WO2020199954A1 - 信息映射方法、信息获取方法、终端设备及网络设备 - Google Patents

信息映射方法、信息获取方法、终端设备及网络设备 Download PDF

Info

Publication number
WO2020199954A1
WO2020199954A1 PCT/CN2020/080647 CN2020080647W WO2020199954A1 WO 2020199954 A1 WO2020199954 A1 WO 2020199954A1 CN 2020080647 W CN2020080647 W CN 2020080647W WO 2020199954 A1 WO2020199954 A1 WO 2020199954A1
Authority
WO
WIPO (PCT)
Prior art keywords
field
matrix
information
indicating
fed back
Prior art date
Application number
PCT/CN2020/080647
Other languages
English (en)
French (fr)
Inventor
李永
吴昊
鲁照华
徐俊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP20785391.2A priority Critical patent/EP3952124A4/en
Priority to JP2021557995A priority patent/JP7545992B2/ja
Priority to KR1020217035051A priority patent/KR20210142730A/ko
Priority to AU2020251598A priority patent/AU2020251598B2/en
Publication of WO2020199954A1 publication Critical patent/WO2020199954A1/zh
Priority to US17/489,323 priority patent/US20220030584A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction
    • H04B7/0663Feedback reduction using vector or matrix manipulations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity

Definitions

  • This application relates to the field of wireless communication technologies, such as an information mapping method, an information acquisition method, terminal equipment, network equipment, communication system, and storage medium.
  • the precoding technology of the multi-antenna technology improves the performance of communication by applying precoding to the transmitting antenna.
  • the transmitting side transmits a reference signal (RS, Reference Signal) on a resource (Resource), and the receiving side uses the reference signal to measure channel state information (CSI, Channel State Information), and then feeds back the measured channel in the form of precoding State information
  • precoding is usually fed back in the form of precoding matrix indicator (PMI, Precoding Matrix Indicator) information.
  • PMI Precoding Matrix Indicator
  • This application provides an information mapping method, information acquisition method, terminal equipment, network equipment, communication system, and storage medium.
  • the embodiment of the present application provides an information mapping method, including:
  • the one or more fields are divided into a first partial field and a second partial field; wherein the first partial field is used to carry at least one of the following information fields of channel state information: a field indicating the rank of the precoding, indicating the first The wideband channel quality indicator field of a transmission block, the subband differential channel quality indicator field of the first transmission block, and the field indicating the number of elements to be fed back in the first matrix; the second part of the field is used for At least one of the following information fields carrying channel state information: a field indicating the information of the second matrix, a field indicating the position of the strongest coefficient in the first matrix, a field indicating the reference amplitude of the second polarization direction, and a field indicating the The domain of the elements being fed back; wherein the domain indicating the elements being fed back in the first matrix includes: a domain indicating the magnitude of the elements being fed back in the first matrix, indicating the elements being fed back in the first matrix Phase domain; wherein the element in the second matrix is used to indicate the position of the element
  • the first bit sequence is generated according to the first partial field
  • the second bit sequence is generated according to the second partial field.
  • the embodiment of the present application provides an information acquisition method, including:
  • the first partial field is used to carry at least one of the following information fields of channel state information: a field indicating the rank of precoding, a field indicating a wideband channel quality indicator of the first transport block, and a field indicating the information of the first transport block.
  • the field of subband differential channel quality indication the field indicating the number of elements to be fed back in the first matrix;
  • the second partial field is used to carry at least one of the following information fields of channel state information: a field indicating information of the second matrix, a field indicating the position of the strongest coefficient in the first matrix, and a field indicating the reference amplitude of the second polarization direction Domain, indicating the domain of the element being fed back in the first matrix; wherein the domain indicating the element being fed back in the first matrix includes: a domain indicating the magnitude of the element being fed back in the first matrix, indicating the first matrix The domain of the phase of the element being fed back in the matrix;
  • the element in the second matrix is used to indicate the position of the element to be fed back in the first matrix.
  • An embodiment of the present application provides a terminal device, including:
  • the mapping unit is used to map one or more information fields of channel state information to one or more fields of uplink control information
  • a processing unit configured to divide the one or more fields into a first partial field and a second partial field; generate a first bit sequence according to the first partial field, and generate a second bit sequence according to the second partial field;
  • the first partial field is used to carry at least one of the following information fields of channel state information: a field indicating the rank of precoding, a field indicating a wideband channel quality indicator of the first transport block, and a field indicating the information of the first transport block.
  • the field of subband differential channel quality indication the field indicating the number of elements to be fed back in the first matrix;
  • the second partial field is used to carry at least one of the following information fields of channel state information: a field indicating information of the second matrix, a field indicating the position of the strongest coefficient in the first matrix, and a field indicating the reference amplitude of the second polarization direction Domain, indicating the domain of the element being fed back in the first matrix; wherein the domain indicating the element being fed back in the first matrix includes: a domain indicating the magnitude of the element being fed back in the first matrix, indicating the first matrix The domain of the phase of the element being fed back in the matrix;
  • the element in the second matrix is used to indicate the position of the element to be fed back in the first matrix.
  • An embodiment of the present application provides a network device, including:
  • An information extraction unit configured to obtain the first bit sequence and the second bit sequence from the uplink control information; obtain the first partial field from the first bit sequence, and obtain the second partial field from the second bit sequence;
  • An information processing unit configured to obtain one or more information fields constituting the channel state information based on the first partial field and the second partial field;
  • the first partial field is used to carry at least one of the following information fields of channel state information: a field indicating the rank of precoding, a field indicating a wideband channel quality indicator of the first transport block, and a field indicating the information of the first transport block.
  • the field of subband differential channel quality indication the field indicating the number of elements to be fed back in the first matrix;
  • the second partial field is used to carry at least one of the following information fields of channel state information: a field indicating information of the second matrix, a field indicating the position of the strongest coefficient in the first matrix, and a field indicating the reference amplitude of the second polarization direction Domain, indicating the domain of the element being fed back in the first matrix; wherein the domain indicating the element being fed back in the first matrix includes: a domain indicating the magnitude of the element being fed back in the first matrix, indicating the first matrix The domain of the phase of the element being fed back in the matrix;
  • the element in the second matrix is used to indicate the position of the element to be fed back in the first matrix.
  • the embodiment of the present application provides a terminal device, which includes a processor and a memory for storing a computer program that can run on the processor, where the memory is used for storing the computer program, and the processor is used for calling and running the computer program.
  • the computer program stored in the memory executes the foregoing steps.
  • An embodiment of the present application provides a network device, including: a processor and a memory for storing a computer program that can run on the processor, where the memory is used for storing the computer program, and the processor is used for calling and running all the computer programs.
  • the computer program stored in the memory executes the foregoing steps.
  • the embodiment of the present application provides a communication system, including: the aforementioned terminal device and the aforementioned network device.
  • An embodiment of the present application provides a storage medium that stores a computer program, and when the computer program is executed by a processor, any one of the methods in the embodiments of the present application is implemented.
  • one or more information fields of channel state information can be mapped to uplink control information, specifically to the first partial field and the second partial field in the uplink control information, and the first partial field And the second part of the fields respectively constitute the first bit sequence and the second bit sequence; in this way, the channel state information can be mapped to the uplink control information.
  • FIG. 1 is a schematic flowchart of an information mapping method proposed by an embodiment of this application
  • FIG. 3 is a schematic flowchart of an information acquisition method proposed by an embodiment of this application.
  • FIG. 5 is a schematic diagram of the composition structure of a terminal device proposed by an embodiment of this application.
  • FIG. 6 is a schematic diagram of the structure of a terminal device provided by another embodiment of the application.
  • FIG. 7 is a schematic diagram of a hardware composition structure of a terminal device provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of the composition structure of a network device provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of the composition structure of a network device provided by another embodiment of this application.
  • FIG. 10 is a schematic diagram of the hardware structure of a network device provided by an embodiment of the application.
  • FIG. 11 is a schematic diagram of a hardware composition structure of a terminal device provided by another embodiment of this application.
  • FIG. 12 is a schematic diagram of a hardware composition structure of a network device provided by another embodiment of this application.
  • FIG. 13 is a schematic diagram of the composition structure of a communication system provided by an embodiment of this application.
  • FIG. 14 is a schematic diagram of the composition structure of a communication system provided by another embodiment of this application.
  • an information mapping method is provided, as shown in FIG. 1, including:
  • Step 101 Map one or more information fields of channel state information to one or more fields of uplink control information.
  • Step 102 Divide the one or more fields into a first partial field and a second partial field; wherein the first partial field is used to carry at least one of the following information fields of channel state information: a field indicating the rank of the precoding , The field indicating the wideband channel quality indicator of the first transmission block, the field indicating the subband differential channel quality indicator of the first transmission block, and the field indicating the number of elements to be fed back in the first matrix; the second Some fields are used to carry at least one of the following information fields of channel state information: a field indicating the information of the second matrix, a field indicating the position of the strongest coefficient in the first matrix, a field indicating the reference amplitude of the second polarization direction, and a field indicating the first matrix
  • the domain of the elements being fed back in a matrix; wherein the domain indicating the elements being fed back in the first matrix includes: a domain indicating the magnitude of the elements being fed back in the first matrix, indicating the domain of the elements being fed back in the first matrix
  • Step 103 Generate a first bit sequence according to the first partial field, and generate a second bit sequence according to the second partial field.
  • This embodiment can be applied to the terminal device side. After completing the foregoing processing, it may further include: sending uplink control information to a network device; wherein, the network device may be a device on the network side, for example, it may be a base station on the network side.
  • this embodiment may include the following processing procedures:
  • Step 201 Map one or more information fields of channel state information to one or more fields of uplink control information; divide the one or more fields into a first partial field and a second partial field; according to the first partial field Generate the first bit sequence, and generate the second bit sequence according to the second part of the field.
  • Step 202 Send the uplink control information to the network device.
  • the uplink control information finally sent to the network device in step 202 is the uplink control information including the first bit sequence and the second bit sequence, that is, the uplink control information of one or more information domains mapped with channel state information.
  • the following first describes the configuration of the precoding involved in this embodiment. Taking a network device as a base station, and taking a layer of precoding in multi-layer precoding as an example, the specific configuration can be as follows: W VCU .
  • W represents a single-layer precoding, which is a matrix of N Tx rows and N 3 columns, where N Tx represents the number of antenna ports, and N 3 represents the number of PMI frequency domain units. That is, the rows of W correspond to the antenna ports, and the columns are The frequency domain unit corresponds.
  • Is a matrix composed of M row vectors u m , where T represents the transposition of the matrix, m 0,1,...,M-1; M is a positive integer; the vector u m is called a frequency domain vector .
  • the first matrix in this embodiment can be represented by C, which is specifically as follows:
  • It is a matrix with 2L rows and M columns, the elements of which are the coefficients of the column vectors in the V matrix and the row vectors in the U matrix.
  • the second matrix in the foregoing embodiment may be C map .
  • the terminal device feeds back the L vectors v l constituting the V matrix to the base station, and feeds back the M vectors u m constituting the U matrix, and uses a 2L row and M column bit matrix C map to indicate in the form of bitmap The position of the element to be fed back in the C matrix, and the corresponding coefficient indicated in the feedback C matrix; wherein the matrix C map (ie the second matrix) corresponds to the elements at the same position in the matrix C (ie the first matrix) one to one.
  • the coefficients in the C matrix indicated by the bitmap for feedback are 0 by default. It should be pointed out here that the element being fed back can refer to the coefficient being fed back in the first matrix C.
  • the vector v l is selected from a predefined codebook
  • the u m vector is selected from a predefined codebook.
  • the number of elements in the u m vector is called the number of frequency domain units N 3 of the PMI, and is equal to The number of basis vectors in the predefined codebook space where the vector is located, so N 3 also represents The number of basis vectors in the predefined codebook space where the vector is located.
  • the base station transmits to the terminal the parameters (L, M, K 0 ) of the control feedback report; wherein the terminal feeds back the L vectors v l constituting the V matrix to the base station , The M vectors u m forming the U matrix are fed back, and the terminal feeds back at most K 0 coefficients in the C matrix to the base station.
  • the precoding fed back by the terminal is used for layer 1 transmission in the spatial domain, and the rank of precoding is called 1; for layer 2 transmission, the rank of precoding is called 2; the same is used for RI layer transmission, called precoding.
  • the terminal feeds back the precoding rank and precoding.
  • the base station transmits to the terminal the reported control parameters (L, M, K 0 ) corresponding to each possible rank and each layer of the corresponding rank PMI.
  • the channel state information is composed of multiple parts of information, and each part of information is called an information field, and a field indicating a certain part of information has the same meaning as a certain part of information.
  • the field is the bit or a sequence of bits that carry information, that is, the information is represented by a bit sequence.
  • the first matrix is the coefficient in matrix C, that is, the element in matrix C.
  • the second polarization direction reference amplitude is the reference amplitude of the coefficients belonging to the second polarization direction in the matrix C.
  • the reference amplitude of the first polarization direction is the reference amplitude of the coefficients belonging to the first polarization direction in the matrix C, and the default is 1.
  • the field indicating the coefficient amplitude in the matrix C where the coefficient amplitude refers to the differential amplitude of the coefficient for the second polarization direction, and also refers to the differential amplitude of the coefficient for the first polarization direction.
  • mapping one or more information fields of channel state information to one or more fields of uplink control information may include:
  • the field indicating the information of the second matrix in the channel state information is mapped to the first field of the uplink control information; wherein, the first field contains a one-dimensional sequence, and the one-dimensional sequence consists of the second matrix of the second matrix. The elements of the dimensional matrix are mapped.
  • the first field and the second field in this embodiment do not represent the order of the fields, and are only used to distinguish different fields.
  • the specific arrangement order is irrelevant.
  • the first field can be arranged before the second field.
  • the first field can also be arranged after the second field; of course, this embodiment can also include more fields, for example, the third field, the fourth field, the fifth field and more, which do not represent each field.
  • the arrangement order of is only used to distinguish each field.
  • each field when each field is specifically arranged, it can be the first field-the second field-the fourth field-the sixth field-the third field-the fifth field.
  • the expression method thereof shall not prevail, but shall prevail according to the subsequent rules or description, and the description will not be repeated below.
  • the way to perform the mapping may be to add the elements of the two-dimensional matrix to the one-dimensional sequence in the order of increasing rows of the second matrix, and finally obtain the mapped one-dimensional sequence as the first of the uplink control information. Field.
  • the second matrix such as It is a matrix with 2L rows and M columns, a two-dimensional bit matrix, in which the elements indicate the first matrix in a bit-mapped manner Whether the elements in are reported.
  • the mapping of the second matrix C from the map matrix to the bit sequence in the field is a mapping from two-dimensional matrix elements to a one-dimensional sequence, that is, the field mapped into the two-dimensional matrix is a one-dimensional sequence.
  • a first field sequence of the second bitmap matrix C map the uplink control information is mapped in the second row of the matrix C map matrix, then the matrix C map all of the second element of the second matrix C map i.e. the next row All elements in a row are sequentially mapped to the sequence in the field.
  • the elements in are mapped to the sequence in the field in order, that is, the sequence Map to the sequence in the field in order; among them, if m ⁇ n, then i m ⁇ i n .
  • the second matrix C map mapping a bit sequence field is increasing order row C map mapping a second matrix
  • the sequence in the field is mapped to the sequence in the increasing order of rows, which is the sequence [d 0 ,d 1 ,...
  • the elements in ,d 2L-1 ] are mapped to the sequence in the first field in order, which is the sequence [d 0,0 ,d 0,1 ,...,d 0,M-1 ,d 1,0 ,d 1,1 ,...,d 1,M-1 ,...,d 2L-1,0 ,d 2L-1,1 ,...,d 2L-1,M-1 ] are mapped to the sequence in the first field in order .
  • the determination of N is related to the number of maximum feedback elements.
  • the determination method can adopt the following formula:
  • K 0 is the maximum possible number of feedback elements in the first matrix C configured by the base station for the terminal.
  • the coefficient in the first matrix C is the element in the first matrix C
  • the coefficient means that the element in the first matrix C is the coefficient of the column in the matrix V and the row in the matrix U, that is, the position of the strongest coefficient in the matrix C It is the same as the position of the strongest element in the matrix C.
  • the position of the strongest element in C is the index number l * of the row of the strongest element in C and the index number m * of the column, that is (l * , m * ), which can only be located at the first indicated by the second matrix C map
  • the positions of the elements of matrix C that is, there are at most K 0 possible positions, use A field sequence of bits is used to map one of K 0 possible positions, so that overhead can be saved to the greatest extent.
  • the position indicated in the map field of the second matrix C and The corresponding relationship of the sequence state composed of bits is the first corresponding relationship.
  • use The bits indicate the position of the strongest coefficient in the first matrix C.
  • the position indicated in the map field of the second matrix C is the same as
  • the corresponding relationship of the sequence state composed of bits is the second corresponding relationship. According to the second corresponding relationship, use The bits indicate the position of the strongest coefficient in the first matrix C.
  • the first corresponding relationship is that the position indicated in the map field of the second matrix C corresponds to the sequence state in order, for example, the first position in the second matrix C map corresponds to The sequence state 0 composed of bits corresponds to the sequence state 0, and then the indicated incremental position corresponds to the incremental bit sequence state.
  • K 1 positions are indicated in the C map field.
  • sequence state n refers to the number of sequence composition is n, for example, the lowest bit sequence 001 on the right side is the number 1, 010 is the number 2, 100 is the number 4; for example, the lowest bit sequence 001 on the left is the number 4, 010 The number is 2, 100 is the number 1.
  • a sequence of N bits is used to indicate the position.
  • the sequence state is 3
  • the position in the second matrix corresponds to the sequence state from front to back, it means that the indication is in the second matrix.
  • the 4th position is 3
  • Corresponding in the order of the positions indicated in the map field of the second matrix C can reduce the complexity of calculating the position of the strongest element in the first matrix C; according to the order of the positions indicated in the map field of the second matrix C
  • the relationship corresponding to the order of the sequence state can reduce the complexity of calculating the position of the strongest element in the first matrix C; the relationship between the first position indicated in the map field of the second matrix C and the sequence state 0 can be reduced
  • the complexity of calculating the position of the strongest element in the first matrix C is small.
  • the second correspondence is that the first position indicated in the map field of the second matrix C and the The sequence state (2 b -1) constituted by bits corresponds to, and then the indicated increasing position corresponds to the decreasing bit sequence state.
  • the map field of the second matrix C indicates K 1 positions, where ⁇ 1st position, 2nd position,..., K 1th position ⁇ and ⁇ sequence state 2 b -1, sequence state 2 b -2, ..., the sequence state 2 b -K 1 ⁇ corresponds to each other in sequence;
  • the sequence state n refers to the number of sequence composition is n, for example, the lowest bit sequence 001 on the right side is the number 1, 010 is the number 2, 100 is the number 4; for example, the lowest bit sequence 001 on the left is the number 4, 010 The number is 2, 100 is the number 1.
  • this correspondence according to the order of the positions indicated in the map field of the second matrix C can reduce the complexity of calculating the position of the strongest element in the first matrix C; according to the position indicated in the map field of the second matrix C
  • the corresponding relationship between the order of the positions and the reverse order of the sequence states can reduce the complexity of calculating the position of the strongest element in the first matrix C.
  • the corresponding relationship between the first position indicated in the map field of the second matrix C and the end state of the sequence can reduce the complexity of calculating the position of the strongest element in the first matrix C.
  • the first bit sequence is generated according to the first partial field
  • the second bit sequence is generated according to the second partial field.
  • the second bit sequence is mainly composed of the second partial field.
  • the second field Arrange the second field that carries the field indicating the position of the strongest coefficient in the first matrix after the first field of the field that carries the information indicating the second matrix; wherein, the second field contains N bits Sequence; N is an integer, and N is related to the maximum number of feedback elements configured by the network device.
  • the method for determining the sequence composed of N bits contained in the second field is as described above and will not be repeated here.
  • the field carrying the field indicating the map information of the second matrix C is more important, because the field carrying the field indicating the position of the strongest coefficient in the first matrix C needs to depend on the second matrix to obtain the position of the strongest coefficient in the first matrix C C map information, and the top field in the uplink control information bit sequence is more reliable in transmission than the bottom field.
  • the domain of the second matrix C For example, after carrying the first field indicating the domain of the map information of the second matrix C, immediately carrying the second field indicating the domain of the strongest coefficient position in the first matrix C; or, the domain of the second matrix C map information After the first field, one or more other fields are followed, and a second field carrying the field indicating the position of the strongest coefficient in the first matrix C is added.
  • Generating the second bit sequence according to the second part of the field may also include: combining the third field corresponding to the same coefficient in the first matrix with the field indicating the coefficient amplitude in the first matrix and the third field in the first matrix indicating the The fourth field of the field of the coefficient phase is set to be adjacently arranged.
  • y is a coefficient reported by feedback in the first matrix C
  • a y is the amplitude of y
  • the field carrying A y is G y
  • P y is the phase of y
  • the field carrying P y is Hy
  • a second bit sequence and the field field H y G y phase immediately, for example arranged in a G y H y, or H y G y are arranged
  • H y wherein G y phase and immediately, without gaps other fields.
  • z is another coefficient reported by feedback in the first matrix C
  • Az is the amplitude of z
  • the field carrying Az is G z
  • P z is the phase of z
  • the field carrying P z is H z
  • the fields carrying the amplitude and phase of these two coefficients are arranged as G y H y G z H z , or arranged as H y G y H z G z , or arranged as G z H z G y H y , or arranged in a H z G z H y G y ; wherein, G y H y phase and immediately, without gaps other field, G z and H z with immediately, without gaps other fields.
  • the close proximity of the amplitude-bearing field and the phase field corresponding to the same coefficient can shorten the time to obtain the same coefficient, and the obtained coefficient can be used without waiting for the acquisition of other coefficients, that is, the waiting time for using the coefficient can be shortened.
  • One polarization direction is the polarization direction corresponding to the strongest coefficient in the first matrix, and the second polarization direction is another polarization direction that is different from the first polarization direction.
  • the polarization direction of the coefficient in the first matrix C refers to the polarization direction of the column vector in the matrix V corresponding to the coefficient.
  • the element corresponding to the antenna port of the polarization direction is not zero, and the other polarization The element corresponding to the antenna port of the direction is zero.
  • the row of the first half of the sequence number of the first matrix C belongs to one polarization direction, for example, the row of index number ⁇ 0,1,...,L-1 ⁇ belongs to one polarization direction; the row of the second half of the sequence number belongs to another The polarization direction, for example, the row with index number ⁇ L,L+1,...,2L-1 ⁇ belongs to another polarization direction; the polarization direction of the coefficient in the first matrix C means that the coefficient is in the first matrix C The polarization direction of the row.
  • the field arrangement can be described as follows: For example, the polarization direction corresponding to the strongest coefficient in the first matrix C is p A , and the element that is fed back with the polarization direction p A in the first matrix C is The fields corresponding to the magnitude of each coefficient are as follows The fields corresponding to the phase carrying each coefficient are sequentially The other polarization direction is p B , and the element that is fed back in the first matrix C with the polarization direction p B is The fields corresponding to the magnitude of each coefficient are as follows The fields corresponding to the phase carrying each coefficient are sequentially
  • An example of the field arrangement is that the amplitude field and the phase field of the same coefficient are next to each other, the field corresponding to the polarization direction corresponding to the strongest coefficient is arranged first, and the field of the other polarization direction is arranged behind:
  • Another example is to sort the field corresponding to the amplitude of the strongest polarization direction first, then the field of the phase corresponding to the strongest polarization direction, then the field of the amplitude corresponding to the other polarization direction, and finally the field of the phase corresponding to the other polarization direction.
  • Another example of arrangement is to arrange the field of the phase corresponding to the strongest polarization direction first, then the field of the amplitude corresponding to the strongest polarization direction, then the field of the phase corresponding to the other polarization direction, and finally the field of the phase corresponding to the other polarization direction.
  • Such a processing method can arrange the field corresponding to the polarization direction corresponding to the strongest coefficient first, and can improve the reliability of transmission of the field corresponding to the polarization direction corresponding to the strongest coefficient, thereby improving the performance of uplink control information bit sequence transmission.
  • the second field carrying the field indicating the position of the strongest coefficient in the first matrix is set before the seventh field carrying the field indicating the element fed back in the first matrix.
  • the seventh field carrying the field indicating the element being fed back in the first matrix C is immediately after the second field carrying the field indicating the position of the strongest coefficient in the first matrix C;
  • the seventh field that carries the field indicating the element being fed back in the first matrix C is after the second field that carries the field indicating the position of the strongest coefficient in the first matrix C, with one or more other fields in between.
  • This processing method can arrange the field carrying the field indicating the position of the strongest coefficient in the first matrix C first, which can improve the reliability of transmission of the field carrying the field indicating the position of the strongest coefficient in the first matrix C;
  • the correctness of the transmission of the strong coefficient position is also related to whether the receiving side can correctly understand the corresponding relationship between the value of other coefficients and the position of these coefficients. Therefore, the position of the strongest coefficient is more important than the value of other coefficients. Value is more reliable transmission.
  • the elements to be fed back in the first matrix C are in the order of the coefficients indicated in the first field carrying the map information of the second matrix C:
  • the fields corresponding to the magnitude of each coefficient are as follows
  • the fields corresponding to the phase carrying each coefficient are sequentially
  • the fields carrying the amplitude of each coefficient and the fields carrying the phase of each coefficient are arranged as
  • the fields carrying the above-mentioned information fields are arranged as: ⁇ field carrying the field indicating the bit matrix C map information, carrying the field indicating the position of the strongest coefficient in the first matrix C, carrying the reference amplitude indicating the second polarization direction
  • the field of the domain which carries the field indicating the domain of the coefficient amplitude in the first matrix C, and the field indicating the domain of the coefficient phase in the C matrix ⁇ ;
  • Another field arrangement can be: ⁇ a field that carries the field indicating the map information of the second matrix C, a field that carries the field indicating the position of the strongest coefficient in the first matrix C, and a field that indicates the reference amplitude of the second polarization direction
  • the field indicates the domain of the coefficient phase in the first matrix C, and carries the field indicating the domain of the coefficient amplitude in the first matrix C ⁇ .
  • the first part of the fields are sequentially connected to form the first bit sequence, for example ⁇ carrying field indicating the rank of precoding (Rank), carrying the wideband channel quality indicator (Wideband channel) indicating the first transport block (Transport Block, TB)
  • the field of the Quality Information (Channel Quality Indicator, CQI) field which carries the field that indicates the subband differential channel quality indicator (Subband Differential CQI) field of the first transport block (TB), and the field that indicates the feedback in the matrix
  • CQI Quality Information
  • the second part of the fields are sequentially connected into a second bit sequence, for example ⁇ a field that carries the field indicating the map information of the second matrix C, a field that carries the field indicating the position of the strongest coefficient in the first matrix C, and a field indicating the second pole
  • the field of the domain of the reference amplitude of the transformation direction carries the field indicating the coefficient amplitude in the matrix C, the field carrying the field indicating the coefficient phase in the matrix C ⁇ , or ⁇ the field carrying the field indicating the bit matrix C map information, Carrying the field indicating the position of the strongest coefficient in matrix C, carrying the field indicating the reference amplitude of the second polarization direction, carrying the field indicating the coefficient phase in matrix C, carrying the field indicating the coefficient amplitude in matrix C Field of the domain ⁇ .
  • the generating the second bit sequence according to the second partial field further includes: arranging the fields carrying the precoding information of each layer in the order of the precoding layer.
  • the precoding rank is 2, that is, the precoding has a total of 2 layers, that is, ⁇ the first layer precoding, the second layer precoding ⁇ , and the fields of each layer are arranged in the order of the precoding layer as follows: ⁇ bearing the first layer precoding The coding information field, the field carrying the layer 2 precoding information ⁇ .
  • the precoding rank is 3, that is, the precoding has a total of 3 layers, that is, ⁇ the first layer precoding, the second layer precoding, the third layer precoding ⁇ , and the fields of each layer are arranged in the order of the precoding layer It is as follows: ⁇ fields carrying precoding information of the first layer, fields carrying precoding information of the second layer, fields carrying precoding information of the third layer ⁇ .
  • the precoding rank is 4, that is, the precoding has a total of 4 layers, that is, ⁇ the first layer precoding, the second layer precoding, the third layer precoding, the fourth layer precoding ⁇ , according to the precoding layer
  • the order of the fields of each layer is as follows: ⁇ fields that carry layer 1 precoding information, fields that carry layer 2 precoding information, fields that carry layer 3 precoding information, and fields that carry layer 4 precoding information ⁇ .
  • the generating the first bit sequence according to the first partial field further includes: arranging a field carrying a field indicating the number of elements to be fed back in the first matrix at the first position of the first partial field.
  • the network equipment such as the base station
  • the network equipment needs to know the information of the number of elements fed back in the first matrix in order to determine the length of the second bit sequence, so as to correctly receive the second bit sequence and interpret the information therein; Therefore, the field that carries the field indicating the number of elements to be fed back in the first matrix is very important. Putting it at the top of the first part of the field can improve the transmission reliability of this field, thereby improving the transmission reliability of uplink control information. .
  • the method further includes: determining, according to the maximum value of the rank configured by the base station for the terminal, the number of fields carrying the field indicating the number of elements to be fed back in the first matrix.
  • the maximum value of the rank of the precoding required to be fed back by the base station for the terminal configuration is 1
