data of the lean vehicle for the personality analysis it is possible to reduce the types of data processed by the personality analysis device and reduce the hardware load of the device. Further, since the hardware resources required by the device can be reduced, the degree of freedom in designing the hardware resources of the device can be increased.
- personality data can be acquired while increasing the degree of freedom in designing hardware resources.
- the personality analysis method of the present invention preferably includes the following configurations.
- the lean vehicle driving data for data conversion is a change in driving operation for the lean vehicle for data conversion by the driver from data that does not reflect the change in driving operation for the lean vehicle for data conversion by the driver. Contains a lot of data that reflects.
- the lean vehicle driving data for analysis shows that the change in driving operation for the lean vehicle for analysis by the analysis target person is different from the data that does not reflect the change in driving operation for the lean vehicle for analysis by the analysis target person. Contains a lot of reflected data.
- the lean vehicle driving data which is the driving data of the lean vehicle driven by the driver, reflects the change in the driving operation of the lean vehicle after the driver judges. Therefore, the lean vehicle driving data, which is the driving data of the lean vehicle operated by the driver, is less arbitrariness and the essential personality of the driver is more likely to appear.
- the type of data processed by the device for analyzing personality can be reduced, and the hardware load of the device can be further reduced. Further, since the hardware resources required by the device can be reduced, the degree of freedom in designing the hardware resources of the device can be further increased.
- the personality analysis method of the present invention preferably includes the following configurations.
- the lean vehicle driving data for data conversion is the lean vehicle driving operation input data for data conversion related to the driving operation input to the lean vehicle for data conversion by the driver, and the behavior of the lean vehicle for data conversion. Includes at least one of lean vehicle behavior data for data conversion related to and lean vehicle position data for data conversion related to the position of the lean vehicle for data conversion.
- the lean vehicle driving data for analysis is related to the lean vehicle driving operation input data for analysis related to the driving operation input to the lean vehicle for analysis by the analysis subject, and the behavior of the lean vehicle for analysis. It includes at least one of lean vehicle behavior data for analysis and lean vehicle position data for analysis related to the position of the lean vehicle for analysis.
- the lean vehicle driving data used when converting to personality data related to the personality of the analysis target person includes data that more reflects the personality of the analysis target person who is the driver.
- the lean vehicle driving operation input data regarding the driving operation input to the lean vehicle by the driver and the lean vehicle behavior data regarding the behavior of the lean vehicle are, for example, the driver's sensitivity to environmental stimuli and stress, and the strength of anxiety and tension. And so on.
- the lean vehicle position data regarding the position of the lean vehicle is related to the personality such as the driver's mental state and personality.
- the personality of the analysis target person who is the driver can be analyzed more accurately by using the lean vehicle driving data. Further, by using the lean vehicle traveling data in which the data type is specified, the type of data processed by the device for analyzing personality can be reduced, and the hardware load of the device can be further reduced. Further, since the hardware resources required by the device can be reduced, the degree of freedom in designing the hardware resources of the device can be further increased.
- the personality analysis method of the present invention preferably includes the following configurations.
- the lean vehicle traveling data for data conversion further includes lean vehicle traveling environment data for data conversion related to the traveling environment in which the lean vehicle for data conversion travels.
- the lean vehicle travel data for analysis further includes lean vehicle travel environment data for analysis related to the travel environment in which the lean vehicle for analysis travels.
- the lean vehicle driving data used when converting to personality data related to the personality of the analysis target person includes data that more reflects the personality of the analysis target person who is the driver.
- Lean vehicle driving environment data includes, for example, map data.
- the map data may be associated with, for example, information on road conditions, information on road traffic environments such as traffic lights and equipment, and regulatory information on road travel.
- the lean vehicle driving environment data can be used for analyzing personality such as the personality of the person to be analyzed, together with the lean vehicle driving operation input data, the lean vehicle behavior data, and the lean vehicle position data.
- the personality of the analysis target person who is the driver can be analyzed more accurately by using the lean vehicle driving data. Further, by using the lean vehicle traveling data in which the data type is specified, the type of data processed by the device for analyzing personality can be reduced, and the hardware load of the device can be further reduced. Further, since the hardware resources required by the device can be reduced, the degree of freedom in designing the hardware resources of the device can be further increased.
- the personality analysis method of the present invention preferably includes the following configurations.
- the lean vehicle traveling data for data conversion includes more data when the lean vehicle for data conversion travels on a public road than data when the lean vehicle for data conversion travels on a road other than a public road.
- the lean vehicle traveling data for analysis includes more data when the lean vehicle for data conversion travels on a public road than data when the lean vehicle for analysis travels on a road other than a public road.
- the driver When a driver traveling on a public road is operating a lean vehicle, the driver has more judgments, has more choices of judgment, and is easily exposed to external stress.
- the driver's personality is more likely to appear in the data.
- lean vehicles since lean vehicles have higher maneuverability and convenience than non-lean vehicles, lean vehicles tend to be used for various purposes and frequently used. Therefore, the driver's personality is more likely to appear in the driving data of a lean vehicle traveling on a public road. That is, the driving data of a lean vehicle traveling on a public road has less arbitrariness of the driver and more reflects the essential personality of the driver.
- the personality of the analysis target person who is the driver can be analyzed more accurately by using the lean vehicle driving data. Further, by using the lean vehicle traveling data in which the data type is specified, the type of data processed by the device for analyzing personality can be reduced, and the hardware load of the device can be further reduced. Further, since the hardware resources required by the device can be reduced, the degree of freedom in designing the hardware resources of the device can be further increased.
- the personality analysis method of the present invention preferably includes the following configurations.
- the lean vehicle traveling data for data conversion includes data in a state where a plurality of judgment options of the driver are limited by vehicles around the lean vehicle for data conversion, but a plurality of data are left.
- the lean vehicle traveling data for analysis includes data in a state where a plurality of judgment options of the analysis target person are limited by vehicles around the lean vehicle for analysis, but a plurality of data are left.
- the lean vehicle driving data in the state where the driver's judgment options are limited but a plurality of judgment options are left is compared with the lean vehicle driving data in the state where the driver's judgment options are not left.
- the lean vehicle traveling data in which the data type is specified the type of data processed by the device for analyzing personality can be reduced, and the hardware load of the device can be further reduced. Further, since the hardware resources required by the device can be reduced, the degree of freedom in designing the hardware resources of the device can be further increased.
- the personality analysis method of the present invention preferably includes the following configurations.
- the lean vehicle traveling data for data conversion includes data in a state where at least one of a passenger and an object is mounted.
- the lean vehicle driving data for analysis includes data in a state where at least one of a passenger and an object is mounted.
- a lean vehicle equipped with at least one of a passenger and an object is more likely to be restricted in the driver's judgment options than a vehicle not equipped with at least one of a passenger and an object. Therefore, it is possible to more accurately analyze the personality of the analysis target person who is the driver by using the lean vehicle driving data including the data in the state where at least one of the passenger and the object is mounted. Further, by using the lean vehicle traveling data in which the data type is specified, the type of data processed by the device for analyzing personality can be reduced, and the hardware load of the device can be further reduced. Further, since the hardware resources required by the device can be reduced, the degree of freedom in designing the hardware resources of the device can be further increased.
- the personality analysis method of the present invention preferably includes the following configurations.
- the converted conversion personality data is stored.
- the personality data for the output is generated.
- the personality analysis method of the present invention preferably includes the following configurations.
- the personality data for output is generated as information processing personality data used for further information processing.
- the personality data obtained by the personality analysis method using the lean vehicle driving data of the lean vehicle driven and operated by the analysis target person can be used in a further information processing device.
- the personality analyzer is a personality analyzer that analyzes the personality of the person to be analyzed.
- This personality analyzer is a lean vehicle for data conversion obtained when a plurality of drivers operate a lean vehicle for data conversion that tilts to the right when turning right and tilts to the left when turning left.
- Personality conversion that acquires personality conversion data generated by associating personality data indicating personality with lean vehicle driving data that is lean vehicle driving data based on lean vehicle driving data for data conversion related to the driving data of The data acquisition unit and the running data of the lean vehicle for analysis obtained when the analysis target person operates the lean vehicle for analysis that tilts to the right when turning right and tilts to the left when turning left.
- the acquired lean vehicle driving data for analysis is used as the personality of the person to be analyzed.
- a personality data conversion unit that converts to related conversion personality data
- an output personality data generation unit that generates personality data for output to be output using the converted conversion personality data
- the generated output It is provided with a data output unit that outputs personality data for the user.
- the personality analyzer of the present invention preferably includes the following configurations.
- the lean vehicle driving data for data conversion is a change in driving operation for the lean vehicle for data conversion by the driver from data that does not reflect the change in driving operation for the lean vehicle for data conversion by the driver. Contains a lot of data that reflects.
- the lean vehicle driving data for analysis shows that the change in driving operation for the lean vehicle for analysis by the analysis target person is different from the data that does not reflect the change in driving operation for the lean vehicle for analysis by the analysis target person. Contains a lot of reflected data.
- the personality analyzer of the present invention preferably includes the following configurations.
- the lean vehicle driving data for data conversion is the lean vehicle driving operation input data for data conversion related to the driving operation input to the lean vehicle for data conversion by the driver, and the behavior of the lean vehicle for data conversion. Includes at least one of lean vehicle behavior data for data conversion related to and lean vehicle position data for data conversion related to the position of the lean vehicle for data conversion.
- the lean vehicle driving data for analysis is related to the lean vehicle driving operation input data for analysis related to the driving operation input to the lean vehicle for analysis by the analysis subject, and the behavior of the lean vehicle for analysis. It includes at least one of the lean vehicle behavior data for analysis and the lean vehicle position data for analysis related to the position of the lean vehicle for analysis.
- the personality analyzer of the present invention preferably includes the following configurations.
- the lean vehicle traveling data for data conversion further includes lean vehicle traveling environment data for data conversion related to the traveling environment in which the lean vehicle for data conversion travels.
- the lean vehicle travel data for analysis further includes lean vehicle travel environment data for analysis related to the travel environment in which the lean vehicle for analysis travels.
- the personality analyzer of the present invention preferably includes the following configurations.
- the personality data for output is generated as information processing personality data used for further information processing.
- the information processing method is an information processing method using the output personality data generated as the information processing personality data by the above-mentioned personality analysis method.
- This information processing method acquires the output personality data.
- the information processing method acquires first data different from the output personality data.
- the information processing method uses the output personality data and the first data to generate the output personality data and second data different from the first data.
- the information processing method outputs the second data.
- the information processing method using the personality data includes the information processing method as described in the patent document described in the background technology. However, it is not limited to the information processing method described in the patent document described in the background technology. Any information processing method that uses personality data may be used.
- the first data and the second data may be data related to finance, insurance, market, goods, services, environment or customers used in businesses such as finance, insurance, sales and advertising.
- the acquired personality data and acquisition using the personality data output using the lean vehicle driving data including the less arbitrariness and the essential driver's personality and the first data different from the output personality data.
- the second data different from the first data is generated and output. Therefore, it is possible to generate and output the second data with higher accuracy.
- the information processing device is an information processing device that uses the personality data for output generated as the personality data for information processing by the personality analyzer described above.
- This information processing device includes an output personality data acquisition unit that acquires the output personality data, a first data acquisition unit that acquires first data different from the output personality data, and an output personality data unit.
- a second data generation unit that uses the personality data and the first data to generate the personality data for output and a second data different from the first data, and a second data output unit that outputs the second data. , Equipped with.
- This specification describes an embodiment of a personality analysis method, a personality analysis device, an information processing method using personality data, and an information processing device using personality data according to the present invention.
- the lean vehicle is a vehicle that turns in an inclined posture.
- a lean vehicle is a vehicle that inclines to the left when turning to the left and to the right when turning to the right in the left-right direction of the vehicle.
- the lean vehicle may be a single-seater vehicle or a vehicle that can accommodate a plurality of people.
- the lean vehicle includes not only a two-wheeled vehicle but also all vehicles that turn in an inclined posture, such as a three-wheeled vehicle or a four-wheeled vehicle.
- personality means individuality determined by an individual's psychological state, personality, temperament, and the like. Specifically, the personality may include five elements: neuroticism, extroversion, openness to experience, coordination, and integrity. In addition, the personality may include six personality types such as internal closure, synchrony, stickiness, manifestation, hypersensitivity, and coherence. In addition, the personality may include a novelty desire, reward dependence, damage avoidance and persistence temperament and a self-oriented, cooperative and self-transcendent personality. In addition, as driving styles associated with the personality, confidence in driving skills, reluctance to drive, impatient driving tendency, careful driving tendency, preparatory driving for traffic lights, car as a status symbol, unstable spirit It may include driving in a state and anxious tendencies.
- the personality may include any parameter as long as it is a parameter related to an individual's individuality.
- the lean vehicle traveling data is data related to the traveling of the lean vehicle.
- the lean vehicle driving data includes lean vehicle driving operation input data related to driving operation input to the lean vehicle by the driver, lean vehicle behavior data related to the behavior of the lean vehicle, and the traveling position of the lean vehicle. It includes at least one data such as related lean vehicle position data and lean vehicle driving environment data related to the driving environment in which the lean vehicle travels.
- the lean vehicle traveling data may include processed data obtained by processing lean vehicle driving operation input data, lean vehicle behavior data, lean vehicle position data, lean vehicle traveling environment data, and the like.
- the lean vehicle driving data may include processing data processed by using lean vehicle driving operation input data, lean vehicle behavior data, lean vehicle position data, lean vehicle driving environment data, and other data. Good.
- the lean vehicle driving operation input data is data related to the driver's operation input performed when the driver drives and operates the lean vehicle.
- the lean vehicle driving operation input data may include data related to accelerator operation, braking operation, steering, or change of the center of gravity position due to a change in the driver's posture.
- the lean vehicle driving operation input data may include data related to the operation of various switches such as a horn switch, a blinker switch, and a lighting switch. Since the lean vehicle driving operation input data is data related to the driving operation input by the driver, the result of the driver's judgment is more reflected.
- the lean vehicle driving operation input data may include processing data obtained by processing data acquired from a sensor or the like.
- the lean vehicle driving operation input data may include processing data processed using data acquired from a sensor or the like and other data.
- the lean vehicle behavior data is data related to the behavior of the lean vehicle generated by the operation input of the driver when the lean vehicle is driven and operated by the driver.
- the lean vehicle behavior data includes, for example, the acceleration, speed, and angle of the lean vehicle that change when the driver who is the analysis target drives and operates the lean vehicle. That is, when the driver who is the analysis target operates the accelerator or the brake to accelerate or decelerate the lean vehicle, the lean vehicle behavior data changes the posture including steering of the lean vehicle or changing the position of the center of gravity. It is data showing the behavior of a lean vehicle that occurs in such a case.
- the lean vehicle behavior data may include not only data on the acceleration, speed, and angle of the lean vehicle as described above, but also operations generated in the lean vehicle by a switch operation or the like performed by the driver on the lean vehicle. .. That is, the lean vehicle behavior data includes data related to the operation generated in the lean vehicle by operating various switches such as a horn switch, a blinker switch, and a lighting switch.
- the lean vehicle behavior data strongly reflects the result of input of the driver's driving operation. Therefore, the driver's personality tends to be strongly reflected in the lean vehicle behavior data.
- the lean vehicle behavior data may include processing data obtained by processing data acquired from a sensor or the like.
- the lean vehicle behavior data may include processing data processed using data acquired from a sensor or the like and other data.
- the lean vehicle position data is data related to the traveling position of the lean vehicle.
- the lean vehicle position data can be detected based on GPS and communication base station information of a communication mobile terminal.
- the lean vehicle position data can be calculated by various positioning techniques, SLAM, and the like.
- the lean vehicle position data strongly reflects the result of input of the driver's driving operation, which strongly reflects the driver's personality. Therefore, the driver's personality tends to be strongly reflected in the lean vehicle position data.
- the lean vehicle position data may include processed data obtained by processing data acquired from a sensor or the like.
- the lean vehicle position data may include processing data processed using data acquired from a sensor or the like and other data.
- the lean vehicle driving environment data includes, for example, map data.
- the map data may be associated with, for example, information on road conditions, information on road traffic environments such as traffic lights and equipment, and regulatory information on road travel.
- the map data may be associated with environmental data such as weather, temperature or humidity.
- the lean vehicle driving environment data can be used for personality analysis such as the personality of the person to be analyzed, together with the lean vehicle driving operation input data, the lean vehicle behavior data, and the lean vehicle position data.
- the information on the road conditions includes information on roads (regions) in a congested environment such as frequent traffic jams and many vehicles parked on the street. By combining this information with the time zone, the accuracy of the information is further improved.
- the information on the road condition includes information on a road that is easily flooded when there is a squall.
- the lean vehicle driving environment data is considered to be an example of external stress received by the driver.
- the lean vehicle driving environment data influences the judgment of the driver.
- the lean vehicle driving environment data affects the driving operation of the driver. Therefore, by using the lean vehicle driving environment data, the driver's personality is more likely to appear in the driving data of the lean vehicle. Further, since the purpose and frequency of use of the lean vehicle are affected by using the lean vehicle driving environment data, the driving data of the lean vehicle tends to strongly show the personality of the driver.
- the lean vehicle driving environment data can be obtained from various means.
- the means for acquiring the lean vehicle driving environment data is not limited to a certain means.
- the means for acquiring the lean vehicle traveling environment data is an external environment recognition device mounted on the lean vehicle. More specifically, the means for acquiring the lean vehicle driving environment data includes a camera, a radar, and the like. Further, for example, the means for acquiring the lean vehicle traveling environment data is a communication device. More specifically, the means for acquiring the lean vehicle traveling environment data is a vehicle-to-vehicle communication device and a road-to-vehicle communication device.
- the lean vehicle driving environment data can also be obtained, for example, via the Internet.
- Public road In the present specification, the public road is not a simulation and circuit track, but a public road through which general vehicles can pass.
- the public roads also include private roads that general vehicles can pass through.
- driving includes more data that reflects changes in driving operations for lean vehicles for data conversion by drivers than data that does not reflect changes in driving operations for lean vehicles for data conversion by drivers. It is not necessary to include any data that does not reflect changes in driving operations for lean vehicles for data conversion by a person.
- driving includes more data that reflects changes in driving operations for lean vehicles for data conversion by drivers than data that does not reflect changes in driving operations for lean vehicles for data conversion by drivers. It may include some data that does not reflect changes in driving operations for lean vehicles for data conversion by the person.
- the data that does not reflect the change in driving operation for the lean vehicle for analysis by the analysis subject contains more data that reflects the change in driving operation for the lean vehicle for analysis by the analysis subject. It does not have to include any data that does not reflect changes in driving maneuvers for the lean vehicle for analysis by the subject.
- the data that does not reflect the change in driving operation for the lean vehicle for analysis by the analysis subject contains more data that reflects the change in driving operation for the lean vehicle for analysis by the analysis subject. It may include some data that does not reflect changes in driving operations on the lean vehicle for analysis by the subject.
- a lean vehicle for data conversion contains more data when a lean vehicle for data conversion travels on a public road than a data when a lean vehicle for data conversion travels on a non-public road
- the lean vehicle for data conversion travels on a non-public road. It does not have to contain any time data.
- a lean vehicle for data conversion contains more data when a lean vehicle for data conversion travels on a public road than a data when a lean vehicle for data conversion travels on a non-public road
- the lean vehicle for data conversion travels on a non-public road. It may include some time data.
- the fact that the data when the lean vehicle for analysis travels on a public road is included more than the data when the lean vehicle for analysis travels on a non-public road is the data when the lean vehicle for analysis travels on a non-public road. It does not have to contain at all.
- the fact that the data when the lean vehicle for analysis travels on a public road is included more than the data when the lean vehicle for analysis travels on a non-public road is the data when the lean vehicle for analysis travels on a non-public road. May be partially included.
- FIG. 1 is a diagram showing a schematic configuration of a personality analyzer according to the first embodiment of the present invention.
- FIG. 2 is a flowchart showing an example of the operation of the personality analyzer.
- FIG. 3 is a diagram showing a schematic configuration of the personality analysis system according to the second embodiment.
- FIG. 4 is a flowchart showing an example of the operation of the information processing device.
- the lean vehicle is a vehicle that tilts to the right when turning right and tilts to the left when turning left.
- Lean vehicles are smaller in size than non-lean vehicles. That is, the lean vehicle is smaller in the front-rear direction and / or the left-right direction of the vehicle body than the non-lean vehicle. In addition, the lean vehicle has a smaller amount of steering rotation operation than the non-lean vehicle. The amount of rotational operation of the steering of a lean vehicle is less than 360 degrees. Further, a lean vehicle is a rider-active vehicle that can be actively operated by the rider, unlike a non-lean vehicle. Therefore, the operation of a lean vehicle is different from the operation of a non-lean vehicle. The running data of a lean vehicle whose operation is different from that of a non-lean vehicle is significantly different from the running data of a non-lean vehicle.
- the number of judgments and judgment options of the driver tend to be larger than when the driver is operating a non-lean vehicle.
- the driver is more likely to be exposed to external stress when operating a lean vehicle than when operating a non-lean vehicle.
- the external stress exerted on the driver operating the lean vehicle is very diverse.
- the driving data of the lean vehicle is used for driving.
- the personality of the person is strong and easy to appear.
- the lean vehicle has higher mobility and convenience than the non-lean vehicle, the lean vehicle has various purposes of use and tends to be used more frequently. Therefore, the driver's personality tends to appear strongly in the driving data of the lean vehicle. That is, the present inventors have noticed that the driving data of the lean vehicle operated by the driver is less arbitrariness of the driver and more reflects the essential personality of the driver.
- the present inventors have come up with a method for analyzing an essential personality with less arbitrariness using the driving data of a lean vehicle.
- a method for analyzing an essential personality By using the driving data of a lean vehicle for personality analysis, it is possible to reduce the types of data processed by the system and reduce the hardware load of the system for analyzing personality.
- the hardware resources required by the system can be reduced, the degree of freedom in designing the hardware resources of the system for analyzing personality can be increased.
- FIG. 1 shows a schematic configuration of the personality analyzer 1 according to the embodiment of the present invention.
- the personality analyzer 1 is an apparatus that analyzes the personality of the person to be analyzed.
- the personality analyzer 1 of the present embodiment obtains lean vehicle running data (lean vehicle running data for analysis) of the lean vehicle X (lean vehicle for analysis) obtained when the person to be analyzed drives and operates the lean vehicle X. It is used to analyze the personality of the person to be analyzed and output the analysis result.
- the analysis of personality in the present embodiment means the analysis of individuality determined by the psychological state, personality, temperament, etc. of the person to be analyzed.
- This personality is converted into conversion personality data obtained by converting the lean vehicle running data of the lean vehicle X obtained when the analysis target person drives and operates the lean vehicle X as a driver by the personality data conversion unit 30 described later. included. That is, the converted personality data includes data related to the personality of the person to be analyzed.
- the lean vehicle running data in this embodiment is data related to the running of the lean vehicle.
- the lean vehicle driving data means data related to the driving of the lean vehicle obtained when the driver operates the lean vehicle so that the driver's personality appears.
- the lean vehicle driving data includes lean vehicle driving operation input data related to driving operation input to the lean vehicle by the driver, lean vehicle behavior data related to the behavior of the lean vehicle, and the traveling position of the lean vehicle. Includes relevant lean vehicle position data, lean vehicle driving environment data related to the driving environment in which the lean vehicle travels, and the like.
- the lean vehicle traveling data may include data other than the lean vehicle driving operation input data, the lean vehicle behavior data, the lean vehicle position data, and the lean vehicle traveling environment data.
- the lean vehicle driving data may include only one or a plurality of data among the lean vehicle driving operation input data, the lean vehicle behavior data, the lean vehicle position data, and the lean vehicle driving environment data. ..
- the lean vehicle driving data is lean vehicle driving data for analysis
- the lean vehicle driving operation input data is a lean vehicle driving operation input for analysis
- the lean vehicle behavior data is data
- the lean vehicle behavior data is lean vehicle behavior data for analysis
- the lean vehicle position data is lean vehicle position data for analysis
- the lean vehicle driving environment data is lean vehicle running for analysis.
- the lean vehicle running data is lean vehicle running data for data conversion
- the lean vehicle driving operation input data is lean vehicle driving for data conversion
- the lean vehicle behavior data is operation input data
- the lean vehicle behavior data is lean vehicle behavior data for data conversion
- the lean vehicle position data is lean vehicle position data for data conversion
- the lean vehicle driving environment data is data conversion.
- the lean vehicle driving data may include processed data obtained by processing lean vehicle driving operation input data, lean vehicle behavior data, lean vehicle position data, lean vehicle driving environment data, and the like. Further, the vehicle traveling data includes processing data processed by using lean vehicle driving operation input data, lean vehicle behavior data, lean vehicle position data, lean vehicle traveling environment data and other data and other data. May be good.
- the lean vehicle driving operation input data is data related to the driver's operation input performed when the driver drives and operates the lean vehicle.
- the lean vehicle driving operation input data may include data related to accelerator operation, braking operation, steering, or change of the center of gravity position due to a change in the driver's posture.
- the lean vehicle driving operation input data may include operations of various switches such as a horn switch, a blinker switch, and a lighting switch. Since the lean vehicle driving operation input data is data related to the driving operation input by the driver, the result of the driver's judgment is more reflected. Lean vehicles tend to strongly reflect the driver's personality because there are many types of driver's driving operations and they are intricately related.
- the lean vehicle driving operation input data may include processing data obtained by processing data acquired from a sensor or the like.
- the lean vehicle driving operation input data may include processing data processed using data acquired from a sensor or the like and other data.
- the lean vehicle behavior data is data related to the behavior of the lean vehicle generated by the driver's operation input when the lean vehicle is driven and operated by the driver.
- the lean vehicle behavior data includes, for example, the acceleration, speed, and angle of the lean vehicle that change when the driver operates the vehicle. That is, the lean vehicle behavior data is generated when the driver accelerates or decelerates the lean vehicle by operating the accelerator or the brake, or changes the posture including steering of the lean vehicle or changing the position of the center of gravity. This is data showing the behavior of a lean vehicle.
- the lean vehicle behavior data may include not only data on the acceleration, speed, and angle of the lean vehicle, but also movements that occur in the lean vehicle due to a switch operation or the like performed by the driver on the lean vehicle. That is, the lean vehicle behavior data includes data related to the operation generated in the lean vehicle by operating various switches such as a horn switch, a blinker switch, and a lighting switch. The lean vehicle behavior data strongly reflects the result of input of the driver's driving operation. Therefore, the driver's personality tends to be strongly reflected in the lean vehicle behavior data. Further, the lean vehicle behavior data may include processing data obtained by processing data acquired from a sensor or the like. The lean vehicle behavior data may include processing data processed using data acquired from a sensor or the like and other data.
- the lean vehicle position data is data related to the running position of the lean vehicle.
- the lean vehicle position data can be detected based on GPS, information on a communication base station of a communication mobile terminal, or the like.
- the lean vehicle position data can be calculated by various positioning techniques, SLAM, and the like.
- the lean vehicle position data strongly reflects the result of input of the driver's driving operation, which strongly reflects the driver's personality. Therefore, the driver's personality tends to be strongly reflected in the lean vehicle position data.
- the lean vehicle position data may include processed data obtained by processing data acquired from a sensor or the like.
- the lean vehicle position data may include processing data processed using data acquired from a sensor or the like and other data.
- the lean vehicle driving environment data includes, for example, map data.
- This map data may be associated with, for example, information on road conditions, information on road traffic environments such as traffic lights and equipment, and regulatory information on road travel.
- the map data may be associated with environmental data such as weather, temperature or humidity.
- the lean vehicle driving environment data can be used for personality analysis such as the personality of the person to be analyzed, together with the lean vehicle driving operation input data, the lean vehicle behavior data, and the lean vehicle position data.
- the information on the road conditions includes information on roads (regions) in a congested environment such as frequent traffic jams and many vehicles parked on the street. By combining this information with the time zone, the accuracy of the information is further improved.
- the information on the road condition includes information on a road that is easily flooded when there is a squall.
- the lean vehicle driving environment data is considered to be an example of external stress received by the driver.
- the lean vehicle driving environment data influences the judgment of the driver.
- the lean vehicle driving environment data affects the driving operation of the driver. Therefore, by using the lean vehicle driving environment data, the driver's personality is more likely to appear in the driving data of the lean vehicle. Further, since the purpose and frequency of use of the lean vehicle are affected by using the lean vehicle driving environment data, the driving data of the lean vehicle tends to strongly show the personality of the driver.
- the personality analyzer 1 includes a personality conversion data acquisition unit 10, a lean vehicle driving data acquisition unit 20 for analysis, a personality data conversion unit 30, an output personality data generation unit 40, a data output unit 50, and a data storage unit. 60 and.
- the personality analyzer 1 is, for example, a mobile terminal owned by the person to be analyzed.
- the personality analysis device 1 may be an arithmetic processing unit that acquires data via communication and performs arithmetic processing.
- the lean vehicle driving data acquisition unit 20 for analysis acquires lean vehicle driving data (lean vehicle driving data for analysis) when the driver who is the analysis target drives the lean vehicle X.
- the analysis lean vehicle driving data acquisition unit 20 includes data included in the lean vehicle driving data of the lean vehicle X, that is, lean vehicle driving operation input data for analysis, and analysis.
- Lean vehicle behavior data for analysis, lean vehicle position data for analysis, lean vehicle driving environment data for analysis, etc. are acquired.
- the analysis lean vehicle driving data acquisition unit 20 may acquire the analysis lean vehicle driving operation input data by, for example, acquiring the driving operation of the analysis target person with respect to the lean vehicle X as an operation signal. Specifically, the analysis lean vehicle driving data acquisition unit 20 changes the position of the center of gravity due to data related to the driver's operation input in the lean vehicle X, that is, accelerator operation, brake operation, steering, or change in the driver's posture. Data related to the above, data related to the operation of various switches such as a horn switch, a blinker switch, and a lighting switch may be acquired. These data are transmitted from the lean vehicle X.
- the lean vehicle driving data acquisition unit 20 for analysis obtains data including the acceleration, speed, and angle of the lean vehicle X, which changes when the driver who is the analysis target drives and operates the lean vehicle X, for analysis. It may be acquired as vehicle behavior data.
- the analysis lean vehicle travel data acquisition unit 20 acquires the analysis lean vehicle behavior data by, for example, a gyro sensor.
- the lean vehicle behavior data for analysis includes a posture including steering of the lean vehicle X or a change in the position of the center of gravity when the driver who is the analysis target operates the accelerator or the brake to accelerate or decelerate the lean vehicle X. This is data showing the behavior of the lean vehicle X that occurs when a change is made.
- the analysis lean vehicle driving data acquisition unit 20 acquires the operation generated in the lean vehicle X by the switch operation or the like performed on the lean vehicle X by the driver who is the analysis target, as the lean vehicle behavior data. Good. That is, the analysis lean vehicle travel data acquisition unit 20 acquires data related to the operation generated in the lean vehicle X by operating various switches such as the horn switch, the blinker switch, and the lighting switch as the analysis lean vehicle behavior data. You may. These data are transmitted from the lean vehicle X to the personality analyzer 1.
- the analysis lean vehicle travel data acquisition unit 20 may acquire analysis lean vehicle position data related to the travel position of the lean vehicle X based on, for example, GPS and communication base station information of a communication mobile terminal. ..
- the lean vehicle position data for the analysis can be calculated by various positioning techniques, SLAM, and the like.
- the analysis lean vehicle driving data acquisition unit 20 may acquire the analysis lean vehicle driving environment data from, for example, map data.
- This map data may be associated with, for example, information on road conditions, information on road traffic environments such as traffic lights and equipment, and regulatory information on road travel.
- the map data may be associated with environmental data such as weather, temperature or humidity.
- the map data may include information in which road information and information on the road traffic environment (information incidental to the road such as a signal) are associated with rule information related to road travel.
- the analysis lean vehicle driving data acquisition unit 20 may acquire the analysis lean vehicle driving environment data by, for example, an external environment recognition device mounted on the lean vehicle X. More specifically, the analysis lean vehicle travel data acquisition unit 20 may acquire the analysis lean vehicle travel environment data from a camera, radar, or the like. Further, the analysis lean vehicle traveling data acquisition unit 20 may acquire the analysis lean vehicle traveling environment data by, for example, a communication device. More specifically, the analysis lean vehicle traveling data acquisition unit 20 may acquire the analysis lean vehicle traveling environment data by the vehicle-to-vehicle communication device and the road-to-vehicle communication device. The analysis lean vehicle traveling data acquisition unit 20 may acquire the analysis lean vehicle traveling environment data via the Internet, for example. As described above, the lean vehicle traveling environment data for the analysis can be obtained from various means. The means for acquiring the lean vehicle driving environment data for analysis is not limited to a certain means.
- the personality conversion data acquisition unit 10 acquires the personality conversion data that converts the lean vehicle driving data of the above-mentioned analysis target person into the personality data.
- the personality conversion data is data in which lean vehicle driving data obtained when a plurality of drivers each drive a lean vehicle and personality data of those drivers are associated with each other. That is, the personality conversion data is data in which lean vehicle travel data and personality data are associated with each other in order to obtain personality data suitable for the lean vehicle travel data.
- the personality conversion data is obtained when, for example, a plurality of drivers drive and operate a lean vehicle (lean vehicle for data conversion) by using a concept based on a characteristic theory or a typology used in personality analysis. Generated based on lean vehicle driving data for data conversion.
- the lean vehicle travel data for data conversion is the same data as the lean vehicle travel data for analysis described above, except that the data is used for generating the personality conversion data.
- the lean vehicle travel data for data conversion may include data of a different type from the lean vehicle travel data for analysis described above.
- the personality conversion data is generated by using the Big Five theory, which is a characteristic theory of personality.
- Big Five theory various personalities of human beings are expressed by a combination of five elements.
- the Big Five theory is a theory that has universality that transcends cultural and ethnic differences.
- the personality conversion data is a combination of lean vehicle driving data for the five elements of the Big Five theory: neurotic tendency, extroversion, openness to experience, cooperation, and integrity. It is data.
- the neurotic tendency represents sensitivity to environmental stimuli and stressors, anxiety and tension.
- the neurotic tendency is related to, for example, the magnitude of the variation in travel of the lean vehicle X depending on the travel environment.
- the driver who does not see a big difference in the running of the lean vehicle X due to the difference in the running environment of the lean vehicle X has a weak tendency for neurosis, and the driving of the lean vehicle X shows a big difference due to the difference in the running environment of the lean vehicle X.
