WO2020202429A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2020202429A1
WO2020202429A1 PCT/JP2019/014448 JP2019014448W WO2020202429A1 WO 2020202429 A1 WO2020202429 A1 WO 2020202429A1 JP 2019014448 W JP2019014448 W JP 2019014448W WO 2020202429 A1 WO2020202429 A1 WO 2020202429A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
value
candidate
reception
field
Prior art date
Application number
PCT/JP2019/014448
Other languages
English (en)
French (fr)
Inventor
一樹 武田
優元 ▲高▼橋
聡 永田
リフェ ワン
シャオホン ジャン
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to EP19923696.9A priority Critical patent/EP3952514A1/en
Priority to PCT/JP2019/014448 priority patent/WO2020202429A1/ja
Priority to US17/600,502 priority patent/US20220174716A1/en
Publication of WO2020202429A1 publication Critical patent/WO2020202429A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • the present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
  • 5G 5th generation mobile communication system
  • 5G + plus
  • NR New Radio
  • 3GPP Rel.15 or later, etc. is also being considered.
  • a user terminal In an existing LTE system (for example, REL.8-14), a user terminal (User Equipment (UE)) is an uplink shared channel (for example, Physical Uplink Shared) based on downlink control information (Downlink Control Information (DCI)).
  • Uplink Control Information Downlink Control Information (DCI)
  • DCI Downlink Control Information
  • PUSCH Physical Uplink Control Channel
  • PDSCH Physical Downlink Control Channel
  • NR future wireless communication systems
  • a plurality of starting positions in a time domain for an uplink signal (for example, PUSCH) or a downlink signal (for example, PDSCH) scheduled by a single DCI. ) Also called a start symbol, etc.
  • TDRA Time Domain Resource Assignment or allocation
  • the UE can support the plurality of start positions, for example, when the UE supports the uplink. It may not be possible to flexibly control the transmission of signals or the reception of downlink signals.
  • one of the purposes of the present disclosure is to provide a user terminal and a wireless communication method capable of flexibly controlling the transmission of an uplink signal or the reception of a downlink signal based on the value of a predetermined field in the DCI.
  • the user terminal is based on a receiving unit that receives downlink control information including a predetermined value in a predetermined field, and one value selected from a set of one or more candidate values associated with the predetermined value. It is characterized by including a control unit that controls transmission of the uplink shared channel or reception of the downlink shared channel scheduled by the downlink control information.
  • FIG. 1 is a diagram showing an example of a candidate value set associated with each value m of the TDRA field according to the first aspect.
  • 2A to 2D are diagrams showing an example of the time domain resource of PUSCH shown by each candidate value set according to the first aspect.
  • FIG. 3 is a diagram showing an example of a candidate value set associated with each value m of the FDRA field according to the first aspect.
  • FIG. 4 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 5 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • FIG. 6 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • FIG. 7 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • NR-U In future wireless communication systems (for example, NR), it is considered to use not only a licensed band but also an unlicensed band (for example, 2.4 GHz band or 5 GHz band).
  • An NR system that uses an unlicensed band may be called an NR-Unlicensed (U), an NR License-Assisted Access (LAA), an NR-U system, or the like.
  • the transmitting node in the NR-U system confirms the presence or absence of transmission of another node (for example, a base station, a user terminal, a Wi-Fi device, etc.) before transmitting a signal (for example, a data signal) in the unlicensed band. Listen. In addition, listening may be called Listen Before Talk (LBT), Clear Channel Assessment (CCA), Carrier sense, channel access procedure, or the like.
  • LBT Listen Before Talk
  • CCA Clear Channel Assessment
  • Carrier sense for example, channel access procedure, or the like.
  • the transmitting node is, for example, a base station (for example, gNodeB, (gNB), a transmission / reception point (transmission / reception point (TRP)), a network (NW)) in the downlink (DL), and a user terminal in the uplink (UL).
  • a base station for example, gNodeB, (gNB), a transmission / reception point (transmission / reception point (TRP)), a network (NW)) in the downlink (DL), and a user terminal in the uplink (UL).
  • UE User Equipment
  • the receiving node that receives the signal from the transmitting node may be, for example, a UE in DL and a base station in UL.
  • the transmitting node starts transmission after a predetermined period (for example, immediately after or during the backoff period) after the absence of transmission of another device (idle) is detected in listening, and there is transmission of another device in listening. When that (busy, LBT-busy) is detected, the signal is not transmitted.
  • the transmitting node acquires a transmission opportunity (Transmission Opportunity (TxOP), channel occupation (Channel Occupancy)). Start transmitting the signal.
  • TxOP Transmission Opportunity
  • Channel Occupancy Channel occupation
  • COT Channel Occupancy Time
  • the COT is the total time length between all transmissions within the transmission opportunity and the gap within the predetermined time, and may be less than or equal to the maximum COT (Maximum COT (MCOT)).
  • the MCOT may be determined based on the channel access priority class.
  • the channel access priority class may be associated with the contention window size.
  • the COT acquired by the base station or UE may transmit or receive one or more signals.
  • downlink control information Downlink Control Information (DCI)
  • PDSCH Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • PDSCH Downlink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • signals between the base station and one or more UEs may be transmitted or received.
  • the base station may transmit a signal for notifying the start of COT (COT start notification signal) at the start of COT triggered by the base station.
  • the COT start notification signal is, for example, a downlink shared channel (Physical Downlink Shared Channel (PDCCH)) unique to a UE or a group including one or more UEs (UE group), or a demodulation reference signal (Demodulation Reference) of the PDCCH. Signal (DMRS)) may be used.
  • the UE may recognize the COT based on the COT start notification signal.
  • the above NR-U system is a carrier aggregation (CA) or dual connectivity (DC) between an unlicensed band component carrier (Component Carrier (CC)) (unlicensed CC) and a licensed band CC (license CC). It may be operated by an unlicensed CC stand-alone (SA).
  • CA carrier aggregation
  • DC dual connectivity
  • SA unlicensed CC stand-alone
  • the unlicensed CC includes unlicensed band, unlicensed spectrum, LAA SCell, LAA cell, primary cell (Primary Cell: PCell, Primary Secondary Cell: PSCell, Special Cell: SpCell), secondary cell (Secondary Cell). : Cell), the frequency to which channel sensing is applied, the NR-U target frequency, etc. may be read as each other.
  • the license CC includes a licensed band, a license spectrum, PCell, PSCell, SpCell, SCell, non-NR-U target frequency, Rel. 15, NR, frequency to which channel sensing is not applied, NR target frequency, etc. may be read as each other.
  • TDRA Time Domain Resource Assignment or allocation
  • the UE when the value of the predetermined field in the DCI uniquely identifies the information used for transmitting the uplink signal (for example, PUSCH) in the UE, the UE supports the plurality of start positions, for example, the UE supports the uplink. There is a risk that signal transmission cannot be controlled flexibly. Similar problems can occur with the reception of downlink signals (eg PDSCH).
  • downlink signals eg PDSCH
  • the UE by associating a set of one or more candidate values (candidate value set) with a value of a predetermined field in DCI, the UE transmits an uplink signal (for example, PUSCH) or a downlink signal (for example, PDSCH).
  • an uplink signal for example, PUSCH
  • a downlink signal for example, PDSCH
  • the candidate value set associated with the predetermined value of the predetermined field in the DCI may be set in the UE by higher layer signaling (first case), or may be derived based on the predetermined value. Good (second case).
  • frequency, band, spectrum, carrier, component carrier (CC), and cell may be read as each other.
  • the value of the predetermined field in the DCI may be read as the code point of the predetermined field. Further, one or more candidate values, one or more candidates, candidate sets, one or more values, value sets, and sets may be read as each other.
  • the candidate value set may include one or more candidate values of information (TDRA information) regarding time domain resource allocation allocated to PUSCH.
  • the TDRA information may include, for example, at least one of the following information (also referred to as a parameter, an information element (IE), etc.).
  • Information indicating the start position of PUSCH for example, the index of the start symbol S
  • IE information element
  • Information indicating the start position of PUSCH for example, the index of the start symbol S
  • -Information indicating the length L of the PUSCH for example, the number of symbols
  • Information indicating the combination of the start symbol S and the length L for example, Start and Length Indicator (SLIV)).
  • the candidate value set may include one or more candidate values of at least one IE.
  • the predetermined value m in the TDRA field may be associated with the candidate value set for each IE.
  • a candidate value set of SLIV is associated with a predetermined value m in the TDRA field
  • the present invention is not limited to this.
