WO2020201145A1 - Traitement des maladies respiratoires avec une bacterie du genre lactobacillus - Google Patents

Traitement des maladies respiratoires avec une bacterie du genre lactobacillus Download PDF

Info

Publication number
WO2020201145A1
WO2020201145A1 PCT/EP2020/058832 EP2020058832W WO2020201145A1 WO 2020201145 A1 WO2020201145 A1 WO 2020201145A1 EP 2020058832 W EP2020058832 W EP 2020058832W WO 2020201145 A1 WO2020201145 A1 WO 2020201145A1
Authority
WO
WIPO (PCT)
Prior art keywords
bacteria
lymphocytes
cells
strain
cncm
Prior art date
Application number
PCT/EP2020/058832
Other languages
English (en)
Inventor
Geanncarlo LUGO
Lucie BERNARD
Olivier Neyrolles
Muriel Thomas
Philippe Langella
Aude REMOT
Original Assignee
Institut National De Recherche Pour L'agriculture, L'alimentation Et L'environnement
Centre National De La Recherche Scientifique (Cnrs)
Universite Paul Sabatier Toulouse Iii
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut National De Recherche Pour L'agriculture, L'alimentation Et L'environnement, Centre National De La Recherche Scientifique (Cnrs), Universite Paul Sabatier Toulouse Iii filed Critical Institut National De Recherche Pour L'agriculture, L'alimentation Et L'environnement
Priority to EP20715360.2A priority Critical patent/EP3947747A1/fr
Priority to US17/593,910 priority patent/US20220162547A1/en
Publication of WO2020201145A1 publication Critical patent/WO2020201145A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/225Lactobacillus