- Drivers are more prone to neurosis.
- the driver is not significantly affected by the environment, that is, the driver's The tendency to neurosis is judged to be weak.
- the driver is determined that the driver is affected by the environment, that is, the driver has a strong tendency toward neurosis.
- the driving environment of the lean vehicle X can be specified, and the driver's neurotic tendency can be determined based on the difference or variation (for example, standard deviation) of the parameters of the vehicle body behavior under different driving environments.
- the driving environment is, for example, "urban area and suburbs (region)”, “general road and highway (road type)”, “day and night (time)”, “sunny and rain (weather)”, “dry and wet”. (Road surface) ”etc.
- the traveling environment is specified by using traveling position data, time data, meteorological data, road surface detection data, and the like.
- the neuropathy tendency can be grasped by using, for example, the lean vehicle driving operation input data of the lean vehicle X, the lean vehicle driving environment data, the lean vehicle position data, and the lean vehicle behavior data among the lean vehicle driving data. it can.
- the extroversion represents diplomacy, activity, and aggressiveness.
- the extroversion is related to, for example, the mileage of the lean vehicle X within a certain period of time. For example, it is determined that the longer the mileage of the lean vehicle X, the higher the extroversion of the driver, and the shorter the mileage of the lean vehicle X, the lower the extroversion. Therefore, the extroversion can be grasped by using, for example, the lean vehicle position data of the lean vehicle X in the lean vehicle travel data.
- Openness to experience represents the strength of intellectual curiosity, imagination, and affinity for new things. Openness to experience is related, for example, to the number of new points visited by lean vehicle X within a certain period of time. For example, it is judged that the greater the number of new points visited by the lean vehicle X within a certain period of time, the higher the openness to the driver's experience, and the smaller the number of new points, the greater the openness to the driver's experience. Judged as low. It should be noted that the points to be visited may be distinguished for each type, and it may be judged that the greater the number of times the lean vehicle X visits a new type of point within a certain period of time, the higher the openness to the driver's experience. Further, even if the number of new points visited by the lean vehicle X within a certain period is the same, it may be judged that the more types of points visited, the higher the openness to the driver's experience.
- the openness to the experience can be grasped by using, for example, the lean vehicle driving environment data including the lean vehicle position data and the map data of the lean vehicle X among the lean vehicle traveling data.
- the cooperativeness represents altruism, empathy, kindness, and the like.
- the cooperation is related to, for example, the degree of cooperation with the surroundings in a dense state. Therefore, the cooperation can be grasped by using, for example, the lean vehicle position data in the lean vehicle travel data.
- the coordination has a stronger relationship with the degree of divergence from the average behavior in the dense group. Therefore, the cooperativeness can be grasped more accurately by using the traveling position data of other lean vehicles in the densely packed group.
- the lean vehicle X When the lean vehicle X is in a dense state together with other lean vehicles, it is related not only to the lean vehicle position data related to the traveling position of the lean vehicle X but also to the traveling position of the other lean vehicles in the dense state.
- the lean vehicle position data may also be grasped to calculate the degree of deviation of the traveling position of the lean vehicle X in the group of lean vehicles in a dense state.
- the degree of deviation of the traveling position of the lean vehicle X is calculated in this way, for example, it is determined that the greater the degree of deviation of the traveling position, the lower the driver's cooperation, and the smaller the degree of deviation, the more the driver's cooperation It is judged that the sex is high.
- the above-mentioned integrity represents self-control, willingness to achieve, seriousness, and a strong sense of responsibility.
- the integrity is related to, for example, the degree of illegal driving or illegal activity, and the small variation in the traveling of the lean vehicle X.
- the degree of illegal traveling is determined based on the regulation information according to the traveling position recorded in the map data and the behavior of the lean vehicle X.
- the illegal traveling includes, for example, traveling at 60 km / h on a road whose speed is regulated at 40 km / h, or not suspending at a point where the vehicle is obliged to suspend.
- the driving environment of the lean vehicle X is classified and specified, and based on the difference or variation (for example, standard deviation) of the parameters of the vehicle body behavior of the lean vehicle X in the driving environment. , The integrity of the driver is judged. Riders with high integrity have high self-control and are serious, so it is considered that they will comply with the law and will not take any sudden actions.
- the integrity can be grasped by using, for example, the lean vehicle driving environment data including the lean vehicle position data and the map data of the lean vehicle X and the lean vehicle behavior data among the lean vehicle traveling data.
- the personality conversion data is a 7-dimensional model of Cloninger's temperament and personality (Kijima et al., Quarterly Psychiatric Diagnosis (Nippon Critics), Vol. 7, No. 3, Reprint, p379-399), driver behavior and personality data. (Taketoshi Takuma, IATS review Vol.2 No.3, September 1976, p183-190), evaluation index of individual driver characteristics (Ishibashi et al., Mazda Technical Report, No.22 (2004), p155-160), etc. And may be generated.
- the temperament is expressed by novelty desire, reward dependence, damage avoidance and persistence
- the personality is expressed by self-orientation, cooperation and self-transcendence.
- driver behavior and personality data personality is classified into six types: internal closure, synchronism, stickiness, manifestation, hypersensitivity, and overconfidence.
- driving style confidence in driving skill, negativeness to driving, impatient driving tendency, careful driving tendency, preparatory driving for traffic lights, car as status symbol, non-existence It is expressed by driving in a stable mental state and anxious sexual tendency.
- the personality conversion data may be data that has been generated in advance and stored in the data storage unit 60, or may be data that is generated by the personality conversion data acquisition unit 10.
- the personality conversion data acquisition unit 10 may update the personality conversion data by using the acquired lean vehicle traveling data and personality.
- the personality data conversion unit 30 uses the personality conversion data described above to convert the lean vehicle travel data for analysis acquired by the lean vehicle travel data acquisition unit 20 for analysis into conversion personality data. At this time, the personality data conversion unit 30 ranks the driver who is the analysis target for the above-mentioned five elements of neurotic tendency, extroversion, openness to experience, cooperation, and integrity. I do. This leveling may be expressed as a continuous value for each of the above-mentioned elements, or may be expressed in a plurality of stages divided by a threshold value. Further, the personality data conversion unit 30 may classify into a plurality of types by using the result of leveling by each of the above-mentioned elements, and the classification result may be used as the conversion personality data.
- the output personality data generation unit 40 generates output personality data using the converted personality data converted by the personality data conversion unit 30.
- the personality data for this output is data output from the personality analyzer 1.
- the personality data for output may be the same data as the converted personality data, or is data converted into data required as output data of the personality analyzer 1 using the converted personality data. May be good.
- the output personality data generation unit 40 may process the converted personality data to generate output personality data.
- the output personality data generation unit 40 stores the conversion personality data in the data storage unit 60, and outputs the conversion personality data using the conversion personality data extracted from the conversion personality data stored in the data storage unit 60. You may generate personality data for.
- the output personality data generation unit 40 may generate the output personality data from the conversion personality data stored in the data storage unit 60 within a certain period of time.
- the data output unit 50 outputs the output personality data generated by the output personality data generation unit 40 to the outside of the personality analyzer 1.
- the personality analyzer 1 analyzes the personality of the analysis target person using the lean vehicle running data of the lean vehicle X driven and operated by the analysis target person, and outputs the analysis result as personality data for output. can do.
- FIG. 2 is a flow showing an example of the operation of the personality analysis device 1, that is, an example of the personality analysis method.
- the analysis lean vehicle travel data acquisition unit 20 acquires the lean vehicle travel data for analysis of the lean vehicle X (step SA1).
- the lean vehicle driving data for analysis includes, for example, lean vehicle driving operation input data for analysis, lean vehicle behavior data for analysis, lean vehicle position data for analysis, lean vehicle driving environment data for analysis, and the like. Is done.
- the lean vehicle driving data for analysis includes data other than lean vehicle driving operation input data for analysis, lean vehicle behavior data for analysis, lean vehicle position data for analysis, and lean vehicle driving environment data for analysis. It may be included.
- the lean vehicle driving data for the analysis includes the lean vehicle driving operation input data for the analysis, the lean vehicle behavior data for the analysis, the lean vehicle position data for the analysis, and the lean vehicle driving environment data for the analysis. Of these, only one or more data may be included.
- the personality data conversion unit 30 converts the acquired lean vehicle running data for analysis of the lean vehicle X into conversion personality data by the personality conversion data (step SA2).
- This personality conversion data is data in which the lean vehicle driving data obtained when a plurality of drivers each drive and operate the lean vehicle and the personality data are associated with each other.
- the personality conversion data is data generated based on lean vehicle driving data for data conversion obtained when a plurality of drivers each drive a lean vehicle by using the big five theory. is there.
- the output personality data generation unit 40 generates output personality data using the converted conversion personality data (step SA3).
- the data output unit 50 outputs the generated personality data (step SA4). After that, this flow ends (end).
- the analysis target person who is the driver uses lean vehicle driving data that is less arbitrariness of the driver and more reflects the essential personality of the driver, instead of the conventional question-and-answer format. You can get personality data.
- lean vehicle driving data By using lean vehicle driving data in this way, the amount of data processed by the personality analysis system is compared with the conventional personality analysis method that requires asking a large number of questions to the analysis target person. Can be reduced.
- the types of data processed by the system can be reduced, and the load on the hardware of the personality analyzer 1 can be reduced. Further, since the hardware resources required by the personality analyzer 1 can be reduced, the degree of freedom in designing the hardware resources of the personality analyzer 1 can be increased.
- This embodiment is an example of a personality analysis method for analyzing the personality of an analysis target person.
- the personality analysis method of the present embodiment includes the following steps.
- personality conversion data that associates personality data indicating personality with lean vehicle driving data, which is lean vehicle driving data, is acquired.
- This personality conversion data is generated based on the lean vehicle driving data for data conversion related to the driving data of the lean vehicle obtained when a plurality of drivers drive and operate the lean vehicle.
- the lean vehicle driving data for data conversion means lean vehicle driving data by a plurality of drivers. Further, the lean vehicle is a vehicle that tilts to the right when turning right and tilts to the left when turning left.
- the lean vehicle for data conversion means a lean vehicle operated by a plurality of drivers who are the targets of the lean vehicle driving data for data conversion.
- the lean vehicle running data for data conversion may be acquired by various sensors provided in the lean vehicle for data conversion.
- the lean vehicle traveling data for data conversion may be acquired by various sensors provided so as to be easily attached to and detached from the lean vehicle for data conversion.
- the lean vehicle traveling data for data conversion may be acquired by various sensors temporarily provided in the lean vehicle for data conversion for data collection.
- the lean vehicle running data for analysis related to the running data of the lean vehicle X obtained when the analysis target person drives and operates the lean vehicle X is acquired.
- the lean vehicle running data for analysis means the lean vehicle running data of the lean vehicle X driven and operated by the analysis target person.
- the lean vehicle for analysis means a lean vehicle X driven and operated by the analysis target person, which is a target for acquiring lean vehicle travel data for analysis.
- the analysis target person may be included in the plurality of drivers.
- the person to be analyzed may not be included in the plurality of drivers.
- the lean vehicle for analysis may be included in the lean vehicle for data conversion.
- the lean vehicle for analysis may not be included in the lean vehicle for data conversion.
- the lean vehicle travel data for analysis may be included in the lean vehicle travel data for data conversion.
- the lean vehicle travel data for analysis may not be included in the lean vehicle travel data for data conversion.
- the lean vehicle travel data for analysis may be acquired by various sensors provided in the lean vehicle for analysis. Further, the lean vehicle travel data for analysis may be acquired by various sensors provided so as to be easily detachable from the lean vehicle for analysis. The lean vehicle travel data for analysis may be acquired by various sensors temporarily provided in the lean vehicle for analysis for data collection.
- the various sensors for collecting the lean vehicle running data for the analysis may have lower detection accuracy than the various sensors for collecting the lean vehicle running data for the data conversion.
- the various sensors for collecting the lean vehicle running data for the analysis may be the same as the various sensors for collecting the lean vehicle running data for the data conversion.
- the type of data included in the lean vehicle travel data for analysis may be less than the type of data included in the lean vehicle travel data for data conversion.
- the type of data included in the lean vehicle travel data for analysis may be the same as the type of data included in the lean vehicle travel data for data conversion.
- the personality analyzer 1 converts the acquired lean vehicle driving data for analysis into conversion personality data related to the personality of the person to be analyzed by using the acquired personality conversion data.
- the personality analyzer 1 uses the converted converted personality data to generate output personality data for output.
- the personality analyzer 1 outputs the generated personality data for output.
- the personality analysis method preferably includes the following configurations.
- the lean vehicle driving data for data conversion reflects the change in driving operation for the lean vehicle for data conversion by the driver rather than the data that does not reflect the change in driving operation for the lean vehicle for data conversion by the driver. Contains a lot of data.
- the lean vehicle driving data for analysis reflects the change in driving operation for the lean vehicle for analysis by the analysis subject from the data that does not reflect the change in driving operation for the lean vehicle for money analysis by the analysis subject. Contains a lot of data.
- the driver of the lean vehicle recognizes the situation, makes a judgment, and performs the driving operation. At this time, there are cases where the driver changes the driving operation before and after the judgment and cases where the driving operation is not changed. In a lean vehicle, there are many variations in driving operation and there are many options for the driver's judgment, so there are many variations in the scene in which the driver changes the driving operation. Therefore, focusing on the scene in which the driver of this lean vehicle changes the driving operation, the lean vehicle driving data containing a lot of data reflecting the change in the driving operation of the lean vehicle by the driver is less arbitrariness and essential. Driver's personality is more likely to appear.
- the method of separating the lean vehicle driving data into data that does not reflect the change in the driving operation of the lean vehicle by the driver and data that reflects the change in the driving operation of the lean vehicle by the driver is as follows. There is a method.
- the position of the lean vehicle in which the result due to the change in the driving operation of the lean vehicle by the driver appears can be seen and separated.
- the position of the lean vehicle indicating that the driver is traveling in a place where the driving operation for the lean vehicle is frequently changed can be seen and separated.
- the driving data in the suburbs and the driving data in the city may be separated.
- the driving data in the suburbs may be data that does not reflect the change in driving operation for the lean vehicle by the driver
- the driving data in the city may be data that reflects the change in driving operation for the lean vehicle by the driver.
- the personality analysis method preferably includes the following configurations.
- the lean vehicle driving data for data conversion is related to the lean vehicle driving operation input data for data conversion related to the driving operation input to the lean vehicle for data conversion by the driver, and the behavior of the lean vehicle for data conversion. Includes at least one of lean vehicle behavior data for data conversion and lean vehicle position data for data conversion related to the position of the lean vehicle for data conversion.
- the lean vehicle driving data for analysis is the lean vehicle driving operation input data for analysis related to the driving operation input to the lean vehicle for analysis by the analysis target person, and the analysis related to the behavior of the lean vehicle for analysis.
- the lean vehicle behavior data for analysis and the lean vehicle position data for analysis related to the position of the lean vehicle for analysis are included.
- Lean vehicle driving operation input data is data related to driving operation input by the driver, so it more reflects the result of the driver's judgment.
- Lean vehicles tend to strongly reflect the driver's personality because there are many types of driver's driving operations and they are intricately related.
- the lean vehicle behavior data strongly reflects the result of the driver's driving operation input, which strongly reflects the driver's personality. Therefore, the lean vehicle behavior data also tends to strongly reflect the personality of the driver.
- the lean vehicle position data strongly reflects the result of the driver's driving operation input, which strongly reflects the driver's personality. Therefore, the lean vehicle position data tends to strongly reflect the personality of the driver.
- the lean vehicle driving data used when converting to personality data related to the personality of the analysis target person includes data that more reflects the personality of the analysis target person who is the driver.
- the personality analysis method preferably includes the following configurations.
- the lean vehicle traveling data for data conversion further includes lean vehicle traveling environment data for data conversion related to the traveling environment in which the lean vehicle for data conversion travels.
- the lean vehicle travel data for analysis further includes lean vehicle travel environment data for analysis related to the travel environment in which the lean vehicle for analysis travels.
- Driving environment data is considered to be an example of external stress that the driver receives.
- the driving environment data influences the judgment of the driver.
- the driving environment data affects the driving operation of the driver. Therefore, by using the driving environment data, the personality of the driver is more likely to appear in the driving data of the lean vehicle.
- the personality of the driver tends to appear strongly in the driving data of the lean vehicle.
- the lean vehicle driving data used when converting to personality data related to the personality of the analysis target person includes data that more reflects the personality of the analysis target person who is the driver.
- Lean vehicle driving environment data includes, for example, map data.
- the map data may be associated with, for example, information on road conditions, information on road traffic environments such as traffic lights and equipment, and regulatory information on road travel.
- the lean vehicle driving environment data can be used for analyzing personality such as the personality of the person to be analyzed, together with the lean vehicle driving operation input data, the lean vehicle behavior data, and the lean vehicle position data.
- the personality analysis method preferably includes the following configurations.
- the lean vehicle traveling data for data conversion includes more data when the lean vehicle for data conversion travels on a public road than data when the lean vehicle for data conversion travels on a road other than a public road.
- the lean vehicle traveling data for analysis includes more data when the lean vehicle for data conversion travels on a public road than data when the lean vehicle for analysis travels on a road other than a public road.
- the driver When a driver traveling on a public road is operating a lean vehicle, the driver makes more decisions, has more choices of decisions, and is more likely to be exposed to external stress. Therefore, the driver's personality tends to appear more strongly in the driving data of the lean vehicle.
- lean vehicles since lean vehicles have higher maneuverability and convenience than non-lean vehicles, lean vehicles tend to be used for various purposes and frequently used. Therefore, the driver's personality is more likely to appear in the driving data of a lean vehicle traveling on a public road. That is, the driving data of a lean vehicle traveling on a public road has less arbitrariness of the driver and more reflects the essential personality of the driver. For example, whether or not the data is traveling on a public road may be determined from the lean vehicle position data and the lean vehicle traveling environment data.
- the personality analysis method preferably includes the following configurations.
- the lean vehicle traveling data for data conversion includes data in a state where a plurality of judgment options of the driver are limited by vehicles around the lean vehicle for data conversion, but a plurality of data are left.
- the lean vehicle traveling data for analysis includes data in a state where a plurality of judgment options of the analysis target person are limited by vehicles around the lean vehicle for analysis, but a plurality of data are left.
- the driver's judgment options are limited by the vehicles around the lean vehicle, but a plurality of remaining states may be determined from the lean vehicle position data and the lean vehicle driving environment data. More specifically, the state may be estimated based on the date, time, and place where the lean vehicle is traveling.
- Lean vehicle driving data when traveling in an urban area includes data in a state where a plurality of driver's judgment options are restricted by vehicles around the lean vehicle, but a plurality of them are left.
- data on the actual surrounding conditions of the lean vehicle may be acquired to estimate the state. A combination of methods for estimating a plurality of states may be used.
- the driver's judgment options are limited by the vehicles around the lean vehicle, but a plurality of remaining options are defined as the driver of the lean vehicle driving in a group of a plurality of vehicles including the lean vehicle. It means the running state of the lean vehicle when a plurality of options are left although the options are limited when the operation is determined.
- the personality analysis method preferably includes the following configurations.
- the lean vehicle traveling data for data conversion includes data in a state where at least one of a passenger and an object is mounted.
- the lean vehicle driving data for analysis includes data in a state where at least one of a passenger and an object is mounted.
- the personality analysis method preferably includes the following configurations.
- the converted conversion personality data is stored.
- the stored personality data for output is generated by using the plurality of stored conversion personality data.
- the memory includes not only the memory for storage but also the temporary memory of the result.
- the conversion personality data stored in the storage and the conversion personality data stored in the temporary memory may be used. These may be used to update the conversion personality data stored in the storage. These may be used to generate new conversion personality data. Statistical processing may be performed using these. These may be used to update the conversion personality data stored in the storage.
- the old conversion personality data and the new conversion personality data can be used to more accurately analyze the personality of the analysis target person who is the driver of the lean vehicle X.
- This embodiment is an example of a personality analyzer that analyzes the personality of the person to be analyzed.
- the personality analyzer of the present embodiment includes the following configurations.
- the personality analyzer is a personality analyzer that analyzes the personality of the person to be analyzed.
- This personality analyzer is a lean vehicle for data conversion obtained when a plurality of drivers operate a lean vehicle for data conversion that tilts to the right when turning right and tilts to the left when turning left.
- Personality conversion that acquires personality conversion data generated by associating personality data indicating personality with lean vehicle driving data that is lean vehicle driving data based on lean vehicle driving data for data conversion related to the driving data of The data acquisition unit and the running data of the lean vehicle for analysis obtained when the analysis target person operates the lean vehicle for analysis that tilts to the right when turning right and tilts to the left when turning left.
- the acquired lean vehicle driving data for analysis is used as the personality of the person to be analyzed.
- a personality data conversion unit that converts to related conversion personality data
- an output personality data generation unit that generates personality data for output to be output using the converted conversion personality data
- the generated output It is provided with a data output unit that outputs personality data for the user.
- the personality analyzer preferably includes the following configurations.
- the lean vehicle driving data for data conversion is a change in driving operation for the lean vehicle for data conversion by the driver from data that does not reflect the change in driving operation for the lean vehicle for data conversion by the driver. Contains a lot of data that reflects.
- the lean vehicle driving data for analysis shows that the change in driving operation for the lean vehicle for analysis by the analysis target person is different from the data that does not reflect the change in driving operation for the lean vehicle for analysis by the analysis target person. Contains a lot of reflected data.
- the personality analyzer preferably includes the following configurations.
- the lean vehicle driving data for data conversion is the lean vehicle driving operation input data for data conversion related to the driving operation input to the lean vehicle for data conversion by the driver, and the behavior of the lean vehicle for data conversion. Includes at least one of lean vehicle behavior data for data conversion related to and lean vehicle position data for data conversion related to the position of the lean vehicle for data conversion.
- the lean vehicle driving data for analysis is related to the lean vehicle driving operation input data for analysis related to the driving operation input to the lean vehicle for analysis by the analysis subject, and the behavior of the lean vehicle for analysis. It includes at least one of the lean vehicle behavior data for analysis and the lean vehicle position data for analysis related to the position of the lean vehicle for analysis.
- the personality analyzer preferably includes the following configurations.
- the lean vehicle traveling data for data conversion further includes lean vehicle traveling environment data for data conversion related to the traveling environment in which the lean vehicle for data conversion travels.
- the lean vehicle travel data for analysis further includes lean vehicle travel environment data for analysis related to the travel environment in which the lean vehicle for analysis travels.
- the personality analyzer preferably includes the following configurations.
- the lean vehicle traveling data for data conversion includes more data when the lean vehicle for data conversion travels on a public road than data when the lean vehicle for data conversion travels on a road other than a public road.
- the lean vehicle traveling data for analysis includes more data when the lean vehicle for analysis travels on a public road than data when the lean vehicle for analysis travels on a road other than a public road.
- the personality analyzer preferably includes the following configurations.
- the lean vehicle traveling data for data conversion includes data in a state where a plurality of judgment options of the driver are limited by vehicles around the lean vehicle for data conversion, but a plurality of data are left.
- the lean vehicle traveling data for analysis includes data in a state where a plurality of judgment options of the analysis target person are limited by vehicles around the lean vehicle for analysis, but a plurality of data are left.
- the personality analyzer preferably includes the following configurations.
- the lean vehicle traveling data for data conversion includes data in a state where at least one of a passenger and an object is mounted.
- the lean vehicle driving data for analysis includes data in a state where at least one of a passenger and an object is mounted.
- FIG. 3 shows an example of the personality analysis system 100 including the personality analysis device 1 of the first embodiment.
- the same components as those of the first embodiment are designated by the same reference numerals and the description thereof will be omitted, and only the configurations different from the first embodiment will be described.
- the personality analysis system 100 includes a personality analysis device 1 and a personality conversion data generation device 101 that generates personality conversion data.
- the personality conversion data generation device 101 is, for example, an information processing arithmetic unit capable of communicating with the personality analysis device 1 and having a processor.
- the personality conversion data generation device 101 may be the same information processing calculation device as the personality analysis device 1.
- the personality conversion data generation device 101 acquires lean vehicle traveling data and personality data, and generates personality conversion data in which the lean vehicle traveling data and the personality data are associated with each other.
- the personality conversion data generation device 101 has a data storage unit 111 and a personality conversion data generation unit 112. Although not particularly shown, the personality conversion data generation device 101 has an acquisition unit for acquiring lean vehicle traveling data and personality data. Further, although not particularly shown, the personality conversion data generation device 101 has an output unit that outputs the generated personality conversion data.
- the data storage unit 111 stores lean vehicle driving data, personality data, and personality conversion data. Specifically, the data storage unit 111 stores lean vehicle running data for data conversion obtained when a plurality of drivers drive and operate the lean vehicle Y (lean vehicle for data conversion). Further, the data storage unit 111 stores the personality conversion data generated by the personality conversion data generation unit 112, which will be described later.
- personality data may be stored by input in the data storage unit 111, or personality data may be stored in advance.
- the lean vehicle driving data for data conversion includes, for example, lean vehicle driving operation input data for data conversion, lean vehicle behavior data for data conversion, lean vehicle position data for data conversion, and lean vehicle driving environment for data conversion. Includes data etc.
- the personality conversion data generation unit 112 generates personality conversion data in which the lean vehicle travel data and the personality data are associated with each other, based on the lean vehicle travel data for data conversion stored in the data storage unit 111.
- the personality conversion data generated by the personality conversion data generation unit 112 is stored in the data storage unit 111.
- the personality conversion data stored in the data storage unit 111 is converted from the lean vehicle running data (lean vehicle running data for analysis) of the lean vehicle X (lean vehicle for analysis) into the converted personality data by the personality analyzer 1. It is used when doing. Since the method of converting the lean vehicle traveling data into the converted personality data in the personality analyzer 1 is the same as that of the first embodiment, detailed description thereof will be omitted.
- the personality analyzer 1 generates personality data for output using the converted personality data, and outputs the personality data for the output. Since the configuration of the personality analyzer 1 is the same as that of the first embodiment, detailed description of the personality analyzer 1 will be omitted.
- the output personality data output from the personality analyzer 1 may be input to, for example, the information processing device 102.
- the output personality data is generated in the personality analyzer 1 as information processing personality data used for information processing in the information processing device 102.
- the information processing device 102 may be, for example, a device that processes data related to finance, insurance, market, goods, services, environment, or customers used in businesses such as finance, insurance, sales, and advertising.
- the personality analysis device 1 is an information processing calculation device
- the information processing device 102 may be the same device as the personality analysis device 1.
- the information processing device 102 may be the same information processing calculation device as the personality conversion data generation device 101.
- the information processing device 102 includes, for example, an output personality data acquisition unit 121, a first data acquisition unit 122, a second data generation unit 123, a second data output unit 124, and a data storage unit 125.
- the output personality data acquisition unit 121 acquires the output personality data output from the personality analyzer 1.
- the first data acquisition unit 122 acquires the first data different from the personality data for the output.
- This first data is data to be processed by the information processing apparatus 102.
- the first data is data related to finance, insurance, market, goods, services, environment or customers used in business such as finance, insurance, sales and advertising.
- the first data is stored in the data storage unit 125.
- the second data generation unit 123 uses the output personality data and the first data to generate the output personality data and second data different from the first data. Similar to the first data, this second data is also data related to finance, insurance, market, goods, services, environment or customers used in business such as finance, insurance, sales and advertising.
- the second data output unit 124 outputs the second data generated by the second data generation unit 123.
- FIG. 4 is a flowchart showing the operation of information processing by the information processing device 102.
- the output personality data acquisition unit 121 of the information processing apparatus 102 acquires the output personality data output from the personality analyzer 1 (step SB1).
- the first data acquisition unit 122 of the information processing device 102 acquires the first data stored in the data storage unit 125 (step SB2). This first data is different from the personality data for output.
- the second data generation unit 123 of the information processing apparatus 102 generates the second data by using the acquired personality data for output and the acquired first data (step SB3). This second data is different from the personality data for output and the first data.
- the second data output unit 124 of the information processing device 102 outputs the generated second data (step SB4).
- the output personality data output from the personality analyzer 1 in this way can be used, for example, in the field of finance or insurance, when the information processing device calculates and processes credit risk or credit score. That is, the personality data obtained by using the lean vehicle driving data can be used for the arithmetic processing of the information processing device in the fields of finance, insurance, sales, advertising, and the like.
- an information processing device acquires the output personality data for output, and uses the acquired personality data for output to perform credit risk or credit by arithmetic processing.
- the score can be output.
- the information processing method is a process of acquiring personality data for output output from the personality analyzer 1 and credit risk data related to credit risk using the acquired personality data for output. Alternatively, it may include a step of outputting credit score data regarding the credit score.
- an information processing device uses a personality data acquisition unit that acquires personality data for output output from the personality analyzer 1 and the acquired personality data to provide credit regarding credit risk. It may include a credit risk output unit that outputs risk data or a credit score output unit that outputs credit score data related to credit scores.
- the personality data for output output from the personality analyzer 1 is taken into consideration when recommending to the analysis target person when the information processing apparatus performs arithmetic processing in the field of sales or advertising, for example. It can be used as a parameter. In fields such as sales or advertising, a product or service may be recommended to the analysis target person according to the personality data of the analysis target person by performing arithmetic processing on the information processing device.
- the information processing device acquires personality data for output output from the personality analyzer 1, and uses the acquired personality data for output for arithmetic processing. Can output the products or services recommended to the analysis target person.
- an information processing device is an analysis target using a personality data acquisition unit that acquires personality data for output output from the personality analyzer 1 and the acquired personality data for output. It may include a product-related data output unit that outputs product-related data related to a product recommended to a person, or a service-related data output unit that outputs service-related data related to services.
- the information processing method is a process of acquiring personality data output from the personality analyzer 1 and product-related data or services related to products recommended to the analysis target person using the acquired personality data. It may include a process of outputting service-related data related to the above.
- the personality analysis method in each of the above-described embodiments is an example of a personality analysis method for analyzing the personality of the analysis target person.
- the personality analysis method of the present invention preferably includes the following configurations.
- the output personality data is generated as information processing personality data used for further information processing.
- the further information processing may be the processing of data related to finance, insurance, markets, products, services, environment or customers used in businesses such as finance, insurance, sales and advertising.
- the personality data output by the personality analysis method of the present invention is used in the information processing method using the following personality data.
- the personality data for the output is acquired.
- first data different from the personality data for output is acquired.
- the personality data for output and the acquired first data are used to generate the personality data for output and the second data different from the acquired first data.
- the generated second data is output.
- the information processing method using the personality data includes the information processing method as described in the patent document described in the background technology. However, it is not limited to the information processing method described in the patent document described in the background technology.
- the information processing method may be any information processing method as long as it is an information processing method that uses personality data.
- the first data and the second data may be data related to finance, insurance, market, goods, services, environment or customers used in businesses such as finance, insurance, sales and advertising.
- the personality data available in the information processing device 102 can be acquired by the personality analysis device 1 and the personality analysis method using the personality analysis device 1. Further, as described in the first embodiment, by using the traveling data of the lean vehicle for the personality analysis, the types of data processed by the system can be reduced, and the hardware load of the personality analyzer 1 can be reduced.
- the personality analyzer of the present invention preferably includes the following configurations.
- the personality data for output is generated as information processing personality data used for further information processing.
- the personality data output by the personality analyzer of the present invention is used in an information processing device that uses the following personality data.
- This information processing apparatus includes an output personality data acquisition unit that acquires the personality data for the output, a first data acquisition unit that acquires the first data different from the output personality data, and the personality for the output.
- a second data generation unit that uses the data and the first data to generate personality data for output and second data that is different from the first data, a second data output unit that outputs the second data, and a second data output unit. To be equipped with.
- the present invention can be used for a personality analysis method and a personality analyzer for analyzing the personality of an analysis subject, and can also be used for an information processing method and an information processing device using personality data obtained by these methods and devices. Is.
- Personality analyzer 10 Personality conversion data acquisition unit 20 Analy lean vehicle driving data acquisition unit 30 Personality data conversion unit 40 Output personality data generation unit 50 Data output unit 60, 111, 125 Data storage unit 100 Personality analysis system 101 Personality conversion Data generation device 112 Personality conversion Data generation unit 102 Information processing device 121 Output personality data acquisition unit 122 First data acquisition unit 123 Second data generation unit 124 Second data output unit X Lean vehicle (lean vehicle for analysis) Y lean vehicle (lean vehicle for data conversion)
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Tourism & Hospitality (AREA)
- General Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Transportation (AREA)
- Mathematical Physics (AREA)
- Health & Medical Sciences (AREA)
- Economics (AREA)
- Automation & Control Theory (AREA)
- Mechanical Engineering (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Traffic Control Systems (AREA)
Abstract
Provided is a personality analysis method in which personality data can be acquired while a degree of freedom in designing hardware resources is increased. This personality analysis method involves: acquiring personality conversion data generated by associating personality data with leaning vehicle traveling data on the basis of data-conversion-use leaning vehicle traveling data which relates to traveling data of leaning vehicles for data conversion, acquired when a plurality of drivers drive and manipulate leaning vehicles for data conversion; acquiring analysis-use leaning vehicle traveling data relating to traveling data of a leaning vehicle for analysis, acquired when a driver to be analyzed drives the leaning vehicle for analysis; converting the analysis-use leaning vehicle traveling data into conversion personality data relating to the personality of the driver to be analyzed by using the personality conversion data; and generating and outputting output personality data by using the converted conversion personality data.
Description
本発明は、分析対象者のパーソナリティを分析するパーソナリティ分析方法、パーソナリティ分析装置、パーソナリティデータを用いる情報処理方法及びパーソナリティデータを用いる情報処理装置に関する。
The present invention relates to a personality analysis method for analyzing the personality of an analysis subject, a personality analyzer, an information processing method using personality data, and an information processing device using personality data.
顧客のパーソナリティを用いて情報処理(data processing)を行う情報処理装置が知られている。顧客のパーソナリティを用いて情報処理を行う構成として、例えば、特許文献1~4に開示されている構成が知られている。
Information processing devices that perform information processing using the customer's personality are known. As a configuration for performing information processing using the personality of the customer, for example, the configurations disclosed in Patent Documents 1 to 4 are known.
特許文献1には、ユーザが選択した製品コンテンツに基づいて、ユーザの関心レベルを決定し、その関心レベルに応じてユーザへのプレゼントを推奨するギフトアドバイス方法が開示されている。
Patent Document 1 discloses a gift advice method that determines a user's interest level based on the product content selected by the user and recommends a gift to the user according to the interest level.