  • the number of fields carrying the fields indicating the number of elements to be fed back in the first matrix is 1
  • each field carries a layer of precoding.
  • the maximum value of the rank of the precoding required to be fed back by the base station for configuring the terminal is 2, the number of fields carrying the field indicating the number of elements to be fed back in the first matrix is 2, and each field carries a layer of precoding The field indicating the number of elements being fed back in the first matrix.
  • the first field carries the field of the first layer precoding to indicate the number of elements fed back in the first matrix; the second field carries the field of the second layer precoding to indicate the number of elements in the first matrix.
  • the maximum value of the rank of the precoding required to be fed back by the base station for the terminal configuration is 3, the number of fields carrying the fields indicating the number of elements to be fed back in the first matrix is 3, and each field carries a layer of precoding The field indicating the number of elements being fed back in the first matrix.
  • the first field carries the field of the first layer precoding to indicate the number of elements fed back in the first matrix; the second field carries the field of the second layer precoding to indicate the number of elements in the first matrix.
  • the field of the number of elements to be fed back; the third field carries the field of the third layer precoding to indicate the number of elements to be fed back in the first matrix.
  • the maximum value of the rank of the precoding required to be fed back by the base station for configuring the terminal is 4, the number of fields carrying the field indicating the number of elements to be fed back in the first matrix is 4, and each field carries a layer of precoding The field indicating the number of elements being fed back in the first matrix.
  • the first field carries the field of the first layer precoding to indicate the number of elements fed back in the first matrix; the second field carries the field of the second layer precoding to indicate the number of elements in the first matrix.
  • the third field carries the field of the third layer precoding to indicate the number of elements to be fed back in the first matrix.
  • the fourth field carries a field of the fourth layer precoding to indicate the number of elements to be fed back in the first matrix.
  • the number of fields carrying the fields indicating the number of elements to be fed back in the first matrix is determined, and further includes: the number of non-zero values of the number carried by the field is indicated by The rank of the feedback precoding.
  • the maximum value of the rank of the precoding required to be fed back by the base station for the terminal configuration is P
  • the number of fields carrying the fields indicating the number of elements to be fed back in the first matrix is P
  • each field carries a layer of precoding
  • a field used to indicate the number of elements to be fed back in the first matrix where the number carried by Q fields is non-zero, then it indicates that the rank of the precoding to be fed back is Q
  • P and Q are positive Integer.
  • one or more information fields of channel state information can be mapped to uplink control information, specifically to the first part of the field and the second part of the uplink control information, and by The first part of the field and the second part of the field respectively constitute the first bit sequence and the second bit sequence; in this way, the channel state information can be mapped to the uplink control information.
  • the above-mentioned embodiment also provides mapping the domain of the position of the strongest element in the first matrix to a sequence of N bits, the complexity of calculating the position of the strongest element in the first matrix is reduced; and by mapping the strongest element The field of the element being fed back in the first polarization direction is arranged before the sixth field corresponding to the element being fed back in the second polarization direction to ensure the reliability of information transmission.
  • an information acquisition method is provided, as shown in FIG. 3, including:
  • Step 301 Obtain the first bit sequence and the second bit sequence from the uplink control information.
  • Step 302 Obtain the first partial field from the first bit sequence, and obtain the second partial field from the second bit sequence.
  • Step 303 Based on the first partial field and the second partial field, obtain one or more information fields constituting the channel state information.
  • the first partial field is used to carry at least one of the following information fields of channel state information: a field indicating the rank of precoding, a field indicating a wideband channel quality indicator of the first transport block, and a field indicating the information of the first transport block.
  • the field of subband differential channel quality indication the field indicating the number of elements to be fed back in the first matrix;
  • the second partial field is used to carry at least one of the following information fields of channel state information: a field indicating information of the second matrix, a field indicating the position of the strongest coefficient in the first matrix, and a field indicating the reference amplitude of the second polarization direction Domain, indicating the domain of the element being fed back in the first matrix; wherein the domain indicating the element being fed back in the first matrix includes: a domain indicating the magnitude of the element being fed back in the first matrix, indicating the first matrix The domain of the phase of the element being fed back in the matrix;
  • the element in the second matrix is used to indicate the position of the element to be fed back in the first matrix.
  • the network device may be a device on the network side, for example, it may be a base station on the network side.
  • this embodiment may include the following processing procedures:
  • Step 401 Receive uplink control information sent by a terminal device.
  • Step 402 Obtain the first bit sequence and the second bit sequence from the uplink control information; obtain the first partial field from the first bit sequence, and obtain the second partial field from the second bit sequence; based on the first partial field And the second part of the field, to obtain one or more information fields constituting the channel state information.
  • the precoding structure involved in this embodiment is the same as the previous example, and will not be repeated here.
  • the acquiring one or more information fields constituting the channel state information based on the first partial field and the second partial field includes:
  • the two-dimensional matrix elements constituting the second matrix are determined.
  • the processing of converting a one-dimensional sequence into a two-dimensional matrix in this embodiment is contrary to the processing rule of mapping a two-dimensional matrix into a one-dimensional sequence in the previous embodiment, so the specific processing will not be repeated.
  • the position of the strongest coefficient in the first matrix is determined based on the sequence of N bits contained in the second field in the second partial field; where N is an integer, and N is related to the number of maximum feedback elements.
  • the determination of N is related to the number of maximum feedback elements.
  • the determination method can adopt the following formula:
  • K 0 is the number of maximum feedback elements in the first matrix C that the base station configures for the terminal and may be fed back.
  • the coefficient in the first matrix C is the element in the first matrix C
  • the coefficient means that the element in the first matrix C is the coefficient of the column in the matrix V and the row in the matrix U, that is, the position of the strongest coefficient in the matrix C It is the same as the position of the strongest element in the matrix C.
  • the position of the strongest element in C is the index number l * of the row of the strongest element in C and the index number m * of the column, ie (l * , m * ), which can only be located in the element of matrix C indicated by the matrix C map Position, that is, there are at most K 0 possible positions, using A field sequence of bits is used to map one of K 0 possible positions, so that overhead can be saved to the greatest extent.
  • the position indicated in the map field of the second matrix C and The corresponding relationship of the sequence state composed of bits is the first corresponding relationship.
  • use The bits indicate the position of the strongest coefficient in the first matrix C.
  • the position indicated in the map field of the second matrix C is the same as The corresponding relationship of the sequence state composed of bits is the second corresponding relationship.
  • use The bits indicate the position of the strongest coefficient in the first matrix C.
  • the first corresponding relationship is that the position indicated in the map field of the second matrix C corresponds to the sequence state in order, for example, the first position in the second matrix C map corresponds to The sequence state 0 composed of bits corresponds to the sequence state 0, and then the indicated incremental position corresponds to the incremental bit sequence state, for example, K 1 positions in the C map field.
  • sequence state n refers to the number of sequence composition is n, for example, the lowest bit sequence 001 on the right side is the number 1, 010 is the number 2, 100 is the number 4; for example, the lowest bit sequence 001 on the left is the number 4, 010 The number is 2, 100 is the number 1.
  • a sequence of N bits is used to indicate the position.
  • the sequence state is 3
  • the position in the second matrix corresponds to the sequence state from front to back, it means that the indication is in the second matrix.
  • Corresponding in the order of the positions indicated in the map field of the second matrix C can reduce the complexity of calculating the position of the strongest element in the first matrix C; according to the order of the positions indicated in the map field of the second matrix C
  • the relationship corresponding to the order of the sequence state can reduce the complexity of calculating the position of the strongest element in the first matrix C; the relationship between the first position indicated in the map field of the second matrix C and the sequence state 0 can be reduced
  • the complexity of calculating the position of the strongest element in the first matrix C is small.
  • the second correspondence is that the first position indicated in the C map field and the The sequence state (2 b -1) composed of bits corresponds to the sequence state (2 b -1), and then the indicated increasing position corresponds to the decreasing bit sequence state.
  • the C map field indicates K 1 positions, where ⁇ first position, 2 position,..., K 1 position ⁇ corresponds to ⁇ sequence state 2 b -1, sequence state 2 b -2,..., sequence state 2 b -K 1 ⁇ in sequence;
  • the sequence state n refers to the number of sequence composition is n, for example, the lowest bit sequence 001 on the right side is the number 1, 010 is the number 2, 100 is the number 4; for example, the lowest bit sequence 001 on the left is the number 4, 010 The number is 2, 100 is the number 1.
  • this correspondence according to the order of the positions indicated in the map field of the second matrix C can reduce the complexity of calculating the position of the strongest element in the first matrix C; according to the position indicated in the map field of the second matrix C
  • the corresponding relationship between the order of the positions and the reverse order of the sequence states can reduce the complexity of calculating the position of the strongest element in the first matrix C.
  • the corresponding relationship between the first position indicated in the map field of the second matrix C and the end state of the sequence can reduce the complexity of calculating the position of the strongest element in the first matrix C.
  • the second field contains a sequence composed of N bits; N is an integer, and N is related to the maximum number of feedback elements configured by the network device.
  • the method for determining the sequence composed of N bits contained in the second field is as described above and will not be repeated here.
  • the field carrying the field indicating the map information of the second matrix C is more important, because the field carrying the field indicating the position of the strongest coefficient in the first matrix C needs to depend on the second matrix to obtain the position of the strongest coefficient in the first matrix C C map information, and the top field in the uplink control information bit sequence is more reliable in transmission than the bottom field.
  • the second field carrying the domain indicating the position of the strongest coefficient in the first matrix C is extracted; or, the domain of the second matrix C map information After the first field of, one or more other fields are followed, and then the second field carrying the field indicating the position of the strongest coefficient in the first matrix C is extracted.
  • the information of the second matrix is determined based on the first field; the position of the strongest coefficient in the first matrix is determined based on the second field; the method of determining the position of the strongest coefficient based on the content of the second field can be as described above, here No longer.
  • the coefficient amplitude and the coefficient phase corresponding to the coefficient in the first matrix are determined.
  • the third field and the fourth field are adjacent, that is, there are no other fields. That is, when the third field is extracted from the second partial field, the adjacent field can be determined to be the fourth field, so as to obtain the coefficient amplitude and the coefficient phase corresponding to the coefficient in the first matrix.
  • y is a coefficient reported by feedback in the first matrix C
  • a y is the amplitude of y
  • the field carrying A y is G y
  • P y is the phase of y
  • the field carrying P y is Hy
  • a second bit sequence and the field field H y G y phase immediately, for example arranged in a G y H y, or H y G y are arranged
  • H y wherein G y phase and immediately, without gaps other fields.
  • z is another coefficient reported by feedback in the first matrix C
  • Az is the amplitude of z
  • the field carrying Az is G z
  • P z is the phase of z
  • the field carrying P z is H z
  • the fields carrying the amplitude and phase of these two coefficients are arranged as G y H y G z H z , or arranged as H y G y H z G z , or arranged as G z H z G y H y , or arranged in a H z H z G z H y G y; wherein, G y H y phase and immediately, without gaps other field, G z and H z with immediately, with no other field interval.
  • the close proximity of the amplitude-bearing field and the phase field corresponding to the same coefficient can shorten the time to obtain the same coefficient, and the obtained coefficient can be used without waiting for the acquisition of other coefficients, that is, the waiting time for using the coefficient can be shortened.
  • the first polarization direction is the polarization direction corresponding to the strongest coefficient in the first matrix
  • the second polarization direction is another polarization direction different from the first polarization direction.
  • the fifth field and the sixth field are extracted from the second part of the field, and the fifth field located in front is determined as the element to be fed back for the first polarization direction according to the preset arrangement rule, and the sixth field is It is the feedback element in the second polarization direction.
  • the field arrangement rule can be described as follows: the polarization direction corresponding to the strongest coefficient in the first matrix C is p A , and the fifth field contains the elements that are fed back with the polarization direction p A in the first matrix C:
  • the magnitude of each coefficient corresponding to the load is as follows The fields corresponding to the phase carrying each coefficient are sequentially
  • the other polarization direction is p B , that is, the sixth field contains the feedback element of the first matrix C with the polarization direction p B as
  • the fields corresponding to the magnitude of each coefficient are as follows The fields corresponding to the phase carrying each coefficient are sequentially
  • An example of the field arrangement is that the amplitude field and the phase field of the same coefficient are next to each other, the field corresponding to the polarization direction corresponding to the strongest coefficient is arranged first, and the field of the other polarization direction is arranged behind:
  • the amplitude and phase of one coefficient corresponding to the two polarization inversions can be sequentially obtained according to this rule, and then the amplitude and phase of the next coefficient can be obtained, and finally the amplitude and phase corresponding to each coefficient can be obtained.
  • Another example is to sort the field corresponding to the amplitude of the strongest polarization direction first, then the field of the phase corresponding to the strongest polarization direction, then the field of the amplitude corresponding to the other polarization direction, and finally the field of the phase corresponding to the other polarization direction.
  • the amplitude and phase fields are obtained in sequence according to the arrangement rule. For example, it may be obtained by first obtaining K elements as the coefficient amplitudes of the first polarization direction, and then obtaining K elements as the coefficients of the first polarization direction Phase; The K elements obtained are the amplitude of the second polarization direction, and the last K elements are the coefficient phase of the second polarization direction.
  • the amplitude and phase fields are obtained in sequence according to the arrangement rule. For example, it may be obtained by first obtaining K elements as the coefficient phase of the first polarization direction, and then obtaining K elements as the coefficient of the first polarization direction Amplitude; The K elements obtained are the phases of the second polarization direction, and the last K elements are the coefficient amplitudes of the second polarization direction.
  • Such a processing method can arrange the field corresponding to the polarization direction corresponding to the strongest coefficient first, which can improve the reliability of transmission of the field corresponding to the polarization direction corresponding to the strongest coefficient, thereby ensuring the performance of uplink control information bit sequence transmission.
  • the element to be fed back in the first matrix is determined based on the seventh field arranged after the second field.
  • the element fed back in the first matrix C is obtained from the seventh field.
  • the seventh field is extracted, and the element fed back in the first matrix C is obtained from the seventh field.
  • the preset number can be obtained through pre-negotiation with the terminal device, or determined by the two parties according to a pre-determined agreement. For example, there can be 3 fields in between, or more or less, which is not exhaustive in this embodiment.
  • Another way to indicate the field arrangement of the fields of the elements to be fed back in the first matrix, said obtaining one or more information fields constituting the channel state information based on the first partial field and the second partial field includes:
  • the element to be fed back in the first matrix is determined based on the at least one field.
  • the network device can determine which field in the channel state information corresponding to the extracted field according to the preset first bit sequence and the arrangement order of the fields in the second bit sequence; the preset first bit sequence
  • the sequence of each field in one bit sequence and the second bit sequence can be determined according to the protocol or can be obtained through negotiation with the terminal device.
  • the following provides an example of the preset sequence of each field in the first bit sequence and the second bit sequence:
  • the first part of the fields are connected in order to form the first bit sequence, for example ⁇ a field that carries a field indicating the rank of precoding (Rank), a field that carries a wideband channel quality indicator (Wideband CQI) indicating the first transport block (TB)
  • the field carries the field indicating the subband differential channel quality indicator (Subband differential CQI) field of the first transport block (TB), and the field carries the field indicating the number of elements to be fed back in the matrix C ⁇ ;
  • the second part of the fields are sequentially connected into a second bit sequence, for example ⁇ a field that carries the field indicating the map information of the second matrix C, a field that carries the field indicating the position of the strongest coefficient in the first matrix C, and a field indicating the second pole
  • the field of the domain of the reference amplitude of the transformation direction carries the field indicating the coefficient amplitude in the matrix C, the field carrying the field indicating the coefficient phase in the matrix C ⁇ , or ⁇ the field carrying the field indicating the bit matrix C map information, Carrying the field indicating the position of the strongest coefficient in matrix C, carrying the field indicating the reference amplitude of the second polarization direction, carrying the field indicating the coefficient phase in matrix C, carrying the field indicating the coefficient amplitude in matrix C Field of the domain ⁇ .
  • the first partial field from the first bit sequence and obtain the second partial field from the second bit sequence; obtain one or more information fields that make up the channel state information based on the first partial field and the second partial field;
  • the fields carrying the precoding information of each layer are arranged in the order of the precoding layer.
  • the precoding rank is 2, that is, the precoding has a total of 2 layers, that is, ⁇ the first layer precoding, the second layer precoding ⁇ , and the fields of each layer are arranged in the order of the precoding layer as follows: ⁇ bearing the first layer precoding The coding information field, the field carrying the layer 2 precoding information ⁇ .
  • the precoding rank is 3, that is, the precoding has a total of 3 layers, that is, ⁇ the first layer precoding, the second layer precoding, the third layer precoding ⁇ , and the fields of each layer are arranged in the order of the precoding layer It is as follows: ⁇ fields carrying precoding information of the first layer, fields carrying precoding information of the second layer, fields carrying precoding information of the third layer ⁇ .
  • the precoding rank is 4, that is, the precoding has a total of 4 layers, that is, ⁇ the first layer precoding, the second layer precoding, the third layer precoding, the fourth layer precoding ⁇ , according to the precoding layer
  • the order of the fields of each layer is as follows: ⁇ fields that carry layer 1 precoding information, fields that carry layer 2 precoding information, fields that carry layer 3 precoding information, and fields that carry layer 4 precoding information ⁇ .
  • Obtaining the first partial field from the first bit sequence may include: obtaining, from the first bit in the first partial field in the first bit sequence, a field carrying a field indicating the number of elements to be fed back in the first matrix.
  • the field carrying the field indicating the number of elements to be fed back in the first matrix is ranked first in the first partial field.
  • the bearer indicates the first
  • the field of the field of the number of elements to be fed back in the matrix is very important. Putting it at the top of the first part of the field can improve the transmission reliability of this field, thereby improving the transmission reliability of the uplink control information.
  • the first partial field from the first bit sequence, and obtain one or more information fields constituting the channel state information based on the first partial field and the second partial field; wherein the bearer indication is determined according to the maximum value of the rank configured by the base station for the terminal The number of fields in the field of the number of elements to be fed back in the first matrix.
  • the maximum value of the rank of the precoding required to be fed back by the base station for the terminal configuration is 1
  • the number of fields carrying the fields indicating the number of elements to be fed back in the first matrix is 1
  • each field carries a layer of precoding.
  • the maximum value of the rank of the precoding required to be fed back by the base station for configuring the terminal is 2, the number of fields carrying the field indicating the number of elements to be fed back in the first matrix is 2, and each field carries a layer of precoding The field indicating the number of elements being fed back in the first matrix.
  • the first field carries the field of the first layer precoding to indicate the number of elements fed back in the first matrix; the second field carries the field of the second layer precoding to indicate the number of elements in the first matrix.
  • the maximum value of the rank of the precoding required to be fed back by the base station for the terminal configuration is 3, the number of fields carrying the fields indicating the number of elements to be fed back in the first matrix is 3, and each field carries a layer of precoding The field indicating the number of elements being fed back in the first matrix.
  • the first field carries the field of the first layer precoding to indicate the number of elements fed back in the first matrix; the second field carries the field of the second layer precoding to indicate the number of elements in the first matrix.
  • the field of the number of elements to be fed back; the third field carries the field of the third layer precoding to indicate the number of elements to be fed back in the first matrix.
  • the maximum value of the rank of the precoding required to be fed back by the base station for configuring the terminal is 4, the number of fields carrying the field indicating the number of elements to be fed back in the first matrix is 4, and each field carries a layer of precoding The field indicating the number of elements being fed back in the first matrix.
  • the first field carries the field of the first layer precoding to indicate the number of elements fed back in the first matrix; the second field carries the field of the second layer precoding to indicate the number of elements in the first matrix.
  • the third field carries the field of the third layer precoding to indicate the number of elements to be fed back in the first matrix.
  • the fourth field carries a field of the fourth layer precoding to indicate the number of elements to be fed back in the first matrix.
  • determining the number of fields carrying fields indicating the number of elements to be fed back in the first matrix further includes: determining the number of non-zero values of the number carried by the fields The rank of the feedback precoding.
  • the maximum value of the rank of the precoding required to be fed back by the base station for the terminal configuration is P
  • the number of fields carrying the fields indicating the number of elements to be fed back in the first matrix is P
  • each field carries a layer of precoding A field used to indicate the number of elements to be fed back in the first matrix; where the number of Q fields carried is non-zero, then the rank of the precoding to be fed back is determined to be Q; where P and Q are positive Integer.
  • one or more information fields of channel state information can be obtained through uplink control information.
  • the first bit sequence and the second bit sequence are obtained from the uplink control information, and the first bit sequence is obtained from the first bit sequence.
  • Obtain the first partial field from the bit sequence obtain the second partial field from the second bit sequence, and obtain one or more information fields of the channel state information according to the first partial field and the second partial field; in this way, it is possible to obtain the uplink control information Channel state information.
  • a terminal device as shown in FIG. 5, including:
  • the mapping unit 51 is configured to map one or more information fields of channel state information to one or more fields of uplink control information
  • the processing unit 52 is configured to divide the one or more fields into a first partial field and a second partial field; generate a first bit sequence according to the first partial field, and generate a second bit sequence according to the second partial field;
  • the first partial field is used to carry at least one of the following information fields of channel state information: a field indicating the rank of precoding, a field indicating a wideband channel quality indicator of the first transport block, and a field indicating the information of the first transport block.
  • the field of subband differential channel quality indication the field indicating the number of elements to be fed back in the first matrix;
  • the second partial field is used to carry at least one of the following information fields of channel state information: a field indicating information of the second matrix, a field indicating the position of the strongest coefficient in the first matrix, and a field indicating the reference amplitude of the second polarization direction Domain, indicating the domain of the element being fed back in the first matrix; wherein the domain indicating the element being fed back in the first matrix includes: a domain indicating the magnitude of the element being fed back in the first matrix, indicating the first matrix The domain of the phase of the element being fed back in the matrix;
  • the element in the second matrix is used to indicate the position of the element to be fed back in the first matrix.
  • This embodiment can be applied to the terminal device side. After completing the foregoing processing, it may further include: sending uplink control information to a network device; wherein, the network device may be a device on the network side, for example, it may be a base station on the network side.
  • this embodiment may further include: an information sending unit 53 configured to send the uplink control information to the network device.
  • the uplink control information finally sent to the network device is the uplink control information including the first bit sequence and the second bit sequence, that is, the uplink control information of one or more information domains mapped with channel state information.
  • the mapping unit 51 the field indicating the information of the second matrix in the channel state information is mapped to the first field of the uplink control information; wherein, the first field contains a one-dimensional sequence, and the one-dimensional sequence consists of The two-dimensional matrix elements of the second matrix are obtained by mapping.
  • the first field and the second field in this embodiment do not represent the order of the fields, and are only used to distinguish different fields.
  • the specific arrangement order is irrelevant.
  • the first field can be arranged before the second field.
  • the first field can also be arranged after the second field; of course, this embodiment can also include more fields, for example, the third field, the fourth field, the fifth field and more, which do not represent each field.
  • the arrangement order of is only used to distinguish each field.
  • each field when each field is specifically arranged, it can be the first field-the second field-the fourth field-the sixth field-the third field-the fifth field.
  • the expression method thereof shall not prevail, but shall prevail according to the subsequent rules or description, and the description will not be repeated below.
  • the way to perform the mapping may be to add the elements of the two-dimensional matrix to the one-dimensional sequence in the order of increasing rows of the second matrix, and finally obtain the mapped one-dimensional sequence as the first of the uplink control information. Field.
  • the second matrix such as It is a matrix with 2L rows and M columns, a two-dimensional bit matrix, in which the elements indicate the first matrix in a bit-mapped manner Whether the elements in are reported.
  • the mapping of the second matrix C from the map matrix to the bit sequence in the field is a mapping from two-dimensional matrix elements to a one-dimensional sequence, that is, the field mapped into the two-dimensional matrix is a one-dimensional sequence.
  • a first field sequence of the second bitmap matrix C map the uplink control information is mapped in the second row of the matrix C map matrix, then the matrix C map all of the second element of the second matrix C map i.e. the next row All elements in a row are sequentially mapped to the sequence in the field.
  • the mapping unit 51 is configured to map the field indicating the position of the strongest coefficient in the first matrix in the channel state information to the second field of the uplink control information; wherein, the second field contains a field consisting of N bits Sequence; N is an integer, and N is related to the maximum number of feedback elements configured by the network device.
  • the determination of N is related to the number of maximum feedback elements.
  • the determination method can adopt the following formula:
  • K 0 is the number of maximum feedback elements in the first matrix C that the base station configures for the terminal and may be fed back.
  • the coefficient in the first matrix C is the element in the first matrix C
  • the coefficient means that the element in the first matrix C is the coefficient of the column in the matrix V and the row in the matrix U, that is, the position of the strongest coefficient in the matrix C It is the same as the position of the strongest element in the matrix C.
  • the position of the strongest element in C is the index number l * of the row of the strongest element in C and the index number m * of the column, that is (l * , m * ), which can only be located at the first indicated by the second matrix C map
  • the positions of the elements of matrix C that is, there are at most K 0 possible positions, use A field sequence of bits is used to map one of K 0 possible positions, so that overhead can be saved to the greatest extent.
  • the position indicated in the map field of the second matrix C and The corresponding relationship of the sequence state composed of bits is the first corresponding relationship.
  • use The bits indicate the position of the strongest coefficient in the first matrix C.
  • the position indicated in the map field of the second matrix C is the same as
  • the corresponding relationship of the sequence state composed of bits is the second corresponding relationship. According to the second corresponding relationship, use The bits indicate the position of the strongest coefficient in the first matrix C.
  • the first corresponding relationship is that the position indicated in the map field of the second matrix C corresponds to the sequence state in order, for example, the first position in the second matrix C map corresponds to The sequence state 0 composed of bits corresponds to the sequence state 0, and then the indicated incremental position corresponds to the incremental bit sequence state, for example, K 1 positions are indicated in the C map field.
  • sequence state n refers to the number of sequence composition is n, for example, the lowest bit sequence 001 on the right side is the number 1, 010 is the number 2, 100 is the number 4; for example, the lowest bit sequence 001 on the left is the number 4, 010 The number is 2, 100 is the number 1.
  • a sequence of N bits is used to indicate the position.
  • the sequence state is 3
  • the position in the second matrix corresponds to the sequence state from front to back, it means that the indication is in the second matrix.
  • the 4th position is 3
  • Corresponding in the order of the positions indicated in the map field of the second matrix C can reduce the complexity of calculating the position of the strongest element in the first matrix C; according to the order of the positions indicated in the map field of the second matrix C
  • the relationship corresponding to the order of the sequence state can reduce the complexity of calculating the position of the strongest element in the first matrix C; the relationship between the first position indicated in the map field of the second matrix C and the sequence state 0 can be reduced
  • the complexity of calculating the position of the strongest element in the first matrix C is small.
  • the second correspondence is that the first position indicated in the map field of the second matrix C and the The sequence state (2 b -1) constituted by bits corresponds to, and then the indicated increasing position corresponds to the decreasing bit sequence state.
  • the map field of the second matrix C indicates K 1 positions, where ⁇ 1st position, 2nd position,..., K 1th position ⁇ and ⁇ sequence state 2 b -1, sequence state 2 b -2, ..., the sequence state 2 b -K 1 ⁇ corresponds to each other in sequence;
  • the sequence state n refers to the number of sequence composition is n, for example, the lowest bit sequence 001 on the right side is the number 1, 010 is the number 2, 100 is the number 4; for example, the lowest bit sequence 001 on the left is the number 4, 010 The number is 2, 100 is the number 1.
  • this correspondence according to the order of the positions indicated in the map field of the second matrix C can reduce the complexity of calculating the position of the strongest element in the first matrix C; according to the position indicated in the map field of the second matrix C
  • the corresponding relationship between the order of the positions and the reverse order of the sequence states can reduce the complexity of calculating the position of the strongest element in the first matrix C.
  • the corresponding relationship between the first position indicated in the map field of the second matrix C and the end state of the sequence can reduce the complexity of calculating the position of the strongest element in the first matrix C.
  • the first bit sequence is generated according to the first part of the field
  • the second bit sequence is generated according to the second part of the field.