Definitions

  • the microbiota made up of bacteria but also viruses, parasites and fungi present in all mucous membranes, such as the intestine or the lungs, is a major component of host-pathogen interactions.
  • the gut microbiota exerts a protective effect, both for the maintenance of homeostasis (mechanism of tolerance), and for protection against pathogens [1].
  • the orientation of the immune system towards an anti-inflammatory profile makes it possible to limit inflammation, depends largely on the microbiota [2]. Its study thus enabled the identification, among the bacteria of the intestinal microbiota, of so-called probiotic strains, possessing specific properties allowing the prevention or treatment of various diseases (in particular pulmonary infections) [3, 4].
  • the lungs Although long considered sterile, the lungs also have a microbiota.
  • the data available in the literature mainly come from metagenomics studies [5,6, 7]. This is because the bacterial load in healthy lungs is at least an order of magnitude lower than that in the upper intestine. It has been shown that the lung microbiota consists of a relatively large diversity of bacterial species.
  • Tuberculosis is one of the top 10 causes of death in the world. Thanks to current treatments (BCG vaccine (Bacillus Calmette-Guérin) and quadruple antibiotic therapy), the incidence of the disease decreases on average by 1.5% per year. However, the emergence of forms of tuberculosis resistant to antibiotics underlines the need to identify new therapeutic strategies [12]. Tuberculosis is an infectious disease caused by bacteria (Mycobacterium tuberculosis) and most commonly affecting the lungs [13]. The multiplication of the pathogen and the expression of certain molecular compounds induce immunological hypersensitivity leading to uncontrolled inflammation [14].
  • the inhaled tubercle bacillus Once the inhaled tubercle bacillus has reached the alveoli, it is phagocytosed by various immune cells, including alveolar macrophages. This cellular defense is complemented by an immune defense, involving T lymphocytes through their receptors with M. tuberculosis antigens. These cells after having multiplied locally will migrate in the body and reach the primary infectious site where they will trigger an inflammatory reaction.
  • the present invention relates to new treatments for inflammation associated with a respiratory disease, in particular tuberculosis.
  • the present invention relates in particular to their prevention.
  • a bacterium of the genus Lactobacillus has very advantageous properties in the treatment and / or prevention of respiratory diseases linked to inflammation such as tuberculosis.
  • this bacterium confers a strong protection against leukocyte infiltration of the lungs, an important clinical marker of inflammation.
  • it causes a sharp decrease in the population of leukocytes that produce pro-inflammatory cytokines in the lungs.
  • regulatory T lymphocytes producing anti-inflammatory cytokines are strongly stimulated.
  • iTregs lymphocytes are induced.
  • the iTregs lymphocytes which are induced are bifunctional regulatory T lymphocytes.
  • This bacteria is unique. It has never been described before, as shown by the sequence of its 16S rRNA (SEQ ID No.1).
  • the invention relates to a bacterium of the genus Lactobacillus for its use in the treatment and / or prevention of inflammation linked to a respiratory disease, in particular tuberculosis. It also relates to the use of this bacterium for the preparation of a medicament for treating and / or preventing inflammation linked to a respiratory disease, in particular tuberculosis.
  • the subject affected by said respiratory disease is a mammal, including humans, dogs, cats, equines, cattle, goats, pigs, sheep and non-human primates. More preferably, said subject is a human subject. Alternatively, the subject can be a non-human mammal, such as a dog, cat or equine.
  • the subject of the invention is in particular a particular strain of Lactobacillus for its use in the treatment and / or prevention of inflammation linked to a respiratory disease, in particular tuberculosis.
  • said strain comprises a polynucleotide having a sequence which has at least 98% identity with the sequence SEQ ID No.1.
  • the invention relates to the strain deposited under number 1-5314 on April 16, 2018 at the National Collection of Cultures of Microorganisms (CNCM), 25 rue du Dondel Roux, 75724 Paris Cedex 15, France, for its use in the treatment and / or prevention of inflammation associated with respiratory disease, especially tuberculosis.
  • a subject of the invention is also a particular strain of Lactobacillus sp. possessing properties for preventing and / or treating respiratory diseases associated with inflammation. More specifically, said strain comprises a polynucleotide having a sequence which has at least 99% identity with the sequence SEQ ID No 1.
  • This strain is preferably a strain of Lactobacillus animalis or of Lactobacillus murinus. Even more specifically, the invention relates to the strain deposited under number 1-5314 on April 16, 2018 at the National Collection of Cultures of Microorganisms (CNCM), 25 rue du Dondel Roux, 75724 Paris Cedex 15, France.
  • Strain 1-5314 is produced by culturing, for example, in a growth medium known to those skilled in the art (for example, a liquid MRS medium: Man, Rogosa and Sharpe) for 1 to 2 days under aerobic conditions, at a temperature of 30-37 ° C, with or without pH adjustment.
  • a growth medium known to those skilled in the art
  • the fermentation broth containing the bacterial cells is collected.
  • the broth can be used as is, concentrated or lyophilized.
  • the bacteria will be collected, for example by centrifugation and then resuspended in an appropriate buffer, for example PBS (phoshate-buffered saline).
  • the bacterial concentration can be established using a flow cytometer or other equivalent method.
  • the strain of the invention is particularly advantageous in that it causes a sharp increase in the populations of both Th17 lymphocytes and Treg lymphocytes.
  • the induction of Treg lymphocytes is particularly important because they are above all bifunctional Tregs which have both pro- and anti-inflammatory properties.
  • biTregs can positively or negatively regulate the inflammatory response occurring during infectious disease [16, 17, 18].
  • the subject of the invention is therefore a bacterium of the genus Lactobacillus described above for its use in the treatment and / or prevention of inflammation linked to a respiratory disease, in particular tuberculosis, said treatment. and / or prevention comprising a decrease in leukocyte infiltration and an increase in the pulmonary populations of Th17 lymphocytes as well as of Tregs lymphocytes.
  • the invention relates to the use of the bacterium described above for the preparation of a medicament for treating and / or preventing inflammation linked to a respiratory disease, in particular tuberculosis, said treatment and / or prevention comprising a decrease in leukocyte infiltration and an increase in the pulmonary populations of Th17 lymphocytes than of Treg lymphocytes.
  • the Tregs lymphocytes are iTregs lymphocytes.
  • the iTregs lymphocytes are bifunctional iTregs lymphocytes.
  • T lymphocytes or "T cells” are a type of lymphocyte (white blood cell) that play a central role in cell-mediated immunity. They can be distinguished from other lymphocytes, such as B cells and natural killer cells (NK cells), by the presence of a T cell receptor (TCR) on the cell surface.
  • T cell receptor or “TCR” represents a receptor present on the surface of T cells which is responsible for the recognition of antigens bound to major histocompatibility complex (MHC) molecules.
  • MHC major histocompatibility complex
  • T cells do not present antigens and depend on other lymphocytes (natural killer cells, B cells, macrophages, dendritic cells) to facilitate antigen presentation.
  • Types of T cells include, but are not limited to, helper T cells (Th cells), memory T cells (Tcm, Tern or Temra), regulatory T cells (Treg), cytotoxic T cells (CTL), natural killer T cells ( NKT cells), gamma delta T cells, and mucosal invariant T cells (MAIT).
  • CD4 + T lymphocytes also called “helper T” and also “T helper (Th)”
  • helper T also called “helper T”
  • Th T helper
  • CD4 glycoprotein on their surface.
  • CD4 refers to a T-cell membrane glycoprotein which interacts with major histocompatibility complex (MHC) class II antigens and is also a receptor for human immunodeficiency virus.
  • MHC major histocompatibility complex
  • the protein functions to initiate or enhance the early phase of activation of T cells.
  • the CD4 molecule of the invention is a polypeptide having the amino acid sequence represented by NP_038516.
  • CD4 + T cells can be classified according to the type of cytokines they produce. It is thus possible in particular to identify CD4 + Th1 T lymphocytes, CD4 + Th2 T lymphocytes, CD4 + Th17 T lymphocytes or even regulatory CD4 + T lymphocytes.
  • CD4 + Th1 T lymphocytes or “Th1” or “Th1 lymphocytes” refers to a population of activated CD4 + T lymphocytes which direct the immune response towards the cellular response and cytotoxicity.
  • Th1 mainly produce cytokines IL-2, TNF ⁇ and IFN ⁇ and express the transcription factor T-bet.
  • T-bet or "TBX21”, as used herein, represents a family transcription factor. T-box transcription factors, which is necessary for the differentiation of Th1 T lymphocytes and cytotoxic Tel T lymphocytes (i.e.
  • the T-bet protein has the amino acid sequence represented by NP_037483.1.
  • Th1 lymphocytes are induced by the cytokine IL-12 in response to infections by viral or bacterial pathogens (such as M. tuberculosis, for example).
  • the cytokines then produced by Th1 activate macrophages which destroy pathogens.
  • this Th1 anti-infectious response can also be the cause of tissue immunopathological damage, especially in the presence of chronic infection.
  • CD4 + Th17 T lymphocytes or “Th17 lymphocyte” or “Th17” or “Th17 cells” is meant here a population of helper CD4 + T lymphocytes expressing the transcription factor RAR-related orphan receptor-yt (ROR-yt ) and producing cytokine IL-17A, a pro-inflammatory cytokine.
  • the Th17 cells are also characterized by the release of IL-17F, IL-21 and IL-22 and the co-expression of the membrane markers CCR6, ICOS and CCR4. Th17 cells are involved in the control of extracellular bacterial and fungal infections.
  • the term "regulatory T cells” or “Tregs” or “Tregs” or “suppressor T cells” refers to a population of T cells which express the FOXP3 transcription factor and which maintain immunological tolerance. Tregs cells are important for maintaining homeostasis, controlling the extent and duration of the inflammatory response, and preventing autoimmune and allergic responses. During an immune response, Tregs thus suppress immune reactions mediated by effector T cells, such as CD4 + or CD8 + effector T cells.
  • Regulatory T cells can be natural Tregs cells or induced Tregs cells.
  • the term “natural Tregs” or “natural Tregs” is understood here to mean T cells of thymic origin which express particular markers on the surface of the cells, namely the CD4 and CD25 markers. Said cells are therefore preferably of the CD4 + CD25 high FOXP3 high phenotype.
  • natural Tregs express the Helios transcription factor.
  • “Induced Tregs lymphocytes” or “induced Tregs cells” or “iTregs cells”, as understood herein, are T cells of peripheral origin whose differentiation is induced as a result of antigenic interaction in the presence of cytokines such as TGF-B and IL-2.
  • ITregs are characterized by the presence of the IL-2 receptor (CD25) and CCR4 ⁇ chain on their surface and the production of suppressive cytokines such as IL-10, for example, in addition to the expression of FOXP3. Additionally, iTregs cells do not express the Helios transcription factor.
  • CD25 refers to the alpha chain of the IL-2 receptor.
  • This protein is a type I transmembrane protein found on activated T cells, activated B cells, certain thymocytes, myeloid precursors, and oligodendrocytes which combine with CD122 to form a heterodimer that can serve as a high affinity receptor for IL- 2.
  • Tregs in particular express CD25 in addition to CD4 and FOXP3.
  • the CD25 molecule of the invention is a polypeptide having the amino acid sequence represented by NP_032393.
  • Helios is meant here a zinc finger transcription factor encoded by the IKZF2 gene.
  • the Helios transcription factor forms homodimers, or even heterodimers, with the Iskaros and Aiolos transcription factors.
  • Helios is expressed in particular in Treg cells. More specifically, Helios is expressed exclusively in natural Tregs, but not in induced Tregs.
  • the Helios protein as understood here corresponds to two isoforms, the amino acid sequences of which are represented by NP_057344.2 and NP_001072994.1, respectively.
  • iTregs cells are cells having dual functionality and are called “bifunctional iTregs lymphocytes” or “bifunctional iTregs cells” or “bifunctional iTregs cells” or “bifunctional iTregs cells” or “biTregs”.
  • the biTregs cells are cells which express both ROR-yt and FOXP3.
  • the biTregs cells produce both the pro-inflammatory cytokine 11-17 and the anti-inflammatory cytokine IL-10.
  • the biTregs cells additionally produce the cytokines TGF-B and IL-35.
  • RAR-related orphan receptor-yt or “ROR-yt” is meant here a transcription factor of the family of nuclear receptors for steroid hormones, exclusively expressed in cells of the immune system.
  • the ROR-yt transcription factor thus plays a key role in the regulation of the differentiation of Th17 cells.
  • the ROR-yt transcription factor is a polypeptide having the amino acid sequence represented by NP_001001523.1.
  • FOXP3 denotes a transcription factor belonging to the family of "forkhead / winged helix" transcription regulators.
  • the FOXP3 transcription factor is the primary regulator of the development and function of Treg lymphocytes.
  • FOXP3 is a marker for Treg lymphocytes, the expression of this transcription factor in a CD4 + T lymphocyte sufficient to characterize a Treg lymphocyte.
  • the FOXP3 transcription factor is a polypeptide having the amino acid sequence represented by NP_001186276.
  • the present inventors have thus shown that the administration of the bacterium described above leads to an increase in the lung population of iTregs cells. This increase is not caused by an increase in cell proliferation, but by an induction of the differentiation of these cells.
  • administration of the bacteria described herein results in induction in the lung of iTregs lymphocytes secreting both pro-inflammatory cytokines (eg, II-17A) and anti-inflammatory cytokines (eg IL-10). .
  • cytokine refers to a family of small, secreted regulatory proteins that play a critical role in immune responses. Cytokines are involved in communication between cells and regulate many cellular functions, such as cell survival and growth, as well as the induction of the expression of many genes. Cytokines can be produced by many cell types. As explained above, the cell type of a given lymphocyte is determined in particular by its cytokine profile. Thus, “Th1 cytokines”, as they are understood here, are the cytokines produced by CD4 Th1 T lymphocytes (including IL-2, IFN ⁇ and TFNa).
  • pro-inflammatory cytokine is meant herein the cytokines which lead to an increase in inflammation. They include in particular cytokines such as, for example, IL-16, TNFa, IL-6, IL-15, IL-17, IFN- ⁇ and IL-18. According to a preferred embodiment, the pro-inflammatory cytokines are TNF ⁇ , IL-6, IFN-g and IL-17, more preferably IL-17.
  • Anti-inflammatory cytokines are those which control the response of pro-inflammatory cytokines. Anti- cytokines inflammatory drugs work in concert with specific cytokine inhibitors and soluble cytokine receptors to regulate the human immune response.
  • Major anti-inflammatory cytokines include the IL-1 receptor antagonist, IL-10 and TGF-B.
  • the anti-inflammatory cytokines are IL-10 and TGF-B.
  • the administration of the present bacteria results in the induction in the lung of iTreg lymphocytes producing 11-10, TGF-B and IL-17.
  • the inventors have moreover shown that the number of cells producing these cytokines is increased after administration of this bacterium.
  • the concentration of pro-inflammatory cytokines such as TNF ⁇ , IL-6 and IFN-g is not affected.
  • interleukin 17 or "IL-17” or “IL-17A”, as used herein, represents a homodimeric glycoprotein of 20-30 kDa.
  • the human IL-17 gene encodes a protein consisting of 155 amino acids, including a signal sequence of 19 amino acids and a mature segment of 136 amino acids.
  • 11-17 is a pro-inflammatory cytokine which participates in the defenses against extracellular bacterial and fungal infections. Once secreted, this cytokine acts on epithelial cells, endothelial cells, fibroblasts and other cells of the immune system, activating them to produce pro-inflammatory cytokines such as IL-1, l 'IL-6, TNF- ⁇ , chemokines, GM-CFS, etc.
  • IL-10 is meant here a homodimeric protein composed of two ⁇ -helical subunits linked by non-covalent interactions.
  • each IL-10 monomer is expressed in the form of a precursor whose amino acid sequence is represented by NP_000563.1.
  • IL-10 is a key anti-inflammatory cytokine produced by activated immune cells that plays a critical role in controlling immune responses. In particular, it reduces the expression of Th1 cytokines, MHC class II antigens and co-stimulatory molecules on macrophages. It also improves survival, proliferation and antibody production of B cells. IL-10 can block the activity of NF-KB and is involved in the regulation of the JAK-STAT signaling pathway.
  • TGF-B or “transforming growth factor-B” or “transforming growth factor-B” is understood here to mean a multifunctional cytokine belonging to the transforming growth factor superfamily comprising four different isoforms (TGF-61 to 4).
  • TGF-61, 2, 3 and 4 have amino acid sequences represented by NP_000651, NP_001129071 or NP_003229,
  • TGF-6 is involved in multiple processes. In particular, it plays an immunosuppressive and anti-inflammatory role by promoting the resolution of inflammation and the return to homeostasis. It thus suppresses the production of cytokines by inhibiting the activity of macrophages and Th1 cells. In particular, it neutralizes IL-1, IL-2, IL-6 and TNF ⁇ , and induces IL-1 RA.
  • increased means a greater amount, for example, an amount slightly greater than the original amount or for example an amount in great excess over the amount. original quantity, and in particular all quantities in between.
  • crease can refer to an amount or activity that is at least 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11 %, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19% or 20% more than the amount or activity for which the increased amount or activity is compared .
  • the terms “increased”, “greater than”, and “increased” are used interchangeably herein.
  • an “increased lymphocyte population” thus means a population of said lymphocytes, for example Th17 or iTregs lymphocytes, in particular biTregs, increased compared to a reference control, such as, for example, a control which has not been treated with the present bacteria.
  • a reference control such as, for example, a control which has not been treated with the present bacteria.
  • an “increased lymphocyte population” in the lungs, for example Th17 or iTregs lymphocytes, in particular biTregs means that the number of said lymphocytes in the lungs is increased compared to a reference control, such as , for example, a control that has not been treated with the present bacteria.
  • This increase can result in particular from an increase in the differentiation of T lymphocytes into the type of lymphocytes of interest (for example Th17 or iTregs lymphocytes, in particular biTregs) and / or an increase in cell proliferation.
  • this increase in the population of lymphocytes of interest does not result from an increase in cell proliferation.
  • decrease means a smaller amount, for example, a slightly lower amount. less than the original quantity, or for example a quantity much smaller than the original quantity, and in particular all quantities in the interval.
  • decrease can refer to an amount or activity that is at least 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11 %, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19% or 20% less than the amount or activity for which the decreased amount or activity is compared .
  • the terms “decreased”, “less than”, “less” and “decreased” are used interchangeably herein.
  • a “decreased lymphocyte population” thus means a reduced population of said lymphocytes compared to a reference control, such as, for example, a control which has not been treated with the present bacterium.
  • a "decreased lymphocyte population" in the lungs means that the number of said lymphocytes in the lungs is reduced compared to a reference control, such as, for example, a control which has not been treated with. the present bacteria.
  • control can be a patient, an animal model or an in vitro cell model.
  • the "control” is a patient.
  • patient is meant herein a human subject suffering from inflammation associated with a respiratory disease, in particular tuberculosis.
  • the subject is an animal, in particular a dog, a cat or a horse.
  • the present invention also relates to a pharmaceutical composition
  • a pharmaceutical composition comprising the strain described here, preferably the strain 1-5314, and at least one pharmaceutically acceptable excipient.
  • the inactivated bacterium induces the same effects as the living strain and therefore also has properties for preventing and / or treating respiratory diseases.
  • the strain 1-5314 present in the pharmaceutical composition is an inactivated strain.
  • inactivated strain is meant here a bacterial strain which is incapable of growing and / or dividing.
  • an inactivated strain no longer has metabolic activity.
  • the inactivated bacteria according to the invention are still capable of moderating the inflammation, that is to say that the administration of the inactivated bacteria leads to a decrease in leukocyte infiltration and an increase in the pulmonary populations of Treg lymphocytes. .
  • the techniques for inactivating bacteria are well known to those skilled in the art. Mention will be made, for example, of inactivation by heat, irradiation by UV or gamma rays, treatment with acids, treatment with hydrogen peroxide, etc.
  • the present bacteria will preferably be inactivated by heat treatment.
  • extracts of strain 1-5314 are particularly advantageous to use in the present pharmaceutical compositions.
  • An "extract”, as used herein, refers to any cellular material obtained as a result of the lysis of one or more bacterial strains.
  • an extract has undergone one or more additional extraction and / or purification steps.
  • the extract is obtained from a single strain; more preferably, said strain is the strain described above, in particular strain 1-5314.
  • Lysis can be carried out by any means known to those skilled in the art: alkaline lysis, lysis by sonication, lysis by high pressure (French press), etc.
  • the extract obtained by cell lysis can then be subjected to additional extraction and / or purification steps.
  • These can comprise any usual treatment of such extracts and known to a person skilled in the art: there will be mentioned, among others, centrifugations (for example to separate the plasma membrane from the cytoplasm), filtrations, precipitations and separations of the particles. different cellular constituents (e.g. using one of the many types of chromatography), etc.
  • each of the different extracts obtained at each of these steps can be used in the method of the invention as long as it is still capable of moderating the inflammation, that is to say that the administration of said extract causes a reduction leukocyte infiltration and an increase in the pulmonary populations of Th17 lymphocytes and Tregs lymphocytes.
  • compositions are useful for the treatment of inflammation associated with respiratory diseases.
  • respiratory disease is meant here diseases of the respiratory system, in particular of the lungs or bronchi, or causing breathing disorders. Many of these respiratory illnesses are linked to inflammation of the respiratory system, especially the lungs or bronchi. Mention will thus be made, and in a non-exhaustive manner, of asthma (mild, moderate or severe), for example, bronchial, allergic, intrinsic, extrinsic, induced by exercise, drug-induced (including aspirin and NSAIDs) and dust-induced asthma, steroid-resistant asthma, bronchitis, including infectious and eosinophilic bronchitis, chronic obstructive pulmonary disease ( COPD), such as COPD (chronic obstructive pulmonary disease), cystic fibrosis, pulmonary fibrosis including cryptogenic fibrosing alveolitis, idiopathic pulmonary fibrosis, idiopathic interstitial prieumonias, fibrosis complicating anti-neoplastic and chronic therapy,
  • COPD chronic
  • tularensis aspergillosis and other bacterial (eg Francisella novicida or P. aeruginosa) or fungal (eg Candida albicans or Aspergillus fumigatus) infections ); complications of lung transplantation; vasculitis and thrombotic disorders of the pulmonary vascular system and pulmonary arterial hypertension (including pulmonary arterial hypertension); antitussive activity including treatment of chronic cough associated with inflammatory and secretory airways disorders and iatrogenic cough; acute and chronic rhinitis, including drug rhinitis, and vasomotor rhinitis; perennial and seasonal allergic rhinitis including rhinitis nervosa (hay fever); nasal polyposis; acute viral infection, including the common cold, and infection due to respiratory syncytial virus, influenza, coronavirus (including COVID-19, SARS or MRES-CoV,) and adenovirus, pulmonary edema, pulmonary embolism , pneumonia, pulmonary
  • Respiratory diseases as understood herein also include respiratory diseases specifically affecting animals, especially cats, dogs or horses. They include in particular kennel cough, caused in particular by infections with the Parainfluenza virus and the bacterium Bordetella bronchiseptica. According to a preferred embodiment, said respiratory disease is tuberculosis.
  • tuberculosis is meant here an infectious disease caused by the bacterium Mycobacterium tuberculosis.
  • pulmonary tuberculosis which means that the infection affects the lungs.
  • pulmonary tuberculosis manifests as a cough, sometimes productive or bloody, chest pain, asthenia, weight loss, and night sweats.
  • tuberculosis may be responsible for inflammation of prolonged course, the pathological appearance of which is characteristic.
  • the inflammatory reaction is the response to an aggression of exogenous origin (infectious or traumatic cause) or endogenous (immunological cause, for example a hypersensitivity reaction or another cause, for example ischemia-reperfusion syndrome).
  • the inflammatory response usually consists of an initiation phase which follows a danger signal of exogenous or endogenous origin and which involves primary effectors, an amplification phase with mobilization and activation. secondary effectors and a resolution and repair phase which tends to restore the integrity of the damaged tissue.
  • the inflammatory reaction is thus, most often, an adapted response strictly controlled by multiple regulatory systems, including, for example, Treg cells. However, if the inflammatory response is inadequate or poorly controlled; it can become aggressive. In some cases, the inflammation can become chronic: for example, tuberculosis causes chronic inflammation.
  • treat refers to the reduction or amelioration of the symptoms of a disorder (eg, inflammation related to respiratory disease, including tuberculosis) and / or symptoms associated therewith in a subject. It will be appreciated that, although it is not excluded, the treatment of a disorder or a condition does not require that the pathology, condition or symptoms associated with it be completely eliminated.
  • a disorder eg, inflammation related to respiratory disease, including tuberculosis
  • prevent refers to the suppression of the risk of occurrence of a disorder (for example, inflammation associated with respiratory disease. , particularly tuberculosis) and / or symptoms associated with it in a subject.
  • a disorder for example, inflammation associated with respiratory disease. , particularly tuberculosis
  • symptoms associated with it in a subject for example, inflammation associated with respiratory disease. , particularly tuberculosis
  • subject is meant herein any mammal which may benefit from the treatment described herein, including humans, dogs, cats, equines, cattle, goats, pigs, sheep and non-primates. humans. More specifically, a human subject is called a “patient” here. Said patient may belong to any age group, i.e. the patient may be a child, adolescent or adult. adult. Alternatively, the subject can be a non-human mammal, such as a dog, cat or equine.
  • compositions comprise, in addition to strain I-5314, one or more pharmaceutically acceptable excipients.
  • pharmaceutically acceptable excipient is meant here an excipient whose administration to an individual is not accompanied by significant deleterious effects.
  • Pharmaceutically acceptable excipients are well known to those skilled in the art.
  • the term "pharmaceutically acceptable excipient” includes all solvents, buffers, saline solutions, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption retarding agents, and the like which are physiologically. compatible.
  • the excipients are chosen, according to the pharmaceutical form and the desired mode of administration, from the usual excipients which are known to those skilled in the art.
  • the type of support will thus be chosen as a function of the planned route of administration.
  • the carrier is suitable for intravenous, intraperitoneal, subcutaneous, intramuscular, topical, transdermal, oral, or aerosol administration.
  • the present strain is formulated in pharmaceutically acceptable vehicles, such as solutions, suspensions, tablets, dispersible tablets, pills, capsules, powders, sustained-release formulations or elixirs, for oral administration or in sterile solutions or suspensions for parenteral administration, as well as transdermal patches and dry powder inhalers.
  • pharmaceutically acceptable vehicles include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. The use of media and agents for pharmaceutically active substances is well known in the art.
  • compositions containing strain 1-5314 or extracts thereof see, for example, Ansel (1985) Introduction to Pharmaceutical Dosage Forms. 4 th Ed., P. 126).
  • the methods for preparing pharmaceutical compositions, especially pharmaceutical compositions administrable orally or by inhalation, will be known or obvious to those skilled in the art and are described in more detail in detail in, for example, “Remington's Pharmaceutical Science, 17th ed. , Mack Publishing Company, Easton, Pa. (1985) ”, and 18th and 19th editions of this manual.
  • compositions are administered to the patient at a therapeutically effective dose.
  • therapeutically effective dose refers to the amount needed to observe therapeutic or preventive activity on inflammation associated with respiratory disease, especially tuberculosis, particularly the amount needed to observe symptom improvement.
  • the quantity of bacteria 1-5314 to be administered as well as the duration of the treatment are evaluated by those skilled in the art according to the physiological state of the subject to be treated, as well as the route of administration used.
  • the bacterial strain used can be administered as a single dose or in multiple doses.
  • these compounds will be administered systemically, in particular intravenously, intramuscularly, intradermally, intraperitoneally or subcutaneously, orally, or topically (by means of gel, aerosols, drops, etc. .).
  • Suitable unit administration forms include oral forms such as tablets, soft or hard capsules, powders, granules and oral solutions or suspensions, sublingual, buccal, intratracheal, intraocular administration forms , intranasal, inhalation, topical, transdermal, subcutaneous, intramuscular or intravenous administration forms, rectal administration forms and implants.
  • oral forms such as tablets, soft or hard capsules, powders, granules and oral solutions or suspensions, sublingual, buccal, intratracheal, intraocular administration forms , intranasal, inhalation, topical, transdermal, subcutaneous, intramuscular or intravenous administration forms, rectal administration forms and implants.
  • the compounds according to the invention can be used in creams, gels, ointments or lotions.
  • the composition enterally, orally, parenterally (eg subcutaneously, intradermally, or intramuscularly) or mucosal (eg intranasal, sublingual, intravaginal, transcutaneous). More preferably, the pharmaceutical composition will be administered several times, spread over time. Its mode of administration, its dosage and its optimal galenic form can be determined according to the criteria generally taken into account in establishing a treatment adapted to a patient such as for example the age or the body weight of the patient, the severity of his general condition, tolerance to treatment and side effects observed.
  • the active principle or the active principles are generally formulated in dosage units.
  • the dosage unit contains at least 10 2 cfu, preferably at least 10 3 cfu, preferentially at least 10 4 cfu, preferentially at least 10 5 cfu, preferentially at least 10 cfu 6 cfu, more preferably at least 10 7 cfu, still more preferably at least 10 8 cfu, most preferably at least 10 9 cfu, per dosage unit.
  • the dosage unit contains between 10 2 and 10 9 cfu, advantageously between 10 5 and 10 9 cfu, preferably from 10 7 to 10 9 cfu per dosage unit, for daily administrations, a or several times a day.
  • the dosage unit when bacterial extracts are administered to the patient, contains 2.5 to 500 mg, preferably 10 to 250 mg, preferably 10 to 150 mg per dosage unit, for daily administrations, a or several times a day.
  • these dosages are examples of average situations, there may be special cases where higher or lower dosages are appropriate, such dosages also belong to the invention.
  • the dosage appropriate for each patient is determined by the physician according to the mode of administration, the age, the weight and the response of said patient.
  • Figure 1 Growth kinetics of strain CNCM 1-5314.
  • FIG. 2 Experimental protocol used to study the effect of administration of bacteria isolated from the pulmonary microbiota on infection by Mycobacterium tuberculosis (Mtb). 6 week old female C57BL / 6 mice are intranasally (in) 10 7 bacteria (CNCM I 4968, or CNCM 1-5314 or CNCM I 4967 or PBS) in 25 mL of PBS 3 times per week for 2 weeks. Depending on the experiments, they are then sacrificed ( Figure 2.) or infected with 10 3 CFU of Mtb (other figures). For the infected mice, the administration of lactobacilli is continued until sacrifice at the rate of 2 times per week (groups treated before and after infection, noted “av / ap ” ).
  • the lactobacilli can only be administered after infection (CNCM 1-5314 ap group) and not before. After sacrifice, the lungs are used either whole for histological analysis of the immunopathology or homogenized to determine the bacterial load and characterize the local immune response by flow cytometry.
  • FIG. 3 Modification of the pulmonary immune system of mice not infected with bacteria isolated from the pulmonary microbiota.
  • C57BL / 6 mice receive 10 7 bacteria intranasally (CNCM I4968 or CNCM 1-5314 or CNCM I4967 or PBS) in 25 mL of PBS 3 times per week for 2 weeks. After sacrifice, a cell suspension is obtained by enzymatic and mechanical dissociation of the lungs. The proportions of subpopulations of CD4 + T lymphocytes are determined by flow cytometry. A. Analysis strategy. After exclusion of doublets and dead cells, CD4 + T lymphocytes are selected.
  • the proportion of different subpopulations is determined by selecting the cells expressing a specific intracellular factor of interest (bottom panel) and not its control isotype (top panel).
  • Treg Foxp3 factor
  • Th1 type cells TNF-a
  • Th17 TNF-17
  • FIG. 4 Impact of administration of bacteria isolated from the lung microbiota on Mtb infection.
  • C57BL / 6 mice receive 10 7 bacteria intranasally (CNCM I-4968 or CNCM 1-5314 or CNCM I-4967 or PBS) in 25 ⁇ L of PBS 3 times per week for 2 weeks. They are then infected with 1000 bacteria of the H37Rv strain of Mtb intranasally. After infection, the mice receive the pulmonary bacteria as before twice a week for 30 days. After sacrifice the lungs are dissociated to estimate bacterial load or fixed to assess tissue damage.
  • HE Hematoxylin-Eosin
  • Figure 5 Experimental design for the study of cytokine production by mouse lung explants in the presence of strain CNCM 1-5314.
  • FIG. 6 Determination of lactate dehydrogenase (LDH).
  • Bacteria 20 CNCM 5314; bacterium 11: bacterium known to be cytotoxic (positive control).
  • Figure 7 Characterization of the impact of lactobacillus CNCM 1-5314 on cytokine secretion in mouse lung explants.
  • Mouse lung explants are brought into contact with the CNCM 1-5314 strain or not at 37 ° C. After 16 hours of incubation, the cytokines are assayed by the Luminex technique.
  • A. Pro-Th1 / Th1 cytokines.
  • B. Pro-Th2 / Th2 cytokines.
  • C Cytokines pro-Th17 / Th17 / Th22.
  • D Th9 / Treg / Prolif cytokines.
  • E Pro-inflammatory cytokines.
  • the CNCM 1-5314 strain is mentioned as bacteria 20.
  • Figure 8 Characterization of the impact of administration of lactobacillus I-5314 on Mtb infection.
  • C57BL / 6 mice receive PBS (white bars) or 10 7 lactobacilli intranasally before and after infection (CNCM 15314 group av / ap, gray bars) with 1000 CFU of Mtb strain H37Rv intranasally, or only after infection (CNCM group 1-5314 ap, hatched bars).
  • the percentage of infiltration corresponds to the ratio of the area occupied by leukocyte infiltrates compared to the total area of the lungs. 2-5 experiments each comprising 4-5 mice per group are shown.
  • CD4 + LT expressing different transcription factors (C.) (T-bet, characteristic of Th1, RORyt for Th17 and Foxp3 for Treg) or producing cytokines (D.) after stimulation with phorbol 12-myristate 13- acetate (PMA) and lonomicin in the presence of Monensin and Brefeldin A (IFN-g and TNF-a for Th1, IL-17 for Th17, IL-10 and TGF-B for Treg) are shown. EFG Characterization of Treg lymphocytes expressing Foxp3.
  • Tregs natural (nTreg, expressing the Helios factor, high) or induced (iTreg, which does not express it, low) (E.), their proliferation (characterized by the expression of the Ki67 antigen) (F.) and cytokine production (G.) is detected by flow cytometry as in C and D.
  • Lung bacterial strains were isolated from mouse lung homogenates with a homogenizer (Ultraturax (IKA) or Tissue Lyser (Qiagen)). They were then cultured on yhBHI, M17, MRS or Mannitol Salt Agar medium (BD biosciences) for 24 to 48 hours at 37 ° C. under aerobic conditions or 5 days at 37 ° C. in a Freter chamber under anaerobic conditions. The isolated strains were frozen at -80 ° C in 16% glycerol. The identity of each strain was confirmed by mass spectrophotometry and PCR sequencing of 16S RNA. The selected strains were deposited with the National Collection of Cultures of Microorganisms (CNCM).
  • CNCM National Collection of Cultures of Microorganisms
  • the three strains used here are strains of lactobacilli deposited under the references CNCM 1-5314, (CNCM I-4967) and (CNCM I-4968). These bacteria are cultured in MRS liquid medium for 24 hours at 30 ° C. (pre-culture) or 3-4 hours at 37 ° C. (for instillations) without stirring.
  • RNAse A Proteinase K (DNeasy® Blood and Tissue kit) and RNAse A were added for an additional 1 h at 55 ° C The same volume of buffer “AL” (DNeasy® Blood and Tissue kit) was added to the lysate, vortexed and incubated for 30 min at 56 ° C. After the incubation, the same volume of 100% ethanol was added. DNA was extracted using the “DNeasy Mini spin columns” kit (Qiagen) and following the vendor's instructions.
  • the sequencing was produced by the “GeT-PlaGe” platform (INRA, Castanet-Tolosan, France).
  • the DNA was fragmented by sonication to obtain fragments of 200 to 1000 base pairs (bp). These fragments were added to Illumina type adapters and sequenced by the “Illumina HiSeq 3000” method.
  • the raw sequences have been put into fastp, version 0.19.4 format to remove Illumina-like adapter sequences and low quality sequences.
  • the sequences were assembled by “Unicycler version, vO.4.7” and the quality of the assembly was checked by QUAST v5.0.2, b7350347c.
  • the assembled genome is visualized by ”Bandage vO.8.1” and annotated by Prokka v1 .13.
  • the growth profile was determined by spectrophotometry (Spectronic instruments 20; Genesys) which makes it possible to measure the optical density (OD) from the culture medium containing the bacteria.
  • OD optical density
  • mice used are C57BL / 6 females aged 6 to 8 weeks from the farms of Charles River Laboratories.
  • a bacterial suspension containing 4.0 x 10 8 CFU / mL was prepared in phosphate buffered saline (PBS) from fresh cultures in the exponential phase.
  • PBS phosphate buffered saline
  • the mice receive 25 ⁇ l of PBS containing 1.0 ⁇ 10 7 CFU or 25 ⁇ L of PBS (control group) intranasally (in) under gas anesthesia (4% isoflurane, Virbac Danmark). This operation is repeated 3 times a week for 2 weeks then the mice are either sacrificed (experiments on uninfected mice) or infected (procedures described below), and again receive the administration of commensal bacteria twice a week until 'to sacrifice.
  • the administration of lactobacilli is carried out only after infection and not before and after infection (see Figure 1).
  • a fresh culture of the H37Rv strain of Mtb (cultivated in 7H9 liquid medium (Difco) supplemented with 0.5% glycerol, 10% ADC (Middlebrook) and 0.05% tyloxapol) is used to infect the mice.
  • Each mouse receives in 1.0 ⁇ 10 3 CFU of Mtb in 25 mL of PBS under isoflurane anesthesia.
  • the mice are sacrificed by cervical dislocation (under isoflurane anesthesia) after 42 days of infection.
  • Histological analyzes The whole lungs of mice dedicated to histological analyzes are used.
  • HE Hematoxylin-eosin
  • mice Whole lungs of the mice were removed in a sterile manner, homogenized with a gentleMACS dissociator before (tubes C, cycle m_lung_01, Miltenyi) and after (cycle m_lung_02) 30 min of incubation at 37 ° C with collagenase D (2 mg / mL, Roche) and DNAse I (0.1 mg / mL, Roche). A portion of this homogenate is diluted in series with PBS and then spread on 7H10 agar medium (Difco) supplemented with peptone and OADC (Middlebrook). After 2-3 weeks, the enumeration of the Mtb colonies obtained makes it possible to estimate the pulmonary bacterial load.
  • a gentleMACS dissociator before (tubes C, cycle m_lung_01, Miltenyi) and after (cycle m_lung_02) 30 min of incubation at 37 ° C with collagenase D (2 mg / mL, Roche) and DNAse I (0.1 mg
  • the rest of Homogenates are passed through 70 mm filter to destroy aggregates, and centrifuged at 329 xg for 5 min.
  • the supernatants are passed twice through 0.2 ⁇ m filters and stored at -80 ° C. for the analysis of the cytokines present in the lungs.
  • the red blood cells present in the pellet are lysed for 5 min with a solution containing 150 mM NH 4 Cl, 10 mM KHCO3, 0.1 mM EDTA (pH 7.2), neutralized by adding RPMI medium containing 10% of the fetal calf serum (FCS ).
  • FCS fetal calf serum
  • the analysis of the different populations of CD4 + helper T lymphocytes is carried out thanks to the detection by flow cytometry of transcription factors and cytokines characteristic of these subpopulations by labeling the cells present in the cell suspension obtained as described in the previous section. .
  • Part of the cell suspension is incubated in RPMI containing 50 ng / mL of Phorbol Myristate Acetate (PMA, (Sigma Aldrich) and 500 ng / mL of ionomycin (Sigma-Aldrich) to induce the production of cytokines by the lymphocytes as well.
  • PMA Phorbol Myristate Acetate
  • ionomycin Sigma-Aldrich
  • CSB Cell Staining Buffer
  • an anti-Cluster Differentiation 16/32 antibody CD16 / CD32, Biolegend
  • a viability marker live / dead fixable blue dead cell stain kit, Invitrogen
  • an anti-CD45 .2 BV71 1 clone 104, BD Biosciences
  • an anti-CD3 FITC 17A2, Biolegend
  • an ti-T cell Receptor beta TCRb
  • Alexa 700 H57-597, Biolegend
  • an anti-CD4 BV786 Sk3, BD Biosciences
  • the cells are then fixed for 30 min at room temperature (RT), permeabilized for 15 min at RT (Foxp3 / transcription factor staining buffer set, eBioscience) and incubated 45 min at RT with a panel of antibodies comprising an anti- RORgt PE-CF594 (Q31 -378, BD Biosciences), an anti-T-bet PE-Cy7 (eBio4BIO, eBiosciences), an anti-Foxp3 APC (FJK-16s, eBioscience), an anti-Helios APC-eFluor 780 ( 22F6, eBiosciences), an anti-Ki67 Alexa 700 (SolA15, eBioscience) or an anti-interleukin 10 (IL-10) FITC (JES5-16E3, BD Biosciences), an anti-IL-17 PE (TC11 -18H10, BD Biosciences), an anti-IFNy PE-Dazzle (XMG1.2, Biolegend
  • the cells are fixed for 2 h in paraformaldehyde (PFA) 4% at RT.
  • PFA paraformaldehyde
  • the data are acquired with a FACS LSRII or Fortessa (BD Biosciences) and analyzed on the FlowJo V10 software. Doublets (FSH-H vs. FSC-W and SSC-H vs. SSC-W) and dead cells (live / dead positive) are excluded at the start of each analysis.
  • PCLS Lung Precision Cut Slices
  • PCLS Two of the PCLS per well were then placed at 37 ° C, 5% CO2, in P24 well plates (Nunc, Sigma-Aldrich, Lyon, France) with 1 ml of RPMI 1640 (Gibco, Sigma-Aldrich, Lyon, France) supplemented with 10% heat inactivated fetal calf serum (Gibco) and 2 mM L-glutamine (Gibco).
  • the medium was changed every 30 min for 2 h to remove agarose, as well as a final time after overnight incubation.
  • the PCLS were then co-incubated for 24 h with lung bacteria.
  • LDH lactate dehydrogenase
  • the determination of LDH on the explant lysates and on the supernatants makes it possible to determine the cytotoxicity of the bacteria on the explants of the lungs.
  • the blank For the LDH assayed on the explant lysates, the blank must be subtracted from the values obtained.
  • the cytotoxicity represents the ratio in percentage between the released LDH, therefore present in the supernatant of the lung explants, on the total LDH present (in the supernatants + in the lysates of the lung explants), represented by the following calculation:
  • the cytokines were assayed using the Luminex technique.
  • the Luminex technique uses magnetic beads with their own fluorescence, which makes it possible to assay a large number of cytokines at the same time.
  • the magnetic bead has anti-IL-2 capture antibodies.
  • the detection antibody also recognizes the cytokine but it is linked to streptavidin-PE.
  • the concentration of the assayed sample is directly proportional to the fluorescence intensity of the PE.
  • the cytokines were assayed from the supernatant recovered 16 h post-culture with the bacteria. We used a luminex kit to determine the concentration of fifteen cytokines in a single assay (Thermofisher).
  • Table 1 Assayed cytokines.
  • the cytokines assayed correspond to the cytokines released during different immune responses such as type 1, 2, 9 or 17 and 22.
  • the plate is read with Luminex Magpix using "Xponent” software and then analyzed using “Bioplex Manager” software (Biorad version 6).
  • 3 are lactobacilli which are generally recognized as GRAS (Generally Recognized As Safe) and have been deposited at the CNCM under the numbers: CNCM I-4968, CNCM 1-5314 and CNCM I-4967, respectively.
  • GRAS Generally Recognized As Safe
  • the genome of the strain deposited under number 1-5314 was sequenced. Using sequence homology analysis software (Blast), it appears that the DNA sequence encoding 16s rRNA (SEQ ID NO. 1) exhibits more than 98% homology with reference strains of L animalis and strains of L. murinus.
  • FIG. 2 To determine the probiotic potential of these 3 lactobacilli for the prevention and treatment of tuberculosis, different protocols summarized in FIG. 2 were used in a mouse model.
  • the administration of 10 7 bacteria is carried out intranasally for two weeks before sacrifice of the mice (FIG. 3) or infection by Mycobacterium tuberculosis (Mtb) (other figures).
  • the bacteria are administered before and after infection (av / ap groups) or only after infection (ap group, FIG. 5).
  • cytokines induced by the CNCM 1-5314 strain was determined according to the experimental scheme of Figure 5 (see also Remot et al., 2017). Precision cut slices of the lung of 6 day old mice were cultured in the presence or absence of the bacteria CNCM 1-5314. After 16 hours of culture, the secreted cytokines were assayed in the medium, while cell viability was assessed by assaying LDH (FIG. 6). This did not show a decrease in the viability of the lung explants, indicating that the CNCM 1-5314 strain is not toxic (unlike a control strain). The cytokine assay showed in particular an induction of GM-CSF, IL-17a and TNFa (FIG. 7). These data have made it possible to establish the immunomodulatory profile of strain CNCM 1-5314 vis-à-vis mouse lung explants.
  • CNCM 1-5314 group av / ap In order to better characterize the protective effect of the CNCM 1-5314 strain, the same experiment was repeated (CNCM 1-5314 group av / ap) including analyzes making it possible to determine the composition of the immune infiltrate of the lungs. In addition, the ability of this bacterium to exert its protective effect in a treatment strategy (as opposed to the prophylactic approach described previously) was assessed by adding a group for which administration of the bacterium does not begin until after l. infection (CNCMI 5314 ap group) (detail of the different groups in FIG. 2).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Mycology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

La présente invention a pour objet l'utilisation d'une bactérie du genre Lactobacillus dans le traitement des maladies respiratoires chez les humains tout comme chez les animaux. Il est notamment décrit une souche particulière de cette bactérie et des compositions pharmaceutiques la comprenant.

Description

TRAITEMENT DES MALADIES RESPIRATOIRES AVEC UNE BACTERIE DU GENRE
LACTOBACILLUS
INTRODUCTION
Le microbiote, composé de bactéries mais aussi de virus, parasites et champignons présents au-niveau de toutes les muqueuses, telles que l’intestin ou les poumons, est une composante majeure des interactions hôte-pathogène. Le microbiote intestinal, par exemple, exerce un effet protecteur, tant pour le maintien de l’homéostasie (mécanisme de tolérance), que pour la protection contre des pathogènes [1 ]. Notamment, l’orientation du système immunitaire vers un profil anti- inflammatoire, permettant de limiter l’inflammation, dépend largement du microbiote [2]. Son étude a ainsi permis l’identification parmi les bactéries du microbiote intestinal, de souches dites probiotiques, possédant des propriétés spécifiques permettant la prévention ou le traitement de différentes maladies (notamment les infections pulmonaires) [3, 4]. Bien que longtemps considérés comme stériles, les poumons possèdent eux aussi un microbiote. Les données disponibles dans la littérature proviennent majoritairement d’étude de métagénomique [5,6, 7]. En effet, la charge bactérienne dans les poumons en bonne santé est au moins d’un ordre de grandeur plus faible que celle de la partie haute l'intestin. Il a pu être montré que le microbiote du poumon se compose d'une relativement grande diversité d'espèces bactériennes.
La colonisation par le microbiote a un impact très important sur l’immunité et la santé. Les présents inventeurs ont ainsi mis en évidence l’effet protecteur d’une souche d’Enterococcus faecalis contre l’asthme allergique [8]. En outre, un candidat probiotique issu du microbiote pulmonaire, Corynebacterium pseudodiphtheriticum, améliore la réponse immunitaire pulmonaire contre l'infection par le virus respiratoire syncytial (VRS) et la pneumonie résultant de l’infection secondaire par Streptococcus pneumoniae [9]. Ces questions sont plus largement développées dans [10, 11 ].
La tuberculose est l’une des 10 premières causes de mortalité dans le monde. Grâce aux traitements actuels (vaccin BCG (Bacillus Calmette-Guérin) et quadrithérapie antibiotique), l’incidence de la maladie diminue en moyenne de 1 ,5 % par an. Cependant, l’apparition de formes de tuberculose résistante aux antibiotiques souligne le besoin d’identifier de nouvelles stratégies thérapeutiques [12]. La tuberculose est une maladie infectieuse causée par une bactérie ( Mycobacterium tuberculosis) et touchant le plus souvent les poumons [13]. La multiplication du pathogène et l’expression de certains composés moléculaires induisent une hypersensibilité immunologique conduisant à une inflammation incontrôlée [14].
Une fois que le bacille tuberculeux inhalé a atteint les alvéoles, il est phagocyté par différentes cellules immunitaires, dont notamment des macrophages alvéolaires. Cette défense cellulaire est complétée par une défense immune, impliquant les lymphocytes T par l’intermédiaire de leurs récepteurs avec les antigènes de M. tuberculosis. Ces cellules après s’être multipliées localement vont migrer dans l’organisme et gagner le foyer infectieux primaire où elles vont déclencher une réaction inflammatoire.
Les facteurs toxiques sécrétés par les cellules immunitaires, délétères pour les bactéries, mais aussi pour les cellules de l’hôte, conduisent à des dommages tissulaires importants au niveau des poumons [15]. Ainsi, pour lutter efficacement contre la tuberculose, il est nécessaire de développer de nouveaux antibiotiques, mais aussi d’identifier des outils permettant de maintenir une inflammation suffisante pour contrôler la bactérie mais sans être délétère pour l’hôte. Ce type de thérapeutique est important également en dehors de la tuberculose puisque de nombreuses maladies respiratoires sont liées à une inflammation trop importante, comme par exemple les infections par Francisella tularensis ou Pseudomonas aeruginosa.
DESCRIPTION
La présente invention a pour objet de nouveaux traitements de l’inflammation liée à une maladie respiratoire, notamment la tuberculose. La présente invention a notamment pour objet leur prévention.
Plus particulièrement, les présents inventeurs ont montré qu’une bactérie du genre Lactobacillus possède des propriétés tout à fait avantageuses dans le traitement et/ou la prévention de maladies respiratoires liées à l’inflammation telles que la tuberculose.
En effet, l’administration de cette bactérie confère une forte protection contre l’infiltration leucocytaire des poumons, un marqueur clinique important de l’inflammation. En outre, elle entraîne une forte diminution de la population de leucocytes produisant des cytokines pro-inflammatoires dans les poumons. Dans le même temps, les lymphocytes T régulateurs produisant des cytokines anti- inflammatoires sont fortement stimulés. En particulier, les lymphocytes iTregs sont induits. Encore plus particulièrement, les lymphocytes iTregs qui sont induits sont des lymphocytes T régulateurs bifonctionnels. Cette bactérie est unique. Elle n’a jamais été décrite auparavant, comme le montre la séquence de son ARNr 16S (SEQ ID No.1 ).
Dans un premier aspect, l’invention a pour objet une bactérie du genre Lactobacillus pour son utilisation dans le traitement et/ou la prévention de l’inflammation liée à une maladie respiratoire, notamment la tuberculose. Elle a aussi pour objet l’utilisation de cette bactérie pour la préparation d’un médicament pour traiter et/ou prévenir l’inflammation liée à une maladie respiratoire, notamment la tuberculose. Préférentiellement, le sujet affecté par ladite maladie respiratoire est un mammifère, y compris l'homme, le chien, le chat, les équidés, les bovins, les caprins, les porcs, les ovins et les primates non-humains. De façon plus préférée, ledit sujet est un sujet humain. Alternativement, le sujet peut être un mammifère non- humain, tel qu’un chien, un chat ou un équidé.
L’invention a notamment pour objet une souche particulière de Lactobacillus pour son utilisation dans le traitement et/ou la prévention de l’inflammation liée à une maladie respiratoire, notamment la tuberculose. Plus spécifiquement, ladite souche comprend un polynucléotide ayant une séquence qui possède au moins 98 % d’identité avec la séquence SEQ ID No.1 . Encore plus spécifiquement, l’invention a pour objet la souche déposée sous le numéro 1-5314 le 16 avril 2018 à la Collection Nationale des Cultures de Microorganismes (CNCM), 25 rue du Docteur Roux, 75724 Paris Cedex 15, France, pour son utilisation dans le traitement et/ou la prévention de l’inflammation liée à une maladie respiratoire, notamment la tuberculose.
L’invention a aussi pour objet une souche particulière de Lactobacillus sp. possédant des propriétés de prévention et/ou de traitement des maladies respiratoires liées à l’inflammation. Plus spécifiquement, ladite souche comprend un polynucléotide ayant une séquence qui possède au moins 99% d’identité avec la séquence SEQ ID No 1 . Cette souche est préférentiellement une souche de Lactobacillus animalis ou de Lactobacillus murinus. Encore plus spécifiquement, l’invention a pour objet la souche déposée sous le numéro 1-5314 le 16 avril 2018 à la Collection Nationale des Cultures de Microorganismes (CNCM), 25 rue du Docteur Roux, 75724 Paris Cedex 15, France. La souche 1-5314 est produite par culture, par exemple, dans un milieu de croissance connu de l’homme du métier (par exemple, un milieu liquide MRS : Man, Rogosa et Sharpe ) pendant 1 à 2 jours en conditions aérobie, à une température de 30-37° C, avec ou sans ajustement du pH. Le bouillon de fermentation contenant les cellules bactériennes est recueilli. Le bouillon peut être utilisé tel quel, concentré ou lyophilisé. Avantageusement, les bactéries seront recueillies, par exemple par centrifugation puis remises en suspension dans un tampon approprié, par exemple du PBS ( phoshate-buffered saline ). La concentration bactérienne peut être établie en utilisant un cytomètre de flux ou un autre procédé équivalent.
La souche de l’invention est particulièrement avantageuse en ce qu’elle entraîne une forte augmentation des populations aussi bien de lymphocytes Th17 que de lymphocytes Tregs. L’induction des lymphocytes Treg est notamment importante car ce sont avant tout des Tregs bifonctionnels qui ont à la fois des propriétés pro- et anti-inflammatoires. Ainsi, en fonction du contexte, les biTregs peuvent réguler de manière positive ou négative la réponse inflammatoire intervenant au cours de la maladie infectieuse [16, 17, 18].
Selon un mode préféré de réalisation, l’invention a donc pour objet une bactérie du genre Lactobacillus décrite ci-dessus pour son utilisation dans le traitement et/ou la prévention de l’inflammation liée à une maladie respiratoire, notamment la tuberculose, ledit traitement et/ou prévention comprenant une diminution de l’infiltration leucocytaire et une augmentation des populations pulmonaires de lymphocytes Th17 ainsi que de lymphocytes Tregs.
Selon un autre mode préféré de réalisation, l’invention a pour objet l’utilisation de la bactérie décrite ci-dessus pour la préparation d’un médicament pour traiter et/ou prévenir l’inflammation liée à une maladie respiratoire, notamment la tuberculose, ledit traitement et/ou prévention comprenant une diminution de l’infiltration leucocytaire et une augmentation des populations pulmonaires lymphocytes Th17 que de lymphocytes Tregs.
Selon un mode de réalisation encore plus préféré, les lymphocytes Tregs sont des lymphocytes iTregs. Encore plus préférentiellement, les lymphocytes iTregs sont des lymphocytes iTregs bifonctionnels. Les « lymphocytes T » ou « cellules T » sont un type de lymphocytes (globules blancs) jouant un rôle central dans l'immunité à médiation cellulaire. Ils peuvent être distingués d'autres lymphocytes, tels que les cellules B et les cellules tueuses naturelles (cellules NK), par la présence d'un récepteur de cellules T (TCR) à la surface de la cellule. Tel qu'utilisé ici, le terme « récepteur de cellules T » ou « TCR » représente un récepteur présent à la surface des cellules T qui est responsable de la reconnaissance des antigènes liés aux molécules du complexe majeur d'histocompatibilité (MHC). Les cellules T ne présentent pas d'antigènes et dépendent d'autres lymphocytes (cellules tueuses naturelles, cellules B, macrophages, cellules dendritiques) pour faciliter la présentation de l'antigène. Les types de cellules T incluent notamment les cellules T auxiliaires (cellules Th), les cellules T mémoire (Tcm, Tern ou Temra), les cellules T régulatrices (Treg), les cellules T cytotoxiques (CTL), les cellules T tueuses naturelles (cellules NKT), les cellules T gamma delta et les cellules T invariantes associées à la muqueuse (MAIT).
Parmi les lymphocytes T, les « lymphocytes T CD4+ », appelés également « T auxiliaires » et aussi « T helper (Th) », ont pour fonction principale de réguler positivement ou négativement d’autres cellules immunitaires. Ces cellules expriment la glycoprotéine CD4 à leur surface. Le terme « CD4 », tel qu'utilisé ici, désigne une glycoprotéine membranaire de lymphocytes T qui interagit avec les antigènes du complexe majeur d'histocompatibilité (CMH) de classe II et est également un récepteur du virus de l'immunodéficience humaine. La protéine fonctionne pour initier ou augmenter la phase précoce d'activation des cellules T. De préférence, la molécule CD4 de l'invention est un polypeptide ayant la séquence d'acides aminés représentée par NP_038516.
Les lymphocytes T CD4+ peuvent être classifiés selon le type de cytokines qu’ils produisent. On peut ainsi notamment identifier des lymphocytes T CD4+ Th1 , des lymphocytes T CD4+ Th2, des lymphocytes T CD4+ Th17 ou encore des lymphocytes T CD4+ régulateurs.
On appelle « lymphocytes T CD4+ Th1 » ou « lymphocytes Th1 » ou « Th1 » une population de lymphocytes T CD4+ activés qui orientent la réponse immunitaire vers la réponse cellulaire et la cytotoxicité. Les Th1 produisent principalement les cytokines IL-2, TNFa et IFNy et expriment le facteur de transcription T-bet. Le terme « T-bet » ou « TBX21 », tel qu’utilisé ici, représente un facteur de transcription de la famille des facteurs de transcription à T-box, qui est nécessaire à la différenciation des lymphocytes T Th1 et des lymphocytes T cytotoxiques Tel (c’est-à-dire un lymphocyte T cytotoxique présentant à sa surface des récepteurs pouvant se lier à des complexes formés par un peptide présenté par une molécule CMH de classe I), deux populations lymphocytaires capables de sécréter l'IFNy. Dans un mode préféré de réalisation, la protéine T-bet possède la séquence d’acides aminés représentée par NP_037483.1 .
Les lymphocytes Th1 sont induits par la cytokine IL-12 en réponse aux infections par des pathogènes viraux ou bactériens (comme M. tuberculosis par exemple). Les cytokines alors produites par les Th1 activent les macrophages qui détruisent les pathogènes. Cependant, cette réponse anti -infectieuse Th1 peut aussi être à l’origine des lésions immunopathologiques tissulaires, notamment en présence d’une infection chronique.
Par « lymphocytes T CD4+ Th17 » ou « lymphocyte Th17 » ou « cellules Th17 » ou « Th17 », on entend ici une population de lymphocytes T CD4+ auxiliaires exprimant le facteur de transcription RAR-related orphan receptor-yt (ROR-yt) et produisant la cytokine IL-17A, une cytokine pro-inflammatoire. Avantageusement, les cellules Th17 sont également caractérisées par la libération d’IL-17F, d’IL-21 et d’IL-22 et la co- expression des marqueurs membranaires CCR6, ICOS et CCR4. Les cellules Th17 sont impliquées dans le contrôle des infections bactériennes extracellulaires et fongiques.
Tel qu'utilisé ici, le terme « cellules T régulatrices » ou « cellules Tregs » ou « Tregs » ou « cellules T suppresseurs » désigne une population de cellules T qui expriment le facteur de transcription FOXP3 et qui maintiennent la tolérance immunologique. Les cellules Tregs sont importantes pour maintenir l'homéostasie, contrôler l'ampleur et la durée de la réponse inflammatoire et prévenir les réponses auto-immunes et allergiques. Au cours d'une réponse immunitaire, les Tregs suppriment ainsi les réactions immunitaires médiées par les cellules T effectrices, telles que les cellules T effectrices CD4+ ou CD8+.
Les cellules T régulatrices peuvent être des cellules Tregs naturelles ou des cellules Tregs induites. Par « cellules Tregs naturelles » ou « Tregs naturels », on entend ici des cellules T d’origine thymique qui expriment des marqueurs particuliers de la surface des cellules, à savoir les marqueurs CD4 et CD25. Lesdites cellules sont donc de préférence de phénotype CD4+CD25highFOXP3high. En outre, les Tregs naturels expriment le facteur de transcription Helios. Les « lymphocytes Tregs induits » ou « cellules Tregs induites » ou « cellules iTregs », tel qu’on les entend ici, sont des cellules T d’origine périphérique dont la différenciation est induite à la suite d’une interaction antigénique en présence de cytokines telles que TGF-B et IL-2. Les iTregs sont caractérisées par la présence de la chaîne a du récepteur de l’IL-2 (CD25) et de CCR4 à leur surface et la production de cytokines suppressives comme par exemple IL-10, en sus de l’expression de FOXP3. En outre, les cellules iTregs n’expriment pas le facteur de transcription Helios.
Le terme « CD25 », tel qu'utilisé ici, désigne la chaîne alpha du récepteur de l'IL-2. Cette protéine est une protéine transmembranaire de type I présente sur les cellules T activées, les cellules B activées, certains thymocytes, les précurseurs myéloïdes et les oligodendrocytes qui s'associent à CD122 pour former un hétérodimère pouvant servir de récepteur à haute affinité pour IL-2. Les Tregs en particulier expriment CD25 en plus des CD4 et FOXP3. De préférence, la molécule CD25 de l'invention est un polypeptide ayant la séquence d'acides aminés représentée par NP_032393.
Par « Helios », on entend ici un facteur de transcription à doigt de zinc codé par le gène IKZF2. Le facteur de transcription Helios forme des homodimères, voire des hétérodimères avec les facteurs de transcription Iskaros et Aiolos. Helios est exprimé notamment dans les cellules Tregs. Plus spécifiquement, Helios est exprimé exclusivement dans les Tregs naturels, mais pas dans les Tregs induits. Préférentiellement, la protéine Hélios telle qu’on l’entend ici correspond à deux isoformes, dont les séquences en acides aminés sont représentées par NP_057344.2 et NP_001072994.1 , respectivement.
Dans un mode de réalisation préférentiel, les cellules iTregs sont des cellules possédant une double fonctionnalité et sont appelées « lymphocytes iTregs bifonctionnels » ou « lymphocytes bi -Tregs » ou « cellules iTregs bifonctionnelles » ou « cellules bi -Tregs » ou « biTregs ». Selon ce mode de réalisation, les cellules biTregs sont des cellules qui expriment à la fois ROR-yt et FOXP3. Préférentiellement, les cellules biTregs produisent à la fois la cytokine pro-inflammatoire 11-17 et la cytokine anti-inflammatoire IL-10. De façon encore plus préférée, les cellules biTregs produisent en outre les cytokines TGF-B et IL-35.
Par « RAR-related orphan receptor-yt » ou « ROR-yt », on entend ici un facteur de transcription de la famille des récepteurs nucléaires des hormones stéroïdiennes, exclusivement exprimé dans les cellules du système immunitaire. Le facteur de transcription ROR-yt joue ainsi un rôle clé dans la régulation de la différenciation des cellules Th17. De préférence, le facteur de transcription ROR-yt est un polypeptide ayant la séquence d'acides aminés représentée par NP_001001523.1.
Tel qu'utilisé ici, le terme « FOXP3 » désigne un facteur de transcription appartenant à la famille des régulateurs de transcription « forkhead / winged hélix ». Le facteur de transcription FOXP3 est le régulateur principal du développement et de la fonction des lymphocytes Tregs. En outre, FOXP3 est un marqueur des lymphocytes Tregs, l’expression de ce facteur de transcription dans un lymphocyte T CD4+ suffisant à caractériser un lymphocyte Treg. De préférence, le facteur de transcription FOXP3 est un polypeptide ayant la séquence d'acides aminés représentée par NP_001186276.
Les présents inventeurs ont ainsi montré que l’administration de la bactérie décrite plus haut conduit à une augmentation de la population pulmonaire de cellules iTregs. Cette augmentation n’est pas causée par un accroissement de la prolifération cellulaire, mais par une induction de la différenciation de ces cellules. De préférence, l’administration de la bactérie décrite ici conduit à une induction dans le poumon de lymphocytes iTregs sécrétant aussi bien des cytokines pro-inflammatoires (par exemple, II-17A) que des cytokines anti -inflammatoires (par exemple IL-10).
Le terme « cytokine », tel qu’on l’entend ici, se rapporte à une famille de petites protéines sécrétées régulatrices ayant un rôle crucial dans les réponses immunitaires. Les cytokines sont impliquées dans la communication entre cellules et régulent de nombreuses fonctions cellulaires, comme par exemple la survie et la croissance des cellules, ainsi que l'induction de l’expression de nombreux gènes. Les cytokines peuvent être produites par de nombreux types cellulaires. Comme expliqué plus haut, le type cellulaire d’un lymphocyte donné est notamment déterminé par son profil cytokinique. Ainsi, les « cytokines Th1 », telles qu’on les entend ici, sont les cytokines produites par les lymphocytes T CD4 Th1 (notamment IL-2, IFNy et TFNa).
Par « cytokine pro-inflammatoire », on entend ici les cytokines qui conduisent à une augmentation de l’inflammation. Elles comprennent notamment des cytokines telles que, par exemple, IL-16, TNFa, IL-6, IL-15, IL-17, IFN-y et IL-18. Selon un mode de réalisation préféré, les cytokines pro-inflammatoires sont TNFa, IL-6, IFN-g et IL- 17, plus préférentiellement IL-17. Les « cytokines anti -inflammatoires » sont celles qui contrôlent la réponse des cytokines pro-inflammatoires. Les cytokines anti- inflammatoires agissent de concert avec des inhibiteurs de cytokines spécifiques et des récepteurs de cytokines solubles pour réguler la réponse immunitaire humaine. Les cytokines anti -inflammatoires majeures comprennent l'antagoniste au récepteur d’IL- 1 , IL-10 et TGF-B. Préférentiellement, les cytokines anti-inflammatoires sont IL-10 et TGF-B.
Selon un mode de réalisation plus particulièrement préféré, l’administration de la présente bactérie entraîne l’induction dans le poumon de lymphocytes iTreg produisant de l’ 11-10, du TGF-B et de l’IL-17. Les inventeurs ont d’ailleurs montré que le nombre de cellules produisant ces cytokines est augmenté après administration de cette bactérie. En revanche, la concentration de cytokines pro-inflammatoires telles que TNFa, IL-6 et IFN-g n’est pas affectée.
Le terme « interleukine 17 » ou « IL-17 » ou « IL-17A », tel qu’on l’entend ici, représente une glycoprotéine homodimérique de 20-30 kDa. Le gène de l'IL-17 humaine code une protéine constituée de 155 acides aminés, dont une séquence signal de 19 acides aminés et un segment mature de 136 acides aminés. 11-17 est une cytokine pro- inflammatoire qui participe aux défenses contre les infections bactériennes extra- cellulaires et fongiques. Une fois sécrétée, cette cytokine agit sur les cellules épithéliales, les cellules endothéliales, les fibroblastes ainsi que sur d’autres cellules du système immunitaire, en les activant pour qu’elles produisent des cytokines pro- inflammatoires comme l’IL-1 , l’IL-6, le TNF-a, des chimiokines, du GM-CFS, etc.
Par « interleukine 10 » ou « IL-10 », on entend ici une protéine homodimérique composées de deux sous-unités en hélice a liées par des interactions non covalentes. De façon préférée, chaque monomère d’IL-10 est exprimé sous la forme d’un précurseur dont la séquence en acides aminés est représentée par NP_000563.1. L'IL- 10 est une cytokine anti -inflammatoire clé produite par des cellules immunitaires activées qui joue un rôle critique dans le contrôle des réponses immunitaires. En particulier, elle réduit l'expression des cytokines Th1 , des antigènes du CMH de classe Il et des molécules co-stimulatrices sur les macrophages. Elle améliore également la survie, la prolifération et la production d'anticorps des cellules B. L'IL-10 peut bloquer l'activité de NF-KB et est impliquée dans la régulation de la voie de signalisation JAK- STAT.
On entend ici par « TGF-B » ou « transforming growth factor-B” ou « facteur de croissance transformant-B » une cytokine multifonctionnelle appartenant à la superfamille des facteurs de croissance transformants et comprenant quatre isoformes différentes (TGF-61 à 4). De façon préféré, TGF-61 , 2, 3 et 4 ont des séquences en acides aminés représentées par NP_000651 , NP_001129071 ou NP_003229,
NP_001316867 ou NP_001316868 ou NP_003230, et Q64280.1 . Le TGF-6 est impliqué dans de multiples processus. Notamment, il joue un rôle immunosuppresseur et anti- inflammatoire en favorisant la résolution de l’inflammation et le retour à l’homéostasie. Il supprime ainsi la production de cytokines en inhibant l'activité des macrophages et des cellules Th1 . En particulier, il neutralise l'IL-1 , l'IL-2, l'IL-6 et le TNFa, et induit IL-1 RA.
Le terme « augmenté », tel qu'il est utilisé ici dans certains modes de réalisation, signifie une plus grande quantité, par exemple, une quantité légèrement supérieure à la quantité d'origine ou par exemple une quantité en grand excès par rapport à la quantité d'origine, et notamment toutes les quantités dans l'intervalle. En variante, « augmentation » peut faire référence à une quantité ou une activité qui est au moins 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19% ou 20% de plus que la quantité ou de l'activité pour laquelle la quantité ou de l'activité accrue est comparé. Les termes « augmenté », « plus grand que », et « accru » sont utilisés ici de manière interchangeable. Une « population de lymphocytes augmentée » signifie ainsi une population desdits lymphocytes, par exemple des lymphocytes Th17 ou iTregs, notamment des biTregs, accrue par rapport à un contrôle de référence, tel que, par exemple, un contrôle n’ayant pas été traité avec la présente bactérie. En d’autres termes, une « population de lymphocytes augmentée » dans les poumons, par exemple des lymphocytes Th17 ou iTregs, notamment des biTregs, signifie que le nombre desdits lymphocytes dans les poumons est augmenté par rapport à un contrôle de référence, tel que, par exemple, un contrôle n’ayant pas été traité avec la présente bactérie. Cette augmentation peut résulter notamment d’une augmentation de la différenciation des lymphocytes T dans le type de lymphocytes d’intérêt (par exemple des lymphocytes Th17 ou iTregs, notamment des biTregs) et/ou d’une augmentation de la prolifération cellulaire. Préférentiellement, cette augmentation de la population de lymphocytes d’intérêt (par exemple des lymphocytes Th17 ou iTregs, notamment des biTregs) ne résulte pas d’une augmentation de la prolifération cellulaire.
Le terme « diminution », tel qu'il est utilisé ici dans certains modes de réalisation, signifie une plus petite quantité, par exemple, une quantité légèrement inférieure à la quantité d'origine, ou par exemple une quantité beaucoup plus petite que la quantité d'origine, et notamment toutes les quantités dans l'intervalle. En variante, « diminution » peut faire référence à une quantité ou une activité qui est au moins 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19% ou 20% de moins que la quantité ou de l'activité pour laquelle la quantité ou de l'activité diminuée est comparé. Les termes « diminué », « plus petit que », « moindre » et « décru » sont utilisés ici de manière interchangeable. Une « population de lymphocytes diminuée » signifie ainsi une population desdits lymphocyte réduite par rapport à un contrôle de référence, tel que, par exemple, un contrôle n’ayant pas été traité avec la présente bactérie. En d’autres termes, une « population de lymphocytes diminuée » dans les poumons signifie que le nombre desdits lymphocytes dans les poumons est réduit par rapport à un contrôle de référence, tel que, par exemple, un contrôle n’ayant pas été traité avec la présente bactérie.
Ledit « contrôle » tel qu’utilisé ici peut être un patient, un modèle animal ou encore un modèle cellulaire in vitro. De préférence, le « contrôle » est un patient. Par « patient », on entend ici un sujet humain souffrant d’une inflammation liée à une maladie respiratoire, notamment la tuberculose. Selon un autre mode de réalisation préféré, le sujet est un animal, notamment un chien, un chat ou un cheval.
Dans un autre aspect, la présente invention a aussi pour objet une composition pharmaceutique comprenant la souche décrite ici, préférablement la souche 1-5314, et au moins un excipient pharmaceutiquement acceptable.
La bactérie inactivée induit les mêmes effets que la souche vivante et possède donc elle aussi des propriétés de prévention et/ou de traitement des maladies respiratoires.
Selon un mode de réalisation particulier de l’invention, la souche 1-5314 présente dans la composition pharmaceutique est une souche inactivée. Par « souche inactivée », on entend ici une souche bactérienne qui est incapable de croître et/ou de se diviser. Préférentiellement, une souche inactivée n’a plus d’activité métabolique. Toutefois, les bactéries inactivées selon l’invention sont toujours capables de modérer l’inflammation, c’est-à-dire que l’administration de la bactérie inactivée entraîne une diminution de l’infiltration leucocytaire et une augmentation des populations pulmonaires de lymphocytes Tregs. Les techniques d’inactivation des bactéries sont bien connues de l’homme du métier. On citera par exemple l’inactivation par la chaleur, l’irradiation par les UV ou les rayons gamma, le traitement par les acides, le traitement par le peroxyde d’hydrogène, etc. Les présentes bactéries seront préférentiellement inactivées par traitement à la chaleur.
Il est particulièrement avantageux d’utiliser des extraits de la souche 1-5314 dans les présentes compositions pharmaceutiques. Un « extrait », tel qu’on l’entend ici, désigne tout matériel cellulaire obtenu suite à la lyse d'une ou plusieurs souches bactériennes. Avantageusement, un extrait a subi une ou plusieurs étapes supplémentaires d’extraction et/ou de purification. Préférentiellement, l'extrait est obtenu à partir d’une seule souche ; plus préférentiellement, ladite souche est la souche décrite ci-dessus, notamment la souche 1-5314.
La lyse peut être réalisée par tous les moyens connus de l’homme du métier : lyse alcaline, lyse par sonication, lyse par haute pression (presse de French), etc. L’extrait obtenu par la lyse cellulaire peut ensuite être soumis à des étapes d’extraction et/ou de purification supplémentaires. Celles-ci peuvent comprendre n’importe quel traitement usuel de tels extraits et connu de l’homme du métier : on mentionnera entre autres les centrifugations (par exemple pour séparer la membrane plasmique du cytoplasme), les filtrations, les précipitations et les séparations des différents constituants cellulaires (par exemple en utilisant l’un des nombreux types de chromatographie), etc. Chacun des différents extraits obtenus à chacune de ces étapes peut être utilisé dans la méthode de l’invention pour autant qu’il soit toujours capable de modérer l’inflammation, c’est-à-dire que l’administration dudit extrait entraîne une diminution de l’infiltration leucocytaire et une augmentation des populations pulmonaires de lymphocytes Th17 et de lymphocytes Tregs.
Les présentes compositions sont utiles pour le traitement de l’inflammation liée aux maladies respiratoires.
Par « maladie respiratoire », on entend ici les maladies de l'appareil respiratoire, notamment des poumons ou des bronches, ou provoquant des troubles de la respiration. Parmi ces maladies respiratoires, un grand nombre sont liées à une inflammation de l'appareil respiratoire, notamment des poumons ou des bronches. On citera ainsi, et de manière non exhaustive, l'asthme (légère, modérée ou sévère), par exemple, bronchique, allergique, intrinsèque, extrinsèque, induite par l'exercice, d'origine médicamenteuse (y compris l'aspirine et aux AINS) et l'asthme induit par la poussière, l'asthme résistant aux stéroïdes, la bronchite, y compris la bronchite infectieuse et à éosinophiles, d'une maladie pulmonaire obstructive chronique (COPD), comme la BPCO (broncho-pneumopathie chronique obstructive), la fibrose cystique, la fibrose pulmonaire, y compris cryptogénique alvéolite fibrosante, la fibrose pulmonaire idiopathique, prieumonias interstitielles idiopathiques, la fibrose compliquant une thérapie anti-néoplasique et chronique, l'infection, y compris la tuberculose, la tularémie (causée par F. tularensis), l'aspergillose et d'autres infections bactériennes (par exemple par Francisella novicida ou par P. aeruginosa) ou fongiques (par exemple par Candida albicans ou par Aspergillus fumigatus ) ; complications de la transplantation pulmonaire; vascularite et troubles thrombotiques du système vasculaire pulmonaire et hypertension artérielle pulmonaire (y compris l'hypertension artérielle pulmonaire); activité antitussive comprenant le traitement de la toux chronique associée à des affections inflammatoires et sécrétoires des voies respiratoires et la toux iatrogène; rhinite aiguë et chronique, y compris la rhinite médicamenteuse, et la rhinite vasomotrice; perannuelle et saisonnière rhinite allergique y compris la rhinite nerveuse (rhume des foins); polypose nasale; infection aiguë virale, y compris le rhume, et l'infection due au virus respiratoire syncytial, la grippe, coronavirus (notamment le COVID-19, le SRAS ou le MRES-CoV,) et l'adénovirus, un œdème pulmonaire, embolie pulmonaire, pneumonie, sarcoïdose pulmonaire, la silicose, poumon de fermier et les maladies apparentées; pneumopathie d'hypersensibilité, insuffisance respiratoire, syndrome de détresse respiratoire aiguë, l'emphysème, la bronchite chronique, la tuberculose et le cancer du poumon, etc. Les maladies respiratoires telles qu’on l’entend ici comprennent aussi les maladies respiratoires affectant spécifiquement les animaux, notamment les chats, les chiens ou les chevaux. Elles comprennent notamment la toux du chenil, causée en particulier par les infections au virus Parainfluenza et la bactérie Bordetella bronchiseptica. Selon un mode de réalisation préféré, ladite maladie respiratoire est la tuberculose.
Par « tuberculose », on entend ici une maladie infectieuse causée par la bactérie Mycobacterium tuberculosis. Dans la grande majorité des cas, la tuberculose est une tuberculose pulmonaire, ce qui signifie que l’infection touche les poumons. Lorsqu’elle se déclare, la tuberculose pulmonaire se manifeste par une toux, parfois productive ou sanglante, des douleurs thoraciques, une asthénie, une perte de poids et des sueurs nocturnes. En outre, la tuberculose peut être responsable d'une inflammation d évolution prolongée, dont l'aspect anatomopathologique est caractéristique.
Par « inflammation », on entend ici l’ensemble des mécanismes réactionnels de défense par lesquels l’organisme reconnaît, détruit et élimine toutes les substances qui lui sont étrangères. La réaction inflammatoire est la réponse à une agression d'origine exogène (cause infectieuse, traumatique) ou endogène (cause immunologique, par exemple une réaction d'hypersensibilité ou une autre cause, par exemple le syndrome d'ischémie- reperfusion). La réponse inflammatoire est habituellement composée d’une phase d'initiation qui fait suite à un signal de danger d'origine exogène ou endogène et qui met en jeu des effecteurs primaires, d’une phase d'amplification avec la mobilisation et l'activation d'effecteurs secondaires et d’une phase de résolution et de réparation qui tend à restaurer l'intégrité du tissu agressé. La réaction inflammatoire est ainsi, le plus souvent, une réponse adaptée strictement contrôlée par de multiples systèmes régulateurs, dont, par exemple, les cellules Tregs. Toutefois, si la réponse inflammatoire est inadaptée ou mal contrôlée ; elle peut devenir agressive. Dans certains cas, l’inflammation peut devenir chronique : par exemple, la tuberculose entraîne une inflammation chronique.
Les termes « traiter », « traité », « traitement », ainsi que les termes analogues, tels qu'ils sont utilisés ici, se réfèrent à la réduction ou l'amélioration des symptômes d'un trouble (par exemple, l’inflammation liée à une maladie respiratoire, notamment la tuberculose) et/ou les symptômes associés avec celui-ci chez un sujet. On notera que, bien que ce ne soit pas exclu, le traitement d'un trouble ou un état ne nécessite pas que la pathologie, la condition ou les symptômes qui lui sont associés soient complètement éliminés.
Les termes « prévenir », « prévention », ainsi que les termes analogues, tels qu'ils sont utilisés ici, se réfèrent à la suppression du risque d’apparition d'un trouble (par exemple, l’inflammation liée à une maladie respiratoire, notamment la tuberculose) et/ou les symptômes associés avec celui-ci chez un sujet.
On entend ici par « sujet » n’importe quel mammifère pouvant bénéficier du traitement décrit ici, y compris l'homme, le chien, le chat, les équidés, les bovins, les caprins, les porcs, les ovins et les primates non-humains. Plus spécifiquement, on appelle ici « patient » un sujet humain. Ledit patient peut appartenir à n’importe quelle classe d’âge, c’est-à-dire le patient peut être un enfant, un adolescent ou un adulte. Alternativement, le sujet peut être un mammifère non-humain, tel qu’un chien, un chat ou un équidé.
Les présentes compositions pharmaceutiques comprennent outre la souche I- 5314, un ou plusieurs excipients pharmaceutiquement acceptables.
Par « excipient pharmaceutiquement acceptable », on entend ici un excipient dont l'administration à un individu ne s'accompagne pas d'effets délétères significatifs. Les excipients pharmaceutiquement acceptables sont bien connus de l’homme du métier.
Tel qu'il est utilisé ici, l’expression « excipient pharmaceutiquement acceptable » comprend tous les solvants, tampons, solutions salines, milieux de dispersion, revêtements, agents antibactériens et antifongiques, agents isotoniques et retardant d'absorption, et analogues qui sont physiologiquement compatibles. Les excipients sont choisis selon la forme pharmaceutique et le mode d'administration souhaité, parmi les excipients habituels qui sont connus de l'homme du métier. Le type de support sera ainsi choisi en fonction de la voie d'administration prévue. Dans divers modes de réalisation, le support est approprié pour une administration intraveineuse, intrapéritonéale, sous-cutanée, intramusculaire, topique, transdermique, orale, ou par aérosol. Ainsi, dans des modes particuliers de réalisation, la présente souche est formulée dans des véhicule pharmaceutiquement acceptables, tels que des solutions, suspensions, comprimés, comprimés dispersibles, pilules, gélules, poudres, formulations à libération prolongée ou élixirs, pour administration orale ou dans des solutions ou suspensions stériles pour administration parentérale, ainsi que des patchs transdermiques et des inhalateurs de poudre sèche. Les véhicules pharmaceutiquement acceptables comprennent les solutions ou dispersions aqueuses stériles et des poudres stériles pour la préparation extemporanée de solutions ou dispersions injectables stériles. L'utilisation de milieux et agents pour des substances pharmaceutiquement actives est bien connue dans la technique. Les techniques et les méthodes bien connues de la personne du métier seront ainsi utilisées pour préparer des compositions pharmaceutiques contenant la souche 1-5314 ou les extraits de celle- ci (voir par exemple, Ansel (1985) Introduction to Pharmaceutical Dosage Forms. 4th Ed., p. 126). Les procédés pour préparer des compositions pharmaceutiques, notamment des compositions pharmaceutiques administrables par voie orale ou par inhalation, seront connus ou évidents pour l'homme du métier et sont décrits plus en détail dans, par exemple, « Remington's Pharmaceutical Science, 17th ed. , Mack Publishing Company, Easton, Pa. (1985) », et les 18e et 19e éditions de ce manuel.
Les présentes compositions sont administrées au patient à une dose thérapeutiquement efficace. Le terme « dose thérapeutiquement efficace » tel qu'utilisé ici se réfère à la quantité nécessaire pour observer une activité thérapeutique ou préventive sur l’inflammation liée à la maladie respiratoire, notamment la tuberculose, en particulier la quantité nécessaire pour observer une amélioration des symptômes. La quantité de bactérie 1-5314 à administrer ainsi que la durée du traitement sont évaluées par l'homme du métier selon l'état physiologique du sujet à traiter, ainsi que la voie d'administration utilisée. La souche bactérienne utilisée peut être administrée sous la forme d'une dose unique ou de doses multiples.
L’homme du métier saura ainsi choisir au mieux les voies et modes d’administration de la composition, ainsi que les posologies et formes galéniques optimales, selon les critères généralement pris en compte dans la fabrication d’un médicament ou l’établissement d’un traitement pharmaceutique ou vétérinaire. De préférence, ces composés seront administrés par voie systémique, en particulier par voie intraveineuse, par voie intramusculaire, intradermique, intra-péritonéale ou sous- cutanée, par voie orale, ou par voie topique (au moyen de gel, aérosols, gouttes, etc.). Les formes unitaires d'administration appropriées comprennent les formes par voie orale telles que les comprimés, les gélules molles ou dures, les poudres, les granules et les solutions ou suspensions orales, les formes d'administration sublinguale, buccale, intra-trachéale, intraoculaire, intranasale, par inhalation, les formes d'administration topique, transdermique, sous-cutanée, intramusculaire ou intraveineuse, les formes d'administration rectale et les implants. Pour l'application topique, on peut utiliser les composés selon l'invention dans des crèmes, gels, pommades ou lotions.
Il sera particulièrement avantageux d’administrer la composition par voie entérale, orale, parentérale (par exemple sous-cutanée, intradermique, ou intramusculaire) ou mucosale (par exemple intranasale, sublinguale, intravaginale, transcutanée). De manière plus préférée, la composition pharmaceutique sera administrée à plusieurs reprises, de manière étalée dans le temps. Son mode d’administration, sa posologie et sa forme galénique optimale peuvent être déterminés selon les critères généralement pris en compte dans l’établissement d’un traitement adapté à un patient comme par exemple l’âge ou le poids corporel du patient, la gravité de son état général, la tolérance au traitement et les effets secondaires constatés.
Dans les présentes compositions pharmaceutiques, le principe actif ou les principes actifs sont généralement formulés en unités de dosage. Par exemple, quand la bactérie 1-5314 vivante est administrée, l'unité de dosage contient au moins 102 ufc, préférentiellement au moins 103 ufc, préférentiellement au moins 104 ufc, préférentiellement au moins 105 ufc, préférentiellement au moins 106 ufc, plus préférentiellement au moins 107 ufc, encore plus préférentiellement au moins 108 ufc, le plus préférentiellement au moins 109 ufc, par unité de dosage. Selon un autre mode de réalisation, l'unité de dosage contient entre 102 et 109 ufc, avantageusement entre 105 et 109 ufc, de préférence de 107 à 109 ufc par unité de dosage, pour les administrations quotidiennes, une ou plusieurs fois par jour. Par ailleurs, quand des extraits bactériens sont administrés au patient, l'unité de dosage contient 2,5 à 500 mg, avantageusement de 10 à 250 mg, de préférence de 10 à 150 mg par unité de dosage, pour les administrations quotidiennes, une ou plusieurs fois par jour. Bien que ces dosages soient des exemples de situations moyennes, il peut y avoir des cas particuliers où des dosages plus élevés ou plus faibles sont appropriés, de tels dosages appartiennent également à l'invention. Selon la pratique habituelle, le dosage approprié à chaque patient est déterminé par le médecin selon le mode d'administration, l'âge, le poids et la réponse dudit patient.
L’invention sera décrite plus précisément au moyen des exemples ci-dessous.
LEGENDES DES FIGURES
Figure 1 : Cinétique de croissance de la souche CNCM 1-5314.
Caractéristiques de croissance des lactobacilles. L’analyse de la croissance des souches CNCM I 4968, CNCM 1-5314 et CNCM I 4967 a été réalisée par des mesures sur des cultures fraîches réalisées à partir de dilutions au 1 /100 de précultures par des mesures de DO (densité optique) à 600nm et de CFU (colony forming unit). Ces mesures permettent ultérieurement de préparer les inocula à la concentration souhaitée à partir d’une mesure de DO en utilisant le facteur de concordance entre DO et CFU. La représentation du LN(DO) en fonction du temps permet d’autre part de déterminer le temps de génération des bactéries, calculé à partir de la pente de la courbe en phase exponentielle. Chaque point représente la moyenne de deux mesures de DO. Une expérience représentative de 2-3 expériences indépendantes est montrée. Figure 2 : Protocole expérimental utilisé pour étudier l’effet de l’administration de bactéries isolées du microbiote pulmonaire sur l’infection par Mycobacterium tuberculosis (Mtb). Des souris C57BL/6 femelles âgées de 6 semaines reçoivent par voie intranasale (i.n.) 107 bactéries (CNCM I 4968, ou CNCM 1-5314 ou CNCM I 4967 ou du PBS) dans 25mL de PBS 3 fois par semaine pendant 2 semaines. Selon les expériences elles sont ensuite sacrifiées (Figure 2.) ou infectées par 103 UFC de Mtb (autres figures). Pour les souris infectées, l’administration de lactobacilles est poursuivie jusqu’au sacrifice à raison de 2 fois par semaine (groupes traités avant et après infection, noté « av/ap ») . Alternativement les lactobacilles peuvent n’être administrés qu’après infection (groupe CNCM 1-5314 ap) et non avant. Après sacrifice, les poumons sont utilisés soit entiers pour une analyse en histologie de l’immunopathologie soit homogénéisés pour déterminer la charge bactérienne et caractériser la réponse immunitaire locale par cytométrie en flux.
Figure 3 : Modification du système immunitaire pulmonaire de souris non infectées par des bactéries isolées du microbiote pulmonaire. Des souris C57BL/6 reçoivent par voie intranasale 107 bactéries (CNCM I4968 ou CNCM 1-5314 ou CNCM I4967 ou PBS) dans 25 mL de PBS 3 fois par semaine pendant 2 semaines. Après sacrifice, une suspension cellulaire est obtenue par dissociation enzymatique et mécanique des poumons. Les proportions de sous-populations de lymphocytes T CD4+ sont déterminés par cytométrie en flux. A. Stratégie d’analyse. Après exclusion des doublets et des cellules mortes, les lymphocytes T CD4+ sont sélectionnés. La proportion de différentes sous-population est déterminée en sélectionnant les cellules exprimant un facteur intracellulaire spécifique d’intérêt (panel du bas) et pas son isotype contrôle (panel du haut). B. Proportion de lymphocytes T CD4+ exprimant le facteur Foxp3 (appelés Treg), ou produisant du TNF-a (cellules de type Th1 ) ou de l’IL-17 (Th17) . Les graphiques représentent la médiane obtenue en groupant 3 expériences ayant chacune 4-7 souris. Statistique : test de Kruskal-Wallis : * p<0,05 ; ** p<0,01 ; *** p<0,001 ; **** p<0,0001
Figure 4 : Impact de l’administration de bactéries isolées du microbiote pulmonaire sur l’infection par Mtb. Des souris C57BL/6 reçoivent par voie intranasale 107 bactéries (CNCM I-4968 ou CNCM 1-5314 ou CNCM I-4967 ou PBS) dans 25 pL de PBS 3 fois par semaine pendant 2 semaines. Elles sont ensuite infectées par 1000 bactéries de la souche H37Rv de Mtb par voie intranasale. Après infection les souris reçoivent les bactéries pulmonaires comme précédemment 2 fois par semaine pendant 30 jours. Après sacrifice les poumons sont dissociés pour estimer la charge bactérienne ou fixés pour évaluer les dommages tissulaires. A. Estimation de la charge bactérienne mesurée par étalement sur milieu gélosé d’un broyât de poumon. Chaque graphique représente une expérience indépendante comparant 2 groupes de souris traitées avec un groupe contrôle, n=3-7 souris par groupe. B. Dommages tissulaires estimés par observation de colorations Hematoxylin- Eosine (HE) réalisées sur des coupes histologiques de poumons fixés en formol 10% et inclus en paraffine. Images représentatives de 2 expériences indépendante n=3 souris par groupe.
Figure 5 : Schéma expérimental d’étude de la production de cytokines par des expiants de poumon de souris en présence de la souche CNCM 1-5314.
Figure 6 : Dosage de la lactate déshydrogénase (LDH). Bactérie 20 : CNCM 5314 ; bactérie 11 : bactérie connue pour être cytotoxique (témoin positif).
Figure 7 : Caractérisation de l’impact du lactobacille CNCM 1-5314 sur la sécrétion de cytokines dans des expiants de poumon de souris. Des expiants de poumon de souris sont mis en présence ou non de la souche CNCM 1-5314 à 37° C. Après 16 heures d’incubation, les cytokines sont dosées par la technique Luminex. A. Cytokines pro-Th1 / Th1 . B. Cytokines pro-Th2 / Th2. C. Cytokines pro-Th17 / Th17 / Th22. D. Cytokines Th9 / Treg / Prolif. E. Cytokines pro-inflammatoires. La souche CNCM 1-5314 est mentionnée comme bactérie 20.
Figure 8 : Caractérisation de l’impact de l’administration du lactobacille I- 5314 sur l’infection par Mtb. Des souris C57BL/6 reçoivent du PBS (barres blanches) ou 107 de lactobacilles par voie intranasale avant et après infection (groupe CNCM 15314 av/ap, barres grises) par 1000 UFC de la souche H37Rv de Mtb par voie intranasale, ou uniquement après infection (groupe CNCM 1-5314 ap, barres hachurées). A. Estimation de la charge bactérienne 42 jours après infection, mesurée par étalement sur milieu gélosé d’un broyât de poumon. Le graphique montre une expérience représentative de 2 expériences indépendantes, n=6 souris par groupe. B. Dommages tissulaires estimés par observation (panel de gauche) et quantification des infiltrats leucocytaires (panel de droite) sur colorations Hematoxylin -Eosine réalisées sur des coupes histologiques de poumons fixés en formol 10 % et inclus en paraffine 42 jours après infection. Le pourcentage d’infiltration correspond au ratio de l’aire occupée par des infiltrats leucocytaires par rapport à l’aire totale des poumons. 2-5 expériences comprenant chacune 4-5 souris par groupe sont représentées. C.D. Caractérisation des lymphocytes T CD4+ pulmonaires présents 42 jours après infection par cytométrie en flux. Les proportions de LT CD4+ exprimant différents facteurs de transcription (C. ) (T-bet, caractéristique des Th1 , RORyt pour les Th17 et Foxp3 pour les Treg) ou produisant des cytokines (D. ) après stimulation avec phorbol 12-myristate 13-acetate (PMA) et lonomicine en présence de Monensin et Brefeldin A (IFN-g et TNF- a pour les Th1 , IL-17 pour les Th17, IL-10 et TGF-B pour les Treg) sont représentées. E.F.G. Caractérisation des lymphocytes Treg exprimant Foxp3. L’origine des Tregs, naturels (nTreg, exprimant le facteur Helios, haut) ou induits (iTreg, qui ne l’expriment pas, bas) (E. ), leur prolifération (caractérisée par l’expression de l’antigène Ki67) (F. ) et production de cytokines (G.) est détectée par cytométrie en flux comme en C et D. Statistiques : graphiques correspondants à 1 -4 expériences indépendantes poolées avec 4-7 souris par groupe pour les panels C et D. La médiane de chaque groupe est représentée et un test de Kruskal-Wallis compare les souris traitées aux souris contrôles : * p<0,05 ; ** p<0,01 ; **** p<0,0001.
EXEMPLES
Matériels et Méthodes
Souches bactériennes, milieux, conditions de croissance
Les souches bactériennes pulmonaires ont été isolées d’homogénats de poumons de souris avec un homogénéiseur (Ultraturax (IKA) ou Tissu Lyser (Qiagen)). Elles ont ensuite été cultivées sur milieu yhBHI, M17, MRS, ou Mannitol Sel Agar (BD biosciences) pendant 24 à 48h à 37° C sous conditions aérobie ou 5 jours à 37°C dans une chambre Fréter sous conditions anaérobie. Les souches isolées ont été congelées à -80° C dans 16% de glycérol. L’identité de chaque souche a été confirmée par spectrophotométrie de masse et séquençage par PCR de l’ARN 16S. Les souches sélectionnées ont été déposées à la Collection Nationale des Cultures de Microorganismes (CNCM). Les trois souches utilisées ici sont des souches de lactobacilles déposées sous les références CNCM 1-5314, (CNCM I-4967) et (CNCM I- 4968). Ces bactéries sont cultivées en milieu liquide MRS 24h à 30° C (pré-culture) ou 3-4h à 37° C (pour les instillations) sans agitation.
Matériel et méthode pour séquençage
Le culot bactérien d’une culture de 15 ml de la souche 1-5314 (phase exponentielle) a été centrifugé (1550 g, 5 min) et congelé à -20° C. Ce culot de bactéries a été repris dans une solution saline (30 mM NaCl, 2mM EDTA (pH=8.0) puis centrifugé et repris dans un tampon de lyse (20mM Tris HCl pH 8.0, 2 mM EDTA, 1 .2% Triton® X-100) enrichi en lysozyme (20mg/mL, Sigma-Aldrich #L6876) pendant 2 h à 37° C. Une protéinase K (DNeasy® Blood et Tissue kit) et de la RNAse A ont été ajoutées pendant une 1 h supplémentaire à 55 ° C. Le même volume de tampon“AL” (DNeasy® Blood et Tissue kit) a été ajouté au lysat, vortexé et incubé 30 min à 56° C. Après l’incubation, le même volume d’éthanol 100% a été ajouté. L’ADN a été extrait en utilisant le kit“DNeasy Mini spin columns” (Qiagen) et en suivant les instructions du vendeur.
Séquençage de l’ADN.
Le séquençage a été produit par la plateforme“GeT-PlaGe” (INRA, Castanet- Tolosan, France). L’ADN a été fragmenté par sonication pour obtenir des fragments de 200 à 1000 paires de base (bp). Ces fragments ont été ajoutés à des adaptateurs de type Illumina et séquencés par la méthode“Illumina HiSeq 3000”.
Assemblage et annotation du génome.
Les séquences brutes ont été mises sous format fastp, version 0.19.4 pour enlever les séquences d’adaptateurs de type Illumina et les séquences de faible qualité. Les séquences ont été assemblées par“Unicycler version, vO.4.7” et la qualité de l’assemblage a été vérifiée par QUAST v5.0.2, b7350347c. Le génome assemblé est visualisé par” Bandage vO.8.1” et annoté par Prokka v1 .13.
Cinétique de croissance bactérienne
Le profil de croissance a été déterminé par spectrophotométrie (Spectronic instruments 20 ; Genesys) qui permet de mesurer la densité optique (DO) à partir du milieu de culture contenant la bactérie. Pour cela, la bactérie a été pré-cultivée sur boîte de gélose puis repiquée dans 10 mL de milieu Hiveg BHI (bactérie 20 = CNCM I- 5314). La croissance a été suivie en mesurant la DO à 600 nm de la culture bactérien toutes les heures de Oh à 9h + une lecture à 24h.
Modèle murin d’infection par la tuberculose et traitement probiotique
Toutes les expériences réalisées sur des animaux ont été approuvées par le Ministère de l'enseignement supérieur et de la recherche après examen par le Comité d’Ethique Régional (Agréments APAFIS 5704). Les souris utilisées sont des femelles C57BL/6 âgées de 6 à 8 semaines provenant des élevages de Charles River Laboratories.
Pour chaque administration in vivo d’un des lactobacilles, une suspension bactérienne contenant 4.0 x 108 CFU/mL a été préparée en tampon phosphate salin (PBS) à partir de cultures fraîches en phase exponentielle. Les souris reçoivent 25 pL de PBS contenant 1 .0 x 107 CFU ou 25 pL de PBS (groupe contrôle) par voie intranasale (i.n.) sous anesthésie gazeuse (isoflurane 4%, Virbac Danmark). Cette opération est répétée 3 fois par semaine pendant 2 semaines puis les souris sont soit sacrifiées (expériences sur les souris non infectées) soit infectées (procédures décrites ci-après), et reçoivent à nouveau l’administration des bactéries commensales 2 fois par semaine jusqu’au sacrifice. Dans certaines expériences, l’administration des lactobacilles est réalisée uniquement après infection et non pas avant et après infection (voir Figure 1 ).
Une culture fraîche de la souche H37Rv de Mtb (cultivée en milieu liquide 7H9 (Difco) supplémenté en glycérol 0,5%, ADC (Middlebrook) 10% et tyloxapol 0.05%) est utilisée pour infecter les souris. Chaque souris reçoit par voie i.n. 1.0 x 103 CFU de Mtb dans 25 mL de PBS sous anesthésie isoflurane. Les souris sont sacrifiées par dislocation cervicale (sous anesthésie isoflurane) après 42 jours d’infection.
Analyses histologiques Les poumons entiers de souris dédiées aux analyses histologiques sont utilisés.
Ils sont gonflés puis fixés pendant 5 jours à 4° C avec une solution contenant 10% de formol (Formalin solution, Sigma-Aldrich) et inclus en paraffine. Des colorations hématoxyline-éosine (HE) sont réalisées pour visualiser les infiltrats leucocytaires qui sont quantifiés, après numérisation, sur le logiciel CaseViewer (3DHISTECH). Préparation des homogénats pulmonaires et détermination de la charge bactérienne
Les poumons entiers des souris ont été prélevés de manière stérile, homogénéisés avec un gentleMACS dissociator avant (tubes C, cycle m_lung_01 , Miltenyi) et après (cycle m_lung_02) 30 min d’incubation à 37° C avec de la collagénase D (2 mg/mL, Roche) et de la DNAse I (0,1 mg/mL, Roche). Une part de cet homogénat est diluée en série en PBS puis étalée sur milieu gélosé 7H10 (Difco) supplémenté en peptone et OADC (Middlebrook). Après 2-3 semaines, le dénombrement des colonies de Mtb obtenues permet d’estimer la charge bactérienne pulmonaire. Le reste des homogénats est passé au travers de filtre 70 mm pour détruire les agrégats, et centrifugé à 329 x g pendant 5 min. Les surnageants sont passés 2 fois au travers de filtres 0,2 pm et stockés à -80° C pour l’analyse des cytokines présentes dans les poumons. Les globules rouges présents dans le culot sont lysés pendant 5 min avec une solution contenant 150 mM NH4Cl, 10 mM KHCO3, 0.1 mM EDTA (pH 7.2), neutralisée par ajout de milieu RPMI contenant 10% du sérum de veau fœtal (SVF). La suspension cellulaire ainsi obtenue est filtrée au travers d’un filtre 40 pm (élimination des agrégats de globules rouges lysés) pour les analyses de cytométrie en flux.
Cytométrie en flux
L’analyse des différentes populations de lymphocytes T auxiliaires CD4+ est réalisée grâce à la détection par cytométrie en flux de facteurs de transcription et de cytokines caractéristiques de ces sous population par marquages des cellules présentes dans la suspension cellulaire obtenue comme décrit dans la section précédente. Une partie de la suspension cellulaire est incubée dans du RPMI contenant 50 ng/mL de Phorbol Myristate Acetate (PMA, (Sigma Aldrich) et 500 ng/mL d’ionomycine (Sigma- Aldrich) pour induire la production de cytokines par les lymphocytes ainsi que de la Brefeldin A (Golgi plug 1 /1000, BD Biosciences) et du Monensin (Golgi Stop 1 /2000, BD Biosciences) pour ségréger ces cytokines dans l’appareil de Golgi pendant 4h à 37° C et 5% CO2. Le reste de la suspension cellulaire, utilisée pour le marquage de facteurs de transcription, est conservée dans du Cell Staining Buffer (CSB, Biolegend) 4 h à 4° C. Le marquage extracellulaire de ces deux fractions est réalisé en CSB 30 min à 4° C dans le noir en utilisant un anticorps anti-Cluster Différentiation 16 / 32 (CD16/CD32, Biolegend) pour limiter les marquages aspécifiques, un marqueur de viabilité (live/dead fixable blue dead cell stain kit, Invitrogen), un anti-CD45.2 BV71 1 (clone 104, BD Biosciences), un anti-CD3 FITC (17A2, Biolegend) ou anti-T cell Receptor beta (TCRb) Alexa 700 (H57-597, Biolegend) et un anti-CD4 BV786 (Sk3, BD Biosciences). Pour le marquage intracellulaire les cellules sont ensuite fixées 30 min à température ambiante (TA), perméabilisées 15 min à TA (Foxp3 / transcription factor staining buffer set, eBioscience) et incubées 45 min à TA avec un panel d’anticorps comprenant un anti-RORgt PE-CF594 (Q31 -378, BD Biosciences), un anti-T-bet PE-Cy7 (eBio4BIO, eBiosciences), un anti-Foxp3 APC (FJK-16s, eBioscience), un anti-Helios APC-eFluor 780 (22F6, eBiosciences), un anti-Ki67 Alexa 700 (SolA15, eBioscience) ou un anti- interleukin 10 (IL-10) FITC (JES5-16E3, BD Biosciences), un anti-IL-17 PE (TC11 -18H10, BD Biosciences), un anti-IFNy PE-Dazzle (XMG1.2, Biolegend), un anti-TNFa PE Cy7 (MP6-XT22, BD Biosciences), l’anti-Foxp3 APC et un anti-TGF-B BV421 (TW7-16B4, BD Biosciences). Pour les expériences réalisées sur des souris infectées par Mtb, les cellules sont fixées 2h en paraformaldéhyde (PFA) 4% à TA. Les données sont acquises avec un FACS LSRII ou Fortessa (BD Biosciences) et analysées sur le logiciel FlowJo V10. Les doublets (FSH-H vs. FSC-W et SSC-H vs. SSC-W) et les cellules mortes (live/dead positives) sont exclues au début de chaque analyse.
Analyse statistique
L’analyse statistique des résultats a été réalisée avec le logiciel GraphPad Prism 7. Sur les graphiques, chaque point représente une souris différente. La médiane de chaque groupe est représentée par les barres. Un test de Mann-Whitney (comparaison de 2 groupes) ou de Kruskall-Wallis (comparaison de 3 groupes) a été utilisé pour comparer les valeurs. La significativité est représentée par : * p<0.05; ** p<0.01 ; *** p<0.001 ; and **** p<0.0001 .
Tranches de coupe de précision du poumon
Des tranches de coupe de précision pulmonaires (PCLS) ont été obtenues à partir de poumons frais à l'aide d'un microtome Krumdieck MD 6000 (Recherche et développement en Alabama, Munford, AL, ETATS-UNIS). Les poumons ont été remplis d'agarose à bas point de fusion à 1 ,5% en RPMI (Invitrogen, Villebon sur Yvette, France) chauffée à 37° C via la trachée. Après 1 min pour la solidification, les poumons ont été placés dans la chambre du microtome Krumdieck remplie avec du PBS froid, et coupés à une épaisseur de 200 mM. Deux des PCLS par puits ont ensuite été placés à 37° C, 5% CO2, dans des plaques à puits P24 (Nunc, Sigma-Aldrich, Lyon, France) avec 1 ml de RPMI 1640 (Gibco, Sigma-Aldrich, Lyon, France) supplémenté de 10% sérum de veau fœtal inactivé par la chaleur (Gibco) et 2 mM L-glutamine (Gibco). Le milieu a été changé toutes les 30 min pendant 2 h pour éliminer l’agarose, ainsi qu’une dernière fois après l’incubation sur la nuit. Les PCLS ont ensuite été co-incubés pendant 24 h avec des bactéries pulmonaires.
Dosage de la lactate déshydrogénase
Le dosage de la lactate déshydrogénase (LDH) permet de déterminer la cytotoxicité éventuelle des bactéries sur les expiants de poumons. En effet, la libération de LDH est associée à la mortalité cellulaire. Le dosage de la LDH a été effectué sur les lysats d’explants et sur les surnageants récupérés 16 h post-culture avec les bactéries. Pour ce dosage, le substrat de la LDH (Promega) est ajouté dans chaque puits contenant soit les lysats d’explants soit les surnageants post-culture. Le tampon de lyse sert de blanc pour les lysats d’explants. L’incubation se fait à température ambiante, à l’obscurité pendant 30 à 40 minutes. La réaction est ensuite arrêtée avec 100 mL de solution stop, la plaque est ensuite lue à 490 nm au lecteur de plaque (TECAN Infinité M200 pro) à l’aide du logiciel « l-control ».
Le dosage de la LDH sur les lysats d’explants et sur les surnageants permet de déterminer la cytotoxicité des bactéries sur les expiants de poumons. Pour la LDH dosée sur les lysats des expiants, il faut soustraire le blanc aux valeurs obtenues. La cytotoxicité représente le rapport en pourcentage entre la LDH relarguée, donc présente dans le surnageant des expiants de poumons, sur la LDH totale présente (dans les surnageants + dans les lysats des expiants de poumons), représenté par le calcul suivant :
Figure imgf000026_0001
Dosage des cytokines
Les cytokines ont été dosées grâce à la technique du Luminex. La technique du Luminex utilise des billes magnétiques ayant une fluorescence qui leur est propre ce qui permet de doser un grand nombre de cytokines à la fois. Ici, la bille magnétique possède des anticorps de captures anti-IL-2. Ainsi, lorsque les surnageants sont mis au contact des billes dans les puits, cette bille va se lier spécifiquement à l’IL-2 via ses multiples anticorps de captures présents à sa surface. Cela permet d’identifier la cytokine liée à la bille. L’anticorps de détection reconnaît également la cytokine mais il est relié à la streptavidine-PE. La concentration de l’échantillon dosé est directement proportionnelle à l’intensité de fluorescence de la PE. Les cytokines ont été dosées à partir du surnageant récupéré 16 h post-culture avec les bactéries. Nous avons utilisé un kit luminex pour déterminer la concentration de quinze cytokines au cours d’un même dosage (Thermofisher).
Table 1 : Cytokines dosées. Les cytokines dosées correspondent aux cytokines relarguées lors de différentes réponses immunitaires comme la réponse de type 1 , 2, 9 ou encore 17 et 22.
Figure imgf000027_0001
La plaque est lue au Luminex Magpix à l’aide du logiciel « Xponent » puis analysée à l’aide de logiciel « Bioplex Manager » (Biorad version 6).
Résultats L’identification de bactéries du microbiote pulmonaire capables de modifier la réponse immunitaire au cours de l’infection par Mtb s’appuie sur une banque de bactéries primo-colonisatrices du poumon de souriceaux isolées et identifiées par l’équipe du Dr Langella (Probihôte - MICALIS - INRA), et notamment par Aude Remot et Muriel Thomas. L’une de ces bactéries, une souche d’Enterococcus sp. déposée à la CNCM sous le numéro 1-4969 est capable de moduler la susceptibilité des souris à l’asthme allergique (voir WO 2017/12987 et [8]). Parmi ces bactéries, 3 sont des lactobacilles qui sont généralement reconnues comme GRAS (Generally Recognised As Safe) et ont été déposés à la CNCM sous les numéros : CNCM I-4968, CNCM 1-5314 et CNCM I-4967, respectivement. Le génome de la souche déposée sous le numéro 1-5314, a été séquencé. Par des logiciels d’analyse d’homologie de séquence (Blast), il ressort que la séquence d’ADN codant l’ARNr 16s (SEQ ID NO. 1 ) présente plus de 98 % d’homologie avec des souches de référence de L. animalis et des souches de L. murinus.
Le profil de croissance de chacune des trois souches, CNCM I-4968, CNCM 1-5314 et CNCM I-4967, a été déterminé par mesure de la DO à 600 nm. Il est présenté dans la Figure 1 .
Pour déterminer le potentiel probiotique de ces 3 lactobacilles pour la prévention et le traitement de la tuberculose, différents protocoles résumés en Figure 2 ont été employés dans un modèle murin. L’administration de 107 bactéries est réalisée par voie intranasale pendant deux semaines avant sacrifice des souris (Figure 3) ou infection par Mycobacterium tuberculosis (Mtb) (autres figures). Dans ces expériences les bactéries sont administrées avant et après infection (groupes av/ap) ou seulement après infection (groupe ap, Figure 5).
Dans un premier temps, la capacité des bactéries à modifier le système immunitaire local de souris non-infectées a été évaluée par l’analyse en cytométrie en flux de l’expression de marqueurs intracellulaires caractéristiques de différentes sous- populations de lymphocytes T auxiliaires CD4+ (stratégie d’analyse en Figure 3A), orchestrateurs clés de la réponse immunitaire anti-Mtb: les lymphocytes Th1 (produisant du TNF-a), Th17 (produisant l’IL-17A) et T régulateurs (Treg exprimant Foxp3) [16, 17, 18]. Nos résultats montrent que les trois lactobacilles isolés du microbiote pulmonaire ont des capacités immunomodulatrices fortes, avec un profil anti-inflammatoire (même en dehors d’un contexte infectieux). La souche CNCM 1-5314 est celle qui induit la plus forte diminution des Th1 , augmentation des Th17 et des Treg pulmonaires (Figure 3B), alors que ces trois espèces appartiennent au même genre bactérien. Pour déterminer si ces bactéries (et notamment la souche CNCM 1-5314) induisent une réponse anti -inflammatoire suffisante pour diminuer l’immunopathologie associée à la tuberculose, les bactéries ont été administrées comme précédemment par voie intranasale, 15 jours avant infection par Mtb puis tout au long de l’infection (Figure 2). Dans ce modèle, les trois bactéries ne modifient pas la charge bactérienne de Mtb (Figure 4A). En revanche, CNCM 1-5314 semble conférer une protection importante contre l’infiltration leucocytaire des poumons (moins de surface pulmonaire occupée par des cellules immunitaires) menant à l’immuno- pathologie à des stades tardifs de l’infection (et pas les deux autres bactéries) (Figure 4B). La production de cytokines induites par la souche CNCM 1-5314 a été déterminée selon le schéma expérimental de la Figure 5 (voir aussi Remot et al., 2017). Des tranches de coupe de précision du poumon de souris âgées de 6 jours ont été cultivées en présence ou en absence de la bactérie CNCM 1-5314. Après 16 heures de culture, les cytokines secrétées ont été dosées dans le milieu, tandis que la viabilité cellulaire était évaluée par dosage de la LDH (Figure 6). Celle-ci n’a pas montré de baisse de la viabilité des expiants de poumon, indiquant que la souche CNCM 1-5314 n’est pas toxique (contrairement à une souche témoin). Le dosage des cytokines a montré notamment une induction de GM-CSF, IL-17a et TNFa (Figure 7). Ces données ont permis d’établir le profil immnomodulateur de la souche CNCM 1-5314 vis-à-vis d’explants de poumon de souris.
Pour mieux caractériser l’effet protecteur de la souche CNCM 1-5314, la même expérience a été répétée (groupe CNCM 1-5314 av/ap) en incluant des analyses permettant de déterminer la composition de l’infiltrat immunitaire des poumons. De plus, la capacité de cette bactérie à exercer son effet protecteur dans une stratégie de traitement (par opposition à l’approche prophylactique décrite précédemment) a été évaluée en ajoutant un groupe pour lequel l’administration de la bactérie ne commence qu’après l’infection (groupe CNCMI 5314 ap) (détail des différents groupes dans la Figure 2). Ces expériences confirment que l’effet anti -inflammatoire induit par cette bactérie ne permet pas à Mtb de se multiplier de manière incontrôlée (Figure 8A) alors qu’il accorde une protection significative (pour le groupe ayant reçu la bactérie en pré-traitement, CNCM 1-5314 av/ap) contre l’immuno-pathologie induite par l’infection avec une réduction des infiltrats leucocytaires (Figure 8B). Bien que l’infiltration pulmonaire de lymphocytes Th1 pro-inflammatoires (exprimant T-bet et produisant du TNF-a ou de l’IFN-g) varie peu entre les groupes, la souche CNCM 1-5314 induit une augmentation à la fois des lymphocytes Th17 (exprimant RORyt et produisant de l’IL-17A) et des Treg (exprimant Foxp3, produisant de l’IL-10 et du TGF- B) 42 jours après infection (Figure 8C). Cependant une analyse plus poussée révèle que l’augmentation des Treg observée avec l’administration de la souche bactérienne (que ce soit avec une approche prophylactique ou de traitement) n’est pas liée à une augmentation de Treg conventionnels (Foxp3+ RORyt-), mais à celle d’une population récemment décrite, double positive Foxp3+RORyt+ appelée bi-Treg. Ces cellules possèdent à la fois des fonctions pro-inflammatoires et anti -inflammatoires et produisent de l’IL-17 mais aussi de l’IL-10, du TGF-6 et de l’IL-35 (non analysée ici) qui en font des régulateurs clés de l’inflammation [17, 18]. Elles pourraient donc être responsables de la diminution des infiltrats leucocytaires (observés dans la Figure 8B) et donc de l’effet prometteur de cette bactérie pour la prévention et le traitement de la tuberculose. La proportion de Th17 (Foxp3-RORyt+) semble également augmentée. Dans le cas d’un environnement riche en IL-10 et TGF-6 (comme c’est le cas ici), l’activité des Th17/IL-17 est biaisée et ces cellules exercent des fonctions anti- inflammatoires et protectives vis-à-vis des dommages tissulaires, principalement via la production d’IL-22 (production non mesurée dans nos expériences), suggérant un rôle bénéfique de ces cellules dans notre contexte [16, 17]. Les Treg augmentés par CNCM 1-5314, et en particulier les biTreg n’expriment pas le facteur de transcription Helios, indiquant qu’ils sont induits au niveau des muqueuses (iTreg) par opposition aux Treg d'origine naturelle (nTreg) c’est-à-dire générés dans le thymus, suggérant que cet effet est spécifique et lié à la tolérance périphérique (Figure 8E). L’augmentation de ces cellules ne semble pas liée à une plus forte prolifération puisque l’expression de l’antigène Ki67 est diminuée (Figure 8F). Elles semblent pouvoir avoir les effets pro- et anti -inflammatoires décrits dans la littérature puisque les Tregs observés produisent de l’IL-17, de l’IL-10 mais surtout du TGF-B (dont la production est également plus forte dans les deux groupes de souris ayant reçus l’administration de cette souche bactérienne) (Figure 8G).
Nous montrons ici pour la première fois qu’une souche bactérienne du microbiote pulmonaire (CNCM 1-5314) est capable de modifier la réponse immunitaire à Mtb notamment par une induction de biTreg qui pourraient mieux contrôler la balance immunitaire (pro-/anti- inflammatoire) et ainsi réduire l’immunopathologie induite par l’infection. Ces résultats présentent ainsi la présente souche de Lactobacillus (CNCM 1-5314) isolée du microbiote pulmonaire comme un probiotique prometteur pour la tuberculose. Les résultats préliminaires obtenus avec le groupe « CNCM 1-5314 ap » suggèrent également des applications pour le traitement de cette maladie. D’autres maladies respiratoires étant liées à une inflammation, nous supposons que son rôle bénéfique ne se limiterait pas à la tuberculose.
REFERENCES
1 : Belkaid Y, Hand TW. Rôle of the microbiota in immunity and inflammation. Cell. 2014; 157; 121 -41 .
2: Atarashi K et al. Induction of colonie regulatory T cells by indigenous Clostridium species. Science (2011 ) 331 (6015) :337-41
3: Patel R, DuPont HL. New approaches for bacteriotherapy: prebiotics, new- generation probiotics, and synbiotics. Clin Infect Dis. 2015; 60; S108-21 .
4: Vieira AT, et al. Control of Klebsiella pneumoniae pulmonary infection and immunomodulation by oral treatment with the commensal probiotic Bifidobacterium
5: Sibley CD, Grinwis ME, Field TR, Eshaghurshan CS, Faria MM, et al. (2011 ) Culture Enriched Molecular Profiling of the Cystic Fibrosis Airway Microbiome. PLoSONE 6: e22702.
6: Gollwitzer E, Saglani S, Trompette A, Yadava K, Sherburn R, et al. (2014) Lung microbiota promûtes tolérance to allergens in neonates via PD-L1 . Nature medicine 20: 642-647.
7: Erb-Downward JR, Thompson DL, Han MK, Freeman CM, McCloskey L, et al. (2011 ) Analysis of the Lung Microbiome in the“Healthy” Smoker and in COPD. PloSONE 6.
8: Remot A, ét al. Bacteria isolated from lung modulate asthma susceptibility in mice. ISME J. 2017; 11 ; 1061 -1074.
9: Kanmani P, et al. Respiratory Commensal Bacteria Corynebacterium pseudodiphtheriticum Improves Résistance of Infant Mice to Respiratory Syncytial Virus and Streptococcus pneumoniae Superinfection. Front Microbiol. 2017; 8; 1613.
10: Dumas A, et al. The rôle of the lung microbiota and the gut-lung axis in respiratory infectious diseases. Cell Microbiol. 2018; e12966.
1 1 : Mathieu E, et al. Paradigms of lung microbiota functions in health and disease, particularly, in asthma. Frontiers in Physiology 2018; 9; 1168.
12: OMS 2016
13: Pai M, Behr MA, et al. Tuberculosis. Nat Rev Dis Primers. 2016; 2; 16076. 14: Nunes-Alves C, Booty MG, Carpenter SM, Jayaraman P, Rothchild AC, Behar SM. In search of a new paradigm for protective immunity to TB. Nat Rev Microbiol. 2014; 12 ; 289-99.
15: Malherbe ST, et al. Persisting positron émission tomography lésion activity and Mycobacterium tuberculosis mRNA after tuberculosis cure. Nat Med. 2016; 22; 1094- 1 100.
16: Sehrawat S, et al. Interplay of Regulatory T Cell and Th17 Cells during Infectious Diseases in Humans and Animais. Front Immunol. 2017; doi: 10.3389/fimmu.2017.00341 17: Kluger MA, et al. RORyt(+)Foxp3(+) Cells are an Independent Bifunctional
Regulatory T Cell Lineage and Médiate Crescentic GN. J Am Soc Nephrol. 2016; doi: 10.1681 /ASN.2014090880. Epub 2015 Jun 8.
18: Krebs CF, Steinmetz OM. CD4+ T Cell Fate in Glomerulonephritis: A Taie of Th1 , Th17, and Novel Treg Subtypes. Mediators Inflamm. 2016; 2016:5393894. Epub 2016 Nov 15.

Claims

REVENDICATIONS
1 . Bactérie du genre Lactobacillus pour son utilisation dans le traitement et/ou la prévention de l’inflammation liée à une maladie respiratoire, ladite bactérie comprenant un polynucléotide ayant une séquence qui a au moins 98 % d’identité avec la séquence SEQ ID No 1 .
2. Bactérie pour son utilisation selon la revendication 1 , caractérisée en ce que ladite bactérie est une Lactobacillus animalis ou une Lactobacillus murinus.
3. Bactérie pour son utilisation selon l’une quelconque des revendications 1 ou 2, caractérisée en ce que ladite bactérie est inactivée.
4. Bactérie pour son utilisation selon l’une quelconque des revendications 1 à 3, caractérisée en ce que ledit traitement et/ou prévention comprend une diminution de l’infiltration leucocytaire et une augmentation des populations pulmonaires lymphocytes Th17 que de lymphocytes Tregs.
5. Bactérie pour son utilisation selon la revendication 4, caractérisée en ce que les lymphocytes Tregs sont des lymphocytes iTregs.
6. Bactérie pour son utilisation selon la revendication 5, caractérisée en ce que les lymphocytes iTregs sont des lymphocytes biTregs.
7. Bactérie pour son utilisation selon l’une quelconque des revendications 1 à 6, caractérisée en ce que la maladie respiratoire est la tuberculose.
8. Bactérie pour son utilisation selon l’une quelconque des revendications 1 à 6, caractérisée en ce que ladite bactérie est la souche Lactobacillus sp. déposée à la Collection nationale des cultures de microorganismes (CNCM, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France) sous le numéro 1-5314.
9. Souche de Lactobacillus sp. déposée à la Collection nationale des cultures de microorganismes (CNCM, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France) sous le numéro 1-5314.
10. Composition pharmaceutique comprenant la souche de la revendication 9 et au moins un excipient pharmaceutiquement acceptable.
11. La composition de la revendication 10 caractérisée en ce que la souche est inactivée.
12. La composition de la revendication 11 caractérisée en ce que la souche est inactivée par la chaleur.
13. La composition de la revendication 1 1 caractérisée en ce que la souche est présente sous forme d’extraits.
PCT/EP2020/058832 2019-03-29 2020-03-27 Traitement des maladies respiratoires avec une bacterie du genre lactobacillus WO2020201145A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20715360.2A EP3947747A1 (fr) 2019-03-29 2020-03-27 Traitement des maladies respiratoires avec une bacterie du genre lactobacillus
US17/593,910 US20220162547A1 (en) 2019-03-29 2020-03-27 Treatment of respiratory diseases with a bacterium of the genus lactobacillus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1903364 2019-03-29
FR1903364A FR3094378B1 (fr) 2019-03-29 2019-03-29 Traitement des maladies respiratoires avec la bacterie lactobacillus animalis

Publications (1)

Publication Number Publication Date
WO2020201145A1 true WO2020201145A1 (fr) 2020-10-08

Family

ID=67810747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/058832 WO2020201145A1 (fr) 2019-03-29 2020-03-27 Traitement des maladies respiratoires avec une bacterie du genre lactobacillus

Country Status (4)

Country Link
US (1) US20220162547A1 (fr)
EP (1) EP3947747A1 (fr)
FR (1) FR3094378B1 (fr)
WO (1) WO2020201145A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3114970B1 (fr) * 2020-10-08 2023-06-30 Univ Tours Combinaison d’anticorps inhalés avec des agents immunomodulateurs pour le traitement ou la prévention d’inféctions respiratoires

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017012987A1 (fr) 2015-07-17 2017-01-26 Capical Gmbh Système, procédé et logiciel pour la détection capacitive des signaux biologiques électriques
WO2018191073A1 (fr) * 2017-04-12 2018-10-18 The Uab Research Foundation Probiotique respiratoire et inhalé pour les maladies pulmonaires du nourrisson, de l'enfant et de l'adulte

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200405775A1 (en) * 2017-12-11 2020-12-31 Vedanta Biosciences, Inc Compositions and methods for suppressing pathogenic organisms

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017012987A1 (fr) 2015-07-17 2017-01-26 Capical Gmbh Système, procédé et logiciel pour la détection capacitive des signaux biologiques électriques
WO2018191073A1 (fr) * 2017-04-12 2018-10-18 The Uab Research Foundation Probiotique respiratoire et inhalé pour les maladies pulmonaires du nourrisson, de l'enfant et de l'adulte

Non-Patent Citations (23)

* Cited by examiner, † Cited by third party
Title
ANSEL: "Introduction to Pharmaceutical Dosage Forms", 1985, MACK PUBLISHING COMPANY, pages: 126
ATARASHI K ET AL.: "Induction of colonic regulatory T cells by indigenous Clostridium species", SCIENCE, vol. 331, no. 6015, 2011, pages 337 - 41, XP055178447, DOI: 10.1126/science.1198469
AUDE REMOT ET AL: "Bacteria isolated from lung modulate asthma susceptibility in mice", THE I S M E JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY, vol. 11, no. 5, 3 January 2017 (2017-01-03), United Kingdom, pages 1061 - 1074, XP055641706, ISSN: 1751-7362, DOI: 10.1038/ismej.2016.181 *
AUDE REMOT ET AL: "Bacteria Isolated From Lung Modulate Asthma Susceptibility In Mice; Supplementary Table S2: Descriptive table of the 20 isolated mouse lung strains", 3 January 2017 (2017-01-03), XP055642205, Retrieved from the Internet <URL:https://static-content.springer.com/esm/art%3A10.1038%2Fismej.2016.181/MediaObjects/41396_2017_BFismej2016181_MOESM6_ESM.pdf> [retrieved on 20191113] *
BELKAID YHAND TW: "Role of the microbiota in immunity and inflammation", CELL, vol. 157, 2014, pages 121 - 41, XP028601900, DOI: 10.1016/j.cell.2014.03.011
DUMAS A ET AL.: "The role of the lung microbiota and the gut-lung axis in respiratory infectious diseases", CELL MICROBIOL., 2018, pages e12966
ERB-DOWNWARD JRTHOMPSON DLHAN MKFREEMAN CMMCCLOSKEY L ET AL.: "Analysis of the Lung Microbiome in the ''Healthy'' Smoker and in COPD", PLOSONE, vol. 6, 2011
GOLLWITZER ESAGLANI STROMPETTE AYADAVA KSHERBURN R ET AL.: "Lung microbiota promotes tolerance to allergens in neonates via PD-L1", NATURE MEDICINE, vol. 20, 2014, pages 642 - 647
H.-J. KIM ET AL: "Effects of Lactobacillus rhamnosus on asthma with an adoptive transfer of dendritic cells in mice", JOURNAL OF APPLIED MICROBIOLOGY., vol. 115, no. 3, 24 June 2013 (2013-06-24), GB, pages 872 - 879, XP055641966, ISSN: 1364-5072, DOI: 10.1111/jam.12268 *
JULIO VILLENA ET AL: "Lactic acid bacteria in the prevention of pneumococcal respiratory infection: Future opportunities and challenges", INTERNATIONAL IMMUNOPHARMACOLOGY, ELSEVIER, AMSTERDAM, NL, vol. 11, no. 11, 7 June 2011 (2011-06-07), pages 1633 - 1645, XP028326740, ISSN: 1567-5769, [retrieved on 20110617], DOI: 10.1016/J.INTIMP.2011.06.004 *
KANMANI P ET AL.: "Respiratory Commensal Bacteria Corynebacterium pseudodiphtheriticum Improves Résistance of Infant Mice to Respiratory Syncytial Virus and Streptococcus pneumoniae Superinfection", FRONT MICROBIOL., vol. 8, 2017, pages 1613
KLUGER MA ET AL.: "ROR t(+)Foxp3(+) Cells are an Independent Bifunctional Regulatory T Cell Lineage and Mediate Crescentic GN", J AM SOC NEPHROL., 2016
KREBS CF: "Steinmetz OM. CD4+ T Cell Fate in Glomerulonephritis: A Tale of Th1, Th17, and Novel Treg Subtypes", MEDIATORS INFLAMM., vol. 2016, 2016, pages 5393894
MALHERBE ST ET AL.: "Persisting positron émission tomography lesion activity and Mycobacterium tuberculosis mRNA after tuberculosis cure", NAT MED., vol. 22, 2016, pages 1094 - 1100
MALTE A. KLUGER ET AL: "ROR [gamma] t + Foxp3 + Cells are an Independent Bifunctional Regulatory T Cell Lineage and Mediate Crescentic GN", JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY., vol. 27, no. 2, 8 June 2015 (2015-06-08), US, pages 454 - 465, XP055642069, ISSN: 1046-6673, DOI: 10.1681/ASN.2014090880 *
MATHIEU E ET AL.: "Paradigms of lung microbiota functions in health and disease, particularly, in asthma", FRONTIERS IN PHYSIOLOGY, vol. 9, 2018, pages 1168
NUNES-ALVES CBOOTY MGCARPENTER SMJAYARAMAN PROTHCHILD ACBEHAR SM: "In search of a new paradigm for protective immunity to TB", NAT REV MICROBIOL., vol. 12, 2014, pages 289 - 99
PAI MBEHR MA ET AL., TUBERCULOSIS. NAT REV DIS PRIMERS, vol. 2, 2016, pages 16076
PATEL RDUPONT HL: "New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and synbiotics", CLIN INFECT DIS., vol. 60, 2015, pages 108 - 21
REMOT A ET AL.: "Bacteria isolated from lung modulate asthma susceptibility in mice", ISME J., vol. 11, 2017, pages 1061 - 1074, XP055641706, DOI: 10.1038/ismej.2016.181
SEHRAWAT S ET AL.: "Interplay of Regulatory T Cell and Th17 Cells during Infectious Diseases in Humans and Animals", FRONT IMMUNOL., 2017
SIBLEY CDGRINWIS MEFIELD TRESHAGHURSHAN CSFARIA MM ET AL.: "Culture Enriched Molecular Profiling of the Cystic Fibrosis Airway Microbiome", PLOSONE, vol. 6, 2011, pages e22702
VIEIRA AT ET AL., CONTROL OF KLEBSIELLA PNEUMONIAE PULMONARY INFECTION AND IMMUNOMODULATION BY ORAL TREATMENT WITH THE COMMENSAL PROBIOTIC BIFIDOBACTERIUM

Also Published As

Publication number Publication date
US20220162547A1 (en) 2022-05-26
FR3094378B1 (fr) 2023-11-24
FR3094378A1 (fr) 2020-10-02
EP3947747A1 (fr) 2022-02-09

Similar Documents

Publication Publication Date Title
Ebbo et al. Innate lymphoid cells: major players in inflammatory diseases
Valdez et al. Prostaglandin E2 suppresses antifungal immunity by inhibiting interferon regulatory factor 4 function and interleukin-17 expression in T cells
Muir et al. Innate lymphoid cells are the predominant source of IL-17A during the early pathogenesis of acute respiratory distress syndrome
Branchett et al. AT cell–myeloid IL-10 axis regulates pathogenic IFN-γ–dependent immunity in a mouse model of type 2–low asthma
Martinez‐Gonzalez et al. ILC 2 memory: Recollection of previous activation
CA2785909C (fr) Agonistes des recepteurs tlr 4 et 9 pour prevenir les complications septiques de l&#39;immunodepression post-traumatique chez les patients hospitalises pour traumatismes severes
Brandt et al. IL33 contributes to diesel pollution‐mediated increase in experimental asthma severity
Zhou et al. Prostaglandin I2 signaling drives Th17 differentiation and exacerbates experimental autoimmune encephalomyelitis
Madouri et al. Protein kinase Cθ controls type 2 innate lymphoid cell and TH2 responses to house dust mite allergen
Rynda‐Apple et al. Active immunization using a single dose immunotherapeutic abates established EAE via IL‐10 and regulatory T cells
Palatella et al. The dark side of Tregs during aging
WO2020201145A1 (fr) Traitement des maladies respiratoires avec une bacterie du genre lactobacillus
Zhang et al. Decreased leukocyte accumulation and delayed Bordetella pertussis clearance in IL-6−/− mice
Bachus et al. IL-6 prevents Th2 cell polarization by promoting SOCS3-dependent suppression of IL-2 signaling
Shibue et al. Role of interleukin-17 in a murine community-associated methicillin-resistant Staphylococcus aureus pneumonia model
US20160067272A1 (en) Methods for treating immune diseases
Hatano et al. Recombinant Mycobacterium bovis bacillus Calmette–Guérin expressing Ag85B-IL-7 fusion protein enhances IL-17A-producing innate γδ T cells
CA3012894C (fr) Souche bacterienne comme agents de prevention et/ou de traitement de pathologies respiratoires
JP7313440B2 (ja) Treg細胞を誘導する酵母由来多糖体の構造及び機能特性
CA3116952A1 (fr) Extrait d&#39;algues pour son utilisation pour le traitement ou la prevention de l&#39;immunosuppression post-traumatique
Klimov Immune-Derived Maintenance of Allergen Tolerance
Pérez Characterization of the immune response driven by novel nanoparticle-based vaccines for tuberculosis
EP4351720A1 (fr) Protéine a de couche superficielle (slpa) en tant qu&#39;agent thérapeutique pour le traitement de maladies inflammatoires
WO2023062159A1 (fr) Combinaison d&#39;e. faecalis et d&#39;un agent anti-inflammatoire et ses utilisations dans la prevention et/ou traitement des maladies respiratoires
Stevens et al. Microbiota-derived inosine programs protective CD8+ T cell responses against influenza in newborns

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20715360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020715360

Country of ref document: EP

Effective date: 20211029