特許文献2には、オンラインのマッチングシステムが開示されている。具体的には、このマッチングシステムでは、各参加者に対して参加者プロファイルの番号を決定し、参加者は、その番号に応じたオンライン会議に出席する。このオンライン会議では、参加者から他の参加者に関するフィードバックを受信することにより、そのオンライン会議の参加者間で双方向の一致があるかどうかの判定が行われる。
Patent Document 2 discloses an online matching system. Specifically, in this matching system, a participant profile number is determined for each participant, and the participant attends an online meeting according to the number. In this online conference, feedback on other participants is received from a participant to determine whether there is a two-way match between the participants in the online conference.
特許文献3には、個人のリスクのレベルを決定するためのシステムが開示されている。具体的には、このシステムでは、眼球関連情報などの個人情報を処理して、個人に関する認知情報を生成し、該認知情報を利用して個人のリスクのレベルを判断する。前記認知情報は、個人のリスクのレベルを決定するために、個人の基準認知情報と比較される。
Patent Document 3 discloses a system for determining an individual's risk level. Specifically, this system processes personal information such as eyeball-related information to generate cognitive information about an individual, and uses the cognitive information to determine an individual's risk level. The cognitive information is compared to the individual's baseline cognitive information to determine the level of risk for the individual.
特許文献4には、ユーザに提供される広告を選択及びカスタマイズするためのシステムが開示されている。具体的には、このシステムでは、仮想ゲーム環境内でのユーザの対話を監視し、その対話内容に基づいて間接的にユーザ特性を決定する。前記システムは、ユーザ特性から生成されるユーザプロファイルに基づいて選択した広告をユーザ向けにカスタマイズして、仮想ゲーム環境においてユーザに表示する。
Patent Document 4 discloses a system for selecting and customizing an advertisement provided to a user. Specifically, this system monitors the user's dialogue in the virtual game environment and indirectly determines the user characteristics based on the dialogue content. The system customizes selected advertisements for users based on user profiles generated from user characteristics and displays them to users in a virtual game environment.
また、ユーザのパーソナリティを用いて情報処理を行う情報処理システムにおいて、ユーザに対する質問回答形式で前記パーソナリティデータを取得する構成も知られている。このように、ユーザに対する質問回答形式でパーソナリティデータを取得する構成として、例えば、特許文献5,6に開示されている構成が知られている。
Further, in an information processing system that processes information using a user's personality, a configuration is also known in which the personality data is acquired in a question-and-answer format for the user. As described above, as a configuration for acquiring personality data in a question-and-answer format for a user, for example, a configuration disclosed in Patent Documents 5 and 6 is known.
特許文献5には、経済的なパーソナリティを評価するための方法が開示されている。具体的には、この方法では、ユーザに経済的なパーソナリティを評価するアンケートを行う。そして、前記方法では、アンケート結果に基づいて、ユーザの投資関連の姿勢を評価し、多次元の経済個人情報を生成する。前記方法では、前記多次元の経済個人情報からユーザのリスクプロファイルを構築する。
Patent Document 5 discloses a method for evaluating an economic personality. Specifically, in this method, a questionnaire is given to the user to evaluate the financial personality. Then, in the above method, the investment-related attitude of the user is evaluated based on the result of the questionnaire, and multidimensional economic personal information is generated. In the method, a user's risk profile is constructed from the multidimensional economic personal information.
特許文献6には、人間の行動を考慮してリスクを測定及び管理する方法が開示されている。この方法では、客観的かつ主観的なデータを使用して、組織内のオペレーショナルリスク、信用リスク及び/または市場リスクを測定及び管理する。具体的には、この方法では、心理測定及び/または他の人格評価ツールが、選択された人に適用され、その結果は、測定及び管理システムにおいて主観的データとして、客観的データと共に蓄積される。
Patent Document 6 discloses a method of measuring and managing risk in consideration of human behavior. This method uses objective and subjective data to measure and manage operational risk, credit risk and / or market risk within an organization. Specifically, in this method, psychological measurement and / or other personality assessment tools are applied to the selected person, and the results are accumulated as subjective data in the measurement and management system, along with objective data. ..
ところで、上述のようにユーザのパーソナリティを用いて情報処理を行う場合、より精度良く情報処理を行うために、ユーザの恣意性が少ない本質的なパーソナリティのデータが望まれる。
By the way, when information processing is performed using the user's personality as described above, in order to perform information processing with higher accuracy, data of the essential personality with less arbitrariness of the user is desired.
上述の特許文献4,5のような質問回答形式で得た結果からユーザのパーソナリティを求める場合、恣意性が少ない本質的なパーソナリティを得ようとすると、表現が異なる質問の数を増やしたり、質問の中に虚偽発見尺度(ライスケール)に関する質問を追加したりする必要がある。よって、ユーザに対する質問数が増えるため、システムで処理するデータの種類が非常に多くなる。
When seeking the personality of a user from the results obtained in the question-and-answer format as in Patent Documents 4 and 5 described above, in order to obtain an essential personality with less arbitrariness, the number of questions with different expressions may be increased or questions may be asked. It is necessary to add a question about the false discovery scale (Lyscale) in. Therefore, since the number of questions to the user increases, the types of data processed by the system become very large.
このように、システムで処理するデータの種類が非常に多くなると、前記システムのハードウェアの負荷が高くなる。よって、前記システムで必要とするハードウェアリソースが増えるため、システムのハードウェアリソースの設計に制約が生じる。よって、システムのハードウェアリソースの設計自由度が低下する。
In this way, when the types of data processed by the system become extremely large, the load on the hardware of the system increases. Therefore, since the hardware resources required by the system increase, the design of the hardware resources of the system is restricted. Therefore, the degree of freedom in designing the hardware resources of the system is reduced.
本発明は、ハードウェアリソースの設計自由度を高めつつ、パーソナリティデータを取得できるパーソナリティ分析方法を提供することを目的とする。
An object of the present invention is to provide a personality analysis method capable of acquiring personality data while increasing the degree of freedom in designing hardware resources.
本発明者らは、ハードウェアリソースの設計自由度を高めつつ、パーソナリティデータを取得できるパーソナリティ分析方法を検討した結果、以下のような構成に想到した。
As a result of examining a personality analysis method that can acquire personality data while increasing the degree of freedom in designing hardware resources, the present inventors have come up with the following configuration.
本発明の一実施形態に係るパーソナリティ分析方法は、分析対象者のパーソナリティを分析するパーソナリティ分析方法である。このパーソナリティ分析方法は、右旋回時に右方向に傾斜し且つ左旋回時に左方向に傾斜するデータ変換用リーン車両を複数の運転者が運転操作する時にそれぞれ得られる前記データ変換用のリーン車両の走行データに関連するデータ変換用のリーン車両走行データに基づいて、パーソナリティを示すパーソナリティデータとリーン車両の走行データであるリーン車両走行データとが関連付けて生成されたパーソナリティ変換データを取得する。前記パーソナリティ分析方法は、前記分析対象者が、右旋回時に右方向に傾斜し且つ左旋回時に左方向に傾斜する分析用のリーン車両を運転操作する時に得られる前記分析用のリーン車両の走行データに関連する分析用のリーン車両走行データを取得する。前記取得したパーソナリティ変換データを用いて、前記取得した分析用のリーン車両走行データを前記分析対象者のパーソナリティに関連する変換パーソナリティデータに変換する。前記パーソナリティ分析方法は、前記変換された変換パーソナリティデータを用いて、出力するための出力用のパーソナリティデータを生成する。前記生成された出力用のパーソナリティデータを出力する。
The personality analysis method according to the embodiment of the present invention is a personality analysis method for analyzing the personality of the person to be analyzed. This personality analysis method is a method of analyzing a lean vehicle for data conversion obtained when a plurality of drivers operate a lean vehicle for data conversion that tilts to the right when turning right and tilts to the left when turning left. Based on the lean vehicle driving data for data conversion related to the driving data, the personality conversion data generated by associating the personality data indicating the personality with the lean vehicle driving data which is the driving data of the lean vehicle is acquired. The personality analysis method is a traveling of the lean vehicle for analysis obtained when the person to be analyzed drives and operates a lean vehicle for analysis that tilts to the right when turning right and tilts to the left when turning left. Acquire lean vehicle driving data for analysis related to the data. Using the acquired personality conversion data, the acquired lean vehicle running data for analysis is converted into conversion personality data related to the personality of the analysis target person. The personality analysis method uses the converted converted personality data to generate output personality data for output. The personality data for the generated output is output.
運転者は、リーン車両を運転操作する際に、多くの選択肢の中から、多くの判断を行うとともに、外部からのストレスに晒されやすい。よって、運転者が運転操作するリーン車両の走行データであるリーン車両走行データには、恣意性が少なく本質的な運転者のパーソナリティが強く現れやすい。
When driving a lean vehicle, the driver makes many decisions from many options and is easily exposed to external stress. Therefore, the lean vehicle driving data, which is the driving data of the lean vehicle driven by the driver, is less arbitrariness and tends to strongly show the essential personality of the driver.
よって、リーン車両を運転操作する運転者を、パーソナリティを分析する分析対象者とすることで、分析対象者のパーソナリティを取得できる。パーソナリティの分析にリーン車両の走行データを用いることで、パーソナリティを分析する装置で処理するデータの種類を低減でき、前記装置のハードウェアの負荷を低減できる。また、前記装置で必要とするハードウェアリソースを低減できるため、前記装置のハードウェアリソースの設計の自由度を高めることできる。
Therefore, by setting the driver who drives and operates the lean vehicle as the analysis target person who analyzes the personality, the personality of the analysis target person can be acquired. By using the running data of the lean vehicle for the personality analysis, it is possible to reduce the types of data processed by the personality analysis device and reduce the hardware load of the device. Further, since the hardware resources required by the device can be reduced, the degree of freedom in designing the hardware resources of the device can be increased.
したがって、ハードウェアリソースの設計自由度を高めつつ、パーソナリティデータを取得できる。
Therefore, personality data can be acquired while increasing the degree of freedom in designing hardware resources.
他の観点によれば、本発明のパーソナリティ分析方法は、以下の構成を含むことが好ましい。前記データ変換用のリーン車両走行データは、前記運転者による前記データ変換用のリーン車両に対する運転操作の変化が反映されていないデータより前記運転者による前記データ変換用のリーン車両に対する運転操作の変化が反映されているデータを多く含む。前記分析用のリーン車両走行データは、前記分析対象者による前記分析用のリーン車両に対する運転操作の変化が反映されていないデータより前記分析対象者による前記分析用のリーン車両に対する運転操作の変化が反映されているデータを多く含む。
From another point of view, the personality analysis method of the present invention preferably includes the following configurations. The lean vehicle driving data for data conversion is a change in driving operation for the lean vehicle for data conversion by the driver from data that does not reflect the change in driving operation for the lean vehicle for data conversion by the driver. Contains a lot of data that reflects. The lean vehicle driving data for analysis shows that the change in driving operation for the lean vehicle for analysis by the analysis target person is different from the data that does not reflect the change in driving operation for the lean vehicle for analysis by the analysis target person. Contains a lot of reflected data.
この構成により、運転者が運転操作するリーン車両の走行データであるリーン車両走行データには、運転者が判断した後のリーン車両の運転操作の変化が反映されている。よって、運転者が運転操作するリーン車両の走行データであるリーン車両走行データには、恣意性が少なく本質的な運転者のパーソナリティがより強く現れやすい。
With this configuration, the lean vehicle driving data, which is the driving data of the lean vehicle driven by the driver, reflects the change in the driving operation of the lean vehicle after the driver judges. Therefore, the lean vehicle driving data, which is the driving data of the lean vehicle operated by the driver, is less arbitrariness and the essential personality of the driver is more likely to appear.
よって、運転者である分析対象者のパーソナリティをより精度良く分析することができる。また、データの種類を特定したリーン車両走行データを用いることで、パーソナリティを分析する装置で処理するデータの種類を低減でき、前記装置のハードウェアの負荷をより低減できる。また、前記装置で必要とするハードウェアリソースを低減できるため、前記装置のハードウェアリソースの設計の自由度をより高めることできる。
Therefore, it is possible to analyze the personality of the analysis target person who is the driver more accurately. Further, by using the lean vehicle traveling data in which the data type is specified, the type of data processed by the device for analyzing personality can be reduced, and the hardware load of the device can be further reduced. Further, since the hardware resources required by the device can be reduced, the degree of freedom in designing the hardware resources of the device can be further increased.
したがって、ハードウェアリソースの設計自由度をより高めつつ、より精度の高いパーソナリティデータを取得できる。
Therefore, it is possible to acquire more accurate personality data while increasing the degree of freedom in designing hardware resources.
他の観点によれば、本発明のパーソナリティ分析方法は、以下の構成を含むことが好ましい。前記データ変換用のリーン車両走行データは、前記運転者による前記データ変換用のリーン車両への運転操作入力に関連するデータ変換用のリーン車両運転操作入力データ、前記データ変換用のリーン車両の挙動に関連するデータ変換用のリーン車両挙動データ及び前記データ変換用のリーン車両の位置に関連するデータ変換用のリーン車両位置データのうちの少なくとも一つを含む。前記分析用のリーン車両走行データは、前記分析対象者による前記分析用のリーン車両への運転操作入力に関連する分析用のリーン車両運転操作入力データ、前記分析用のリーン車両の挙動に関連する分析用のリーン車両挙動データ及び前記分析用のリーン車両の位置に関連する分析用のリーン車両位置データのうちの少なくとも一つを含む。
From another point of view, the personality analysis method of the present invention preferably includes the following configurations. The lean vehicle driving data for data conversion is the lean vehicle driving operation input data for data conversion related to the driving operation input to the lean vehicle for data conversion by the driver, and the behavior of the lean vehicle for data conversion. Includes at least one of lean vehicle behavior data for data conversion related to and lean vehicle position data for data conversion related to the position of the lean vehicle for data conversion. The lean vehicle driving data for analysis is related to the lean vehicle driving operation input data for analysis related to the driving operation input to the lean vehicle for analysis by the analysis subject, and the behavior of the lean vehicle for analysis. It includes at least one of lean vehicle behavior data for analysis and lean vehicle position data for analysis related to the position of the lean vehicle for analysis.
これにより、分析対象者のパーソナリティに関連するパーソナリティデータに変換する際に用いられるリーン車両走行データは、運転者である分析対象者のパーソナリティをより反映するデータを含む。
As a result, the lean vehicle driving data used when converting to personality data related to the personality of the analysis target person includes data that more reflects the personality of the analysis target person who is the driver.
すなわち、運転者によるリーン車両への運転操作入力に関するリーン車両運転操作入力データ及びリーン車両の挙動に関するリーン車両挙動データは、例えば、運転者の環境刺激及びストレスに対する敏感さ、不安及び緊張の強さなどに関係する。また、リーン車両の位置に関するリーン車両位置データは、運転者の精神状態及び性格などのパーソナリティに関係する。
That is, the lean vehicle driving operation input data regarding the driving operation input to the lean vehicle by the driver and the lean vehicle behavior data regarding the behavior of the lean vehicle are, for example, the driver's sensitivity to environmental stimuli and stress, and the strength of anxiety and tension. And so on. In addition, the lean vehicle position data regarding the position of the lean vehicle is related to the personality such as the driver's mental state and personality.
この構成により、前記リーン車両走行データを用いて、運転者である分析対象者のパーソナリティをより精度良く分析することができる。また、データの種類を特定したリーン車両走行データを用いることで、パーソナリティを分析する装置で処理するデータの種類を低減でき、前記装置のハードウェアの負荷をより低減できる。また、前記装置で必要とするハードウェアリソースを低減できるため、前記装置のハードウェアリソースの設計の自由度をより高めることできる。
With this configuration, the personality of the analysis target person who is the driver can be analyzed more accurately by using the lean vehicle driving data. Further, by using the lean vehicle traveling data in which the data type is specified, the type of data processed by the device for analyzing personality can be reduced, and the hardware load of the device can be further reduced. Further, since the hardware resources required by the device can be reduced, the degree of freedom in designing the hardware resources of the device can be further increased.
したがって、ハードウェアリソースの設計自由度をより高めつつ、より精度の高いパーソナリティデータを取得できる。
Therefore, it is possible to acquire more accurate personality data while increasing the degree of freedom in designing hardware resources.
他の観点によれば、本発明のパーソナリティ分析方法は、以下の構成を含むことが好ましい。前記データ変換用のリーン車両走行データは、更に前記データ変換用のリーン車両が走行する走行環境に関連するデータ変換用のリーン車両走行環境データを含む。前記分析用のリーン車両走行データは、更に前記分析用のリーン車両が走行する走行環境に関連する分析用のリーン車両走行環境データを含む。
From another point of view, the personality analysis method of the present invention preferably includes the following configurations. The lean vehicle traveling data for data conversion further includes lean vehicle traveling environment data for data conversion related to the traveling environment in which the lean vehicle for data conversion travels. The lean vehicle travel data for analysis further includes lean vehicle travel environment data for analysis related to the travel environment in which the lean vehicle for analysis travels.
これにより、分析対象者のパーソナリティに関連するパーソナリティデータに変換する際に用いられるリーン車両走行データは、運転者である分析対象者のパーソナリティをより反映するデータを含む。
As a result, the lean vehicle driving data used when converting to personality data related to the personality of the analysis target person includes data that more reflects the personality of the analysis target person who is the driver.
リーン車両走行環境データは、例えば、マップデータを含む。マップデータは、例えば、道路状況に関する情報、信号、設備などの道路交通環境に関する情報、道路の走行に関する規制情報などと関連付けられていてもよい。リーン車両走行環境データは、前記リーン車両運転操作入力データ、前記リーン車両挙動データ及び前記リーン車両位置データとともに、分析対象者の性格などのパーソナリティの分析に用いることができる。
Lean vehicle driving environment data includes, for example, map data. The map data may be associated with, for example, information on road conditions, information on road traffic environments such as traffic lights and equipment, and regulatory information on road travel. The lean vehicle driving environment data can be used for analyzing personality such as the personality of the person to be analyzed, together with the lean vehicle driving operation input data, the lean vehicle behavior data, and the lean vehicle position data.
この構成により、前記リーン車両走行データを用いて、運転者である分析対象者のパーソナリティをより精度良く分析することができる。また、データの種類を特定したリーン車両走行データを用いることで、パーソナリティを分析する装置で処理するデータの種類を低減でき、前記装置のハードウェアの負荷をより低減できる。また、前記装置で必要とするハードウェアリソースを低減できるため、前記装置のハードウェアリソースの設計の自由度をより高めることできる。
With this configuration, the personality of the analysis target person who is the driver can be analyzed more accurately by using the lean vehicle driving data. Further, by using the lean vehicle traveling data in which the data type is specified, the type of data processed by the device for analyzing personality can be reduced, and the hardware load of the device can be further reduced. Further, since the hardware resources required by the device can be reduced, the degree of freedom in designing the hardware resources of the device can be further increased.
したがって、ハードウェアリソースの設計自由度をより高めつつ、より精度の高いパーソナリティデータを取得できる。
Therefore, it is possible to acquire more accurate personality data while increasing the degree of freedom in designing hardware resources.
他の観点によれば、本発明のパーソナリティ分析方法は、以下の構成を含むことが好ましい。前記データ変換用のリーン車両走行データは、前記データ変換用のリーン車両が公道以外を走行した時のデータより前記データ変換用のリーン車両が公道を走行した時のデータを多く含む。前記分析用のリーン車両走行データは、前記分析用のリーン車両が公道以外を走行した時のデータより前記データ変換用のリーン車両が公道を走行した時のデータを多く含む。
From another point of view, the personality analysis method of the present invention preferably includes the following configurations. The lean vehicle traveling data for data conversion includes more data when the lean vehicle for data conversion travels on a public road than data when the lean vehicle for data conversion travels on a road other than a public road. The lean vehicle traveling data for analysis includes more data when the lean vehicle for data conversion travels on a public road than data when the lean vehicle for analysis travels on a road other than a public road.
公道を走行中の運転者がリーン車両を操作している際には、運転者の判断回数がより多く、判断の選択肢が多く且つ外部からストレスに晒されやすい状況であるため、リーン車両の走行データには運転者のパーソナリティがより強く現れやすい。また、リーン車両は、リーンしない車両に比べて機動性及び利便性が高いため、リーン車両の利用目的が多様になり、利用頻度が多くなる傾向がある。そのため、公道を走行するリーン車両の走行データには運転者のパーソナリティがより強く現れやすい。すなわち、公道を走行するリーン車両の走行データは、運転者の恣意性が少なく且つ運転者の本質的なパーソナリティをより反映する。
When a driver traveling on a public road is operating a lean vehicle, the driver has more judgments, has more choices of judgment, and is easily exposed to external stress. The driver's personality is more likely to appear in the data. In addition, since lean vehicles have higher maneuverability and convenience than non-lean vehicles, lean vehicles tend to be used for various purposes and frequently used. Therefore, the driver's personality is more likely to appear in the driving data of a lean vehicle traveling on a public road. That is, the driving data of a lean vehicle traveling on a public road has less arbitrariness of the driver and more reflects the essential personality of the driver.
この構成により、前記リーン車両走行データを用いて、運転者である分析対象者のパーソナリティをより精度良く分析することができる。また、データの種類を特定したリーン車両走行データを用いることで、パーソナリティを分析する装置で処理するデータの種類を低減でき、前記装置のハードウェアの負荷をより低減できる。また、前記装置で必要とするハードウェアリソースを低減できるため、前記装置のハードウェアリソースの設計の自由度をより高めることできる。
With this configuration, the personality of the analysis target person who is the driver can be analyzed more accurately by using the lean vehicle driving data. Further, by using the lean vehicle traveling data in which the data type is specified, the type of data processed by the device for analyzing personality can be reduced, and the hardware load of the device can be further reduced. Further, since the hardware resources required by the device can be reduced, the degree of freedom in designing the hardware resources of the device can be further increased.
したがって、ハードウェアリソースの設計自由度をより高めつつ、より精度の高いパーソナリティデータを取得できる。
Therefore, it is possible to acquire more accurate personality data while increasing the degree of freedom in designing hardware resources.
他の観点によれば、本発明のパーソナリティ分析方法は、以下の構成を含むことが好ましい。前記データ変換用のリーン車両走行データは、前記データ変換用のリーン車両の周囲の車両によって運転者の判断の選択肢が制限を受けるが複数残されている状態でのデータを含む。前記分析用のリーン車両走行データは、前記分析用のリーン車両の周囲の車両によって分析対象者の判断の選択肢が制限を受けるが複数残されている状態でのデータを含む。
From another point of view, the personality analysis method of the present invention preferably includes the following configurations. The lean vehicle traveling data for data conversion includes data in a state where a plurality of judgment options of the driver are limited by vehicles around the lean vehicle for data conversion, but a plurality of data are left. The lean vehicle traveling data for analysis includes data in a state where a plurality of judgment options of the analysis target person are limited by vehicles around the lean vehicle for analysis, but a plurality of data are left.
この構成により、運転者の判断の選択肢が制限を受けるが複数残されている状態でのリーン車両走行データは、運転者の判断の選択肢が残されていない状態でのリーン車両走行データに比べて、運転者のパーソナリティをより明確に反映している。よって、運転者の判断の選択肢が制限を受けるが複数残されている状態でのリーン車両走行データを用いて、運転者である分析対象者のパーソナリティをより精度良く分析することができる。また、データの種類を特定したリーン車両走行データを用いることで、パーソナリティを分析する装置で処理するデータの種類を低減でき、前記装置のハードウェアの負荷をより低減できる。また、前記装置で必要とするハードウェアリソースを低減できるため、前記装置のハードウェアリソースの設計の自由度をより高めることできる。
With this configuration, the lean vehicle driving data in the state where the driver's judgment options are limited but a plurality of judgment options are left is compared with the lean vehicle driving data in the state where the driver's judgment options are not left. , Reflects the driver's personality more clearly. Therefore, it is possible to more accurately analyze the personality of the analysis target person who is the driver by using the lean vehicle driving data in a state where the driver's judgment options are limited but a plurality of them are left. Further, by using the lean vehicle traveling data in which the data type is specified, the type of data processed by the device for analyzing personality can be reduced, and the hardware load of the device can be further reduced. Further, since the hardware resources required by the device can be reduced, the degree of freedom in designing the hardware resources of the device can be further increased.
したがって、ハードウェアリソースの設計自由度をより高めつつ、より精度の高いパーソナリティデータを取得できる。
Therefore, it is possible to acquire more accurate personality data while increasing the degree of freedom in designing hardware resources.
他の観点によれば、本発明のパーソナリティ分析方法は、以下の構成を含むことが好ましい。前記データ変換用のリーン車両走行データは、同乗者及び物の少なくとも一方を搭載した状態のデータを含む。前記分析用のリーン車両走行データは、同乗者及び物の少なくとも一方を搭載した状態のデータを含む。
From another point of view, the personality analysis method of the present invention preferably includes the following configurations. The lean vehicle traveling data for data conversion includes data in a state where at least one of a passenger and an object is mounted. The lean vehicle driving data for analysis includes data in a state where at least one of a passenger and an object is mounted.
同乗者及び物の少なくとも一方を搭載した状態のリーン車両は、同乗者及び物の少なくとも一方を搭載していない状態より運転者の判断の選択肢が制限を受けやすい。そのため、同乗者及び物の少なくとも一方を搭載した状態のデータを含むリーン車両走行データを用いて、運転者である分析対象者のパーソナリティをより精度良く分析することができる。また、データの種類を特定したリーン車両走行データを用いることで、パーソナリティを分析する装置で処理するデータの種類を低減でき、前記装置のハードウェアの負荷をより低減できる。また、前記装置で必要とするハードウェアリソースを低減できるため、前記装置のハードウェアリソースの設計の自由度をより高めることできる。
A lean vehicle equipped with at least one of a passenger and an object is more likely to be restricted in the driver's judgment options than a vehicle not equipped with at least one of a passenger and an object. Therefore, it is possible to more accurately analyze the personality of the analysis target person who is the driver by using the lean vehicle driving data including the data in the state where at least one of the passenger and the object is mounted. Further, by using the lean vehicle traveling data in which the data type is specified, the type of data processed by the device for analyzing personality can be reduced, and the hardware load of the device can be further reduced. Further, since the hardware resources required by the device can be reduced, the degree of freedom in designing the hardware resources of the device can be further increased.
したがって、ハードウェアリソースの設計自由度をより高めつつ、より精度の高いパーソナリティデータを取得できる。
Therefore, it is possible to acquire more accurate personality data while increasing the degree of freedom in designing hardware resources.
他の観点によれば、本発明のパーソナリティ分析方法は、以下の構成を含むことが好ましい。前記変換された変換パーソナリティデータを記憶する。前記記憶された複数の変換パーソナリティデータを用いて、前記出力用のパーソナリティデータを生成する。
From another point of view, the personality analysis method of the present invention preferably includes the following configurations. The converted conversion personality data is stored. Using the plurality of stored conversion personality data, the personality data for the output is generated.
複数の変換パーソナリティデータを用いることで、リーン車両の運転者である分析対象者のパーソナリティをより精度良く分析することができる。
By using a plurality of converted personality data, it is possible to analyze the personality of the analysis target person who is the driver of the lean vehicle more accurately.
したがって、ハードウェアリソースの設計自由度を高めつつ、より精度の高いパーソナリティデータを取得できる。
Therefore, it is possible to acquire more accurate personality data while increasing the degree of freedom in designing hardware resources.
他の観点によれば、本発明のパーソナリティ分析方法は、以下の構成を含むことが好ましい。前記出力用のパーソナリティデータは、更なる情報処理に用いられる情報処理用パーソナリティデータとして生成される。
From another point of view, the personality analysis method of the present invention preferably includes the following configurations. The personality data for output is generated as information processing personality data used for further information processing.
これにより、分析対象者が運転操作するリーン車両のリーン車両走行データを用いてパーソナリティ分析方法により得られたパーソナリティデータを、更なる情報処理装置で用いることができる。
As a result, the personality data obtained by the personality analysis method using the lean vehicle driving data of the lean vehicle driven and operated by the analysis target person can be used in a further information processing device.
したがって、ハードウェアリソースの設計自由度を高めつつ、更なる情報処理に用いることができるパーソナリティデータを取得できる。
Therefore, it is possible to acquire personality data that can be used for further information processing while increasing the degree of freedom in designing hardware resources.
本発明の一実施形態に係るパーソナリティ分析装置は、分析対象者のパーソナリティを分析するパーソナリティ分析装置である。このパーソナリティ分析装置は、右旋回時に右方向に傾斜し且つ左旋回時に左方向に傾斜するデータ変換用のリーン車両を複数の運転者が運転操作する時にそれぞれ得られる前記データ変換用のリーン車両の走行データに関連するデータ変換用のリーン車両走行データに基づいて、パーソナリティを示すパーソナリティデータとリーン車両の走行データであるリーン車両走行データとを関連付けて生成されたパーソナリティ変換データを取得するパーソナリティ変換データ取得部と、右旋回時に右方向に傾斜し且つ左旋回時に左方向に傾斜する分析用のリーン車両を前記分析対象者が運転操作する時に得られる前記分析用のリーン車両の走行データに関連する分析用のリーン車両走行データを取得する分析用リーン車両走行データ取得部と、前記取得したパーソナリティ変換データを用いて、前記取得した分析用のリーン車両走行データを前記分析対象者のパーソナリティに関連する変換パーソナリティデータに変換するパーソナリティデータ変換部と、前記変換された変換パーソナリティデータを用いて、出力するための出力用のパーソナリティデータを生成する出力用パーソナリティデータ生成部と、前記生成された出力用のパーソナリティデータを出力するデータ出力部と、を備える。
The personality analyzer according to the embodiment of the present invention is a personality analyzer that analyzes the personality of the person to be analyzed. This personality analyzer is a lean vehicle for data conversion obtained when a plurality of drivers operate a lean vehicle for data conversion that tilts to the right when turning right and tilts to the left when turning left. Personality conversion that acquires personality conversion data generated by associating personality data indicating personality with lean vehicle driving data that is lean vehicle driving data based on lean vehicle driving data for data conversion related to the driving data of The data acquisition unit and the running data of the lean vehicle for analysis obtained when the analysis target person operates the lean vehicle for analysis that tilts to the right when turning right and tilts to the left when turning left. Using the lean vehicle driving data acquisition unit for analysis that acquires the lean vehicle driving data for analysis and the acquired personality conversion data, the acquired lean vehicle driving data for analysis is used as the personality of the person to be analyzed. A personality data conversion unit that converts to related conversion personality data, an output personality data generation unit that generates personality data for output to be output using the converted conversion personality data, and the generated output. It is provided with a data output unit that outputs personality data for the user.
他の観点によれば、本発明のパーソナリティ分析装置は、以下の構成を含むことが好ましい。前記データ変換用のリーン車両走行データは、前記運転者による前記データ変換用のリーン車両に対する運転操作の変化が反映されていないデータより前記運転者による前記データ変換用のリーン車両に対する運転操作の変化が反映されているデータを多く含む。前記分析用のリーン車両走行データは、前記分析対象者による前記分析用のリーン車両に対する運転操作の変化が反映されていないデータより前記分析対象者による前記分析用のリーン車両に対する運転操作の変化が反映されているデータを多く含む。
From another point of view, the personality analyzer of the present invention preferably includes the following configurations. The lean vehicle driving data for data conversion is a change in driving operation for the lean vehicle for data conversion by the driver from data that does not reflect the change in driving operation for the lean vehicle for data conversion by the driver. Contains a lot of data that reflects. The lean vehicle driving data for analysis shows that the change in driving operation for the lean vehicle for analysis by the analysis target person is different from the data that does not reflect the change in driving operation for the lean vehicle for analysis by the analysis target person. Contains a lot of reflected data.
他の観点によれば、本発明のパーソナリティ分析装置は、以下の構成を含むことが好ましい。前記データ変換用のリーン車両走行データは、前記運転者による前記データ変換用のリーン車両への運転操作入力に関連するデータ変換用のリーン車両運転操作入力データ、前記データ変換用のリーン車両の挙動に関連するデータ変換用のリーン車両挙動データ及び前記データ変換用のリーン車両の位置に関連するデータ変換用のリーン車両位置データのうちの少なくとも一つを含む。前記分析用のリーン車両走行データは、前記分析対象者による前記分析用のリーン車両への運転操作入力に関連する分析用のリーン車両運転操作入力データ、前記分析用のリーン車両の挙動に関連する分析用のリーン車両挙動データ及び前記分析用のリーン車両の位置に関連する分析用のリーン車両位置データのうち少なくとも一つを含む。
From another point of view, the personality analyzer of the present invention preferably includes the following configurations. The lean vehicle driving data for data conversion is the lean vehicle driving operation input data for data conversion related to the driving operation input to the lean vehicle for data conversion by the driver, and the behavior of the lean vehicle for data conversion. Includes at least one of lean vehicle behavior data for data conversion related to and lean vehicle position data for data conversion related to the position of the lean vehicle for data conversion. The lean vehicle driving data for analysis is related to the lean vehicle driving operation input data for analysis related to the driving operation input to the lean vehicle for analysis by the analysis subject, and the behavior of the lean vehicle for analysis. It includes at least one of the lean vehicle behavior data for analysis and the lean vehicle position data for analysis related to the position of the lean vehicle for analysis.
他の観点によれば、本発明のパーソナリティ分析装置は、以下の構成を含むことが好ましい。前記データ変換用のリーン車両走行データは、更に前記データ変換用のリーン車両が走行する走行環境に関連するデータ変換用のリーン車両走行環境データを含む。前記分析用のリーン車両走行データは、更に前記分析用のリーン車両が走行する走行環境に関連する分析用のリーン車両走行環境データを含む。
From another point of view, the personality analyzer of the present invention preferably includes the following configurations. The lean vehicle traveling data for data conversion further includes lean vehicle traveling environment data for data conversion related to the traveling environment in which the lean vehicle for data conversion travels. The lean vehicle travel data for analysis further includes lean vehicle travel environment data for analysis related to the travel environment in which the lean vehicle for analysis travels.
他の観点によれば、本発明のパーソナリティ分析装置は、以下の構成を含むことが好ましい。前記出力用のパーソナリティデータは、更なる情報処理に用いられる情報処理用パーソナリティデータとして生成される。
From another point of view, the personality analyzer of the present invention preferably includes the following configurations. The personality data for output is generated as information processing personality data used for further information processing.