  • SLIV can be replaced with another IE and applied. ..
  • the UE sets at least one of the start position (start symbol S) and length L of the time domain resource allocated to the PUSCH based on one SLIV selected from the candidate value set associated with the TDRA field value in the DCI. You may decide.
  • the UE may select one SLIV from the candidate value set based on a predetermined rule.
  • the predetermined rule may be based on, for example, at least one of the following. -Timing when the COT is acquired by the UE-Timing when the COT is recognized by the COT start notification signal by the UE-Timing when an idle is detected by the LBT-Timing when the preparation for data transmission from the UE is completed
  • the candidate value set may be defined in advance in the specifications.
  • M may indicate the number of possible values (for example, 0 to M-1) (or code points) of the value m of the TDRA field.
  • the number of bits (size) of the TDRA field may be expressed by the following equation 1.
  • the UE may receive a candidate value set associated with each value m in the TDRA field.
  • the UE uses higher layer signaling (for example, Radio Resource Control (RRC) signaling) to provide configuration information (also referred to as TDRA list, list, etc.) including a candidate value set of M entries (M). You may receive it.
  • RRC Radio Resource Control
  • the TDRA list may be, for example, a "pusch-TimeDomainAllocationList” or a "PUSCH-TimeDomainResourceAllocationList” of an RRC information element (Information Element (IE)).
  • IE Information Element
  • the number of entries M in the TDRA list may be equal to the number of values m of the TDRA field in the DCI (that is, when the FDRA field is X bits, 2 to the Xth power).
  • the UE monitors a predetermined search space (search space set) and detects DCI (for example, DCI format 0_0 or 0_1) used for PUSCH scheduling.
  • the UE may control the transmission of the PUSCH based on the candidate value set associated with the predetermined value m of the TDRA field in the DCI.
  • FIG. 1 is a diagram showing an example of a candidate value set associated with each value m of the TDRA field according to the first aspect.
  • FIG. 1 shows an example in which the TDRA field has 2 bits, but the present invention is not limited to this, and the TDRA field may be 3 bits or more.
  • each value m in the TDRA field may be associated with a candidate set containing one or more SLIV candidate values.
  • Each SLIV may indicate the index and length (number of symbols) L of the start symbol S of the time domain resource (eg, one or more symbols) allocated to the PUSCH.
  • the number of candidate values included in the candidate value set may be different or the same among a plurality of values m in the TDRA field.
  • the candidate value sets associated with the values "00", “01”, “10", and “11” of the TDRA field have different numbers (4, 3, 1, 2) of candidate values. including.
  • FIG. 2A to 2D are diagrams showing an example of the time domain resource of PUSCH shown by each candidate value set according to the first aspect.
  • FIG. 2A shows the PUSCH time domain resource allocations corresponding to candidate values # 1 to # 4 in the candidate value set associated with the value “00” in the TDRA field of FIG.
  • the candidate value # 1 associated with the value “00” in the TDRA field in FIG. 1 may indicate the index “0” and the length “8” of the start symbol S of the PUSCH.
  • the other SLIV candidate values # 2, # 3, # 4 associated with the value "00” in the TDRA field are the indexes "2", "4", "6" of the starting symbol of the PUSCH and the length "8". May be indicated.
  • FIGS. 2B, 2C, and 2D PUSCHs associated with the values "01", “10", and “11" in the TDRA field of FIG. 1 and corresponding to one or more SLIV candidate values are shown.
  • the UE selects one SLIV from the candidate value set associated with the predetermined value m in the TDRA field in the DCI. You may choose to control the transmission of PUSCH based on the SLIV.
  • the candidate value # 3 indicating the index “4” of the earliest starting symbol S from the symbol # 2 may be selected.
  • the UE may determine the time domain resource allocated to the PUSCH based on the selected SLIV candidate value # 3. For example, in FIG. 2A, when selecting the SLIV candidate value # 3 associated with the value “00” in the TDRA field, the UE may transmit a PUSCH of 8 symbols in length from symbol # 4.
  • the base station controls the reception processing (for example, at least one of reception, demodulation, and decoding) of the PUSCH by using each candidate value in the candidate value set associated with the predetermined value m of the TDRA field in the DCI. (Ie, PUSCH may be detected blindly within the candidate value set).
  • the UE When UL skip is set (configure) in the UE by the upper layer parameter (for example, "skipUplinkTxDynamic" of RRC IE), the UE transmits using PUSCH scheduled by DCI if there is no data to be transmitted. May be skipped. This may be synonymous with the fact that each value m of the TDRA field in the DCI is associated with an additional candidate value of not transmitting (no transmission) (the candidate value set includes the additional candidate value). ..
  • At least one of the start symbol S and the length L indicated by each of the plurality of SLIVs is different between the plurality of SLIVs (candidate values) in the same candidate value set. Just do it.
  • the transport block size (Transport Block) among the plurality of SLIVs. Size (TBS)) can be the same.
  • the frequency domain resource allocation and at least one of the modulation and coding scheme (MCS) can be used. It is possible to prevent giving an impact.
  • the UE will determine the TBS based on the RIVs that indicate a particular transmit bandwidth (eg, the minimum transmit bandwidth). You may decide.
  • the UE will determine the TBS based on the transmit bandwidth indicated by the RIVs selected from within the candidate set according to predetermined rules. You may decide.
  • all candidate values in the candidate value set associated with each value in the TDRA field are configured in the UE, thus preventing a recognition mismatch between the base station and the UE. ..
  • the UE may derive (determine) a set of candidate values associated with each value m in the TDRA field based on each value m.
  • the second case will be described focusing on the differences from the first case.
  • each value m in the TDRA field may be equal to a specific candidate value (eg, first candidate value # 1) in the candidate value set associated with each value m.
  • the UE may derive other candidate values in the candidate value set based on the particular candidate value. For example, the UE may derive the other candidate value using the particular candidate value and a predetermined time offset (delta).
  • the derivation of other candidate values in the candidate value set is not limited to the derivation of the other candidate value (SLIV) itself, but the start symbol S and the length L indicated by the other candidate value are derived. It may be.
  • the value “00” in the TDRA field is associated with the index “0” of the start symbol and the candidate value # 1 indicating the length “8”.
  • the UE has indexes "2" and "4" of the start symbols of SLIV candidate values # 2 to # 4 based on the index "0" of the start symbol indicated by the candidate value # 1 and the time offset (here, 2 symbols). , "6" may be derived. Further, the UE may derive the length “8” indicated by the SLIV candidate values # 2 to # 4 based on the length “8” indicated by the SLIV candidate value # 1.
  • the UE sets at least one of the index and length L of the starting symbol S after SLIV candidate value # 2 based on the SLIV candidate value # 1 associated with the values "01", "11" of the TDRA field. It may be derived.
  • the PUSCH transmission control based on the candidate value set determined as described above is the same as in Case 1.
  • the base station and the UE do not need to configure all the candidate values in the candidate value set associated with each value in the TDRA field in the UE, as compared to the first case. You can reduce the overhead between.
  • the time domain resource allocated to the PUSCH can be flexibly controlled.
  • a second aspect describes a set of candidate values associated with a predetermined value (FDRA field value) of a predetermined field (eg, a Frequency Domain Resource Assignment or allocation (FDRA) field) in the DCI.
  • FDRA field value e.g, a Frequency Domain Resource Assignment or allocation (FDRA) field
  • the candidate value set may include one or more candidate values of information (FDRA information) relating to frequency domain resources allocated to PUSCH.
  • FDRA information may be, for example, a resource indication value (RIV), and the candidate value set may include one or more candidates for RIV.
  • RIV resource indication value
  • the UE has a start value (also referred to as a start resource block or RB START ) and transmission band of a frequency domain resource allocated to the PUSCH based on one RIV selected from a set of candidate values associated with the FDRA field value in the DCI. At least one of the widths (also referred to as transmission bandwidth, allocated resource block length or L CRBs (L CRBs ⁇ 1), etc.) may be determined.
  • the UE may select one RIV from the above candidate value set based on a predetermined rule.
  • the predetermined rule is, for example, to select a RIV included in (or include) a frequency resource that is considered to have good channel condition / channel quality as a result of measurement, or a Listen-based-talk (LBT).
  • LBT Listen-based-talk
  • the candidate value set may be defined in advance in the specifications.
  • M may indicate the number of possible values (for example, 0 to M-1) (or code points) of the value m of the FDRA field.
  • the number of bits (size) of the FDRA field may be expressed by the following equation 2.
