WO2020200068A1 - 用于上行定时同步的方法和装置 - Google Patents
用于上行定时同步的方法和装置 Download PDFInfo
- Publication number
- WO2020200068A1 WO2020200068A1 PCT/CN2020/081590 CN2020081590W WO2020200068A1 WO 2020200068 A1 WO2020200068 A1 WO 2020200068A1 CN 2020081590 W CN2020081590 W CN 2020081590W WO 2020200068 A1 WO2020200068 A1 WO 2020200068A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- timing
- cell
- frame number
- base station
- uplink
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 123
- 238000004891 communication Methods 0.000 claims description 131
- 238000012545 processing Methods 0.000 claims description 91
- 230000015654 memory Effects 0.000 claims description 70
- 238000004590 computer program Methods 0.000 claims description 48
- 230000006870 function Effects 0.000 description 26
- 230000005540 biological transmission Effects 0.000 description 24
- 238000010586 diagram Methods 0.000 description 20
- 230000008569 process Effects 0.000 description 13
- 230000001934 delay Effects 0.000 description 7
- 230000001360 synchronised effect Effects 0.000 description 7
- 230000004044 response Effects 0.000 description 6
- 238000013507 mapping Methods 0.000 description 5
- 208000016381 Brown-Vialetto-van Laere syndrome 1 Diseases 0.000 description 4
- 208000033312 RFVT2-related riboflavin transporter deficiency Diseases 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000010295 mobile communication Methods 0.000 description 3
- BEOLWJVNPROZQJ-AQSKNYQYSA-N rtd-1 Chemical compound C([C@@H]1NC(=O)CNC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H]2CSSC[C@H](NC1=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H]1CSSC[C@H](NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H]3CSSC[C@@H](C(N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@H](C(=O)N3)C(C)C)=O)NC(=O)[C@H](CC(C)C)NC1=O)C(=O)N[C@H](C(N2)=O)[C@@H](C)CC)C1=CC=CC=C1 BEOLWJVNPROZQJ-AQSKNYQYSA-N 0.000 description 3
- 230000008054 signal transmission Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/0005—Synchronisation arrangements synchronizing of arrival of multiple uplinks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/001—Synchronization between nodes
- H04W56/0015—Synchronization between nodes one node acting as a reference for the others
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/0055—Synchronisation arrangements determining timing error of reception due to propagation delay
- H04W56/0065—Synchronisation arrangements determining timing error of reception due to propagation delay using measurement of signal travel time
- H04W56/009—Closed loop measurements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1851—Systems using a satellite or space-based relay
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1851—Systems using a satellite or space-based relay
- H04B7/18513—Transmission in a satellite or space-based system
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1851—Systems using a satellite or space-based relay
- H04B7/18519—Operations control, administration or maintenance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1853—Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
- H04B7/18539—Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
- H04B7/18541—Arrangements for managing radio, resources, i.e. for establishing or releasing a connection for handover of resources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0083—Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
- H04W36/00837—Determination of triggering parameters for hand-off
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/001—Synchronization between nodes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/06—Airborne or Satellite Networks
Definitions
- This application relates to the field of satellite communication technology, and more specifically, to a method and device for uplink timing.
- TA timing advance
- the TA is essentially an offset between the start time when the downlink subframe is received from the base station side and the time when the uplink subframe is sent.
- the base station side can control the time when the uplink signals of different terminal devices arrive at the base station to be basically aligned. For example, for terminal equipment far away from the base station, compared with terminal equipment closer to the base station, due to the larger transmission delay, it is necessary to send the uplink signal earlier.
- the base station side configures and issues its own TA for each terminal device in the cell, so that each terminal device transmits uplink signals according to its own TA.
- the transmission delay of terminal equipment in a cell is different and the difference is large.
- the terminal equipment with a transmission delay difference greater than the length of the subframe will determine the respective uplink timing frame numbers on the base station side according to their respective TAs.
- Many operations of the physical layer are related to the uplink timing frame numbers. If the terminal in a cell The uplink timing frame numbers from the device to the satellite base station side are different, which will bring a lot of storage overhead for the satellite base station to manage the uplink timing frame numbers.
- This application provides a method for uplink timing synchronization, which is applied in a satellite communication system and can reduce the storage overhead of a satellite base station.
- this application provides a method for uplink timing synchronization, the method comprising: determining the uplink timing frame number of the first cell corresponding to the first beam according to the beam information of the first beam and the ephemeris information of the satellite base station ; Determine the timing information of the first terminal device in the first cell according to the uplink timing frame number of the first cell, the timing information is used to indicate the timing advance or the timing lag; output the timing information of the first terminal device.
- the timing advance includes both the meaning of timing advance and the timing value.
- the timing lag includes both the meaning of timing lag and timing value.
- the timing value may also be referred to as a timing amount.
- Early or late means that the UE should send uplink signals early or late.
- the satellite base station determines the uplink timing frame number of the cell corresponding to the beam based on the generated beam information of a certain beam and the ephemeris information of the satellite base station.
- the satellite base station configures each UE in the cell so that the uplink timing of the UE is aligned with the timing information of the uplink timing frame number of the cell, and sends its own timing information to each UE.
- Each UE performs uplink transmission according to its own timing information. For the satellite base station, it is no longer necessary to store an uplink timing frame number for each UE in the cell, but only the uplink timing frame number of the cell needs to be stored, thereby reducing storage overhead.
- the timing information in the embodiment of the present application is used to indicate the timing advance or the timing lag. That is, in this application, the timing can be a positive number or a negative number. When the timing is positive, it is called timing advance, and when the timing is negative, it is called timing lag. In other words, the technical solution of the present application extends the existing TA to a negative number.
- the uplink timing of some terminal devices is timing advance, and the uplink timing of some terminal devices is timing lag, thus making this cell
- the uplink timing frame numbers of different terminal equipment on the satellite base station side are unified.
- the method further includes: sending the timing information to the first terminal device.
- determining the uplink timing frame number of the first cell corresponding to the first beam according to the beam information of the first beam and the ephemeris information of the satellite base station includes: The beam information of a beam and the ephemeris information of the satellite base station determine the second terminal equipment and the third terminal equipment in the first cell.
- the second terminal equipment is the terminal equipment closest to the satellite base station in the first cell, and the third terminal equipment It is the terminal device furthest from the satellite base station in the first cell; according to the first round-trip delay of the signal transmitted between the second terminal device and the satellite base station and the second round-trip delay of the signal transmitted between the third terminal device and the satellite base station Determine a set of candidate frame numbers; select the first frame number from the set of candidate frame numbers as the uplink timing frame number of the first cell.
- determining a set of candidate frame numbers according to the first round-trip delay and the second round-trip delay includes: according to the first round-trip delay and The second round-trip delay and multiple first constraint conditions determine a set of candidate frame numbers for the first cell, where the multiple first constraint conditions include: the candidate frame numbers are performed between the satellite base station and the terminal equipment An integer multiple of the time unit of communication; the minimum value of the candidate frame number is an integer not greater than and closest to the first round-trip delay; the maximum value of the candidate frame number is not less than and closest to the second round-trip time Denoted integer.
- selecting the first frame number from the set of candidate frame numbers as the uplink timing frame number of the first cell includes: selecting from the set of candidate frame numbers such that
- the method further includes: determining that the first terminal device triggers a cell handover; determining the uplink timing frame number of the target cell Whether it is consistent with the uplink timing frame number of the first cell; when it is determined that the uplink timing frame number of the target cell is inconsistent with the uplink timing frame number of the first cell, output the timing information of the target cell.
- the method further includes: sending the timing information of the target cell to the first terminal device.
- the satellite base station when the satellite base station determines that the uplink timing of the target cell is inconsistent with the uplink timing of the source cell, the satellite base station notifies the terminal device of the uplink timing frame number of the target cell.
- the method further includes: when it is determined that the uplink timing frame number of the target cell is consistent with the uplink timing frame number of the first cell, executing the first terminal device from the first cell Handover to the target cell.
- the timing information includes a timing value and the sign of the timing value.
- the timing information is specifically used to indicate the timing advance, and the timing value is negative.
- the timing information is specifically used to indicate the amount of timing lag.
- sending timing information to the first terminal device includes: sending timing information to the first terminal device through a random access response message.
- the positive or negative of the timing value can be indicated by reserved bits in the TA control (timing advance command) field of the random access response message.
- this application provides a method for uplink timing synchronization, the method comprising: receiving timing information for uplink timing synchronization with a first cell; determining the timing advance or the timing lag based on the timing information; The timing advance or the timing lag is used for uplink timing synchronization.
- the method before determining the timing advance or the timing lag based on the timing information, the method further includes: determining that the timing information comes from the satellite base station.
- the timing information includes a timing value and the positive or negative of the timing value.
- the determining the timing advance or the timing lag based on the timing information includes: determining that the timing value is positive When the timing value is determined, the timing advance is determined; or when the timing value is determined to be negative, the timing lag is determined based on the timing value.
- the method further includes: triggering a cell handover; receiving timing information of the target cell from the satellite base station; and converting the timing information of the first cell Update to the timing information of the target cell.
- the method further includes: performing uplink timing synchronization with the target cell according to the timing information of the target cell.
- this application provides a method for cell handover, the method includes: determining that a first terminal device triggers a cell handover; determining whether the uplink timing frame number of the target cell is consistent with the uplink timing frame number of the source cell; When the uplink timing frame number is inconsistent with the uplink timing frame number of the source cell, the timing information of the target cell is sent to the first terminal device, and the timing information is used to indicate the timing advance or the timing lag.
- the method further includes: when the uplink timing frame number of the target cell is determined to be consistent with the uplink timing frame number of the source cell, executing the first terminal device from the source cell to Handover of the target cell.
- this application provides a method for cell handover.
- the method includes: triggering a cell handover; receiving timing information of a target cell from a satellite base station.
- the timing information is used to indicate the timing advance or the timing lag, and the timing information is the satellite base station.
- the timing information includes the timing value and the positive and negative of the timing value.
- determining the timing advance or timing lag includes: determining the timing value is positive, determining the timing advance based on the timing value; or determining the timing When the value is negative, the timing lag is determined according to the timing value.
- this application provides a communication device that has the function of implementing the method in the first aspect or the third aspect and any possible implementation manners thereof.
- the function can be realized by hardware, or by hardware executing corresponding software.
- the hardware or software includes one or more units corresponding to the above functions.
- the present application provides a communication device that has the function of implementing the method in the second aspect or the fourth aspect and any possible implementation manners thereof.
- the function can be realized by hardware, or by hardware executing corresponding software.
- the hardware or software includes one or more units corresponding to the above functions.
- this application provides a network device including a processor and a memory.
- the memory is used to store a computer program
- the processor is used to call and run the computer program stored in the memory, so that the network device executes the method in the first aspect or the third aspect and any possible implementation manners thereof.
- this application provides a terminal device including a processor and a memory.
- the memory is used for storing a computer program
- the processor is used for calling and running the computer program stored in the memory, so that the terminal device executes the method in the second aspect or the fourth aspect and any possible implementation manners thereof.
- the present application provides a computer-readable storage medium.
- the computer-readable storage medium stores computer instructions.
- the computer instructions run on the computer, the computer executes the first aspect or any of its possible implementations. Method, or execute the method in the third aspect or any possible implementation manner thereof.
- the present application provides a computer-readable storage medium.
- the computer-readable storage medium stores computer instructions.
- the computer instructions run on the computer, the computer executes the second aspect or any of its possible implementations. Method, or execute the method in the fourth aspect or any possible implementation manner thereof.
- this application provides a chip including a processor.
- the processor is used to read and execute a computer program stored in the memory to execute the method in the first aspect or any possible implementation manner thereof, or execute the method in the third aspect or any possible implementation manner thereof.
- the chip further includes a memory, and the memory and the processor are connected to the memory through a circuit or a wire.
- the chip further includes a communication interface.
- this application provides a chip including a processor.
- the processor is used to read and execute a computer program stored in the memory to execute the method in the second aspect or any possible implementation manner thereof, or execute the method in the fourth aspect or any possible implementation manner thereof.
- the chip further includes a memory, and the memory and the processor are connected to the memory through a circuit or a wire.
- the chip further includes a communication interface.
- the present application provides a computer program product, the computer program product includes computer program code, when the computer program code runs on a computer, the computer executes the first aspect or any of its possible implementations , Or execute the method in the third aspect or any of its possible implementation manners.
- this application provides a computer program product.
- the computer program product includes computer program code.
- the computer program code runs on a computer, the computer executes the second aspect or any of its possible implementations. , Or implement the method in the fourth aspect and any possible implementations thereof.
- the satellite base station determines the uplink timing frame number of the cell corresponding to the beam based on the beam information of a certain beam generated and the ephemeris information of the satellite base station.
- the satellite base station configures each UE in the cell so that the uplink timing of the UE is aligned with the timing information of the uplink timing frame number of the cell, and sends its own timing information to each UE.
- Each UE performs uplink transmission according to its own timing information. For the satellite base station, only one uplink timing frame number needs to be stored for a cell, which can reduce storage overhead.
- Figure 1 is an architectural diagram of a satellite communication system.
- Figure 2 is a schematic diagram of a satellite communication system.
- Figure 3 is a schematic diagram of configuring TA in order to ensure uplink timing synchronization in a satellite communication system.
- Figure 4 is a schematic diagram of the satellite communication system determining the uplink timing frame numbers of two different UEs.
- FIG. 5 is a flowchart of a method 200 for uplink timing synchronization of a satellite communication system provided by the present application.
- Fig. 6 is an application example of the uplink timing synchronization method in the satellite communication system provided by this application.
- FIG. 7 is an example of the process of configuring timing information for the UE by the satellite base station provided by the present application.
- Fig. 8 is a schematic diagram of the mapping of timing information in RAR.
- Fig. 9 is a flowchart of RAR processing on the UE side provided by the present application.
- FIG. 10 is a schematic diagram of changes in the UE's service beam during satellite operation.
- Figure 11 is a flow chart of the cell handover of the satellite communication system provided by this application.
- FIG. 12 is a schematic block diagram of a communication device 600 provided by this application.
- FIG. 13 is a schematic block diagram of a communication device 700 provided by this application.
- FIG. 14 is a schematic structural diagram of a network device provided by this application.
- FIG. 15 is a schematic structural diagram of a terminal device provided by this application.
- the technical solution of this application can be applied to a satellite communication system.
- the satellite communication system 100 usually consists of three parts: a space segment, a ground segment, and a user segment.