本発明の一実施形態に係る情報処理方法は、上述のパーソナリティ分析方法で情報処理用パーソナリティデータとして生成された出力用のパーソナリティデータを用いる情報処理方法である。この情報処理方法は、前記出力パーソナリティデータを取得する。前記情報処理方法は、前記出力パーソナリティデータとは異なる第1データを取得する。前記情報処理方法は、前記出力用のパーソナリティデータ及び前記第1データを用いて、前記出力用のパーソナリティデータ及び前記第1データと異なる第2データを生成する。前記情報処理方法は、前記第2データを出力する。
The information processing method according to the embodiment of the present invention is an information processing method using the output personality data generated as the information processing personality data by the above-mentioned personality analysis method. This information processing method acquires the output personality data. The information processing method acquires first data different from the output personality data. The information processing method uses the output personality data and the first data to generate the output personality data and second data different from the first data. The information processing method outputs the second data.
パーソナリティデータを用いる情報処理方法は、背景技術に記載した特許文献に記載されているような情報処理方法を含む。ただし、背景技術に記載した特許文献に記載されているような情報処理方法に限定されることは無い。パーソナリティデータを用いる情報処理方法であればよい。例えば、前記第1データ及び前記第2データは、金融、保険、販売、広告などのビジネスで用いられる、金融、保険、市場、商品、サービス、環境または顧客に関連するデータであってもよい。
The information processing method using the personality data includes the information processing method as described in the patent document described in the background technology. However, it is not limited to the information processing method described in the patent document described in the background technology. Any information processing method that uses personality data may be used. For example, the first data and the second data may be data related to finance, insurance, market, goods, services, environment or customers used in businesses such as finance, insurance, sales and advertising.
これにより、恣意性が少なく本質的な運転者のパーソナリティを含むリーン車両走行データを用いて出力されたパーソナリティデータ及び出力されたパーソナリティデータとは異なる第1データを用いて、取得したパーソナリティデータ及び取得した第1データと異なる第2データを生成し、出力する。このため、より精度の高い第2データを生成し、出力できる。
As a result, the acquired personality data and acquisition using the personality data output using the lean vehicle driving data including the less arbitrariness and the essential driver's personality and the first data different from the output personality data. The second data different from the first data is generated and output. Therefore, it is possible to generate and output the second data with higher accuracy.
したがって、パーソナリティデータを用いる情報処理方法を実行するハードウェアリソースの設計自由度を高めつつ、パーソナリティデータを用いてより精度の高い第2データを生成し、出力できる。
Therefore, it is possible to generate and output more accurate second data using the personality data while increasing the degree of freedom in designing the hardware resource that executes the information processing method using the personality data.
本発明の一実施形態に係る情報処理装置は、上述のパーソナリティ分析装置で前記情報処理用パーソナリティデータとして生成された前記出力用のパーソナリティデータを用いる情報処理装置である。この情報処理装置は、前記出力用のパーソナリティデータを取得する出力用のパーソナリティデータ取得部と、前記出力用のパーソナリティデータとは異なる第1データを取得する第1データ取得部と、前記出力用のパーソナリティデータ及び前記第1データを用いて、前記出力用のパーソナリティデータ及び前記第1データと異なる第2データを生成する第2データ生成部と、前記第2データを出力する第2データ出力部と、を備える。
The information processing device according to the embodiment of the present invention is an information processing device that uses the personality data for output generated as the personality data for information processing by the personality analyzer described above. This information processing device includes an output personality data acquisition unit that acquires the output personality data, a first data acquisition unit that acquires first data different from the output personality data, and an output personality data unit. A second data generation unit that uses the personality data and the first data to generate the personality data for output and a second data different from the first data, and a second data output unit that outputs the second data. , Equipped with.
本明細書で使用される専門用語は、特定の実施例のみを定義する目的で利用されるのであって、前記専門用語によって発明を制限する意図はない。
The technical terms used in the present specification are used for the purpose of defining only specific examples, and there is no intention of limiting the invention by the technical terms.
本明細書で使用される「及び/または」は、一つまたは複数の関連して列挙された構成物のすべての組み合わせを含む。
As used herein, "and / or" includes all combinations of one or more relatedly listed components.
本明細書において、「含む、備える(including)」「含む、備える(comprising)」または「有する(having)」及びそれらの変形の使用は、記載された特徴、工程、要素、成分、及び/または、それらの等価物の存在を特定するが、ステップ、動作、要素、コンポーネント、及び/または、それらのグループのうちの一つまたは複数を含むことができる。
As used herein, the use of "including, including," "comprising," or "having," and variations thereof, are described features, processes, elements, components, and / or. , Identifying the existence of their equivalents, but may include one or more of steps, actions, elements, components, and / or groups thereof.
本明細書において、「取り付けられた」、「接続された」、「結合された」、及び/または、それらの等価物は、広義の意味で使用され、“直接的及び間接的な”取り付け、接続及び結合の両方を包含する。さらに、「接続された」及び「結合された」は、物理的または機械的な接続または結合に限定されず、直接的または間接的な接続または結合を含むことができる。
In the present specification, "attached", "connected", "combined", and / or their equivalents are used in a broad sense and are "direct and indirect" attachments. Includes both connection and connection. Further, "connected" and "connected" are not limited to physical or mechanical connections or connections, but can include direct or indirect connections or connections.
他に定義されない限り、本明細書で使用される全ての用語(技術用語及び科学用語を含む)は、本発明が属する技術分野の当業者によって一般的に理解される意味と同じ意味を有する。
Unless otherwise defined, all terms used herein (including technical and scientific terms) have the same meaning as commonly understood by those skilled in the art to which the present invention belongs.
一般的に使用される辞書に定義された用語は、関連する技術及び本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、本明細書で明示的に定義されていない限り、理想的または過度に形式的な意味で解釈されることはない。
Terms defined in commonly used dictionaries should be construed to have meanings consistent with their meaning in the context of the relevant technology and disclosure, unless expressly defined herein. , Is not interpreted in an ideal or overly formal sense.
本発明の説明においては、いくつもの技術及び工程が開示されていると理解される。これらの各々は、個別の利益を有し、他に開示された技術の一つ以上、または、場合によっては全てと共に使用することもできる。
It is understood that a number of techniques and processes are disclosed in the description of the present invention. Each of these has its own interests and can be used with one or more of the other disclosed techniques, or in some cases all.
したがって、明確にするために、本発明の説明では、不要に個々のステップの可能な組み合わせをすべて繰り返すことを控える。しかしながら、本明細書及び特許請求の範囲は、そのような組み合わせがすべて本発明の範囲内であることを理解して読まれるべきである。
Therefore, for the sake of clarity, the description of the present invention refrains from unnecessarily repeating all possible combinations of individual steps. However, the specification and claims should be read with the understanding that all such combinations are within the scope of the present invention.
本明細書では、本発明に係るパーソナリティ分析方法、パーソナリティ分析装置、パーソナリティデータを用いる情報処理方法及びパーソナリティデータを用いる情報処理装置の実施形態について説明する。
This specification describes an embodiment of a personality analysis method, a personality analysis device, an information processing method using personality data, and an information processing device using personality data according to the present invention.
以下の説明では、本発明の完全な理解を提供するために多数の具体的な例を述べる。しかしながら、当業者は、これらの具体的な例がなくても本発明を実施できることが明らかである。
In the following description, a number of specific examples will be given to provide a complete understanding of the present invention. However, it will be apparent to those skilled in the art that the present invention can be practiced without these specific examples.
よって、以下の開示は、本発明の例示として考慮されるべきであり、本発明を以下の図面または説明によって示される特定の実施形態に限定することを意図するものではない。
Therefore, the following disclosure should be considered as an example of the invention and is not intended to limit the invention to the particular embodiments set forth in the drawings or description below.
[リーン車両]
本明細書において、リーン車両とは、傾斜姿勢で旋回する車両である。具体的には、リーン車両は、車両の左右方向において、左方向に旋回する際に左方向に傾斜し、右方向に旋回する際に右方向に傾斜する車両である。リーン車両は、一人乗りの車両であってもよいし、複数人が乗車可能な車両であってもよい。なお、リーン車両は、2輪車だけでなく、3輪車または4輪車など、傾斜姿勢で旋回する全ての車両を含む。 [Lean vehicle]
In the present specification, the lean vehicle is a vehicle that turns in an inclined posture. Specifically, a lean vehicle is a vehicle that inclines to the left when turning to the left and to the right when turning to the right in the left-right direction of the vehicle. The lean vehicle may be a single-seater vehicle or a vehicle that can accommodate a plurality of people. The lean vehicle includes not only a two-wheeled vehicle but also all vehicles that turn in an inclined posture, such as a three-wheeled vehicle or a four-wheeled vehicle.
本明細書において、リーン車両とは、傾斜姿勢で旋回する車両である。具体的には、リーン車両は、車両の左右方向において、左方向に旋回する際に左方向に傾斜し、右方向に旋回する際に右方向に傾斜する車両である。リーン車両は、一人乗りの車両であってもよいし、複数人が乗車可能な車両であってもよい。なお、リーン車両は、2輪車だけでなく、3輪車または4輪車など、傾斜姿勢で旋回する全ての車両を含む。 [Lean vehicle]
In the present specification, the lean vehicle is a vehicle that turns in an inclined posture. Specifically, a lean vehicle is a vehicle that inclines to the left when turning to the left and to the right when turning to the right in the left-right direction of the vehicle. The lean vehicle may be a single-seater vehicle or a vehicle that can accommodate a plurality of people. The lean vehicle includes not only a two-wheeled vehicle but also all vehicles that turn in an inclined posture, such as a three-wheeled vehicle or a four-wheeled vehicle.
[パーソナリティ]
本明細書において、パーソナリティとは、個人の心理状態、性格、気質等によって決まる個性を意味する。具体的には、前記パーソナリティには、神経症傾向、外向性、経験への開放性、協調性、誠実性の5つの要素を含んでもよい。また、前記パーソナリティには、内閉性、同調性、粘着性、顕示性、過敏性、過信性などの性格6類型を含んでもよい。さらに、前記パーソナリティは、新奇性欲求、報酬依存、損害回避及び固執の気質と、自己志向、協調及び自己超越の性格とを含んでいてもよい。また、前記パーソナリティと関連付けられる運転スタイルとして、運転スキルへの自信、運転に対する消極性、せっかちな運転傾向、几帳面な運転傾向、信号に対する事前準備的な運転、ステイタスシンボルとしての車、不安定な精神状態での運転及び心配性的傾向を含んでいてもよい。 [Personality]
In the present specification, personality means individuality determined by an individual's psychological state, personality, temperament, and the like. Specifically, the personality may include five elements: neuroticism, extroversion, openness to experience, coordination, and integrity. In addition, the personality may include six personality types such as internal closure, synchrony, stickiness, manifestation, hypersensitivity, and coherence. In addition, the personality may include a novelty desire, reward dependence, damage avoidance and persistence temperament and a self-oriented, cooperative and self-transcendent personality. In addition, as driving styles associated with the personality, confidence in driving skills, reluctance to drive, impatient driving tendency, careful driving tendency, preparatory driving for traffic lights, car as a status symbol, unstable spirit It may include driving in a state and anxious tendencies.
本明細書において、パーソナリティとは、個人の心理状態、性格、気質等によって決まる個性を意味する。具体的には、前記パーソナリティには、神経症傾向、外向性、経験への開放性、協調性、誠実性の5つの要素を含んでもよい。また、前記パーソナリティには、内閉性、同調性、粘着性、顕示性、過敏性、過信性などの性格6類型を含んでもよい。さらに、前記パーソナリティは、新奇性欲求、報酬依存、損害回避及び固執の気質と、自己志向、協調及び自己超越の性格とを含んでいてもよい。また、前記パーソナリティと関連付けられる運転スタイルとして、運転スキルへの自信、運転に対する消極性、せっかちな運転傾向、几帳面な運転傾向、信号に対する事前準備的な運転、ステイタスシンボルとしての車、不安定な精神状態での運転及び心配性的傾向を含んでいてもよい。 [Personality]
In the present specification, personality means individuality determined by an individual's psychological state, personality, temperament, and the like. Specifically, the personality may include five elements: neuroticism, extroversion, openness to experience, coordination, and integrity. In addition, the personality may include six personality types such as internal closure, synchrony, stickiness, manifestation, hypersensitivity, and coherence. In addition, the personality may include a novelty desire, reward dependence, damage avoidance and persistence temperament and a self-oriented, cooperative and self-transcendent personality. In addition, as driving styles associated with the personality, confidence in driving skills, reluctance to drive, impatient driving tendency, careful driving tendency, preparatory driving for traffic lights, car as a status symbol, unstable spirit It may include driving in a state and anxious tendencies.
上述以外にも、前記パーソナリティには、個人の個性に関するパラメータであれば、どのようなパラメータを含んでいてもよい。
In addition to the above, the personality may include any parameter as long as it is a parameter related to an individual's individuality.
[リーン車両走行データ]
本明細書において、リーン車両走行データとは、リーン車両の走行に関連するデータである。具体的には、前記リーン車両走行データは、運転者によるリーン車両への運転操作入力に関連するリーン車両運転操作入力データ、リーン車両の挙動に関連するリーン車両挙動データ、リーン車両の走行位置に関連するリーン車両位置データ、及び、リーン車両が走行する走行環境に関連するリーン車両走行環境データなどの少なくとも一つのデータを含む。また、前記リーン車両走行データは、リーン車両運転操作入力データ、リーン車両挙動データ、リーン車両位置データ、及び、リーン車両走行環境データなどが加工された加工データを含んでいてもよい。前記リーン車両走行データは、リーン車両運転操作入力データ、リーン車両挙動データ、リーン車両位置データ、及び、リーン車両走行環境データなどと他のデータとを用いて加工された加工データを含んでいてもよい。 [Lean vehicle driving data]
In the present specification, the lean vehicle traveling data is data related to the traveling of the lean vehicle. Specifically, the lean vehicle driving data includes lean vehicle driving operation input data related to driving operation input to the lean vehicle by the driver, lean vehicle behavior data related to the behavior of the lean vehicle, and the traveling position of the lean vehicle. It includes at least one data such as related lean vehicle position data and lean vehicle driving environment data related to the driving environment in which the lean vehicle travels. Further, the lean vehicle traveling data may include processed data obtained by processing lean vehicle driving operation input data, lean vehicle behavior data, lean vehicle position data, lean vehicle traveling environment data, and the like. The lean vehicle driving data may include processing data processed by using lean vehicle driving operation input data, lean vehicle behavior data, lean vehicle position data, lean vehicle driving environment data, and other data. Good.
本明細書において、リーン車両走行データとは、リーン車両の走行に関連するデータである。具体的には、前記リーン車両走行データは、運転者によるリーン車両への運転操作入力に関連するリーン車両運転操作入力データ、リーン車両の挙動に関連するリーン車両挙動データ、リーン車両の走行位置に関連するリーン車両位置データ、及び、リーン車両が走行する走行環境に関連するリーン車両走行環境データなどの少なくとも一つのデータを含む。また、前記リーン車両走行データは、リーン車両運転操作入力データ、リーン車両挙動データ、リーン車両位置データ、及び、リーン車両走行環境データなどが加工された加工データを含んでいてもよい。前記リーン車両走行データは、リーン車両運転操作入力データ、リーン車両挙動データ、リーン車両位置データ、及び、リーン車両走行環境データなどと他のデータとを用いて加工された加工データを含んでいてもよい。 [Lean vehicle driving data]
In the present specification, the lean vehicle traveling data is data related to the traveling of the lean vehicle. Specifically, the lean vehicle driving data includes lean vehicle driving operation input data related to driving operation input to the lean vehicle by the driver, lean vehicle behavior data related to the behavior of the lean vehicle, and the traveling position of the lean vehicle. It includes at least one data such as related lean vehicle position data and lean vehicle driving environment data related to the driving environment in which the lean vehicle travels. Further, the lean vehicle traveling data may include processed data obtained by processing lean vehicle driving operation input data, lean vehicle behavior data, lean vehicle position data, lean vehicle traveling environment data, and the like. The lean vehicle driving data may include processing data processed by using lean vehicle driving operation input data, lean vehicle behavior data, lean vehicle position data, lean vehicle driving environment data, and other data. Good.
[リーン車両運転操作入力データ]
本明細書において、リーン車両運転操作入力データは、運転者がリーン車両を運転操作する際に行う運転者の操作入力に関連するデータである。具体的には、前記リーン車両運転操作入力データは、アクセル操作、ブレーキ操作、操舵または運転者の姿勢変化による重心位置の変更などに関連するデータを含んでいてもよい。また、具体的には、前記リーン車両運転操作入力データは、ホーンスイッチ、ウィンカースイッチ、照明スイッチなどの各種スイッチの操作等に関連するデータを含んでいてもよい。前記リーン車両運転操作入力データは、運転者による運転操作入力に関連するデータであるため、運転者の判断の結果をより反映している。リーン車両では、運転者の運転操作の種類が多く、複雑に関連しているため、運転者のパーソナリティが強く反映される傾向がある。また、前記リーン車両運転操作入力データは、センサなどから取得したデータが加工された加工データを含んでいてもよい。前記リーン車両運転操作入力データは、センサなどから取得したデータと他のデータとを用いて加工された加工データを含んでいてもよい。 [Lean vehicle driving operation input data]
In the present specification, the lean vehicle driving operation input data is data related to the driver's operation input performed when the driver drives and operates the lean vehicle. Specifically, the lean vehicle driving operation input data may include data related to accelerator operation, braking operation, steering, or change of the center of gravity position due to a change in the driver's posture. Further, specifically, the lean vehicle driving operation input data may include data related to the operation of various switches such as a horn switch, a blinker switch, and a lighting switch. Since the lean vehicle driving operation input data is data related to the driving operation input by the driver, the result of the driver's judgment is more reflected. Lean vehicles tend to strongly reflect the driver's personality because there are many types of driver's driving operations and they are intricately related. Further, the lean vehicle driving operation input data may include processing data obtained by processing data acquired from a sensor or the like. The lean vehicle driving operation input data may include processing data processed using data acquired from a sensor or the like and other data.
本明細書において、リーン車両運転操作入力データは、運転者がリーン車両を運転操作する際に行う運転者の操作入力に関連するデータである。具体的には、前記リーン車両運転操作入力データは、アクセル操作、ブレーキ操作、操舵または運転者の姿勢変化による重心位置の変更などに関連するデータを含んでいてもよい。また、具体的には、前記リーン車両運転操作入力データは、ホーンスイッチ、ウィンカースイッチ、照明スイッチなどの各種スイッチの操作等に関連するデータを含んでいてもよい。前記リーン車両運転操作入力データは、運転者による運転操作入力に関連するデータであるため、運転者の判断の結果をより反映している。リーン車両では、運転者の運転操作の種類が多く、複雑に関連しているため、運転者のパーソナリティが強く反映される傾向がある。また、前記リーン車両運転操作入力データは、センサなどから取得したデータが加工された加工データを含んでいてもよい。前記リーン車両運転操作入力データは、センサなどから取得したデータと他のデータとを用いて加工された加工データを含んでいてもよい。 [Lean vehicle driving operation input data]
In the present specification, the lean vehicle driving operation input data is data related to the driver's operation input performed when the driver drives and operates the lean vehicle. Specifically, the lean vehicle driving operation input data may include data related to accelerator operation, braking operation, steering, or change of the center of gravity position due to a change in the driver's posture. Further, specifically, the lean vehicle driving operation input data may include data related to the operation of various switches such as a horn switch, a blinker switch, and a lighting switch. Since the lean vehicle driving operation input data is data related to the driving operation input by the driver, the result of the driver's judgment is more reflected. Lean vehicles tend to strongly reflect the driver's personality because there are many types of driver's driving operations and they are intricately related. Further, the lean vehicle driving operation input data may include processing data obtained by processing data acquired from a sensor or the like. The lean vehicle driving operation input data may include processing data processed using data acquired from a sensor or the like and other data.
[リーン車両挙動データ]
本明細書において、リーン車両挙動データとは、リーン車両が運転者によって運転操作される際に、運転者の操作入力によって生じるリーン車両の挙動に関連するデータである。具体的には、前記リーン車両挙動データは、例えば、分析対象者である運転者がリーン車両を運転操作した際に変化するリーン車両の加速度、速度、角度を含む。すなわち、前記リーン車両挙動データは、分析対象者である運転者がアクセル操作またはブレーキ操作を行ってリーン車両の加減速を行った場合、リーン車両の操舵または重心位置の変更を含む姿勢変化を行った場合などに生じるリーン車両の挙動を現すデータである。 [Lean vehicle behavior data]
In the present specification, the lean vehicle behavior data is data related to the behavior of the lean vehicle generated by the operation input of the driver when the lean vehicle is driven and operated by the driver. Specifically, the lean vehicle behavior data includes, for example, the acceleration, speed, and angle of the lean vehicle that change when the driver who is the analysis target drives and operates the lean vehicle. That is, when the driver who is the analysis target operates the accelerator or the brake to accelerate or decelerate the lean vehicle, the lean vehicle behavior data changes the posture including steering of the lean vehicle or changing the position of the center of gravity. It is data showing the behavior of a lean vehicle that occurs in such a case.
本明細書において、リーン車両挙動データとは、リーン車両が運転者によって運転操作される際に、運転者の操作入力によって生じるリーン車両の挙動に関連するデータである。具体的には、前記リーン車両挙動データは、例えば、分析対象者である運転者がリーン車両を運転操作した際に変化するリーン車両の加速度、速度、角度を含む。すなわち、前記リーン車両挙動データは、分析対象者である運転者がアクセル操作またはブレーキ操作を行ってリーン車両の加減速を行った場合、リーン車両の操舵または重心位置の変更を含む姿勢変化を行った場合などに生じるリーン車両の挙動を現すデータである。 [Lean vehicle behavior data]
In the present specification, the lean vehicle behavior data is data related to the behavior of the lean vehicle generated by the operation input of the driver when the lean vehicle is driven and operated by the driver. Specifically, the lean vehicle behavior data includes, for example, the acceleration, speed, and angle of the lean vehicle that change when the driver who is the analysis target drives and operates the lean vehicle. That is, when the driver who is the analysis target operates the accelerator or the brake to accelerate or decelerate the lean vehicle, the lean vehicle behavior data changes the posture including steering of the lean vehicle or changing the position of the center of gravity. It is data showing the behavior of a lean vehicle that occurs in such a case.
また、前記リーン車両挙動データは、上述のように、リーン車両の加速度、速度、角度に関するデータだけでなく、運転者がリーン車両に対して行うスイッチ操作等によってリーン車両で生じる動作を含んでもよい。すなわち、前記リーン車両挙動データは、ホーンスイッチ及びウィンカースイッチ、照明スイッチなどの各種スイッチの操作等によってリーン車両に生じる動作に関連するデータを含む。前記リーン車両挙動データは、運転者の運転操作の入力の結果が強く反映される。そのため、前記リーン車両挙動データにも、運転者のパーソナリティが強く反映される傾向がある。また、前記リーン車両挙動データは、センサなどから取得したデータが加工された加工データを含んでいてもよい。前記リーン車両挙動データは、センサなどから取得したデータと他のデータとを用いて加工された加工データを含んでいてもよい。
Further, the lean vehicle behavior data may include not only data on the acceleration, speed, and angle of the lean vehicle as described above, but also operations generated in the lean vehicle by a switch operation or the like performed by the driver on the lean vehicle. .. That is, the lean vehicle behavior data includes data related to the operation generated in the lean vehicle by operating various switches such as a horn switch, a blinker switch, and a lighting switch. The lean vehicle behavior data strongly reflects the result of input of the driver's driving operation. Therefore, the driver's personality tends to be strongly reflected in the lean vehicle behavior data. Further, the lean vehicle behavior data may include processing data obtained by processing data acquired from a sensor or the like. The lean vehicle behavior data may include processing data processed using data acquired from a sensor or the like and other data.
[リーン車両位置データ]
本明細書において、リーン車両位置データは、リーン車両の走行位置に関連するデータである。例えば、前記リーン車両位置データは、GPS、通信携帯端末の通信基地局の情報に基づいて検出することができる。なお、前記リーン車両位置データは、種々の測位技術、SLAMなどで算出することができる。前記リーン車両位置データは、運転者のパーソナリティが強く反映されている運転者の運転操作の入力の結果が強く反映される。そのため、前記リーン車両位置データにも、運転者のパーソナリティが強く反映される傾向がある。また、前記リーン車両位置データは、センサなどから取得したデータが加工された加工データを含んでいてもよい。前記リーン車両位置データは、センサなどから取得したデータと他のデータとを用いて加工された加工データを含んでいてもよい。 [Lean vehicle position data]
In the present specification, the lean vehicle position data is data related to the traveling position of the lean vehicle. For example, the lean vehicle position data can be detected based on GPS and communication base station information of a communication mobile terminal. The lean vehicle position data can be calculated by various positioning techniques, SLAM, and the like. The lean vehicle position data strongly reflects the result of input of the driver's driving operation, which strongly reflects the driver's personality. Therefore, the driver's personality tends to be strongly reflected in the lean vehicle position data. Further, the lean vehicle position data may include processed data obtained by processing data acquired from a sensor or the like. The lean vehicle position data may include processing data processed using data acquired from a sensor or the like and other data.
本明細書において、リーン車両位置データは、リーン車両の走行位置に関連するデータである。例えば、前記リーン車両位置データは、GPS、通信携帯端末の通信基地局の情報に基づいて検出することができる。なお、前記リーン車両位置データは、種々の測位技術、SLAMなどで算出することができる。前記リーン車両位置データは、運転者のパーソナリティが強く反映されている運転者の運転操作の入力の結果が強く反映される。そのため、前記リーン車両位置データにも、運転者のパーソナリティが強く反映される傾向がある。また、前記リーン車両位置データは、センサなどから取得したデータが加工された加工データを含んでいてもよい。前記リーン車両位置データは、センサなどから取得したデータと他のデータとを用いて加工された加工データを含んでいてもよい。 [Lean vehicle position data]
In the present specification, the lean vehicle position data is data related to the traveling position of the lean vehicle. For example, the lean vehicle position data can be detected based on GPS and communication base station information of a communication mobile terminal. The lean vehicle position data can be calculated by various positioning techniques, SLAM, and the like. The lean vehicle position data strongly reflects the result of input of the driver's driving operation, which strongly reflects the driver's personality. Therefore, the driver's personality tends to be strongly reflected in the lean vehicle position data. Further, the lean vehicle position data may include processed data obtained by processing data acquired from a sensor or the like. The lean vehicle position data may include processing data processed using data acquired from a sensor or the like and other data.
[リーン車両走行環境データ]
本明細書において、リーン車両走行環境データは、例えば、マップデータを含む。マップデータは、例えば、道路状況に関する情報、信号、設備などの道路交通環境に関する情報、道路の走行に関する規制情報などと関連付けられていてもよい。また、マップデータは、天気、気温または湿度などの環境データなどと関連付けられていてもよい。前記リーン車両走行環境データは、前記リーン車両運転操作入力データ、前記リーン車両挙動データ及び前記リーン車両位置データとともに、分析対象者の性格などのパーソナリティの分析に用いることができる。 [Lean vehicle driving environment data]
In the present specification, the lean vehicle driving environment data includes, for example, map data. The map data may be associated with, for example, information on road conditions, information on road traffic environments such as traffic lights and equipment, and regulatory information on road travel. In addition, the map data may be associated with environmental data such as weather, temperature or humidity. The lean vehicle driving environment data can be used for personality analysis such as the personality of the person to be analyzed, together with the lean vehicle driving operation input data, the lean vehicle behavior data, and the lean vehicle position data.
本明細書において、リーン車両走行環境データは、例えば、マップデータを含む。マップデータは、例えば、道路状況に関する情報、信号、設備などの道路交通環境に関する情報、道路の走行に関する規制情報などと関連付けられていてもよい。また、マップデータは、天気、気温または湿度などの環境データなどと関連付けられていてもよい。前記リーン車両走行環境データは、前記リーン車両運転操作入力データ、前記リーン車両挙動データ及び前記リーン車両位置データとともに、分析対象者の性格などのパーソナリティの分析に用いることができる。 [Lean vehicle driving environment data]
In the present specification, the lean vehicle driving environment data includes, for example, map data. The map data may be associated with, for example, information on road conditions, information on road traffic environments such as traffic lights and equipment, and regulatory information on road travel. In addition, the map data may be associated with environmental data such as weather, temperature or humidity. The lean vehicle driving environment data can be used for personality analysis such as the personality of the person to be analyzed, together with the lean vehicle driving operation input data, the lean vehicle behavior data, and the lean vehicle position data.
前記道路状況に関する情報は、渋滞が頻発する、路上駐車車両が多い等、混雑する環境下にある道路(地域)に関する情報を含む。この情報は、時間帯と組み合わせることによって、より情報の精度が上がる。また、前記道路状況に関する情報は、スコールがあると冠水し易い道路に関する情報を含む。
The information on the road conditions includes information on roads (regions) in a congested environment such as frequent traffic jams and many vehicles parked on the street. By combining this information with the time zone, the accuracy of the information is further improved. In addition, the information on the road condition includes information on a road that is easily flooded when there is a squall.
前記リーン車両走行環境データは、運転者が受ける外部からのストレスの一例であると考えられる。前記リーン車両走行環境データは、運転者の判断に影響を与える。前記リーン車両走行環境データは、運転者の運転操作に影響を与える。そのため、前記リーン車両走行環境データを用いることで、リーン車両の走行データには運転者のパーソナリティがより強く現れやすくなる。また、前記リーン車両走行環境データを用いることで、リーン車両の利用目的及び利用頻度が影響を受けるため、リーン車両の走行データには運転者のパーソナリティが強く現れやすい。
The lean vehicle driving environment data is considered to be an example of external stress received by the driver. The lean vehicle driving environment data influences the judgment of the driver. The lean vehicle driving environment data affects the driving operation of the driver. Therefore, by using the lean vehicle driving environment data, the driver's personality is more likely to appear in the driving data of the lean vehicle. Further, since the purpose and frequency of use of the lean vehicle are affected by using the lean vehicle driving environment data, the driving data of the lean vehicle tends to strongly show the personality of the driver.
前記リーン車両走行環境データは、種々の手段から取得することができる。前記リーン車両走行環境データを取得する手段は、ある手段に限定されることはない。例えば、前記リーン車両走行環境データを取得する手段は、リーン車両に搭載した外部環境認識装置である。より具体的には、前記リーン車両走行環境データを取得する手段は、カメラ、レーダーなどがある。また、例えば、前記リーン車両走行環境データを取得する手段は、通信装置である。より具体的には、前記リーン車両走行環境データを取得する手段は、車車間通信装置、路車間通信装置である。前記リーン車両走行環境データは、例えば、インターネットを介して入手することもできる。
The lean vehicle driving environment data can be obtained from various means. The means for acquiring the lean vehicle driving environment data is not limited to a certain means. For example, the means for acquiring the lean vehicle traveling environment data is an external environment recognition device mounted on the lean vehicle. More specifically, the means for acquiring the lean vehicle driving environment data includes a camera, a radar, and the like. Further, for example, the means for acquiring the lean vehicle traveling environment data is a communication device. More specifically, the means for acquiring the lean vehicle traveling environment data is a vehicle-to-vehicle communication device and a road-to-vehicle communication device. The lean vehicle driving environment data can also be obtained, for example, via the Internet.
[公道]
本明細書において、公道とは、シミュレーション及びサーキットの走行路ではなく、一般車両が通行可能な公共用の道路である。前記公道には、一般車両が通行可能な私道も含まれる。 [Public road]
In the present specification, the public road is not a simulation and circuit track, but a public road through which general vehicles can pass. The public roads also include private roads that general vehicles can pass through.
本明細書において、公道とは、シミュレーション及びサーキットの走行路ではなく、一般車両が通行可能な公共用の道路である。前記公道には、一般車両が通行可能な私道も含まれる。 [Public road]
In the present specification, the public road is not a simulation and circuit track, but a public road through which general vehicles can pass. The public roads also include private roads that general vehicles can pass through.
[AよりBを多く含む]
本明細書において、「AよりBを多く含む」とは、Aを全く含んでいなくてもよい。「AよりBを多く含む」とは、Aを一部含んでいてもよい。 [Contains more B than A]
In the present specification, "containing more B than A" does not have to contain A at all. "Contains more B than A" may include a part of A.
本明細書において、「AよりBを多く含む」とは、Aを全く含んでいなくてもよい。「AよりBを多く含む」とは、Aを一部含んでいてもよい。 [Contains more B than A]
In the present specification, "containing more B than A" does not have to contain A at all. "Contains more B than A" may include a part of A.
例えば、運転者によるデータ変換用のリーン車両に対する運転操作の変化が反映されていないデータより運転者によるデータ変換用のリーン車両に対する運転操作の変化が反映されているデータを多く含むとは、運転者によるデータ変換用のリーン車両に対する運転操作の変化が反映されていないデータを全く含んでいなくてもよい。例えば、運転者によるデータ変換用のリーン車両に対する運転操作の変化が反映されていないデータより運転者によるデータ変換用のリーン車両に対する運転操作の変化が反映されているデータを多く含むとは、運転者によるデータ変換用のリーン車両に対する運転操作の変化が反映されていないデータを一部含んでいてもよい。
For example, driving includes more data that reflects changes in driving operations for lean vehicles for data conversion by drivers than data that does not reflect changes in driving operations for lean vehicles for data conversion by drivers. It is not necessary to include any data that does not reflect changes in driving operations for lean vehicles for data conversion by a person. For example, driving includes more data that reflects changes in driving operations for lean vehicles for data conversion by drivers than data that does not reflect changes in driving operations for lean vehicles for data conversion by drivers. It may include some data that does not reflect changes in driving operations for lean vehicles for data conversion by the person.
例えば、分析対象者による分析用のリーン車両に対する運転操作の変化が反映されていないデータより分析対象者による分析用のリーン車両に対する運転操作の変化が反映されているデータを多く含むとは、分析対象者による分析用のリーン車両に対する運転操作の変化が反映されていないデータを全く含んでいなくてもよい。例えば、分析対象者による分析用のリーン車両に対する運転操作の変化が反映されていないデータより分析対象者による分析用のリーン車両に対する運転操作の変化が反映されているデータを多く含むとは、分析対象者による分析用のリーン車両に対する運転操作の変化が反映されていないデータを一部含んでいてもよい。
For example, it is analyzed that the data that does not reflect the change in driving operation for the lean vehicle for analysis by the analysis subject contains more data that reflects the change in driving operation for the lean vehicle for analysis by the analysis subject. It does not have to include any data that does not reflect changes in driving maneuvers for the lean vehicle for analysis by the subject. For example, it is analyzed that the data that does not reflect the change in driving operation for the lean vehicle for analysis by the analysis subject contains more data that reflects the change in driving operation for the lean vehicle for analysis by the analysis subject. It may include some data that does not reflect changes in driving operations on the lean vehicle for analysis by the subject.