  • the UE may receive a candidate value set associated with each value m in the FDRA field. Specifically, the UE may receive setting information (also referred to as FDRA list, list, etc.) including a candidate value set of M entries (M pieces) by higher layer signaling (for example, RRC signaling).
  • setting information also referred to as FDRA list, list, etc.
  • M pieces candidate value set of M entries
  • the number of entries M in the FDRA list may be equal to the number of values m of the FDRA field in the DCI (that is, when the FDRA field is X bits, 2 to the Xth power).
  • the UE monitors a predetermined search space and detects DCI (for example, DCI format 0_0 or 0_1) used for PUSCH scheduling.
  • the UE may control the transmission of the PUSCH based on the candidate value set associated with the predetermined value m of the FDRA field in the DCI.
  • FIG. 3 is a diagram showing an example of a candidate value set associated with each value m of the FDRA field according to the first aspect.
  • FIG. 3 shows an example in which the FDRA field has 2 bits, but the present invention is not limited to this, and the FDRA field may have 3 bits or more.
  • each value m in the FDRA field may be associated with a candidate set that includes one or more RIV candidate values.
  • Each RIV may indicate the start position (RB START ) and transmission bandwidth (LCRBs ) of the frequency time domain resource (eg, resource block) allocated to the PUSCH.
  • the number of candidate values included in the candidate value set may be different or the same among the plurality of values m in the FDRA field.
  • the candidate value sets associated with the values "00", “01”, “10", and “11” of the TDRA field have different numbers (4, 3, 1, 2) of candidate values. including.
  • the UE selects one RIV from the candidate value set associated with the predetermined value m of the FDRA field in the DCI, and the RIV is selected.
  • the transmission of PUSCH may be controlled based on the RIV.
  • the base station controls the reception processing (for example, at least one of reception, demodulation, and decoding) of the PUSCH by using each candidate value in the candidate value set associated with the predetermined value m of the FDRA field in the DCI. (Ie, PUSCH may be detected blindly within the candidate value set).
  • the starting position indicated by each the plurality of RIV (RB START) different, when the transmission bandwidth (L CRBS) are identical among the plurality of RIV
  • the TBS can be the same. Therefore, even when a candidate value set including one or more RIVs is associated with the FDRA field value m in the DCI instead of a single RIV, the transmission control of the PUSCH can be simplified.
  • the UE will determine the TBS based on the RIVs that indicate a particular transmit bandwidth (eg, the minimum transmit bandwidth). You may decide.
  • the UE will determine the TBS based on the transmit bandwidth indicated by the RIVs selected from within the candidate set according to predetermined rules. You may decide.
  • all candidate values in the candidate value set associated with each value in the FDRA field are configured in the UE, thus preventing a recognition mismatch between the base station and the UE. ..
  • the UE may derive a set of candidate values associated with each value m in the FDRA field based on each value m.
  • the second case will be described focusing on the differences from the first case.
  • each value m in the FDRA field may be equal to a specific candidate value (eg, first candidate value # 1) in the candidate value set associated with each value m.
  • the UE may derive other candidate values in the candidate value set based on the particular candidate value. For example, the UE may derive the other candidate value using the particular candidate value and a predetermined frequency offset (delta).
  • the derivation of the other candidate value (RIV) in the candidate value set is not limited to the derivation of the other candidate value itself, but the start position (RB START ) and the transmission bandwidth (L) indicated by the other candidate value. CRBs ) and the like may be derived.
  • the PUSCH transmission control based on the candidate value set determined as described above is the same as in Case 1.
  • the base station and the UE do not need to configure all the candidate values in the candidate value set associated with each value in the FDRA field, so compared to the first case. You can reduce the overhead between.
  • the frequency domain resource allocated to the PUSCH can be flexibly controlled.
  • the candidate value set associated with the values of the TDRA field and the FDRA field in the DCI has been described, but the present invention is not limited to this.
  • the present disclosure can associate a candidate value set with each value in any field within the DCI using the methods described in Cases 1 and 2 of the first and second aspects above.
  • the relevant fields include a redundant version (Redundancy Version (RV)), a transmission power control (TPC) command, a sounding reference signal (Sounding Reference Signal (SRS)), and a space domain resource assignment (Space Domain Resource Assignment).
  • RV Redundancy Version
  • TPC transmission power control
  • SRS Sounding Reference Signal
  • Space Domain Resource Assignment Space Domain Resource Assignment
  • it may be a field related to at least one of Allocation (SDRA)) and a reference signal for demodulation (Demodulation Reference Signal (DMRS)).
  • SDRA Allocation
  • DMRS Demodulation Reference Signal
  • the fields related to SDRA are fields related to at least one of precoder information, number of layers, number of antenna ports, SRS resource having a pseudo-collocation relationship with DMRS of PUSCH, and phase-tracking reference signal (PTRS). It may be.
  • the field related to DMRS may be a field related to initialization of the DMRS series.
  • the field related to SRS may be information related to a request (trigger) of SRS.
  • the candidate value set associated with each value in the above field in the DCI may be determined using either Case 1 or Case 2. For example, when a candidate value set associated with each value of the RV field is derived using the above case 2, the UE is in the candidate value set associated with the value m based on the value m "0" of the RV field.
  • Candidate values # 1, # 2, # 3, and # 4 may be determined as "0", "2", "3", and "1".
  • the DCI described the DCI used for scheduling the PUSCH for example, DCI format 0_0 or 0_1
  • the DCI used for scheduling the PDSCH for example, the DCI format 1_0, 1_1. It is applicable by replacing PUSCH in the above with PDSCH and transmission with reception.
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 4 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the wireless communication system 1 may support dual connectivity between a plurality of Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC is a dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and a dual connectivity between NR and LTE (NR-E).
  • -UTRA Dual Connectivity (NE-DC) may be included.
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is MN
  • the LTE (E-UTRA) base station (eNB) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the host station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • downlink shared channels Physical Downlink Shared Channel (PDSCH)
  • broadcast channels Physical Broadcast Channel (PBCH)
  • downlink control channels Physical Downlink Control
  • Channel PDCCH
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • PDSCH User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • MIB Master Information Block
  • PBCH Master Information Block
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • the PDSCH may be read as DL data
  • the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used to detect the PDCCH.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request (Scheduling Request ( Uplink Control Information (UCI) including at least one of SR))
  • the PRACH may transmit a random access preamble for establishing a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" at the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DeModulation Demodulation reference signal
  • Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 5 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • the functional blocks of the feature portion in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmission / reception unit 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, the Packet Data Convergence Protocol (PDCP) layer and the Radio Link Control (RLC) layer for data, control information, etc. acquired from the control unit 110 (for example,).
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted.
  • the base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog transform, and other transmission processing.
  • IFFT inverse fast Fourier transform
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, demapping, demodulating, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measuring unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
  • the transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the transmission / reception unit 120 transmits downlink control information including a predetermined value in a predetermined field.
  • the transmission / reception unit 120 may receive an uplink signal (for example, an uplink shared channel) and transmit a downlink signal (for example, a downlink shared channel).
  • the control unit 110 may blindly detect the uplink shared channel based on a set of one or more candidate values associated with the predetermined value in the downlink control information.
  • the transmission / reception unit 120 may transmit a set of one or more candidate values associated with each value in the predetermined field by higher layer signaling (first case).
  • the control unit 110 may determine a specific candidate value in the set based on the predetermined value, and derive another candidate value in the set based on the specific candidate value (second case). ).
  • the predetermined field in the downlink control information relates to at least one of time domain resource allocation, frequency domain resource allocation, redundant version, transmission power control command, sounding reference signal (SRS), spatial domain resource allocation, and demodulation reference signal. It may be a field.
  • the control unit 210 controls reception of an uplink signal (for example, an uplink shared channel) or transmission of a downlink signal (for example, a downlink shared channel) in a predetermined carrier (for example, a carrier that listens before transmission). May be good.
  • an uplink signal for example, an uplink shared channel
  • a downlink signal for example, a downlink shared channel
  • a predetermined carrier for example, a carrier that listens before transmission.
  • FIG. 6 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmission / reception unit 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data, control information, etc. acquired from the control unit 210.
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmission processing unit 2211 described above for transmitting a channel (for example, PUSCH) using the DFT-s-OFDM waveform when the transform precoding is enabled.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. to the radio frequency band on the baseband signal, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmission unit and the reception unit of the user terminal 20 in the present disclosure may be composed of at least one of the transmission / reception unit 220, the transmission / reception antenna 230, and the transmission line interface 240.