  • the following description is mainly given for the second part of the field to form the second bit sequence:
  • the processing unit 52 arranges the second field that carries the field indicating the position of the strongest coefficient in the first matrix after the first field of the field that carries the information indicating the second matrix; wherein, the second field contains N A sequence of bits; N is an integer, and N is related to the maximum number of feedback elements configured by the network device.
  • the method for determining the sequence composed of N bits contained in the second field is as described above and will not be repeated here.
  • the field carrying the field indicating the map information of the second matrix C is more important, because the field carrying the field indicating the position of the strongest coefficient in the first matrix C needs to depend on the second matrix to obtain the position of the strongest coefficient in the first matrix C C map information, and the top field in the uplink control information bit sequence is more reliable in transmission than the bottom field.
  • the domain of the second matrix C For example, after carrying the first field indicating the domain of the map information of the second matrix C, immediately carrying the second field indicating the domain of the strongest coefficient position in the first matrix C; or, the domain of the second matrix C map information After the first field, one or more other fields are followed, and a second field carrying the field indicating the position of the strongest coefficient in the first matrix C is added.
  • Generating the second bit sequence according to the second part of the field may also include: combining the third field corresponding to the same coefficient in the first matrix with the field indicating the coefficient amplitude in the first matrix and the third field in the first matrix indicating the The fourth field of the field of the coefficient phase is set to be adjacently arranged.
  • y is a coefficient reported by feedback in the first matrix C
  • a y is the amplitude of y
  • the field carrying A y is G y
  • P y is the phase of y
  • the field carrying P y is Hy
  • a second bit sequence and the field field H y G y phase immediately, for example arranged in a G y H y, or H y G y are arranged
  • H y wherein G y phase and immediately, without gaps other fields.
  • z is another coefficient reported by feedback in the first matrix C
  • Az is the amplitude of z
  • the field carrying Az is G z
  • P z is the phase of z
  • the field carrying P z is H z
  • the fields carrying the amplitude and phase of these two coefficients are arranged as G y H y G z H z , or arranged as H y G y H z G z , or arranged as G z H z G y H y , or arranged in a H z H z G z H y G y; wherein, G y H y phase and immediately, without gaps other field, G z and H z with immediately, with no other field interval.
  • the close proximity of the amplitude-bearing field and the phase field corresponding to the same coefficient can shorten the time to obtain the same coefficient, and the obtained coefficient can be used without waiting for the acquisition of other coefficients, that is, the waiting time for using the coefficient can be shortened.
  • the processing unit 52 arranges the fifth field carrying the feedback element corresponding to the first polarization direction in the first matrix before the sixth field carrying the feedback element corresponding to the second polarization direction of the first matrix ;
  • the first polarization direction is the polarization direction corresponding to the strongest coefficient in the first matrix
  • the second polarization direction is another polarization direction different from the first polarization direction.
  • the polarization direction of the coefficient in the first matrix C refers to the polarization direction of the column vector in the matrix V corresponding to the coefficient.
  • the element corresponding to the antenna port of the polarization direction is not zero, and the other polarization The element corresponding to the antenna port of the direction is zero.
  • the row of the first half of the sequence number of the first matrix C belongs to one polarization direction, for example, the row of index number ⁇ 0,1,...,L-1 ⁇ belongs to one polarization direction; the row of the second half of the sequence number belongs to another The polarization direction, for example, the row with index number ⁇ L,L+1,...,2L-1 ⁇ belongs to another polarization direction; the polarization direction of the coefficient in the first matrix C means that the coefficient is in the first matrix C The polarization direction of the row.
  • the field arrangement can be described as follows: For example, the polarization direction corresponding to the strongest coefficient in the first matrix C is p A , and the element that is fed back with the polarization direction p A in the first matrix C is The fields corresponding to the magnitude of each coefficient are as follows The fields corresponding to the phase carrying each coefficient are sequentially The other polarization direction is p B , and the element that is fed back in the first matrix C with the polarization direction p B is The fields corresponding to the magnitude of each coefficient are as follows The fields corresponding to the phase carrying each coefficient are sequentially
  • An example of the field arrangement is that the amplitude field and the phase field of the same coefficient are next to each other, the field corresponding to the polarization direction corresponding to the strongest coefficient is arranged first, and the field of the other polarization direction is arranged behind:
  • Another example is to sort the field corresponding to the amplitude of the strongest polarization direction first, then the field of the phase corresponding to the strongest polarization direction, then the field of the amplitude corresponding to the other polarization direction, and finally the field of the phase corresponding to the other polarization direction.
  • Another example of arrangement is to arrange the field of the phase corresponding to the strongest polarization direction first, then the field of the amplitude corresponding to the strongest polarization direction, then the field of the phase corresponding to the other polarization direction, and finally the field of the phase corresponding to the other polarization direction.
  • Such a processing method can arrange the field corresponding to the polarization direction corresponding to the strongest coefficient first, and can improve the reliability of transmission of the field corresponding to the polarization direction corresponding to the strongest coefficient, thereby improving the performance of uplink control information bit sequence transmission.
  • the processing unit 52 sets the second field carrying the field indicating the position of the strongest coefficient in the first matrix before the seventh field carrying the field indicating the element being fed back in the first matrix.
  • the seventh field carrying the field indicating the element being fed back in the first matrix C is immediately after the second field carrying the field indicating the position of the strongest coefficient in the first matrix C;
  • the seventh field that carries the field indicating the element being fed back in the first matrix C is after the second field that carries the field indicating the position of the strongest coefficient in the first matrix C, with one or more other fields in between.
  • the processing unit 52 arranges the fields that carry the elements that are fed back in the first matrix based on the order of the elements that are fed back in the first matrix indicated by the first field that carries the information of the second matrix. At least one field.
  • the elements to be fed back in the first matrix C are in the order of the coefficients indicated in the first field carrying the map information of the second matrix C:
  • the fields corresponding to the magnitude of each coefficient are as follows
  • the fields corresponding to the phase carrying each coefficient are sequentially
  • the fields carrying the amplitude of each coefficient and the fields carrying the phase of each coefficient are arranged as
  • the fields carrying the above-mentioned information fields are arranged as: ⁇ field carrying the field indicating the bit matrix C map information, carrying the field indicating the position of the strongest coefficient in the first matrix C, carrying the reference amplitude indicating the second polarization direction
  • the field of the domain which carries the field indicating the domain of the coefficient amplitude in the first matrix C, and the field indicating the domain of the coefficient phase in the C matrix ⁇ ;
  • Another field arrangement can be: ⁇ a field that carries the field indicating the map information of the second matrix C, a field that carries the field indicating the position of the strongest coefficient in the first matrix C, and a field that indicates the reference amplitude of the second polarization direction
  • the field indicates the domain of the coefficient phase in the first matrix C, and carries the field indicating the domain of the coefficient amplitude in the first matrix C ⁇ .
  • the processing unit 52 arranges the fields carrying the precoding information of each layer according to the order of the precoding layers.
  • the precoding rank is 2, that is, the precoding has a total of 2 layers, that is, ⁇ the first layer precoding, the second layer precoding ⁇ , and the fields of each layer are arranged in the order of the precoding layer as follows: ⁇ bearing the first layer precoding The coding information field, the field carrying the layer 2 precoding information ⁇ .
  • the precoding rank is 3, that is, the precoding has a total of 3 layers, that is, ⁇ the first layer precoding, the second layer precoding, the third layer precoding ⁇ , and the fields of each layer are arranged in the order of the precoding layer It is as follows: ⁇ fields carrying precoding information of the first layer, fields carrying precoding information of the second layer, fields carrying precoding information of the third layer ⁇ .
  • the precoding rank is 4, that is, the precoding has a total of 4 layers, that is, ⁇ the first layer precoding, the second layer precoding, the third layer precoding, the fourth layer precoding ⁇ , according to the precoding layer
  • the order of the fields of each layer is as follows: ⁇ fields that carry layer 1 precoding information, fields that carry layer 2 precoding information, fields that carry layer 3 precoding information, and fields that carry layer 4 precoding information ⁇ .
  • the processing unit 52 arranges the fields carrying the precoding information of each layer according to the order of the precoding layers.
  • the processing unit 52 ranks the field carrying the field indicating the number of elements to be fed back in the first matrix at the first part of the field.
  • the processing unit 52 determines, according to the maximum value of the rank configured by the base station for the terminal, the number of fields carrying the fields indicating the number of elements to be fed back in the first matrix.
  • the processing unit 52 the number of non-zero values of the number carried by the field indicates the rank of the precoding fed back.
  • the first part of the fields are connected in order to form the first bit sequence, for example ⁇ a field that carries a field indicating the rank of precoding (Rank), a field that carries a wideband channel quality indicator (Wideband CQI) indicating the first transport block (TB)
  • the field carries the field indicating the subband differential channel quality indicator (Subband differential CQI) field of the first transport block (TB), and the field carries the field indicating the number of elements to be fed back in the matrix C ⁇ ;
  • the second part of the fields are sequentially connected into a second bit sequence, for example ⁇ a field that carries the field indicating the map information of the second matrix C, a field that carries the field indicating the position of the strongest coefficient in the first matrix C, and a field indicating the second pole
  • the field of the domain of the reference amplitude of the transformation direction carries the field indicating the coefficient amplitude in the matrix C, the field carrying the field indicating the coefficient phase in the matrix C ⁇ , or ⁇ the field carrying the field indicating the bit matrix C map information, Carrying the field indicating the position of the strongest coefficient in matrix C, carrying the field indicating the reference amplitude of the second polarization direction, carrying the field indicating the coefficient phase in matrix C, carrying the field indicating the coefficient amplitude in matrix C Field of the domain ⁇ .
  • the terminal device may include mobile phones, smart phones, notebook computers, digital broadcast receivers, and personal digital assistants (PDAs). ), tablet computers (Portable Android Device, PAD), portable multimedia players (Portable Media Player, PMP), mobile terminals such as navigation devices, and fixed terminals such as digital (television, TV), desktop computers, etc.
  • PDAs personal digital assistants
  • PMP portable multimedia players
  • mobile terminals such as navigation devices
  • fixed terminals such as digital (television, TV), desktop computers, etc.
  • the terminal is a mobile terminal.
  • the configuration according to the embodiments of the present application can also be applied to fixed-type terminals.
  • the terminal device may include a wireless communication unit, which may be specifically composed of a transmitter 61 and a receiver 62 in the figure, a processor 63, a memory 64, a power module 65, and so on.
  • the figure shows a terminal device with various components, but it should be understood that implementation of all the shown components is not required. More or fewer components can be implemented instead.
  • the foregoing transmitter may be a physical component of the information sending unit in this embodiment; the processor may be a processing unit and a mapping unit in this embodiment.
  • one or more information fields of channel state information can be mapped to uplink control information, specifically to the first part of the field and the second part of the uplink control information, and by The first part of the field and the second part of the field respectively constitute the first bit sequence and the second bit sequence; in this way, the channel state information can be mapped to the uplink control information.
  • the above-mentioned embodiment also provides mapping the domain of the position of the strongest element in the first matrix to a sequence of N bits, the complexity of calculating the position of the strongest element in the first matrix is reduced; and by mapping the strongest element The field of the element being fed back in the first polarization direction is arranged before the sixth field corresponding to the element being fed back in the second polarization direction to ensure the reliability of information transmission.
  • a network device including:
  • the information extraction unit 71 is configured to obtain the first bit sequence and the second bit sequence from the uplink control information; obtain the first partial field from the first bit sequence, and obtain the second partial field from the second bit sequence;
  • the information processing unit 72 is configured to obtain one or more information fields constituting the channel state information based on the first partial field and the second partial field;
  • the first partial field is used to carry at least one of the following information fields of channel state information: a field indicating the rank of precoding, a field indicating a wideband channel quality indicator of the first transport block, and a field indicating the information of the first transport block.
  • the field of subband differential channel quality indication the field indicating the number of elements to be fed back in the first matrix;
  • the second partial field is used to carry at least one of the following information fields of channel state information: a field indicating information of the second matrix, a field indicating the position of the strongest coefficient in the first matrix, and a field indicating the reference amplitude of the second polarization direction Domain, indicating the domain of the element being fed back in the first matrix; wherein the domain indicating the element being fed back in the first matrix includes: a domain indicating the magnitude of the element being fed back in the first matrix, indicating the first matrix The domain of the phase of the element being fed back in the matrix;
  • the element in the second matrix is used to indicate the position of the element to be fed back in the first matrix.
  • the network device may further include: an information receiving unit 73, configured to receive uplink control information sent by the terminal device.
  • the network device in this embodiment may be a device on the network side, such as a base station.
  • the precoding structure involved in this embodiment is the same as the previous example, and will not be repeated here.
  • the information processing unit 72 determines the two-dimensional matrix elements that constitute the second matrix based on the one-dimensional sequence contained in the first field contained in the second partial field.
  • the processing of converting a one-dimensional sequence into a two-dimensional matrix in this embodiment is contrary to the processing rule of mapping a two-dimensional matrix into a one-dimensional sequence in the previous embodiment, so the specific processing will not be repeated.
  • the position of the strongest coefficient in the first matrix is determined based on the sequence of N bits contained in the second field in the second partial field; where N is an integer, and N is related to the number of maximum feedback elements.
  • the determination of N is related to the number of maximum feedback elements.
  • the determination method can adopt the following formula:
  • K 0 is the number of maximum feedback elements in the first matrix C that the base station configures for the terminal and may be fed back.
  • the coefficient in the first matrix C is the element in the first matrix C
  • the coefficient means that the element in the first matrix C is the coefficient of the column in the matrix V and the row in the matrix U, that is, the position of the strongest coefficient in the matrix C It is the same as the position of the strongest element in the matrix C.
  • the position of the strongest element in C is the index number l * of the row of the strongest element in C and the index number m * of the column, ie (l * , m * ), which can only be located in the element of matrix C indicated by the matrix C map Position, that is, there are at most K 0 possible positions, using A field sequence of bits is used to map one of K 0 possible positions, so that overhead can be saved to the greatest extent.
  • the position indicated in the map field of the second matrix C and The corresponding relationship of the sequence state composed of bits is the first corresponding relationship.
  • use The bits indicate the position of the strongest coefficient in the first matrix C.
  • the position indicated in the map field of the second matrix C is the same as The corresponding relationship of the sequence state composed of bits is the second corresponding relationship.
  • use The bits indicate the position of the strongest coefficient in the first matrix C.
  • the first corresponding relationship is that the position indicated in the map field of the second matrix C corresponds to the sequence state in order, for example, the first position in the second matrix C map corresponds to The sequence state 0 composed of bits corresponds to the sequence state 0, and then the indicated incremental position corresponds to the incremental bit sequence state, for example, K 1 positions in the C map field.
  • sequence state n refers to the number of sequence composition is n, for example, the lowest bit sequence 001 on the right side is the number 1, 010 is the number 2, 100 is the number 4; for example, the lowest bit sequence 001 on the left is the number 4, 010 The number is 2, 100 is the number 1.
  • a sequence of N bits is used to indicate the position.
  • the sequence state is 3
  • the position in the second matrix corresponds to the sequence state from front to back, it means that the indication is in the second matrix.
  • Corresponding in the order of the positions indicated in the map field of the second matrix C can reduce the complexity of calculating the position of the strongest element in the first matrix C; according to the order of the positions indicated in the map field of the second matrix C
  • the relationship corresponding to the order of the sequence state can reduce the complexity of calculating the position of the strongest element in the first matrix C; the relationship between the first position indicated in the map field of the second matrix C and the sequence state 0 can be reduced
  • the complexity of calculating the position of the strongest element in the first matrix C is small.
  • the second correspondence is that the first position indicated in the C map field and the The sequence state (2 b -1) composed of bits corresponds to the sequence state (2 b -1), and then the indicated increasing position corresponds to the decreasing bit sequence state.
  • the C map field indicates K 1 positions, where ⁇ first position, 2 position,..., K 1 position ⁇ corresponds to ⁇ sequence state 2 b -1, sequence state 2 b -2,..., sequence state 2 b -K 1 ⁇ in sequence;
  • the sequence state n refers to the number of sequence composition is n, for example, the lowest bit sequence 001 on the right side is the number 1, 010 is the number 2, 100 is the number 4; for example, the lowest bit sequence 001 on the left is the number 4, 010 The number is 2, 100 is the number 1.
  • this correspondence according to the order of the positions indicated in the map field of the second matrix C can reduce the complexity of calculating the position of the strongest element in the first matrix C; according to the position indicated in the map field of the second matrix C
  • the corresponding relationship between the order of the positions and the reverse order of the sequence states can reduce the complexity of calculating the position of the strongest element in the first matrix C.
  • the corresponding relationship between the first position indicated in the map field of the second matrix C and the end state of the sequence can reduce the complexity of calculating the position of the strongest element in the first matrix C.
  • the information processing unit 72 determines the information of the second matrix based on the first field in the second partial field; and determines the position of the strongest coefficient in the first matrix based on the second field that is arranged after the first field in the second partial field ;
  • the second field contains a sequence composed of N bits; N is an integer, and N is related to the maximum number of feedback elements configured by the network device.
  • the method for determining the sequence composed of N bits contained in the second field is as described above and will not be repeated here.
  • the field carrying the field indicating the map information of the second matrix C is more important, because the field carrying the field indicating the position of the strongest coefficient in the first matrix C needs to depend on the second matrix to obtain the position of the strongest coefficient in the first matrix C C map information, and the top field in the uplink control information bit sequence is more reliable in transmission than the bottom field.
  • the second field carrying the domain indicating the position of the strongest coefficient in the first matrix C is extracted; or, the domain of the second matrix C map information After the first field of, one or more other fields are followed, and then the second field carrying the field indicating the position of the strongest coefficient in the first matrix C is extracted.
  • the information of the second matrix is determined based on the first field; the position of the strongest coefficient in the first matrix is determined based on the second field; the method of determining the position of the strongest coefficient based on the content of the second field can be as described above, here No longer.
  • the information processing unit 72 determines the coefficient amplitude and the coefficient phase corresponding to the coefficient in the first matrix based on the adjacent third field and the fourth field in the second partial field.
  • the third field and the fourth field are adjacent, that is, there are no other fields. That is, when the third field is extracted from the second partial field, the adjacent field can be determined to be the fourth field, so as to obtain the coefficient amplitude and the coefficient phase corresponding to the coefficient in the first matrix.
  • y is a coefficient reported by feedback in the first matrix C
  • a y is the amplitude of y
  • the field carrying A y is G y
  • P y is the phase of y
  • the field carrying P y is Hy
  • a second bit sequence and the field field H y G y phase immediately, for example arranged in a G y H y, or H y G y are arranged
  • H y wherein G y phase and immediately, without gaps other fields.
  • z is another coefficient reported by feedback in the first matrix C
  • Az is the amplitude of z
  • the field carrying Az is G z
  • P z is the phase of z
  • the field carrying P z is H z
  • the fields carrying the amplitude and phase of these two coefficients are arranged as G y H y G z H z , or arranged as H y G y H z G z , or arranged as G z H z G y H y , or arranged in a H z H z G z H y G y; wherein, G y H y phase and immediately, without gaps other field, G z and H z with immediately, with no other field interval.
  • the close proximity of the amplitude-bearing field and the phase field corresponding to the same coefficient can shorten the time to obtain the same coefficient, and the obtained coefficient can be used without waiting for the acquisition of other coefficients, that is, the waiting time for using the coefficient can be shortened.
  • the information processing unit 72 determines, based on the fifth field in the second partial field, the element to be fed back corresponding to the first polarization direction in the first matrix;
  • the first polarization direction is the polarization direction corresponding to the strongest coefficient in the first matrix
  • the second polarization direction is another polarization direction different from the first polarization direction.
  • the fifth field and the sixth field are extracted from the second part of the field, and the fifth field located in front is determined as the element to be fed back for the first polarization direction according to the preset arrangement rule, and the sixth field is It is the feedback element in the second polarization direction.
  • the field arrangement rule can be described as follows: the polarization direction corresponding to the strongest coefficient in the first matrix C is p A , and the fifth field contains the elements that are fed back with the polarization direction p A in the first matrix C:
  • the magnitude of each coefficient corresponding to the load is as follows The fields corresponding to the phase carrying each coefficient are sequentially
  • the other polarization direction is p B , that is, the sixth field contains the elements that are fed back in the first matrix C with the polarization direction p B as
  • the fields corresponding to the magnitude of each coefficient are as follows
  • the fields corresponding to the phase carrying each coefficient are sequentially
  • An example of the field arrangement is that the amplitude field and the phase field of the same coefficient are next to each other, the field corresponding to the polarization direction corresponding to the strongest coefficient is arranged first, and the field of the other polarization direction is arranged behind:
  • the amplitude and phase of one coefficient corresponding to the two polarization inversions can be sequentially obtained according to this rule, and then the amplitude and phase of the next coefficient can be obtained, and finally the amplitude and phase corresponding to each coefficient can be obtained.
  • the amplitude and phase fields are obtained in sequence according to the arrangement rule. For example, it may be obtained by first obtaining K elements as the coefficient amplitudes of the first polarization direction, and then obtaining K elements as the coefficients of the first polarization direction Phase; The K elements obtained are the amplitude of the second polarization direction, and the last K elements are the coefficient phase of the second polarization direction.
  • the amplitude and phase fields are obtained in sequence according to the arrangement rule. For example, it may be obtained by first obtaining K elements as the coefficient phase of the first polarization direction, and then obtaining K elements as the coefficient of the first polarization direction Amplitude; The K elements obtained are the phases of the second polarization direction, and the last K elements are the coefficient amplitudes of the second polarization direction.
  • Such a processing method can arrange the field corresponding to the polarization direction corresponding to the strongest coefficient first, and can improve the reliability of transmission of the field corresponding to the polarization direction corresponding to the strongest coefficient, thereby ensuring the performance of uplink control information bit sequence transmission.
  • the information processing unit 72 determines the position of the strongest coefficient in the first matrix based on the second field
  • the element to be fed back in the first matrix is determined based on the seventh field arranged after the second field.
  • the element fed back in the first matrix C is obtained from the seventh field.
  • the seventh field is extracted, and the element fed back in the first matrix C is obtained from the seventh field.
  • the preset number can be obtained through pre-negotiation with the terminal device, or determined by the two parties according to a pre-determined agreement. For example, there can be 3 fields in between, or more or less, which is not exhaustive in this embodiment.
  • Another way to indicate the field arrangement of the fields of the elements to be fed back in the first matrix, said obtaining one or more information fields constituting the channel state information based on the first partial field and the second partial field includes:
  • the element to be fed back in the first matrix is determined based on the at least one field.
  • the network device can determine which field in the channel state information corresponding to the extracted field according to the preset sequence of the first bit sequence and the sequence of each field in the second bit sequence; the preset The sequence of each field in the first bit sequence and the second bit sequence can be determined according to the protocol, or can be negotiated with the terminal device.
  • the following provides an example of the preset sequence of each field in the first bit sequence and the second bit sequence:
  • the first part of the fields are connected in order to form the first bit sequence, for example ⁇ a field that carries a field indicating the rank of precoding (Rank), a field that carries a wideband channel quality indicator (Wideband CQI) indicating the first transport block (TB)
  • the field carries the field indicating the subband differential channel quality indicator (Subband differential CQI) field of the first transport block (TB), and the field carries the field indicating the number of elements to be fed back in the matrix C ⁇ ;
  • the second part of the fields are sequentially connected into a second bit sequence, for example ⁇ a field that carries the field indicating the map information of the second matrix C, a field that carries the field indicating the position of the strongest coefficient in the first matrix C, and a field indicating the second pole
  • the field of the domain of the reference amplitude of the transformation direction carries the field indicating the coefficient amplitude in the matrix C, the field carrying the field indicating the coefficient phase in the matrix C ⁇ , or ⁇ the field carrying the field indicating the bit matrix C map information, Carrying the field indicating the position of the strongest coefficient in matrix C, carrying the field indicating the reference amplitude of the second polarization direction, carrying the field indicating the coefficient phase in matrix C, carrying the field indicating the coefficient amplitude in matrix C Field of the domain ⁇ .
  • the fields carrying the precoding information of each layer are arranged in the order of the precoding layer.
  • the information extraction unit is configured to obtain a field carrying a field indicating the number of elements to be fed back in the first matrix from the first bit in the first partial field in the first bit sequence.
  • the field carrying the field indicating the number of elements to be fed back in the first matrix is ranked first in the first partial field.
  • the information processing unit is configured to determine, according to the maximum value of the rank configured by the base station for the terminal, the number of fields carrying the field indicating the number of elements to be fed back in the first matrix. Specifically, the rank of the precoding fed back may be determined by the number of non-zero values of the number carried in the field.
  • FIG. 10 is a schematic diagram of the hardware structure of a network device in this embodiment, such as a base station, which includes a transmitter 81, a receiver 82, a power module 85, a memory 84, and a processor 83.
  • one or more information fields of channel state information can be obtained through uplink control information.
  • the first bit sequence and the second bit sequence are obtained from the uplink control information, and the first bit sequence is obtained from the first bit sequence.
  • Obtain the first partial field from the bit sequence obtain the second partial field from the second bit sequence, and obtain one or more information fields of the channel state information according to the first partial field and the second partial field; in this way, it is possible to obtain the uplink control information Channel state information.
  • FIG. 11 is a schematic structural diagram of an embodiment of a terminal device of this application.
  • a terminal device 130 provided in an embodiment of this application includes a memory 1303 and a processor 1304.
  • the terminal device 130 may also include an interface 1301 and a bus 1302.
  • the interface 1301, the memory 1303 and the processor 1304 are connected through a bus 1302.
  • the memory 1303 is used to store instructions.
  • the processor 1304 is configured to read the instructions to execute the technical solutions of the foregoing method embodiments applied to the terminal device. The implementation principles and technical effects are similar, and details are not described herein again.
  • FIG. 12 is a schematic structural diagram of an embodiment of a base station of this application.
  • a base station 140 provided in an embodiment of this application includes a memory 1403 and a processor 1404.
  • the base station may further include an interface 1401 and a bus 1402.
  • the interface 1401, the memory 1403 and the processor 1404 are connected through a bus 1402.
  • the memory 1403 is used to store instructions.
  • the processor 1404 is configured to read the instructions to execute the technical solutions of the foregoing method embodiments applied to the base station. The implementation principles and technical effects are similar, and details are not described herein again.
  • FIG. 13 is a schematic structural diagram of an embodiment of a communication system of this application.
  • the terminal device may be the user equipment (UE) 110, 120, and 130 in the figure as an example.
  • the function of the UE is the same as the foregoing embodiment, and will not be repeated.
  • the system includes: the user equipment 130 in the foregoing embodiment and the base station 140 in the foregoing embodiment.
  • the base station in the figure may be the network device in the embodiment, and the user equipment is the aforementioned terminal device, and the functions that can be implemented are the same as the aforementioned functions, which will not be repeated here.
  • user terminal encompasses any suitable type of wireless user equipment, such as mobile phones, portable data processing devices, portable web browsers, or vehicle-mounted mobile stations.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • the embodiments of the present application may be implemented by executing computer program instructions by a data processor of a mobile device, for example, in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions can be assembly instructions, Industry Subversive Alliance (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, status setting data, or written in any combination of one or more programming languages Source code or object code.
  • ISA Industry Subversive Alliance
  • the block diagram of any logical flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory, etc.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM can include many forms, such as static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronization Dynamic random access memory (Double Data Rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (Synchlink DRAM, SLDRAM) and direct memory bus random access Memory (Direct Rambus RAM, DR RAM).
  • Static RAM, SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory Synchronous DRAM, SDRAM
  • Double data rate synchronization Dynamic random access memory Double Data Rate SDRAM, DDR SDRAM
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM, SLDRAM synchronous connection dynamic random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • the processor of the embodiment of the present application may be of any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processors, DSP), and application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (FGPA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or processors based on multi-core processor architecture.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the foregoing processor may implement or execute the steps of each method disclosed in the embodiments of the present application.
  • the software module may be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出一种信息映射方法、信息获取方法、终端设备和网络设备;其中,信息映射方法包括:将信道状态信息的至少一个信息域映射为上行控制信息的至少一个字段;将所述至少一个字段分为第一部分字段以及第二部分字段;根据第一部分字段生成第一个比特序列,根据第二部分字段生成第二个比特序列。

Description

信息映射方法、信息获取方法、终端设备及网络设备
本申请要求在2019年03月29日提交中国专利局、申请号为201910251631.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,例如涉及一种信息映射方法、信息获取方法、终端设备、网络设备、通信系统以及存储介质。
背景技术
在无线通信技术中,多天线技术的预编码技术通过给发射天线施加预编码(Precoding),以提高通信的性能。通常,发射侧在一个资源(Resource)上发射一个参考信号(RS,Reference Signal),接收侧利用参考信号测量信道状态信息(CSI,Channel State Information),再以预编码的形式反馈所测量的信道状态信息,预编码通常以预编码矩阵指示(PMI,Precoding Matrix Indicator)信息的方式反馈。一种预编码的构成方式为:W=VCU;其中,W代表单层的预编码。但是,还没有关于如何将上述矩阵V、U、C的指示信息映射至上行控制信息的处理方式。
发明内容
本申请提供用于一种信息映射方法、信息获取方法、终端设备、网络设备、通信系统以及存储介质。
本申请实施例提供一种信息映射方法,包括:
将信道状态信息的一个或多个信息域,映射为上行控制信息的一个或多个字段;
将所述一个或多个字段分为第一部分字段以及第二部分字段;其中,所述第一部分字段用于承载信道状态信息的以下信息域至少之一:指示预编码的秩的域,指示第一个传输块的宽带信道质量指示的域,指示第一个传输块的子带差分信道质量指示的域,指示第一矩阵中的被反馈的元素的数目的域;所述第二部分字段用于承载信道状态信息的以下信息域至少之一:指示第二矩阵的信息的域,指示第一矩阵中最强系数位置的域,指示第二极化方向参考幅度的域,指示第一矩阵中的被反馈的元素的域;其中,所述指示第一矩阵中的被反馈的元素的域包括:指示第一矩阵中的被反馈的元素幅度的域,指示第一矩阵中的被反馈的元素相位的域;其中,所述第二矩阵中的元素用于指示第一矩阵中的被反馈的元素的位置;
根据第一部分字段生成第一个比特序列,根据第二部分字段生成第二个比特序列。
本申请实施例提供一种信息获取方法,包括:
从上行控制信息中获取第一个比特序列以及第二个比特序列;
从第一个比特序列中获取第一部分字段,从第二个比特序列中获取第二部分字段;
基于第一部分字段以及第二部分字段,获取组成信道状态信息的一个或多个信息域;
其中,所述第一部分字段用于承载信道状态信息的以下信息域至少之一:指示预编码的秩的域,指示第一个传输块的宽带信道质量指示的域,指示第一个传输块的子带差分信道质量指示的域,指示第一矩阵中的被反馈的元素的数目的域;
所述第二部分字段用于承载信道状态信息的以下信息域至少之一:指示第二矩阵的信息的域,指示第一矩阵中最强系数位置的域,指示第二极化方向参考幅度的域,指示第一矩阵中的被反馈的元素的域;其中,所述指示第一矩阵中的被反馈的元素的域包括:指示第一矩阵中的被反馈的元素幅度的域,指示第一矩阵中的被反馈的元素相位的域;
其中,所述第二矩阵中的元素用于指示第一矩阵中的被反馈的元素的位置。
本申请实施例提供一种终端设备,包括:
映射单元,用于将信道状态信息的一个或多个信息域,映射为上行控制信息的一个或多个字段;
处理单元,用于将所述一个或多个字段分为第一部分字段以及第二部分字段;根据第一部分字段生成第一个比特序列,根据第二部分字段生成第二个比特序列;
其中,所述第一部分字段用于承载信道状态信息的以下信息域至少之一:指示预编码的秩的域,指示第一个传输块的宽带信道质量指示的域,指示第一个传输块的子带差分信道质量指示的域,指示第一矩阵中的被反馈的元素的数目的域;
所述第二部分字段用于承载信道状态信息的以下信息域至少之一:指示第二矩阵的信息的域,指示第一矩阵中最强系数位置的域,指示第二极化方向参考幅度的域,指示第一矩阵中的被反馈的元素的域;其中,所述指示第一矩阵中的被反馈的元素的域包括:指示第一矩阵中的被反馈的元素幅度的域,指示第一矩阵中的被反馈的元素相位的域;
其中,所述第二矩阵中的元素用于指示第一矩阵中的被反馈的元素的位置。
本申请实施例提供一种网络设备,包括:
信息提取单元,用于从上行控制信息中获取第一个比特序列以及第二个比特序列;从第一个比特序列中获取第一部分字段,从第二个比特序列中获取第二部分字段;
信息处理单元,用于基于第一部分字段以及第二部分字段,获取组成信道状态信息的一个或多个信息域;
其中,所述第一部分字段用于承载信道状态信息的以下信息域至少之一:指示预编码的秩的域,指示第一个传输块的宽带信道质量指示的域,指示第一个传输块的子带差分信道质量指示的域,指示第一矩阵中的被反馈的元素的数目的域;
所述第二部分字段用于承载信道状态信息的以下信息域至少之一:指示第二矩阵的信息的域,指示第一矩阵中最强系数位置的域,指示第二极化方向参考幅度的域,指示第一矩阵中的被反馈的元素的域;其中,所述指示第一矩阵中的被反馈的元素的域包括:指示第一矩阵中的被反馈的元素幅度的域,指示第一矩阵中的被反馈的元素相位的域;
其中,所述第二矩阵中的元素用于指示第一矩阵中的被反馈的元素的位置。
本申请实施例提供了一种终端设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行前述步骤。
本申请实施例提供了一种网络设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行前述步骤。
本申请实施例提供了一种通信系统,包括:如前述终端设备和如前述网络设备。
本申请实施例提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中的任意一种方法。
通过采用上述实施方式,能够通过将信道状态信息的一个或多个信息域映射至上行控制信息中,具体的为映射至上行控制信息中的第一部分字段以及第二部分字段,并由第一部分字段以及第二部分字段分别组成第一个比特序列以及第二个比特序列;如此,就能够实现将信道状态信息映射为上行控制信息。
附图说明
图1为本申请一实施例提出的一种信息映射方法流程示意图;
图2为本申请另一实施例提出的一种信息映射方法流程示意图;
图3为本申请一实施例提出的一种信息获取方法流程示意图;
图4为本申请另一实施例提出的一种信息获取方法流程示意图;
图5为本申请一实施例提出的一种终端设备组成结构示意图;
图6为本申请另一实施例提供的一种终端设备组成结构示意图;
图7为本申请一实施例提供的一种终端设备硬件组成结构示意图;
图8为本申请一实施例提供的一种网络设备组成结构示意图;
图9为本申请另一实施例提供的一种网络设备组成结构示意图;
图10为本申请一实施例提供的一种网络设备硬件构成示意图;
图11为本申请另一实施例提供的一种终端设备硬件组成结构示意图;
图12为本申请另一实施例提供的一种网络设备硬件组成结构示意图;
图13为本申请一实施例提供的通信系统组成结构示意图;
图14为本申请另一实施例提供的通信系统组成结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在一个示例性实施方式中,提供一种信息映射方法,如图1所示,包括:
步骤101:将信道状态信息的一个或多个信息域,映射为上行控制信息的一个或多个字段。
步骤102:将所述一个或多个字段分为第一部分字段以及第二部分字段;其中,所述第一部分字段用于承载信道状态信息的以下信息域至少之一:指示预编码的秩的域,指示第一个传输块的宽带信道质量指示的域,指示第一个传输块的子带差分信道质量指示的域,指示第一矩阵中的被反馈的元素的数目的域;所述第二部分字段用于承载信道状态信息的以下信息域至少之一:指示第二矩阵的信息的域,指示第一矩阵中最强系数位置的域,指示第二极化方向参考幅度的域,指示第一矩阵中的被反馈的元素的域;其中,所述指示第一矩阵中的被反馈的元素的域包括:指示第一矩阵中的被反馈的元素幅度的域,指示第一矩阵中的被反馈的元素相位的域;其中,所述第二矩阵中的元素用于指示第一矩阵中的被反馈的元素的位置。
步骤103:根据第一部分字段生成第一个比特序列,根据第二部分字段生成第二个比特序列。
本实施方式可以应用于终端设备侧。在完成上述处理之后,还可以包括:将上行控制信息发送至网络设备;其中,所述网络设备可以为网络侧的设备, 比如具体可以为网络侧的基站。
结合图2,本实施方式可以包括以下处理流程:
步骤201:将信道状态信息的一个或多个信息域,映射为上行控制信息的一个或多个字段;将所述一个或多个字段分为第一部分字段以及第二部分字段;根据第一部分字段生成第一个比特序列,根据第二部分字段生成第二个比特序列。
步骤202:将所述上行控制信息发送至网络设备。
其中步骤202中最终发送至网络设备的上行控制信息为包含有第一个比特序列以及第二个比特序列的上行控制信息,即映射有信道状态信息的一个或多个信息域的上行控制信息。
下面首先针对本实施方式中涉及到的预编码的构成方式进行说明,以网络设备为基站,并且以多层预编码中的一层预编码为例,具体的可以如下的方式构成:W=VCU。
其中,W代表单层的预编码,是一个N Tx行N 3列的矩阵,其中N Tx表示天线端口数目,N 3表示PMI的频域单位数目,即W的行与天线端口对应,列与频域单位对应。
Figure PCTCN2020080647-appb-000001
是一个矩阵,由零元素及L个列矢量v l构成,其中l=0,1,...,L-1;L是一个正整数;矢量v l被称为空域矢量。
Figure PCTCN2020080647-appb-000002
是一个矩阵,由M个行矢量u m构成,其中T表示矩阵的转置,m=0,1,...,M-1;M是一个正整数;矢量u m被称为频域矢量。
本实施方式中的第一矩阵可以采用C来表示,具体如下:
Figure PCTCN2020080647-appb-000003
是一个2L行M列的矩阵,其中的元素就是V矩阵中列矢量与U矩阵中行矢量的系数。
上述实施方式中的第二矩阵可以为C map。具体来说,终端设备向基站反馈构成V矩阵的L个矢量v l,反馈构成U矩阵的M个矢量u m,并用一个2L行M列的比特矩阵C map以位映射(bitmap)的方式指示C矩阵中被反馈的元素的位置,及反 馈C矩阵中被指示的对应系数;其中矩阵C map(即第二矩阵)与矩阵C(即第一矩阵)中相同位置的元素一一对应,未被bitmap指示反馈的C矩阵中的系数默认为0。这里需要指出的是,被反馈的元素,可以指的第一矩阵C中的被反馈的系数。
矢量v l在预定义的码本中选择,u m矢量在预定义的码本中选择,u m矢量中元素的个数称为PMI的频域单位数目N 3,并且等于
Figure PCTCN2020080647-appb-000004
矢量所在预定义的码本空间的基矢量个数,所以N 3也代表
Figure PCTCN2020080647-appb-000005
矢量所在预定义的码本空间的基矢量个数。
为了控制终端反馈PMI的资源开销,及反馈的精确度,基站通过向终端传输控制反馈报告的参数(L,M,K 0)进行;其中,终端向基站反馈构成V矩阵的L个矢量v l,反馈构成U矩阵的M个矢量u m,终端向基站反馈C矩阵中的最多K 0个系数。
终端反馈的预编码用于空域1层传输,称预编码的秩(Rank)为1;用于2层传输,称预编码的秩为2;同理,用于RI层传输,称预编码的秩为RI,例如,RI=1,2,3,4。终端反馈预编码的秩,及预编码。基站向终端传输对应每个可能的秩及对应秩的每层PMI的报告的控制参数(L,M,K 0)。
关于本实施方式中的信道状态信息由多部分信息组成,每一部分信息称为一个信息域,指示某部分信息的域与某部分信息是同等的含义。所述的字段就是承载信息的比特或比特组合成的序列,就是把信息用一段比特序列表示出来。第一矩阵即矩阵C中系数,即矩阵C中元素。第二极化方向参考幅度就是矩阵C中属于第二极化方向的系数的参考幅度。第一极化方向参考幅度就是矩阵C中属于第一极化方向的系数的参考幅度,默认为1。所述指示矩阵C中的系数幅度的域,其中系数幅度对于第二极化方向指系数的差分幅度,对于第一极化方向也是指系数的差分幅度。
关于前述处理流程中,步骤101中,将信道状态信息的一个或多个信息域,映射为上行控制信息的一个或多个字段,可以包括:
将信道状态信息中的指示第二矩阵的信息的域映射为上行控制信息的第一字段;其中,所述第一字段中包含一维序列,所述一维序列由所述第二矩阵的二维矩阵元素映射得到。
这里需要指出的是,本实施方式中第一字段以及第二字段不代表字段的顺序,仅用于区分不同的字段,具体排列顺序与其无关,比如,可以第一字段排列在第二字段之前,或者第一字段还可以排列在第二字段之后;当然,本实施方式中还可以包括有更多字段,比如,第三字段、第四字段、第五字段以及更多,也均不代表各个字段的排列顺序,仅用于区分各个字段,在具体排列各个 字段的时候,可以为第一字段-第二字段-第四字段-第六字段-第三字段-第五字段,这样来排序。关于本实施方式中各个字段的排列顺序不以其表述方式为准,而是根据后续规则或说明为准,下文不再重复说明。
具体的,进行映射的方式可以为将第二矩阵按照行增序的顺序来依次将二维矩阵中的元素添加至一维序列中,最终得到映射后的一维序列作为上行控制信息的第一字段。
举例来说,第二矩阵比如
Figure PCTCN2020080647-appb-000006
是一个2L行M列的矩阵,为二维比特矩阵,其中的元素以位映射的方式指示第一矩阵
Figure PCTCN2020080647-appb-000007
中的元素是否被报告。
第二矩阵C map矩阵到字段中比特序列的映射是二维矩阵元素到一维序列的映射,即二维矩阵所映射成的字段是一个一维的序列。
也就是说,所映射成的字段序列为X C=[x 0,x 1,…,x 2LM-1]。第二矩阵C map到上行控制信息的第一字段中比特序列的映射是按第二矩阵C map矩阵的行进行映射,即第二矩阵C map下一行中的所有元素接着第二矩阵C map上一行中的所有元素依顺序映射到字段中的序列。
例如,第二矩阵C map中第i n行表示为
Figure PCTCN2020080647-appb-000008
其中n={0,1,…,2L-1},第二矩阵C map按行映射为字段中的序列即是序列
Figure PCTCN2020080647-appb-000009
中的元素依顺序映射为字段中的序列,也即是序列
Figure PCTCN2020080647-appb-000010
依顺序映射为字段中的序列;其中,如果m≠n,那么i m≠i n
又比如,第二矩阵C map到字段中比特序列的映射是按第二矩阵C map的行的增序进行进行映射,第二矩阵C map中第i行表示为d i=[d i,0 d i,1 … d i,M-1],其中i={0,1,…,2L-1},按行的增序映射为字段中的序列即是序列[d 0,d 1,…,d 2L-1]中的元素依顺序映射为第一字段中的序列,也即是序列[d 0,0,d 0,1,…,d 0,M-1,d 1,0,d 1,1,…,d 1,M-1,…,d 2L-1,0,d 2L-1,1,…,d 2L-1,M-1]依顺序映射为第一字段中的序列。
所述将信道状态信息的一个或多个信息域,映射为上行控制信息的一个或多个字段,还可以包括:
将信道状态信息中的指示第一矩阵中最强系数位置的域映射为上行控制信息的第二字段;其中,所述第二字段中包含由N个比特组成的序列;N为整数,且N与网络设备所配置的最大反馈元素的数量相关。
关于N个比特组成的序列中,N的确定与最大反馈元素的数量相关,比如其确定方式可以采用以下公式:
Figure PCTCN2020080647-appb-000011
其中,K 0是基站为终端配置的第一矩阵C中被反馈元素的最大可能数量。
需要说明的是,第一矩阵C中系数即第一矩阵C中元素,所述系数指第一矩阵C中元素是矩阵V中的列与矩阵U中行的系数,即矩阵C中最强系数位置与矩阵C中最强元素位置是相同的提法。C中最强元素位置是C中最强元素的行的索引号l *与列的索引号m *,即(l *,m *),只可能位于被第二矩阵C map指示出的第一矩阵C的元素的位置上,也就是最多有K 0个可能的位置,采用
Figure PCTCN2020080647-appb-000012
个比特的字段序列来映射K 0个可能的位置中的一个位置,如此,可以最大限度地节省开销。
比如,第二矩阵C map字段中指示出的位置、与
Figure PCTCN2020080647-appb-000013
个比特构成的序列状态的对应关系为第一对应关系,按照第一对应关系,用
Figure PCTCN2020080647-appb-000014
个比特指示出第一矩阵C中最强系数位置。
或者,第二矩阵C map字段中指示出的位置与
Figure PCTCN2020080647-appb-000015
个比特构成的序列状态的对应关系为第二对应关系,按照第二对应关系,用
Figure PCTCN2020080647-appb-000016
个比特指示出第一矩阵C中最强系数位置。
具体来说,所述的第一对应关系为,第二矩阵C map字段中指示出的位置、与序列状态按顺序对应,比如第二矩阵C map中第1位置与
Figure PCTCN2020080647-appb-000017
个比特构成的序列状态0相对应,然后指示出的递增的位置与递增的比特序列状态相对应。例如C map字段中指示出K 1个位置。
其中,{第1位置,第2位置,...,第K 1位置}与{序列状态0,序列状态1,...,序列状态K 1-1}按顺序一一对应。其中所述的序列状态n指序列构成的数为n,例如右侧为最低位的比特序列001为数1,010为数2,100为数4;例如左侧为最低位的比特序列001为数4,010为数2,100为数1。
采用N个比特的序列对位置进行指示,可以为,当序列状态为3的时候,并且第二矩阵中的位置与序列状态从前向后一一对应的时候,则表示指示的为第二矩阵中的第4个位置。
这种按照第二矩阵C map字段中指示出的位置的顺序进行对应,可以减小计算 第一矩阵C中最强元素位置的复杂度;按照第二矩阵C map字段中指示出的位置的顺序与序列状态的顺序对应的关系,可以减小计算第一矩阵C中最强元素位置的复杂度;其中第二矩阵C map字段中指示出的第一位置与序列状态0对应的关系,可以减小计算第一矩阵C中最强元素位置的复杂度。
所述的第二对应关系为,按顺序第二矩阵C map字段中指示出的第1位置与
Figure PCTCN2020080647-appb-000018
个比特构成的序列状态(2 b-1)相对应,然后指示出的递增的位置与递减的比特序列状态相对应。例如第二矩阵C map字段中指示出K 1个位置,其中{第1位置,第2位置,...,第K 1位置}与{序列状态2 b-1,序列状态2 b-2,...,序列状态2 b-K 1}按顺序一一对应;其中
Figure PCTCN2020080647-appb-000019
其中所述的序列状态n指序列构成的数为n,例如右侧为最低位的比特序列001为数1,010为数2,100为数4;例如左侧为最低位的比特序列001为数4,010为数2,100为数1。
同样的,这种按照第二矩阵C map字段中指示出的位置的顺序进行对应,可以减小计算第一矩阵C中最强元素位置的复杂度;按照第二矩阵C map字段中指示出的位置的顺序与序列状态的倒序对应的关系,可以减小计算第一矩阵C中最强元素位置的复杂度。其中第二矩阵C map字段中指示出的第一位置与序列末状态对应的关系,可以减小计算第一矩阵C中最强元素位置的复杂度。
需要理解的是,上述仅示意出两种信道状态信息中的信息域如何映射为相应字段的方式。针对其他信息域也存在相应的处理方式,可以为直接将信息域中包含的内容作为对应的其他字段的具体内容。比如,指示第一矩阵中的系数幅度的域中包含的系数幅度,可以直接添加至上行控制信息中作为第三字段。当然,还可以存在其他处理方式,这里不做穷举。
前述步骤103中的,根据第一部分字段生成第一个比特序列,根据第二部分字段生成第二个比特序列中,这里主要针对第二部分字段组成第二个比特序列进行,首先进行以下说明:
将承载指示第一矩阵中最强系数位置的域的第二字段,排列在承载指示第二矩阵的信息的域的第一字段之后;其中,所述第二字段中包含由N个比特组成的序列;N为整数,且N与网络设备所配置的最大反馈元素的数量相关。
关于第二字段中包含的N个比特组成的序列的确定方式,如前所述,这里不再赘述。
其中,承载指示第二矩阵C map信息的域的字段比较重要,因为由承载指示第一矩阵C中最强系数位置的域的字段获取第一矩阵C中最强系数位置需要依赖于第二矩阵C map信息,而上行控制信息比特序列中排前的字段比排后的字段在传输中的可靠性更高。
比如,在承载指示第二矩阵C map信息的域的第一字段之后,紧接着承载指示第一矩阵C中最强系数位置的域的第二字段;或者,第二矩阵C map信息的域的第一字段之后,接着其它一个或多个字段,再添加承载指示第一矩阵C中最强系数位置的域的第二字段。
根据第二部分字段生成第二个比特序列,还可以包括:将第一矩阵中同一个系数对应的承载指示第一矩阵中的系数幅度的域的第三字段、与承载指示第一矩阵中的系数相位的域的第四字段设置为相邻排列。
比如,y是第一矩阵C中的被反馈报告的一个系数,A y是y的幅度,承载A y的字段为G y,P y是y的相位,承载P y的字段为H y;在第二个比特序列中,字段G y与字段H y相紧邻,例如排列为G yH y,或者排列为H y G y;其中G y与H y相紧邻,中间没有间隔其它的字段。
又例如,z是第一矩阵C中的被反馈报告的又一个系数,A z是z的幅度,承载A z的字段为G z,P z是z的相位,承载P z的字段为H z;承载这两个系数的幅度的字段与相位的字段排列为G y H y G z H z,或者排列为H y G y H z G z,或者排列为G z H z G y H y,或者排列为H z G z H y G y;其中,G y与H y相紧邻,中间没有间隔其它的字段,G z与H z相紧邻,中间没有间隔其它的字段。
如此,同一系数对应的承载幅度的字段与相位的字段相紧邻可以缩短获得同一个系数的时间,不需要等待其它的系数获取就可以使用已获取的系数,即可以缩短使用系数的等待时间。
根据第二部分字段生成第二个比特序列,还可以包括:
将承载第一矩阵中第一极化方向所对应的被反馈的元素的第五字段,排列在承载第一矩阵的第二极化方向对应的被反馈的元素的第六字段之前;其中,第一极化方向为第一矩阵中最强系数所对应的极化方向,第二极化方向为与第一极化方向不同的另一个极化方向。
第一矩阵C中系数的极化方向指系数对应的在矩阵V中的列向量的极化方向,在这个列向量中所述极化方向的天线端口对应的元素不为零,另一极化方向的天线端口对应的元素为零。
另一方面,第一矩阵C前一半序号的行属于一个极化方向,例如索引号为{0,1,…,L-1}的行属于一个极化方向;后一半序号的行属于另一个极化方向,例如索引号为{L,L+1,…,2L-1}的行属于另一个极化方向;第一矩阵C中系数的极化方向指所述系数在第一矩阵C中的行的极化方向。
所述字段排列可以说明如下:例如,第一矩阵C中最强系数对应的极化方向为p A,第一矩阵C中极化方向为p A的被反馈的元素为
Figure PCTCN2020080647-appb-000020
对应承载每 个系数的幅度的字段依次为
Figure PCTCN2020080647-appb-000021
对应承载每个系数的相位的字段依次为
Figure PCTCN2020080647-appb-000022
另一个极化方向为p B,第一矩阵C中极化方向为p B的被反馈的元素为
Figure PCTCN2020080647-appb-000023
对应承载每个系数的幅度的字段依次为
Figure PCTCN2020080647-appb-000024
对应承载每个系数的相位的字段依次为
Figure PCTCN2020080647-appb-000025
其中,所述字段排列的一个例子为,同一个系数的幅度字段与相位字段紧邻,最强系数对应的极化方向对应的字段排列在前,另一极化方向的字段排列在后:
Figure PCTCN2020080647-appb-000026
或者
Figure PCTCN2020080647-appb-000027
再一个例子为,先排最强极化方向对应幅度的字段,接着最强极化方向对应的相位的字段,接着另一极化方向对应幅度的字段,最后另一极化方向对应的相位的字段:
Figure PCTCN2020080647-appb-000028
另一个排列例子为,先排最强极化方向对应的相位的字段,接着最强极化方向对应幅度的字段,接着另一极化方向对应的相位的字段,最后另一极化方向对应幅度的字段:
Figure PCTCN2020080647-appb-000029
这样的处理方式,能够将最强系数对应的极化方向对应的字段排列在前,可以提高最强系数对应的极化方向对应字段传输的可靠性,从而提高上行控制信息比特序列传输的性能。
所述根据第二部分字段生成第二个比特序列,包括:
将承载指示第一矩阵中最强系数位置的域的第二字段,设置在承载指示第一矩阵中被反馈的元素的域的第七字段之前。
比如,承载指示第一矩阵C中被反馈的元素的域的第七字段紧接在承载指示第一矩阵C中最强系数位置的域的第二字段之后;
或者,承载指示第一矩阵C中被反馈的元素的域的第七字段在承载指示第一矩阵C中最强系数位置的域的第二字段之后,其间间隔着其它的一个或多个字段。
这样的处理方式,能够将承载指示第一矩阵C中最强系数位置的域的字段排列在前,可以提高承载指示第一矩阵C中最强系数位置的域的字段传输的可靠性;因为最强系数位置的传输正确与否同时也关系着接收侧是否能正确理解其它系数的值与这些系数的位置的对应关系,所以最强系数位置比其它系数的值更为重要,需要比其它系数的值更可靠的传输。
再一种方式指示第一矩阵中被反馈的元素的域的字段的排列方式,包括:
基于承载指示第二矩阵信息的域的第一字段所指示的第一矩阵中的被反馈的元素的顺序,排列承载第一矩阵中的被反馈的元素的域的至少一个字段。
例如,第一矩阵C中的被反馈的元素按照承载指示第二矩阵C map信息的域的第一字段所指示系数的顺序为
Figure PCTCN2020080647-appb-000030
对应承载每个系数的幅度的字段依次为
Figure PCTCN2020080647-appb-000031
对应承载每个系数的相位的字段依次为
Figure PCTCN2020080647-appb-000032
则承载每个系数幅度的各字段与承载每个系数的相位的各字段排列为
Figure PCTCN2020080647-appb-000033
需要指出的是,上述将第二部分字段依次相邻连接排列、且相邻字段之间无其它字段,组成第二个比特序列。
例如,承载上述信息域的各字段排列为:{承载指示比特矩阵C map信息的域的字段,承载指示第一矩阵C中最强系数位置的域的字段,承载指示第二极化方向参考幅度的域的字段,承载指示第一矩阵C中的系数幅度的域的字段,指示C矩阵中的系数相位的域的字段};
另一个字段排列方式可以为:{承载指示比特第二矩阵C map信息的域的字段,承载指示第一矩阵C中最强系数位置的域的字段,承载指示第二极化方向参考幅度的域的字段,指示第一矩阵C中的系数相位的域的字段,承载指示第一矩阵C中的系数幅度的域的字段}。
基于前述方案,下面提供组成第一个比特序列以及第二个比特序列的一种示例:
第一部分字段按顺序连接成第一个比特序列,例如{承载指示预编码的秩(Rank)的域的字段,承载指示第一个传输块(Transport Block,TB)的宽带信道质量指示(Wideband信道质量信息(Channel Quality Indicator,CQI))的域的字段,承载指示第一个传输块(TB)的子带差分信道质量指示(Subband differential CQI)的域的字段,承载指示矩阵C中的被反馈的元素的数目的域的字段};
第二部分字段按顺序连接成第二个比特序列,例如{承载指示第二矩阵C map信息的域的字段,承载指示第一矩阵C中最强系数位置的域的字段,承载指示第二极化方向参考幅度的域的字段,承载指示矩阵C中的系数幅度的域的字段,承载指示矩阵C中的系数相位的域的字段},或者{承载指示比特矩阵C map信息的域的字段,承载指示矩阵C中最强系数位置的域的字段,承载指示第二极化方向参考幅度的域的字段,承载指示矩阵C中的系数相位的域的字段,承载指示矩阵C中的系数幅度的域的字段}。
所述根据第二部分字段生成第二个比特序列,还包括:按预编码的层的顺序将承载各层预编码信息的字段进行排列。
例如预编码的秩为2,即预编码共计为2层,即{第1层预编码,第2层预编码},按预编码的层的顺序排列各层字段如下:{承载第1层预编码信息的字段,承载第2层预编码信息的字段}。再例如,预编码的秩为3,即预编码共计为3层,即{第1层预编码,第2层预编码,第3层预编码},按预编码的层的顺序排列各层字段如下:{承载第1层预编码信息的字段,承载第2层预编码信息的字段,承载第3层预编码信息的字段}。再例如,预编码的秩为4,即预编码共计为4层,即{第1层预编码,第2层预编码,第3层预编码,第4层预编码},按预编码的层的顺序排列各层字段如下:{承载第1层预编码信息的字段,承载第2层预编码信息的字段,承载第3层预编码信息的字段,承载第4层预编码信息的字段}。
所述根据第一部分字段生成第一个比特序列,还包括:将承载指示第一矩阵中的被反馈的元素的数目的域的字段排在第一部分字段的首位。
例如,{承载指示第一矩阵中的被反馈的元素的数目的域的字段,承载指示第一个传输块的宽带信道质量指示的域的字段,承载指示第一个传输块的子带差分信道质量指示的域的字段};
再例如,{承载指示第一矩阵中的被反馈的元素的数目的域的字段,承载指示预编码的秩的域的字段,承载指示第一个传输块的宽带信道质量指示的域的字段,承载指示第一个传输块的子带差分信道质量指示的域的字段}。
由于网络设备,比如基站,需要知道第一矩阵中的被反馈的元素的数目这一信息,才能确定第二个比特序列的长度,从而才能正确接收第二个比特序列,并解读其中的信息;因此承载指示第一矩阵中的被反馈的元素的数目的域的字段非常重要,将其置于第一部分字段的首位,可以提高这一字段的传输可靠性,从而提高上行控制信息的传输可靠性。
所述方法还包括:根据基站为终端配置的秩的最大值确定承载指示第一矩阵中的被反馈的元素的数目的域的字段数目。
例如,基站为终端配置所需反馈的预编码的秩的最大值为1,承载指示第一矩阵中的被反馈的元素的数目的域的字段数目为1,每个字段承载一层预编码的用以指示第一矩阵中的被反馈的元素的数目的域。
再例如,基站为终端配置所需反馈的预编码的秩的最大值为2,承载指示第一矩阵中的被反馈的元素的数目的域的字段数目为2,每个字段承载一层预编码的用以指示第一矩阵中的被反馈的元素的数目的域。例如,第一个字段承载第 一层预编码的用以指示第一矩阵中的被反馈的元素的数目的域;第二个字段承载第二层预编码的用以指示第一矩阵中的被反馈的元素的数目的域。
再例如,基站为终端配置所需反馈的预编码的秩的最大值为3,承载指示第一矩阵中的被反馈的元素的数目的域的字段数目为3,每个字段承载一层预编码的用以指示第一矩阵中的被反馈的元素的数目的域。例如,第一个字段承载第一层预编码的用以指示第一矩阵中的被反馈的元素的数目的域;第二个字段承载第二层预编码的用以指示第一矩阵中的被反馈的元素的数目的域;第三个字段承载第三层预编码的用以指示第一矩阵中的被反馈的元素的数目的域。
再例如,基站为终端配置所需反馈的预编码的秩的最大值为4,承载指示第一矩阵中的被反馈的元素的数目的域的字段数目为4,每个字段承载一层预编码的用以指示第一矩阵中的被反馈的元素的数目的域。例如,第一个字段承载第一层预编码的用以指示第一矩阵中的被反馈的元素的数目的域;第二个字段承载第二层预编码的用以指示第一矩阵中的被反馈的元素的数目的域;第三个字段承载第三层预编码的用以指示第一矩阵中的被反馈的元素的数目的域。第四个字段承载第四层预编码的用以指示第一矩阵中的被反馈的元素的数目的域。
根据基站为终端配置的秩的最大值确定承载指示第一矩阵中的被反馈的元素的数目的域的字段数目,还包括:由所述字段承载的所述数目的非零值的数目指示所反馈的预编码的秩。
例如,基站为终端配置所需反馈的预编码的秩的最大值为P,承载指示第一矩阵中的被反馈的元素的数目的域的字段数目为P,每个字段承载一层预编码的用以指示第一矩阵中的被反馈的元素的数目的域;其中有Q个字段承载的所述数目为非零,那么指示被反馈的预编码的秩为Q;其中,P、Q为正整数。
可见,通过采用上述实施方式,就能够通过将信道状态信息的一个或多个信息域映射至上行控制信息中,具体的为映射至上行控制信息中的第一部分字段以及第二部分字段,并由第一部分字段以及第二部分字段分别组成第一个比特序列以及第二个比特序列;如此,就能够实现将信道状态信息映射为上行控制信息。
另外,由于上述实施方式还提供了将第一矩阵中最强元素的位置的域映射为N个比特的序列,降低计算第一矩阵中最强元素的位置的复杂度;以及通过将最强元素所在的第一极化方向的被反馈的元素的字段排列在第二极化方向的被反馈的元素对应的第六字段之前,保证信息传输的可靠性。
在另一个示例性实施方式中,提供一种信息获取方法,如图3所示,包括:
步骤301:从上行控制信息中获取第一个比特序列以及第二个比特序列。
步骤302:从第一个比特序列中获取第一部分字段,从第二个比特序列中获取第二部分字段。
步骤303:基于第一部分字段以及第二部分字段,获取组成信道状态信息的一个或多个信息域。
其中,所述第一部分字段用于承载信道状态信息的以下信息域至少之一:指示预编码的秩的域,指示第一个传输块的宽带信道质量指示的域,指示第一个传输块的子带差分信道质量指示的域,指示第一矩阵中的被反馈的元素的数目的域;
所述第二部分字段用于承载信道状态信息的以下信息域至少之一:指示第二矩阵的信息的域,指示第一矩阵中最强系数位置的域,指示第二极化方向参考幅度的域,指示第一矩阵中的被反馈的元素的域;其中,所述指示第一矩阵中的被反馈的元素的域包括:指示第一矩阵中的被反馈的元素幅度的域,指示第一矩阵中的被反馈的元素相位的域;
其中,所述第二矩阵中的元素用于指示第一矩阵中的被反馈的元素的位置。
本实施方式可以应用于网络设备侧。其中,所述网络设备可以为网络侧的设备,比如具体可以为网络侧的基站。
结合图4,本实施方式可以包括以下处理流程:
步骤401:接收终端设备发送的上行控制信息。
步骤402:从上行控制信息中获取第一个比特序列以及第二个比特序列;从第一个比特序列中获取第一部分字段,从第二个比特序列中获取第二部分字段;基于第一部分字段以及第二部分字段,获取组成信道状态信息的一个或多个信息域。
本实施方式中涉及到的预编码的构成方式与前一示例相同,这里不再赘述。
关于前述处理流程中,所述基于第一部分字段以及第二部分字段,获取组成信道状态信息的一个或多个信息域,包括:
基于第二部分字段中包含的第一字段中包含的一维序列,确定组成所述第二矩阵的二维矩阵元素。
需要指出的是,从一维序列转换为二维矩阵的处理中,可以基于第二矩阵的行、列数量来确定,依次确定所要从一维序列中提取的元素数量以组成第二矩阵的各行的元素,并且依照行增序的方式将提取的元素添加至二维矩阵中得到第二矩阵。
比如,一维序列为X C=[x 0,x 1,…,x 2LM-1]。将0~M-1个元素作为第二矩阵的第 一行的元素,依次类推,直至按照行增序的方式来恢复得到2L行M列的第二矩阵。
本实施方式中将一维序列转换为二维矩阵的处理与上一实施方式中的将二维矩阵映射为一维序列的处理规则相反,因此具体的处理不再进行赘述。
所述基于第一部分字段以及第二部分字段,获取组成信道状态信息的一个或多个信息域,包括:
基于第二部分字段中的第二字段中包含的N个比特组成的序列,确定第一矩阵中最强系数位置;其中,N为整数,且N与最大反馈元素的数量相关。
关于N个比特组成的序列中,N的确定与最大反馈元素的数量相关,比如其确定方式可以采用以下公式:
Figure PCTCN2020080647-appb-000034
其中,K 0是基站为终端配置的可能反馈第一矩阵C中最大反馈元素的数量。
需要说明的是,第一矩阵C中系数即第一矩阵C中元素,所述系数指第一矩阵C中元素是矩阵V中的列与矩阵U中行的系数,即矩阵C中最强系数位置与矩阵C中最强元素位置是相同的提法。C中最强元素位置是C中最强元素的行的索引号l *与列的索引号m *,即(l *,m *),只可能位于被矩阵C map指示出的矩阵C的元素的位置上,也就是最多有K 0个可能的位置,采用
Figure PCTCN2020080647-appb-000035
个比特的字段序列来映射K 0个可能的位置中的一个位置,如此,可以最大限度地节省开销。
比如,第二矩阵C map字段中指示出的位置、与
Figure PCTCN2020080647-appb-000036
个比特构成的序列状态的对应关系为第一对应关系,按照第一对应关系,用
Figure PCTCN2020080647-appb-000037
个比特指示出第一矩阵C中最强系数位置。或者,第二矩阵C map字段中指示出的位置与
Figure PCTCN2020080647-appb-000038
个比特构成的序列状态的对应关系为第二对应关系,按照第二对应关系,用
Figure PCTCN2020080647-appb-000039
个比特指示出第一矩阵C中最强系数位置。
具体来说,所述的第一对应关系为,第二矩阵C map字段中指示出的位置、与序列状态按顺序对应,比如第二矩阵C map中第1位置与
Figure PCTCN2020080647-appb-000040
个比特构成的序列状态0相对应,然后指示出的递增的位置与递增的比特序列状态相对应,例如C map字段中的K 1个位置。
其中,{第1位置,第2位置,...,第K 1位置}与{序列状态0,序列状态1,...,序列状态K 1-1}按顺序一一对应。其中所述的序列状态n指序列构成的数为n,例如右侧为最低位的比特序列001为数1,010为数2,100为数4;例如左侧为最低位的比特序列001为数4,010为数2,100为数1。
采用N个比特的序列对位置进行指示,可以为,当序列状态为3的时候,并且第二矩阵中的位置与序列状态从前向后一一对应的时候,则表示指示的为第二矩阵中的第4个位置,再根据第二矩阵中第四个位置的元素,确定第一矩 阵中的最强元素。
这种按照第二矩阵C map字段中指示出的位置的顺序进行对应,可以减小计算第一矩阵C中最强元素位置的复杂度;按照第二矩阵C map字段中指示出的位置的顺序与序列状态的顺序对应的关系,可以减小计算第一矩阵C中最强元素位置的复杂度;其中第二矩阵C map字段中指示出的第一位置与序列状态0对应的关系,可以减小计算第一矩阵C中最强元素位置的复杂度。
所述的第二对应关系为,按顺序C map字段中指示出的第1位置与
Figure PCTCN2020080647-appb-000041
个比特构成的序列状态(2 b-1)相对应,然后指示出的递增的位置与递减的比特序列状态相对应,例如C map字段中指示出K 1个位置,其中{第1位置,第2位置,...,第K 1位置}与{序列状态2 b-1,序列状态2 b-2,...,序列状态2 b-K 1}按顺序一一对应;其中
Figure PCTCN2020080647-appb-000042
其中所述的序列状态n指序列构成的数为n,例如右侧为最低位的比特序列001为数1,010为数2,100为数4;例如左侧为最低位的比特序列001为数4,010为数2,100为数1。
同样的,这种按照第二矩阵C map字段中指示出的位置的顺序进行对应,可以减小计算第一矩阵C中最强元素位置的复杂度;按照第二矩阵C map字段中指示出的位置的顺序与序列状态的倒序对应的关系,可以减小计算第一矩阵C中最强元素位置的复杂度。其中第二矩阵C map字段中指示出的第一位置与序列末状态对应的关系,可以减小计算第一矩阵C中最强元素位置的复杂度。
所述基于第一部分字段以及第二部分字段,获取组成信道状态信息的一个或多个信息域,包括:
基于第二部分字段中的第一字段确定第二矩阵的信息;
基于第二部分字段中排列在第一字段之后的第二字段,确定第一矩阵中最强系数位置;
其中,所述第二字段中包含由N个比特组成的序列;N为整数,且N与网络设备所配置的最大反馈元素的数量相关。
关于第二字段中包含的N个比特组成的序列的确定方式,如前所述,这里不再赘述。
其中,承载指示第二矩阵C map信息的域的字段比较重要,因为由承载指示第一矩阵C中最强系数位置的域的字段获取第一矩阵C中最强系数位置需要依赖于第二矩阵C map信息,而上行控制信息比特序列中排前的字段比排后的字段在传输中的可靠性更高。
比如,在承载指示第二矩阵C map信息的域的第一字段之后,紧接着提取承载指示第一矩阵C中最强系数位置的域的第二字段;或者,第二矩阵C map信息的域 的第一字段之后,接着其它一个或多个字段,再接着提取承载指示第一矩阵C中最强系数位置的域的第二字段。
进而,基于第一字段确定第二矩阵的信息;基于第二字段确定第一矩阵中最强系数的位置;关于基于第二字段的内容确定最强系数的位置的方式可以如前所述,这里不再赘述。
所述基于第一部分字段以及第二部分字段,获取组成信道状态信息的一个或多个信息域,包括:
基于第二部分字段中相邻的第三字段以及第四字段,确定第一矩阵中系数对应的系数幅度以及系数相位。
其中,第三字段以及第四字段之间相邻,即其中没有其他字段。也就是说,当从第二部分字段中提取到第三字段的时候,能够确定其相邻的字段为第四字段,从而获取第一矩阵中系数对应的系数幅度以及系数相位。
比如,y是第一矩阵C中的被反馈报告的一个系数,A y是y的幅度,承载A y的字段为G y,P y是y的相位,承载P y的字段为H y;在第二个比特序列中,字段G y与字段H y相紧邻,例如排列为G yH y,或者排列为H y G y;其中G y与H y相紧邻,中间没有间隔其它的字段。
又例如,z是第一矩阵C中的被反馈报告的又一个系数,A z是z的幅度,承载A z的字段为G z,P z是z的相位,承载P z的字段为H z;承载这两个系数的幅度的字段与相位的字段排列为G y H y G z H z,或者排列为H y G y H z G z,或者排列为G z H z G yH y,或者排列为H zH z G z H y G y;其中,G y与H y相紧邻,中间没有间隔其它的字段,G z与H z相紧邻,中间没有间隔其它的字段。
如此,同一系数对应的承载幅度的字段与相位的字段相紧邻可以缩短获得同一个系数的时间,不需要等待其它的系数获取就可以使用已获取的系数,即可以缩短使用系数的等待时间。
所述基于第一部分字段以及第二部分字段,获取组成信道状态信息的一个或多个信息域,包括:
基于第二部分字段中的第五字段确定第一矩阵中第一极化方向所对应的被反馈的元素;
基于第二部分字段中排列在第五字段之后的第六字段,确定第二极化方向对应的被反馈的元素;
其中,第一极化方向为第一矩阵中最强系数所对应的极化方向,第二极化方向为与第一极化方向不同的另一个极化方向。
也就是说,从第二部分字段中提取到第五字段以及第六字段,根据预设的排列规则确定位于前面的第五字段为针对第一极化方向的被反馈的元素,第六字段中为第二极化方向的被反馈的元素。
所述字段排列规则可以说明如下:第一矩阵C中最强系数对应的极化方向为p A,第五字段中包含有第一矩阵C中极化方向为p A的被反馈的元素为
Figure PCTCN2020080647-appb-000043
对应承载每个系数的幅度依次为
Figure PCTCN2020080647-appb-000044
对应承载每个系数的相位的字段依次为
Figure PCTCN2020080647-appb-000045
另一个极化方向为p B,也就是第六字段中包含有第一矩阵C中极化方向为p B的被反馈的元素为
Figure PCTCN2020080647-appb-000046
对应承载每个系数的幅度的字段依次为
Figure PCTCN2020080647-appb-000047
对应承载每个系数的相位的字段依次为
Figure PCTCN2020080647-appb-000048
其中,所述字段排列的一个例子为,同一个系数的幅度字段与相位字段紧邻,最强系数对应的极化方向对应的字段排列在前,另一极化方向的字段排列在后:
Figure PCTCN2020080647-appb-000049
或者
Figure PCTCN2020080647-appb-000050
如此,在网络设备解析的时候,可以依据这样的规则依次获取两种极化反向对应的一个系数的幅度以及相位,再获取下一个系数的幅度以及相位,最终得到各个系数对应的幅度以及相位。
再一个例子为,先排最强极化方向对应幅度的字段,接着最强极化方向对应的相位的字段,接着另一极化方向对应幅度的字段,最后另一极化方向对应的相位的字段:
Figure PCTCN2020080647-appb-000051
相应的,在网络设备侧依照该排列规则依次获取幅度以及相位字段,比如,可以为先获取K个元素作为第一极化方向的系数幅度,再获取K个元素作为第一极化方向的系数相位;再跟着获取到的K个元素为第二极化方向的幅度,最后K个元素为第二极化方向的系数相位。
另一个排列例子为,先排最强极化方向对应的相位的字段,接着最强极化方向对应幅度的字段,接着另一极化方向对应的相位的字段,最后另一极化方向对应幅度的字段:
Figure PCTCN2020080647-appb-000052
相应的,在网络设备侧依照该排列规则依次获取幅度以及相位字段,比如,可以为先获取K个元素作为第一极化方向的系数相位,再获取K个元素作为第一极化方向的系数幅度;再跟着获取到的K个元素为第二极化方向的相位,最后K个元素为第二极化方向的系数幅度。
这样的处理方式,能够将最强系数对应的极化方向对应的字段排列在前, 可以提高最强系数对应的极化方向对应字段传输的可靠性,从而保证上行控制信息比特序列传输的性能。
所述基于第一部分字段以及第二部分字段,获取组成信道状态信息的一个或多个信息域,包括:
基于第二字段确定第一矩阵中最强系数位置;
基于排列在第二字段之后的第七字段确定第一矩阵中的被反馈的元素。
比如,提取第二字段得到第一矩阵中最强系数的位置之后,紧接着与第二字段相邻的第七字段,从第七字段获取第一矩阵C中被反馈的元素。
或者,提取第二字段得到第一矩阵中最强系数的位置之后,相邻预设数量个字段之后,提取得到第七字段,从第七字段获取第一矩阵C中被反馈的元素。其中预设数量可以与终端设备预先协商获得,或者双方根据预先的协议确定,比如,中间可以间隔3个字段,或者更多或者更少,本实施方式中不做穷举。
再一种方式指示第一矩阵中被反馈的元素的域的字段的排列方式,所述基于第一部分字段以及第二部分字段,获取组成信道状态信息的一个或多个信息域,包括:
基于第一字段确定第二矩阵,基于第二矩阵所指示的第一矩阵中的被反馈的元素的顺序,确定承载第一矩阵中的被反馈的元素的域的至少一个字段;
基于所述至少一个字段确定第一矩阵中的被反馈的元素。
例如,先从第一字段中获取第二矩阵,然后得到至少一个承载被反馈的元素的域的字段,由于第一矩阵C中的被反馈的元素按照承载指示第二矩阵C map
Figure PCTCN2020080647-appb-000053
基于前述方案,网络设备可以根据预设的第一个比特序列以及第二个比特序列中各个字段的排列顺序,以确定提取的字段所对应的信道状态信息中的哪个域;该预设的第一个比特序列以及第二个比特序列中各个字段的排列顺序,可以根据协议来确定,或者可以与终端设备协商得到。下面提供预设的第一个比特序列以及第二个比特序列中各个字段的排列顺序的一种示例:
第一部分字段按顺序连接成第一个比特序列,例如{承载指示预编码的秩 (Rank)的域的字段,承载指示第一个传输块(TB)的宽带信道质量指示(Wideband CQI)的域的字段,承载指示第一个传输块(TB)的子带差分信道质量指示(Subband differential CQI)的域的字段,承载指示矩阵C中的被反馈的元素的数目的域的字段};
第二部分字段按顺序连接成第二个比特序列,例如{承载指示第二矩阵C map信息的域的字段,承载指示第一矩阵C中最强系数位置的域的字段,承载指示第二极化方向参考幅度的域的字段,承载指示矩阵C中的系数幅度的域的字段,承载指示矩阵C中的系数相位的域的字段},或者{承载指示比特矩阵C map信息的域的字段,承载指示矩阵C中最强系数位置的域的字段,承载指示第二极化方向参考幅度的域的字段,承载指示矩阵C中的系数相位的域的字段,承载指示矩阵C中的系数幅度的域的字段}。
从第一个比特序列中获取第一部分字段,从第二个比特序列中获取第二部分字段;基于第一部分字段以及第二部分字段,获取组成信道状态信息的一个或多个信息域;其中在第二个比特序列中,按预编码的层的顺序排列承载各层预编码信息的字段。
例如预编码的秩为2,即预编码共计为2层,即{第1层预编码,第2层预编码},按预编码的层的顺序排列各层字段如下:{承载第1层预编码信息的字段,承载第2层预编码信息的字段}。再例如,预编码的秩为3,即预编码共计为3层,即{第1层预编码,第2层预编码,第3层预编码},按预编码的层的顺序排列各层字段如下:{承载第1层预编码信息的字段,承载第2层预编码信息的字段,承载第3层预编码信息的字段}。再例如,预编码的秩为4,即预编码共计为4层,即{第1层预编码,第2层预编码,第3层预编码,第4层预编码},按预编码的层的顺序排列各层字段如下:{承载第1层预编码信息的字段,承载第2层预编码信息的字段,承载第3层预编码信息的字段,承载第4层预编码信息的字段}。
从第一个比特序列中获取第一部分字段,可以包括:从第一个比特序列中第一部分字段中的首位,获取承载指示第一矩阵中的被反馈的元素的数目的域的字段。
其中,在第一个比特序列中,承载指示第一矩阵中的被反馈的元素的数目的域的字段排在第一部分字段的首位。
例如,{承载指示第一矩阵中的被反馈的元素的数目的域的字段,承载指示第一个传输块的宽带信道质量指示的域的字段,承载指示第一个传输块的子带差分信道质量指示的域的字段};
再例如,{承载指示第一矩阵中的被反馈的元素的数目的域的字段,承载指示预编码的秩的域的字段,承载指示第一个传输块的宽带信道质量指示的域的字段,承载指示第一个传输块的子带差分信道质量指示的域的字段};
因为基站需要知道第一矩阵中的被反馈的元素的数目这一信息,才能确定第二个比特序列的长度,从而才能正确接收第二个比特序列,并解读其中的信息;因此承载指示第一矩阵中的被反馈的元素的数目的域的字段非常重要,将其置于第一部分字段的首位,可以提高这一字段的传输可靠性,从而提高上行控制信息的传输可靠性。
从第一个比特序列中获取第一部分字段,基于第一部分字段以及第二部分字段,获取组成信道状态信息的一个或多个信息域;其中,根据基站为终端配置的秩的最大值确定承载指示第一矩阵中的被反馈的元素的数目的域的字段数目。
例如,基站为终端配置所需反馈的预编码的秩的最大值为1,承载指示第一矩阵中的被反馈的元素的数目的域的字段数目为1,每个字段承载一层预编码的用以指示第一矩阵中的被反馈的元素的数目的域。
再例如,基站为终端配置所需反馈的预编码的秩的最大值为2,承载指示第一矩阵中的被反馈的元素的数目的域的字段数目为2,每个字段承载一层预编码的用以指示第一矩阵中的被反馈的元素的数目的域。例如,第一个字段承载第一层预编码的用以指示第一矩阵中的被反馈的元素的数目的域;第二个字段承载第二层预编码的用以指示第一矩阵中的被反馈的元素的数目的域。
再例如,基站为终端配置所需反馈的预编码的秩的最大值为3,承载指示第一矩阵中的被反馈的元素的数目的域的字段数目为3,每个字段承载一层预编码的用以指示第一矩阵中的被反馈的元素的数目的域。例如,第一个字段承载第一层预编码的用以指示第一矩阵中的被反馈的元素的数目的域;第二个字段承载第二层预编码的用以指示第一矩阵中的被反馈的元素的数目的域;第三个字段承载第三层预编码的用以指示第一矩阵中的被反馈的元素的数目的域。
再例如,基站为终端配置所需反馈的预编码的秩的最大值为4,承载指示第一矩阵中的被反馈的元素的数目的域的字段数目为4,每个字段承载一层预编码的用以指示第一矩阵中的被反馈的元素的数目的域。例如,第一个字段承载第一层预编码的用以指示第一矩阵中的被反馈的元素的数目的域;第二个字段承载第二层预编码的用以指示第一矩阵中的被反馈的元素的数目的域;第三个字段承载第三层预编码的用以指示第一矩阵中的被反馈的元素的数目的域。第四个字段承载第四层预编码的用以指示第一矩阵中的被反馈的元素的数目的域。
根据基站为终端配置的秩的最大值确定承载指示第一矩阵中的被反馈的元素的数目的域的字段数目,还包括:由所述字段承载的所述数目的非零值的数目确定所反馈的预编码的秩。
例如,基站为终端配置所需反馈的预编码的秩的最大值为P,承载指示第一矩阵中的被反馈的元素的数目的域的字段数目为P,每个字段承载一层预编码的用以指示第一矩阵中的被反馈的元素的数目的域;其中有Q个字段承载的所述数目为非零,那么确定被反馈的预编码的秩为Q;其中,P、Q为正整数。
可见,通过采用上述实施方式,就能够通过上行控制信息获取信道状态信息的一个或多个信息域,具体的为从上行控制信息获取第一个比特序列以及第二个比特序列,从第一个比特序列获取第一部分字段,从第二个比特序列获取第二部分字段,根据第一部分字段及第二部分字段获取信道状态信息的一个或多个信息域;如此,就能够实现通过上行控制信息获取信道状态信息。
在一个示例性实施方式中,提供一种终端设备,如图5所示,包括:
映射单元51,用于将信道状态信息的一个或多个信息域,映射为上行控制信息的一个或多个字段;
处理单元52,用于将所述一个或多个字段分为第一部分字段以及第二部分字段;根据第一部分字段生成第一个比特序列,根据第二部分字段生成第二个比特序列;
其中,所述第一部分字段用于承载信道状态信息的以下信息域至少之一:指示预编码的秩的域,指示第一个传输块的宽带信道质量指示的域,指示第一个传输块的子带差分信道质量指示的域,指示第一矩阵中的被反馈的元素的数目的域;
所述第二部分字段用于承载信道状态信息的以下信息域至少之一:指示第二矩阵的信息的域,指示第一矩阵中最强系数位置的域,指示第二极化方向参考幅度的域,指示第一矩阵中的被反馈的元素的域;其中,所述指示第一矩阵中的被反馈的元素的域包括:指示第一矩阵中的被反馈的元素幅度的域,指示第一矩阵中的被反馈的元素相位的域;
其中,所述第二矩阵中的元素用于指示第一矩阵中的被反馈的元素的位置。
本实施方式可以应用于终端设备侧。在完成上述处理之后,还可以包括:将上行控制信息发送至网络设备;其中,所述网络设备可以为网络侧的设备,比如具体可以为网络侧的基站。
结合图6,本实施方式还可以包括有:信息发送单元53,用于将所述上行控制信息发送至网络设备。
其中,最终发送至网络设备的上行控制信息为包含有第一个比特序列以及第二个比特序列的上行控制信息,即映射有信道状态信息的一个或多个信息域的上行控制信息。
关于第一矩阵以及第二矩阵的相关说明参见前述实施方式,这里不做赘述。
关于映射单元51,用于将信道状态信息中的指示第二矩阵的信息的域映射为上行控制信息的第一字段;其中,所述第一字段中包含一维序列,所述一维序列由所述第二矩阵的二维矩阵元素映射得到。
这里需要指出的是,本实施方式中第一字段以及第二字段不代表字段的顺序,仅用于区分不同的字段,具体排列顺序与其无关,比如,可以第一字段排列在第二字段之前,或者第一字段还可以排列在第二字段之后;当然,本实施方式中还可以包括有更多字段,比如,第三字段、第四字段、第五字段以及更多,也均不代表各个字段的排列顺序,仅用于区分各个字段,在具体排列各个字段的时候,可以为第一字段-第二字段-第四字段-第六字段-第三字段-第五字段,这样来排序。关于本实施方式中各个字段的排列顺序不以其表述方式为准,而是根据后续规则或说明为准,下文不再重复说明。
具体的,进行映射的方式可以为将第二矩阵按照行增序的顺序来依次将二维矩阵中的元素添加至一维序列中,最终得到映射后的一维序列作为上行控制信息的第一字段。
举例来说,第二矩阵比如
Figure PCTCN2020080647-appb-000054
是一个2L行M列的矩阵,为二维比特矩阵,其中的元素以位映射的方式指示第一矩阵
Figure PCTCN2020080647-appb-000055
中的元素是否被报告。
第二矩阵C map矩阵到字段中比特序列的映射是二维矩阵元素到一维序列的映射,即二维矩阵所映射成的字段是一个一维的序列。
也就是说,所映射成的字段序列为X C=[x 0,x 1,…,x 2LM-1]。第二矩阵C map到上行控制信息的第一字段中比特序列的映射是按第二矩阵C map矩阵的行进行映射,即第二矩阵C map下一行中的所有元素接着第二矩阵C map上一行中的所有元素依顺序映射到字段中的序列。
具体的与方法处理流程中的处理相同,这里不再赘述。
所述映射单元51,用于将信道状态信息中的指示第一矩阵中最强系数位置的域映射为上行控制信息的第二字段;其中,所述第二字段中包含由N个比特组成的序列;N为整数,且N与网络设备所配置的最大反馈元素的数量相关。
关于N个比特组成的序列中,N的确定与最大反馈元素的数量相关,比如其确定方式可以采用以下公式:
Figure PCTCN2020080647-appb-000056
其中,K 0是基站为终端配置的可能反馈第一矩阵C中最大反馈元素的数量。
需要说明的是,第一矩阵C中系数即第一矩阵C中元素,所述系数指第一矩阵C中元素是矩阵V中的列与矩阵U中行的系数,即矩阵C中最强系数位置与矩阵C中最强元素位置是相同的提法。C中最强元素位置是C中最强元素的行的索引号l *与列的索引号m *,即(l *,m *),只可能位于被第二矩阵C map指示出的第一矩阵C的元素的位置上,也就是最多有K 0个可能的位置,采用
Figure PCTCN2020080647-appb-000057
个比特的字段序列来映射K 0个可能的位置中的一个位置,如此,可以最大限度地节省开销。
比如,第二矩阵C map字段中指示出的位置、与
Figure PCTCN2020080647-appb-000058
个比特构成的序列状态的对应关系为第一对应关系,按照第一对应关系,用
Figure PCTCN2020080647-appb-000059
个比特指示出第一矩阵C中最强系数位置。
或者,第二矩阵C map字段中指示出的位置与
Figure PCTCN2020080647-appb-000060
个比特构成的序列状态的对应关系为第二对应关系,按照第二对应关系,用
Figure PCTCN2020080647-appb-000061
个比特指示出第一矩阵C中最强系数位置。
具体来说,所述的第一对应关系为,第二矩阵C map字段中指示出的位置、与序列状态按顺序对应,比如第二矩阵C map中第1位置与
Figure PCTCN2020080647-appb-000062
个比特构成的序列状态0相对应,然后指示出的递增的位置与递增的比特序列状态相对应,例如C map字段中指示出K 1个位置。
其中,{第1位置,第2位置,...,第K 1位置}与{序列状态0,序列状态1,...,序列状态K 1-1}按顺序一一对应。其中所述的序列状态n指序列构成的数为n,例如右侧为最低位的比特序列001为数1,010为数2,100为数4;例如左侧为最低位的比特序列001为数4,010为数2,100为数1。
采用N个比特的序列对位置进行指示,可以为,当序列状态为3的时候,并且第二矩阵中的位置与序列状态从前向后一一对应的时候,则表示指示的为第二矩阵中的第4个位置。
这种按照第二矩阵C map字段中指示出的位置的顺序进行对应,可以减小计算第一矩阵C中最强元素位置的复杂度;按照第二矩阵C map字段中指示出的位置的顺序与序列状态的顺序对应的关系,可以减小计算第一矩阵C中最强元素位置的 复杂度;其中第二矩阵C map字段中指示出的第一位置与序列状态0对应的关系,可以减小计算第一矩阵C中最强元素位置的复杂度。
所述的第二对应关系为,按顺序第二矩阵C map字段中指示出的第1位置与
Figure PCTCN2020080647-appb-000063
个比特构成的序列状态(2 b-1)相对应,然后指示出的递增的位置与递减的比特序列状态相对应。例如第二矩阵C map字段中指示出K 1个位置,其中{第1位置,第2位置,...,第K 1位置}与{序列状态2 b-1,序列状态2 b-2,...,序列状态2 b-K 1}按顺序一一对应;其中
Figure PCTCN2020080647-appb-000064
其中所述的序列状态n指序列构成的数为n,例如右侧为最低位的比特序列001为数1,010为数2,100为数4;例如左侧为最低位的比特序列001为数4,010为数2,100为数1。
同样的,这种按照第二矩阵C map字段中指示出的位置的顺序进行对应,可以减小计算第一矩阵C中最强元素位置的复杂度;按照第二矩阵C map字段中指示出的位置的顺序与序列状态的倒序对应的关系,可以减小计算第一矩阵C中最强元素位置的复杂度。其中第二矩阵C map字段中指示出的第一位置与序列末状态对应的关系,可以减小计算第一矩阵C中最强元素位置的复杂度。
需要理解的是,上述仅示意出两种信道状态信息中的信息域如何映射为相应字段的方式。针对其他信息域也存在相应的处理方式,可以为直接将信息域中包含的内容作为对应的其他字段的具体内容。比如,指示第一矩阵中的系数幅度的域中包含的系数幅度,可以直接添加至上行控制信息中作为第三字段。当然,还可以存在其他处理方式,这里不做穷举。
根据第一部分字段生成第一个比特序列,根据第二部分字段生成第二个比特序列中,这里主要针对第二部分字段组成第二个比特序列进行以下说明:
处理单元52,将承载指示第一矩阵中最强系数位置的域的第二字段,排列在承载指示第二矩阵的信息的域的第一字段之后;其中,所述第二字段中包含由N个比特组成的序列;N为整数,且N与网络设备所配置的最大反馈元素的数量相关。
关于第二字段中包含的N个比特组成的序列的确定方式,如前所述,这里不再赘述。
其中,承载指示第二矩阵C map信息的域的字段比较重要,因为由承载指示第一矩阵C中最强系数位置的域的字段获取第一矩阵C中最强系数位置需要依赖于第二矩阵C map信息,而上行控制信息比特序列中排前的字段比排后的字段在传输中的可靠性更高。
比如,在承载指示第二矩阵C map信息的域的第一字段之后,紧接着承载指示第一矩阵C中最强系数位置的域的第二字段;或者,第二矩阵C map信息的域的第 一字段之后,接着其它一个或多个字段,再添加承载指示第一矩阵C中最强系数位置的域的第二字段。
根据第二部分字段生成第二个比特序列,还可以包括:将第一矩阵中同一个系数对应的承载指示第一矩阵中的系数幅度的域的第三字段、与承载指示第一矩阵中的系数相位的域的第四字段设置为相邻排列。
比如,y是第一矩阵C中的被反馈报告的一个系数,A y是y的幅度,承载A y的字段为G y,P y是y的相位,承载P y的字段为H y;在第二个比特序列中,字段G y与字段H y相紧邻,例如排列为G yH y,或者排列为H y G y;其中G y与H y相紧邻,中间没有间隔其它的字段。
又例如,z是第一矩阵C中的被反馈报告的又一个系数,A z是z的幅度,承载A z的字段为G z,P z是z的相位,承载P z的字段为H z;承载这两个系数的幅度的字段与相位的字段排列为G y H y G z H z,或者排列为H y G y H z G z,或者排列为G z H z G yH y,或者排列为H zH z G z H y G y;其中,G y与H y相紧邻,中间没有间隔其它的字段,G z与H z相紧邻,中间没有间隔其它的字段。
如此,同一系数对应的承载幅度的字段与相位的字段相紧邻可以缩短获得同一个系数的时间,不需要等待其它的系数获取就可以使用已获取的系数,即可以缩短使用系数的等待时间。
根据第二部分字段生成第二个比特序列,还可以包括:
处理单元52,将承载第一矩阵中第一极化方向所对应的被反馈的元素的第五字段,排列在承载第一矩阵的第二极化方向对应的被反馈的元素的第六字段之前;其中,第一极化方向为第一矩阵中最强系数所对应的极化方向,第二极化方向为与第一极化方向不同的另一个极化方向。
第一矩阵C中系数的极化方向指系数对应的在矩阵V中的列向量的极化方向,在这个列向量中所述极化方向的天线端口对应的元素不为零,另一极化方向的天线端口对应的元素为零。
另一方面,第一矩阵C前一半序号的行属于一个极化方向,例如索引号为{0,1,…,L-1}的行属于一个极化方向;后一半序号的行属于另一个极化方向,例如索引号为{L,L+1,…,2L-1}的行属于另一个极化方向;第一矩阵C中系数的极化方向指所述系数在第一矩阵C中的行的极化方向。
所述字段排列可以说明如下:例如,第一矩阵C中最强系数对应的极化方向为p A,第一矩阵C中极化方向为p A的被反馈的元素为
Figure PCTCN2020080647-appb-000065
对应承载每个系数的幅度的字段依次为
Figure PCTCN2020080647-appb-000066
对应承载每个系数的相位的字段依次为
Figure PCTCN2020080647-appb-000067
另一个极化方向为p B,第一矩阵C中极化方向为p B的被反 馈的元素为
Figure PCTCN2020080647-appb-000068
对应承载每个系数的幅度的字段依次为
Figure PCTCN2020080647-appb-000069
对应承载每个系数的相位的字段依次为
Figure PCTCN2020080647-appb-000070
其中,所述字段排列的一个例子为,同一个系数的幅度字段与相位字段紧邻,最强系数对应的极化方向对应的字段排列在前,另一极化方向的字段排列在后:
Figure PCTCN2020080647-appb-000071
或者
Figure PCTCN2020080647-appb-000072
再一个例子为,先排最强极化方向对应幅度的字段,接着最强极化方向对应的相位的字段,接着另一极化方向对应幅度的字段,最后另一极化方向对应的相位的字段:
Figure PCTCN2020080647-appb-000073
另一个排列例子为,先排最强极化方向对应的相位的字段,接着最强极化方向对应幅度的字段,接着另一极化方向对应的相位的字段,最后另一极化方向对应幅度的字段:
Figure PCTCN2020080647-appb-000074
这样的处理方式,能够将最强系数对应的极化方向对应的字段排列在前,可以提高最强系数对应的极化方向对应字段传输的可靠性,从而上行控制信息比特序列传输的性能。
所述处理单元52,将承载指示第一矩阵中最强系数位置的域的第二字段,设置在承载指示第一矩阵中被反馈的元素的域的第七字段之前。
比如,承载指示第一矩阵C中被反馈的元素的域的第七字段紧接在承载指示第一矩阵C中最强系数位置的域的第二字段之后;
或者,承载指示第一矩阵C中被反馈的元素的域的第七字段在承载指示第一矩阵C中最强系数位置的域的第二字段之后,其间间隔着其它的一个或多个字段。
再一种方式处理单元52,基于承载指示第二矩阵信息的域的第一字段所指示的第一矩阵中的被反馈的元素的顺序,排列承载第一矩阵中的被反馈的元素的域的至少一个字段。
例如,第一矩阵C中的被反馈的元素按照承载指示第二矩阵C map信息的域的第一字段所指示系数的顺序为
Figure PCTCN2020080647-appb-000075
对应承载每个系数的幅度的字段依次为
Figure PCTCN2020080647-appb-000076
对应承载每个系数的相位的字段依次为
Figure PCTCN2020080647-appb-000077
则承载每个系数幅度的各字段与承载每个系数的相位的各字段排列为
Figure PCTCN2020080647-appb-000078
Figure PCTCN2020080647-appb-000079
需要指出的是,上述将第二部分字段依次相邻连接排列、且相邻字段之间无其它字段,组成第二个比特序列。
例如,承载上述信息域的各字段排列为:{承载指示比特矩阵C map信息的域的字段,承载指示第一矩阵C中最强系数位置的域的字段,承载指示第二极化方向参考幅度的域的字段,承载指示第一矩阵C中的系数幅度的域的字段,指示C矩阵中的系数相位的域的字段};
另一个字段排列方式可以为:{承载指示比特第二矩阵C map信息的域的字段,承载指示第一矩阵C中最强系数位置的域的字段,承载指示第二极化方向参考幅度的域的字段,指示第一矩阵C中的系数相位的域的字段,承载指示第一矩阵C中的系数幅度的域的字段}。
所述处理单元52,按预编码的层的顺序将承载各层预编码信息的字段进行排列。
例如预编码的秩为2,即预编码共计为2层,即{第1层预编码,第2层预编码},按预编码的层的顺序排列各层字段如下:{承载第1层预编码信息的字段,承载第2层预编码信息的字段}。再例如,预编码的秩为3,即预编码共计为3层,即{第1层预编码,第2层预编码,第3层预编码},按预编码的层的顺序排列各层字段如下:{承载第1层预编码信息的字段,承载第2层预编码信息的字段,承载第3层预编码信息的字段}。再例如,预编码的秩为4,即预编码共计为4层,即{第1层预编码,第2层预编码,第3层预编码,第4层预编码},按预编码的层的顺序排列各层字段如下:{承载第1层预编码信息的字段,承载第2层预编码信息的字段,承载第3层预编码信息的字段,承载第4层预编码信息的字段}。
所述处理单元52,按预编码的层的顺序将承载各层预编码信息的字段进行排列。
所述处理单元52,将承载指示第一矩阵中的被反馈的元素的数目的域的字段排在第一部分字段的首位。
例如,{承载指示第一矩阵中的被反馈的元素的数目的域的字段,承载指示第一个传输块的宽带信道质量指示的域的字段,承载指示第一个传输块的子带差分信道质量指示的域的字段};
再例如,{承载指示第一矩阵中的被反馈的元素的数目的域的字段,承载指示预编码的秩的域的字段,承载指示第一个传输块的宽带信道质量指示的域的字段,承载指示第一个传输块的子带差分信道质量指示的域的字段}。
所述处理单元52,根据基站为终端配置的秩的最大值确定承载指示第一矩阵中的被反馈的元素的数目的域的字段数目。
所述处理单元52,由所述字段承载的所述数目的非零值的数目指示所反馈的预编码的秩。
需要理解的是,本实施例中各个单元的具体功能与前述方法实施例中的处理相同,这里不再进行赘述。
最后基于前述方案,下面提供组成第一个比特序列以及第二个比特序列的一种示例:
第一部分字段按顺序连接成第一个比特序列,例如{承载指示预编码的秩(Rank)的域的字段,承载指示第一个传输块(TB)的宽带信道质量指示(Wideband CQI)的域的字段,承载指示第一个传输块(TB)的子带差分信道质量指示(Subband differential CQI)的域的字段,承载指示矩阵C中的被反馈的元素的数目的域的字段};
第二部分字段按顺序连接成第二个比特序列,例如{承载指示第二矩阵C map信息的域的字段,承载指示第一矩阵C中最强系数位置的域的字段,承载指示第二极化方向参考幅度的域的字段,承载指示矩阵C中的系数幅度的域的字段,承载指示矩阵C中的系数相位的域的字段},或者{承载指示比特矩阵C map信息的域的字段,承载指示矩阵C中最强系数位置的域的字段,承载指示第二极化方向参考幅度的域的字段,承载指示矩阵C中的系数相位的域的字段,承载指示矩阵C中的系数幅度的域的字段}。
如图7所示,为本申请实施例方式中的一种终端设备硬件结构示意图,终端设备可以包括诸如移动电话、智能电话、笔记本电脑、数字广播接收器、个人数字助理(Personal Digital Assistant,PDA)、平板电脑(Portable Android Device,PAD)、便携式多媒体播放器(Portable Media Player,PMP)、导航装置等等的移动终端以及诸如数字(television,TV)、台式计算机等等的固定终端。下面,假设终端是移动终端。然而,本领域技术人员将理解的是,除了特别用于移动目的的元件之外,根据本申请的实施方式的构造也能够应用于固定类型的终端。
终端设备可以包括无线通信单元,具体可以由图中的发射器61以及接收器62组成、处理器63、存储器64和电源模块65等等。图中示出了具有各种组件的终端设备,但是应理解的是,并不要求实施所有示出的组件。可以替代地实施更多或更少的组件。前述发射器可以为本实施方式中的信息发送单元的实体部件;处理器可以为本实施方式中的处理单元以及映射单元。
可见,通过采用上述实施方式,就能够通过将信道状态信息的一个或多个 信息域映射至上行控制信息中,具体的为映射至上行控制信息中的第一部分字段以及第二部分字段,并由第一部分字段以及第二部分字段分别组成第一个比特序列以及第二个比特序列;如此,就能够实现将信道状态信息映射为上行控制信息。
另外,由于上述实施方式还提供了将第一矩阵中最强元素的位置的域映射为N个比特的序列,降低计算第一矩阵中最强元素的位置的复杂度;以及通过将最强元素所在的第一极化方向的被反馈的元素的字段排列在第二极化方向的被反馈的元素对应的第六字段之前,保证信息传输的可靠性。
在另一个示例性实施方式中,提供一种网络设备,如图8所示,包括:
信息提取单元71,用于从上行控制信息中获取第一个比特序列以及第二个比特序列;从第一个比特序列中获取第一部分字段,从第二个比特序列中获取第二部分字段;
信息处理单元72,用于基于第一部分字段以及第二部分字段,获取组成信道状态信息的一个或多个信息域;
其中,所述第一部分字段用于承载信道状态信息的以下信息域至少之一:指示预编码的秩的域,指示第一个传输块的宽带信道质量指示的域,指示第一个传输块的子带差分信道质量指示的域,指示第一矩阵中的被反馈的元素的数目的域;
所述第二部分字段用于承载信道状态信息的以下信息域至少之一:指示第二矩阵的信息的域,指示第一矩阵中最强系数位置的域,指示第二极化方向参考幅度的域,指示第一矩阵中的被反馈的元素的域;其中,所述指示第一矩阵中的被反馈的元素的域包括:指示第一矩阵中的被反馈的元素幅度的域,指示第一矩阵中的被反馈的元素相位的域;
其中,所述第二矩阵中的元素用于指示第一矩阵中的被反馈的元素的位置。
如图9所示,所述网络设备还可以包括:信息接收单元73,用于接收终端设备发送的上行控制信息。
需要指出的是,本实施方式中网络设备可以为网络侧的设备,比如基站。
本实施方式中涉及到的预编码的构成方式与前一示例相同,这里不再赘述。
关于前述处理流程中,所述信息处理单元72,基于第二部分字段中包含的第一字段中包含的一维序列,确定组成所述第二矩阵的二维矩阵元素。
需要指出的是,从一维序列转换为二维矩阵的处理中,可以基于第二矩阵的行、列数量来确定,依次确定所要从一维序列中提取的元素数量以组成第二 矩阵的各行的元素,并且依照行增序的方式将提取的元素添加至二维矩阵中得到第二矩阵。
比如,一维序列为X C=[x 0,x 1,…,x 2LM-1]。将0~M-1个元素作为第二矩阵的第一行的元素,依次类推,直至按照行增序的方式来恢复得到2L行M列的第二矩阵。
本实施方式中将一维序列转换为二维矩阵的处理与上一实施方式中的将二维矩阵映射为一维序列的处理规则相反,因此具体的处理不再进行赘述。
所述基于第一部分字段以及第二部分字段,获取组成信道状态信息的一个或多个信息域,包括:
基于第二部分字段中的第二字段中包含的N个比特组成的序列,确定第一矩阵中最强系数位置;其中,N为整数,且N与最大反馈元素的数量相关。
关于N个比特组成的序列中,N的确定与最大反馈元素的数量相关,比如其确定方式可以采用以下公式:
Figure PCTCN2020080647-appb-000080
其中,K 0是基站为终端配置的可能反馈第一矩阵C中最大反馈元素的数量。
需要说明的是,第一矩阵C中系数即第一矩阵C中元素,所述系数指第一矩阵C中元素是矩阵V中的列与矩阵U中行的系数,即矩阵C中最强系数位置与矩阵C中最强元素位置是相同的提法。C中最强元素位置是C中最强元素的行的索引号l *与列的索引号m *,即(l *,m *),只可能位于被矩阵C map指示出的矩阵C的元素的位置上,也就是最多有K 0个可能的位置,采用
Figure PCTCN2020080647-appb-000081
个比特的字段序列来映射K 0个可能的位置中的一个位置,如此,可以最大限度地节省开销。
比如,第二矩阵C map字段中指示出的位置、与
Figure PCTCN2020080647-appb-000082
个比特构成的序列状态的对应关系为第一对应关系,按照第一对应关系,用
Figure PCTCN2020080647-appb-000083
个比特指示出第一矩阵C中最强系数位置。或者,第二矩阵C map字段中指示出的位置与
Figure PCTCN2020080647-appb-000084
个比特构成的序列状态的对应关系为第二对应关系,按照第二对应关系,用
Figure PCTCN2020080647-appb-000085
个比特指示出第一矩阵C中最强系数位置。
具体来说,所述的第一对应关系为,第二矩阵C map字段中指示出的位置、与序列状态按顺序对应,比如第二矩阵C map中第1位置与
Figure PCTCN2020080647-appb-000086
个比特构成的序列状态0相对应,然后指示出的递增的位置与递增的比特序列状态相对应,例如C map字段中的K 1个位置。
其中,{第1位置,第2位置,...,第K 1位置}与{序列状态0,序列状态1,...,序列状态K 1-1}按顺序一一对应。其中所述的序列状态n指序列构成的数为n,例如右侧为最低位的比特序列001为数1,010为数2,100为数4;例如左侧为最低位的比特序列001为数4,010为数2,100为数1。
采用N个比特的序列对位置进行指示,可以为,当序列状态为3的时候,并且第二矩阵中的位置与序列状态从前向后一一对应的时候,则表示指示的为第二矩阵中的第4个位置,再根据第二矩阵中第四个位置的元素,确定第一矩阵中的最强元素。
这种按照第二矩阵C map字段中指示出的位置的顺序进行对应,可以减小计算第一矩阵C中最强元素位置的复杂度;按照第二矩阵C map字段中指示出的位置的顺序与序列状态的顺序对应的关系,可以减小计算第一矩阵C中最强元素位置的复杂度;其中第二矩阵C map字段中指示出的第一位置与序列状态0对应的关系,可以减小计算第一矩阵C中最强元素位置的复杂度。
所述的第二对应关系为,按顺序C map字段中指示出的第1位置与
Figure PCTCN2020080647-appb-000087
个比特构成的序列状态(2 b-1)相对应,然后指示出的递增的位置与递减的比特序列状态相对应,例如C map字段中指示出K 1个位置,其中{第1位置,第2位置,...,第K 1位置}与{序列状态2 b-1,序列状态2 b-2,...,序列状态2 b-K 1}按顺序一一对应;其中
Figure PCTCN2020080647-appb-000088
其中所述的序列状态n指序列构成的数为n,例如右侧为最低位的比特序列001为数1,010为数2,100为数4;例如左侧为最低位的比特序列001为数4,010为数2,100为数1。
同样的,这种按照第二矩阵C map字段中指示出的位置的顺序进行对应,可以减小计算第一矩阵C中最强元素位置的复杂度;按照第二矩阵C map字段中指示出的位置的顺序与序列状态的倒序对应的关系,可以减小计算第一矩阵C中最强元素位置的复杂度。其中第二矩阵C map字段中指示出的第一位置与序列末状态对应的关系,可以减小计算第一矩阵C中最强元素位置的复杂度。
所述信息处理单元72,基于第二部分字段中的第一字段确定第二矩阵的信息;基于第二部分字段中排列在第一字段之后的第二字段,确定第一矩阵中最强系数位置;
其中,所述第二字段中包含由N个比特组成的序列;N为整数,且N与网络设备所配置的最大反馈元素的数量相关。
关于第二字段中包含的N个比特组成的序列的确定方式,如前所述,这里不再赘述。
其中,承载指示第二矩阵C map信息的域的字段比较重要,因为由承载指示第一矩阵C中最强系数位置的域的字段获取第一矩阵C中最强系数位置需要依赖于第二矩阵C map信息,而上行控制信息比特序列中排前的字段比排后的字段在传输中的可靠性更高。
比如,在承载指示第二矩阵C map信息的域的第一字段之后,紧接着提取承载 指示第一矩阵C中最强系数位置的域的第二字段;或者,第二矩阵C map信息的域的第一字段之后,接着其它一个或多个字段,再接着提取承载指示第一矩阵C中最强系数位置的域的第二字段。
进而,基于第一字段确定第二矩阵的信息;基于第二字段确定第一矩阵中最强系数的位置;关于基于第二字段的内容确定最强系数的位置的方式可以如前所述,这里不再赘述。
所述信息处理单元72,基于第二部分字段中相邻的第三字段以及第四字段,确定第一矩阵中系数对应的系数幅度以及系数相位。
其中,第三字段以及第四字段之间相邻,即其中没有其他字段。也就是说,当从第二部分字段中提取到第三字段的时候,能够确定其相邻的字段为第四字段,从而获取第一矩阵中系数对应的系数幅度以及系数相位。
比如,y是第一矩阵C中的被反馈报告的一个系数,A y是y的幅度,承载A y的字段为G y,P y是y的相位,承载P y的字段为H y;在第二个比特序列中,字段G y与字段H y相紧邻,例如排列为G y H y,或者排列为H y G y;其中G y与H y相紧邻,中间没有间隔其它的字段。
又例如,z是第一矩阵C中的被反馈报告的又一个系数,A z是z的幅度,承载A z的字段为G z,P z是z的相位,承载P z的字段为H z;承载这两个系数的幅度的字段与相位的字段排列为G y H y G z H z,或者排列为H y G y H z G z,或者排列为G z H z G y H y,或者排列为H z H z G z H y G y;其中,G y与H y相紧邻,中间没有间隔其它的字段,G z与H z相紧邻,中间没有间隔其它的字段。
如此,同一系数对应的承载幅度的字段与相位的字段相紧邻可以缩短获得同一个系数的时间,不需要等待其它的系数获取就可以使用已获取的系数,即可以缩短使用系数的等待时间。
所述信息处理单元72,基于第二部分字段中的第五字段确定第一矩阵中第一极化方向所对应的被反馈的元素;
基于第二部分字段中排列在第五字段之后的第六字段,确定第二极化方向对应的被反馈的元素;
其中,第一极化方向为第一矩阵中最强系数所对应的极化方向,第二极化方向为与第一极化方向不同的另一个极化方向。
也就是说,从第二部分字段中提取到第五字段以及第六字段,根据预设的排列规则确定位于前面的第五字段为针对第一极化方向的被反馈的元素,第六字段中为第二极化方向的被反馈的元素。
所述字段排列规则可以说明如下:第一矩阵C中最强系数对应的极化方向为p A,第五字段中包含有第一矩阵C中极化方向为p A的被反馈的元素为
Figure PCTCN2020080647-appb-000089
对应承载每个系数的幅度依次为
Figure PCTCN2020080647-appb-000090
对应承载每个系数的相位的字段依次为
Figure PCTCN2020080647-appb-000091
另一个极化方向为p B,也就是第六字段中包含有第一矩阵C中极化方向为p B的被反馈的元素为
Figure PCTCN2020080647-appb-000092
对应承载每个系数的幅度的字段依次为
Figure PCTCN2020080647-appb-000093
对应承载每个系数的相位的字段依次为
Figure PCTCN2020080647-appb-000094
其中,所述字段排列的一个例子为,同一个系数的幅度字段与相位字段紧邻,最强系数对应的极化方向对应的字段排列在前,另一极化方向的字段排列在后:
Figure PCTCN2020080647-appb-000095
或者
Figure PCTCN2020080647-appb-000096
如此,在网络设备解析的时候,可以依据这样的规则依次获取两种极化反向对应的一个系数的幅度以及相位,再获取下一个系数的幅度以及相位,最终得到各个系数对应的幅度以及相位。
再一个例子为,先排最强极化方向对应幅度的字段,接着最强极化方向对应的相位的字段,接着另一极化方向对应幅度的字段,最后另一极化方向对应的相位的字段:
Figure PCTCN2020080647-appb-000097
相应的,在网络设备侧依照该排列规则依次获取幅度以及相位字段,比如,可以为先获取K个元素作为第一极化方向的系数幅度,再获取K个元素作为第一极化方向的系数相位;再跟着获取到的K个元素为第二极化方向的幅度,最后K个元素为第二极化方向的系数相位。
另一个排列例子为,先排最强极化方向对应的相位的字段,接着最强极化方向对应幅度的字段,接着另一极化方向对应的相位的字段,最后另一极化方向对应幅度的字段:
Figure PCTCN2020080647-appb-000098
相应的,在网络设备侧依照该排列规则依次获取幅度以及相位字段,比如,可以为先获取K个元素作为第一极化方向的系数相位,再获取K个元素作为第一极化方向的系数幅度;再跟着获取到的K个元素为第二极化方向的相位,最后K个元素为第二极化方向的系数幅度。
这样的处理方式,能够将最强系数对应的极化方向对应的字段排列在前,可以提高最强系数对应的极化方向对应字段传输的可靠性,从而保证上行控制信息比特序列传输的性能。
所述信息处理单元72,基于第二字段确定第一矩阵中最强系数位置;
基于排列在第二字段之后的第七字段确定第一矩阵中的被反馈的元素。
比如,提取第二字段得到第一矩阵中最强系数的位置之后,紧接着与第二字段相邻的第七字段,从第七字段获取第一矩阵C中被反馈的元素。
或者,提取第二字段得到第一矩阵中最强系数的位置之后,相邻预设数量个字段之后,提取得到第七字段,从第七字段获取第一矩阵C中被反馈的元素。其中预设数量可以与终端设备预先协商获得,或者双方根据预先的协议确定,比如,中间可以间隔3个字段,或者更多或者更少,本实施方式中不做穷举。
再一种方式指示第一矩阵中被反馈的元素的域的字段的排列方式,所述基于第一部分字段以及第二部分字段,获取组成信道状态信息的一个或多个信息域,包括:
基于第一字段确定第二矩阵,基于第二矩阵所指示的第一矩阵中的被反馈的元素的顺序,确定承载第一矩阵中的被反馈的元素的域的至少一个字段;
基于所述至少一个字段确定第一矩阵中的被反馈的元素。
例如,先从第一字段中获取第二矩阵,然后得到至少一个与被反馈的元素的域的字段,由于第一矩阵C中的被反馈的元素按照承载指示第二矩阵C map信息
Figure PCTCN2020080647-appb-000099
最后基于前述方案,网络设备可以根据预设的第一个比特序列以及第二个比特序列中各个字段的排列顺序,以确定提取的字段所对应的信道状态信息中的哪个域;该预设的第一个比特序列以及第二个比特序列中各个字段的排列顺序,可以根据协议来确定,或者可以与终端设备协商得到。下面提供预设的第一个比特序列以及第二个比特序列中各个字段的排列顺序的一种示例:
第一部分字段按顺序连接成第一个比特序列,例如{承载指示预编码的秩(Rank)的域的字段,承载指示第一个传输块(TB)的宽带信道质量指示(Wideband CQI)的域的字段,承载指示第一个传输块(TB)的子带差分信道质量指示(Subband differential CQI)的域的字段,承载指示矩阵C中的被反馈的元素的数目的域的字段};
第二部分字段按顺序连接成第二个比特序列,例如{承载指示第二矩阵C map信息的域的字段,承载指示第一矩阵C中最强系数位置的域的字段,承载指示第 二极化方向参考幅度的域的字段,承载指示矩阵C中的系数幅度的域的字段,承载指示矩阵C中的系数相位的域的字段},或者{承载指示比特矩阵C map信息的域的字段,承载指示矩阵C中最强系数位置的域的字段,承载指示第二极化方向参考幅度的域的字段,承载指示矩阵C中的系数相位的域的字段,承载指示矩阵C中的系数幅度的域的字段}。
在第二个比特序列中,按预编码的层的顺序排列承载各层预编码信息的字段。
信息提取单元,用于从第一个比特序列中第一部分字段中的首位,获取承载指示第一矩阵中的被反馈的元素的数目的域的字段。
其中,在第一个比特序列中,承载指示第一矩阵中的被反馈的元素的数目的域的字段排在第一部分字段的首位。
信息处理单元,用于根据基站为终端配置的秩的最大值确定承载指示第一矩阵中的被反馈的元素的数目的域的字段数目。具体的,可以由所述字段承载的所述数目的非零值的数目确定所反馈的预编码的秩。
图10为本实施方式中的一种网络设备,比如基站的硬件结构示意图,其中包括有发射器81、接收器82、电源模块85、存储器84以及处理器83。其中,接收器可以为前述的信息接收单元;处理器可以包括前述信息提取单元以及信息处理单元。
可见,通过采用上述实施方式,就能够通过上行控制信息获取信道状态信息的一个或多个信息域,具体的为从上行控制信息获取第一个比特序列以及第二个比特序列,从第一个比特序列获取第一部分字段,从第二个比特序列获取第二部分字段,根据第一部分字段及第二部分字段获取信道状态信息的一个或多个信息域;如此,就能够实现通过上行控制信息获取信道状态信息。
图11为本申请终端设备实施例的结构示意图,如图11所示,本申请实施例提供的终端设备130包括:存储器1303与处理器1304。所述终端设备130还可以包括接口1301和总线1302。所述接口1301、存储器1303与处理器1304通过总线1302相连接。所述存储器1303用于存储指令。所述处理器1304被配置为读取所述指令以执行上述应用于终端设备的方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图12为本申请基站实施例的结构示意图,如图12所示,本申请实施例提供的基站140包括:存储器1403与处理器1404。所述基站还可以包括接口1401和总线1402。所述接口1401、存储器1403与处理器1404通过总线1402相连接。所述存储器1403用于存储指令。所述处理器1404被配置为读取所述指令 以执行上述应用于基站的方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图13为本申请通信系统实施例的结构示意图,以本实施方式中网络设备为基站100,终端设备可以为图中的用户设备(UE)110、120、130为例提供的说明,前述基站以及UE的功能与前述实施方式相同,不再赘述。或者,如图14所示,该系统包括:如上述实施例的用户设备130、以及上述实施例的基站140。同样的,图中的基站可以为实施方式中的网络设备,用户设备即前述终端设备,能够实现的功能也如前述功能,这里不再赘述。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Industry Subversive Alliance,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现。本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存等。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。RAM可以包括多种形式,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR  SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。本申请描述的系统和方法的存储器包括但不限于这些和任意其它适合类型的存储器。
本申请实施例的处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程逻辑器件(Field-Programmable Gate Array,FGPA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件、或者基于多核处理器架构的处理器。通用处理器可以是微处理器或者也可以是任何常规的处理器等。上述的处理器可以实现或者执行本申请实施例中的公开的各方法的步骤。软件模块可以位于随机存储器、闪存、只读存储器、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。

Claims (23)

  1. 一种信息映射方法,包括:
    将信道状态信息的至少一个信息域,映射为上行控制信息的至少一个字段;
    将所述至少一个字段分为第一部分字段以及第二部分字段;其中,所述第一部分字段用于承载所述信道状态信息的以下信息域中至少之一:指示预编码的秩的域,指示第一个传输块的宽带信道质量指示的域,指示第一个传输块的子带差分信道质量指示的域,指示第一矩阵中的被反馈的元素的数目的域;所述第二部分字段用于承载所述信道状态信息的以下信息域中至少之一:指示第二矩阵的信息的域,指示所述第一矩阵中最强系数位置的域,指示第二极化方向参考幅度的域,指示所述第一矩阵中的被反馈的元素的域;其中,所述指示所述第一矩阵中的被反馈的元素的域包括:指示所述第一矩阵中的被反馈的元素幅度的域,指示所述第一矩阵中的被反馈的元素相位的域;其中,所述第二矩阵中的元素用于指示所述第一矩阵中的被反馈的元素的位置;
    根据所述第一部分字段生成第一个比特序列,根据所述第二部分字段生成第二个比特序列。
  2. 根据权利要求1所述的方法,其中,所述将信道状态信息的至少一个信息域,映射为上行控制信息的至少一个字段,包括:
    将所述信道状态信息中的指示所述第二矩阵的信息的域映射为所述上行控制信息的第一字段;
    其中,所述第一字段中包含一维序列,所述一维序列由所述第二矩阵的二维矩阵元素映射得到。
  3. 根据权利要求1所述的方法,其中,所述将信道状态信息的至少一个信息域,映射为上行控制信息的至少一个字段,包括:
    将所述信道状态信息中的指示所述第一矩阵中最强系数位置的域映射为所述上行控制信息的第二字段;
    其中,所述第二字段中包含由N个比特组成的序列;其中,所述N为整数,且所述N与网络设备所配置的最大反馈元素的数量相关。
  4. 根据权利要求1所述的方法,其中,所述根据所述第二部分字段生成第二个比特序列,包括:
    将承载指示所述第一矩阵中最强系数位置的域的第二字段,排列在承载指示所述第二矩阵的信息的域的第一字段之后;
    其中,所述第二字段中包含由N个比特组成的序列;其中,所述N为整数,且所述N与网络设备所配置的最大反馈元素的数量相关。
  5. 根据权利要求1所述的方法,其中,所述根据所述第二部分字段生成第二个比特序列,包括:
    将所述第一矩阵中同一个系数对应的承载指示所述第一矩阵中的系数幅度的域的第三字段与承载指示所述第一矩阵中的系数相位的域的第四字段设置为相邻排列。
  6. 根据权利要求1所述的方法,其中,所述根据所述第二部分字段生成第二个比特序列,包括:
    将承载所述第一矩阵中第一极化方向所对应的被反馈的元素的第五字段,排列在承载所述第一矩阵的第二极化方向对应的被反馈的元素的第六字段之前;
    其中,所述第一极化方向为所述第一矩阵中最强系数所对应的极化方向,所述第二极化方向为与所述第一极化方向不同的极化方向。
  7. 根据权利要求1所述的方法,其中,所述根据所述第二部分字段生成第二个比特序列,包括:
    将承载指示所述第一矩阵中最强系数位置的域的第二字段,设置在承载指示所述第一矩阵中被反馈的元素的域的第七字段之前。
  8. 根据权利要求1所述的方法,其中,所述根据所述第二部分字段生成第二个比特序列,包括:
    基于承载指示所述第二矩阵信息的域的第一字段所指示的所述第一矩阵中的被反馈的元素的顺序,排列承载所述第一矩阵中的被反馈的元素的域的至少一个字段。
  9. 根据权利要求1所述的方法,其中,所述根据所述第二部分字段生成第二个比特序列,包括:
    将所述第二部分字段包括的字段依次相邻连接排列、且相邻字段之间无其它字段,组成所述第二个比特序列。
  10. 根据权利要求1所述的方法,其中,所述根据所述第一部分字段生成第一个比特序列,包括:
    将承载指示所述第一矩阵中的被反馈的元素的数目的域的字段排在所述第一部分字段的首位。
  11. 一种信息获取方法,包括:
    从上行控制信息中获取第一个比特序列以及第二个比特序列;
    从所述第一个比特序列中获取第一部分字段,从所述第二个比特序列中获取第二部分字段;
    基于所述第一部分字段以及所述第二部分字段,获取组成信道状态信息的至少一个信息域;
    其中,所述第一部分字段用于承载所述信道状态信息的以下信息域中至少之一:指示预编码的秩的域,指示第一个传输块的宽带信道质量指示的域,指示第一个传输块的子带差分信道质量指示的域,指示第一矩阵中的被反馈的元素的数目的域;
    所述第二部分字段用于承载所述信道状态信息的以下信息域中至少之一:指示第二矩阵的信息的域,指示所述第一矩阵中最强系数位置的域,指示第二极化方向参考幅度的域,指示所述第一矩阵中的被反馈的元素的域;其中,所述指示所述第一矩阵中的被反馈的元素的域包括:指示所述第一矩阵中的被反馈的元素幅度的域,指示所述第一矩阵中的被反馈的元素相位的域;
    其中,所述第二矩阵中的元素用于指示所述第一矩阵中的被反馈的元素的位置。
  12. 根据权利要求11所述的方法,其中,所述基于所述第一部分字段以及所述第二部分字段,获取组成信道状态信息的至少一个信息域,包括:
    基于所述第二部分字段中包含的第一字段中包含的一维序列,确定组成所述第二矩阵的二维矩阵元素。
  13. 根据权利要求11所述的方法,其中,所述基于所述第一部分字段以及所述第二部分字段,获取组成信道状态信息的至少一个信息域,包括:
    基于所述第二部分字段中的第二字段中包含的N个比特组成的序列,确定所述第一矩阵中最强系数位置;其中,所述N为整数,且所述N与最大反馈元素的数量相关。
  14. 根据权利要求11所述的方法,其中,所述基于所述第一部分字段以及所述第二部分字段,获取组成信道状态信息的至少一个信息域,包括:
    基于所述第二部分字段中的第一字段确定所述第二矩阵的信息;
    基于所述第二部分字段中排列在所述第一字段之后的第二字段,确定所述第一矩阵中最强系数位置;
    其中,所述第二字段中包含由N个比特组成的序列;所述N为整数,且所述N与最大反馈元素的数量相关。
  15. 根据权利要求11所述的方法,其中,所述基于所述第一部分字段以及 所述第二部分字段,获取组成信道状态信息的至少一个信息域,包括:
    基于所述第二部分字段中相邻的第三字段以及第四字段,确定所述第一矩阵中系数对应的系数幅度以及系数相位。
  16. 根据权利要求11所述的方法,其中,所述基于所述第一部分字段以及所述第二部分字段,获取组成信道状态信息的至少一个信息域,包括:
    基于所述第二部分字段中的第五字段确定所述第一矩阵中第一极化方向所对应的被反馈的元素;
    基于所述第二部分字段中排列在所述第五字段之后的第六字段,确定第二极化方向对应的被反馈的元素;
    其中,所述第一极化方向为所述第一矩阵中最强系数所对应的极化方向,所述第二极化方向为与所述第一极化方向不同的极化方向。
  17. 根据权利要求11所述的方法,其中,所述基于所述第一部分字段以及所述第二部分字段,获取组成信道状态信息的至少一个信息域,包括:
    基于第二字段确定所述第一矩阵中最强系数位置;
    基于排列在所述第二字段之后的第七字段确定所述第一矩阵中的被反馈的元素。
  18. 根据权利要求11所述的方法,其中,所述基于所述第一部分字段以及所述第二部分字段,获取组成信道状态信息的至少一个信息域,包括:
    基于第一字段确定所述第二矩阵,基于所述第二矩阵所指示的所述第一矩阵中的被反馈的元素的顺序,确定承载所述第一矩阵中的被反馈的元素的域的至少一个字段;
    基于所述至少一个字段确定所述第一矩阵中的被反馈的元素。
  19. 根据权利要求11所述的方法,其中,所述从所述第一个比特序列中获取第一部分字段,包括:
    从所述第一个比特序列中所述第一部分字段中的首位,获取承载指示所述第一矩阵中的被反馈的元素的数目的域的字段。
  20. 一种终端设备,包括:
    映射单元,设置为将信道状态信息的至少一个信息域,映射为上行控制信息的至少一个字段;
    处理单元,设置为将所述至少一个字段分为第一部分字段以及第二部分字段;根据所述第一部分字段生成第一个比特序列,根据所述第二部分字段生成 第二个比特序列;
    其中,所述第一部分字段用于承载所述信道状态信息的以下信息域中至少之一:指示预编码的秩的域,指示第一个传输块的宽带信道质量指示的域,指示第一个传输块的子带差分信道质量指示的域,指示第一矩阵中的被反馈的元素的数目的域;
    所述第二部分字段用于承载所述信道状态信息的以下信息域中至少之一:指示第二矩阵的信息的域,指示所述第一矩阵中最强系数位置的域,指示第二极化方向参考幅度的域,指示所述第一矩阵中的被反馈的元素的域;其中,所述指示所述第一矩阵中的被反馈的元素的域包括:指示所述第一矩阵中的被反馈的元素幅度的域,指示所述第一矩阵中的被反馈的元素相位的域;
    其中,所述第二矩阵中的元素用于指示所述第一矩阵中的被反馈的元素的位置。
  21. 一种网络设备,包括:
    信息提取单元,设置为从上行控制信息中获取第一个比特序列以及第二个比特序列;从所述第一个比特序列中获取第一部分字段,从所述第二个比特序列中获取第二部分字段;
    信息处理单元,设置为基于所述第一部分字段以及所述第二部分字段,获取组成信道状态信息的至少一个信息域;
    其中,所述第一部分字段用于承载所述信道状态信息的以下信息域中至少之一:指示预编码的秩的域,指示第一个传输块的宽带信道质量指示的域,指示第一个传输块的子带差分信道质量指示的域,指示第一矩阵中的被反馈的元素的数目的域;
    所述第二部分字段用于承载所述信道状态信息的以下信息域中至少之一:指示第二矩阵的信息的域,指示所述第一矩阵中最强系数位置的域,指示第二极化方向参考幅度的域,指示所述第一矩阵中的被反馈的元素的域;其中,所述指示所述第一矩阵中的被反馈的元素的域包括:指示所述第一矩阵中的被反馈的元素幅度的域,指示所述第一矩阵中的被反馈的元素相位的域;
    其中,所述第二矩阵中的元素用于指示所述第一矩阵中的被反馈的元素的位置。
  22. 一种终端设备,包括:处理器和设置为存储能够在所述处理器上运行的计算机程序的存储器,
    其中,所述存储器设置为存储计算机程序,所述处理器设置为调用并运行 所述存储器中存储的计算机程序,执行如权利要求1-10中任一项所述的信息映射方法。
  23. 一种网络设备,包括:处理器和设置为存储能够在所述处理器上运行的计算机程序的存储器,
    其中,所述存储器设置为存储计算机程序,所述处理器设置为调用并运行所述存储器中存储的计算机程序,执行如权利要求11-19中任一项所述的信息获取方法。
PCT/CN2020/080647 2019-03-29 2020-03-23 信息映射方法、信息获取方法、终端设备及网络设备 WO2020199954A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20785391.2A EP3952124A4 (en) 2019-03-29 2020-03-23 INFORMATION MAPPING METHOD, INFORMATION ACQUISITION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
JP2021557995A JP7545992B2 (ja) 2019-03-29 2020-03-23 情報マッピング方法、情報入手方法、端末デバイス、およびネットワークデバイス
KR1020217035051A KR20210142730A (ko) 2019-03-29 2020-03-23 정보 맵핑 방법, 정보 획득 방법, 단말 디바이스 및 네트워크 디바이스
AU2020251598A AU2020251598B2 (en) 2019-03-29 2020-03-23 Information mapping method, information acquisition method, terminal device and network device
US17/489,323 US20220030584A1 (en) 2019-03-29 2021-09-29 Information mapping method, information acquisition method, terminal device and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910251631.3 2019-03-29
CN201910251631.3A CN110535504A (zh) 2019-03-29 2019-03-29 信息映射方法、获取方法及相关设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/489,323 Continuation US20220030584A1 (en) 2019-03-29 2021-09-29 Information mapping method, information acquisition method, terminal device and network device

Publications (1)

Publication Number Publication Date
WO2020199954A1 true WO2020199954A1 (zh) 2020-10-08

Family

ID=68659806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080647 WO2020199954A1 (zh) 2019-03-29 2020-03-23 信息映射方法、信息获取方法、终端设备及网络设备

Country Status (7)

Country Link
US (1) US20220030584A1 (zh)
EP (1) EP3952124A4 (zh)
JP (1) JP7545992B2 (zh)
KR (1) KR20210142730A (zh)
CN (2) CN115037343B (zh)
AU (1) AU2020251598B2 (zh)
WO (1) WO2020199954A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115037343B (zh) * 2019-03-29 2024-08-09 中兴通讯股份有限公司 信息映射方法、获取方法及相关设备
CN117896767A (zh) * 2022-10-09 2024-04-16 中兴通讯股份有限公司 信道状态信息的发送方法、接收方法及装置、存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140003269A1 (en) * 2011-01-10 2014-01-02 C/O Panasonic Corporation Channel state information reporting for component carriers for which no channel state information was calculated
CN106257856A (zh) * 2015-06-19 2016-12-28 北京三星通信技术研究有限公司 一种传输上行控制信息的方法
US20170070914A1 (en) * 2015-08-19 2017-03-09 Lg Electronics Inc. Method for feeding back channel state in wireless communication system and device therefor
CN109150457A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 控制信息的传输方法和终端设备
CN110535504A (zh) * 2019-03-29 2019-12-03 中兴通讯股份有限公司 信息映射方法、获取方法及相关设备
CN110535498A (zh) * 2018-12-28 2019-12-03 中兴通讯股份有限公司 信道状态信息csi反馈方法及设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109412663B (zh) * 2017-08-16 2020-11-13 上海诺基亚贝尔股份有限公司 用于mimo通信的方法、设备和计算机可读介质
JP6714151B2 (ja) * 2017-09-08 2020-06-24 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるチャネル状態情報を報告するための方法及びそのための装置
WO2019069296A1 (en) * 2017-10-02 2019-04-11 Telefonaktiebolaget Lm Ericsson (Publ) ORDERING OF CSI IN UCI
CN108259154B (zh) * 2018-01-12 2022-05-24 中兴通讯股份有限公司 信息传输、接收方法及装置、存储介质、电子装置
CN113708810B (zh) * 2018-12-17 2022-11-01 华为技术有限公司 一种通信方法及设备
US20220123806A1 (en) 2019-01-11 2022-04-21 Datang Mobile Communications Equipment Co., Ltd. Methods for sending and receiving channel state information, terminal device and network device
WO2020145716A1 (ko) * 2019-01-11 2020-07-16 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보를 보고하는 방법 및 이에 대한 장치
US11128354B2 (en) 2019-01-18 2021-09-21 Samsung Electronics Co., Ltd. Method and apparatus to enable segmented CSI reporting in wireless communication systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140003269A1 (en) * 2011-01-10 2014-01-02 C/O Panasonic Corporation Channel state information reporting for component carriers for which no channel state information was calculated
CN106257856A (zh) * 2015-06-19 2016-12-28 北京三星通信技术研究有限公司 一种传输上行控制信息的方法
US20170070914A1 (en) * 2015-08-19 2017-03-09 Lg Electronics Inc. Method for feeding back channel state in wireless communication system and device therefor
CN109150457A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 控制信息的传输方法和终端设备
CN110535498A (zh) * 2018-12-28 2019-12-03 中兴通讯股份有限公司 信道状态信息csi反馈方法及设备
CN110535504A (zh) * 2019-03-29 2019-12-03 中兴通讯股份有限公司 信息映射方法、获取方法及相关设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "R1-1708593, On Type II CSI Feedback, 3GPP TSG RAN WG1 #89", HTTP://WWW.3GPP.ORG/FTP/TSG_RAN/WG1_RL1/TSGR1_89/DOCS/, 7 May 2017 (2017-05-07), XP051263232 *
See also references of EP3952124A4

Also Published As

Publication number Publication date
AU2020251598B2 (en) 2024-06-13
CN115037343B (zh) 2024-08-09
JP7545992B2 (ja) 2024-09-05
EP3952124A1 (en) 2022-02-09
CN110535504A (zh) 2019-12-03
US20220030584A1 (en) 2022-01-27
KR20210142730A (ko) 2021-11-25
AU2020251598A1 (en) 2021-10-28
CN115037343A (zh) 2022-09-09
EP3952124A4 (en) 2022-12-21
JP2022527944A (ja) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2020199954A1 (zh) 信息映射方法、信息获取方法、终端设备及网络设备
CN111277379B (zh) 无线通信方法和终端设备
US20240223257A1 (en) Transmission channel state sending method and device, transmission channel state receiving method and device, and storage medium
CN111585627A (zh) 一种无线通信中的方法和装置
WO2018129733A1 (zh) 确定信道状态信息的方法、接入网设备和终端设备
US20200235962A1 (en) Method for transmitting srs, method for receiving srs, and related devices
WO2022083412A1 (zh) 一种csi-rs增强传输方法及装置
US20230276370A1 (en) Method for determining a sending power of an uplink element, and device
CN109511170A (zh) 一种PRB bundling size的指示方法和用户终端
WO2016023410A1 (zh) 下行信道预编码方法与装置
CN108667491B (zh) Pmi信息的发送方法、接收方法、相关设备及系统
WO2023279954A1 (zh) 信道状态信息报告、接收方法、通信节点及存储介质
JPWO2020199954A5 (zh)
WO2023202717A1 (zh) 一种上行数据传输方法及终端设备
WO2023078176A1 (zh) 信息传输方法、设备和存储介质
WO2019233340A1 (zh) 信道状态信息反馈方法、预编码矩阵确定方法及装置
WO2018054242A1 (zh) 一种信号传输的方法及装置
BR112017015524B1 (pt) Métodos e dispositivos de obtenção de informações de pré- codificação

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20785391

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021557995

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217035051

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020251598

Country of ref document: AU

Date of ref document: 20200323

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020785391

Country of ref document: EP

Effective date: 20211029