例えば、データ変換用のリーン車両が公道以外を走行した時のデータよりデータ変換用のリーン車両が公道を走行した時のデータを多く含むとは、データ変換用のリーン車両が公道以外を走行した時のデータを全く含んでいなくてもよい。例えば、データ変換用のリーン車両が公道以外を走行した時のデータよりデータ変換用のリーン車両が公道を走行した時のデータを多く含むとは、データ変換用のリーン車両が公道以外を走行した時のデータを一部含んでいてもよい。
For example, if a lean vehicle for data conversion contains more data when a lean vehicle for data conversion travels on a public road than a data when a lean vehicle for data conversion travels on a non-public road, the lean vehicle for data conversion travels on a non-public road. It does not have to contain any time data. For example, if a lean vehicle for data conversion contains more data when a lean vehicle for data conversion travels on a public road than a data when a lean vehicle for data conversion travels on a non-public road, the lean vehicle for data conversion travels on a non-public road. It may include some time data.
例えば、分析用のリーン車両が公道以外を走行した時のデータより分析用のリーン車両が公道を走行した時のデータを多く含むとは、分析用のリーン車両が公道以外を走行した時のデータを全く含んでいなくてもよい。例えば、分析用のリーン車両が公道以外を走行した時のデータより分析用のリーン車両が公道を走行した時のデータを多く含むとは、分析用のリーン車両が公道以外を走行した時のデータを一部含んでいてもよい。
For example, the fact that the data when the lean vehicle for analysis travels on a public road is included more than the data when the lean vehicle for analysis travels on a non-public road is the data when the lean vehicle for analysis travels on a non-public road. It does not have to contain at all. For example, the fact that the data when the lean vehicle for analysis travels on a public road is included more than the data when the lean vehicle for analysis travels on a non-public road is the data when the lean vehicle for analysis travels on a non-public road. May be partially included.
本発明の一実施形態によれば、ハードウェアリソースの設計自由度を高めつつ、パーソナリティデータを取得できるパーソナリティ分析方法を提供することができる。
According to one embodiment of the present invention, it is possible to provide a personality analysis method capable of acquiring personality data while increasing the degree of freedom in designing hardware resources.
本発明者らは、リーン車両の走行データを分析する中で、リーン車両の走行データとリーンしない車両の走行データとが大きく異なることに気がついた。前記リーン車両は、右旋回時に右方向に傾斜し、左旋回時に左方向に傾斜する車両である。
While analyzing the running data of the lean vehicle, the present inventors noticed that the running data of the lean vehicle and the running data of the non-lean vehicle are significantly different. The lean vehicle is a vehicle that tilts to the right when turning right and tilts to the left when turning left.
リーン車両は、リーンしない車両よりも車体の大きさが小さい。すなわち、リーン車両は、リーンしない車両よりも車体の前後方向及び/または左右方向の大きさが小さい。また、リーン車両は、リーンしない車両に比べて、ステアリングの回転操作量が少ない。リーン車両のステアリングの回転操作量は、360度より小さい。さらに、リーン車両は、リーンしない車両と異なり、ライダーがアクティブに操作できるライダーアクティブな車両である。よって、リーン車両の操作は、リーンしない車両の操作と異なる。このようにリーンしない車両とは操作が異なるリーン車両の走行データは、リーンしない車両の走行データとは大きく異なる。
Lean vehicles are smaller in size than non-lean vehicles. That is, the lean vehicle is smaller in the front-rear direction and / or the left-right direction of the vehicle body than the non-lean vehicle. In addition, the lean vehicle has a smaller amount of steering rotation operation than the non-lean vehicle. The amount of rotational operation of the steering of a lean vehicle is less than 360 degrees. Further, a lean vehicle is a rider-active vehicle that can be actively operated by the rider, unlike a non-lean vehicle. Therefore, the operation of a lean vehicle is different from the operation of a non-lean vehicle. The running data of a lean vehicle whose operation is different from that of a non-lean vehicle is significantly different from the running data of a non-lean vehicle.
本発明者らは、リーン車両の走行状況についてさらに詳細に検討したところ、リーンしない車両に比べて、リーン車両はライダーの意思による走行の自由度が非常に高いことに気がついた。
When the present inventors examined the running condition of the lean vehicle in more detail, they noticed that the lean vehicle had a much higher degree of freedom of running by the rider's intention than the non-lean vehicle.
そのため、運転者がリーン車両を操作している際には、運転者がリーンしない車両を操作している場合よりも、運転者の判断回数及び判断の選択肢が多い傾向にある。
Therefore, when the driver is operating a lean vehicle, the number of judgments and judgment options of the driver tend to be larger than when the driver is operating a non-lean vehicle.
また、運転者は、リーン車両を操作している際には、リーンしない車両を操作している場合に比べて、外部からのストレスにより晒されやすい。さらに、リーン車両を操作している運転者に加わる外部からのストレスは、非常に多様である。
In addition, the driver is more likely to be exposed to external stress when operating a lean vehicle than when operating a non-lean vehicle. Moreover, the external stress exerted on the driver operating the lean vehicle is very diverse.
このように、運転者がリーン車両を操作している際には、運転者の判断回数及び判断の選択肢が多く且つ外部からストレスに晒されやすい状況であるため、リーン車両の走行データには運転者のパーソナリティが強く現れやすい。また、リーン車両は、リーンしない車両に比べて機動性及び利便性が高いため、リーン車両の利用目的が多様であり、利用頻度が多くなる傾向がある。そのため、リーン車両の走行データには運転者のパーソナリティが強く現れやすい。すなわち、本発明者らは、運転者が操作したリーン車両の走行データが、運転者の恣意性が少なく且つ運転者の本質的なパーソナリティをより反映していることに気付いた。
In this way, when the driver is operating the lean vehicle, the driver has many judgments and choices of judgment, and is easily exposed to stress from the outside. Therefore, the driving data of the lean vehicle is used for driving. The personality of the person is strong and easy to appear. Further, since the lean vehicle has higher mobility and convenience than the non-lean vehicle, the lean vehicle has various purposes of use and tends to be used more frequently. Therefore, the driver's personality tends to appear strongly in the driving data of the lean vehicle. That is, the present inventors have noticed that the driving data of the lean vehicle operated by the driver is less arbitrariness of the driver and more reflects the essential personality of the driver.
そこで、本発明者らは、リーン車両の走行データを用いて、恣意性が少ない本質的なパーソナリティを分析する手法を思いついた。パーソナリティの分析にリーン車両の走行データを用いることで、システムで処理するデータの種類を低減でき、パーソナリティを分析するシステムのハードウェアの負荷を低減できる。また、システムで必要とするハードウェアリソースを低減できるため、パーソナリティを分析するシステムのハードウェアリソースの設計の自由度を高めることできる。ハードウェアリソースの設計自由度を高めつつ、パーソナリティデータを取得できるパーソナリティ分析方法を創出した。
Therefore, the present inventors have come up with a method for analyzing an essential personality with less arbitrariness using the driving data of a lean vehicle. By using the driving data of a lean vehicle for personality analysis, it is possible to reduce the types of data processed by the system and reduce the hardware load of the system for analyzing personality. In addition, since the hardware resources required by the system can be reduced, the degree of freedom in designing the hardware resources of the system for analyzing personality can be increased. We have created a personality analysis method that can acquire personality data while increasing the degree of freedom in designing hardware resources.
以下で、各実施形態について、図面を参照しながら説明する。なお、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表したものではない。
Hereinafter, each embodiment will be described with reference to the drawings. The dimensions of the constituent members in each drawing do not faithfully represent the actual dimensions of the constituent members and the dimensional ratio of each constituent member.
<実施形態1>
(パーソナリティ分析装置)
図1に、本発明の実施形態に係るパーソナリティ分析装置1の概略構成を示す。パーソナリティ分析装置1は、分析対象者のパーソナリティを分析する装置である。本実施形態のパーソナリティ分析装置1は、分析対象者がリーン車両Xを運転操作した際に得られるリーン車両X(分析用のリーン車両)のリーン車両走行データ(分析用のリーン車両走行データ)を用いて、分析対象者のパーソナリティを分析し、その分析結果を出力する。 <Embodiment 1>
(Personality analyzer)
FIG. 1 shows a schematic configuration of the personality analyzer 1 according to the embodiment of the present invention. The personality analyzer 1 is an apparatus that analyzes the personality of the person to be analyzed. The personality analyzer 1 of the present embodiment obtains lean vehicle running data (lean vehicle running data for analysis) of the lean vehicle X (lean vehicle for analysis) obtained when the person to be analyzed drives and operates the lean vehicle X. It is used to analyze the personality of the person to be analyzed and output the analysis result.
(パーソナリティ分析装置)
図1に、本発明の実施形態に係るパーソナリティ分析装置1の概略構成を示す。パーソナリティ分析装置1は、分析対象者のパーソナリティを分析する装置である。本実施形態のパーソナリティ分析装置1は、分析対象者がリーン車両Xを運転操作した際に得られるリーン車両X(分析用のリーン車両)のリーン車両走行データ(分析用のリーン車両走行データ)を用いて、分析対象者のパーソナリティを分析し、その分析結果を出力する。 <Embodiment 1>
(Personality analyzer)
FIG. 1 shows a schematic configuration of the personality analyzer 1 according to the embodiment of the present invention. The personality analyzer 1 is an apparatus that analyzes the personality of the person to be analyzed. The personality analyzer 1 of the present embodiment obtains lean vehicle running data (lean vehicle running data for analysis) of the lean vehicle X (lean vehicle for analysis) obtained when the person to be analyzed drives and operates the lean vehicle X. It is used to analyze the personality of the person to be analyzed and output the analysis result.
本実施形態におけるパーソナリティの分析とは、分析対象者の心理状態、性格、気質等によって決まる個性の分析を意味する。このパーソナリティは、分析対象者が運転者としてリーン車両Xを運転操作する際に得られるリーン車両Xのリーン車両走行データを、後述するパーソナリティデータ変換部30によって変換することにより得られる変換パーソナリティデータに含まれる。すなわち、この変換パーソナリティデータは、前記分析対象者のパーソナリティに関連するデータを含む。
The analysis of personality in the present embodiment means the analysis of individuality determined by the psychological state, personality, temperament, etc. of the person to be analyzed. This personality is converted into conversion personality data obtained by converting the lean vehicle running data of the lean vehicle X obtained when the analysis target person drives and operates the lean vehicle X as a driver by the personality data conversion unit 30 described later. included. That is, the converted personality data includes data related to the personality of the person to be analyzed.
本実施形態におけるリーン車両走行データは、リーン車両の走行に関連するデータである。前記リーン車両走行データは、運転者がリーン車両を運転操作した際に得られるリーン車両の走行に関連するデータのうち、前記運転者のパーソナリティが現れるようなデータを意味する。
The lean vehicle running data in this embodiment is data related to the running of the lean vehicle. The lean vehicle driving data means data related to the driving of the lean vehicle obtained when the driver operates the lean vehicle so that the driver's personality appears.
具体的には、前記リーン車両走行データは、運転者によるリーン車両への運転操作入力に関連するリーン車両運転操作入力データ、リーン車両の挙動に関連するリーン車両挙動データ、リーン車両の走行位置に関連するリーン車両位置データ、及び、リーン車両が走行する走行環境に関連するリーン車両走行環境データなどを含む。なお、前記リーン車両走行データは、前記リーン車両運転操作入力データ、前記リーン車両挙動データ、前記リーン車両位置データ及びリーン車両走行環境データ以外のデータを含んでいてもよい。また、前記リーン車両走行データは、前記リーン車両運転操作入力データ、前記リーン車両挙動データ、前記リーン車両位置データ及びリーン車両走行環境データのうち、一つまたは複数のデータのみを含んでいてもよい。
Specifically, the lean vehicle driving data includes lean vehicle driving operation input data related to driving operation input to the lean vehicle by the driver, lean vehicle behavior data related to the behavior of the lean vehicle, and the traveling position of the lean vehicle. Includes relevant lean vehicle position data, lean vehicle driving environment data related to the driving environment in which the lean vehicle travels, and the like. The lean vehicle traveling data may include data other than the lean vehicle driving operation input data, the lean vehicle behavior data, the lean vehicle position data, and the lean vehicle traveling environment data. Further, the lean vehicle driving data may include only one or a plurality of data among the lean vehicle driving operation input data, the lean vehicle behavior data, the lean vehicle position data, and the lean vehicle driving environment data. ..
例えば、リーン車両が分析用のリーン車両であるリーン車両Xの場合、前記リーン車両走行データは分析用のリーン車両走行データであり、前記リーン車両運転操作入力データは分析用のリーン車両運転操作入力データであり、前記リーン車両挙動データは分析用のリーン車両挙動データであり、前記リーン車両位置データは分析用のリーン車両位置データであり、前記リーン車両走行環境データは、分析用のリーン車両走行環境データである。
For example, in the case of a lean vehicle X in which the lean vehicle is a lean vehicle for analysis, the lean vehicle driving data is lean vehicle driving data for analysis, and the lean vehicle driving operation input data is a lean vehicle driving operation input for analysis. The lean vehicle behavior data is data, the lean vehicle behavior data is lean vehicle behavior data for analysis, the lean vehicle position data is lean vehicle position data for analysis, and the lean vehicle driving environment data is lean vehicle running for analysis. Environmental data.
例えば、リーン車両がデータ変換用のリーン車両であるリーン車両の場合、前記リーン車両走行データはデータ変換用のリーン車両走行データであり、前記リーン車両運転操作入力データはデータ変換用のリーン車両運転操作入力データであり、前記リーン車両挙動データはデータ変換用のリーン車両挙動データであり、前記リーン車両位置データはデータ変換用のリーン車両位置データであり、前記リーン車両走行環境データは、データ変換用のリーン車両走行環境データである。
For example, when the lean vehicle is a lean vehicle for data conversion, the lean vehicle running data is lean vehicle running data for data conversion, and the lean vehicle driving operation input data is lean vehicle driving for data conversion. The lean vehicle behavior data is operation input data, the lean vehicle behavior data is lean vehicle behavior data for data conversion, the lean vehicle position data is lean vehicle position data for data conversion, and the lean vehicle driving environment data is data conversion. Lean vehicle driving environment data for.
なお、前記リーン車両走行データは、リーン車両運転操作入力データ、リーン車両挙動データ、リーン車両位置データ、及び、リーン車両走行環境データなどが加工された加工データを含んでいてもよい。また、前記車両走行データは、リーン車両運転操作入力データ、リーン車両挙動データ、リーン車両位置データ、及び、リーン車両走行環境データなどと他のデータとを用いて加工された加工データを含んでいてもよい。
The lean vehicle driving data may include processed data obtained by processing lean vehicle driving operation input data, lean vehicle behavior data, lean vehicle position data, lean vehicle driving environment data, and the like. Further, the vehicle traveling data includes processing data processed by using lean vehicle driving operation input data, lean vehicle behavior data, lean vehicle position data, lean vehicle traveling environment data and other data and other data. May be good.
前記リーン車両運転操作入力データは、運転者がリーン車両を運転操作する際に行う運転者の操作入力に関連するデータである。具体的には、前記リーン車両運転操作入力データは、アクセル操作、ブレーキ操作、操舵または運転者の姿勢変化による重心位置の変更などに関連するデータを含んでもよい。また、具体的には、前記リーン車両運転操作入力データは、ホーンスイッチ、ウィンカースイッチ、照明スイッチなどの各種スイッチの操作等を含んでもよい。前記リーン車両運転操作入力データは、運転者による運転操作入力に関連するデータであるため、運転者の判断の結果をより反映している。リーン車両では、運転者の運転操作の種類が多く、複雑に関連しているため、運転者のパーソナリティが強く反映される傾向がある。また、前記リーン車両運転操作入力データは、センサなどから取得したデータが加工された加工データを含んでいてもよい。前記リーン車両運転操作入力データは、センサなどから取得したデータと他のデータとを用いて加工された加工データを含んでいてもよい。
The lean vehicle driving operation input data is data related to the driver's operation input performed when the driver drives and operates the lean vehicle. Specifically, the lean vehicle driving operation input data may include data related to accelerator operation, braking operation, steering, or change of the center of gravity position due to a change in the driver's posture. Specifically, the lean vehicle driving operation input data may include operations of various switches such as a horn switch, a blinker switch, and a lighting switch. Since the lean vehicle driving operation input data is data related to the driving operation input by the driver, the result of the driver's judgment is more reflected. Lean vehicles tend to strongly reflect the driver's personality because there are many types of driver's driving operations and they are intricately related. Further, the lean vehicle driving operation input data may include processing data obtained by processing data acquired from a sensor or the like. The lean vehicle driving operation input data may include processing data processed using data acquired from a sensor or the like and other data.
前記リーン車両挙動データは、リーン車両が運転者によって運転操作される際に、運転者の操作入力によって生じるリーン車両の挙動に関連するデータである。具体的には、前記リーン車両挙動データは、例えば、運転者が運転操作した際に変化するリーン車両の加速度、速度、角度を含む。すなわち、前記リーン車両挙動データは、運転者がアクセル操作またはブレーキ操作を行ってリーン車両の加減速を行った場合、リーン車両の操舵または重心位置の変更を含む姿勢変化を行った場合などに生じるリーン車両の挙動を現すデータである。
The lean vehicle behavior data is data related to the behavior of the lean vehicle generated by the driver's operation input when the lean vehicle is driven and operated by the driver. Specifically, the lean vehicle behavior data includes, for example, the acceleration, speed, and angle of the lean vehicle that change when the driver operates the vehicle. That is, the lean vehicle behavior data is generated when the driver accelerates or decelerates the lean vehicle by operating the accelerator or the brake, or changes the posture including steering of the lean vehicle or changing the position of the center of gravity. This is data showing the behavior of a lean vehicle.
前記リーン車両挙動データは、上述のように、リーン車両の加速度、速度、角度に関するデータだけでなく、運転者がリーン車両に対して行うスイッチ操作等によってリーン車両で生じる動作を含んでもよい。すなわち、前記リーン車両挙動データは、ホーンスイッチ及びウィンカースイッチ、照明スイッチなどの各種スイッチの操作等によってリーン車両に生じる動作に関連するデータを含む。前記リーン車両挙動データは、運転者の運転操作の入力の結果が強く反映される。そのため、前記リーン車両挙動データにも、運転者のパーソナリティが強く反映される傾向がある。また、前記リーン車両挙動データは、センサなどから取得したデータが加工された加工データを含んでいてもよい。前記リーン車両挙動データは、センサなどから取得したデータと他のデータとを用いて加工された加工データを含んでいてもよい。
As described above, the lean vehicle behavior data may include not only data on the acceleration, speed, and angle of the lean vehicle, but also movements that occur in the lean vehicle due to a switch operation or the like performed by the driver on the lean vehicle. That is, the lean vehicle behavior data includes data related to the operation generated in the lean vehicle by operating various switches such as a horn switch, a blinker switch, and a lighting switch. The lean vehicle behavior data strongly reflects the result of input of the driver's driving operation. Therefore, the driver's personality tends to be strongly reflected in the lean vehicle behavior data. Further, the lean vehicle behavior data may include processing data obtained by processing data acquired from a sensor or the like. The lean vehicle behavior data may include processing data processed using data acquired from a sensor or the like and other data.
前記リーン車両位置データは、リーン車両の走行位置に関連するデータである。例えば、前記リーン車両位置データは、GPS、通信携帯端末の通信基地局の情報等に基づいて検出することができる。なお、前記リーン車両位置データは、種々の測位技術、SLAMなどで算出することができる。前記リーン車両位置データは、運転者のパーソナリティが強く反映されている運転者の運転操作の入力の結果が強く反映される。そのため、前記リーン車両位置データにも、運転者のパーソナリティが強く反映される傾向がある。また、前記リーン車両位置データは、センサなどから取得したデータが加工された加工データを含んでいてもよい。前記リーン車両位置データは、センサなどから取得したデータと他のデータとを用いて加工された加工データを含んでいてもよい。
The lean vehicle position data is data related to the running position of the lean vehicle. For example, the lean vehicle position data can be detected based on GPS, information on a communication base station of a communication mobile terminal, or the like. The lean vehicle position data can be calculated by various positioning techniques, SLAM, and the like. The lean vehicle position data strongly reflects the result of input of the driver's driving operation, which strongly reflects the driver's personality. Therefore, the driver's personality tends to be strongly reflected in the lean vehicle position data. Further, the lean vehicle position data may include processed data obtained by processing data acquired from a sensor or the like. The lean vehicle position data may include processing data processed using data acquired from a sensor or the like and other data.
前記リーン車両走行環境データは、例えば、マップデータを含む。このマップデータは、例えば、道路状況に関する情報、信号、設備などの道路交通環境に関する情報、道路の走行に関する規制情報などと関連付けられていてもよい。また、前記マップデータは、天気、気温または湿度などの環境データなどと関連付けられていてもよい。前記リーン車両走行環境データは、前記リーン車両運転操作入力データ、前記リーン車両挙動データ及び前記リーン車両位置データとともに、分析対象者の性格などのパーソナリティの分析に用いることができる。
The lean vehicle driving environment data includes, for example, map data. This map data may be associated with, for example, information on road conditions, information on road traffic environments such as traffic lights and equipment, and regulatory information on road travel. In addition, the map data may be associated with environmental data such as weather, temperature or humidity. The lean vehicle driving environment data can be used for personality analysis such as the personality of the person to be analyzed, together with the lean vehicle driving operation input data, the lean vehicle behavior data, and the lean vehicle position data.
前記道路状況に関する情報は、渋滞が頻発する、路上駐車車両が多い等、混雑する環境下にある道路(地域)に関する情報を含む。この情報は、時間帯と組み合わせることによって、より情報の精度が上がる。また、前記道路状況に関する情報は、スコールがあると冠水し易い道路に関する情報を含む。
The information on the road conditions includes information on roads (regions) in a congested environment such as frequent traffic jams and many vehicles parked on the street. By combining this information with the time zone, the accuracy of the information is further improved. In addition, the information on the road condition includes information on a road that is easily flooded when there is a squall.
前記リーン車両走行環境データは、運転者が受ける外部からのストレスの一例であると考えられる。前記リーン車両走行環境データは、運転者の判断に影響を与える。前記リーン車両走行環境データは、運転者の運転操作に影響を与える。そのため、前記リーン車両走行環境データを用いることで、リーン車両の走行データには運転者のパーソナリティがより強く現れやすくなる。また、前記リーン車両走行環境データを用いることで、リーン車両の利用目的及び利用頻度が影響を受けるため、リーン車両の走行データには運転者のパーソナリティが強く現れやすい。
The lean vehicle driving environment data is considered to be an example of external stress received by the driver. The lean vehicle driving environment data influences the judgment of the driver. The lean vehicle driving environment data affects the driving operation of the driver. Therefore, by using the lean vehicle driving environment data, the driver's personality is more likely to appear in the driving data of the lean vehicle. Further, since the purpose and frequency of use of the lean vehicle are affected by using the lean vehicle driving environment data, the driving data of the lean vehicle tends to strongly show the personality of the driver.
パーソナリティ分析装置1は、パーソナリティ変換データ取得部10と、分析用リーン車両走行データ取得部20と、パーソナリティデータ変換部30と、出力用パーソナリティデータ生成部40と、データ出力部50と、データ記憶部60とを備える。本実施形態では、パーソナリティ分析装置1は、例えば、分析対象者が所有する携帯端末である。なお、パーソナリティ分析装置1は、通信を介してデータを取得して、演算処理を行う演算処理装置であってもよい。
The personality analyzer 1 includes a personality conversion data acquisition unit 10, a lean vehicle driving data acquisition unit 20 for analysis, a personality data conversion unit 30, an output personality data generation unit 40, a data output unit 50, and a data storage unit. 60 and. In the present embodiment, the personality analyzer 1 is, for example, a mobile terminal owned by the person to be analyzed. The personality analysis device 1 may be an arithmetic processing unit that acquires data via communication and performs arithmetic processing.
分析用リーン車両走行データ取得部20は、分析対象者である運転者がリーン車両Xを運転した際のリーン車両走行データ(分析用のリーン車両走行データ)を取得する。
The lean vehicle driving data acquisition unit 20 for analysis acquires lean vehicle driving data (lean vehicle driving data for analysis) when the driver who is the analysis target drives the lean vehicle X.
分析用リーン車両走行データ取得部20は、分析対象者がリーン車両Xを運転した際に、リーン車両Xのリーン車両走行データに含まれるデータ、すなわち、分析用のリーン車両運転操作入力データ、分析用のリーン車両挙動データ、分析用のリーン車両位置データ及び分析用のリーン車両走行環境データなどを取得する。
When the analysis target person drives the lean vehicle X, the analysis lean vehicle driving data acquisition unit 20 includes data included in the lean vehicle driving data of the lean vehicle X, that is, lean vehicle driving operation input data for analysis, and analysis. Lean vehicle behavior data for analysis, lean vehicle position data for analysis, lean vehicle driving environment data for analysis, etc. are acquired.
分析用リーン車両走行データ取得部20は、例えば、リーン車両Xに対する分析対象者の運転操作を操作信号として取得することによって、前記分析用のリーン車両運転操作入力データを取得してもよい。具体的には、分析用リーン車両走行データ取得部20は、リーン車両Xにおける運転者の操作入力に関連するデータ、すなわち、アクセル操作、ブレーキ操作、操舵または運転者の姿勢変化による重心位置の変更などに関連するデータ、ホーンスイッチ、ウィンカースイッチ、照明スイッチなどの各種スイッチの操作等に関連するデータなどを取得してもよい。これらのデータは、リーン車両Xから送信される。
The analysis lean vehicle driving data acquisition unit 20 may acquire the analysis lean vehicle driving operation input data by, for example, acquiring the driving operation of the analysis target person with respect to the lean vehicle X as an operation signal. Specifically, the analysis lean vehicle driving data acquisition unit 20 changes the position of the center of gravity due to data related to the driver's operation input in the lean vehicle X, that is, accelerator operation, brake operation, steering, or change in the driver's posture. Data related to the above, data related to the operation of various switches such as a horn switch, a blinker switch, and a lighting switch may be acquired. These data are transmitted from the lean vehicle X.
分析用リーン車両走行データ取得部20は、例えば、分析対象者である運転者がリーン車両Xを運転操作した際に変化するリーン車両Xの加速度、速度、角度を含むデータを、分析用のリーン車両挙動データとして取得してもよい。分析用リーン車両走行データ取得部20は、例えばジャイロセンサなどによって、前記分析用のリーン車両挙動データを取得する。前記分析用のリーン車両挙動データは、分析対象者である運転者がアクセル操作またはブレーキ操作を行ってリーン車両Xの加減速を行った場合、リーン車両Xの操舵または重心位置の変更を含む姿勢変化を行った場合などに生じるリーン車両Xの挙動を現すデータである。
The lean vehicle driving data acquisition unit 20 for analysis obtains data including the acceleration, speed, and angle of the lean vehicle X, which changes when the driver who is the analysis target drives and operates the lean vehicle X, for analysis. It may be acquired as vehicle behavior data. The analysis lean vehicle travel data acquisition unit 20 acquires the analysis lean vehicle behavior data by, for example, a gyro sensor. The lean vehicle behavior data for analysis includes a posture including steering of the lean vehicle X or a change in the position of the center of gravity when the driver who is the analysis target operates the accelerator or the brake to accelerate or decelerate the lean vehicle X. This is data showing the behavior of the lean vehicle X that occurs when a change is made.
また、分析用リーン車両走行データ取得部20は、分析対象者である運転者がリーン車両Xに対して行うスイッチ操作等によってリーン車両Xで生じる動作を、前記リーン車両挙動データとして取得してもよい。すなわち、分析用リーン車両走行データ取得部20は、ホーンスイッチ及びウィンカースイッチ、照明スイッチなどの各種スイッチの操作等によってリーン車両Xに生じる動作に関連するデータを前記分析用のリーン車両挙動データとして取得してもよい。これらのデータは、リーン車両Xから、パーソナリティ分析装置1に送信される。
Further, even if the analysis lean vehicle driving data acquisition unit 20 acquires the operation generated in the lean vehicle X by the switch operation or the like performed on the lean vehicle X by the driver who is the analysis target, as the lean vehicle behavior data. Good. That is, the analysis lean vehicle travel data acquisition unit 20 acquires data related to the operation generated in the lean vehicle X by operating various switches such as the horn switch, the blinker switch, and the lighting switch as the analysis lean vehicle behavior data. You may. These data are transmitted from the lean vehicle X to the personality analyzer 1.
分析用リーン車両走行データ取得部20は、例えば、GPS、通信携帯端末の通信基地局の情報に基づいて、リーン車両Xの走行位置に関連する分析用のリーン車両位置データを取得してもよい。なお、前記分析用のリーン車両位置データは、種々の測位技術、SLAMなどで算出することができる。
The analysis lean vehicle travel data acquisition unit 20 may acquire analysis lean vehicle position data related to the travel position of the lean vehicle X based on, for example, GPS and communication base station information of a communication mobile terminal. .. The lean vehicle position data for the analysis can be calculated by various positioning techniques, SLAM, and the like.
分析用リーン車両走行データ取得部20は、例えばマップデータから、前記分析用のリーン車両走行環境データを取得してもよい。このマップデータは、例えば、道路状況に関する情報、信号、設備などの道路交通環境に関する情報、道路の走行に関する規制情報などと関連付けられていてもよい。また、前記マップデータは、天気、気温または湿度などの環境データなどと関連付けられていてもよい。前記マップデータは、道路情報及び道路交通環境に関する情報(信号等の道路に対する付随情報)と道路の走行に関わる規則情報が関連づけられた情報を含んでいてもよい。
The analysis lean vehicle driving data acquisition unit 20 may acquire the analysis lean vehicle driving environment data from, for example, map data. This map data may be associated with, for example, information on road conditions, information on road traffic environments such as traffic lights and equipment, and regulatory information on road travel. In addition, the map data may be associated with environmental data such as weather, temperature or humidity. The map data may include information in which road information and information on the road traffic environment (information incidental to the road such as a signal) are associated with rule information related to road travel.
分析用リーン車両走行データ取得部20は、例えばリーン車両Xに搭載した外部環境認識装置によって、前記分析用のリーン車両走行環境データを取得してもよい。より具体的には、分析用リーン車両走行データ取得部20は、カメラまたはレーダーなどから、前記分析用のリーン車両走行環境データを取得してもよい。また、分析用リーン車両走行データ取得部20は、例えば、通信装置によって、前記分析用のリーン車両走行環境データを取得してもよい。より具体的には、分析用リーン車両走行データ取得部20は、車車間通信装置、路車間通信装置によって、前記分析用のリーン車両走行環境データを取得してもよい。分析用リーン車両走行データ取得部20は、例えば、インターネットを介して前記分析用のリーン車両走行環境データを取得してもよい。このように、前記分析用のリーン車両走行環境データは、種々の手段から取得することができる。前記分析用のリーン車両走行環境データを取得する手段は、ある手段に限定されることはない。
The analysis lean vehicle driving data acquisition unit 20 may acquire the analysis lean vehicle driving environment data by, for example, an external environment recognition device mounted on the lean vehicle X. More specifically, the analysis lean vehicle travel data acquisition unit 20 may acquire the analysis lean vehicle travel environment data from a camera, radar, or the like. Further, the analysis lean vehicle traveling data acquisition unit 20 may acquire the analysis lean vehicle traveling environment data by, for example, a communication device. More specifically, the analysis lean vehicle traveling data acquisition unit 20 may acquire the analysis lean vehicle traveling environment data by the vehicle-to-vehicle communication device and the road-to-vehicle communication device. The analysis lean vehicle traveling data acquisition unit 20 may acquire the analysis lean vehicle traveling environment data via the Internet, for example. As described above, the lean vehicle traveling environment data for the analysis can be obtained from various means. The means for acquiring the lean vehicle driving environment data for analysis is not limited to a certain means.
パーソナリティ変換データ取得部10は、上述の分析対象者のリーン車両走行データをパーソナリティデータに変換するパーソナリティ変換データを取得する。
The personality conversion data acquisition unit 10 acquires the personality conversion data that converts the lean vehicle driving data of the above-mentioned analysis target person into the personality data.
前記パーソナリティ変換データは、複数の運転者がリーン車両をそれぞれ運転操作した際に得られるリーン車両走行データと、それらの運転者のパーソナリティデータとが関連付けられたデータである。すなわち、前記パーソナリティ変換データは、リーン車両走行データから、それに適したパーソナリティデータを得るために、リーン車両走行データとパーソナリティデータとを対応付けたデータである。
The personality conversion data is data in which lean vehicle driving data obtained when a plurality of drivers each drive a lean vehicle and personality data of those drivers are associated with each other. That is, the personality conversion data is data in which lean vehicle travel data and personality data are associated with each other in order to obtain personality data suitable for the lean vehicle travel data.
前記パーソナリティ変換データは、例えば、パーソナリティ分析で用いられる特性論または類型論に基づく考え方を利用して、複数の運転者がリーン車両(データ変換用のリーン車両)をそれぞれ運転操作した際に得られるデータ変換用のリーン車両走行データに基づいて生成される。本実施形態では、前記データ変換用のリーン車両走行データは、前記パーソナリティ変換データを生成するために用いられるデータである点以外は、上述の分析用のリーン車両走行データと同様のデータである。なお、前記データ変換用のリーン車両走行データは、上述の分析用のリーン車両走行データと異なる種類のデータを含んでいてもよい。
The personality conversion data is obtained when, for example, a plurality of drivers drive and operate a lean vehicle (lean vehicle for data conversion) by using a concept based on a characteristic theory or a typology used in personality analysis. Generated based on lean vehicle driving data for data conversion. In the present embodiment, the lean vehicle travel data for data conversion is the same data as the lean vehicle travel data for analysis described above, except that the data is used for generating the personality conversion data. The lean vehicle travel data for data conversion may include data of a different type from the lean vehicle travel data for analysis described above.