  • the transmission / reception unit 220 receives downlink control information including a predetermined value in a predetermined field.
  • An uplink signal eg, uplink shared channel
  • a downlink signal eg, downlink shared channel
  • the control unit 210 controls transmission of the uplink shared channel or reception of the downlink shared channel scheduled by the downlink control information based on one value selected from a set of one or more candidate values associated with the predetermined value. You may.
  • the transmission / reception unit 220 may receive a set of one or more candidate values associated with each value in the predetermined field by higher layer signaling (first case).
  • the control unit 210 may determine a specific candidate value in the set based on the predetermined value, and derive another candidate value in the set based on the specific candidate value (second case). ).
  • the predetermined field in the downlink control information relates to at least one of time domain resource allocation, frequency domain resource allocation, redundant version, transmission power control command, sounding reference signal (SRS), spatial domain resource allocation, and demodulation reference signal. It may be a field.
  • the control unit 210 controls the transmission of an uplink signal (for example, an uplink shared channel) or the reception of a downlink signal (for example, a downlink shared channel) in a predetermined carrier (for example, a carrier that listens before transmission). May be good.
  • an uplink signal for example, an uplink shared channel
  • a downlink signal for example, a downlink shared channel
  • a predetermined carrier for example, a carrier that listens before transmission.
  • each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by using two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the method of realizing each of them is not particularly limited.
  • the base station, user terminal, etc. in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 7 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, hard disk drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). It may be configured to include.
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the wireless frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • the time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
  • one subframe may be called TTI
  • a plurality of consecutive subframes may be called TTI
  • one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the neurology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • Physical RB Physical RB (PRB)
  • SCG sub-carrier Group
  • REG resource element group
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) represents a subset of consecutive common resource blocks (RBs) for a numerology in a carrier. May be good.
  • the common RB may be specified by an index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may be voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to another device.
  • Notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using other methods.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB master information block
  • SIB system information block
  • MAC medium access control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be broadly interpreted to mean.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • Network may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • Base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • RP Reception point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio). Communication services can also be provided by Head (RRH))).
  • RRH Head
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • communication between a base station and a user terminal has been replaced with communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the uplink, downlink, and the like may be read as side channels.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New-Radio Access Technology RAT
  • NR New Radio
  • NX New radio access
  • Future generation radio access FX
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • LTE 802.16 WiMAX (registered trademark)
  • a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
  • references to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining used in this disclosure may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as “judgment (decision)” such as “accessing” (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” of solving, selecting, choosing, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • the "maximum transmission power" described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal UE maximum transmit power, or may mean the rated maximum transmission power (the). It may mean rated UE maximum transmit power).
  • connection are any direct or indirect connections or connections between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “joined” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係るユーザ端末は、所定フィールドの所定値を含む下り制御情報を受信する受信部と、前記所定値に関連付けられる一以上の候補値のセットから選択される一つの値に基づいて、前記下り制御情報によりスケジューリングされる上り共有チャネルの送信又は下り共有チャネルの受信を制御する制御部と、を具備する。これにより、DCI内の所定フィールドの値に基づいて上り信号の送信又は下り信号の受信を柔軟に制御できる。