- the space segment may be composed of a geostationary (geostationary earth orbit, GEO) satellite, a non-geostationary orbit (none-geostationary earth orbit, NGEO) satellite, or multiple satellite networks 101 composed of both.
- the ground segment generally includes a satellite measurement and control center 102, a network control center (NCC) 103, and various gateways 104, etc., which are called gateways or gateways.
- the network control center is also called a system control center (system control center, SCC).
- the user segment is composed of various terminal devices.
- the terminal device may be various mobile terminals 106, such as mobile satellite phones, or various fixed terminals 107, such as communication ground stations.
- the dotted line in Figure 1 refers to the communication signal between the satellite and the terminal.
- the solid line refers to the communication signal between the satellite and the equipment on the ground segment.
- the two-way arrow line refers to the communication signal between the network elements on the ground segment.
- satellites can also be called satellite base stations.
- the satellite base station can transmit downlink data to terminal equipment. Among them, the downlink data can be transmitted to the terminal device after channel coding and modulation mapping.
- the terminal equipment can also transmit uplink data to the satellite base station.
- the uplink data can also be transmitted to the satellite base station after channel coding and modulation mapping.
- the satellite measurement and control center 102 in the ground segment has functions such as maintaining, monitoring and controlling the satellite's orbital position and attitude, and managing the satellite's ephemeris.
- the network control center 103 has the functions of processing user registration, identity confirmation, billing, and other network management. In some satellite mobile communication systems, the network control center and the satellite measurement and control center are combined into one.
- the gateway 104 has functions such as call processing, switching, and interface with the ground communication network.
- the ground communication network 105 is a component of the ground section of the satellite network, and is used to switch satellite data packets to the core network and send to the final terminal device.
- the ground communication network can be a public switched telephone network (PSTN), a public land mobile network (PLMN) or other various private networks. Different ground communication networks require gateway stations to have different gateway functions.
- PSTN public switched telephone network
- PLMN public land mobile network
- the space segment of the satellite communication system can be a multi-layer structure composed of a management satellite and one or more service satellites.
- the space segment may include one or more management satellites and service satellites managed by these management satellites.
- the satellites or satellite base stations mentioned in this application are not limited to management satellites or service satellites.
- Satellite base stations and terminal equipment include, but are not limited to, the following communication systems for communication: global system for mobile communications (GSM) system, code division multiple access (CDMA) system, and broadband code division multiple access (GSM) system wideband code division multiple access, WCDMA) system, general packet radio service (GPRS), long term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division Duplex (time division duplex, TDD), universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) communication system, the future 5th generation (5G) ) System or new radio (NR), etc.
- GSM global system for mobile communications
- CDMA code division multiple access
- GSM broadband code division multiple access
- WCDMA wideband code division multiple access
- GPRS general packet radio service
- LTE long term evolution
- FDD frequency division duplex
- TDD time division duplex
- UMTS universal mobile telecommunication system
- WiMAX worldwide interoperability for microwave access
- WiMAX
- the terminal equipment in the embodiment of the present application needs to access the mobile satellite communication network through the ground segment of the satellite communication system for mobile communication.
- Terminal equipment can refer to user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication equipment, user agent or User device.
- the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), and a wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network or future evolution of the public land mobile network (PLMN) Terminal equipment, etc.
- SIP session initiation protocol
- WLL wireless local loop
- PDA personal digital assistant
- PLMN public land mobile network
- Terminal equipment represented by satellite phones and vehicle-mounted satellite systems can communicate directly with satellites.
- Fixed terminals represented by ground communication stations need to be relayed by ground stations before they can communicate with satellites.
- the terminal equipment realizes the setting and acquisition of the communication state by installing a wireless transceiver antenna, and completes the communication.
- FIG. 2 is a schematic diagram of a satellite communication system.
- Satellites usually form multiple beams, and each beam corresponds to a cell (or sector).
- Different terminal devices located in the same cell have different time delays to reach the satellite.
- Uplink synchronization technology needs to be adopted to make the uplink signals of different terminal devices reach the satellite base station at the same time to ensure that the terminal devices will not interfere with each other.
- UE#1 and UE#2 are located in the same cell. However, the time delays when UE#1 and UE#2 communicate with the satellite are different, and an uplink synchronization mechanism is required to ensure that UE#1 and UE#2 will not interfere with each other.
- TDD time division duplexing
- the communication signal is divided into a number of time slots of a certain length in time. A time slot can only be one of uplink or downlink, and the satellite is in a certain It is impossible to receive and send at the same time.
- the role of uplink synchronization is not only to avoid interference between users, but also to ensure the alignment of uplink and downlink frames to avoid uplink and downlink interference.
- timing advance In order to ensure the uplink synchronization of the receiving end, LTE proposes a timing advance (TA) mechanism. From the perspective of the UE, the essence of timing advance is a negative offset (negative offset) between the start time of receiving the downlink subframe and the time of transmitting the uplink subframe.
- the base station can control the time when uplink signals from different UEs arrive at the base station by appropriately controlling the offset of each UE. Simply put, for UEs that are far from the base station, due to the larger transmission delay, they must send uplink signals earlier than UEs that are closer to the base station.
- TA is a UE-level configuration.
- Fig. 3 is a schematic diagram of configuring TA to ensure uplink timing synchronization in a satellite system. As shown in Figure 3, it is assumed that the communication signal is divided into time slots with intervals of 1ms, and the time delay for UE#1 to reach the satellite is 3.62ms.
- the round trip delay (RTD) of the signal minus the timing advance time is exactly equal to an integer multiple of the time slot, thereby ensuring that the uplink signal sent by UE#1 reaches the satellite base station through an integer multiple of the time slot.
- the uplink signal transmission of UE#2 is similar.
- the TA is a key technology used in LTE and NR to eliminate the time difference between users in a cell.
- the base station measures the transmission delay between the base station and the UE according to the physical random access channel (PRACH) sent by the UE during the random access process, and configures TA for the UE. After that, the base station notifies the UE of the configured TA through a random access response (random access response).
- the UE adjusts the transmission time of the uplink signal according to the TA to complete uplink timing synchronization.
- PRACH physical random access channel
- the uplink timing frame numbers are also different. Many operations of the physical layer are related to frame numbers, such as scrambling, pilot signals, etc. If the uplink timing frame numbers from different UEs in a cell to the base station are inconsistent, the satellite base station needs to store for each UE in the cell Its uplink timing frame number.
- FIG. 4 is a schematic diagram of the satellite communication system determining the uplink timing frame numbers of two different UEs.
- the base station configures the TA for UE#1 to 240 ⁇ s, and the base station configures the TA for UE#2 It is 80 ⁇ s.
- the uplink timing frame number of the uplink signal of UE#1 reaching the base station is 7, and the uplink timing frame number of the uplink signal of UE#2 reaching the base station is 8.
- the base station needs to save the uplink timing frame number 7 of UE#1 and the uplink timing frame number 8 of UE#2.
- a large number of UEs usually reside in a cell. Therefore, the satellite base station stores the uplink timing frame number for each UE, and the storage overhead of the satellite base station will be very large.
- this application provides a method for uplink timing synchronization, which is applied to a satellite communication system, which can reduce the storage overhead of a satellite base station.
- This application introduces timing information for the satellite communication system.
- the timing information is used to indicate the timing advance or the timing lag, so that the uplink timing frame numbers of different UEs in the same cell are unified in the satellite base station. Therefore, the satellite base station only needs to store one uplink timing frame number for one cell, and compared with storing one uplink timing frame number for one UE, the storage overhead of the satellite base station can be reduced.
- the timing information includes a timing value and the sign of the timing value.
- the timing information is specifically used to indicate the timing advance.
- the timing information is specifically used to indicate the timing lag.
- the existing timing advance TA can only be a positive number, and TA represents the offset of the start time of the uplink timing with respect to the downlink timing. Therefore, TA being a positive number means that The start time of the uplink timing is positively offset from the downlink timing, that is, the uplink timing is located before the downlink timing, which is commonly referred to as timing advance.
- the timing value in the satellite communication system can be a negative number in addition to a positive number.
- the timing value has the same meaning as the existing TA, that is, timing advance.
- the timing value is a negative number, it means that the start time of the uplink timing has a negative offset relative to the downlink timing, that is, the uplink timing is after the downlink timing.
- the case where the timing value is negative is called timing lag.
- FIG. 5 is a flowchart of a method 200 for uplink timing synchronization of a satellite communication system provided by the present application.
- the method 200 may be performed by a satellite base station.
- the uplink timing frame number of the first cell corresponding to the first beam According to the beam information of the first beam and the ephemeris information of the satellite base station, determine the uplink timing frame number of the first cell corresponding to the first beam.
- the satellite base station knows beam information such as beam direction, beam width, and ephemeris information. Based on this information, the satellite base station can determine the uplink timing frame number of the first cell. It should be understood that the ephemeris information here may include information such as the orbit where the satellite base station is located and the orbit height.
- the first beam is any one of the beams generated by the satellite base station.
- the first beam may also be considered as the current beam of the satellite base station.
- the satellite base station can determine the UE closest to the satellite base station in the first cell corresponding to the first beam (hereinafter referred to as the second terminal device) and the UE farthest from the satellite base station (hereinafter Called the third terminal device). The satellite base station then determines the transmission delays between the second terminal equipment and the third terminal equipment and the satellite base station, and then determines the first cell based on the transmission delays between the second terminal equipment and the third terminal equipment and the satellite base station.
- the satellite base station determines the near-end UE and the far-end UE, and determines the transmission delay of the near-end UE and the far-end UE, and can adopt existing methods, which will not be described in detail here.
- the UE closest to the satellite base station (that is, the second terminal device) is also called a near-end UE, and the UE that is farthest from the satellite base station (that is, the third terminal device) is also called a remote UE.
- UE#1 and UE#2 shown in FIG. 3 are taken as examples to illustrate the process of determining the uplink timing of a cell applicable to a satellite communication system provided by this application.
- UE#1 and UE#2 shown in Figure 3 are not any two UEs in the cell, but are the near-end UE and UE of the satellite base station respectively.
- Remote UE Remote UE.
- RTD1 and RTD2 the round-trip delays of UE#1 and UE#2 determined by the satellite base station are 7.24 ms and 8.8 ms, respectively (hereinafter referred to as RTD1 and RTD2).
- the satellite base station is based on the round-trip delay of the near-end UE (hereinafter referred to as the first round-trip delay) and the round-trip delay of the remote UE (hereinafter referred to as the second round-trip delay) and multiple first constraints on the uplink timing frame number Conditions, determine a set of candidate frame numbers.
- the satellite base station selects the first frame number that meets the second constraint condition from the candidate frame number base stations as the uplink timing frame number of the cell.
- the uplink timing frame number is cell-level, not UE-level.
- the multiple first constraint conditions include:
- the uplink timing frame number needs to be an integer multiple of the time unit of communication between the satellite base station and the terminal equipment.
- the time unit mentioned here may be a slot, a subframe, etc., which is not limited in this application.
- the following uses time slots as examples for description.
- the minimum value of the candidate frame number is an integer that is not greater than and closest to the first round-trip delay and that meets the condition (1).
- the maximum value of the candidate frame number is an integer that is not less than and closest to the second round-trip delay and meets the condition (2).
- a set of candidate frame numbers can be determined.
- the time slot length is 1ms, therefore, the minimum value of the candidate frame number that meets the above conditions (1)-(3) should be 7ms, and the maximum value of the candidate frame number should be It is 9ms.
- the set of candidate frame numbers can be determined. In the example of Figure 3, the set of candidate frame numbers should be ⁇ 7,8,9 ⁇ .
- the first frame number (hereinafter referred to as x) is selected in the set of candidate frame numbers, so that
- the x that satisfies the condition is the uplink timing frame number of the cell.
- x that satisfies the second constraint condition selected from the set of candidate frame numbers should be 8ms. 8ms is the uplink timing frame number of the serving cell of UE#1 and UE#2 calculated by the satellite base station.
- FIG. 6 is an application example of the uplink timing synchronization method in the satellite communication system provided by the present application.
- the uplink timing of UE#1 and UE#2 on the base station side are both 8ms.
- the timing value is negative, that is, UE#1 is timing lag.
- UE#1 delays the uplink transmission by 0.76ms based on the uplink timing.
- the timing value is positive, that is, UE#2 is timing advance.
- UE#2 performs uplink transmission 0.8ms earlier on the basis of uplink timing.
- the timing information at this time has the same meaning as the existing TA.
- the uplink timing frame numbers of UE#1 and UE#2 are the same of. Therefore, for a cell, the base station side only needs to save the uplink timing frame number configured for the cell, and it is no longer necessary to save an uplink timing frame number for each UE in the cell, which can reduce storage overhead.
- the timing information is used to indicate the timing advance or the timing lag.
- the first terminal device refers to any terminal device in the first cell.
- the first cell is the serving cell of the first terminal device.
- the satellite base station calculates the timing information to align the uplink timing of the first terminal device to the uplink timing frame number of the first cell according to the RTD of the first terminal device.
- the first terminal device in FIG. 6 corresponds to UE#1 shown in FIG. 3.
- the RTD of UE#1 7.24ms.
- the first terminal device in FIG. 6 corresponds to UE#2 shown in FIG. 3.
- the RTD of UE#2 8.8ms.
- the satellite base station introduces the positive and negative timing values, so that the timing can be either timing advance or timing lag, so that the uplink timing frame numbers of terminal devices in the same cell can be unified.
- the satellite base station only needs to store one uplink timing frame number for a cell, and does not need to store an uplink timing frame number for each UE in a cell, so the storage overhead can be reduced.
- the following uses the process shown in FIG. 7 as an example to illustrate the process of configuring timing information for the UE by the satellite base station.
- FIG. 7 is an example of the process of configuring timing information for the UE by the satellite base station provided by the present application.
- the satellite base station determines the uplink timing frame number of the first cell according to the beam information of the first beam and the orbit information of the satellite base station.
- the satellite base station receives the PRACH of the UE.
- the UE in step 320 refers to any UE in the first cell.
- the satellite base station determines the timing information of the UE according to the PRACH, so that the uplink timing of the UE is aligned with the uplink timing frame number of the first cell.
- the satellite base station can determine the transmission delay between the UE and the satellite base station according to the PRACH sent by the UE, and then determine the timing information for the UE to perform uplink timing synchronization.
- the timing information is used to indicate the timing advance or the timing lag.