本実施形態では、前記パーソナリティ変換データは、パーソナリティの特性論であるビッグファイブ理論を利用して生成される。このビッグファイブ理論では、人間が持つ様々な性格を、5つの要素の組み合わせで表現する。前記ビッグファイブ理論は、文化差及び民族差を越えた普遍性を有する理論である。
In the present embodiment, the personality conversion data is generated by using the Big Five theory, which is a characteristic theory of personality. In this Big Five theory, various personalities of human beings are expressed by a combination of five elements. The Big Five theory is a theory that has universality that transcends cultural and ethnic differences.
具体的には、前記パーソナリティ変換データは、前記ビッグファイブ理論における、神経症傾向、外向性、経験への開放性、協調性、誠実性の5つの要素に対して、リーン車両走行データを組み合わせたデータである。
Specifically, the personality conversion data is a combination of lean vehicle driving data for the five elements of the Big Five theory: neurotic tendency, extroversion, openness to experience, cooperation, and integrity. It is data.
前記神経症傾向は、環境刺激及びストレッサーに対する敏感さ、不安及び緊張の強さを表す。前記神経症傾向は、例えば、リーン車両Xの走行環境ごとの走行のばらつきの大きさと関連性を有する。リーン車両Xの走行環境の違いによってリーン車両Xの走行に大きな違いが見られない運転者は、神経症傾向が弱く、リーン車両Xの走行環境の違いによってリーン車両Xの走行に大きな違いが見られる運転者は、神経症傾向が強い。
The neurotic tendency represents sensitivity to environmental stimuli and stressors, anxiety and tension. The neurotic tendency is related to, for example, the magnitude of the variation in travel of the lean vehicle X depending on the travel environment. The driver who does not see a big difference in the running of the lean vehicle X due to the difference in the running environment of the lean vehicle X has a weak tendency for neurosis, and the driving of the lean vehicle X shows a big difference due to the difference in the running environment of the lean vehicle X. Drivers are more prone to neurosis.
例えば、渋滞がよく発生する走行位置と渋滞があまり発生しない走行位置とでリーン車両Xの車体挙動に大きな変化がない場合には、運転者は環境の影響をあまり受けていない、つまり運転者の神経症傾向は弱いと判断される。一方、リーン車両Xの車体挙動に大きな変化がある場合には、運転者が環境の影響を受けている、つまり運転者の神経症傾向が強いと判断される。
For example, if there is no significant change in the vehicle body behavior of the lean vehicle X between a driving position where congestion often occurs and a driving position where congestion does not occur much, the driver is not significantly affected by the environment, that is, the driver's The tendency to neurosis is judged to be weak. On the other hand, when there is a large change in the vehicle body behavior of the lean vehicle X, it is determined that the driver is affected by the environment, that is, the driver has a strong tendency toward neurosis.
すなわち、リーン車両Xの走行環境を特定し、異なる走行環境下での車体挙動のパラメータの違いまたはばらつき(例えば標準偏差など)に基づいて、運転者の神経症傾向を判断することができる。
That is, the driving environment of the lean vehicle X can be specified, and the driver's neurotic tendency can be determined based on the difference or variation (for example, standard deviation) of the parameters of the vehicle body behavior under different driving environments.
前記走行環境は、例えば、「市街地と郊外(地域)」、「一般道と高速道路(道路種別)」、「昼と夜(時刻)」、「晴れと雨(天候)」、「ドライとウエット(路面)」などを含む。前記走行環境は、走行位置データ、時刻データ、気象データ、路面検出データなどを用いて、特定される。
The driving environment is, for example, "urban area and suburbs (region)", "general road and highway (road type)", "day and night (time)", "sunny and rain (weather)", "dry and wet". (Road surface) ”etc. The traveling environment is specified by using traveling position data, time data, meteorological data, road surface detection data, and the like.
前記神経症傾向は、例えば、前記リーン車両走行データのうち、リーン車両Xのリーン車両運転操作入力データ、リーン車両走行環境データ、リーン車両位置データ及びリーン車両挙動データを用いて、把握することができる。
The neuropathy tendency can be grasped by using, for example, the lean vehicle driving operation input data of the lean vehicle X, the lean vehicle driving environment data, the lean vehicle position data, and the lean vehicle behavior data among the lean vehicle driving data. it can.
前記外向性は、外交性、活動性、積極性を表す。前記外向性は、例えば、一定期間内のリーン車両Xの走行距離と関連性を有する。例えば、リーン車両Xの走行距離が長いほど運転者の外向性が高く、リーン車両Xの走行距離が短いほど外向性が低いと判断される。よって、前記外向性は、例えば、前記リーン車両走行データのうち、リーン車両Xのリーン車両位置データを用いて、把握することができる。
The extroversion represents diplomacy, activity, and aggressiveness. The extroversion is related to, for example, the mileage of the lean vehicle X within a certain period of time. For example, it is determined that the longer the mileage of the lean vehicle X, the higher the extroversion of the driver, and the shorter the mileage of the lean vehicle X, the lower the extroversion. Therefore, the extroversion can be grasped by using, for example, the lean vehicle position data of the lean vehicle X in the lean vehicle travel data.
前記経験への開放性は、知的好奇心の強さ、想像力、新しいものへの親和性を表す。前記経験への開放性は、例えば、一定期間内にリーン車両Xで訪れた新規地点数と関連性を有する。例えば、一定期間内にリーン車両Xで訪れた新規地点数が多いほど、運転者の経験への開放性が高いと判断され、前記新規地点数が少ないほど、運転者の経験への開放性が低いと判断される。なお、訪れる地点をその種類毎に区別し、一定期間内に新たな種類の地点をリーン車両Xで訪れた回数が多いほど、運転者の経験への開放性が高いと判断してもよい。また、一定期間内にリーン車両Xで訪れた新規地点数が同じでも、訪れた地点の種類が多いほうが、運転者の経験への開放性が高いと判断してもよい。
Openness to experience represents the strength of intellectual curiosity, imagination, and affinity for new things. Openness to experience is related, for example, to the number of new points visited by lean vehicle X within a certain period of time. For example, it is judged that the greater the number of new points visited by the lean vehicle X within a certain period of time, the higher the openness to the driver's experience, and the smaller the number of new points, the greater the openness to the driver's experience. Judged as low. It should be noted that the points to be visited may be distinguished for each type, and it may be judged that the greater the number of times the lean vehicle X visits a new type of point within a certain period of time, the higher the openness to the driver's experience. Further, even if the number of new points visited by the lean vehicle X within a certain period is the same, it may be judged that the more types of points visited, the higher the openness to the driver's experience.
前記経験への開放性は、例えば、前記リーン車両走行データのうち、リーン車両Xのリーン車両位置データ及びマップデータを含むリーン車両走行環境データを用いて、把握することができる。
The openness to the experience can be grasped by using, for example, the lean vehicle driving environment data including the lean vehicle position data and the map data of the lean vehicle X among the lean vehicle traveling data.
前記協調性は、利他性、共感性、優しさなどを表す。前記協調性は、例えば、密集状態における周囲との協調度合いと関連性を有する。よって、前記協調性は、例えば、前記リーン車両走行データのうち、リーン車両位置データを用いて、把握することができる。
The cooperativeness represents altruism, empathy, kindness, and the like. The cooperation is related to, for example, the degree of cooperation with the surroundings in a dense state. Therefore, the cooperation can be grasped by using, for example, the lean vehicle position data in the lean vehicle travel data.
特に、前記協調性は、密集状態の群において、平均挙動に対する乖離度合いとより強い関連性を有する。よって、前記協調性は、密集状態の群における他のリーン車両の走行位置データも用いることにより、より精度良く把握することができる。
In particular, the coordination has a stronger relationship with the degree of divergence from the average behavior in the dense group. Therefore, the cooperativeness can be grasped more accurately by using the traveling position data of other lean vehicles in the densely packed group.
なお、リーン車両Xが他のリーン車両とともに密集状態である場合には、リーン車両Xの走行位置に関連するリーン車両位置データだけではなく、密集状態である他のリーン車両の走行位置に関連するリーン車両位置データも把握して、密集状態であるリーン車両の群におけるリーン車両Xの走行位置の乖離度合いを算出してもよい。このようにリーン車両Xの走行位置の乖離度合いを算出した場合には、例えば、走行位置の乖離度合いが大きいほど運転者の協調性が低いと判断され、前記乖離度合いが小さいほど運転者の協調性が高いと判断される。
When the lean vehicle X is in a dense state together with other lean vehicles, it is related not only to the lean vehicle position data related to the traveling position of the lean vehicle X but also to the traveling position of the other lean vehicles in the dense state. The lean vehicle position data may also be grasped to calculate the degree of deviation of the traveling position of the lean vehicle X in the group of lean vehicles in a dense state. When the degree of deviation of the traveling position of the lean vehicle X is calculated in this way, for example, it is determined that the greater the degree of deviation of the traveling position, the lower the driver's cooperation, and the smaller the degree of deviation, the more the driver's cooperation It is judged that the sex is high.
前記誠実性は、自己統制力、達成への意思、まじめさ、責任感の強さを表す。前記誠実性は、例えば、違法走行または違法行為の度合い、リーン車両Xの走行のばらつきの少なさと関連性を有する。前記違法走行の度合いは、マップデータに収録されている走行位置に応じた規制情報と、リーン車両Xの挙動とに基づいて判断される。前記違法走行は、例えば、速度が40Km/hで規制されている道路を60km/hで走行したり、車両の一時停止が義務付けられている地点で一時停止をしなかったりする場合などを含む。
The above-mentioned integrity represents self-control, willingness to achieve, seriousness, and a strong sense of responsibility. The integrity is related to, for example, the degree of illegal driving or illegal activity, and the small variation in the traveling of the lean vehicle X. The degree of illegal traveling is determined based on the regulation information according to the traveling position recorded in the map data and the behavior of the lean vehicle X. The illegal traveling includes, for example, traveling at 60 km / h on a road whose speed is regulated at 40 km / h, or not suspending at a point where the vehicle is obliged to suspend.
上述のような走行規制を守らずに走行する頻度が多いほど、運転者の誠実性が低いと判断され、走行規制を守らずに走行する頻度が低いほど、運転者の誠実性が高いと判断される。
It is judged that the more frequently the driver does not comply with the above-mentioned driving regulations, the lower the driver's integrity is, and the less frequently the driver does not comply with the driving regulations, the higher the driver's integrity is determined. Will be done.
また、前記走行のばらつきの場合には、リーン車両Xの走行環境を分類及び特定し、該走行環境内でのリーン車両Xの車体挙動のパラメータの違いまたはばらつき(例えば標準偏差など)に基づいて、運転者の誠実性が判断される。誠実性の高いライダーは、自己統制力が高く、まじめであることから、遵法走行を行うとともに、突発的な行動を起こさないと考えられる。
Further, in the case of the variation in driving, the driving environment of the lean vehicle X is classified and specified, and based on the difference or variation (for example, standard deviation) of the parameters of the vehicle body behavior of the lean vehicle X in the driving environment. , The integrity of the driver is judged. Riders with high integrity have high self-control and are serious, so it is considered that they will comply with the law and will not take any sudden actions.
前記誠実性は、例えば、前記リーン車両走行データのうち、リーン車両Xのリーン車両位置データ、マップデータを含むリーン車両走行環境データ及びリーン車両挙動データを用いて、把握することができる。
The integrity can be grasped by using, for example, the lean vehicle driving environment data including the lean vehicle position data and the map data of the lean vehicle X and the lean vehicle behavior data among the lean vehicle traveling data.
なお、前記パーソナリティ変換データは、Cloningerの気質と性格の7次元モデル(木島ら,季刊 精神科診断学(日本評論社) 第7巻第3号 別刷,p379-399)、運転者行動と性格データ(詫摩武俊,IATSS review Vol.2 No.3,September 1976,p183-190)、ドライバ個人特性の評価指標(石橋ら,マツダ技報、No.22(2004),p155-160)などを利用して、生成してもよい。
The personality conversion data is a 7-dimensional model of Cloninger's temperament and personality (Kijima et al., Quarterly Psychiatric Diagnosis (Nippon Critics), Vol. 7, No. 3, Reprint, p379-399), driver behavior and personality data. (Taketoshi Takuma, IATS review Vol.2 No.3, September 1976, p183-190), evaluation index of individual driver characteristics (Ishibashi et al., Mazda Technical Report, No.22 (2004), p155-160), etc. And may be generated.
例えば、Cloningerの気質と性格の7次元モデルでは、気質を、新奇性欲求、報酬依存、損害回避及び固執により表現し、性格を、自己志向、協調及び自己超越により表現している。運転者行動と性格データでは、性格を、内閉性、同調性、粘着性、顕示性、過敏性、過信性の6類型に分類している。また、ドライバ個人特性の評価指標では、運転スタイルを、運転スキルへの自信、運転に対する消極性、せっかちな運転傾向、几帳面な運転傾向、信号に対する事前準備的な運転、ステイタスシンボルとしての車、不安定な精神状態での運転及び心配性的傾向により表現している。
For example, in the 7-dimensional model of Croninger's temperament and personality, the temperament is expressed by novelty desire, reward dependence, damage avoidance and persistence, and the personality is expressed by self-orientation, cooperation and self-transcendence. In the driver behavior and personality data, personality is classified into six types: internal closure, synchronism, stickiness, manifestation, hypersensitivity, and overconfidence. In addition, in the evaluation index of driver's personal characteristics, driving style, confidence in driving skill, negativeness to driving, impatient driving tendency, careful driving tendency, preparatory driving for traffic lights, car as status symbol, non-existence It is expressed by driving in a stable mental state and anxious sexual tendency.
前記パーソナリティ変換データは、予め生成されてデータ記憶部60に格納されたデータであってもよいし、パーソナリティ変換データ取得部10で生成されるデータであってもよい。パーソナリティ変換データ取得部10は、前記パーソナリティ変換データを、取得したリーン車両走行データ及びパーソナリティを用いて、更新してもよい。
The personality conversion data may be data that has been generated in advance and stored in the data storage unit 60, or may be data that is generated by the personality conversion data acquisition unit 10. The personality conversion data acquisition unit 10 may update the personality conversion data by using the acquired lean vehicle traveling data and personality.
パーソナリティデータ変換部30は、上述のパーソナリティ変換データを用いて、分析用リーン車両走行データ取得部20で取得された分析用のリーン車両走行データを、変換パーソナリティデータに変換する。このとき、パーソナリティデータ変換部30は、例えば、既述した、神経症傾向、外向性、経験への開放性、協調性、誠実性の5つの要素について、分析対象者である運転者のレベル付けを行う。このレベル付けは、上述の各要素に関して、連続値で表現されてもよいし、閾値によって分けられた複数の段階で表現されてもよい。また、パーソナリティデータ変換部30は、上述の各要素でレベル付けした結果を用いて、複数の類型に分類し、その分類結果を変換パーソナリティデータとしてもよい。
The personality data conversion unit 30 uses the personality conversion data described above to convert the lean vehicle travel data for analysis acquired by the lean vehicle travel data acquisition unit 20 for analysis into conversion personality data. At this time, the personality data conversion unit 30 ranks the driver who is the analysis target for the above-mentioned five elements of neurotic tendency, extroversion, openness to experience, cooperation, and integrity. I do. This leveling may be expressed as a continuous value for each of the above-mentioned elements, or may be expressed in a plurality of stages divided by a threshold value. Further, the personality data conversion unit 30 may classify into a plurality of types by using the result of leveling by each of the above-mentioned elements, and the classification result may be used as the conversion personality data.
出力用パーソナリティデータ生成部40は、パーソナリティデータ変換部30によって変換された変換パーソナリティデータを用いて、出力用のパーソナリティデータを生成する。この出力用のパーソナリティデータは、パーソナリティ分析装置1から出力されるデータである。前記出力用のパーソナリティデータは、前記変換パーソナリティデータと同じデータであってもよいし、前記変換パーソナリティデータを用いて、パーソナリティ分析装置1の出力データとして要求されるデータに変換されたデータであってもよい。
The output personality data generation unit 40 generates output personality data using the converted personality data converted by the personality data conversion unit 30. The personality data for this output is data output from the personality analyzer 1. The personality data for output may be the same data as the converted personality data, or is data converted into data required as output data of the personality analyzer 1 using the converted personality data. May be good.
また、出力用パーソナリティデータ生成部40は、前記変換パーソナリティデータを情報処理して、出力用のパーソナリティデータを生成してもよい。例えば、出力用パーソナリティデータ生成部40は、データ記憶部60に前記変換パーソナリティデータを記憶し、データ記憶部60に記憶されている変換パーソナリティデータの中から抽出された変換パーソナリティデータを用いて、出力用のパーソナリティデータを生成してもよい。具体的には、例えば、出力用パーソナリティデータ生成部40は、データ記憶部60に記憶されている一定期間内の変換パーソナリティデータから、出力用のパーソナリティデータを生成してもよい。
Further, the output personality data generation unit 40 may process the converted personality data to generate output personality data. For example, the output personality data generation unit 40 stores the conversion personality data in the data storage unit 60, and outputs the conversion personality data using the conversion personality data extracted from the conversion personality data stored in the data storage unit 60. You may generate personality data for. Specifically, for example, the output personality data generation unit 40 may generate the output personality data from the conversion personality data stored in the data storage unit 60 within a certain period of time.
データ出力部50は、出力用パーソナリティデータ生成部40で生成された出力用のパーソナリティデータを、パーソナリティ分析装置1の外部に出力する。
The data output unit 50 outputs the output personality data generated by the output personality data generation unit 40 to the outside of the personality analyzer 1.
以上の構成により、パーソナリティ分析装置1によって、分析対象者が運転操作するリーン車両Xのリーン車両走行データを用いて、分析対象者のパーソナリティを分析し、その分析結果を出力用のパーソナリティデータとして出力することができる。
With the above configuration, the personality analyzer 1 analyzes the personality of the analysis target person using the lean vehicle running data of the lean vehicle X driven and operated by the analysis target person, and outputs the analysis result as personality data for output. can do.
(パーソナリティ分析方法)
次に、図2を用いて、上述の構成を有するパーソナリティ分析装置1によって行われるパーソナリティ分析方法を説明する。図2は、パーソナリティ分析装置1の動作の一例、すなわちパーソナリティ分析方法の一例を示すフローである。 (Personality analysis method)
Next, the personality analysis method performed by the personality analyzer 1 having the above-described configuration will be described with reference to FIG. FIG. 2 is a flow showing an example of the operation of the personality analysis device 1, that is, an example of the personality analysis method.
次に、図2を用いて、上述の構成を有するパーソナリティ分析装置1によって行われるパーソナリティ分析方法を説明する。図2は、パーソナリティ分析装置1の動作の一例、すなわちパーソナリティ分析方法の一例を示すフローである。 (Personality analysis method)
Next, the personality analysis method performed by the personality analyzer 1 having the above-described configuration will be described with reference to FIG. FIG. 2 is a flow showing an example of the operation of the personality analysis device 1, that is, an example of the personality analysis method.
まず、分析用リーン車両走行データ取得部20が、リーン車両Xの分析用のリーン車両走行データを取得する(ステップSA1)。この分析用のリーン車両走行データには、例えば、分析用のリーン車両運転操作入力データ、分析用のリーン車両挙動データ、分析用のリーン車両位置データ及び分析用のリーン車両走行環境データなどが含まれる。
First, the analysis lean vehicle travel data acquisition unit 20 acquires the lean vehicle travel data for analysis of the lean vehicle X (step SA1). The lean vehicle driving data for analysis includes, for example, lean vehicle driving operation input data for analysis, lean vehicle behavior data for analysis, lean vehicle position data for analysis, lean vehicle driving environment data for analysis, and the like. Is done.
なお、前記分析用のリーン車両走行データは、分析用のリーン車両運転操作入力データ、分析用のリーン車両挙動データ、分析用のリーン車両位置データ及び分析用のリーン車両走行環境データ以外のデータを含んでいてもよい。また、前記分析用のリーン車両走行データは、前記分析用のリーン車両運転操作入力データ、前記分析用のリーン車両挙動データ、前記分析用のリーン車両位置データ及び前記分析用のリーン車両走行環境データのうち、一つまたは複数のデータのみを含んでいてもよい。
The lean vehicle driving data for analysis includes data other than lean vehicle driving operation input data for analysis, lean vehicle behavior data for analysis, lean vehicle position data for analysis, and lean vehicle driving environment data for analysis. It may be included. The lean vehicle driving data for the analysis includes the lean vehicle driving operation input data for the analysis, the lean vehicle behavior data for the analysis, the lean vehicle position data for the analysis, and the lean vehicle driving environment data for the analysis. Of these, only one or more data may be included.
次に、パーソナリティデータ変換部30は、取得したリーン車両Xの分析用のリーン車両走行データを、パーソナリティ変換データによって、変換パーソナリティデータに変換する(ステップSA2)。このパーソナリティ変換データは、複数の運転者がリーン車両をそれぞれ運転操作した際に得られるリーン車両走行データと、パーソナリティデータとが関連付けられたデータである。本実施形態では、前記パーソナリティ変換データは、ビッグファイブ理論を用いて、複数の運転者がリーン車両をそれぞれ運転操作した際に得られるデータ変換用のリーン車両走行データに基づいて生成されたデータである。
Next, the personality data conversion unit 30 converts the acquired lean vehicle running data for analysis of the lean vehicle X into conversion personality data by the personality conversion data (step SA2). This personality conversion data is data in which the lean vehicle driving data obtained when a plurality of drivers each drive and operate the lean vehicle and the personality data are associated with each other. In the present embodiment, the personality conversion data is data generated based on lean vehicle driving data for data conversion obtained when a plurality of drivers each drive a lean vehicle by using the big five theory. is there.
出力用パーソナリティデータ生成部40は、前記変換された変換パーソナリティデータを用いて、出力用のパーソナリティデータを生成する(ステップSA3)。
The output personality data generation unit 40 generates output personality data using the converted conversion personality data (step SA3).
データ出力部50は、生成されたパーソナリティデータを出力する(ステップSA4)。その後、このフローを終了する(エンド)。
The data output unit 50 outputs the generated personality data (step SA4). After that, this flow ends (end).
以上の構成により、従来のような質問回答形式ではなく、運転者の恣意性が少なく且つ運転者の本質的なパーソナリティをより反映したリーン車両走行データを用いて、運転者である分析対象者のパーソナリティデータを取得することができる。このようにリーン車両走行データを用いることにより、分析対象者に対して非常に多くの質問を行う必要がある従来の質問回答形式によるパーソナリティ分析方法に比べて、パーソナリティ分析システムで処理するデータの量を減らすことができる。
With the above configuration, the analysis target person who is the driver uses lean vehicle driving data that is less arbitrariness of the driver and more reflects the essential personality of the driver, instead of the conventional question-and-answer format. You can get personality data. By using lean vehicle driving data in this way, the amount of data processed by the personality analysis system is compared with the conventional personality analysis method that requires asking a large number of questions to the analysis target person. Can be reduced.
すなわち、パーソナリティの分析にリーン車両の走行データを用いることで、システムで処理するデータの種類を低減でき、パーソナリティ分析装置1のハードウェアの負荷を低減できる。また、パーソナリティ分析装置1で必要とするハードウェアリソースを低減できるため、パーソナリティ分析装置1のハードウェアリソースの設計の自由度を高めることできる。
That is, by using the running data of the lean vehicle for the analysis of personality, the types of data processed by the system can be reduced, and the load on the hardware of the personality analyzer 1 can be reduced. Further, since the hardware resources required by the personality analyzer 1 can be reduced, the degree of freedom in designing the hardware resources of the personality analyzer 1 can be increased.
したがって、ハードウェアリソースの設計自由度を高めつつ、パーソナリティデータを取得することができる。
Therefore, it is possible to acquire personality data while increasing the degree of freedom in designing hardware resources.
本実施形態は、分析対象者のパーソナリティを分析するパーソナリティ分析方法の一例である。本実施形態のパーソナリティ分析方法は、以下の工程を含んでいる。
This embodiment is an example of a personality analysis method for analyzing the personality of an analysis target person. The personality analysis method of the present embodiment includes the following steps.
本実施形態のパーソナリティ分析方法では、パーソナリティを示すパーソナリティデータとリーン車両の走行データであるリーン車両走行データとを関連付けるパーソナリティ変換データを取得する。このパーソナリティ変換データは、複数の運転者がリーン車両を運転操作する時にそれぞれ得られるリーン車両の走行データに関連するデータ変換用のリーン車両走行データに基づいて生成される。
In the personality analysis method of the present embodiment, personality conversion data that associates personality data indicating personality with lean vehicle driving data, which is lean vehicle driving data, is acquired. This personality conversion data is generated based on the lean vehicle driving data for data conversion related to the driving data of the lean vehicle obtained when a plurality of drivers drive and operate the lean vehicle.
なお、前記データ変換用のリーン車両走行データは、複数の運転者によるリーン車両走行データを意味する。また、前記リーン車両は、右旋回時に右方向に傾斜し且つ左旋回時に左方向に傾斜する車両である。データ変換用のリーン車両は、前記データ変換用のリーン車両走行データの対象となる複数の運転者が運転操作するリーン車両を意味する。
The lean vehicle driving data for data conversion means lean vehicle driving data by a plurality of drivers. Further, the lean vehicle is a vehicle that tilts to the right when turning right and tilts to the left when turning left. The lean vehicle for data conversion means a lean vehicle operated by a plurality of drivers who are the targets of the lean vehicle driving data for data conversion.
例えば、前記データ変換用のリーン車両走行データは、前記データ変換用のリーン車両に設けられた各種センサで取得してもよい。また、前記データ変換用のリーン車両走行データは、前記データ変換用のリーン車両に容易に着脱可能に設けられた各種センサで取得してもよい。前記データ変換用のリーン車両走行データは、前記データ変換用のリーン車両にデータ収集のために一時的に設けられた各種センサで取得してもよい。
For example, the lean vehicle running data for data conversion may be acquired by various sensors provided in the lean vehicle for data conversion. Further, the lean vehicle traveling data for data conversion may be acquired by various sensors provided so as to be easily attached to and detached from the lean vehicle for data conversion. The lean vehicle traveling data for data conversion may be acquired by various sensors temporarily provided in the lean vehicle for data conversion for data collection.
パーソナリティ分析方法では、分析対象者がリーン車両Xを運転操作する時に得られるリーン車両Xの走行データに関連する分析用のリーン車両走行データを取得する。
In the personality analysis method, the lean vehicle running data for analysis related to the running data of the lean vehicle X obtained when the analysis target person drives and operates the lean vehicle X is acquired.
なお、分析用のリーン車両走行データは、前記分析対象者が運転操作するリーン車両Xのリーン車両走行データを意味する。分析用のリーン車両は、分析用のリーン車両走行データを取得する対象である、前記分析対象者が運転操作するリーン車両Xを意味する。
The lean vehicle running data for analysis means the lean vehicle running data of the lean vehicle X driven and operated by the analysis target person. The lean vehicle for analysis means a lean vehicle X driven and operated by the analysis target person, which is a target for acquiring lean vehicle travel data for analysis.
前記分析対象者は、前記複数の運転者に含まれていてもよい。前記分析対象者は、前記複数の運転者に含まれていなくてもよい。前記分析用のリーン車両は、前記データ変換用のリーン車両に含まれていてもよい。前記分析用のリーン車両は、前記データ変換用のリーン車両に含まれていなくてもよい。前記分析用のリーン車両走行データは、前記データ変換用のリーン車両走行データに含まれていてもよい。前記分析用のリーン車両走行データは、前記データ変換用のリーン車両走行データに含まれていなくてもよい。
The analysis target person may be included in the plurality of drivers. The person to be analyzed may not be included in the plurality of drivers. The lean vehicle for analysis may be included in the lean vehicle for data conversion. The lean vehicle for analysis may not be included in the lean vehicle for data conversion. The lean vehicle travel data for analysis may be included in the lean vehicle travel data for data conversion. The lean vehicle travel data for analysis may not be included in the lean vehicle travel data for data conversion.
例えば、前記分析用のリーン車両走行データは、前記分析用のリーン車両に設けられた各種センサで取得してもよい。また、前記分析用のリーン車両走行データは、前記分析用のリーン車両に容易に着脱可能に設けられた各種センサで取得してもよい。前記分析用のリーン車両走行データは、前記分析用のリーン車両にデータ収集のために一時的に設けられた各種センサで取得してもよい。
For example, the lean vehicle travel data for analysis may be acquired by various sensors provided in the lean vehicle for analysis. Further, the lean vehicle travel data for analysis may be acquired by various sensors provided so as to be easily detachable from the lean vehicle for analysis. The lean vehicle travel data for analysis may be acquired by various sensors temporarily provided in the lean vehicle for analysis for data collection.
なお、前記分析用のリーン車両走行データを収集するための各種センサは、前記データ変換用のリーン車両走行データを収集するための各種センサより検出精度が低くてよい。
Note that the various sensors for collecting the lean vehicle running data for the analysis may have lower detection accuracy than the various sensors for collecting the lean vehicle running data for the data conversion.
なお、前記分析用のリーン車両走行データを収集するための各種センサは、前記データ変換用のリーン車両走行データを収集するための各種センサと同じでもよい。
The various sensors for collecting the lean vehicle running data for the analysis may be the same as the various sensors for collecting the lean vehicle running data for the data conversion.
なお、前記分析用のリーン車両走行データに含まれるデータの種類は、前記データ変換用のリーン車両走行データに含まれるデータの種類よりも少なくてよい。前記分析用のリーン車両走行データに含まれるデータの種類は、前記データ変換用のリーン車両走行データに含まれるデータの種類と同じでもよい。
The type of data included in the lean vehicle travel data for analysis may be less than the type of data included in the lean vehicle travel data for data conversion. The type of data included in the lean vehicle travel data for analysis may be the same as the type of data included in the lean vehicle travel data for data conversion.
パーソナリティ分析装置1は、前記取得した分析用のリーン車両走行データを、前記取得したパーソナリティ変換データを用いて、分析対象者のパーソナリティに関連する変換パーソナリティデータに変換する。
The personality analyzer 1 converts the acquired lean vehicle driving data for analysis into conversion personality data related to the personality of the person to be analyzed by using the acquired personality conversion data.
パーソナリティ分析装置1は、前記変換された変換パーソナリティデータを用いて、出力するための出力用のパーソナリティデータを生成する。
The personality analyzer 1 uses the converted converted personality data to generate output personality data for output.
パーソナリティ分析装置1は、前記生成された出力用のパーソナリティデータを出力する。
The personality analyzer 1 outputs the generated personality data for output.
他の観点によれば、前記パーソナリティ分析方法は、以下の構成を含むことが好ましい。前記データ変換用のリーン車両走行データは、運転者による前記データ変換用のリーン車両に対する運転操作の変化が反映されていないデータより運転者による前記データ変換用のリーン車両に対する運転操作の変化が反映されているデータを多く含む。前記分析用のリーン車両走行データは、分析対象者による銭分析用のリーン車両に対する運転操作の変化が反映されていないデータより分析対象者による前記分析用のリーン車両に対する運転操作の変化が反映されているデータを多く含む。
From another point of view, the personality analysis method preferably includes the following configurations. The lean vehicle driving data for data conversion reflects the change in driving operation for the lean vehicle for data conversion by the driver rather than the data that does not reflect the change in driving operation for the lean vehicle for data conversion by the driver. Contains a lot of data. The lean vehicle driving data for analysis reflects the change in driving operation for the lean vehicle for analysis by the analysis subject from the data that does not reflect the change in driving operation for the lean vehicle for money analysis by the analysis subject. Contains a lot of data.
リーン車両の運転者は、状況を認識し、判断して運転操作を行う。この時、判断の前後で運転者が運転操作を変化させる場合と運転操作を変化させない場合とが存在する。リーン車両では、運転操作のバリエーションが多く、且つ、運転者の判断の選択肢が多いため、この運転者が運転操作を変化させるシーンのバリエーションが非常に多い。そこで、このリーン車両の運転者が運転操作を変化させるシーンに着目すると、運転者によるリーン車両に対する運転操作の変化が反映されているデータを多く含むリーン車両走行データには、恣意性が少なく本質的な運転者のパーソナリティがより強く現れやすい。
The driver of the lean vehicle recognizes the situation, makes a judgment, and performs the driving operation. At this time, there are cases where the driver changes the driving operation before and after the judgment and cases where the driving operation is not changed. In a lean vehicle, there are many variations in driving operation and there are many options for the driver's judgment, so there are many variations in the scene in which the driver changes the driving operation. Therefore, focusing on the scene in which the driver of this lean vehicle changes the driving operation, the lean vehicle driving data containing a lot of data reflecting the change in the driving operation of the lean vehicle by the driver is less arbitrariness and essential. Driver's personality is more likely to appear.
リーン車両走行データを、運転者によるリーン車両に対する運転操作の変化が反映されていないデータと、運転者によるリーン車両に対する運転操作の変化が反映されているデータとに分離する方法には、以下の方法が存在する。
The method of separating the lean vehicle driving data into data that does not reflect the change in the driving operation of the lean vehicle by the driver and data that reflects the change in the driving operation of the lean vehicle by the driver is as follows. There is a method.
例えば、リーン車両走行データの中から、運転者によるリーン車両に対する運転操作の変化を直接的に見て、分離することができる。
For example, it is possible to directly see and separate the change in the driving operation of the lean vehicle by the driver from the lean vehicle driving data.
例えば、リーン車両走行データの中から、直接的に、運転者によるリーン車両に対する運転操作の変化による結果が現れるリーン車両の挙動を見て、分離することができる。
For example, from the lean vehicle driving data, it is possible to directly see and separate the behavior of the lean vehicle in which the result due to the change in the driving operation of the lean vehicle by the driver appears.
例えば、リーン車両走行データの中から、運転者によるリーン車両に対する運転操作の変化による結果が現れるリーン車両の位置を見て、分離することができる。
For example, from the lean vehicle driving data, the position of the lean vehicle in which the result due to the change in the driving operation of the lean vehicle by the driver appears can be seen and separated.
例えば、リーン車両走行データの中から、運転者によるリーン車両に対する運転操作を変化させる頻度が高い場所を走行していることを示すリーン車両の位置を見て、分離することができる。
For example, from the lean vehicle driving data, the position of the lean vehicle indicating that the driver is traveling in a place where the driving operation for the lean vehicle is frequently changed can be seen and separated.