Description

ユーザ端末及び無線通信方法
 本開示は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 既存のLTEシステム(例えば、REL.8-14)では、ユーザ端末(User Equipment(UE))は、下り制御情報(Downlink Control Information(DCI))に基づいて、上り共有チャネル(例えば、Physical Uplink Shared Channel(PUSCH))の送信及び下り共有チャネル(例えば、Physical Downlink Control Channel(PDSCH))の受信を制御する。
 将来の無線通信システム(以下、NRともいう)では、単一のDCIによりスケジューリングされる上り信号(例えば、PUSCH)又は下り信号(例えば、PDSCH)用に、時間領域における複数の開始位置(starting position)(開始シンボル等ともいう)をサポートすることが検討されている。
 しかしながら、DCI内の所定フィールド(例えば、時間領域リソース割り当て(Time Domain Resource Assignment又はallocation(TDRA))フィールド)の値は、UEに割り当てられる上り信号又は下り信号の開始位置を一意に特定することを想定しているため、上記複数の開始位置をサポートできない恐れがある。
 このように、DCI内の所定フィールドの値がUEにおける上り信号の送信又は下り信号の受信に用いられる情報を一意に特定する場合、例えば、上記複数の開始位置をサポートするなど、UEが当該上り信号の送信又は下り信号の受信を柔軟に制御できない恐れがある。
 そこで、本開示は、DCI内の所定フィールドの値に基づいて上り信号の送信又は下り信号の受信を柔軟に制御可能なユーザ端末及び無線通信方法を提供することを目的の1つとする。
 本開示の一態様に係るユーザ端末は、所定フィールドの所定値を含む下り制御情報を受信する受信部と、前記所定値に関連付けられる一以上の候補値のセットから選択される一つの値に基づいて、前記下り制御情報によりスケジューリングされる上り共有チャネルの送信又は下り共有チャネルの受信を制御する制御部と、を具備することを特徴とする。
 本開示の一態様によれば、DCI内の所定フィールドの値に基づいて上り信号の送信又は下り信号の受信を柔軟に制御できる。
図1は、第1の態様に係るTDRAフィールドの各値mに関連付けられる候補値セットの一例を示す図である。 図2A~2Dは、第1の態様に係る各候補値セットが示すPUSCHの時間領域リソースの一例を示す図である。 図3は、第1の態様に係るFDRAフィールドの各値mに関連付けられる候補値セットの一例を示す図である。 図4は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図5は、一実施形態に係る基地局の構成の一例を示す図である。 図6は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図7は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。
(NR-U)
 将来の無線通信システム(例えば、NR)では、ライセンスバンドだけでなく、アンライセンスバンド(例えば、2.4GHz帯や5GHz帯)を利用することが検討されている。アンライセンスバンドを利用するNRシステムは、NR-Unlicensed(U)、NR License-Assisted Access(LAA)、NR-Uシステムなどと呼ばれてもよい。
 アンライセンスバンドでは、NR-Uシステムだけでなく、他のLAAシステム、Wi-Fi(登録商標)システム等の複数のシステムが共存することが想定されるため、当該複数のシステム間で干渉制御及び衝突制御の少なくとも一つが行われる。
 NR-Uシステムにおける送信ノードは、アンライセンスバンドにおける信号(例えば、データ信号)の送信前に、他のノード(例えば、基地局、ユーザ端末、Wi-Fi装置など)の送信の有無を確認するリスニングを行う。なお、リスニングは、Listen Before Talk(LBT)、Clear Channel Assessment(CCA)、キャリアセンス(Carrier sense)又はチャネルアクセス動作(channel access procedure)等と呼ばれてもよい。
 当該送信ノードは、例えば、下りリンク(DL)では基地局(例えば、gNodeB、(gNB)、送受信ポイント(transmission/reception point(TRP))、ネットワーク(NW))、上りリンク(UL)ではユーザ端末(例えば、User Equipment(UE))であってもよい。また、送信ノードからの信号を受信する受信ノードは、例えば、DLではUE、ULでは基地局であってもよい。
 当該送信ノードは、リスニングにおいて他の装置の送信がないこと(アイドル)が検出されてから所定期間(例えば、直後又はバックオフの期間)後に送信を開始し、リスニングにおいて他の装置の送信があること(ビジー、LBT-busy)が検出されると、信号の送信を行わない。
 一方、当該送信ノードは、リスニングにおいて他のノードの送信がないこと(アイドル、LBT-idle)が検出される場合、送信機会(Transmission Opportunity(TxOP)、チャネル占有(Channel Occupancy))を獲得し、信号の送信を開始する。当該送信機会の時間は、Channel Occupancy Time(COT)と呼ばれる。
 COTは、送信機会内の全ての送信と所定時間内のギャップとの総時間長であり、最大COT(Maximum COT(MCOT))以下であってもよい。MCOTはチャネルアクセス優先クラス(channel access priority class)に基づいて決定されてもよい。チャネルアクセス優先クラスは、競合ウィンドウ(contention window)サイズに関連付けられてもよい。
 基地局又はUEによって獲得されるCOTでは、一以上の信号の送信又は受信が行われてもよい。例えば、一つのCOT内では、下り共有チャネル(Physical Downlink Shared Channel(PDSCH))又は上り共有チャネル(Physical Uplink Shared Channel(PUSCH))をスケジューリングする下り制御情報(Downlink Control Information(DCI))、PDSCH、PUSCH、上り制御チャネル(Physical Uplink Control Channel(PUCCH))の少なくとも一つが送信又は受信されてもよい。また、一つのCOT内では、基地局と一以上のUEとの間の信号が送信又は受信されてもよい。
 基地局は、基地局契機のCOT開始時に、COT開始を通知する信号(COT開始通知信号)を送信してもよい。COT開始通知信号は、例えば、UE固有又は一以上のUEを含むグループ(UEグループ)に共通の下り共有チャネル(Physical Downlink Shared Channel(PDCCH))、又は、当該PDCCHの復調用参照信号(Demodulation Reference Signal(DMRS))であってもよい。UEは、上記COT開始通知信号に基づいてCOTを認識してもよい。
 以上のようなNR-Uシステムは、アンライセンスバンドのコンポーネントキャリア(Component Carrier(CC))(アンライセンスCC)とライセンスバンドのCC(ライセンスCC)とのキャリアアグリゲーション(CA)又はデュアルコネクティビティ(DC)で運用されてもよいし、アンライセンスCCのスタンドアローン(SA)で運用されてもよい。
 なお、アンライセンスCCは、アンライセンスバンド(unlicensed band)、アンライセンススペクトラム、LAA SCell、LAAセル、プライマリセル(Primary Cell:PCell、Primary Secondary Cell:PSCell、Special Cell:SpCell)、セカンダリセル(Secondary Cell:SCell)、チャネルのセンシングが適用される周波数、NR-U対象周波数等と、互いに読み替えられてもよい。
 また、ライセンスCCは、ライセンスバンド(licensed band)、ライセンススペクトラム、PCell、PSCell、SpCell、SCell、非NR-U対象周波数、Rel.15、NR、チャネルのセンシングが適用されない周波数、NR対象周波数等と、互いに読み替えられてもよい。
 ところで、以上のようなNR-Uシステムでは、単一のDCIによってスケジュールされるPUSCH用に、一つ又は複数のスロット内における複数の開始位置(starting position)(開始シンボル)をサポートすることが検討されている。
 しかしながら、DCI内の所定フィールド(例えば、時間領域リソース割り当て(Time Domain Resource Assignment又はallocation(TDRA))フィールド)の値は、PUSCHに割り当てられる時間領域リソース(例えば、一以上のシンボル)の開始位置を一意に特定することを想定しているため、上記複数の開始位置をサポートできない恐れがある。
 このように、DCI内の所定フィールドの値がUEにおける上り信号(例えば、PUSCH)の送信に用いられる情報を一意に特定する場合、例えば、上記複数の開始位置をサポートするなど、UEが当該上り信号の送信を柔軟に制御できない恐れがある。同様の問題は、下り信号(例えば、PDSCH)の受信についても生じ得る。
 そこで、本開示は、DCI内の所定フィールドの値に一以上の候補値のセット(候補値セット)を関連付けることにより、UEが上り信号(例えば、PUSCH)の送信又は下り信号(例えば、PDSCH)の受信に用いられる情報を当該候補値セットから選択可能とすることを着想した。これにより、当該DCI内の所定フィールド値が当該情報を一意に特定する場合と比較して、UEは、上り信号の送信又は下り信号の受信を柔軟に制御可能できる。
 なお、DCI内の所定フィールドの所定値に関連付けられる上記候補値セットは、上位レイヤシグナリングによりUEに設定されてもよいし(第1のケース)、又は、上記所定値に基づいて導出されてもよい(第2のケース)。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。なお、本開示は、アンライセンスCCにおける上り信号の送信又は下り信号の受信に適用されることを想定されるが、これに限られない。本開示は、ライセンスCCにおける上り信号の送信又は下り信号の受信にも適用可能である。
 本開示において、周波数、バンド、スペクトラム、キャリア、コンポーネントキャリア(CC)、セル、は互いに読み替えられてもよい。
 本開示において、DCI内の所定フィールドの値は、当該所定フィールドのコードポイント(code point)と読み替えられてもよい。また、一以上の候補値、一以上の候補、候補セット、一以上の値、値セット、セットは、互いに読み替えられてもよい。
(第1の態様)
 第1の態様では、DCI内の所定フィールド(例えば、時間領域リソース割り当て(Time Domain Resource Assignment又はallocation(TDRA))フィールド)の値mに関連付けられる一以上の候補値のセット(候補値セット)について説明する。
 当該候補値セットは、PUSCHに割り当てられる時間領域リソース割り当てに関する情報(TDRA情報)の一以上の候補値を含んでもよい。TDRA情報は、例えば、以下の少なくとも一つの情報(パラメータ、情報要素(Information Element(IE))等ともいう)を含んでもよい。
・PUSCHの開始位置を示す情報(例えば、開始シンボルSのインデックス)
・当該PUSCHの長さLを示す情報(例えば、シンボル数)
・上記開始シンボルS及長さLの組み合わせを示す情報(例えば、Start and Length Indicator(SLIV))
・DCIと当該DCIによりスケジューリングされるPUSCHとの間の時間オフセットK2(k2、K等ともいう)を示す情報(オフセット情報、K2情報)
・PUSCHのマッピングタイプを示す情報(マッピングタイプ情報)
 上記候補値セットは、上記少なくとも一つのIEの一以上の候補値を含んでもよい。なお、TDRAフィールドの所定値mには、上記IE毎の上記候補値セットが関連付けられてもよい。
 以下では、TDRAフィールドの所定値mには、SLIVの候補値セットが関連付けられる一例を説明するが、これに限られない。当該所定値mに、TDRA情報内の他のIE(例えば、開始シンボルS、長さL又はK2情報)の候補値セットが関連付けられる場合にも、SLIVを他のIEに置き換えて適用可能である。
 UEは、DCI内のTDRAフィールド値に関連付けられる候補値セットから選択される一つのSLIVに基づいて、PUSCHに割り当てられる時間領域リソースの開始位置(開始シンボルS)及び長さLの少なくとも一つを決定してもよい。
 UEは、所定のルールに基づいて、上記候補値セットから一つのSLIVを選択してよい。当該所定のルールは、例えば、以下の少なくとも一つに基づいてもよい。
・UEによってCOTが獲得されるタイミング
・UEによってCOT開始通知信号によりCOTが認識されるタイミング
・LBTによりアイドルが検出されるタイミング
・UEからのデータの送信準備が終了するタイミング
 TDRAフィールドの各値m(m=0~M-1)に関連付けられる候補値セットは、基地局からUEに設定(configure)されてもよいし(第1のケース)、又は、各値mに基づいて導出されてもよい(第2のケース)。なお、当該候補値セットは、予め仕様で定められていてもよい。
 ここで、Mは、TDRAフィールドの値mのとり得る値(例えば、0~M-1)(又はコードポイント)の数を示してもよい。TDRAフィールドのビット数(サイズ)は、下記式1によって示されてもよい。
Figure JPOXMLDOC01-appb-M000001
<第1のケース>
 第1のケースにおいて、UEは、TDRAフィールドの各値mに関連付けられる候補値セットを受信してもよい。
 具体的には、UEは、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング)によりMエントリ(M個)の候補値セットを含む設定(configuration)情報(TDRAリスト、リスト等ともいう)を受信してもよい。当該TDRAリストは、例えば、RRC情報要素(Information Element(IE))の「pusch-TimeDomainAllocationList」又は「PUSCH-TimeDomainResourceAllocationList」であってもよい。
 ここで、当該TDRAリスト内のエントリ数Mは、DCI内のTDRAフィールドの値mの数(すなわち、FDRAフィールドがXビットの場合、2のX乗)と等しくてもよい。
 DCI内のTDRAフィールドの各値mは、上記TDRAリスト内の所定の(given)エントリ(すなわち、候補値セット)に関連づけられてもよい。例えば、TDRAフィールドの値m=0~M-1である場合、当該値mは、上記TDRAリスト内のm+1番目のエントリ(すなわち、m+1番目の候補値セット)に関連付けられてもよい。
 UEは、所定のサーチスペース(サーチスペースセット)を監視して、PUSCHのスケジューリングに用いられるDCI(例えば、DCIフォーマット0_0又は0_1)を検出する。UEは、当該DCI内のTDRAフィールドの所定値mに関連づけられる候補値セットに基づいて、当該PUSCHの送信を制御してもよい。
 図1は、第1の態様に係るTDRAフィールドの各値mに関連付けられる候補値セットの一例を示す図である。図1では、TDRAフィールドが2ビットである一例が示されるが、これに限られず、3ビット以上であってもよい。
 図1に示すように、TDRAフィールドの各値mは、一以上のSLIVの候補値を含む候補セットに関連付けられてもよい。各SLIVは、PUSCHに割り当てられる時間領域リソース(例えば、一以上のシンボル)の開始シンボルSのインデックス及び長さ(シンボル数)Lを示してもよい。
 図1に示すように、TDRAフィールドの複数の値m間において、候補値セットが含む候補値の数は、異なっていてもよいし、同一であってもよい。例えば、図1では、TDRAフィールドの値「00」、「01」、「10」、「11」それぞれに関連付けられる候補値セットは、それぞれ異なる数(4、3、1、2個)の候補値を含む。
 図2A~2Dは、第1の態様に係る各候補値セットが示すPUSCHの時間領域リソースの一例を示す図である。図2Aでは、図1のTDRAフィールドの値「00」に関連付けられる候補値セット内の候補値#1~#4に対応するPUSCHの時間領域リソース割り当てが示される。
 図2Aに示すように、図1においてTDRAフィールドの値「00」に関連付けられる候補値#1は、PUSCHの開始シンボルSのインデックス「0」及び長さ「8」を示してもよい。同様に、TDRAフィールドの値「00」に関連付けられる他のSLIV候補値#2、#3、#4は、PUSCHの開始シンボルのインデックス「2」、「4」、「6」及び長さ「8」を示してもよい。
 同様に、図2B、2C、2Dでは、図1のTDRAフィールドの値「01」、「10」、「11」にそれぞれ関連付けられ一以上のSLIV候補値に対応するPUSCHが示される。
 図1、2A~2Dに示すように、TDRAフィールドの各値にSLIVの候補値セットが関連付けられる場合、UEは、DCI内のTDRAフィールドの所定値mに関連付けられる候補値セットから一つのSLIVを選択し、当該SLIVに基づいてPUSCHの送信を制御してもよい。
 例えば、UEが、TDRAフィールドの値「00」を含むDCIを検出(受信)し、かつ、図2Aのシンボル#2においてCOTを獲得(認識)する場合、当該値「00」に関連付けられる候補値#1~#4の中で、シンボル#2から最も早い開始シンボルSのインデックス「4」を示す候補値#3を選択してもよい。
 UEは、選択したSLIVの候補値#3に基づいて、当該PUSCHに割り当てられる時間領域リソースを決定してもよい。例えば、図2Aにおいて、TDRAフィールドの値「00」に関連付けられるSLIV候補値#3を選択する場合、UEは、シンボル#4から長さ8シンボルのPUSCHを送信してもよい。
 基地局は、DCI内のTDRAフィールドの所定値mに関連付けられる候補値セット内の各候補値を用いて、当該PUSCHの受信処理(例えば、受信、復調、復号の少なくとも一つ)を制御してもよい(すなわち、候補値セット内においてブラインドでPUSCHを検出してもよい)。
 なお、上位レイヤパラメータ(例えば、RRC IEの「skipUplinkTxDynamic」)によりULスキップがUEに設定(configure)される場合、UEは、送信すべきデータが無ければ、DCIによりスケジューリングされるPUSCHを用いた送信をスキップしてもよい。このことは、当該DCI内のTDRAフィールドの各値mに、送信しない(no transmission)という追加の候補値が関連づけられる(候補値セットが追加の候補値を含む)ことと同義であってもよい。
 また、図1、2A~2Dに示すように、同一の候補値セット内の複数のSLIV(候補値)間では、当該複数のSLIVそれぞれによって示される開始シンボルS及び長さLの少なくとも一方が異なればよい。
 例えば、同一の候補セット内の複数のSLIV間で、当該複数のSLIVそれぞれによって示される開始シンボルSが異なり、長さLが同一である場合、当該複数のSLIV間でトランスポートブロックサイズ(Transport Block Size(TBS))を同一にすることができる。これにより、DCI内のTDRAフィールド値mに単一のSLIVの代わりに、候補値セットが関連付けられる場合でも、PUSCHの送信制御を簡便化することができる。
 なお、同一の候補セット内の複数のSLIV間で長さLを同一にすることにより、周波数領域リソース割り当て、及び、変調及び符号化方式(Modulation and Coding S Scheme(MCS))の少なくとも一つに与える影響(impact)を与えるのを防止できる。
 一方、同一の候補セット内の複数のRIV間で送信帯域幅(LCRBs)が異なる場合、UEは、特定の送信帯域幅(例えば、最小の送信帯域幅)を示すRIVに基づいて、TBSを決定してもよい。
 或いは、同一の候補セット内の複数のRIV間で送信帯域幅(LCRBs)が異なる場合、UEは、候補セット内から所定のルールに従って選択されるRIVが示す送信帯域幅に基づいて、TBSを決定してもよい。
 第1のケースでは、TDRAフィールドの各値に関連付けられる候補値セット内の全ての候補値がUEに設定(configure)されるので、基地局とUEとの間の候補値の認識不一致を防止できる。
<第2のケース>
 第2のケースでは、UEは、TDRAフィールドの各値mに関連付づけられる候補値セットを、各値mに基づいて導出(決定)してもよい。第2のケースは、第1のケースとの相違点を中心に説明する。
 例えば、図1では、TDRAフィールドの各値mは、各値mに関連付けられる候補値セット内の特定の候補値(例えば、最初の候補値#1)と等しくてもよい。UEは、当該特定の候補値に基づいて、当該候補値セット内の他の候補値を導出してもよい。例えば、UEは、当該特定の候補値と、所定の時間オフセット(デルタ)を用いて、当該他の候補値を導出してもよい。
 なお、当該候補値セット内の他の候補値の導出とは、当該他の候補値(SLIV)そのもの導出に限らず、当該他の候補値が示す開始シンボルS及び長さL等を導出することであってもよい。
 例えば、図1では、TDRAフィールドの値「00」には、開始シンボルのインデックス「0」及び長さ「8」を示す候補値#1が関連付けられる。UEは、当該候補値#1が示す開始シンボルのインデックス「0」及び時間オフセット(ここでは、2シンボル)に基づいて、SLIV候補値#2~#4の開始シンボルのインデックス「2」、「4」、「6」を導出してもよい。また、UEは、SLIV候補値#1が示す長さ「8」に基づいて、SLIV候補値#2~#4が示す長さ「8」を導出してもよい。
 同様に、UEは、TDRAフィールドの値「01」、「11」に関連付けられるSLIV候補値#1に基づいて、SLIV候補値#2以降の開始シンボルSのインデックス及び長さLの少なくとも一つを導出してもよい。
 以上のように決定される候補値セットに基づくPUSCHの送信制御については、ケース1と同様である。
 第2のケースでは、TDRAフィールドの各値に関連付けられる候補値セット内の全ての候補値がUEに設定(configure)する必要がないので、第1のケースと比較して、基地局とUEとの間のオーバーヘッドを削減できる。
 以上の第1の態様によれば、DCI内のTDRAフィールドの値mに関連付けられる候補値セットが関連付けられるので、PUSCHに割り当てられる時間領域リソースを柔軟に制御できる。
(第2の態様)
 第2の態様では、DCI内の所定フィールド(例えば、周波数領域リソース割り当て(Frequency Domain Resource Assignment又はallocation(FDRA))フィールド)の所定値(FDRAフィールド値)に関連付けられる候補値セットについて説明する。
 当該候補値セットは、PUSCHに割り当てられる周波数領域リソースの関する情報(FDRA情報)の一以上の候補値を含んでもよい。当該FDRA情報は、例えば、リソース指示値(Resource Indication Value(RIV))であってもよく、候補値セットは、一以上のRIVの候補を含んでもよい。
 UEは、DCI内のFDRAフィールド値に関連付けられる候補値セットから選択される一つのRIVに基づいて、PUSCHに割り当てられる周波数領域リソースの開始値(開始リソースブロック又はRBSTART等ともいう)及び送信帯域幅(送信帯域幅、割り当てリソースブロックの長さ又はLCRBs(LCRBs≧1)等ともいう)の少なくとも一つを決定してもよい。
 UEは、所定のルールに基づいて、上記候補値セットから一つのRIVを選択してよい。当該所定のルールは、例えば、測定の結果、チャネル状態・チャネル品質が良いと考えられる周波数リソースに含まれる(または当該周波数リソースを含む)RIVを選択する、またはListen―before―talk(LBT)の結果、検出レベルが所定値以下であり、利用可能と考えられる周波数リソースに含まれる(または当該周波数リソースを含む)RIVを選択する、などであってもよい。
 FDRAフィールドの各値m(m=0~M-1)に関連付けられる候補値セットは、基地局からUEに設定(configure)されてもよいし(第1のケース)、又は、各値mに基づいて導出されてもよい(第2のケース)。なお、当該候補値セットは、予め仕様で定められていてもよい。
 ここで、Mは、FDRAフィールドの値mのとり得る値(例えば、0~M-1)(又はコードポイント)の数を示してもよい。FDRAフィールドのビット数(サイズ)は、下記式2によって示されてもよい。
Figure JPOXMLDOC01-appb-M000002
<第1のケース>
 第1のケースにおいて、UEは、FDRAフィールドの各値mに関連付けられる候補値セットを受信してもよい。具体的には、UEは、上位レイヤシグナリング(例えば、RRCシグナリング)によりMエントリ(M個)の候補値セットを含む設定情報(FDRAリスト、リスト等ともいう)を受信してもよい。
 ここで、当該FDRAリスト内のエントリ数Mは、DCI内のFDRAフィールドの値mの数(すなわち、FDRAフィールドがXビットの場合、2のX乗)と等しくてもよい。
 DCI内のFDRAフィールドの各値mは、上記FDRAリスト内の所定の(given)エントリ(すなわち、候補値セット)に関連づけられてもよい。例えば、FDRAフィールドの値m=0~M-1である場合、当該値mは、上記TDRAリスト内のm+1番目のエントリ(すなわち、m+1番目の候補値セット)に関連付けられてもよい。
 UEは、所定のサーチスペースを監視して、PUSCHのスケジューリングに用いられるDCI(例えば、DCIフォーマット0_0又は0_1)を検出する。UEは、当該DCI内のFDRAフィールドの所定値mに関連づけられる候補値セットに基づいて、当該PUSCHの送信を制御してもよい。
 図3は、第1の態様に係るFDRAフィールドの各値mに関連付けられる候補値セットの一例を示す図である。図3では、FDRAフィールドが2ビットである一例が示されるが、これに限られず、3ビット以上であってもよい。
 図3に示すように、FDRAフィールドの各値mは、一以上のRIVの候補値を含む候補セットに関連付けられてもよい。各RIVは、PUSCHに割り当てられる周波数時間領域リソース(例えば、リソースブロック)の開始位置(RBSTART)及び送信帯域幅(LCRBs)を示してもよい。
 図3に示すように、FDRAフィールドの複数の値m間において、候補値セットが含む候補値の数は、異なっていてもよいし、同一であってもよい。例えば、図1では、TDRAフィールドの値「00」、「01」、「10」、「11」それぞれに関連付けられる候補値セットは、それぞれ異なる数(4、3、1、2個)の候補値を含む。
 図3に示すように、FDRAフィールドの各値にRIVの候補値セットが関連付けられる場合、UEは、DCI内のFDRAフィールドの所定値mに関連付けられる候補値セットから一つのRIVを選択し、当該RIVに基づいてPUSCHの送信を制御してもよい。
 基地局は、DCI内のFDRAフィールドの所定値mに関連付けられる候補値セット内の各候補値を用いて、当該PUSCHの受信処理(例えば、受信、復調、復号の少なくとも一つ)を制御してもよい(すなわち、候補値セット内においてブラインドでPUSCHを検出してもよい)。
 また、図3に示すように、同一の候補値セット内の複数のRIV間では、当該複数のRIVそれぞれによって示される開始位置(RBSTART)及び送信帯域幅(LCRBs)の少なくとも一方が異なればよい。
 例えば、同一の候補セット内の複数のRIV間で、当該複数のRIVそれぞれによって示される開始位置(RBSTART)が異なり、送信帯域幅(LCRBs)が同一である場合、当該複数のRIV間でTBSを同一にすることができる。このため、DCI内のFDRAフィールド値mに単一のRIVの代わりに、一以上のRIVを含む候補値セットが関連付けられる場合でも、PUSCHの送信制御を簡便化することができる。
 例えば、同一の候補セット内の複数のRIV間で送信帯域幅(LCRBs)が異なる場合、UEは、特定の送信帯域幅(例えば、最小の送信帯域幅)を示すRIVに基づいて、TBSを決定してもよい。
 或いは、同一の候補セット内の複数のRIV間で送信帯域幅(LCRBs)が異なる場合、UEは、候補セット内から所定のルールに従って選択されるRIVが示す送信帯域幅に基づいて、TBSを決定してもよい。
 第1のケースでは、FDRAフィールドの各値に関連付けられる候補値セット内の全ての候補値がUEに設定(configure)されるので、基地局とUEとの間の候補値の認識不一致を防止できる。
<第2のケース>
 第2のケースでは、UEは、FDRAフィールドの各値mに関連付づけられる候補値セットを、各値mに基づいて導出してもよい。第2のケースは、第1のケースとの相違点を中心に説明する。
 例えば、図3では、FDRAフィールドの各値mは、各値mに関連付けられる候補値セット内の特定の候補値(例えば、最初の候補値#1)と等しくてもよい。UEは、当該特定の候補値に基づいて、当該候補値セット内の他の候補値を導出してもよい。例えば、UEは、当該特定の候補値と、所定の周波数オフセット(デルタ)を用いて、当該他の候補値を導出してもよい。
 なお、当該候補値セット内の他の候補値(RIV)の導出とは、当該他の候補値そのもの導出に限らず、当該他の候補値が示す開始位置(RBSTART)及び送信帯域幅(LCRBs)等を導出することであってもよい。
 以上のように決定される候補値セットに基づくPUSCHの送信制御については、ケース1と同様である。
 第2のケースでは、FDRAフィールドの各値に関連付けられる候補値セット内の全ての候補値がUEに設定(configure)する必要がないので、第1のケースと比較して、基地局とUEとの間のオーバーヘッドを削減できる。
 以上の第2の態様によれば、DCI内のFDRAフィールドの値mに関連付けられる候補値セットが関連付けられるので、PUSCHに割り当てられる周波数領域リソースを柔軟に制御できる。
(その他の態様)
 第1、第2の態様では、DCI内のTDRAフィールド、FDRAフィールドの値に関連付けられる候補値セットについて説明したが、これに限られない。本開示は、DCI内のどのようなフィールドについても、上記第1、第2の態様のケース1、2で述べた方法を用いて、当該フィールドの各値に候補値セットを関連付けることができる。
 例えば、当該フィールドは、冗長バージョン(Redundancy Version(RV))、送信電力制御(Transmission power control(TPC))コマンド、サウンディング参照信号(Sounding Reference Signal(SRS))、空間領域リソース割り当て(Space Domain Resource Assignment又はAllocation(SDRA))、復調用参照信号(Demodulation Reference Signal(DMRS))の少なくとも一つに関するフィールドであればよい。
 例えば、SDRAに関するフィールドは、プリコーダ情報、レイヤ数、アンテナポート数、PUSCHのDMRSと疑似コロケーションの関係となるSRSリソース、位相トラッキング参照信号(Phase-tracking reference signal(PTRS))の少なくとも一つに関するフィールドであってもよい。
 また、DMRSに関するフィールドは、DMRS系列の初期化に関するフィールドであってもよい。また、SRSに関するフィールドは、SRSの要求(request)(トリガ)に関する情報であってもよい。
 DCI内の上記フィールドの各値に関連付けられる候補値セットは、上記ケース1又は2のどちらを用いて決定されてもよい。例えば、RVフィールドの各値に関連付けられる候補値セットを、上記ケース2を用いて導出する場合、UEは、RVフィールドの値m「0」に基づいて、当該値mに関連付けられる候補値セット内の候補値#1、#2、#3、#4を、「0」、「2」、「3」、「1」に決定してもよい。
 また、上記では、DCIは、PUSCHのスケジューリングに用いられるDCI(例えば、DCIフォーマット0_0又は0_1)について説明したが、PDSCHのスケジューリングに用いられるDCI(例えば、DCIフォーマット1_0、1_1)にも適用可能である。上記におけるPUSCHをPDSCHに、送信を受信に置き換えて適用可能である。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図4は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図5は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 なお、送受信部120は、所定フィールドの所定値を含む下り制御情報を送信する。送受信部120は、上り信号(例えば、上り共有チャネル)を受信し、下り信号(例えば、下り共有チャネル)を送信してもよい。
 制御部110は、前記下り制御情報内の前記所定値に関連付けられる一以上の候補値のセットに基づいて、上り共有チャネルをブラインドで検出してもよい。
 送受信部120は、上位レイヤシグナリングにより、前記所定フィールドの各値に関連付けられる一以上の候補値のセットを送信してもよい(第1のケース)。
 制御部110は、前記所定値に基づいて前記セット内の特定の候補値を決定し、該特定の候補値に基づいて前記セット内の他の候補値を導出してもよい(第2のケース)。
 前記下り制御情報内の前記所定フィールドは、時間領域リソース割り当て、周波数領域リソース割り当て、冗長バージョン、送信電力制御コマンド、サウンディング参照信号(SRS)、空間領域リソース割り当て、復調用参照信号の少なくとも一つに関するフィールドであってもよい。
 制御部210は、所定のキャリア(例えば、送信前にリスニングを行うキャリア)において、上り信号(例えば、上り共有チャネル)の受信、又は、下り信号(例えば、下り共有チャネル)の送信を制御してもよい。
(ユーザ端末)
 図6は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220、送受信アンテナ230及び伝送路インターフェース240の少なくとも1つによって構成されてもよい。
 なお、送受信部220は、所定フィールドの所定値を含む下り制御情報を受信する。上り信号(例えば、上り共有チャネル)を受信し、下り信号(例えば、下り共有チャネル)を送信してもよい。
 制御部210は、前記所定値に関連付けられる一以上の候補値のセットから選択される一つの値に基づいて、前記下り制御情報によりスケジューリングされる上り共有チャネルの送信又は下り共有チャネルの受信を制御してもよい。
 送受信部220は、上位レイヤシグナリングにより、前記所定フィールドの各値に関連付けられる一以上の候補値のセットを受信してもよい(第1のケース)。
 制御部210は、前記所定値に基づいて前記セット内の特定の候補値を決定し、該特定の候補値に基づいて前記セット内の他の候補値を導出してもよい(第2のケース)。
 前記下り制御情報内の前記所定フィールドは、時間領域リソース割り当て、周波数領域リソース割り当て、冗長バージョン、送信電力制御コマンド、サウンディング参照信号(SRS)、空間領域リソース割り当て、復調用参照信号の少なくとも一つに関するフィールドであってもよい。
 制御部210は、所定のキャリア(例えば、送信前にリスニングを行うキャリア)において、上り信号(例えば、上り共有チャネル)の送信、又は、下り信号(例えば、下り共有チャネル)の受信を制御してもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図7は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  所定フィールドの所定値を含む下り制御情報を受信する受信部と、
     前記所定値に関連付けられる一以上の候補値のセットから選択される一つの値に基づいて、前記下り制御情報によりスケジューリングされる上り共有チャネルの送信又は下り共有チャネルの受信を制御する制御部と、
    を具備することを特徴とするユーザ端末。
  2.  前記受信部は、上位レイヤシグナリングにより、前記所定フィールドの各値に関連付けられる一以上の候補値のセットを受信することを特徴とする請求項1に記載のユーザ端末。
  3.  前記制御部は、前記所定値に基づいて前記セット内の特定の候補値を決定し、該特定の候補値に基づいて前記セット内の他の候補値を導出することを特徴とする請求項1に記載のユーザ端末。
  4.  前記所定フィールドは、時間領域リソース割り当て、周波数領域リソース割り当て、冗長バージョン、送信電力制御コマンド、サウンディング参照信号(SRS)、空間領域リソース割り当て、復調用参照信号の少なくとも一つに関するフィールドであることを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  5.  前記制御部は、送信前にリスニングを行うキャリアにおいて、前記上り共有チャネルの送信又は前記下り共有チャネルの受信を制御することを特徴とする請求項1から請求項4のいずれかに記載のユーザ端末。
  6.  所定フィールドの所定値を含む下り制御情報を受信する工程と、
     前記所定値に関連付けられる一以上の候補値のセットから選択される一つの値に基づいて、前記下り制御情報によりスケジューリングされる上り共有チャネルの送信又は下り共有チャネルの受信を制御する工程と、
    を有することを特徴とするユーザ端末の無線通信方法。
PCT/JP2019/014448 2019-04-01 2019-04-01 ユーザ端末及び無線通信方法 WO2020202429A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19923696.9A EP3952514A1 (en) 2019-04-01 2019-04-01 User equipment and wireless communication method
PCT/JP2019/014448 WO2020202429A1 (ja) 2019-04-01 2019-04-01 ユーザ端末及び無線通信方法
US17/600,502 US20220174716A1 (en) 2019-04-01 2019-04-01 User terminal and radio communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/014448 WO2020202429A1 (ja) 2019-04-01 2019-04-01 ユーザ端末及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2020202429A1 true WO2020202429A1 (ja) 2020-10-08

Family

ID=72666738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014448 WO2020202429A1 (ja) 2019-04-01 2019-04-01 ユーザ端末及び無線通信方法

Country Status (3)

Country Link
US (1) US20220174716A1 (ja)
EP (1) EP3952514A1 (ja)
WO (1) WO2020202429A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11843935B2 (en) 2021-01-14 2023-12-12 Lg Electronics Inc. Method of transmitting a transport block and apparatus using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018523410A (ja) * 2015-07-31 2018-08-16 華為技術有限公司Huawei Technologies Co.,Ltd. 物理ダウンリンク制御チャネル送信方法および装置
KR20180134305A (ko) * 2017-06-08 2018-12-18 엘지전자 주식회사 무선 통신 시스템에서 자원 할당 관련 시그널링 방법 및 상기 방법을 이용하는 장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018226054A1 (ko) * 2017-06-08 2018-12-13 엘지전자 주식회사 무선 통신 시스템에서 자원 할당 관련 시그널링 방법 및 상기 방법을 이용하는 장치
KR20190027705A (ko) * 2017-09-07 2019-03-15 엘지전자 주식회사 무선 통신 시스템에서 자원 할당 방법 및 상기 방법을 이용하는 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018523410A (ja) * 2015-07-31 2018-08-16 華為技術有限公司Huawei Technologies Co.,Ltd. 物理ダウンリンク制御チャネル送信方法および装置
KR20180134305A (ko) * 2017-06-08 2018-12-18 엘지전자 주식회사 무선 통신 시스템에서 자원 할당 관련 시그널링 방법 및 상기 방법을 이용하는 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300, April 2010 (2010-04-01)
NTT: "UL signals and channels for NR-U", 3GPP TSG RAN WG1 #96BIS R1-1904948, 30 March 2019 (2019-03-30), XP051691883 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11843935B2 (en) 2021-01-14 2023-12-12 Lg Electronics Inc. Method of transmitting a transport block and apparatus using the same
JP7423823B2 (ja) 2021-01-14 2024-01-29 エルジー エレクトロニクス インコーポレイティド 伝送ブロック伝送方法及び装置

Also Published As

Publication number Publication date
EP3952514A1 (en) 2022-02-09
US20220174716A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
WO2020166045A1 (ja) ユーザ端末及び無線通信方法
WO2020230864A1 (ja) ユーザ端末及び無線通信方法
WO2020165998A1 (ja) ユーザ端末
WO2020261510A1 (ja) 端末及び無線通信方法
WO2020065724A1 (ja) ユーザ端末及び無線通信方法
WO2020217309A1 (ja) ユーザ端末及び無線通信方法
WO2020255263A1 (ja) 端末及び無線通信方法
WO2020217408A1 (ja) ユーザ端末及び無線通信方法
WO2021059524A1 (ja) 端末及び無線通信方法
WO2020121413A1 (ja) ユーザ端末及び無線通信方法
WO2020144780A1 (ja) ユーザ端末及び無線通信方法
JPWO2020166041A1 (ja) ユーザ端末及び無線通信方法
WO2020188644A1 (ja) ユーザ端末及び無線通信方法
WO2020217515A1 (ja) ユーザ端末及び無線通信方法
WO2020165997A1 (ja) ユーザ端末
WO2020166022A1 (ja) ユーザ端末
WO2020090061A1 (ja) ユーザ端末
WO2020153211A1 (ja) 端末
WO2021130941A1 (ja) 端末及び無線通信方法
WO2020222273A1 (ja) ユーザ端末及び無線通信方法
WO2020255270A1 (ja) 端末及び無線通信方法
WO2020202448A1 (ja) ユーザ端末及び無線通信方法
WO2020165999A1 (ja) ユーザ端末
WO2020144782A1 (ja) ユーザ端末及び無線通信方法
WO2020153210A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019923696

Country of ref document: EP

Effective date: 20211102

NENP Non-entry into the national phase

Ref country code: JP