- the satellite base station uses the PRACH sent by the UE to determine the transmission delay of the UE, thereby determining the timing information of the UE is only an example.
- the satellite base station may also determine the transmission delay and further determine the timing information according to other uplink signals sent by the UE, which is not limited in this application.
- the satellite base station maps the timing information of the UE to the RAR.
- the satellite base station After calculating and determining the timing information of the UE, the satellite base station maps the timing information to the PRACH response message of step 320, that is, a random access response (RAR).
- RAR random access response
- FIG. 8 is a schematic diagram of the mapping of timing information in RAR.
- RAR contains multiple fields. Among them, the first 3 bits are reserved bits (R as shown in Figure 8).
- the timing advance control (timing advance command) field contains 12 bits in total.
- object means object
- UL grant means uplink grant
- temporary C-RNTI means cell-temporary radio network temporary identity
- the timing information includes information indicating the sign of the timing value.
- the information used to indicate the sign of the timing value is mapped to the first reserved bit, the second reserved bit or the third reserved bit.
- the information used to indicate the sign of the timing value can also be mapped to the first bit or the last bit of the TA field, which is not limited in this application.
- timing value can be mapped to other bits in the TA field.
- the satellite base station replies the RAR to the UE.
- step 350 the satellite base station replies the RAR to the UE, so that the timing information mapped in the RAR is notified to the UE.
- FIG. 9 is a flowchart of RAR processing on the UE side proposed in this application.
- the UE receives the RAR from the network side.
- the UE judges whether the RAR comes from a satellite base station.
- the UE determines whether the received RAR is from a satellite base station. Specifically, the UE judges according to the instruction of the satellite base station. In fact, before the UE performs random access, it already knows whether it will access the ground base station or the satellite base station next.
- the UE If the received RAR is from a ground base station, the UE performs step 403. If the received RAR is from a satellite base station, the UE executes step 404.
- the UE analyzes the timing information by using the TA processing mode specified in the LTE or NR standard, and proceeds to step 405.
- the UE determines whether the timing value is positive or negative, and proceeds to step 405.
- the UE After receiving the RAR from the satellite base station, it determines whether the timing value is positive or negative according to the timing information carried in the RAR.
- the UE can determine whether the timing value is positive or negative according to the first reserved bit of the RAR.
- the UE calculates timing.
- step 405 the UE calculates timing according to formula (1):
- Timing ⁇ N TA ⁇ T C (1)
- T C is the minimum granularity used to adjust TA in LTE/NR, which is also applicable in this application.
- the specific value of T C depends on the configuration of the system. You can refer to the 3GPP TS38.211 standard document.
- N TA refers to the timing value of the timing information carried in the RAR.
- timing value in the embodiment of the present application may also be expressed as the timing value being positive or negative.
- the UE uses the calculated timing for uplink timing synchronization.
- the UE once the UE receives the RAR, it first determines whether the base station sending the RAR is a satellite base station. If it is not a satellite base station, use the TA method specified in the LTE or NR standard to process the timing information in the RAR, that is, it is not necessary to determine the positive or negative timing value (because the TA is both positive), and directly calculate the timing value OK. If the base station sending the RAR is a satellite base station, the UE needs to analyze the timing information to determine whether the timing value is positive or negative, and calculate the timing value.
- the UE uses the calculated timing for uplink transmission.
- the satellite base station in Figs. 7-9 uses PRACH to determine the transmission delay of the UE, and to notify the UE of timing information through RAR is only an example.
- the satellite base station can determine the transmission delay of the UE through any uplink signal of the UE, and determine the timing information of the UE.
- the UE's processing procedure for the downlink signal carrying timing information received from the satellite base station side is similar to the procedure for processing RAR shown in FIG. 9, and will not be repeated here.
- the service beam may change accordingly.
- FIG. 10 is a schematic diagram of changes in the UE's service beam during satellite operation.
- the service beam of the UE is switched from beam 1 to beam 2.
- the serving beam of the UE is beam 1
- the UE's serving beam is switched to beam 2.
- the UE cell handover needs to re-initiate the random access procedure.
- beam switching ie, cell switching
- the service of the UE needs to be interrupted and the switching efficiency is low.
- this application also proposes a method for cell handover applied to a satellite communication system, which is described below in conjunction with FIG. 11.
- FIG. 11 is a flowchart of the cell handover of the satellite communication system provided by this application.
- the source base station determines that the UE triggers a cell handover.
- the movement of the satellite along the orbit may trigger the switching of the UE's serving cell (ie, serving beam).
- the source base station judges whether the uplink timing of the target cell is consistent with the uplink timing of the source cell.
- the uplink timing of the target cell and the uplink timing of the source cell mentioned here refer to the cell-level uplink timing proposed in this application.
- the source base station executes step 504, that is, the source base station directly triggers the cell handover.
- the source base station performs step 503.
- the source base station sends an RAR to the UE, where the RAR carries the timing information of the UE determined according to the uplink timing frame number of the target cell.
- the RAR carries timing information corresponding to the target cell, and is used for the UE to update the timing information when camping on the source cell to the timing information of the target cell. That is, when the uplink timing of the source cell is not consistent with the uplink timing of the target cell, the source base station notifies the UE of the timing information of the target cell through the RAR.
- step 503 the source base station executes step 504.
- the UE After receiving the RAR, the UE updates the saved timing information of the source cell to the timing information of the target cell, and sends an uplink signal to the target cell according to the timing information of the target cell.
- the first terminal device When used in combination, it can be considered that the first terminal device performs uplink timing synchronization with the first cell according to the method for uplink timing synchronization provided in this application. After accessing the first cell, if the first terminal device triggers a cell handover, the satellite base station performs the cell handover according to the cell handover procedure provided in this application.
- FIG. 12 is a schematic block diagram of the communication device 600 provided in this application.
- the communication device 600 includes a processing unit 610 and a communication unit 620.
- the communication device 600 has the functions of the satellite base station in the embodiment of the method for uplink timing synchronization.
- the communication device 600 may be a chip or an integrated circuit.
- the units of the communication device 600 are respectively used to perform the following operations and/or processing.
- the processing unit 610 is configured to determine the uplink timing frame number of the first cell corresponding to the first beam according to the beam information of the first beam and the ephemeris information of the satellite base station, and determine the first cell according to the uplink timing frame number of the first cell The timing information of the first terminal device in the, where the timing information is used to indicate the timing advance or the timing lag;
- the communication unit 620 is configured to output the timing information.
- the processing unit 610 may be a processor.
- the communication unit 620 may be a communication interface, for example, an input/output interface or a transceiver circuit.
- the processing unit 610 is further configured to determine the second terminal equipment and the third terminal equipment in the first cell according to the beam information of the first beam and the ephemeris information of the satellite base station, and according to the second terminal equipment and the satellite base station
- the first round-trip delay of the signal transmitted between the third terminal device and the satellite base station and the second round-trip delay of the signal transmitted between the third terminal device and the satellite base station determine the set of candidate frame numbers for the first cell, and select the first from the set of candidate frame numbers
- the frame number is used as the uplink timing frame number of the first cell.
- the second terminal device is the terminal device closest to the satellite base station in the first cell
- the third terminal device is the terminal device farthest from the satellite base station in the first cell.
- the processing unit 610 is further configured to determine the candidate frame number set according to the first round-trip delay, the second round-trip delay and multiple first constraint conditions.
- the multiple first constraint conditions refer to the description of the method embodiment.
- the processing unit 610 is specifically configured to select from the set of candidate frame numbers such that
- the communication device 600 also has the functions of the satellite base station in the cell handover method embodiment. At this time, the units of the communication device 600 are respectively used to perform the following operations and/or processing.
- the processing unit 610 is configured to determine whether the uplink timing frame number of the target cell is consistent with the uplink timing frame number of the source cell when determining that the first terminal device triggers a cell handover;
- the communication unit 620 is configured to output the timing information of the target cell when the processing unit 610 determines that the uplink timing frame number of the target cell is inconsistent with the uplink timing frame number of the source cell.
- the timing information is used to instruct the first terminal device and the target cell to perform The timing advance or timing lag of uplink timing synchronization.
- the processing unit 610 may be a processor.
- the communication unit 620 may be a communication interface, for example, an input/output interface or a transceiver circuit.
- the processing unit 610 is further configured to, when it is determined that the uplink timing frame number of the target cell is consistent with the uplink timing frame number of the first cell, and the communication unit 620 perform the first terminal device from the first cell to the target cell. Switch.
- the communication device 600 may also have both the function of configuring the uplink timing frame number of the cell by the satellite base station in the method embodiment and the function of performing cell handover.
- the communication device 600 may also have both the function of configuring the uplink timing frame number of the cell by the satellite base station in the method embodiment and the function of performing cell handover.
- the processing unit 610 may be a processing device, and the functions of the processing device may be partially or fully implemented by software.
- the functions of the processing device may be partially or fully implemented by software.
- the processing device may include a memory and a processor.
- the memory is used to store a computer program
- the processor reads and executes the computer program stored in the memory to execute the steps implemented inside the satellite base station in each method embodiment.
- the processing device includes a processor.
- the memory for storing the computer program is located outside the processing device, and the processor is connected to the memory through a circuit/wire to read and execute the computer program stored in the memory.
- the functions of the processing device can all be implemented by hardware.
- the processing device may include an input interface circuit, a logic circuit, and an output interface circuit.
- the input interface circuit is used to obtain the beam information of the first beam and the ephemeris information of the satellite base station;
- the logic circuit is used to determine the first beam information and the ephemeris information of the satellite base station obtained by the input interface circuit.
- the uplink timing frame number of the first cell corresponding to a beam.
- the output interface circuit is used to output the uplink timing frame number of the first cell.
- the output interface circuit outputs the uplink timing frame number of the first cell to the memory, and the memory saves the uplink timing frame number of the first cell.
- the processing unit 610 may also be a baseband device.
- the communication device 600 may completely correspond to the satellite base station in the embodiment of FIGS. 5-8. At this time, the communication device
- the processing unit 610 included in 600 may be a processor, and the communication unit 620 may be a transceiver.
- the transceiver includes a transmitter and a receiver.
- the processor determines the uplink timing frame number of the first cell corresponding to the first beam according to the beam information of the first beam and the ephemeris information of the satellite base station, and determines the first cell in the first cell according to the uplink timing frame number of the first cell.
- Timing information of terminal equipment The transceiver is used to send the timing information to the first terminal device to facilitate uplink timing synchronization between the terminal device and the first cell.
- the processor determines whether the uplink timing frame number of the target cell is consistent with the uplink timing frame number of the source cell.
- the processor determines the timing information of the first terminal device in the target cell, and the timing information is used to instruct the first terminal device to perform uplink timing synchronization with the target cell
- the timing advance or lag of the target cell is sent to the terminal device by the transceiver, so that the terminal device and the target cell can perform uplink timing synchronization.
- the processor and the transceiver directly execute the handover of the first terminal device from the source cell to the target cell.
- the units included in the communication device 600 are respectively used to perform corresponding operations and/or processing performed by the satellite base station in each method embodiment.
- the communication device 700 includes a communication unit 710 and a processing unit 720.
- the units of the communication device 700 are respectively used to perform the following operations and/or processing.
- the communication unit 710 is configured to obtain timing information used for uplink timing synchronization
- the processing unit 720 is configured to determine the timing advance or the timing lag according to the timing information acquired by the communication interface;
- the communication unit 710 is also configured to output the timing advance or the timing lag determined by the processing unit 720.
- the communication unit 710 may be a communication interface, for example, an input/output interface or a transceiver circuit.
- the processing unit 710 may be a processor.
- the units of the communication device 700 are respectively used to perform the following operations and/or processing.
- the communication unit 710 is configured to receive timing information of the target cell, where the timing information is used to indicate the timing advance or the timing lag;
- the processing unit 720 is configured to determine the timing advance or the timing lag according to the timing information.
- the communication unit 710 may be a communication interface, for example, an input/output interface or a transceiver circuit.
- the processing unit 710 may be a processor.
- the processing unit 720 is further configured to determine that the timing information comes from the satellite base station.
- the processing unit 720 is further configured to determine the timing advance or the timing lag according to the timing information.
- the communication unit 710 is further configured to receive timing information of the target cell from the satellite base station; and the processing unit 720 is further configured to update the timing information of the first cell to the timing information of the target cell.
- the processing unit 720 may be a processing device, and the functions of the processing device may be partially or fully implemented by software.
- the functions of the processing device can be partially or fully implemented by software.
- the processing device may include a memory and a processor.
- the memory is used to store a computer program
- the processor reads and executes the computer program stored in the memory to execute the steps implemented inside the terminal device in each method embodiment.
- the processing device includes a processor.
- the memory for storing the computer program is located outside the processing device, and the processor is connected to the memory through a circuit/wire to read and execute the computer program stored in the memory.
- the functions of the processing device can all be implemented by hardware.
- the processing device may include an input interface circuit, a logic circuit, and an output interface circuit.
- the input interface circuit is used to obtain timing information;
- the logic circuit is used to analyze the timing information to determine the timing advance or the timing lag.
- the output interface circuit is used to output timing advance or timing lag.
- the logic circuit is also used to determine whether the timing information comes from a satellite base station, and when it is determined that the timing information comes from the satellite base station, the timing information is analyzed. If the logic circuit determines that the timing information comes from the ground station, it parses the timing information according to the LTE or NR standard processing TA method (that is, does not need to determine whether the timing value is positive or negative), and directly determines the timing value. If the logic circuit determines that the timing information comes from the satellite base station, it needs to determine the sign of the timing value based on the timing information and calculate the timing value.
- the output interface circuit outputs the analysis result of the timing information to the memory for storage.
- the communication apparatus 700 may completely correspond to the terminal device (for example, the first terminal device of the first cell) in the method embodiment.
- the corresponding units of the communication device 700 are respectively used to execute the corresponding operations and/or processing performed by the terminal device in each method embodiment of the method.
- the communication unit 710 included in the communication device 700 may be a transceiver.
- the transceiver includes a transmitter and a receiver.
- the processing unit 720 may be a processor.
- the transceiver receives timing information used for uplink timing synchronization with the first cell.
- the processor determines the timing advance or the timing lag based on the timing information received by the transceiver.
- the processor and the transceiver are also used for performing uplink timing synchronization between the terminal equipment and the first cell according to the timing advance or the timing lag.
- the transceiver receives the timing information of the target cell.
- the processor determines the timing advance or the timing lag for uplink timing synchronization with the target cell according to the timing information of the target cell received by the transceiver. After determining the timing advance or timing lag, the transceiver and the processor perform handover of the terminal device from the source cell to the target cell.
- the units included in the communication device 700 are respectively used to perform corresponding operations and/or processing performed by the terminal device in each method embodiment.
- the network device 1000 may correspond to the satellite base station in each method embodiment.
- the network device 1000 includes an antenna 1101, a radio frequency device 1102, and a baseband device 1103.
- the antenna 1101 is connected to the radio frequency device 1102.
- the radio frequency device 1102 receives signals from the terminal equipment through the antenna 1101, and sends the received signals to the baseband device 1103 for processing.
- the baseband device 1103 generates a signal that needs to be sent to the terminal device, and sends the generated signal to the radio frequency device 1102.
- the radio frequency device 1102 transmits the signal through the antenna 1101.
- the baseband device 1103 may include one or more processing units 11031.
- the processing unit 11031 may specifically be a processor.
- the baseband device 1103 may further include one or more storage units 11032 and one or more communication interfaces 11033.
- the storage unit 11032 is used to store computer programs and/or data.
- the communication interface 11033 is used to exchange information with the radio frequency device 1102.
- the storage unit 11032 may specifically be a memory, and the communication interface 11033 may be an input/output interface or a transceiver circuit.
- the storage unit 11032 may be a storage unit on the same chip as the processing unit 11031, that is, an on-chip storage unit, or a storage unit on a different chip from the processing unit, that is, an off-chip storage unit. This application does not limit this.
- the processing unit 610 shown in FIG. 12 may be the baseband device 1103 shown in FIG. 14.
- the communication unit 620 may be a radio frequency device 1102.
- the processing unit 610 shown in FIG. 12 may be the processing unit 11031 shown in FIG. 14, and the communication unit 620 may be the communication interface 11033 shown in FIG. 14.
- the terminal device 7000 includes a processor 7001 and a transceiver 7002.
- the terminal device 7000 further includes a memory 7003.
- the processor 7001, the transceiver 7002, and the memory 7003 can communicate with each other through an internal connection path to transfer control signals and/or data signals.
- the memory 7003 is used to store computer programs.
- the processor 7001 is configured to execute a computer program stored in the memory 7003, so as to implement various functions of the communication device 500 in the foregoing device embodiment.
- the processor 7001 may be used to perform operations and/or processing performed by the processing unit 720 described in the apparatus embodiment (for example, FIG. 13), and the transceiver 7002 may be used to perform operations and/or processing performed by the transceiver unit 710. .
- the transceiver 7002 receives TA information from the network side.
- the processor 7001 determines the positive and negative values of TA and the value of TA according to TA information received by the transceiver 7002.
- the memory 7003 may also be integrated in the processor 7001 or independent of the processor 7001.
- the terminal device 7000 may further include an antenna 7004 for transmitting the signal output by the transceiver 7002.
- the transceiver 7002 receives signals through an antenna.
- the terminal device 7000 may further include a power supply 7005 for providing power to various devices or circuits in the terminal device.
- the terminal device 7000 may further include one or more of an input unit 7006, an output unit 7007, an audio circuit 7008, a camera 7009, a sensor 610, and so on.
- the audio circuit may also include a speaker 70082, a microphone 70084, etc., which will not be repeated.
- the communication unit 710 shown in FIG. 13 may be the transceiver 7004 shown in FIG. 15, and the processing unit 720 may be the processor 7001.
- the communication unit 710 shown in FIG. 13 may be the input unit 7006 or the output unit 7007 shown in FIG. 15, and the processing unit 720 may be the processor 7007.
- the present application also provides a communication system, including the satellite base station and terminal equipment described in the method embodiments.
- This application also provides a computer-readable storage medium on which a computer program is stored.
- the computer program When the computer program is executed by a computer, the computer executes the steps performed by the satellite base station in any of the above-mentioned method embodiments. And/or processing.
- the computer program product includes computer program code.
- the computer program code runs on a computer, the computer executes the steps executed by the satellite base station in any of the foregoing method embodiments and/ Or processing.
- the application also provides a chip including a processor.
- the memory for storing the computer program is provided independently of the chip, and the processor is used to execute the computer program stored in the memory to execute the steps and/or processing performed by the satellite base station in any method embodiment.
- the chip may also include a memory and a communication interface.
- the communication interface may be an input/output interface, a pin, an input/output circuit, or the like.
- This application also provides a computer-readable storage medium with a computer program stored on the computer-readable storage medium, and when the computer program is executed by a computer, the computer executes the operations performed by the terminal device in any of the above-mentioned method embodiments And/or processing.
- the computer program product includes computer program code.
- the computer program code When the computer program code is run on a computer, the computer can execute the operations performed by the terminal device in any of the foregoing method embodiments and/ Or processing.
- the application also provides a chip including a processor.
- the memory used to store the computer program is provided independently of the chip, and the processor is used to execute the computer program stored in the memory to perform the operation and/or processing performed by the terminal device in any method embodiment.
- the chip may also include a memory and a communication interface.
- the communication interface may be an input/output interface, a pin, an input/output circuit, or the like.
- the processor mentioned in the above embodiments may be an integrated circuit chip with signal processing capability.
- the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
- the processor can be a general-purpose processor, digital signal processor (digital signal processor, DSP), application-specific integrated circuit (ASIC), field programmable gate array (field programmable gate array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
- the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
- the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware encoding processor, or executed and completed by a combination of hardware and software modules in the encoding processor.
- the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
- the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
- the memory mentioned in the above embodiments may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
- the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
- the volatile memory may be random access memory (RAM), which is used as an external cache.
- RAM random access memory
- static random access memory static random access memory
- dynamic RAM dynamic random access memory
- DRAM dynamic random access memory
- SDRAM synchronous dynamic random access memory
- double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
- enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
- serial link DRAM SLDRAM
- direct rambus RAM direct rambus RAM
- the disclosed system, device, and method may be implemented in other ways.
- the device embodiments described above are only illustrative.
- the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
- the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
- each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
- the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
- the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (personal computer, server, or network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Physics & Mathematics (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供了一种用于上行定时同步的方法,能够降低卫星基站的存储开销。该方法包括:根据第一波束的波束信息和卫星基站的星历信息,确定第一波束对应的第一小区的上行定时帧号;根据第一小区的上行定时帧号,确定第一小区内的第一终端设备的定时信息,所述定时信息用于指示定时提前量或者定时滞后量;输出所述定时信息。
Description
本申请要求于2019年03月29日提交中国专利局、申请号为201910252495.X、申请名称为“用于上行定时同步的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及卫星通信技术领域,更具体地,涉及一种用于上行定时的方法和装置。
在无线通信系统的上行传输中,为了避免终端设备间的干扰,要求来自同一个小区的终端设备的上行信号到达基站的时间基本上对齐,也即上行定时同步。为了保证接收侧(基站侧)的上行定时同步,引入了定时提前(timing advance,TA)的机制。
在UE侧看来,TA本质上是从基站侧接收到下行子帧的起始时间与发送上行子帧的时间之间的一个偏移。基站侧通过为不同的终端设备配置不同的偏移,可以控制不同终端设备的上行信号到达基站的时间基本上是对齐的。例如,对于离基站较远的终端设备而言,和离基站较近的终端设备相比,由于有较大的传输时延,因此也就需要更早发送上行信号。
基站侧为小区内的每个终端设备配置并下发属于每个终端设备自己的TA,从而每个终端设备根据自己的TA进行上行信号的发送。在卫星通信系统中,一个小区内的终端设备的传输时延各不相同且差别较大。传输时延差大于子帧长度的终端设备根据各自的TA确定出的各自在基站侧的上行定时帧号会不相同,而物理层的很多操作和上行定时帧号有关,如果一个小区内的终端设备到卫星基站侧的上行定时帧号各不相同,会给卫星基站管理上行定时帧号带来很大的存储开销。
发明内容
本申请提供一种用于上行定时同步的方法,应用于卫星通信系统中,可以降低卫星基站的存储开销。
第一方面,本申请提供一种用于上行定时同步的方法,该方法包括:根据第一波束的波束信息和卫星基站的星历信息,确定第一波束对应的第一小区的上行定时帧号;根据第一小区的上行定时帧号确定第一小区内的第一终端设备的定时信息,定时信息用于指示定时提前量或者定时滞后量;输出所述第一终端设备的定时信息。
需要说明的是,在本申请中,定时提前量既包含了定时提前的含义,也包含了定时数值。同样地,定时滞后量既包含了定时滞后的含义,也包含了定时数值。可替换地,定时数值也可以称为定时量。提前或者滞后表示了UE应该提前发送上行信号或者滞后发送上行信号。
在本申请的技术方案中,卫星基站根据产生的某个波束的波束信息和卫星基站的星历 信息,确定该波束对应的小区的上行定时帧号。卫星基站为该小区内的每个UE配置使得该UE的上行定时对齐到该小区的上行定时帧号的定时信息,并向每个UE下发各自的定时信息。每个UE根据各自的定时信息进行上行发送。对于卫星基站而言,不再需要针对小区内的每个UE保存一个上行定时帧号,而只需要保存小区的上行定时帧号即可,从而可以降低存储开销。
和LTE或NR中的TA信息不同,本申请实施例中的定时信息用于指示定时提前量或定时滞后量。也即,在本申请中,定时可以为正数,也可以为负数。当定时为正数时称为定时提前,当定时为负数时称为定时滞后。换句话说,本申请的技术方案将现有的TA扩展到了负数,对于一个小区内而言,可能部分终端设备的上行定时为定时提前,部分终端设备的上行定时为定时滞后,从而使得这个小区内不同终端设备在卫星基站侧的上行定时帧号达到统一。
可选地,输出第一终端设备的定时信息之后,该方法还包括:向第一终端设备发送所述定时信息。
结合第一方面,在第一方面的某些实现方式中,根据第一波束的波束信息和卫星基站的星历信息,确定第一波束对应的第一小区的上行定时帧号,包括:根据第一波束的波束信息和卫星基站的星历信息,确定第一小区内的第二终端设备和第三终端设备,第二终端设备为第一小区中距离卫星基站最近的终端设备,第三终端设备为第一小区中距离卫星基站最远的终端设备;根据第二终端设备与卫星基站之间传输信号的第一往返时延以及第三终端设备与卫星基站之间传输信号的第二往返时延确定备选帧号集合;从所述备选帧号集合中选择第一帧号作为第一小区的上行定时帧号。
结合第一方面,在第一方面的某些实现方式中,根据所述第一往返时延和所述第二往返时延确定备选帧号集合,包括:根据所述第一往返时延和所述第二往返时延以及多个第一约束条件确定第一小区的备选帧号集合,其中,所述多个第一约束条件包括:备选帧号为卫星基站和终端设备之间进行通信的时间单元的整数倍;备选帧号的最小值为不大于且最接近所述第一往返时延的整数;备选帧号的最大值为不小于且最接近所述第二往返时延的整数。
结合第一方面,在第一方面的某些实现方式中,从备选帧号集合中选择第一帧号作为第一小区的上行定时帧号,包括:从备选帧号集合中选择使得|x-RTD
1|+|x-RTD
2|或
最小的x作为第一小区的上行定时帧号,其中,x为所述第一帧号,RTD-
1为第一往返时延,RTD
2为第二往返时延。
结合第一方面,在第一方面的某些实现方式中,第一终端设备接入到第一小区之后,该方法还包括:确定第一终端设备触发小区切换;判断目标小区的上行定时帧号与第一小区的上行定时帧号是否一致;确定目标小区的上行定时帧号与第一小区的上行定时帧号不一致时,输出目标小区的定时信息。
进一步地,输出目标小区的定时信息之后,该方法还包括:向第一终端设备发送目标小区的定时信息。
在该实施例中,当卫星基站确定目标小区的上行定时和源小区的上行定时不一致时,卫星基站将目标小区的上行定时帧号通知给终端设备。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:确定目标小区的上行定时帧号与第一小区的上行定时帧号一致时,执行第一终端设备从第一小区至目标小区的切换。
结合第一方面,在第一方面的某些实现方式中,定时信息包括定时数值和所述定时数值的正负,定时数值为正时,定时信息具体用于指示定时提前量,定时数值为负时,定时信息具体用于指示定时滞后量。
可选地,向第一终端设备发送定时信息,包括:通过随机接入响应消息向第一终端设备发送定时信息。其中,定时数值的正负可以由随机接入响应消息的TA控制(timing advance command)字段的预留比特进行指示。
第二方面,本申请提供一种用于上行定时同步的方法,该方法包括:接收用于和第一小区进行上行定时同步的定时信息;根据定时信息,确定定时提前量或者定时滞后量;根据定时提前量或者定时滞后量进行上行定时同步。
结合第二方面,在第二方面的某些实现方式中,根据定时信息,确定定时提前量或者定时滞后量之前,该方法还包括:确定定时信息来自卫星基站。
结合第二方面,在第二方面的某些实现方式中,定时信息包括定时数值和定时数值的正负,所述根据定时信息,确定定时提前量或者定时滞后量,包括:确定定时数值为正时,根据定时数值确定定时提前量;或者,确定定时数值为负时,根据定时数值确定定时滞后量。
结合第二方面,在第二方面的某些实现方式中,接入到第一小区之后,该方法还包括:触发小区切换;从卫星基站接收目标小区的定时信息;将第一小区的定时信息更新为目标小区的定时信息。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:根据目标小区的定时信息,与目标小区进行上行定时同步。
第三方面,本申请提供一种小区切换的方法,该方法包括:确定第一终端设备触发小区切换;判断目标小区的上行定时帧号与源小区的上行定时帧号是否一致;确定目标小区的上行定时帧号与源小区的上行定时帧号不一致时,向第一终端设备发送目标小区的定时信息,定时信息用于指示定时提前量或者定时滞后量。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:确定目标小区的上行定时帧号与源小区的上行定时帧号一致时,执行第一终端设备从源小区至目标小区的切换。
第四方面,本申请提供一种小区切换的方法,该方法包括:触发小区切换;从卫星基站接收目标小区的定时信息,定时信息用于指示定时提前量或者定时滞后量,定时信息是卫星基站在确定目标小区的上行定时帧号与源小区的上行定时帧号不一致时发送的;根据定时信息确定定时提前量或者定时滞后量,并根据定时提前量或者定时滞后量和目标小区进行上行定时同步。
可选地,定时信息包括定时数值和定时数值的正负,根据定时信息,确定定时提前量或者定时滞后量,包括:确定定时数值为正时,根据定时数值确定定时提前量;或者,确定定时数值为负时,根据定时数值确定定时滞后量。
第五方面,本申请提供一种通信装置,该通信装置具有实现第一方面或第三方面及其 任意可能的实现方式中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第六方面,本申请提供一种通信装置,该通信装置具有实现第二方面或第四方面及其任意可能的实现方式中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第七方面,本申请提供一种网络设备,包括处理器和存储器。存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,使得网络设备执行第一方面或第三方面及其任意可能的实现方式中的方法。
第八方面,本申请提供一种终端设备,包括处理器和存储器。存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,使得终端设备执行第二方面或第四方面及其任意可能的实现方式中的方法。
第九方面,本申请提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得计算机执行第一方面或其任意可能的实现方式中的方法,或者执行第三方面或其任意可能的实现方式中的方法。
第十方面,本申请提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得计算机执行第二方面或其任意可能的实现方式中的方法,或者执行第四方面或其任意可能的实现方式中的方法。
第十一方面,本申请提供一种芯片,包括处理器。处理器用于读取并执行存储器中存储的计算机程序,以执行第一方面或其任意可能的实现方式中的方法,或者执行第三方面或其任意可能的实现方式中的方法。
可选地,所述芯片还包括存储器,存储器与处理器通过电路或电线与存储器连接。
进一步可选地,所述芯片还包括通信接口。
第十二方面,本申请提供一种芯片,包括处理器。处理器用于读取并执行存储器中存储的计算机程序,以执行第二方面或其任意可能的实现方式中的方法,或者执行第四方面或其任意可能的实现方式中的方法。
可选地,所述芯片还包括存储器,存储器与处理器通过电路或电线与存储器连接。
进一步可选地,所述芯片还包括通信接口。
第十三方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行第一方面或其任意可能的实现方式中的方法,或者执行第三方面或其任意可能的实现方式中的方法。
第十四方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行第二方面或其任意可能的实现方式中的方法,或者执行第四方面及其任意可能的实现方式中的方法。
在本申请的技术方案中,卫星基站根据产生的某个波束的波束信息和卫星基站的星历信息,确定该波束对应的小区的上行定时帧号。卫星基站为该小区内的每个UE配置使得该UE的上行定时对齐到该小区的上行定时帧号的定时信息,并向每个UE下发各自的定时信息。每个UE根据各自的定时信息进行上行发送。对于卫星基站而言,对于一个小区只需要保存一个上行定时帧号即可,从而可以降低存储开销。
图1是卫星通信系统的架构图。
图2是卫星通信系统的一个示意简图。
图3是卫星通信系统中为了保证上行定时同步配置TA的示意图。
图4是卫星通信系统确定两个不同UE的上行定时帧号的示意图。
图5是本申请提供的适用于卫星通信系统的上行定时同步的方法200的流程图。
图6是本申请提供的卫星通信系统中上行定时同步的方法的应用示例。
图7是本申请提供的卫星基站为UE配置定时信息的流程的示例。
图8是定时信息在RAR中的映射示意图。
图9是本申请提供的UE侧处理RAR的流程图。
图10为卫星运行过程中UE的服务波束发生变化的示意图。
图11为本申请提供的卫星通信系统的小区切换的流程图。
图12为本申请提供的通信装置600的示意性框图。
图13为本申请提供的通信装置700的示意性框图。
图14为本申请提供的网络设备的示意性结构图。
图15为本申请提供的终端设备的示意性结构图。
下面将结合附图,对本申请中的技术方案进行描述。
本申请的技术方案可以应用于卫星通信系统。参见图1,图1是卫星通信系统的架构示意图。卫星通信系统100通常由空间段、地面段和用户段三部分组成。空间段可以由静止轨道(geostationary earth orbit,GEO)卫星、非静止轨道(none-geostationary earth orbit,NGEO)卫星或者两者构成的多颗卫星网络101构成。地面段一般包括卫星测控中心102、网络控制中心(network control center,NCC)103以及各类关口站(gateway)104等,关口站或称信关站。其中,网络控制中心也称为系统控制中心(system control center,SCC)。用户段由各种终端设备构成。终端设备可以是各种移动终端106,例如,移动卫星电话,也可以是各种固定终端107,例如,通信地面站等。图1中虚线是指卫星与终端之间的通信信号。实线是指卫星与地面段的设备之间的通信信号。双向箭头线是指地面段的网元之间的通信信号。在卫星通信系统中,卫星也可以称为卫星基站。在图1中,卫星基站可以向终端设备传输下行数据。其中,下行数据可以经过信道编码、调制映射后传输给终端设备。终端设备也可以向卫星基站传输上行数据。其中,上行数据也可以经过信道编码、调制映射后传输给卫星基站。
地面段中的卫星测控中心102具有保持、监视和控制卫星的轨道位置和姿态,并管理卫星的星历表等功能。网络控制中心103具有处理用户登记、身份确认、计费和其它的网络管理功能。在一些卫星移动通信系统中,网络控制中心和卫星测控中心是合二为一的。关口站104具有呼叫处理、交换以及与地面通信网的接口等功能。地面通信网105是卫星网络的地面段的一个组成部分,用于将卫星的数据包交换到核心网、发送至最终的终端设备。地面通信网可以是公共交换电话网(public switched telephone network,PSTN)、公共地面移动网(public land mobile network,PLMN)或其它各种专用网络,不同地面通信 网要求关口站具有不同的网关功能。
在一些卫星通信系统中,卫星通信系统的空间段可以是由管理卫星和一个或多个服务卫星组成的多层结构。在多层结构的卫星通信系统的组网中,空间段可以包括一颗或多颗管理卫星以及这些管理卫星管理的服务卫星。本申请中提到的卫星或卫星基站不限于是管理卫星或服务卫星。
卫星基站和终端设备包括但不限于采用如下通信系统进行通信:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新空口(new radio,NR)等。
本申请实施例中的终端设备需要通过卫星通信系统的地面段接入移动卫星通信网络中进行移动通信。终端设备可以指用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。以卫星电话、车载卫星系统为代表的终端设备可以与卫星直接通信。以地面通信站为代表的固定终端需要经地面站中继后才能与卫星通信。终端设备通过安装有无线收发天线实现对通信状态的设置、获取,完成通信。
参见图2,图2为卫星通信系统的一个示意简图。如图2所示,卫星之间可以存在星间链路提供回程链路(图2未示出)。卫星通常形成多个波束,每个波束对应一个小区(或者说,扇区)。位于同一小区的不同终端设备到达卫星的时延不同,需要采用上行同步技术使得不同终端设备的上行信号到达卫星基站的时间基本相同,以保证终端设备之间不会互相干扰。
例如,在图2中,UE#1和UE#2位于同一小区。但是,UE#1和UE#2与卫星之间进行通信时的时延不同,需要上行同步机制保证UE#1和UE#2不会互相干扰。在时分双工(time division duplexing,TDD)系统中,通信信号在时间上划分为若干一定长度的时隙(slot),某个时隙只能为上行或者下行中的一种,卫星在某一个时刻不可能同时接收和发送。在TDD系统中,上行同步的作用不只是避免用户间干扰,同时保证上行帧和下行帧对齐,避免上下行干扰。
为了保证接收端的上行同步,LTE提出了定时提前(timing advance,TA)的机制。在UE侧看来,定时提前的本质是接收到下行子帧的起始时间和传输上行子帧的时间之间的一个负偏移(negative offset)。基站通过适当地控制每个UE的偏移,可以控制来自不同UE的上行信号到达基站的时间。简单来说,对于离基站较远的UE,由于有较大的传输时 延,就要比离基站较近的UE提前发送上行信号。
首先需要理解的是,基站侧的上行子帧和下行子帧的定时是相同的,而UE侧的上行和下行子帧的定时之间有偏移。不同的UE各自有不同的TA,可见,TA是UE级的配置。
下面结合图3说明卫星通信系统中的上行定时同步的过程。
参见图3,图3是卫星系统中为了保证上行定时同步配置TA的示意图。如图3所示,假设通信信号分为1ms为间隔的时隙,且UE#1到达卫星的时延为3.62ms。为了保证UE#1发出的上行信号刚好经过整数倍的时隙长度(在这个示例中,具体为7ms)达到卫星基站,卫星基站为UE#1配置TA=240μs,这样卫星基站和UE之间传输信号的往返时延(round trip delay,RTD)减去定时提前的时间正好等于时隙的整数倍,从而可以保证UE#1发送的上行信号经过整数倍的时隙到达卫星基站。UE#2的上行信号的发送也是类似的。
TA是LTE以及NR中用于消除小区内用户之间的时间差的关键技术。基站根据UE在随机接入过程发送的物理随机接入信道(physical random access channel,PRACH)测量基站和UE之间的传输时延,为UE配置TA。之后,基站通过随机接入响应(random access response)将配置的TA通知给UE。UE根据TA调整上行信号的发送时间,完成上行定时同步。
在卫星通信系统中,由于UE和卫星基站之间的传输时延较大,通常都大于1ms的时隙长度(或者说,子帧长度),因此,一个小区内的不同UE在卫星基站侧的上行定时帧号也各不相同。而物理层的很多操作和帧号相关,例如,加扰,导频信号等,如果一个小区内的不同UE到基站的上行定时帧号不一致,卫星基站就需要针对该小区内的每个UE存储其上行定时帧号。
下面结合图4作为示例来说明卫星系统中不同UE的上行定时帧号不一致的这个问题。参见图4,图4是卫星通信系统确定两个不同UE的上行定时帧号的示意图。
假设UE#1的传输时延为3.62ms,UE#2的传输时延为4.4ms。按照上文介绍的配置TA的方法,为了保证UE#1和UE#2的上行信号都经过整数倍的时隙到达基站,基站为UE#1配置的TA为240μs,基站为UE#2配置TA为80μs。由此,UE#1的上行信号到达基站的上行定时帧号为7,UE#2的上行信号到达基站的上行定时帧号为8。基站需要保存UE#1的上行定时帧号7,以及UE#2的上行定时帧号8。而一个小区内通常都驻留了非常多的UE,因此,卫星基站针对每个UE为其存储上行定时帧号,卫星基站的的存储开销将非常大。
为此,本申请提供一种用于上行定时同步的方法,应用于卫星通信系统,可以降低卫星基站的存储开销。
下面对本申请提供的用于上行定时同步的方法进行详细说明。
本申请针对卫星通信系统,引入了定时信息,定时信息用于指示定时提前量或者定时滞后量,以使同一个小区内的不同UE的上行定时帧号在卫星基站达到统一。从而,卫星基站针对一个小区保存一个上行定时帧号即可,和针对一个UE保存一个上行定时帧号相比,可以降低卫星基站的存储开销。
可选地,定时信息包括定时数值和定时数值的正负。当定时数值为正时,定时信息具体用于指示定时提前量。当定时数值为负时,定时信息具体用于指示定时滞后量。
需要说明的是,上文已经介绍过,现有的定时提前TA只能为正数,而TA表示上行 定时的起始时间相对于下行定时的偏移,因此,TA为正数也就意味着上行定时的起始时间相对于下行定时为正偏移,也即上行定时位于下行定时之前,也即通常所说的定时提前。
在本申请中,卫星通信系统中的定时数值除了可以为正数,还可以为负数。定时数值为正数时,和现有的TA表达相同的含义,也即定时提前。而当定时数值为负数时,表示上行定时的起始时间相对于下行定时为负偏移,也即上行定时位于下行定时之后。在本申请中,将定时数值为负数的情况称为定时滞后。
参见图5,图5是本申请提供的适用于卫星通信系统的上行定时同步的方法200的流程图。方法200可以由卫星基站执行。
210、根据第一波束的波束信息和卫星基站的星历信息,确定第一波束对应的第一小区的上行定时帧号。
在步骤210中,卫星基站已知波束方向,波束宽度等波束信息以及星历信息。根据这些信息,卫星基站可以确定出第一小区的上行定时帧号。应理解,这里的星历信息可以包括卫星基站所在的轨道以及轨道高度等信息。
其中,第一波束为卫星基站产生的波束中的任意一个。可替换地,第一波束也可以认为是卫星基站的当前波束。
卫星基站根据第一波束的波束信息和星历信息可以确定出第一波束对应的第一小区内距离卫星基站最近的UE(以下称作第二终端设备)和距离卫星基站最远的UE(以下称作第三终端设备)。卫星基站再确定出第二终端设备和第三终端设备各自与卫星基站之间的传输时延,之后根据第二终端设备和第三终端设备各自与卫星基站之间的传输时延确定第一小区的上行定时帧号
这里,卫星基站确定近端UE和远端UE,以及确定近端UE和远端UE的传输时延可以采用现有的方法,这里不作详细介绍。
下面对卫星基站根据第二终端设备和第三终端设备的传输时延,确定第一小区的上行定时帧号的过程作详细介绍。
可替换地,距离卫星基站最近的UE(也即第二终端设备)也称为近端UE,距离卫星基站最远的UE(也即第三终端设备)也称为远端UE。
下面以图3中所示的UE#1和UE#2为例,说明本申请提供的适用于卫星通信系统的确定小区上行定时的过程。
需要注意的是,如果以图3为例进行说明,此时,图3中所示的UE#1和UE#2并不是小区中的任意两个UE,而分别是卫星基站的近端UE和远端UE。
假设卫星基站确定的UE#1和UE#2的往返时延分别为7.24ms和8.8ms(以下分别记作RTD1和RTD2)。
卫星基站根据近端UE的往返时延(以下记作第一往返时延)和远端UE的往返时延(以下记作第二往返时延)以及对于上行定时帧号的多个第一约束条件,确定出一个备选帧号集合。卫星基站从备选帧号基站中选择出满足第二约束条件的第一帧号作为该小区的上行定时帧号。
可以理解的是,在本申请中,上行定时帧号是小区级的,而非UE级的。
其中,上述多个第一约束条件包括:
(1)上行定时帧号需要为卫星基站和终端设备之间通信的时间单元的整数倍。
这里所说的时间单元可以为时隙(slot),子帧等,本申请对此不作限定。以下均以时隙作为示例进行说明。
(2)备选帧号的最小值为不大于且最接近第一往返时延且满足条件(1)的整数。
(3)备选帧号的最大值为不小于且最接近第二往返时延且满足条件(2)的整数。
根据上述这几个第一约束条件,可以确定出备选帧号集合。
例如,在图3中所示的示例中,时隙长度为1ms,因此,满足上述条件(1)-(3)的备选帧号的最小值应该为7ms,备选帧号的最大值应该为9ms。确定出了备选帧号的最小值和最大值,就可以确定出备选帧号集合。在图3的示例中,备选帧号集合应该为{7,8,9}。
进一步地,在备选帧号集合中选择第一帧号(以下记作x),使得|x-RTD1|+|x-RTD2|最小。满足条件的x即为该小区的上行定时帧号。
应理解,选择x使得|x-RTD1|+|x-RTD2|最小即为第二约束条件。
在图3的示例中,从备选帧号集合中选择满足第二约束条件的x应为8ms。8ms即为卫星基站计算得到的UE#1和UE#2的服务小区的上行定时帧号。
参见图6所示,图6是本申请提供的卫星通信系统中上行定时同步的方法的应用示例。
如图6所示,根据前述步骤210,UE#1和UE#2在基站侧的上行定时均为8ms。对于UE#1而言,定时的数值为负,也即UE#1为定时滞后。UE#1在上行定时的基础上延后0.76ms进行上行发送。对于UE#2而言,定时的数值为正,也即,UE#2为定时提前。UE#2在上行定时的基础上提前0.8ms进行上行发送。
可选地,在本申请实施例中,当定时的数值为正数时,此时的定时信息和现有的TA表达相同的含义。
将图6所示的UE#1和UE#2的上行定时与图4中所示的UE#1和UE#2的上行定时相比,UE#1和UE#2的上行定时帧号是相同的。因此,对于一个小区而言,基站侧只需要保存为该小区配置的上行定时帧号即可,不再需要对该小区内的每个UE分别保存一个上行定时帧号,能够降低存储开销。
220、根据第一小区的上行定时帧号,确定第一小区内的第一终端设备的定时信息。
如上文所述,定时信息用于指示定时提前量或者定时滞后量。
这里,第一终端设备是指第一小区内的任意一个终端设备。换句话说,第一小区为第一终端设备的服务小区。
在220中,卫星基站根据第一终端设备的RTD,计算使得第一终端设备的上行定时对齐到第一小区的上行定时帧号的定时信息。
以图3为例,假设图6中的第一终端设备对应图3中所示的UE#1。如上文所述,UE#1的RTD=7.24ms,要对齐到第一小区的上行定时帧号(也即帧号8),则需要滞后发送上行信号,因此,首先确定出定时数值为负。进一步地,滞后的时长(也即,定时数值)应该为(8ms-7.24ms)=0.76ms。因此,UE#1的TA=-0.76ms。
又例如,假设图6中的第一终端设备对应图3中所示的UE#2。如上文所述,UE#2 的RTD=8.8ms,要对齐到第一小区的上行定时帧号,则需要提前发送上行信号,因此,首先确定出定时数值为正。进一步地,提前的时长(也即,定时数值)应该为(8.8ms-8ms)=0.8ms。因此,UE#2的TA=0.8ms。
230、向第一终端设备发送定时信息。
在本申请的技术方案中,卫星基站通过引入定时数值的正负,使得定时可以为定时提前,也可以为定时滞后,从而可以使同一个小区内的终端设备的上行定时帧号统一。卫星基站针对一个小区只需要保存一个上行定时帧号即可,不需要再针对一个小区内的每个UE保存一个上行定时帧号,因此可以降低存储开销。
下面以图7所示流程作为示例,说明卫星基站为UE配置定时信息的过程。
参见图7,图7是本申请提供的卫星基站为UE配置定时信息的流程的示例。
310、卫星基站根据第一波束的波束信息和卫星基站的轨道信息,确定第一小区的上行定时帧号。
具体过程可以参见上文210的说明,这里不再赘述。
320、卫星基站接收UE的PRACH。
应理解,步骤320中UE是指第一小区内的任意一个UE。
330、卫星基站根据PRACH,确定UE的定时信息,以使UE的上行定时对齐到第一小区的上行定时帧号。
应理解,卫星基站根据UE发送的PRACH,可以确定出UE和卫星基站之间的传输时延,进而确定用于UE进行上行定时同步的定时信息。
其中,定时信息用于指示定时提前量或是定时滞后量。
图7中,卫星基站以UE发送的PRACH确定UE的传输时延,从而确定UE的定时信息仅是作为示例。卫星基站也可以根据UE发送的其它上行信号确定传输时延并进一步确定定时信息,本申请对此不作限定。
340、卫星基站将UE的定时信息映射到RAR中。
计算确定UE的定时信息之后,卫星基站将定时信息映射到步骤320的PRACH的响应消息中,也即随机接入响应(random access response,RAR)中。
下面结合图8,说明定时信息在RAR中的映射。
参见图8,图8是定时信息在RAR中的映射示意图。如图8所示,RAR包含多个字段。其中,前3个比特为保留比特(如图8中所示的R)。定时提前控制(timing advance command)字段共包含12个比特。
另外,图8中所示的“对象”表示object,“UL授权”表示上行授权(uplink grant),“临时C-RNTI”表示小区临时无线网络临时标识(cell-temporary radio network temporary identity)。
如上文所述,定时信息包括用于指示定时数值的正负的信息。可选地,用于指示定时数值的正负的信息映射到第一个保留比特,第二个保留比特或者第三个保留比特中。
可选地,用于指示定时数值的正负的信息还可以映射到TA字段的第一个比特或者最后一个比特,本申请对此不作限制。
另外,定时数值可以映射到TA字段的其它比特。
350、卫星基站向UE回复RAR。
在步骤350,卫星基站向UE回复RAR,这样就将映射在RAR中的定时信息通知给UE。
下面结合图9说明UE侧对RAR的处理。
参见图9,图9是本申请提出的UE侧处理RAR的流程图。
401、UE从网络侧接收到RAR。
402、UE判断RAR是否来自卫星基站。
在步骤402中,UE判断接收到的RAR是否来自卫星基站。具体地,UE根据卫星基站的指示来判断。实际上,UE在进行随机接入之前,已经可以知道下一步接入的是地面基站还是卫星基站。
如果接收到的RAR来自地面基站,UE执行步骤403。如果接收到的RAR来自卫星基站,UE执行步骤404。
403、UE采用LTE或者NR中标准规定的TA的处理方式解析定时信息,并进入步骤405。
404、UE判断定时数值的正负,并进入步骤405。
对于UE来说,从卫星基站接收到RAR之后,根据RAR中携带的定时信息,判断定时数值的正负。
例如,在上述步骤340中,如果用于指示定时数值的正负的信息映射在RAR的第一个保留比特,UE根据RAR的第一个保留比特可以确定定时数值为正或者为负。
405、UE计算定时。
在步骤405中,UE根据公式(1)计算定时:
定时=±N
TA×T
C (1)
公式(1)中,T
C是LTE/NR中用于调整TA的最小颗粒度,在本申请中也是适用的。T
C的具体取值取决于系统的配置,可以参考3GPP TS38.211标准文档。N
TA是指RAR中携带的定时信息的定时数值。
应理解,公式(1)中的正负号由步骤404中判断的定时数值的正负决定。
应理解,本申请实施例中定时数值的正负也可以表述为定时数值为正或者为负。
406、UE将计算得到的定时用于上行定时同步。
从图9中所示的流程图可以看出,UE一旦接收到RAR,首先判断发送RAR的基站是否为卫星基站。如果不是卫星基站,则采用LTE或NR中的标准规定的处理TA的方式来处理RAR中的定时信息,也即并不需要判断定时数值的正负(因为TA均为正),直接计算定时数值即可。如果发送RAR的基站为卫星基站,UE需要通过解析定时信息,判断定时数值为正或为负,并计算定时数值。
后续,UE将计算得到的定时用于上行发送。
应理解,图7-图9中卫星基站通过PRACH确定UE的传输时延,并通过RAR向UE通知定时信息仅是作为示例。实际上,卫星基站可以通过UE的任何上行信号确定UE的传输时延,并确定UE的定时信息。在这些情况下,UE对于从卫星基站侧接收到的携带定时信息的下行信号的处理流程和图9中所示的处理RAR的流程是类似的,这里不再赘述。
考虑到卫星基站沿着轨道不断运行,在运行的过程中,对于一个UE而言,服务波束 可能会随之发生变化。
参见图10所示,图10为卫星运行过程中UE的服务波束发生变化的示意图。例如,卫星在沿着轨道运行的过程中,例如,从位置1运行到位置2的过程中,UE的服务波束从波束1切换为波束2。应理解,卫星在位置1时,UE的服务波束为波束1,当卫星从位置1运行到位置2时,UE的服务波束切换为波束2。
在地面通信系统中,UE的小区切换需要重新发起随机接入流程。但是,由于卫星与地面之间信号传输的时延较大,卫星运行带来的波束切换(也即小区切换)更为频繁。如果每次的小区切换都重新发起随机接入,就需要中断UE的业务,切换效率低。
本申请考虑到上述情况,还提出一种应用于卫星通信系统的小区切换的方法,下面结合图11进行介绍。
参见图11,图11为本申请提供的卫星通信系统的小区切换的流程图。
501、源基站确定UE触发小区切换。
这里,对UE触发服务小区发生切换的因素不作限制。例如,在上面图10中,卫星沿着轨道移动可能触发UE的服务小区(也即,服务波束)的切换。
502、源基站判断目标小区的上行定时与源小区的上行定时是否一致。
应理解,这里所说的目标小区的上行定时和源小区的上行定时是指本申请中提出的小区级的上行定时。
如果目标小区的上行定时和源小区的上行定时一致,源基站执行步骤504,即源基站直接触发小区切换。
如果目标小区的上行定时和源小区的上行定时不一致,源基站执行步骤503。
503、源基站向UE发送RAR,RAR中携带根据目标小区的上行定时帧号确定的UE的定时信息。
应理解,RAR中携带和目标小区对应的定时信息,用于UE将驻留在源小区时的定时信息更新为目标小区的定时信息。也即,当源小区的上行定时和目标小区的上行定时不一致时,源基站通过RAR将目标小区的定时信息通知给UE。
在步骤503之后,源基站执行步骤504。
UE接收到RAR之后,将保存的源小区的定时信息更新为目标小区的定时信息,并根据目标小区的定时信息向目标小区发送上行信号。
可以理解的是,本申请提供的用于上行定时同步的方法和小区切换的方法可以结合使用,也可以单独使用,本申请对此不作限定。
在结合使用时,可以认为第一终端设备根据本申请提供的用于上行定时同步的方法和第一小区进行上行定时同步。接入第一小区之后,如果第一终端设备触发小区切换,卫星基站根据本申请提供的小区切换的流程执行小区切换。
以上对本申请的方法实施例作了详细说明,下面介绍本申请提供的通信装置。
参见图12,图12为本申请提供的通信装置600的示意性框图。通信装置600包括处理单元610和通信单元620。
在一个实施例中,通信装置600具有用于上行定时同步的方法实施例中卫星基站所具备的功能。例如,通信装置600可以为芯片或者集成电路。此时,通信装置600的各单元分别用于执行如下操作和/或处理。
处理单元610,用于根据第一波束的波束信息和卫星基站的星历信息,确定第一波束对应的第一小区的上行定时帧号,并根据第一小区的上行定时帧号确定第一小区内的第一终端设备的定时信息,所述定时信息用于指示定时提前量或者定时滞后量;
通信单元620,用于输出所述定时信息。
此时,处理单元610可以为处理器。通信单元620可以为通信接口,例如,输入输出接口或者收发电路。
可选地,处理单元610还用于根据第一波束的波束信息和卫星基站的星历信息,确定第一小区内的第二终端设备和第三终端设备,并根据第二终端设备与卫星基站之间传输信号的第一往返时延以及第三终端设备与卫星基站之间传输信号的第二往返时延确定第一小区的备选帧号集合,以及从备选帧号集合中选择第一帧号作为所述第一小区的上行定时帧号。其中,第二终端设备为第一小区中距离卫星基站最近的终端设备,第三终端设备为第一小区中距离卫星基站最远的终端设备。
可选地,处理单元610还用于根据第一往返时延和第二往返时延以及多个第一约束条件确定所述备选帧号集合。所述多个第一约束条件参见方法实施例的说明。
可选地,处理单元610具体用于从所述备选帧号集合中选择使得|x-RTD
1|+|x-RTD
2|或者
最小的x作为第一小区的上行定时帧号,其中,x为第一帧号,RTD-
1为第一往返时延,RTD
2为第二往返时延。
在另一个实施例中,通信装置600还具有小区切换的方法实施例中卫星基站所具备的功能。此时,通信装置600的各单元分别用于执行如下操作和/或处理。
处理单元610,用于在确定第一终端设备触发小区切换时,判断目标小区的上行定时帧号和源小区的上行定时帧号是否一致;
通信单元620,用于在处理单元610确定目标小区的上行定时帧号与源小区的上行定时帧号不一致时,输出目标小区的定时信息,该定时信息用于指示第一终端设备和目标小区进行上行定时同步的定时提前量或者定时滞后量。
此时,处理单元610可以为处理器。通信单元620可以为通信接口,例如,输入输出接口或者收发电路。
可选地,处理单元610还用于在确定目标小区的上行定时帧号与所述第一小区的上行定时帧号一致时,和通信单元620执行第一终端设备从第一小区至目标小区的切换。
可选地,通信装置600也可以同时具有方法实施例中的卫星基站配置小区的上行定时帧号的功能以及执行小区切换的功能。类似说明可以参考前述方法实施例的描述。为避免重复,这里不再赘述
可选地,处理单元610可以是一个处理装置,处理装置的功能可以部分或全部通过软件实现。
在一种实现中,处理装置的功能可以部分或全部通过软件实现。此时,处理装置可以包括存储器和处理器。其中,存储器用于存储计算机程序,处理器读取并执行存储器中存储的计算机程序,以执行各方法实施例中由卫星基站内部实现的步骤。
可选地,在另一种实现中,处理装置包括处理器。用于存储计算机程序的存储器位于处理装置之外,处理器通过电路/电线与存储器连接,以读取并执行存储器中存储的计算 机程序。
在再一种实现中,处理装置的功能可以全部通过硬件实现。此时,处理装置可以包括输入接口电路、逻辑电路和输出接口电路。其中,输入接口电路,用于获取第一波束的波束信息以及卫星基站的星历信息;逻辑电路,用于根据输入接口电路获取的第一波束的波束信息以及卫星基站的星历信息,确定第一波束对应的第一小区的上行定时帧号。输出接口电路用于输出第一小区的上行定时帧号。
可选地,输出接口电路将第一小区的上行定时帧号输出至存储器,由存储器对第一小区的上行定时帧号进行保存。
可选地,处理单元610还可以为基带装置。
在另一个实施例中,通信装置600可以完全对应图5-图8的实施例中的卫星基站。此时,通信装置
600包含的处理单元610可以为处理器,通信单元620可以为收发器。收发器包括发射机和接收机。
处理器根据第一波束的波束信息和卫星基站的星历信息,确定第一波束对应的第一小区的上行定时帧号,并根据第一小区的上行定时帧号确定第一小区内的第一终端设备的定时信息。收发器用于将所述定时信息发送给第一终端设备,便于终端设备和第一小区进行上行定时同步。
或者,处理器在确定第一终端设备触发小区切换时,判断目标小区的上行定时帧号和源小区的上行定时帧号是否一致。在目标小区的上行定时帧号和源小区的上行定时帧号不一致时,处理器确定第一终端设备在目标小区的定时信息,该定时信息用于指示第一终端设备和目标小区进行上行定时同步的定时提前量或者定时滞后量,并由收发器将所述目标小区的定时信息发送给终端设备,便于终端设备和目标小区进行上行定时同步。在目标小区的上行定时帧号和源小区的上行定时帧号一致时,处理器和收发器直接执行第一终端设备从源小区到目标小区的切换。
此时,通信装置600包含的各单元分别用于执行各方法实施例中由卫星基站执行的相应操作和/或处理。类似说明可以参考前述方法实施例的描述。为避免重复,不再赘述。
参见图13,图13为本申请提供的通信装置700的示意性框图。通信装置700包括通信单元710和处理单元720。
在一个实施例中,通信装置700的各单元分别用于执行如下操作和/或处理。
通信单元710,用于获取用于上行定时同步的定时信息;
处理单元720,用于根据通信接口获取到的定时信息确定定时提前量或者定时滞后量;
通信单元710,还用于输出处理单元720确定的定时提前量或者定时滞后量。
此时,通信单元710可以为通信接口,例如,输入输出接口或者收发电路。处理单元710可以为处理器。
在一个实施例中,通信装置700的各单元分别用于执行如下操作和/或处理。
通信单元710,用于接收目标小区的定时信息,定时信息用于指示定时提前量或者定时滞后量;
处理单元720,用于根据定时信息确定定时提前量或者定时滞后量。
此时,通信单元710可以为通信接口,例如,输入输出接口或者收发电路。处理单元 710可以为处理器。
可选地,处理单元720还用于确定定时信息来自卫星基站。
可选地,处理单元720还用于根据定时信息确定定时提前量或者定时滞后量。
可选地,通信单元710还用于从卫星基站接收目标小区的定时信息;以及,处理单元720还用于将第一小区的定时信息更新为目标小区的定时信息。
可选地,处理单元720可以是一个处理装置,处理装置的功能可以部分或全部通过软件实现。
在一种实现中,当处理装置的功能可以部分或全部通过软件实现。此时,处理装置可以包括存储器和处理器。其中,存储器用于存储计算机程序,处理器读取并执行存储器中存储的计算机程序,以执行各方法实施例中由终端设备内部实现的步骤。
可选地,在另一种实现中,处理装置包括处理器。用于存储计算机程序的存储器位于处理装置之外,处理器通过电路/电线与存储器连接,以读取并执行存储器中存储的计算机程序。
在再一种实现中,处理装置的功能可以全部通过硬件实现。此时,处理装置可以包括输入接口电路、逻辑电路和输出接口电路。其中,输入接口电路,用于获取定时信息;逻辑电路用于对定时信息进行解析,确定定时提前量或者定时滞后量。输出接口电路用于输出定时提前量或者定时滞后量。
可选地,在一些实施例中,逻辑电路还用于判断定时信息是否来自卫星基站,并在确定定时信息来自卫星基站时,再对定时信息进行解析。如果逻辑电路确定定时信息来自地面站,则按照LTE或NR中的标准规定的处理TA的方式解析定时信息(也即不需要判断定时数值为正或者为负),直接确定定时数值。如果逻辑电路确定定时信息来自卫星基站,则需要根据定时信息确定定时数值的正负并需要计算定时数值。
可选地,输出接口电路将定时信息的解析结果输出至存储器进行存储。
在另一个实施例中,通信装置700可以和方法实施例中的终端设备(例如,第一小区的第一终端设备)完全对应。通信装置700的相应单元分别用于执行方法各方法实施例中由终端设备执行的相应操作和/或处理。
通信装置700包含的通信单元710可以为收发器。收发器包括发射机和接收机。处理单元720可以为处理器。
收发器接收用于和第一小区进行上行定时同步的定时信息。处理器根据收发器接收到的定时信息确定定时提前量或者定时滞后量。处理器和收发器还用于根据定时提前量或定时滞后量进行终端设备和第一小区的上行定时同步。
或者,在终端设备触发小区切换之后,收发器接收目标小区的定时信息。处理器根据收发器接收到的目标小区的定时信息,确定和目标小区进行上行定时同步的定时提前量或定时滞后量。确定定时提前量或定时滞后量之后,收发器和处理器执行终端设备从源小区到目标小区的切换。
此时,通信装置700包含的各单元分别用于执行各方法实施例中由终端设备执行的相应操作和/或处理。类似说明可以参考前述方法实施例的描述。为避免重复,不再赘述。
参见图14,图14为本申请提供的网络设备的示意性结构图。网络设备1000可以对应各方法实施例中的卫星基站。如图14所示,网络设备1000包括天线1101、射频装置 1102、基带装置1103。天线1101与射频装置1102连接。在上行方向上,射频装置1102通过天线1101接收来自终端设备的信号,并将接收到的信号发送给基带装置1103进行处理。在下行方向上,基带装置1103生成需要发送给终端设备的信号,并将生成的信号发送给射频装置1102。射频装置1102通过天线1101将该信号发射出去。
基带装置1103可以包括一个或多个处理单元11031。处理单元11031具体可以为处理器。
此外,基带装置1103还可以包括一个或多个存储单元11032以及一个或多个通信接口11033。存储单元11032用于存储计算机程序和/或数据。通信接口11033用于与射频装置1102交互信息。存储单元11032具体可以为存储器,通信接口11033可以为输入输出接口或者收发电路。
可选地,存储单元11032可以是和处理单元11031处于同一芯片上的存储单元,即片内存储单元,也可以是与处理单元处于不同芯片上的存储单元,即片外存储单元。本申请对此不作限定。
可选地,当通信装置600为卫星基站时,图12中所示的处理单元610可以为图14中所示的基带装置1103。通信单元620可以为射频装置1102。
可选地,当通信装置600为芯片或者集成电路时,图12中所示的处理单元610可以为图14中所示的处理单元11031,通信单元620可以图14中所示的通信接口11033。
参见图15,图15为本申请提供的终端设备的示意性结构图。如图7所示,终端设备7000包括处理器7001和收发器7002。
可选地,终端设备7000还包括存储器7003。其中,处理器7001、收发器7002和存储器7003之间可以通过内部连接通路互相通信,传递控制信号和/或数据信号。
其中,存储器7003用于存储计算机程序。处理器7001用于执行存储器7003中存储的计算机程序,从而实现上述装置实施例中通信装置500的各功能。
具体地,处理器7001可以用于执行装置实施例(例如,图13)中描述的由处理单元720执行的操作和/或处理,而收发器7002用于执行由收发单元710执行操作和/处理。
例如,收发器7002从网络侧接收TA信息。又例如,处理器7001根据收发器7002接收到的TA信息确定TA的正负和TA的数值。
可选地,存储器7003也可以集成在处理器7001中,或者独立于处理器7001。
可选地,终端设备7000还可以包括天线7004,用于将收发器7002输出的信号发射出去。或者,收发器7002通过天线接收信号。
可选地,终端设备7000还可以包括电源7005,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,终端设备7000还可以包括输入单元7006、输出单元7007、音频电路7008、摄像头7009和传感器610等中的一个或多个。音频电路还可以包括扬声器70082、麦克风70084等,不再赘述。
可选地,当通信装置700为终端设备时,图13中所示的通信单元710可以为图15中所示的收发器7004,处理单元720可以为处理器7001。
可选地,当通信装置700为芯片或者集成电路时,图13中所示的通信单元710可以为图15中所示的输入单元7006或者输出单元7007,处理单元720可以为处理器7007。
此外,本申请还提供一种通信系统,包括各方法实施例中所述的卫星基站和终端设备。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被计算机执行时,使得计算机执行上述任一方法实施例中由卫星基站执行的步骤和/或处理。
本申请还提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述任一方法实施例中由卫星基站执行的步骤和/或处理。
本申请还提供一种芯片,所述芯片包括处理器。用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,以执行任一方法实施例中由卫星基站执行的步骤和/或处理。
进一步地,所述芯片还可以包括存储器和通信接口。所述通信接口可以是输入/输出接口、管脚或输入/输出电路等。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被计算机执行时,使得计算机执行上述任一方法实施例中由终端设备执行的操作和/或处理。
本申请还提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述任一方法实施例中由终端设备执行的操作和/或处理。
本申请还提供一种芯片,所述芯片包括处理器。用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,以执行任一方法实施例中由终端设备执行的操作和/或处理。
进一步地,所述芯片还可以包括存储器和通信接口。所述通信接口可以是输入/输出接口、管脚或输入/输出电路等。
以上各实施例中提及的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、特定应用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。本申请实施例公开的方法的步骤可以直接体现为硬件编码处理器执行完成,或者用编码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
上述各实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存 取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (28)
- 一种用于上行定时同步的方法,其特征在于,应用于卫星通信系统,包括:根据第一波束的波束信息和卫星基站的星历信息,确定所述第一波束对应的第一小区的上行定时帧号;根据所述第一小区的上行定时帧号,确定所述第一小区内的第一终端设备的定时信息,所述定时信息用于指示定时提前量或者定时滞后量;输出所述第一终端设备的定时信息。
- 根据权利要求1所述的方法,其特征在于,所述根据第一波束的波束信息和卫星基站的星历信息,确定所述第一波束对应的第一小区的上行定时帧号,包括:根据所述第一波束的波束信息和所述卫星基站的星历信息,确定所述第一小区内的第二终端设备和第三终端设备,所述第二终端设备为所述第一小区中距离所述卫星基站最近的终端设备,所述第三终端设备为所述第一小区中距离所述卫星基站最远的终端设备;根据所述第二终端设备与所述卫星基站之间传输信号的第一往返时延以及所述第三终端设备与所述卫星基站之间传输信号的第二往返时延确定所述第一小区的备选帧号集合;从所述备选帧号集合中选择第一帧号作为所述第一小区的上行定时帧号。
- 根据权利要求2所述的方法,其特征在于,所述根据所述第一往返时延和所述第二往返时延确定备选帧号集合,包括:根据所述第一往返时延和所述第二往返时延以及多个第一约束条件确定所述备选帧号集合,其中,所述多个第一约束条件包括:备选帧号为所述卫星基站和终端设备之间进行通信的时间单元的整数倍;备选帧号的最小值为不大于且最接近所述第一往返时延的整数;备选帧号的最大值为不小于且最接近所述第二往返时延的整数。
- 根据权利要求1-4中任一项所述的方法,其特征在于,所述第一终端设备接入到所述第一小区之后,所述方法还包括:确定所述第一终端设备触发小区切换;判断目标小区的上行定时帧号与所述第一小区的上行定时帧号是否一致;确定所述目标小区的上行定时帧号与所述第一小区的上行定时帧号不一致时,向所述第一终端设备发送所述目标小区的定时信息。
- 根据权利要求5所述的方法,其特征在于,所述方法还包括:确定所述目标小区的上行定时帧号与所述第一小区的上行定时帧号一致时,执行所述第一终端设备从所述第一小区至所述目标小区的切换。
- 根据权利要求1-6中任一项所述的方法,其特征在于,所述定时信息包括定时数 值和所述定时数值的正负,所述定时数值为正时,所述定时信息用于指示所述定时提前量,所述定时数值为负时,所述定时信息用于指示所述定时滞后量。
- 一种用于上行定时同步的方法,其特征在于,应用于卫星通信系统,包括:接收用于和第一小区进行上行定时同步的定时信息;根据所述定时信息,确定定时提前量或者定时滞后量;根据所述定时提前量或者所述定时滞后量和所述第一小区进行上行定时同步。
- 根据权利要求8所述的方法,其特征在于,所述根据所述定时信息,确定定时提前量或者定时滞后量之前,所述方法还包括:确定所述定时信息来自卫星基站。
- 根据权利要求8或9所述的方法,其特征在于,所述定时信息包括定时数值和所述定时数值的正负,所述根据所述定时信息,确定定时提前量或者定时滞后量,包括:确定所述定时数值为正时,根据所述定时数值确定所述定时提前量;或者,确定所述定时数值为负时,根据所述定时数值确定所述定时滞后量。
- 根据权利要求9或10所述的方法,其特征在于,所述接入到所述第一小区之后,所述方法还包括:触发小区切换;从所述卫星基站接收目标小区的定时信息;将所述第一小区的定时信息更新为所述目标小区的定时信息。
- 根据权利要求11所述的方法,其特征在于,所述方法还包括:根据所述目标小区的定时信息,与所述目标小区进行上行定时同步。
- 一种用于上行定时同步的装置,其特征在于,包括:处理单元,用于根据第一波束的波束信息和卫星基站的星历信息,确定所述第一波束对应的第一小区的上行定时帧号;所述处理单元,还用于根据所述第一小区的上行定时帧号确定所述第一小区内的第一终端设备的定时信息,所述定时信息用于指示定时提前量或者定时滞后量;通信单元,用于输出所述定时信息。
- 根据权利要求13所述的装置,其特征在于,所述处理单元具体用于:根据所述第一波束的波束信息和所述卫星基站的星历信息,确定所述第一小区内的第二终端设备和第三终端设备,所述第二终端设备为所述第一小区中距离所述卫星基站最近的终端设备,所述第三终端设备为所述第一小区中距离所述卫星基站最远的终端设备;根据所述第二终端设备与所述卫星基站之间传输信号的第一往返时延以及所述第三终端设备与所述卫星基站之间传输信号的第二往返时延确定所述第一小区的备选帧号集合;从所述备选帧号集合中选择第一帧号作为所述第一小区的上行定时帧号。
- 根据权利要求14所述的装置,其特征在于,所述处理单元具体用于根据所述第一往返时延和所述第二往返时延以及多个第一约束条件确定所述备选帧号集合,其中,所述多个第一约束条件包括:备选帧号为所述卫星基站和终端设备之间进行通信的时间单元的整数倍;备选帧号的最小值为不大于且最接近所述第一往返时延的整数;备选帧号的最大值为不小于且最接近所述第二往返时延的整数。
- 根据权利要求13-16中任一项所述的装置,其特征在于,所述处理单元还用于:确定所述第一终端设备触发小区切换;判断目标小区的上行定时帧号与所述第一小区的上行定时帧号是否一致;所述通信单元还用于在所述处理单元确定所述目标小区的上行定时帧号与所述第一小区的上行定时帧号不一致时,输出所述目标小区的定时信息。
- 根据权利要求17所述的装置,其特征在于,所述处理单元还用于在确定所述目标小区的上行定时帧号与所述第一小区的上行定时帧号一致时,和所述通信单元执行所述第一终端设备从所述第一小区至所述目标小区的切换。
- 一种用于上行定时同步的装置,其特征在于,包括:通信单元,用于接收用于和第一小区进行上行定时同步的定时信息,所述第一小区为所述第一装置的驻留小区;处理单元,用于根据所述定时信息,确定定时提前量或者定时滞后量;所述通信单元,还用于根据所述处理单元确定的所述定时提前量或者所述定时滞后量进行上行定时同步。
- 根据权利要求19所述的装置,其特征在于,所述处理单元还用于确定所述定时信息来自卫星基站。
- 根据权利要求19或20所述的装置,其特征在于,所述定时信息包括定时数值和所述定时数值的正负,所述处理单元具体用于:确定所述定时数值为正时,根据所述定时数值确定所述定时提前量;或者,确定所述定时数值为负时,根据所述定时数值确定所述定时滞后量。
- 根据权利要求20或21所述的装置,其特征在于,所述通信单元还用于从所述卫星基站接收目标小区的定时信息;以及所述处理单元还用于将所述第一小区的定时信息更新为所述目标小区的定时信息。
- 一种计算机可读存储介质,其特征在于,包括计算机程序,当其在计算机上运行时,如权利要求1-7中任一项所述的方法被执行。
- 一种计算机可读存储介质,其特征在于,包括计算机程序,当其在计算机上运行时,如权利要求8-12中任一项所述的方法被执行。
- 一种通信装置,其特征在于,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行如权利要求1-7中任一项所述的方法。
- 一种通信装置,其特征在于,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行如权利要求8-12中任一项所述的方法。
- 一种芯片,其特征在于,包括处理器,用于执行存储器中存储的程序,当所述程序被执行时,使得所述装置执行如权利要求1-7任一项或权利要求8-12任一项所述的方法。
- 一种计算机程序产品,当其在计算机上运行时,使得权利要求1-7任一项或权利要求8-12任一项所述的方法被执行。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20782606.6A EP3934342A4 (en) | 2019-03-29 | 2020-03-27 | METHOD AND DEVICE FOR UPLINK TIME SYNCHRONIZATION |
US17/487,679 US11711778B2 (en) | 2019-03-29 | 2021-09-28 | Method and apparatus for uplink timing synchronization |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910252495.X | 2019-03-29 | ||
CN201910252495.XA CN111757457B (zh) | 2019-03-29 | 2019-03-29 | 用于上行定时同步的方法和装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/487,679 Continuation US11711778B2 (en) | 2019-03-29 | 2021-09-28 | Method and apparatus for uplink timing synchronization |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020200068A1 true WO2020200068A1 (zh) | 2020-10-08 |
Family
ID=72665012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/081590 WO2020200068A1 (zh) | 2019-03-29 | 2020-03-27 | 用于上行定时同步的方法和装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11711778B2 (zh) |
EP (1) | EP3934342A4 (zh) |
CN (1) | CN111757457B (zh) |
WO (1) | WO2020200068A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115189823A (zh) * | 2021-04-01 | 2022-10-14 | 维沃移动通信有限公司 | 重复传输的处理方法、装置、终端及网络侧设备 |
EP4068868A4 (en) * | 2019-11-29 | 2022-11-30 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | DIRECT ACCESS METHOD AND DEVICE, NETWORK DEVICE, AND STORAGE MEDIA |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3866521A1 (en) * | 2020-02-17 | 2021-08-18 | Mitsubishi Electric R&D Centre Europe B.V. | Handover-related rach requests reduction in non-terrestrial networks |
CN115038158A (zh) * | 2021-02-23 | 2022-09-09 | 中国电信股份有限公司 | 定时关系增强方法、基站和通信系统 |
CN115941015A (zh) * | 2021-08-04 | 2023-04-07 | 展讯半导体(南京)有限公司 | 通信方法及装置、芯片、芯片模组、存储介质 |
CN116095809A (zh) * | 2021-11-04 | 2023-05-09 | 华为技术有限公司 | 一种无线通信的方法和装置 |
CN114175715B (zh) * | 2021-11-05 | 2024-04-26 | 北京小米移动软件有限公司 | 信息传输方法、装置、通信设备和存储介质 |
CN114095073B (zh) * | 2021-11-17 | 2023-12-19 | 国家计算机网络与信息安全管理中心 | 一种5g卫星融合场景中的无缝切换方法 |
US20230262687A1 (en) * | 2022-02-13 | 2023-08-17 | Qualcomm Incorporated | Uplink timing management in communications systems |
CN117545058A (zh) * | 2022-08-01 | 2024-02-09 | 大唐移动通信设备有限公司 | 一种卫星网络中的同步方法及装置 |
GB2627484A (en) * | 2023-02-24 | 2024-08-28 | Airspan Ip Holdco Llc | Timing adjustment within a wireless communication system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1753550A (zh) * | 2004-09-20 | 2006-03-29 | 北京三星通信技术研究有限公司 | 利用波束成形增强定位信号发送的方法及设备 |
CN103379435A (zh) * | 2012-04-28 | 2013-10-30 | 电信科学技术研究院 | 一种基于卫星移动通信系统的广播信息传输方法和设备 |
WO2016004627A1 (zh) * | 2014-07-11 | 2016-01-14 | 华为技术有限公司 | 小区切换的方法、基站及系统 |
CN107333241A (zh) * | 2017-08-02 | 2017-11-07 | 电子科技大学 | 基于lte体制的卫星移动通信上行发射端定时调整方法 |
US20180054837A1 (en) * | 2016-08-19 | 2018-02-22 | Qualcomm Incorporated | Conveying rach information through pbch |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5790939A (en) * | 1995-06-29 | 1998-08-04 | Hughes Electronics Corporation | Method and system of frame timing synchronization in TDMA based mobile satellite communication system |
US6470188B1 (en) * | 1996-12-26 | 2002-10-22 | Ntt Mobile Communications Network, Inc. | Method for handover |
DE1273112T1 (de) * | 2000-04-06 | 2003-05-28 | Interdigital Technology Corp., Wilmington | Synchronisation von zeitvorverschiebung und zeitabweichung |
CN101854713A (zh) * | 2010-03-30 | 2010-10-06 | 中国人民解放军信息工程大学 | 一种卫星cdma系统及其中反向链路的同步方法 |
WO2012064568A2 (en) * | 2010-11-09 | 2012-05-18 | Sorce4 Llc. | Methods for encoding and recovering gnss ephemeris for over-the-air transmission |
CN103945471B (zh) * | 2013-01-21 | 2019-01-22 | 电信科学技术研究院 | 一种小区切换方法及装置 |
CN103969662B (zh) * | 2013-02-04 | 2016-08-31 | 安凯(广州)微电子技术有限公司 | 一种全球定位系统接收机的帧同步方法及装置 |
US10805891B2 (en) * | 2014-09-25 | 2020-10-13 | Samsung Electronics Co., Ltd. | Synchronization procedure and resource control method and apparatus for communication in D2D system |
EP3188558B1 (en) * | 2014-09-30 | 2019-01-09 | Huawei Technologies Co., Ltd. | Transmission timing adjustment method and device |
WO2016065642A1 (zh) * | 2014-10-31 | 2016-05-06 | 华为技术有限公司 | 一种同步装置及方法 |
CN104777490B (zh) * | 2015-03-18 | 2017-12-29 | 广东工业大学 | 一种导航卫星信号接收机及其冷启动方法 |
US9762314B2 (en) * | 2015-05-01 | 2017-09-12 | Qualcomm Incorporated | Handoff for non-geosynchronous satellite communication |
CN106550389A (zh) * | 2015-09-21 | 2017-03-29 | 中兴通讯股份有限公司 | 一种上行系统帧号差值的获取方法、基站、终端 |
CN108370549B (zh) * | 2016-04-21 | 2021-02-23 | 华为技术有限公司 | 一种同步信息发送或接收方法、基站和通信节点 |
CN110492913B (zh) * | 2017-01-06 | 2020-09-29 | 华为技术有限公司 | 一种信号传输方法和装置 |
US10153831B1 (en) * | 2017-02-13 | 2018-12-11 | Lockheed Martin Corporation | Power usage-aware spectral resource allocation in a satellite long term evolution (LTE) communication system |
CN107197517B (zh) * | 2017-08-02 | 2020-11-06 | 电子科技大学 | 基于ta分组的lte卫星上行链路同步方法 |
CN107682870B (zh) * | 2017-09-19 | 2019-11-26 | 西安电子科技大学 | Lte频率复用中的边缘用户和中心用户划分方法 |
CN109031377B (zh) * | 2018-07-05 | 2019-06-04 | 格星微电子科技成都有限公司 | 一种基于伪卫星的隧道内定位方法 |
CN111565448B (zh) * | 2019-02-14 | 2021-05-11 | 电信科学技术研究院有限公司 | 一种进行随机接入的方法及设备 |
EP3876571A1 (en) * | 2020-03-05 | 2021-09-08 | Signify Holding B.V. | Fast secure handover |
-
2019
- 2019-03-29 CN CN201910252495.XA patent/CN111757457B/zh active Active
-
2020
- 2020-03-27 WO PCT/CN2020/081590 patent/WO2020200068A1/zh unknown
- 2020-03-27 EP EP20782606.6A patent/EP3934342A4/en active Pending
-
2021
- 2021-09-28 US US17/487,679 patent/US11711778B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1753550A (zh) * | 2004-09-20 | 2006-03-29 | 北京三星通信技术研究有限公司 | 利用波束成形增强定位信号发送的方法及设备 |
CN103379435A (zh) * | 2012-04-28 | 2013-10-30 | 电信科学技术研究院 | 一种基于卫星移动通信系统的广播信息传输方法和设备 |
WO2016004627A1 (zh) * | 2014-07-11 | 2016-01-14 | 华为技术有限公司 | 小区切换的方法、基站及系统 |
US20180054837A1 (en) * | 2016-08-19 | 2018-02-22 | Qualcomm Incorporated | Conveying rach information through pbch |
CN107333241A (zh) * | 2017-08-02 | 2017-11-07 | 电子科技大学 | 基于lte体制的卫星移动通信上行发射端定时调整方法 |
Non-Patent Citations (3)
Title |
---|
3GPP TS38.211 |
NOKIA, NOKIA SHANGHAI BELL: "Considerations on Timing Advance and Random Access for NTN", 3GPP TSG RAN WG1 MEETING #93 R1-1806768, 12 May 2018 (2018-05-12), XP051461968, DOI: 20200521155408A * |
See also references of EP3934342A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4068868A4 (en) * | 2019-11-29 | 2022-11-30 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | DIRECT ACCESS METHOD AND DEVICE, NETWORK DEVICE, AND STORAGE MEDIA |
CN115189823A (zh) * | 2021-04-01 | 2022-10-14 | 维沃移动通信有限公司 | 重复传输的处理方法、装置、终端及网络侧设备 |
CN115189823B (zh) * | 2021-04-01 | 2024-06-11 | 维沃移动通信有限公司 | 重复传输的处理方法、装置、终端及网络侧设备 |
Also Published As
Publication number | Publication date |
---|---|
US20220022152A1 (en) | 2022-01-20 |
US11711778B2 (en) | 2023-07-25 |
CN111757457B (zh) | 2022-03-29 |
EP3934342A4 (en) | 2022-04-27 |
CN111757457A (zh) | 2020-10-09 |
EP3934342A1 (en) | 2022-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020200068A1 (zh) | 用于上行定时同步的方法和装置 | |
US20220393957A1 (en) | Timing advance determining method and communication apparatus | |
US20220116882A1 (en) | Reference signal determination method and device, and ue | |
US11570810B2 (en) | Method and device for scheduling uplink data based on carrier sensing of at least one beam | |
WO2019153311A1 (zh) | 传输上行控制信息的方法和设备 | |
US11089505B2 (en) | Method and device for transmitting data based on quality of service | |
CN111885640B (zh) | 一种控制数据传输方法、网络设备和存储介质 | |
US12058707B2 (en) | Communication method in D2D system, terminal device, and network device | |
WO2020062318A1 (zh) | 无线通信方法和终端设备 | |
WO2019140667A1 (zh) | 数据传输的方法和终端设备 | |
WO2021083265A1 (zh) | 用于卫星通信的方法和装置 | |
US20240031964A1 (en) | Adjustment method and determination method for transmission timing, and terminal device | |
WO2021227069A9 (zh) | 一种模型更新方法及装置、通信设备 | |
WO2021253455A1 (zh) | 无线通信方法、终端设备和网络设备 | |
WO2021072609A1 (zh) | 无线通信的方法及设备 | |
EP3962183A1 (en) | Method for activating or updating pusch path loss rs and device | |
WO2021056385A1 (zh) | 无线通信的方法、终端设备和网络设备 | |
CN114303428A (zh) | 确定时间戳的方法、终端设备、接入网节点、核心网设备 | |
WO2020010619A1 (zh) | 数据传输方法、终端设备和网络设备 | |
RU2799887C2 (ru) | Метод и устройство для временной синхронизации восходящей линии связи | |
WO2022236635A1 (zh) | 信道状态信息的上报方法及装置、终端设备、网络设备 | |
WO2018170826A1 (zh) | 多波束系统中确定控制信道的检测范围的方法和设备 | |
JP7284258B2 (ja) | リソース構成方法、ネットワークデバイス及び端末デバイス | |
WO2018232719A1 (zh) | 无线通信方法和设备 | |
WO2019056330A1 (zh) | 数据传输的方法、终端设备和网络设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20782606 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020782606 Country of ref document: EP Effective date: 20210929 |