具体的には、リーン車両の位置データとリーン車両の走行環境データ(例えば、マップデータ)とを用いて分離することができる。より具体的には、郊外の走行データと街中の走行データとで分離してもよい。郊外の走行データを運転者によるリーン車両に対する運転操作の変化が反映されていないデータとし、街中の走行データを運転者によるリーン車両に対する運転操作の変化が反映されているデータとしてもよい。
Specifically, it can be separated by using the position data of the lean vehicle and the driving environment data (for example, map data) of the lean vehicle. More specifically, the driving data in the suburbs and the driving data in the city may be separated. The driving data in the suburbs may be data that does not reflect the change in driving operation for the lean vehicle by the driver, and the driving data in the city may be data that reflects the change in driving operation for the lean vehicle by the driver.
他の観点によれば、前記パーソナリティ分析方法は、以下の構成を含むことが好ましい。前記データ変換用のリーン車両走行データは、運転者による前記データ変換用のリーン車両への運転操作入力に関連するデータ変換用のリーン車両運転操作入力データ、データ変換用のリーン車両の挙動に関連するデータ変換用のリーン車両挙動データ及びデータ変換用のリーン車両の位置に関連するデータ変換用のリーン車両位置データのうちの少なくとも一つを含む。前記分析用のリーン車両走行データは、分析対象者による前記分析用のリーン車両への運転操作入力に関連する分析用のリーン車両運転操作入力データ、前記分析用のリーン車両の挙動に関連する分析用のリーン車両挙動データ及び前記分析用のリーン車両の位置に関連する分析用のリーン車両位置データのうちの少なくとも一つを含む。
From another point of view, the personality analysis method preferably includes the following configurations. The lean vehicle driving data for data conversion is related to the lean vehicle driving operation input data for data conversion related to the driving operation input to the lean vehicle for data conversion by the driver, and the behavior of the lean vehicle for data conversion. Includes at least one of lean vehicle behavior data for data conversion and lean vehicle position data for data conversion related to the position of the lean vehicle for data conversion. The lean vehicle driving data for analysis is the lean vehicle driving operation input data for analysis related to the driving operation input to the lean vehicle for analysis by the analysis target person, and the analysis related to the behavior of the lean vehicle for analysis. The lean vehicle behavior data for analysis and the lean vehicle position data for analysis related to the position of the lean vehicle for analysis are included.
リーン車両運転操作入力データは、運転者による運転操作入力に関連するデータであるため、運転者の判断の結果をより反映している。リーン車両では、運転者の運転操作の種類が多く、複雑に関連しているため、運転者のパーソナリティが強く反映される傾向がある。
Lean vehicle driving operation input data is data related to driving operation input by the driver, so it more reflects the result of the driver's judgment. Lean vehicles tend to strongly reflect the driver's personality because there are many types of driver's driving operations and they are intricately related.
リーン車両挙動データは、運転者のパーソナリティが強く反映されている運転者の運転操作の入力の結果が強く反映される。そのため、リーン車両挙動データにも、運転者のパーソナリティが強く反映される傾向がある。
The lean vehicle behavior data strongly reflects the result of the driver's driving operation input, which strongly reflects the driver's personality. Therefore, the lean vehicle behavior data also tends to strongly reflect the personality of the driver.
リーン車両位置データは、運転者のパーソナリティが強く反映されている運転者の運転操作の入力の結果が強く反映される。そのため、リーン車両位置データにも、運転者のパーソナリティが強く反映される傾向がある。
The lean vehicle position data strongly reflects the result of the driver's driving operation input, which strongly reflects the driver's personality. Therefore, the lean vehicle position data tends to strongly reflect the personality of the driver.
これにより、分析対象者のパーソナリティに関連するパーソナリティデータに変換する際に用いられるリーン車両走行データは、運転者である分析対象者のパーソナリティをより反映するデータを含む。
As a result, the lean vehicle driving data used when converting to personality data related to the personality of the analysis target person includes data that more reflects the personality of the analysis target person who is the driver.
他の観点によれば、前記パーソナリティ分析方法は、以下の構成を含むことが好ましい。前記データ変換用のリーン車両走行データは、更に前記データ変換用のリーン車両が走行する走行環境に関連するデータ変換用のリーン車両走行環境データを含む。前記分析用のリーン車両走行データは、更に前記分析用のリーン車両が走行する走行環境に関連する分析用のリーン車両走行環境データを含む。
From another point of view, the personality analysis method preferably includes the following configurations. The lean vehicle traveling data for data conversion further includes lean vehicle traveling environment data for data conversion related to the traveling environment in which the lean vehicle for data conversion travels. The lean vehicle travel data for analysis further includes lean vehicle travel environment data for analysis related to the travel environment in which the lean vehicle for analysis travels.
走行環境データは、運転者が受ける外部からのストレスの一例であると考えられる。走行環境データは、運転者の判断に影響を与える。走行環境データは、運転者の運転操作に影響を与える。そのため、走行環境データを用いることで、リーン車両の走行データには運転者のパーソナリティがより強く現れやすくなる。また、走行環境データを用いることで、リーン車両の利用目的及び利用頻度が影響を受けるため、リーン車両の走行データには運転者のパーソナリティが強く現れやすい。
Driving environment data is considered to be an example of external stress that the driver receives. The driving environment data influences the judgment of the driver. The driving environment data affects the driving operation of the driver. Therefore, by using the driving environment data, the personality of the driver is more likely to appear in the driving data of the lean vehicle. In addition, since the purpose and frequency of use of the lean vehicle are affected by using the driving environment data, the personality of the driver tends to appear strongly in the driving data of the lean vehicle.
これにより、分析対象者のパーソナリティに関連するパーソナリティデータに変換する際に用いられるリーン車両走行データは、運転者である分析対象者のパーソナリティをより反映するデータを含む。
As a result, the lean vehicle driving data used when converting to personality data related to the personality of the analysis target person includes data that more reflects the personality of the analysis target person who is the driver.
リーン車両走行環境データは、例えば、マップデータを含む。マップデータは、例えば、道路状況に関する情報、信号、設備などの道路交通環境に関する情報、道路の走行に関する規制情報などと関連付けられていてもよい。リーン車両走行環境データは、前記リーン車両運転操作入力データ、前記リーン車両挙動データ及び前記リーン車両位置データとともに、分析対象者の性格などのパーソナリティの分析に用いることができる。
Lean vehicle driving environment data includes, for example, map data. The map data may be associated with, for example, information on road conditions, information on road traffic environments such as traffic lights and equipment, and regulatory information on road travel. The lean vehicle driving environment data can be used for analyzing personality such as the personality of the person to be analyzed, together with the lean vehicle driving operation input data, the lean vehicle behavior data, and the lean vehicle position data.
他の観点によれば、前記パーソナリティ分析方法は、以下の構成を含むことが好ましい。前記データ変換用のリーン車両走行データは、前記データ変換用のリーン車両が公道以外を走行した時のデータより前記データ変換用のリーン車両が公道を走行した時のデータを多く含む。前記分析用のリーン車両走行データは、前記分析用のリーン車両が公道以外を走行した時のデータより前記データ変換用のリーン車両が公道を走行した時のデータを多く含む。
From another point of view, the personality analysis method preferably includes the following configurations. The lean vehicle traveling data for data conversion includes more data when the lean vehicle for data conversion travels on a public road than data when the lean vehicle for data conversion travels on a road other than a public road. The lean vehicle traveling data for analysis includes more data when the lean vehicle for data conversion travels on a public road than data when the lean vehicle for analysis travels on a road other than a public road.
公道を走行中の運転者がリーン車両を操作している際には、運転者の判断回数がより多く、判断の選択肢が多く且つ外部からストレスに晒されやすい状況である。そのため、リーン車両の走行データには、運転者のパーソナリティがより強く現れやすい。また、リーン車両は、リーンしない車両に比べて機動性及び利便性が高いため、リーン車両の利用目的が多様になり、利用頻度が多くなる傾向がある。そのため、公道を走行するリーン車両の走行データには運転者のパーソナリティがより強く現れやすい。すなわち、公道を走行するリーン車両の走行データは、運転者の恣意性が少なく且つ運転者の本質的なパーソナリティをより反映する。例えば、公道を走行しているデータか否かは、リーン車両位置データ及びリーン車両走行環境データから判別してもよい。
When a driver traveling on a public road is operating a lean vehicle, the driver makes more decisions, has more choices of decisions, and is more likely to be exposed to external stress. Therefore, the driver's personality tends to appear more strongly in the driving data of the lean vehicle. In addition, since lean vehicles have higher maneuverability and convenience than non-lean vehicles, lean vehicles tend to be used for various purposes and frequently used. Therefore, the driver's personality is more likely to appear in the driving data of a lean vehicle traveling on a public road. That is, the driving data of a lean vehicle traveling on a public road has less arbitrariness of the driver and more reflects the essential personality of the driver. For example, whether or not the data is traveling on a public road may be determined from the lean vehicle position data and the lean vehicle traveling environment data.
他の観点によれば、前記パーソナリティ分析方法は、以下の構成を含むことが好ましい。前記データ変換用のリーン車両走行データは、前記データ変換用のリーン車両の周囲の車両によって運転者の判断の選択肢が制限を受けるが複数残されている状態でのデータを含む。前記分析用のリーン車両走行データは、前記分析用のリーン車両の周囲の車両によって分析対象者の判断の選択肢が制限を受けるが複数残されている状態でのデータを含む。
From another point of view, the personality analysis method preferably includes the following configurations. The lean vehicle traveling data for data conversion includes data in a state where a plurality of judgment options of the driver are limited by vehicles around the lean vehicle for data conversion, but a plurality of data are left. The lean vehicle traveling data for analysis includes data in a state where a plurality of judgment options of the analysis target person are limited by vehicles around the lean vehicle for analysis, but a plurality of data are left.
例えば、リーン車両の周囲の車両によって運転者の判断の選択肢が制限を受けるが複数残されている状態は、リーン車両位置データ及びリーン車両走行環境データから判別してもよい。より具体的には、リーン車両が走行している日付、時間、場所で状態を推定してもよい。市街地を走行している時のリーン車両走行データであれば、リーン車両の周囲の車両によって運転者の判断の選択肢が制限を受けるが複数残されている状態でのデータを含む。また、リーン車両の実際の周囲の状況に関するデータを取得して、状態を推定してもよい。複数の状態を推定する方法を組み合わせてもよい。
For example, the driver's judgment options are limited by the vehicles around the lean vehicle, but a plurality of remaining states may be determined from the lean vehicle position data and the lean vehicle driving environment data. More specifically, the state may be estimated based on the date, time, and place where the lean vehicle is traveling. Lean vehicle driving data when traveling in an urban area includes data in a state where a plurality of driver's judgment options are restricted by vehicles around the lean vehicle, but a plurality of them are left. In addition, data on the actual surrounding conditions of the lean vehicle may be acquired to estimate the state. A combination of methods for estimating a plurality of states may be used.
なお、リーン車両の周囲の車両によって運転者の判断の選択肢が制限を受けるが複数残されている状態とは、リーン車両を含む複数の車両の集団の中で、前記リーン車両の運転者が運転操作の判断を行う際に、選択肢が限られているものの複数の選択肢が残されているときの前記リーン車両の走行状態を意味する。
The driver's judgment options are limited by the vehicles around the lean vehicle, but a plurality of remaining options are defined as the driver of the lean vehicle driving in a group of a plurality of vehicles including the lean vehicle. It means the running state of the lean vehicle when a plurality of options are left although the options are limited when the operation is determined.
他の観点によれば、前記パーソナリティ分析方法は、以下の構成を含むことが好ましい。前記データ変換用のリーン車両走行データは、同乗者及び物の少なくとも一方を搭載した状態のデータを含む。前記分析用のリーン車両走行データは、同乗者及び物の少なくとも一方を搭載した状態のデータを含む。
From another point of view, the personality analysis method preferably includes the following configurations. The lean vehicle traveling data for data conversion includes data in a state where at least one of a passenger and an object is mounted. The lean vehicle driving data for analysis includes data in a state where at least one of a passenger and an object is mounted.
例えば、同乗者及び物の少なくとも一方を搭載した状態か否かは、各種センサから判別してもよい。また、運転者による申告に基づいて判別してもよい。
For example, it may be determined from various sensors whether or not at least one of a passenger and an object is mounted. Further, the determination may be made based on the declaration by the driver.
他の観点によれば、前記パーソナリティ分析方法は、以下の構成を含むことが好ましい。前記パーソナリティ分析方法では、前記変換された変換パーソナリティデータ記憶する。前記パーソナリティ分析方法では、前記記憶された複数の変換パーソナリティデータを用いて、前記出力用のパーソナリティデータを生成する。なお、記憶とは、ストレージのための記憶だけでなく、結果の一時的な記憶も含む。例えば、ストレージに記憶された変換パーソナリティデータと一時メモリに記憶された変換パーソナリティデータとを用いてもよい。これらを用いて、ストレージに記憶されている変換パーソナリティデータを更新してもよい。これらを用いて、新たな変換パーソナリティデータを生成してもよい。これらを用いて、統計処理を行なってもよい。これらを用いて、ストレージに記憶されている変換パーソナリティデータを更新してもよい。
From another point of view, the personality analysis method preferably includes the following configurations. In the personality analysis method, the converted conversion personality data is stored. In the personality analysis method, the stored personality data for output is generated by using the plurality of stored conversion personality data. Note that the memory includes not only the memory for storage but also the temporary memory of the result. For example, the conversion personality data stored in the storage and the conversion personality data stored in the temporary memory may be used. These may be used to update the conversion personality data stored in the storage. These may be used to generate new conversion personality data. Statistical processing may be performed using these. These may be used to update the conversion personality data stored in the storage.
上述のように複数の変換パーソナリティデータを用いることで、例えば、統計的に処理することができ、リーン車両の運転者である分析対象者のパーソナリティをより精度良く分析することができる。より具体的には、古い変換パーソナリティデータ及び新しい変換パーソナリティデータを用いて、リーン車両Xの運転者である分析対象者のパーソナリティをより精度良く分析することができる。
By using a plurality of converted personality data as described above, for example, it can be statistically processed, and the personality of the analysis target person who is the driver of the lean vehicle can be analyzed more accurately. More specifically, the old conversion personality data and the new conversion personality data can be used to more accurately analyze the personality of the analysis target person who is the driver of the lean vehicle X.
本実施形態は、分析対象者のパーソナリティを分析するパーソナリティ分析装置の一例である。本実施形態のパーソナリティ分析装置は、以下の構成を含んでいる。
This embodiment is an example of a personality analyzer that analyzes the personality of the person to be analyzed. The personality analyzer of the present embodiment includes the following configurations.
本実施形態に係るパーソナリティ分析装置は、分析対象者のパーソナリティを分析するパーソナリティ分析装置である。このパーソナリティ分析装置は、右旋回時に右方向に傾斜し且つ左旋回時に左方向に傾斜するデータ変換用のリーン車両を複数の運転者が運転操作する時にそれぞれ得られる前記データ変換用のリーン車両の走行データに関連するデータ変換用のリーン車両走行データに基づいて、パーソナリティを示すパーソナリティデータとリーン車両の走行データであるリーン車両走行データとを関連付けて生成されたパーソナリティ変換データを取得するパーソナリティ変換データ取得部と、右旋回時に右方向に傾斜し且つ左旋回時に左方向に傾斜する分析用のリーン車両を前記分析対象者が運転操作する時に得られる前記分析用のリーン車両の走行データに関連する分析用のリーン車両走行データを取得する分析用リーン車両走行データ取得部と、前記取得したパーソナリティ変換データを用いて、前記取得した分析用のリーン車両走行データを前記分析対象者のパーソナリティに関連する変換パーソナリティデータに変換するパーソナリティデータ変換部と、前記変換された変換パーソナリティデータを用いて、出力するための出力用のパーソナリティデータを生成する出力用パーソナリティデータ生成部と、前記生成された出力用のパーソナリティデータを出力するデータ出力部と、を備える。
The personality analyzer according to the present embodiment is a personality analyzer that analyzes the personality of the person to be analyzed. This personality analyzer is a lean vehicle for data conversion obtained when a plurality of drivers operate a lean vehicle for data conversion that tilts to the right when turning right and tilts to the left when turning left. Personality conversion that acquires personality conversion data generated by associating personality data indicating personality with lean vehicle driving data that is lean vehicle driving data based on lean vehicle driving data for data conversion related to the driving data of The data acquisition unit and the running data of the lean vehicle for analysis obtained when the analysis target person operates the lean vehicle for analysis that tilts to the right when turning right and tilts to the left when turning left. Using the lean vehicle driving data acquisition unit for analysis that acquires the lean vehicle driving data for analysis and the acquired personality conversion data, the acquired lean vehicle driving data for analysis is used as the personality of the person to be analyzed. A personality data conversion unit that converts to related conversion personality data, an output personality data generation unit that generates personality data for output to be output using the converted conversion personality data, and the generated output. It is provided with a data output unit that outputs personality data for the user.
他の観点によれば、前記パーソナリティ分析装置は、以下の構成を含むことが好ましい。前記データ変換用のリーン車両走行データは、前記運転者による前記データ変換用のリーン車両に対する運転操作の変化が反映されていないデータより前記運転者による前記データ変換用のリーン車両に対する運転操作の変化が反映されているデータを多く含む。前記分析用のリーン車両走行データは、前記分析対象者による前記分析用のリーン車両に対する運転操作の変化が反映されていないデータより前記分析対象者による前記分析用のリーン車両に対する運転操作の変化が反映されているデータを多く含む。
From another point of view, the personality analyzer preferably includes the following configurations. The lean vehicle driving data for data conversion is a change in driving operation for the lean vehicle for data conversion by the driver from data that does not reflect the change in driving operation for the lean vehicle for data conversion by the driver. Contains a lot of data that reflects. The lean vehicle driving data for analysis shows that the change in driving operation for the lean vehicle for analysis by the analysis target person is different from the data that does not reflect the change in driving operation for the lean vehicle for analysis by the analysis target person. Contains a lot of reflected data.
他の観点によれば、前記パーソナリティ分析装置は、以下の構成を含むことが好ましい。前記データ変換用のリーン車両走行データは、前記運転者による前記データ変換用のリーン車両への運転操作入力に関連するデータ変換用のリーン車両運転操作入力データ、前記データ変換用のリーン車両の挙動に関連するデータ変換用のリーン車両挙動データ及び前記データ変換用のリーン車両の位置に関連するデータ変換用のリーン車両位置データのうちの少なくとも一つを含む。前記分析用のリーン車両走行データは、前記分析対象者による前記分析用のリーン車両への運転操作入力に関連する分析用のリーン車両運転操作入力データ、前記分析用のリーン車両の挙動に関連する分析用のリーン車両挙動データ及び前記分析用のリーン車両の位置に関連する分析用のリーン車両位置データのうち少なくとも一つを含む。
From another point of view, the personality analyzer preferably includes the following configurations. The lean vehicle driving data for data conversion is the lean vehicle driving operation input data for data conversion related to the driving operation input to the lean vehicle for data conversion by the driver, and the behavior of the lean vehicle for data conversion. Includes at least one of lean vehicle behavior data for data conversion related to and lean vehicle position data for data conversion related to the position of the lean vehicle for data conversion. The lean vehicle driving data for analysis is related to the lean vehicle driving operation input data for analysis related to the driving operation input to the lean vehicle for analysis by the analysis subject, and the behavior of the lean vehicle for analysis. It includes at least one of the lean vehicle behavior data for analysis and the lean vehicle position data for analysis related to the position of the lean vehicle for analysis.
他の観点によれば、前記パーソナリティ分析装置は、以下の構成を含むことが好ましい。前記データ変換用のリーン車両走行データは、更に前記データ変換用のリーン車両が走行する走行環境に関連するデータ変換用のリーン車両走行環境データを含む。前記分析用のリーン車両走行データは、更に前記分析用のリーン車両が走行する走行環境に関連する分析用のリーン車両走行環境データを含む。
From another point of view, the personality analyzer preferably includes the following configurations. The lean vehicle traveling data for data conversion further includes lean vehicle traveling environment data for data conversion related to the traveling environment in which the lean vehicle for data conversion travels. The lean vehicle travel data for analysis further includes lean vehicle travel environment data for analysis related to the travel environment in which the lean vehicle for analysis travels.
他の観点によれば、前記パーソナリティ分析装置は、以下の構成を含むことが好ましい。前記データ変換用のリーン車両走行データは、前記データ変換用のリーン車両が公道以外を走行した時のデータより前記データ変換用のリーン車両が公道を走行した時のデータを多く含む。前記分析用のリーン車両走行データは、前記分析用のリーン車両が公道以外を走行した時のデータより前記分析用のリーン車両が公道を走行した時のデータを多く含む。
From another point of view, the personality analyzer preferably includes the following configurations. The lean vehicle traveling data for data conversion includes more data when the lean vehicle for data conversion travels on a public road than data when the lean vehicle for data conversion travels on a road other than a public road. The lean vehicle traveling data for analysis includes more data when the lean vehicle for analysis travels on a public road than data when the lean vehicle for analysis travels on a road other than a public road.
他の観点によれば、前記パーソナリティ分析装置は、以下の構成を含むことが好ましい。前記データ変換用のリーン車両走行データは、前記データ変換用のリーン車両の周囲の車両によって運転者の判断の選択肢が制限を受けるが複数残されている状態でのデータを含む。前記分析用のリーン車両走行データは、前記分析用のリーン車両の周囲の車両によって分析対象者の判断の選択肢が制限を受けるが複数残されている状態でのデータを含む。
From another point of view, the personality analyzer preferably includes the following configurations. The lean vehicle traveling data for data conversion includes data in a state where a plurality of judgment options of the driver are limited by vehicles around the lean vehicle for data conversion, but a plurality of data are left. The lean vehicle traveling data for analysis includes data in a state where a plurality of judgment options of the analysis target person are limited by vehicles around the lean vehicle for analysis, but a plurality of data are left.
他の観点によれば、前記パーソナリティ分析装置は、以下の構成を含むことが好ましい。前記データ変換用のリーン車両走行データは、同乗者及び物の少なくとも一方を搭載した状態のデータを含む。前記分析用のリーン車両走行データは、同乗者及び物の少なくとも一方を搭載した状態のデータを含む。
From another point of view, the personality analyzer preferably includes the following configurations. The lean vehicle traveling data for data conversion includes data in a state where at least one of a passenger and an object is mounted. The lean vehicle driving data for analysis includes data in a state where at least one of a passenger and an object is mounted.
<実施形態2>
図3に、実施形態1のパーソナリティ分析装置1を含むパーソナリティ分析システム100の一例を示す。以下で、実施形態1の構成と同様については同一の符号を付して説明を省略し、実施形態1と異なる構成についてのみ説明する。 <Embodiment 2>
FIG. 3 shows an example of thepersonality analysis system 100 including the personality analysis device 1 of the first embodiment. Hereinafter, the same components as those of the first embodiment are designated by the same reference numerals and the description thereof will be omitted, and only the configurations different from the first embodiment will be described.
図3に、実施形態1のパーソナリティ分析装置1を含むパーソナリティ分析システム100の一例を示す。以下で、実施形態1の構成と同様については同一の符号を付して説明を省略し、実施形態1と異なる構成についてのみ説明する。 <Embodiment 2>
FIG. 3 shows an example of the
パーソナリティ分析システム100は、パーソナリティ分析装置1と、パーソナリティ変換データを生成するパーソナリティ変換データ生成装置101とを備える。
The personality analysis system 100 includes a personality analysis device 1 and a personality conversion data generation device 101 that generates personality conversion data.
パーソナリティ変換データ生成装置101は、例えば、パーソナリティ分析装置1と通信可能で且つプロセッサを有する情報処理演算装置である。なお、パーソナリティ分析装置1がプロセッサを有する情報処理演算装置である場合、パーソナリティ変換データ生成装置101は、パーソナリティ分析装置1と同じ情報処理演算装置であってもよい。
The personality conversion data generation device 101 is, for example, an information processing arithmetic unit capable of communicating with the personality analysis device 1 and having a processor. When the personality analysis device 1 is an information processing calculation device having a processor, the personality conversion data generation device 101 may be the same information processing calculation device as the personality analysis device 1.
パーソナリティ変換データ生成装置101は、リーン車両走行データ及びパーソナリティデータを取得し、前記リーン車両走行データと前記パーソナリティデータとが関連付けられたパーソナリティ変換データを生成する。
The personality conversion data generation device 101 acquires lean vehicle traveling data and personality data, and generates personality conversion data in which the lean vehicle traveling data and the personality data are associated with each other.
詳しくは、パーソナリティ変換データ生成装置101は、データ記憶部111と、パーソナリティ変換データ生成部112とを有する。なお、特に図示しないが、パーソナリティ変換データ生成装置101は、リーン車両走行データ及びパーソナリティデータを取得する取得部を有する。また、特に図示しないが、パーソナリティ変換データ生成装置101は、生成したパーソナリティ変換データを出力する出力部を有する。
Specifically, the personality conversion data generation device 101 has a data storage unit 111 and a personality conversion data generation unit 112. Although not particularly shown, the personality conversion data generation device 101 has an acquisition unit for acquiring lean vehicle traveling data and personality data. Further, although not particularly shown, the personality conversion data generation device 101 has an output unit that outputs the generated personality conversion data.
データ記憶部111は、リーン車両走行データ、パーソナリティデータ及びパーソナリティ変換データを格納する。具体的には、データ記憶部111には、複数の運転者がリーン車両Y(データ変換用のリーン車両)を運転操作するときにそれぞれ得られるデータ変換用のリーン車両走行データが格納される。また、データ記憶部111には、後述するパーソナリティ変換データ生成部112で生成されたパーソナリティ変換データが格納される。
The data storage unit 111 stores lean vehicle driving data, personality data, and personality conversion data. Specifically, the data storage unit 111 stores lean vehicle running data for data conversion obtained when a plurality of drivers drive and operate the lean vehicle Y (lean vehicle for data conversion). Further, the data storage unit 111 stores the personality conversion data generated by the personality conversion data generation unit 112, which will be described later.
なお、データ記憶部111には、パーソナリティデータが入力によって格納されてもよいし、パーソナリティデータが予め格納されていてもよい。
Note that personality data may be stored by input in the data storage unit 111, or personality data may be stored in advance.
前記データ変換用のリーン車両走行データは、例えば、データ変換用のリーン車両運転操作入力データ、データ変換用のリーン車両挙動データ、データ変換用のリーン車両位置データ及びデータ変換用のリーン車両走行環境データなどを含む。
The lean vehicle driving data for data conversion includes, for example, lean vehicle driving operation input data for data conversion, lean vehicle behavior data for data conversion, lean vehicle position data for data conversion, and lean vehicle driving environment for data conversion. Includes data etc.
パーソナリティ変換データ生成部112は、データ記憶部111に格納されているデータ変換用のリーン車両走行データに基づいて、リーン車両走行データとパーソナリティデータとが関連付けられたパーソナリティ変換データを生成する。パーソナリティ変換データ生成部112で生成されたパーソナリティ変換データは、データ記憶部111に格納される。
The personality conversion data generation unit 112 generates personality conversion data in which the lean vehicle travel data and the personality data are associated with each other, based on the lean vehicle travel data for data conversion stored in the data storage unit 111. The personality conversion data generated by the personality conversion data generation unit 112 is stored in the data storage unit 111.
データ記憶部111に格納されているパーソナリティ変換データは、パーソナリティ分析装置1で、リーン車両X(分析用のリーン車両)のリーン車両走行データ(分析用のリーン車両走行データ)を変換パーソナリティデータに変換する際に用いられる。パーソナリティ分析装置1においてリーン車両走行データを変換パーソナリティデータに変換する方法は、実施形態1と同様であるため、詳しい説明を省略する。
The personality conversion data stored in the data storage unit 111 is converted from the lean vehicle running data (lean vehicle running data for analysis) of the lean vehicle X (lean vehicle for analysis) into the converted personality data by the personality analyzer 1. It is used when doing. Since the method of converting the lean vehicle traveling data into the converted personality data in the personality analyzer 1 is the same as that of the first embodiment, detailed description thereof will be omitted.
パーソナリティ分析装置1は、前記変換パーソナリティデータを用いて出力用のパーソナリティデータを生成し、該出力用のパーソナリティデータを出力する。パーソナリティ分析装置1の構成は、実施形態1と同様であるため、パーソナリティ分析装置1の詳しい説明を省略する。
The personality analyzer 1 generates personality data for output using the converted personality data, and outputs the personality data for the output. Since the configuration of the personality analyzer 1 is the same as that of the first embodiment, detailed description of the personality analyzer 1 will be omitted.
パーソナリティ分析装置1から出力された出力用のパーソナリティデータは、例えば、情報処理装置102に入力されてもよい。この場合、前記出力用のパーソナリティデータは、パーソナリティ分析装置1において、情報処理装置102で情報処理に用いられる情報処理用パーソナリティデータとして生成される。
The output personality data output from the personality analyzer 1 may be input to, for example, the information processing device 102. In this case, the output personality data is generated in the personality analyzer 1 as information processing personality data used for information processing in the information processing device 102.
情報処理装置102は、例えば、金融、保険、販売、広告などのビジネスで用いられる金融、保険、市場、商品、サービス、環境または顧客に関連するデータの処理を行う装置であってもよい。パーソナリティ分析装置1が情報処理演算装置である場合、情報処理装置102は、パーソナリティ分析装置1と同じ装置であってもよい。情報処理装置102は、パーソナリティ変換データ生成装置101と同じ情報処理演算装置であってもよい。
The information processing device 102 may be, for example, a device that processes data related to finance, insurance, market, goods, services, environment, or customers used in businesses such as finance, insurance, sales, and advertising. When the personality analysis device 1 is an information processing calculation device, the information processing device 102 may be the same device as the personality analysis device 1. The information processing device 102 may be the same information processing calculation device as the personality conversion data generation device 101.
情報処理装置102は、例えば、出力用パーソナリティデータ取得部121と、第1データ取得部122と、第2データ生成部123と、第2データ出力部124と、データ記憶部125とを有する。
The information processing device 102 includes, for example, an output personality data acquisition unit 121, a first data acquisition unit 122, a second data generation unit 123, a second data output unit 124, and a data storage unit 125.
出力用パーソナリティデータ取得部121は、パーソナリティ分析装置1から出力される前記出力用のパーソナリティデータを取得する。
The output personality data acquisition unit 121 acquires the output personality data output from the personality analyzer 1.
第1データ取得部122は、前記出力用のパーソナリティデータとは異なる第1データを取得する。この第1データは、情報処理装置102において情報処理対象のデータである。前記第1データは、例えば、金融、保険、販売、広告などのビジネスで用いられる金融、保険、市場、商品、サービス、環境または顧客に関連するデータである。前記第1データは、データ記憶部125に格納されている。
The first data acquisition unit 122 acquires the first data different from the personality data for the output. This first data is data to be processed by the information processing apparatus 102. The first data is data related to finance, insurance, market, goods, services, environment or customers used in business such as finance, insurance, sales and advertising. The first data is stored in the data storage unit 125.
第2データ生成部123は、前記出力用のパーソナリティデータ及び前記第1データを用いて、前記出力用のパーソナリティデータ及び前記第1データとは異なる第2データを生成する。この第2データも、前記第1データと同様、例えば、金融、保険、販売、広告などのビジネスで用いられる金融、保険、市場、商品、サービス、環境または顧客に関連するデータである。
The second data generation unit 123 uses the output personality data and the first data to generate the output personality data and second data different from the first data. Similar to the first data, this second data is also data related to finance, insurance, market, goods, services, environment or customers used in business such as finance, insurance, sales and advertising.
第2データ出力部124は、第2データ生成部123で生成された第2データを出力する。
The second data output unit 124 outputs the second data generated by the second data generation unit 123.
(パーソナリティデータを用いる情報処理方法)
次に、上述の構成を有する情報処理装置102によって、出力用のパーソナリティデータを用いて情報処理を行う情報処理方法について、図4に示すフローチャートを用いて説明する。図4は、情報処理装置102による情報処理の動作を示すフローチャートである。 (Information processing method using personality data)
Next, an information processing method for performing information processing using personality data for output by theinformation processing apparatus 102 having the above configuration will be described with reference to the flowchart shown in FIG. FIG. 4 is a flowchart showing the operation of information processing by the information processing device 102.
次に、上述の構成を有する情報処理装置102によって、出力用のパーソナリティデータを用いて情報処理を行う情報処理方法について、図4に示すフローチャートを用いて説明する。図4は、情報処理装置102による情報処理の動作を示すフローチャートである。 (Information processing method using personality data)
Next, an information processing method for performing information processing using personality data for output by the
図4に示すように、まず、情報処理装置102の出力用パーソナリティデータ取得部121が、パーソナリティ分析装置1から出力された出力用のパーソナリティデータを取得する(ステップSB1)。
As shown in FIG. 4, first, the output personality data acquisition unit 121 of the information processing apparatus 102 acquires the output personality data output from the personality analyzer 1 (step SB1).
次に、情報処理装置102の第1データ取得部122が、データ記憶部125に格納されている第1データを取得する(ステップSB2)。この第1データは、前記出力用のパーソナリティデータとは異なるデータである。
Next, the first data acquisition unit 122 of the information processing device 102 acquires the first data stored in the data storage unit 125 (step SB2). This first data is different from the personality data for output.
その後、情報処理装置102の第2データ生成部123が、前記取得した出力用のパーソナリティデータ及び前記取得した第1データを用いて、第2データを生成する(ステップSB3)。この第2データは、前記出力用のパーソナリティデータ及び前記第1データとは異なるデータである。
After that, the second data generation unit 123 of the information processing apparatus 102 generates the second data by using the acquired personality data for output and the acquired first data (step SB3). This second data is different from the personality data for output and the first data.
続いて、情報処理装置102の第2データ出力部124が、前記生成された第2データを出力する(ステップSB4)。
Subsequently, the second data output unit 124 of the information processing device 102 outputs the generated second data (step SB4).
このようにパーソナリティ分析装置1から出力された出力用のパーソナリティデータは、例えば、金融または保険などの分野において、情報処理装置で信用リスクまたは信用スコアを演算処理する際に、利用することができる。すなわち、リーン車両走行データを用いて得られたパーソナリティデータを、金融、保険、販売及び広告などの分野における情報処理装置の演算処理に利用することができる。
The output personality data output from the personality analyzer 1 in this way can be used, for example, in the field of finance or insurance, when the information processing device calculates and processes credit risk or credit score. That is, the personality data obtained by using the lean vehicle driving data can be used for the arithmetic processing of the information processing device in the fields of finance, insurance, sales, advertising, and the like.
具体的には、金融または保険などの分野において、情報処理装置は、出力された出力用のパーソナリティデータを取得し、その取得された出力用のパーソナリティデータを用いて、演算処理により信用リスクまたは信用スコアを出力することができる。
Specifically, in fields such as finance or insurance, an information processing device acquires the output personality data for output, and uses the acquired personality data for output to perform credit risk or credit by arithmetic processing. The score can be output.
金融または保険などの分野において、情報処理方法は、パーソナリティ分析装置1から出力された出力用のパーソナリティデータを取得する工程と、その取得された出力用のパーソナリティデータを用いて信用リスクに関する信用リスクデータまたは信用スコアに関する信用スコアデータを出力する工程とを含んでいてもよい。
In fields such as finance or insurance, the information processing method is a process of acquiring personality data for output output from the personality analyzer 1 and credit risk data related to credit risk using the acquired personality data for output. Alternatively, it may include a step of outputting credit score data regarding the credit score.
金融または保険などの分野において、情報処理装置は、パーソナリティ分析装置1から出力された出力用のパーソナリティデータを取得するパーナリティデータ取得部と、その取得されたパーソナリティデータを用いて、信用リスクに関する信用リスクデータを出力する信用リスク出力部または信用スコアに関する信用スコアデータを出力する信用スコア出力部とを含んでいてもよい。
In fields such as finance or insurance, an information processing device uses a personality data acquisition unit that acquires personality data for output output from the personality analyzer 1 and the acquired personality data to provide credit regarding credit risk. It may include a credit risk output unit that outputs risk data or a credit score output unit that outputs credit score data related to credit scores.
上述の情報処理方法及び情報処理装置において、出力された信用リスクが低い場合または信用スコアが高い場合には、例えば、分析対象者が融資を受けやすくしたり、分析対象者が融資を受ける場合には金利優遇したり、または分析対象者が保険料の優遇等を受けたりできるようにしてもよい。
In the above-mentioned information processing method and information processing device, when the output credit risk is low or the credit score is high, for example, when the analysis target person can easily obtain a loan or when the analysis target person receives a loan. May give preferential interest rates, or allow the person being analyzed to receive preferential treatment of insurance premiums.
さらに、上述のようにパーソナリティ分析装置1から出力された出力用のパーソナリティデータは、例えば、販売または広告などの分野において情報処理装置で演算処理する際に、分析対象者に推奨する際に考慮するパラメータとして利用することができる。販売または広告などの分野において、情報処理装置で演算処理を行うことによって、分析対象者のパーソナリティデータに応じて該分析対象者に商品またはサービスを勧めてもよい。
Further, as described above, the personality data for output output from the personality analyzer 1 is taken into consideration when recommending to the analysis target person when the information processing apparatus performs arithmetic processing in the field of sales or advertising, for example. It can be used as a parameter. In fields such as sales or advertising, a product or service may be recommended to the analysis target person according to the personality data of the analysis target person by performing arithmetic processing on the information processing device.
具体的には、販売または広告などの分野において、情報処理装置は、パーソナリティ分析装置1から出力された出力用のパーソナリティデータを取得し、その取得された出力用のパーソナリティデータを用いて、演算処理により分析対象者に勧める商品またはサービスを出力することができる。
Specifically, in fields such as sales or advertising, the information processing device acquires personality data for output output from the personality analyzer 1, and uses the acquired personality data for output for arithmetic processing. Can output the products or services recommended to the analysis target person.
販売または広告などの分野において情報処理装置は、パーソナリティ分析装置1から出力された出力用のパーソナリティデータを取得するパーナリティデータ取得部と、その取得された出力用のパーソナリティデータを用いて、分析対象者に勧める商品に関する商品関連データを出力する商品関連データ出力部またはサービスに関するサービス関連データを出力するサービス関連データ出力部とを含んでいてもよい。
In fields such as sales or advertising, an information processing device is an analysis target using a personality data acquisition unit that acquires personality data for output output from the personality analyzer 1 and the acquired personality data for output. It may include a product-related data output unit that outputs product-related data related to a product recommended to a person, or a service-related data output unit that outputs service-related data related to services.
販売または広告などの分野において、情報処理方法は、パーソナリティ分析装置1から出力されたパーソナリティデータを取得する工程と、その取得されたパーソナリティデータを用いて分析対象者に勧める商品に関する商品関連データまたはサービスに関するサービス関連データを出力する工程とを含んでいてもよい。
In fields such as sales or advertising, the information processing method is a process of acquiring personality data output from the personality analyzer 1 and product-related data or services related to products recommended to the analysis target person using the acquired personality data. It may include a process of outputting service-related data related to the above.
上述の各実施形態におけるパーソナリティ分析方法は、分析対象者のパーソナリティを分析するパーソナリティ分析方法の一例である。
The personality analysis method in each of the above-described embodiments is an example of a personality analysis method for analyzing the personality of the analysis target person.
なお、本発明のパーソナリティ分析方法は、以下の構成を含むことが好ましい。出力用のパーソナリティデータは、更なる情報処理に用いられる情報処理用パーソナリティデータとして生成される。
The personality analysis method of the present invention preferably includes the following configurations. The output personality data is generated as information processing personality data used for further information processing.
例えば、前記更なる情報処理としては、金融、保険、販売、広告などのビジネスで用いられる金融、保険、市場、商品、サービス、環境または顧客に関連するデータの処理であってもよい。
For example, the further information processing may be the processing of data related to finance, insurance, markets, products, services, environment or customers used in businesses such as finance, insurance, sales and advertising.
他の観点によれば、本発明のパーソナリティ分析方法で出力されたパーソナリティデータは、以下のパーソナリティデータを用いる情報処理方法に用いることが好ましい。この情報処理方法では、前記出力された出力用のパーソナリティデータを取得する。前記情報処理方法では、前記出力用のパーソナリティデータとは異なる第1データを取得する。前記情報処理方法では、前記出力用のパーソナリティデータ及び前記取得した第1データを用いて、前記出力用のパーソナリティデータ及び前記取得した第1データと異なる第2データを生成する。前記情報処理方法では、前記生成した第2データを出力する。
From another point of view, it is preferable that the personality data output by the personality analysis method of the present invention is used in the information processing method using the following personality data. In this information processing method, the personality data for the output is acquired. In the information processing method, first data different from the personality data for output is acquired. In the information processing method, the personality data for output and the acquired first data are used to generate the personality data for output and the second data different from the acquired first data. In the information processing method, the generated second data is output.
パーソナリティデータを用いる情報処理方法は、背景技術に記載した特許文献に記載されているような情報処理方法を含む。ただし、背景技術に記載した特許文献に記載されているような情報処理方法に限定されることは無い。前記情報処理方法は、パーソナリティデータを用いる情報処理方法であればどのような情報処理方法であってもよい。例えば、前記第1データ及び前記第2データは、金融、保険、販売、広告などのビジネスで用いられる金融、保険、市場、商品、サービス、環境または顧客に関連するデータであってもよい。
The information processing method using the personality data includes the information processing method as described in the patent document described in the background technology. However, it is not limited to the information processing method described in the patent document described in the background technology. The information processing method may be any information processing method as long as it is an information processing method that uses personality data. For example, the first data and the second data may be data related to finance, insurance, market, goods, services, environment or customers used in businesses such as finance, insurance, sales and advertising.
本実施形態の構成により、パーソナリティ分析装置1及びそれを用いたパーソナリティ分析方法によって、情報処理装置102で利用可能なパーソナリティのデータを取得できる。また、実施形態1で説明したように、パーソナリティの分析にリーン車両の走行データを用いることで、システムで処理するデータの種類を低減でき、パーソナリティ分析装置1のハードウェアの負荷を低減できる。
According to the configuration of the present embodiment, the personality data available in the information processing device 102 can be acquired by the personality analysis device 1 and the personality analysis method using the personality analysis device 1. Further, as described in the first embodiment, by using the traveling data of the lean vehicle for the personality analysis, the types of data processed by the system can be reduced, and the hardware load of the personality analyzer 1 can be reduced.
したがって、ハードウェアリソースの設計自由度を高めつつ、情報処理装置で利用可能なパーソナリティデータを取得することができる。
Therefore, it is possible to acquire personality data that can be used in the information processing device while increasing the degree of freedom in designing hardware resources.
なお、本発明のパーソナリティ分析装置は、以下の構成を含むことが好ましい。前記出力用のパーソナリティデータは、更なる情報処理に用いられる情報処理用パーソナリティデータとして生成される。
The personality analyzer of the present invention preferably includes the following configurations. The personality data for output is generated as information processing personality data used for further information processing.
他の観点によれば、本発明のパーソナリティ分析装置で出力されたパーソナリティデータは、以下のパーソナリティデータを用いる情報処理装置に用いることが好ましい。この情報処理装置は、前記出力用のパーソナリティデータを取得する出力用パーソナリティデータ取得部と、前記出力用のパーソナリティデータとは異なる第1データを取得する第1データ取得部と、前記出力用のパーソナリティデータ及び前記第1データを用いて、前記出力用のパーソナリティデータ及び前記第1データと異なる第2データを生成する第2データ生成部と、前記第2データを出力する第2データ出力部と、を備える。
From another viewpoint, it is preferable that the personality data output by the personality analyzer of the present invention is used in an information processing device that uses the following personality data. This information processing apparatus includes an output personality data acquisition unit that acquires the personality data for the output, a first data acquisition unit that acquires the first data different from the output personality data, and the personality for the output. A second data generation unit that uses the data and the first data to generate personality data for output and second data that is different from the first data, a second data output unit that outputs the second data, and a second data output unit. To be equipped with.
本発明は、分析対象者のパーソナリティを分析するパーソナリティ分析方法、パーソナリティ分析装置に利用可能であるとともに、これらの方法及び装置で得られたパーソナリティデータを用いる情報処理方法及び情報処理装置にも利用可能である。
The present invention can be used for a personality analysis method and a personality analyzer for analyzing the personality of an analysis subject, and can also be used for an information processing method and an information processing device using personality data obtained by these methods and devices. Is.
1 パーソナリティ分析装置
10 パーソナリティ変換データ取得部
20 分析用リーン車両走行データ取得部
30 パーソナリティデータ変換部
40 出力用パーソナリティデータ生成部
50 データ出力部
60、111、125 データ記憶部
100 パーソナリティ分析システム
101 パーソナリティ変換データ生成装置
112 パーソナリティ変換データ生成部
102 情報処理装置
121 出力用パーソナリティデータ取得部
122 第1データ取得部
123 第2データ生成部
124 第2データ出力部
X リーン車両(分析用のリーン車両)
Y リーン車両(データ変換用のリーン車両) 1Personality analyzer 10 Personality conversion data acquisition unit 20 Analy lean vehicle driving data acquisition unit 30 Personality data conversion unit 40 Output personality data generation unit 50 Data output unit 60, 111, 125 Data storage unit 100 Personality analysis system 101 Personality conversion Data generation device 112 Personality conversion Data generation unit 102 Information processing device 121 Output personality data acquisition unit 122 First data acquisition unit 123 Second data generation unit 124 Second data output unit X Lean vehicle (lean vehicle for analysis)
Y lean vehicle (lean vehicle for data conversion)
10 パーソナリティ変換データ取得部
20 分析用リーン車両走行データ取得部
30 パーソナリティデータ変換部
40 出力用パーソナリティデータ生成部
50 データ出力部
60、111、125 データ記憶部
100 パーソナリティ分析システム
101 パーソナリティ変換データ生成装置
112 パーソナリティ変換データ生成部
102 情報処理装置
121 出力用パーソナリティデータ取得部
122 第1データ取得部
123 第2データ生成部
124 第2データ出力部
X リーン車両(分析用のリーン車両)
Y リーン車両(データ変換用のリーン車両) 1
Y lean vehicle (lean vehicle for data conversion)
Claims (16)
- 分析対象者のパーソナリティを分析するパーソナリティ分析方法であって、
右旋回時に右方向に傾斜し且つ左旋回時に左方向に傾斜するデータ変換用のリーン車両を複数の運転者が運転操作する時にそれぞれ得られる前記データ変換用のリーン車両の走行データに関連するデータ変換用のリーン車両走行データに基づいて、パーソナリティを示すパーソナリティデータとリーン車両の走行データであるリーン車両走行データとを関連付けて生成されたパーソナリティ変換データを取得し、
右旋回時に右方向に傾斜し且つ左旋回時に左方向に傾斜する分析用のリーン車両を前記分析対象者が運転操作する時に得られる前記分析用のリーン車両の走行データに関連する分析用のリーン車両走行データを取得し、
前記取得したパーソナリティ変換データを用いて、前記取得した分析用のリーン車両走行データを前記分析対象者のパーソナリティに関連する変換パーソナリティデータに変換し、
前記変換された変換パーソナリティデータを用いて、出力するための出力用のパーソナリティデータを生成し、
前記生成された出力用のパーソナリティデータを出力する、
パーソナリティ分析方法。 It is a personality analysis method that analyzes the personality of the person to be analyzed.
It is related to the running data of the lean vehicle for data conversion obtained when a plurality of drivers operate a lean vehicle for data conversion that tilts to the right when turning right and tilts to the left when turning left. Based on the lean vehicle driving data for data conversion, the personality conversion data generated by associating the personality data indicating the personality with the lean vehicle driving data which is the driving data of the lean vehicle is acquired.
For analysis related to the running data of the lean vehicle for analysis obtained when the analysis subject operates a lean vehicle for analysis that tilts to the right when turning right and tilts to the left when turning left. Acquire lean vehicle driving data and
Using the acquired personality conversion data, the acquired lean vehicle driving data for analysis is converted into conversion personality data related to the personality of the person to be analyzed.
Using the converted conversion personality data, the personality data for output to be output is generated, and the personality data for output is generated.
Output the personality data for the generated output,
Personality analysis method. - 請求項1に記載のパーソナリティ分析方法において、
前記データ変換用のリーン車両走行データは、前記運転者による前記データ変換用のリーン車両に対する運転操作の変化が反映されていないデータより前記運転者による前記データ変換用のリーン車両に対する運転操作の変化が反映されているデータを多く含み、
前記分析用のリーン車両走行データは、前記分析対象者による前記分析用のリーン車両に対する運転操作の変化が反映されていないデータより前記分析対象者による前記分析用のリーン車両に対する運転操作の変化が反映されているデータを多く含む、パーソナリティ分析方法。 In the personality analysis method according to claim 1,
The lean vehicle driving data for data conversion is a change in driving operation for the lean vehicle for data conversion by the driver from data that does not reflect the change in driving operation for the lean vehicle for data conversion by the driver. Contains a lot of data that reflects
The lean vehicle driving data for analysis shows that the change in driving operation for the lean vehicle for analysis by the analysis subject is different from the data that does not reflect the change in driving operation for the lean vehicle for analysis by the analysis target person. A personality analysis method that contains a lot of reflected data. - 請求項1または2に記載のパーソナリティ分析方法において、
前記データ変換用のリーン車両走行データは、前記運転者による前記データ変換用のリーン車両への運転操作入力に関連するデータ変換用のリーン車両運転操作入力データ、前記データ変換用のリーン車両の挙動に関連するデータ変換用のリーン車両挙動データ及び前記データ変換用のリーン車両の位置に関連するデータ変換用のリーン車両位置データのうちの少なくとも一つを含み、
前記分析用のリーン車両走行データは、前記分析対象者による前記分析用のリーン車両への運転操作入力に関連する分析用のリーン車両運転操作入力データ、前記分析用のリーン車両の挙動に関連する分析用のリーン車両挙動データ及び前記分析用のリーン車両の位置に関連する分析用のリーン車両位置データのうち少なくとも一つを含む、パーソナリティ分析方法。 In the personality analysis method according to claim 1 or 2.
The lean vehicle driving data for data conversion is the lean vehicle driving operation input data for data conversion related to the driving operation input to the lean vehicle for data conversion by the driver, and the behavior of the lean vehicle for data conversion. Includes at least one of lean vehicle behavior data for data conversion related to and lean vehicle position data for data conversion related to the position of the lean vehicle for data conversion.
The lean vehicle driving data for analysis is related to the lean vehicle driving operation input data for analysis related to the driving operation input to the lean vehicle for analysis by the analysis target person, and the behavior of the lean vehicle for analysis. A personality analysis method comprising at least one of lean vehicle behavior data for analysis and lean vehicle position data for analysis related to the position of the lean vehicle for analysis. - 請求項1から3のいずれか一つに記載のパーソナリティ分析方法において、
前記データ変換用のリーン車両走行データは、更に前記データ変換用のリーン車両が走行する走行環境に関連するデータ変換用のリーン車両走行環境データを含み、
前記分析用のリーン車両走行データは、更に前記分析用のリーン車両が走行する走行環境に関連する分析用のリーン車両走行環境データを含む、パーソナリティ分析方法。 In the personality analysis method according to any one of claims 1 to 3,
The lean vehicle traveling data for data conversion further includes lean vehicle traveling environment data for data conversion related to the traveling environment in which the lean vehicle for data conversion travels.
The lean vehicle running data for analysis is a personality analysis method including further lean vehicle running environment data for analysis related to the running environment in which the lean vehicle for analysis is running. - 請求項1から4のいずれか一つに記載のパーソナリティ分析方法において、
前記データ変換用のリーン車両走行データは、前記データ変換用のリーン車両が公道以外を走行した時のデータより前記データ変換用のリーン車両が公道を走行した時のデータを多く含み、
前記分析用のリーン車両走行データは、前記分析用のリーン車両が公道以外を走行した時のデータより前記分析用のリーン車両が公道を走行した時のデータを多く含む、パーソナリティ分析方法。 In the personality analysis method according to any one of claims 1 to 4.
The lean vehicle traveling data for data conversion includes more data when the lean vehicle for data conversion travels on a public road than data when the lean vehicle for data conversion travels on a road other than a public road.
The lean vehicle traveling data for analysis is a personality analysis method including more data when the lean vehicle for analysis travels on a public road than data when the lean vehicle for analysis travels on a road other than a public road. - 請求項1から5のいずれか一つに記載のパーソナリティ分析方法において、
前記データ変換用のリーン車両走行データは、前記データ変換用のリーン車両の周囲の車両によって運転者の判断の選択肢が制限を受けるが複数残されている状態でのデータを含み、
前記分析用のリーン車両走行データは、前記分析用のリーン車両の周囲の車両によって分析対象者の判断の選択肢が制限を受けるが複数残されている状態でのデータを含む、パーソナリティ分析方法。 In the personality analysis method according to any one of claims 1 to 5,
The lean vehicle driving data for data conversion includes data in a state where a plurality of judgment options of the driver are limited by vehicles around the lean vehicle for data conversion, but a plurality of data are left.
The lean vehicle traveling data for analysis is a personality analysis method including data in a state where a plurality of judgment options of an analysis target person are limited by vehicles around the lean vehicle for analysis, but a plurality of data are left. - 請求項1から6のいずれか一つに記載のパーソナリティ分析方法において、
前記データ変換用のリーン車両走行データは、同乗者及び物の少なくとも一方を搭載した状態のデータを含み、
前記分析用のリーン車両走行データは、同乗者及び物の少なくとも一方を搭載した状態のデータを含む、パーソナリティ分析方法。 In the personality analysis method according to any one of claims 1 to 6.
The lean vehicle driving data for data conversion includes data in a state where at least one of a passenger and an object is mounted.
The lean vehicle driving data for analysis is a personality analysis method including data in a state where at least one of a passenger and an object is mounted. - 請求項1から7のいずれか一つに記載のパーソナリティ分析方法において、
前記変換された変換パーソナリティデータを記憶し、
前記記憶された複数の変換パーソナリティデータを用いて、前記出力用のパーソナリティデータを生成する、パーソナリティ分析方法。 In the personality analysis method according to any one of claims 1 to 7.
The converted conversion personality data is stored, and the converted personality data is stored.
A personality analysis method for generating personality data for the output using the plurality of stored conversion personality data. - 請求項1から8のいずれか一つに記載のパーソナリティ分析方法において、
前記出力用のパーソナリティデータは、更なる情報処理に用いられる情報処理用パーソナリティデータとして生成される、パーソナリティ分析方法。 In the personality analysis method according to any one of claims 1 to 8.
The personality data for output is a personality analysis method generated as information processing personality data used for further information processing. - 分析対象者のパーソナリティを分析するパーソナリティ分析装置であって、
右旋回時に右方向に傾斜し且つ左旋回時に左方向に傾斜するデータ変換用のリーン車両を複数の運転者が運転操作する時にそれぞれ得られる前記データ変換用のリーン車両の走行データに関連するデータ変換用のリーン車両走行データに基づいて、パーソナリティを示すパーソナリティデータとリーン車両の走行データであるリーン車両走行データとを関連付けて生成されたパーソナリティ変換データを取得するパーソナリティ変換データ取得部と、
右旋回時に右方向に傾斜し且つ左旋回時に左方向に傾斜する分析用のリーン車両を前記分析対象者が運転操作する時に得られる前記分析用のリーン車両の走行データに関連する分析用のリーン車両走行データを取得する分析用リーン車両走行データ取得部と、
前記取得したパーソナリティ変換データを用いて、前記取得した分析用のリーン車両走行データを前記分析対象者のパーソナリティに関連する変換パーソナリティデータに変換するパーソナリティデータ変換部と、
前記変換された変換パーソナリティデータを用いて、出力するための出力用のパーソナリティデータを生成する出力用パーソナリティデータ生成部と、
前記生成された出力用のパーソナリティデータを出力するデータ出力部と、
を備える、パーソナリティ分析装置。 It is a personality analyzer that analyzes the personality of the person to be analyzed.
It is related to the running data of the lean vehicle for data conversion obtained when a plurality of drivers operate a lean vehicle for data conversion that tilts to the right when turning right and tilts to the left when turning left. A personality conversion data acquisition unit that acquires personality conversion data generated by associating personality data indicating personality with lean vehicle driving data, which is driving data of a lean vehicle, based on lean vehicle driving data for data conversion.
For analysis related to the running data of the lean vehicle for analysis obtained when the analysis subject operates a lean vehicle for analysis that tilts to the right when turning right and tilts to the left when turning left. Lean vehicle driving data acquisition unit for analysis that acquires lean vehicle driving data,
Using the acquired personality conversion data, a personality data conversion unit that converts the acquired lean vehicle driving data for analysis into conversion personality data related to the personality of the person to be analyzed, and a personality data conversion unit.
An output personality data generator that generates output personality data for output using the converted conversion personality data.
A data output unit that outputs the generated personality data for output, and
A personality analyzer equipped with. - 請求項10に記載のパーソナリティ分析装置において、
前記データ変換用のリーン車両走行データは、前記運転者による前記データ変換用のリーン車両に対する運転操作の変化が反映されていないデータより前記運転者による前記データ変換用のリーン車両に対する運転操作の変化が反映されているデータを多く含み、
前記分析用のリーン車両走行データは、前記分析対象者による前記分析用のリーン車両に対する運転操作の変化が反映されていないデータより前記分析対象者による前記分析用のリーン車両に対する運転操作の変化が反映されているデータを多く含む、パーソナリティ分析装置。 In the personality analyzer according to claim 10,
The lean vehicle driving data for data conversion is a change in driving operation for the lean vehicle for data conversion by the driver from data that does not reflect the change in driving operation for the lean vehicle for data conversion by the driver. Contains a lot of data that reflects
The lean vehicle driving data for analysis shows that the change in driving operation for the lean vehicle for analysis by the analysis target person is different from the data that does not reflect the change in driving operation for the lean vehicle for analysis by the analysis target person. A personality analyzer that contains a lot of reflected data. - 請求項10または11に記載のパーソナリティ分析装置において、
前記データ変換用のリーン車両走行データは、前記運転者による前記データ変換用のリーン車両への運転操作入力に関連するデータ変換用のリーン車両運転操作入力データ、前記データ変換用のリーン車両の挙動に関連するデータ変換用のリーン車両挙動データ及び前記データ変換用のリーン車両の位置に関連するデータ変換用のリーン車両位置データのうちの少なくとも一つを含み、
前記分析用のリーン車両走行データは、前記分析対象者による前記分析用のリーン車両への運転操作入力に関連する分析用のリーン車両運転操作入力データ、前記分析用のリーン車両の挙動に関連する分析用のリーン車両挙動データ及び前記分析用のリーン車両の位置に関連する分析用のリーン車両位置データのうち少なくとも一つを含む、パーソナリティ分析装置。 In the personality analyzer according to claim 10 or 11.
The lean vehicle driving data for data conversion is the lean vehicle driving operation input data for data conversion related to the driving operation input to the lean vehicle for data conversion by the driver, and the behavior of the lean vehicle for data conversion. Includes at least one of lean vehicle behavior data for data conversion related to and lean vehicle position data for data conversion related to the position of the lean vehicle for data conversion.
The lean vehicle driving data for analysis is related to the lean vehicle driving operation input data for analysis related to the driving operation input to the lean vehicle for analysis by the analysis subject, and the behavior of the lean vehicle for analysis. A personality analyzer comprising at least one of lean vehicle behavior data for analysis and lean vehicle position data for analysis related to the position of the lean vehicle for analysis. - 請求項10から12のいずれか一つに記載のパーソナリティ分析装置において、
前記データ変換用のリーン車両走行データは、更に前記データ変換用のリーン車両が走行する走行環境に関連するデータ変換用のリーン車両走行環境データを含み、
前記分析用のリーン車両走行データは、更に前記分析用のリーン車両が走行する走行環境に関連する分析用のリーン車両走行環境データを含む、パーソナリティ分析装置。 In the personality analyzer according to any one of claims 10 to 12,
The lean vehicle traveling data for data conversion further includes lean vehicle traveling environment data for data conversion related to the traveling environment in which the lean vehicle for data conversion travels.
The lean vehicle running data for analysis is a personality analyzer further including lean vehicle running environment data for analysis related to the running environment in which the lean vehicle for analysis is running. - 請求項10から13のいずれか一つに記載のパーソナリティ分析装置において、
前記出力用のパーソナリティデータは、更なる情報処理に用いられる情報処理用パーソナリティデータとして生成される、パーソナリティ分析装置。 In the personality analyzer according to any one of claims 10 to 13.
The personality data for output is a personality analyzer that is generated as personality data for information processing used for further information processing. - 請求項9に記載のパーソナリティ分析方法で前記情報処理用パーソナリティデータとして生成された前記出力用のパーソナリティデータを用いる情報処理方法であって、
前記出力用のパーソナリティデータを取得し、
前記出力用のパーソナリティデータとは異なる第1データを取得し、
前記出力用のパーソナリティデータ及び前記第1データを用いて、前記出力用のパーソナリティデータ及び前記第1データと異なる第2データを生成し、
前記第2データを出力する、パーソナリティデータを用いる情報処理方法。 An information processing method using the output personality data generated as the information processing personality data by the personality analysis method according to claim 9.
Acquire the personality data for the output and
Acquire the first data different from the personality data for the output,
Using the personality data for output and the first data, the personality data for output and the second data different from the first data are generated.
An information processing method using personality data that outputs the second data. - 請求項14に記載のパーソナリティ分析装置で前記情報処理用パーソナリティデータとして生成された前記出力用のパーソナリティデータを用いる情報処理装置であって、
前記出力用のパーソナリティデータを取得する出力用パーソナリティデータ取得部と、
前記出力用のパーソナリティデータとは異なる第1データを取得する第1データ取得部と、
前記出力用のパーソナリティデータ及び前記第1データを用いて、前記出力用のパーソナリティデータ及び前記第1データと異なる第2データを生成する第2データ生成部と、
前記第2データを出力する第2データ出力部と、
を備える、パーソナリティデータを用いる情報処理装置。 An information processing apparatus that uses the output personality data generated as the information processing personality data by the personality analyzer according to claim 14.
An output personality data acquisition unit that acquires the output personality data,
A first data acquisition unit that acquires first data different from the personality data for output, and
A second data generation unit that uses the output personality data and the first data to generate the output personality data and second data different from the first data.
A second data output unit that outputs the second data, and
An information processing device that uses personality data.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/014557 WO2020202450A1 (en) | 2019-04-01 | 2019-04-01 | Personality analysis method, personality analysis device, information processing method using personality data, and information processing device using personality data |
PCT/JP2020/015102 WO2020204104A1 (en) | 2019-04-01 | 2020-04-01 | Personality analyzing method, personality analyzing device, information processing method employing personality data, and information processing device employing personality data |
TW109111401A TWI807180B (en) | 2019-04-01 | 2020-04-01 | Personality analysis method, personality analysis device, information processing method using personality data, and information processing device using personality data |
JP2021512191A JP7280945B2 (en) | 2019-04-01 | 2020-04-01 | Personality analysis method, personality analysis device, information processing method using personality data, and information processing device using personality data |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/014557 WO2020202450A1 (en) | 2019-04-01 | 2019-04-01 | Personality analysis method, personality analysis device, information processing method using personality data, and information processing device using personality data |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020202450A1 true WO2020202450A1 (en) | 2020-10-08 |
Family
ID=72666204
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/014557 WO2020202450A1 (en) | 2019-04-01 | 2019-04-01 | Personality analysis method, personality analysis device, information processing method using personality data, and information processing device using personality data |
PCT/JP2020/015102 WO2020204104A1 (en) | 2019-04-01 | 2020-04-01 | Personality analyzing method, personality analyzing device, information processing method employing personality data, and information processing device employing personality data |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/015102 WO2020204104A1 (en) | 2019-04-01 | 2020-04-01 | Personality analyzing method, personality analyzing device, information processing method employing personality data, and information processing device employing personality data |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7280945B2 (en) |
TW (1) | TWI807180B (en) |
WO (2) | WO2020202450A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014046820A (en) * | 2012-08-31 | 2014-03-17 | Nissan Motor Co Ltd | Driver's property estimation system |
JP2015151071A (en) * | 2014-02-18 | 2015-08-24 | 日産自動車株式会社 | Drive diagnostic system, and insurance fee calculation method |
WO2018092436A1 (en) * | 2016-11-16 | 2018-05-24 | 本田技研工業株式会社 | Emotion inference device and emotion inference system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6012643B2 (en) * | 2014-01-31 | 2016-10-25 | 三菱電機株式会社 | Vehicle driving support device, server, vehicle driving support system, and vehicle driving support program |
CN109996713B (en) * | 2016-11-28 | 2022-04-15 | 本田技研工业株式会社 | Driving assistance device, driving assistance system, and method for controlling driving assistance device |
JP6499682B2 (en) * | 2017-01-31 | 2019-04-10 | 本田技研工業株式会社 | Information provision system |
JP6575934B2 (en) * | 2017-03-29 | 2019-09-18 | マツダ株式会社 | Vehicle driving support system and vehicle driving support method |
TWI646490B (en) * | 2017-09-01 | 2019-01-01 | 元智大學 | Method and processing device for driving risk assessment based on multiple kernal learning |
-
2019
- 2019-04-01 WO PCT/JP2019/014557 patent/WO2020202450A1/en active Application Filing
-
2020
- 2020-04-01 WO PCT/JP2020/015102 patent/WO2020204104A1/en active Application Filing
- 2020-04-01 TW TW109111401A patent/TWI807180B/en active
- 2020-04-01 JP JP2021512191A patent/JP7280945B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014046820A (en) * | 2012-08-31 | 2014-03-17 | Nissan Motor Co Ltd | Driver's property estimation system |
JP2015151071A (en) * | 2014-02-18 | 2015-08-24 | 日産自動車株式会社 | Drive diagnostic system, and insurance fee calculation method |
WO2018092436A1 (en) * | 2016-11-16 | 2018-05-24 | 本田技研工業株式会社 | Emotion inference device and emotion inference system |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020204104A1 (en) | 2020-10-08 |
TWI807180B (en) | 2023-07-01 |
TW202038175A (en) | 2020-10-16 |
JP7280945B2 (en) | 2023-05-24 |
WO2020204104A1 (en) | 2020-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ryder et al. | Preventing traffic accidents with in-vehicle decision support systems-The impact of accident hotspot warnings on driver behaviour | |
US11919545B2 (en) | Scenario identification for validation and training of machine learning based models for autonomous vehicles | |
EP1997705B1 (en) | Drive behavior estimating device, drive supporting device, vehicle evaluating system, driver model making device, and drive behavior judging device | |
CN101228546A (en) | Motor vehicle traveling data collection and analysis | |
US11518413B2 (en) | Navigation of autonomous vehicles using turn aware machine learning based models for prediction of behavior of a traffic entity | |
Casucci et al. | A numerical tool for reproducing driver behaviour: Experiments and predictive simulations | |
Ibrahim et al. | Cycling near misses: a review of the current methods, challenges and the potential of an AI-embedded system | |
WO2020204099A1 (en) | Customer sense-of-value analysis method, customer sense-of-value analysis device, information processing method using sense-of-value data, and information processing device using sense-of-value data | |
Abdulwahid et al. | A comprehensive review on the behaviour of motorcyclists: Motivations, issues, challenges, substantial analysis and recommendations | |
Nakano et al. | Real-time distraction detection from driving data based personal driving model using deep learning | |
WO2020204104A1 (en) | Personality analyzing method, personality analyzing device, information processing method employing personality data, and information processing device employing personality data | |
Trende et al. | Improving the detection of user uncertainty in automated overtaking maneuvers by combining contextual, physiological and individualized user data | |
JP2004341719A (en) | Objective customer satisfaction evaluating system and its method | |
Winters et al. | Assessing level of service equally across modes | |
Tonguç et al. | Improvement of the visual warning system for various driving and road conditions in road transportation | |
Bäumler et al. | Report on validation of the stochastic traffic simulation (Part B) | |
OA20516A (en) | Personality analyzing method, personality analyzing device, data processing method employing personality data, and data processing device employing personality data | |
WO2020202452A1 (en) | Leaning vehicle traveling data analysis method, leaning vehicle traveling data analysis device, information processing method using analysis data, and information processing device using analysis data | |
Papazikou | Investigating the transition from normal driving to safety-critical scenarios | |
Kaths | A movement and interaction model for cyclists and other non-lane-based road users | |
JP2004178071A (en) | Method and system for evaluating degree of customer satisfaction for vehicle | |
WO2020202451A1 (en) | Leaning vehicle traveling data analysis method, leaning vehicle traveling data analysis device, information processing method using analysis data, and information processing device using analysis data | |
Hanzl et al. | Human Driver’s Acceptance of Automated Driving Systems Based on a Driving Simulator Study | |
Kurahashi et al. | Objective measures to assess workload for car driving | |
Vasquez | Novel Methods In Training Autonomous Vehicles For Urban Roads |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19923331 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19923331 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |