WO2018054242A1 - 一种信号传输的方法及装置 - Google Patents
一种信号传输的方法及装置 Download PDFInfo
- Publication number
- WO2018054242A1 WO2018054242A1 PCT/CN2017/101367 CN2017101367W WO2018054242A1 WO 2018054242 A1 WO2018054242 A1 WO 2018054242A1 CN 2017101367 W CN2017101367 W CN 2017101367W WO 2018054242 A1 WO2018054242 A1 WO 2018054242A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- matrix
- codebook
- matrices
- adjacent
- different
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
- H04B7/0478—Special codebook structures directed to feedback optimisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0417—Feedback systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0617—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0626—Channel coefficients, e.g. channel state information [CSI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0636—Feedback format
- H04B7/0639—Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0014—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the source coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0026—Transmission of channel quality indication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/1607—Details of the supervisory signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2626—Arrangements specific to the transmitter only
- H04L27/2627—Modulators
- H04L27/2634—Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
- H04L27/2636—Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
Definitions
- the present disclosure relates to the field of communication technologies, and in particular to a method and apparatus for signal transmission.
- open-loop multiple-input multiple-output (OL-MIMO) technology is an effective technology to improve communication reliability.
- CSI channel state information
- One possible OL-MIMO scheme is to cycle through different sets of time/frequency resources of data transmission resources using a predefined set of precoding matrices.
- the set of precoding matrices, as well as the mapping of precoding matrices to different time frequency resources need to be consistent between the transmitter and receiver used for CSI feedback and data transmission.
- DM-based (demodulation reference signal) based OL-MIMO scheme there is no DM-based (demodulation reference signal) based OL-MIMO scheme in the wireless communication system in the related art.
- LTE's TM3 supports CRS (Cell Reference Signal) based OL-MIMO transmission, but this technology must be based on cell-specific, wideband and always existing CRS signals, and is therefore not a promising technology.
- CRS-based OL-MIMO cannot be used in MBSFN subframes because there is no CRS (OFDM symbols 4-14) in the data transmission region of the MBSFN subframe.
- CRS-based OL-MIMO In order to improve the reliability of DMRS-based transmission, it is necessary to introduce DM-based OL-MIMO.
- the present disclosure provides a method and apparatus for signal transmission that can improve transmission performance of a transmission channel.
- an embodiment of the present disclosure provides the following solution:
- a method of signal transmission comprising:
- the shaped signal is transmitted at different locations of the transmission resource.
- the matrix W is generated by transforming the phase ⁇ by at least one discrete Fourier transform DFT vector V;
- ⁇ ⁇ 1 , ⁇ 2 , ... ⁇ K ⁇ is not continuous.
- each W 1 matrix is composed of N adjacent discrete Fourier transform DFT beams pointing to different angles; wherein N is a positive integer;
- a second-stage precoding matrix W 2b ⁇ w 2b,1 ,...w 2b,L ⁇ for selecting a beam in W 1 , where w 2b,1 ,...w 2b,L is beam selection a matrix, L is a positive integer, and the circular mapping manner of the w 2b, 1 , ... w 2b, L is: selecting a matrix corresponding to the discontinuous DFT vector from the matrix of W 1 for adjacent transmission resources;
- each W 1 matrix is composed of N adjacent discrete Fourier transform DFT vectors pointing to different angles; wherein N is a positive integer;
- a second-stage precoding matrix W 2b ⁇ w 2b,1 ,...w 2b,L ⁇ for selecting a DFT vector in W 1 , where w 2b,1 ,...w 2b,L is a beam Select the matrix, L is a positive integer;
- the cyclic mapping manner of the w 2b,1 ,...w 2b,L is: selecting a matrix corresponding to the same or different DFT vectors from the matrix of W 1 for adjacent transmission resources, when selecting different DFT vectors, selecting DFT vectors are continuous or discontinuous;
- the resolution of the matrix mapped to two adjacent transmission resources is greater than a preset value.
- the separation degree of the two matrices mapped to W 2b of two adjacent transmission resources is maximized, and the separation degree of the two matrices of the W 2b is greater than the first preset value.
- the distance of the phase transformation matrix w 2c,k mapped to the W 2c of the adjacent transmission resource is greater than the second preset value.
- the method further includes: transmitting the determined indication information of the set of matrixes that can be cyclically mapped to different transmission resources.
- the step of transmitting the determined indication information that can be cyclically mapped to a matrix of different transmission resources includes:
- the determined set of indication information that can be cyclically mapped to a matrix of different transmission resources is transmitted by semi-static signaling or dynamic signaling.
- Embodiments of the present disclosure also provide an apparatus for signal transmission, including:
- a first determining module configured to determine a codebook C, where the codebook C is a set of matrices W;
- a transmission module configured to generate one or more layers of signals, and shape the signal by using a matrix in the ⁇ , and cyclically map to different locations of the transmission resource, and send the assignment at different positions of the transmission resource The signal after the shape.
- the matrix W is generated by transforming the phase ⁇ by at least one discrete Fourier transform DFT vector V;
- ⁇ ⁇ 1 , ⁇ 2 , ... ⁇ K ⁇ is not continuous.
- each W 1 matrix is composed of N adjacent discrete Fourier transform DFT beams pointing to different angles; wherein N is a positive integer;
- a second-stage precoding matrix W 2b ⁇ w 2b,1 ,...w 2b,L ⁇ for selecting a beam in W 1 , where w 2b,1 ,...w 2b,L is beam selection a matrix, L is a positive integer, and the circular mapping manner of the w 2b, 1 , ... w 2b, L is: selecting a matrix corresponding to the discontinuous DFT vector from the matrix of W 1 for adjacent transmission resources;
- each W 1 matrix is composed of N adjacent discrete Fourier transform DFT vectors pointing to different angles; wherein N is a positive integer;
- a second-stage precoding matrix W 2b ⁇ w 2b,1 ,...w 2b,L ⁇ for selecting a DFT vector in W 1 , where w 2b,1 ,...w 2b,L is a beam Select the matrix, L is a positive integer;
- the cyclic mapping manner of the w 2b,1 ,...w 2b,L is: selecting a matrix corresponding to the same or different DFT vectors from the matrix of W 1 for adjacent transmission resources, when selecting different DFT vectors, selecting DFT vectors are continuous or discontinuous;
- the resolution of the matrix mapped to two adjacent transmission resources is greater than a preset value.
- the separation degree of the two matrices mapped to W 2b of two adjacent transmission resources is maximized, and the separation degree of the two matrices of the W 2b is greater than the first preset value.
- the distance of the phase transformation matrix w 2c,k mapped to the W 2c of the adjacent transmission resource is greater than the second preset value.
- the transmission module is further configured to send the determined indication information of the set of the matrix that can be cyclically mapped to different transmission resources.
- the transmitting module sends, by using semi-static signaling or dynamic signaling, the set of indication information that can be cyclically mapped to a matrix of different transmission resources.
- Embodiments of the present disclosure also provide a method for signal transmission, including:
- a shaped signal transmitted at a different location of the transmission resource is received, the signal being a signal that is shaped using one or more layers of the matrix.
- the matrix W is generated by transforming the phase ⁇ by at least one discrete Fourier transform DFT vector V;
- ⁇ ⁇ 1 , ⁇ 2 , ... ⁇ K ⁇ is not continuous.
- each W 1 matrix is composed of N adjacent discrete Fourier transform DFT beams pointing to different angles; wherein N is a positive integer;
- a second-stage precoding matrix W 2b ⁇ w 2b,1 ,...w 2b,L ⁇ for selecting a beam in W 1 , where w 2b,1 ,...w 2b,L is beam selection a matrix, L is a positive integer, and the circular mapping manner of the w 2b, 1 , ... w 2b, L is: selecting a matrix corresponding to the discontinuous DFT vector from the matrix of W 1 for adjacent transmission resources;
- each W 1 matrix is composed of N adjacent discrete Fourier transform DFT vectors pointing to different angles; wherein N is a positive integer;
- a second-stage precoding matrix W 2b ⁇ w 2b,1 ,...w 2b,L ⁇ for selecting a DFT vector in W 1 , where w 2b,1 ,...w 2b,L is a beam Select the matrix, L is a positive integer;
- the cyclic mapping manner of the w 2b,1 ,...w 2b,L is: selecting a matrix corresponding to the same or different DFT vectors from the matrix of W 1 for adjacent transmission resources, when selecting different DFT vectors, selecting DFT vectors are continuous or discontinuous;
- Embodiments of the present disclosure also provide an apparatus for signal transmission, including:
- a receiving module configured to receive the shaped signal transmitted at different locations of the transmission resource, where the signal is a signal obtained by using the matrix to shape one or more layers of signals.
- An embodiment of the present disclosure further provides a method for uplink channel feedback, including:
- the transmitting device determines a set of matrices that can be cyclically mapped to different transmission resources
- the sending device receives, by the receiving device, channel state information CSI feedback, and the CSI includes at least one indication information for indicating a selected precoding matrix.
- the method for uplink channel feedback further includes: the sending device instructing the receiving device to multiple matrices.
- An embodiment of the present disclosure further provides a sending device, including:
- a determining module for determining a set of matrices that can be cyclically mapped to different transmission resources
- a transmission module configured to transmit one or more layers of data encoded by the matrix to a receiving device
- the receiving module is configured to receive CSI feedback of channel state information sent by the receiving device, where the CSI includes at least one indication information for indicating a selected precoding matrix.
- An embodiment of the present disclosure further provides a method for uplink channel feedback, including:
- the receiving device receives a plurality of matrices, and the plurality of matrices are a set of matrices that can be cyclically mapped to different transmission resources;
- the receiving device generates channel state information CSI, where the CSI includes at least one indication information for indicating a selected matrix;
- the receiving device sends a CSI to the transmitting device.
- An embodiment of the present disclosure further provides a receiving device, including:
- a receiving module configured to receive multiple matrices, where a plurality of matrices are a set of matrices that can be cyclically mapped to different transmission resources;
- a feedback module configured to generate channel state information CSI, where the CSI includes at least one indication information for indicating a selected matrix
- the sending module is configured to send the CSI to the sending device.
- Embodiments of the present disclosure also provide an apparatus for signal transmission, including a processor, a transceiver, and a memory;
- the processor is configured to read a program in the memory and perform the following process:
- the transceiver is configured to receive and transmit data
- the memory is used to store data used by the processor to perform operations.
- Embodiments of the present disclosure also provide an apparatus for signal transmission, including a processor, a transceiver, and a memory;
- the processor is configured to read a program in the memory and perform the following process:
- the signal is a signal obtained by shaping the one or more layers of signals using the matrix
- the transceiver is configured to receive and transmit data
- the memory is used to store data used by the processor to perform operations.
- Embodiments of the present disclosure also provide a transmitting device including a processor, a transceiver, and a memory;
- the processor is configured to read a program in the memory and perform the following process:
- the transceiver is configured to receive and transmit data
- the memory is used to store data used by the processor to perform operations.
- Embodiments of the present disclosure also provide a receiving device, including a processor, a transceiver, and a memory;
- the processor is configured to read a program in the memory and perform the following process:
- matrices which are a set of matrices that can be cyclically mapped to different transmission resources
- channel state information CSI including at least one indication information for indicating a selected matrix
- the transceiver is configured to receive and transmit data
- the memory is used to store data used by the processor to perform operations.
- the above solution of the present disclosure determines a set of matrices that can be cyclically mapped to different transmission resources; and transmits signals that are shaped by the matrix to one or more layers of signals at different locations of the transmission resources.
- the transmission performance of the transmission channel can be improved.
- FIG. 1 is a flow chart of a method of signal transmission according to some embodiments of the present disclosure
- FIG. 2 is a flow chart of a method of signal transmission according to some embodiments of the present disclosure
- FIG. 3 is a flowchart of a method for signal transmission on a receiving device side according to the present disclosure
- FIG. 4 is a flowchart of a method on a transmitting device side when applied to CSI feedback
- FIG. 5 is a flow chart of a method on the receiving device side when applied to CSI feedback.
- some embodiments of the present disclosure provide a method for signal transmission, including:
- Step 11 determining a codebook C, the codebook C being a set of matrices W;
- the codebook is a precoding matrix of a codebook structure of two levels and two or more levels;
- Step 13 generating one or more layers of signals, and shaping the signals by using the matrix in the ⁇ , and cyclically mapping to different locations of the transmission resource;
- Step 14 Send the shaped signal at different locations of the transmission resource.
- Some embodiments of the present disclosure determine a set of moments that can be cyclically mapped to different transmission resources A signal that is shaped by the matrix to form one or more layers of signals at different locations of the transmission resource.
- the transmission performance of the transmission channel can be improved.
- some embodiments of the present disclosure provide a method for signal transmission, including:
- Step 21 determining a codebook C, the codebook C being a set of matrices W;
- the codebook is a precoding matrix of a codebook structure of two levels and two or more levels;
- Step 23 Send the determined indication information of the set of matrixes that can be cyclically mapped to different transmission resources
- the indication information of the set of the matrix that can be cyclically mapped to different transmission resources is determined by semi-static signaling or dynamic signaling, and the step is optional;
- Step 24 generating one or more layers of signals, and shaping the signals by using the matrix in the ⁇ , and cyclically mapping to different locations of the transmission resource;
- Step 25 Send the shaped signal at different locations of the transmission resource.
- the one or more layers of signals are shaped by using the matrix at different locations of the transmission resource.
- the signal can improve the transmission performance of the transmission channel.
- the matrix W is generated by transforming a phase ⁇ by at least one discrete Fourier transform DFT vector V;
- ⁇ ⁇ 1 , ⁇ 2 , ... ⁇ K ⁇ is not continuous.
- each W 1 matrix is composed of N adjacent discrete Fourier transform DFT beams pointing to different angles; wherein N is a positive integer;
- a second-stage precoding matrix W 2b ⁇ w 2b,1 ,...w 2b,L ⁇ for selecting a beam in W 1 , where w 2b,1 ,...w 2b,L is beam selection a matrix, L is a positive integer, and the circular mapping manner of the w 2b, 1 , ... w 2b, L is: selecting a matrix corresponding to the discontinuous DFT vector from the matrix of W 1 for adjacent transmission resources;
- each W 1 matrix is composed of N adjacent discrete Fourier transform DFT vectors pointing to different angles; wherein N is a positive integer;
- a second-stage precoding matrix W 2b ⁇ w 2b,1 ,...w 2b,L ⁇ for selecting a DFT vector in W 1 , where w 2b,1 ,...w 2b,L is a beam Select the matrix, L is a positive integer;
- the cyclic mapping manner of the w 2b,1 ,...w 2b,L is: selecting a matrix corresponding to the same or different DFT vectors from the matrix of W 1 for adjacent transmission resources, when selecting different DFT vectors, selecting DFT vectors are continuous or discontinuous;
- the first level precoding matrix W 1 ⁇ w 1,k ⁇ ,w 1,k is
- N t is the number of transmitting antenna ports, and O is the oversampling rate
- the codebook W1 has 2 ONt/N matrices, otherwise W1 has ONt/N matrices.
- each w 2b,l when transmitting a layer of data, each w 2b,l consists of a set of column selection vectors ⁇ e 1 , e 2 ,...e N ⁇ , where e i is a unit matrix I The i-th column of N , 1 ⁇ l ⁇ L;
- Each w 2b,l consists of a set of column selection matrices ⁇ (e 1 ,e 1 ), (e 2 ,e 2 ),...(e N ,e N ) ⁇ , whose columns are ⁇ e 1 ,e 2, ... e N ⁇ is a subset, where e i is the i th column of I N ⁇ N, I N ⁇ N is an N by N identity matrix, 1 ⁇ i ⁇ N.
- ⁇ e 1 , e 2 , ... e N ⁇ means continuous selection (or considered to be a continuous DFT beam) from the W1 matrix.
- W 2c ⁇ w 2c,1 ,...w 2c,M ⁇ , where among them, Is a phase rotation vector that combines beamforming angles of two polarization directions, j is a constant; where 1 ⁇ k ⁇ M; in the LTH codebook, in some scenarios
- w 2c, k is the form of (e i e j ), 1 ⁇ i ⁇ N, 1 ⁇ j ⁇ N, i ⁇ j.
- the column selection matrix of W 2c may be one of the following matrices: ⁇ (e1 e1), (e2 e2), (e3 e3), (e4 e4) ⁇ ; that is, the two layers of data use the same DFT beamforming vector, phase
- the matrix in W 2c may also have the form of (e i e j ), 1 ⁇ i ⁇ N, 1 ⁇ j ⁇ N, i ⁇ j, that is, the two layers of data select different DFT beams.
- the degree of separation of the matrix mapped to two adjacent transmission resources is greater than a preset value.
- the separation degree of the two matrices mapped to W 2b of two adjacent transmission resources is maximized, and the separation degree of the two matrices of the W 2b is greater than the first preset value.
- the separation of the two matrices of the W 2b is greater than the first preset value.
- the distance measurement can be a Huclidean distance, or a Chebychev distance, or other possible distance measurements.
- the distance of the phase transformation matrix w 2c,k mapped to W 2c of the adjacent transmission resource is greater than the second preset value.
- the precoding cycle in the present disclosure is not limited to the set ⁇ (e 1 , e 1 ), (e 2 , e 2 ), ... (e N , e N ) ⁇ ;
- one possible example is to maximize the separation of two w 2b matrices mapped to two adjacent time/frequency resources based on a single or multiple distance measure.
- This distance measurement can be a Huclidean distance, or a Chebychev distance, or other possible distance measurements.
- mapping The purpose of such mapping is to maximize the diversity gain by maximizing the difference in the equivalent precoding channels of two adjacent time/frequency resources.
- the loop of W is designed to map to adjacent time/frequency resources using the following W 2b matrix:
- ⁇ e1, e3, e2, e4 ⁇ are mapped to four consecutive time/frequency resources.
- ⁇ e1, e4, e2, e3 ⁇ are mapped to four consecutive time/frequency resources.
- W 2b ⁇ (e1, e1), (e2, e2), (e3, e3), (e4, e4) ⁇ .
- ⁇ (e1, e1), (e3, e3), (e2, e2), (e4, e4) ⁇ are mapped to four adjacent time/frequency resources.
- ⁇ (e1, e1), (e4, e4), (e2, e2), (e3, e3) ⁇ are mapped to four adjacent time/frequency resources.
- mapping of the co-phasing matrix in W 2c should ensure that the distance to the precoding matrix of adjacent time/frequency resources is as large as possible.
- w 2c, k is the form of (e i e j ), 1 ⁇ i ⁇ N, 1 ⁇ j ⁇ N, i ⁇ j.
- the 8Tx (8-port) LTE two-level codebook structure is taken as an example.
- an LTE 8Tx two-level codebook structure In some embodiments of the present disclosure, an LTE 8Tx two-level codebook structure
- the codebook for rank-1 is:
- the codebook for rank-2 is:
- W1 and W2 are denoted by i1 and i2, respectively.
- I2 0, 1, 2, 3, corresponding to the first beam of W1 (ie e1),;
- I2 4,5,6,7 corresponds to the second beam of W1 (ie e2);
- the beam selection matrix (w2b) of the precoding matrix loop uses the order of ⁇ e1, e4, e2, e3 ⁇ , co-phasing is used. Then, the loop of W2(i2) uses the order of ⁇ 0, 2, 1, 3, 12, 14, 13, 15, 4, 6, 5, 7, 8, 10, 9, 11 ⁇ .
- the beam selection matrix (w2b) of the precoding matrix loop uses the order of ⁇ e1, e3, e2, e4 ⁇ , co-phasing is used Then, the loop of W2(i2) uses the order of ⁇ 0, 2, 1, 3, 8, 10, 9, 11, 4, 6, 5, 7, 12, 14, 13, 15 ⁇ .
- the loop is applied to the W2 matrix corresponding to (e1, e1), (e2, e2), (e3, e3), (e4, e4). If the loop of W2 uses beam ordering in the order of ⁇ (e1, e1), (e4, e4), (e2, e2), (e3, e3) ⁇ , co-phasing is used. Then the loop of W2(i2) adopts the order of ⁇ 0, 1, 6, 7, 2, 3, 4, 5 ⁇ .
- the above-described embodiments of the present disclosure determine a set of matrices that can be cyclically mapped to different transmission resources; and transmit signals that are shaped by the matrix to one or more layers of signals at different locations of the transmission resources.
- the transmission performance of the transmission channel can be improved.
- the embodiment of the present disclosure further provides an apparatus for signal transmission, including:
- a first determining module configured to determine a codebook C, where the codebook C is a set of matrices W;
- a transmission module configured to generate one or more layers of signals, and shape the signal by using a matrix in the ⁇ , and cyclically map to different locations of the transmission resource, and different bits in the transmission resource Set the signal after sending the shape.
- the matrix W is generated by transforming the phase ⁇ by at least one discrete Fourier transform DFT vector V;
- ⁇ ⁇ 1 , ⁇ 2 , ... ⁇ K ⁇ is not continuous.
- each W 1 matrix is composed of N adjacent discrete Fourier transform DFT beams pointing to different angles; wherein N is a positive integer;
- a second-stage precoding matrix W 2b ⁇ w 2b,1 ,...w 2b,L ⁇ for selecting a beam in W 1 , where w 2b,1 ,...w 2b,L is beam selection a matrix, L is a positive integer, and the circular mapping manner of the w 2b, 1 , ... w 2b, L is: selecting a matrix corresponding to the discontinuous DFT vector from the matrix of W 1 for adjacent transmission resources;
- each W 1 matrix is composed of N adjacent discrete Fourier transform DFT vectors pointing to different angles; wherein N is a positive integer;
- a second-stage precoding matrix W 2b ⁇ w 2b,1 ,...w 2b,L ⁇ for selecting a DFT vector in W 1 , where w 2b,1 ,...w 2b,L is a beam Select the matrix, L is a positive integer;
- the cyclic mapping manner of the w 2b,1 ,...w 2b,L is: selecting a matrix corresponding to the same or different DFT vectors from the matrix of W 1 for adjacent transmission resources, when selecting different DFT vectors, selecting DFT vectors are continuous or discontinuous;
- the resolution of the matrix mapped to two adjacent transmission resources is greater than a preset value.
- the separation degree of the two matrices mapped to W 2b of two adjacent transmission resources is maximized, and the separation degree of the two matrices of the W 2b is greater than the first preset value.
- the distance of the phase transformation matrix w 2c,k mapped to the W 2c of the adjacent transmission resource is greater than the second preset value.
- the transmission module is further configured to send the determined indication information of the set of the matrix that can be cyclically mapped to different transmission resources.
- the transmitting module sends, by using semi-static signaling or dynamic signaling, the set of indication information that can be cyclically mapped to a matrix of different transmission resources.
- the device is a device corresponding to the above method, and all implementation examples in the above method are applicable to the embodiment of the device, and the same technical effects can be achieved.
- An embodiment of the present disclosure further provides a transmitting device, including: a processor; a memory connected to the processor through a bus interface, and a transceiver connected to the processor through a bus interface; the memory is used for storing The program and data used by the processor when performing the operation; the processor is configured to implement the following functional modules:
- a first determining module configured to determine a codebook C, where the codebook C is a set of matrices W;
- a transmission module configured to generate one or more layers of signals, and shape the signal by using a matrix in the ⁇ , and cyclically map to different locations of the transmission resource, and send the assignment at different positions of the transmission resource The signal after the shape.
- the bus interface may be an interface in a bus architecture, and the bus architecture may include any number of interconnected buses and bridges, each of which is represented by one or more processors represented by the processor and memory represented by the memory The circuits are linked together.
- the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits.
- the bus interface provides an interface.
- the processor is responsible for managing the bus architecture and the usual processing, and the memory can store the data that processor 800 uses when performing operations.
- the disclosed methods are applicable to the downlink (e.g., from the network to the mobile terminal) and the uplink (e.g., from the mobile terminal to the network).
- the "data" in the above statement may be any digital information bits including, but not limited to, user plane data and/or control plane data (carrying control information transmitted to or from a certain UE or group of UEs).
- the method for signal transmission on the receiving device side corresponding to the foregoing method includes:
- Step 32 Receive a shaped signal transmitted at different locations of the transmission resource, where the signal is a signal obtained by shaping the one or more layers of signals by using the matrix.
- the matrix W is generated by transforming the phase ⁇ by at least one discrete Fourier transform DFT vector V;
- ⁇ ⁇ 1 , ⁇ 2 , ... ⁇ K ⁇ is not continuous.
- each W 1 matrix is composed of N adjacent discrete Fourier transform DFT beams pointing to different angles; wherein N is a positive integer;
- a second-stage precoding matrix W 2b ⁇ w 2b,1 ,...w 2b,L ⁇ for selecting a beam in W 1 , where w 2b,1 ,...w 2b,L is beam selection a matrix, L is a positive integer, and the circular mapping manner of the w 2b, 1 , ... w 2b, L is: selecting a matrix corresponding to the discontinuous DFT vector from the matrix of W 1 for adjacent transmission resources;
- each W 1 matrix is composed of N adjacent discrete Fourier transform DFT vectors pointing to different angles; wherein N is a positive integer;
- a second-stage precoding matrix W 2b ⁇ w 2b,1 ,...w 2b,L ⁇ for selecting a DFT vector in W 1 , where w 2b,1 ,...w 2b,L is a beam Select the matrix, L is a positive integer;
- the cyclic mapping manner of the w 2b,1 ,...w 2b,L is: selecting a matrix corresponding to the same or different DFT vectors from the matrix of W 1 for adjacent transmission resources, when selecting different DFT vectors, selecting DFT vectors are continuous or discontinuous;
- the embodiment of the present disclosure further provides a device for signal transmission, including:
- a receiving module configured to receive the shaped signal transmitted at different locations of the transmission resource, where the signal is a signal obtained by using the matrix to shape one or more layers of signals.
- the method on the transmitting device side when applied to CSI feedback, includes:
- Step 41 The sending device determines a set of precoding matrices that can be cyclically mapped to different transmission resources.
- Step 42 The transmitting device transmits one or more layers of data encoded by using the precoding matrix to the receiving device.
- Step 43 The sending device indicates multiple precoding matrices to the receiving device, which may be configured through RRC signaling, and the step is optional.
- Step 44 The transmitter receives, receives CSI feedback from the device, and the CSI includes at least one indication information for indicating a selected precoding matrix. Again, this method is also applicable to DMRS transmissions.
- An embodiment of the present disclosure further provides a sending device, including:
- a determining module for determining a set of matrices that can be cyclically mapped to different transmission resources
- a transmission module configured to transmit one or more layers of data encoded by the matrix to a receiving device
- the receiving module is configured to receive CSI feedback of channel state information sent by the receiving device, where the CSI includes at least one indication information for indicating a selected precoding matrix.
- the method on the receiving device side includes:
- Step 51 The receiving device receives multiple precoding matrices, which may be acquired through RRC signaling.
- the multiple precoding matrices are a set of precoding matrices that can be cyclically mapped to different transmission resources.
- Step 52 The receiving device generates CSI, where the CSI includes at least one indication information for indicating a selected precoding matrix.
- step 53 the receiving device sends the CSI to the sending device.
- this method is also applicable to DMRS transmissions.
- An embodiment of the present disclosure further provides a receiving device, including:
- a receiving module configured to receive multiple matrices, where a plurality of matrices are a set of matrices that can be cyclically mapped to different transmission resources;
- a feedback module configured to generate channel state information CSI, where the CSI includes at least one indication information for indicating a selected matrix
- the sending module is configured to send the CSI to the sending device.
- An embodiment of the present disclosure further provides a receiving device, including:
- processor coupled to the processor via a bus interface, and a transceiver coupled to the processor via a bus interface; the memory for storing programs and data used by the processor in performing operations;
- the processor implements the following functions:
- the indication carrying a precoding matrix that determines a group of cyclic mappings to different transmission resources; it should be noted that the step is optional; receiving one or more layers of data, where the data has been A set of precoding matrices that can be cyclically mapped to different transmission resources are encoded.
- a set of precoding matrices that can be cyclically mapped to different transmission resources can be mapped according to the methods described in some embodiments of the present disclosure.
- the bus interface may be an interface in the bus architecture, and the bus architecture may include any number of interconnected buses and bridges, and various circuit links of the memory represented by one or more processors and memories represented by the processor. Together.
- the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits.
- the bus interface provides an interface.
- the processor is responsible for managing the bus architecture and the usual processing, and the memory can store the data that processor 800 uses when performing operations.
- the transmitting device in some embodiments of the present disclosure may be a base station, or may be a transmitter of the base station, and the receiving device may be a terminal or a receiver of the terminal; of course, the sending device may also be a terminal or a terminal.
- the transmitter, the receiving device can also be a base station or a receiver of the base station.
- Some embodiments of the present disclosure provide a design of a precoding matrix cyclic scheme under MIMO communication with the goal of mapping non-contiguous/non-sequential beams on adjacent time/frequency resources. Specifically, based on a particular distance measurement, non-continuous/non-sequential beams are used to maximize the distance mapped to the precoding matrix of adjacent time/frequency resources. The robustness of the system is enhanced against non-ideal communication channel conditions to counter the attenuation of the channel amplitude.
- the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
- the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
- These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
- the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Discrete Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radio Transmission System (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本公开提供一种信号传输的方法及装置,方法包括:确定一个码本C,所述码本C为矩阵W的集合;从所述码本C中确定一矩阵集合Ω={W}∈C;产生一层或者多层信号,并采用所述Ω中的矩阵对所述信号进行赋形,并循环映射到传输资源的不同位置;在所述传输资源的不同位置发送赋形后的信号。
Description
相关申请的交叉引用
本申请主张在2016年9月22日在中国提交的中国专利申请号No.201610842889.7的优先权,其全部内容通过引用包含于此。
本公开涉及通信技术领域,特别是指一种信号传输的方法及装置。
在无线通信系统中,开环多输入多输出(OL-MIMO)技术是一个可以提升通信可靠性的有效技术。通过在不同的时间/频率传输资源使用不同的预编码,可以提高信道状态信息(CSI)反馈的质量和传输信号的强度,从而更好地对抗信道的不理想。一种可能的OL-MIMO方案是使用一组预定义的预编码矩阵在数据传输资源的不同时间/频率资源进行循环。用V={V1,V2,V3,…VN}表示一组候选的预编码矩阵的集合,其中N表示V的基数,多种方法可用于V中预编码矩阵的循环映射。预编码矩阵集合,以及预编码矩阵到不同时间频率资源的映射在用于CSI反馈和数据传输的发送机和接收机需要是一致的。
相关技术中的无线通信系统中没有基于DMRS(解调参考信号)的OL-MIMO方案。LTE的TM3支持基于CRS(小区参考信号)的OL-MIMO的传输,但这项技术必须基于小区专属的、宽带的并总是存在的CRS信号,因此并不是一项前景很好的技术。在未来的无线通信系统中,为避免高传输功率消耗,CRS信号将会减少或完全被移除。此外,基于CRS的OL-MIMO无法在MBSFN子帧中使用,因为MBSFN子帧的数据传输区域中没有CRS(OFDM符号4-14)。为了提升基于DMRS的传输的可靠性,需要引入基于DMRS的OL-MIMO。
发明内容
本公开提供了一种信号传输的方法及装置,可以提高传输信道的传输性能。
为解决上述技术问题,本公开的实施例提供如下方案:
一种信号传输的方法,包括:
确定一个码本C,所述码本C为矩阵W的集合;
从所述码本C中确定一矩阵集合Ω={W}∈C;
产生一层或者多层信号,并采用所述Ω中的矩阵对所述信号进行赋形,并循环映射到传输资源的不同位置;
在所述传输资源的不同位置发送赋形后的信号。
其中,所述矩阵W为至少一个离散傅里叶变换DFT向量V通过变换相位φ产生;
所述矩阵集合Ω中的矩阵W对应的DFT向量的集合构成一组相邻DFT向量V={V1,V2,...VN};
所述矩阵集合Ω中的矩阵W对应的相位集合构成一组相邻相位Θ={φ1,φ2,...φK};
映射于相邻传输资源的矩阵W对应的DFT向量,在V={V1,V2,...VN}中非连续,或者映射于相邻传输资源的矩阵W对应的相位φ,在Θ={φ1,φ2,...φK}中非连续。
其中,所述码本C为两级码本结构,码本C中的矩阵W=W1W2=W1W2bW2c;
其中,每个W1矩阵由N个相邻的指向不同角度的离散傅里叶变换DFT波束组成;其中,N为正整数;
对W1中的波束进行选择的第二级预编码矩阵W2b={w2b,1,...w2b,L},其中,w2b,1,...w2b,L为波束选择矩阵,L为正整数,该w2b,1,...w2b,L的循环映射方式为:从W1的矩阵里选择对应非连续DFT向量的矩阵,用于相邻传输资源;
对W1中的波束进行相位旋转的第二级预编码矩阵W2c={w2c,k}k=1,2,...,其中,w2c,k是相位变换矩阵。
其中,所述码本C为两级码本结构,码本C中的矩阵W=W1W2=W1W2bW2c;
其中,每个W1矩阵由N个相邻的指向不同角度的离散傅里叶变换DFT向量组成;其中,N为正整数;
对W1中的DFT向量进行选择的第二级预编码矩阵W2b={w2b,1,...w2b,L},其中,w2b,1,...w2b,L为波束选择矩阵,L为正整数;
该w2b,1,...w2b,L的循环映射方式为:从W1的矩阵里选择对应相同或者不同DFT向量的矩阵用于相邻传输资源,当选择不同DFT向量时,选择的DFT向量连续或不连续;
对W1中的波束进行相位旋转的第二级预编码矩阵W2c={w2c,k}k=1,2,...,其中,
w2c,k是相位变换矩阵,该w2c,1,...w2c,k的循环映射方式为:从第二级编码矩阵W2c={w2c,k}k=1,2,...中选择不连续相位。
其中,Θ={0,π/}或者Θ={π/2,3π/2}。
其中,映射到两个相邻的传输资源的矩阵的分离度大于一预设值。
其中,根据距离测量量,最大化映射到两个相邻的传输资源的W2b的两个矩阵的分离度,所述W2b的两个矩阵的分离度大于第一预设值。
其中,映射到相邻传输资源的W2c里的相位变换矩阵w2c,k的距离大于第二预设值。
其中,方法还包括:发送确定的所述一组可以循环映射到不同的传输资源的矩阵的指示信息。
其中,发送确定的所述一组可以循环映射到不同的传输资源的矩阵的指示信息的步骤包括:
通过半静态信令或者动态信令发送确定的所述一组可以循环映射到不同的传输资源的矩阵的指示信息。
本公开的实施例还提供一种信号传输的装置,包括:
第一确定模块,用于确定一个码本C,所述码本C为矩阵W的集合;
第二确定模块,用于从所述码本C中确定一组矩阵集合Ω={W}∈C;
传输模块,用于产生一层或者多层信号,并采用所述Ω中的矩阵对所述信号进行赋形,并循环映射到传输资源的不同位置,并在所述传输资源的不同位置发送赋形后的信号。
其中,所述矩阵W为至少一个离散傅里叶变换DFT向量V通过变换相位φ产生;
所述矩阵集合Ω中的矩阵W对应的DFT向量的集合构成一组相邻DFT向量V={V1,V2,...VN};
所述矩阵集合Ω中的矩阵W对应的相位集合构成一组相邻相位Θ={φ1,φ2,...φK};
映射于相邻传输资源的矩阵W对应的DFT向量,在V={V1,V2,...VN}中非连续,或者映射于相邻传输资源的矩阵W对应的相位φ,在Θ={φ1,φ2,...φK}中非连续。
其中,所述码本C为两级码本结构,码本C中的矩阵W=W1W2=W1W2bW2c;
其中,每个W1矩阵由N个相邻的指向不同角度的离散傅里叶变换DFT波
束组成;其中,N为正整数;
对W1中的波束进行选择的第二级预编码矩阵W2b={w2b,1,...w2b,L},其中,w2b,1,...w2b,L为波束选择矩阵,L为正整数,该w2b,1,...w2b,L的循环映射方式为:从W1的矩阵里选择对应非连续DFT向量的矩阵,用于相邻传输资源;
对W1中的波束进行相位旋转的第二级预编码矩阵W2c={w2c,k}k=1,2,...,其中,w2c,k是相位变换矩阵。
其中,所述码本C为两级码本结构,码本C中的矩阵W=W1W2=W1W2bW2c;
其中,每个W1矩阵由N个相邻的指向不同角度的离散傅里叶变换DFT向量组成;其中,N为正整数;
对W1中的DFT向量进行选择的第二级预编码矩阵W2b={w2b,1,...w2b,L},其中,w2b,1,...w2b,L为波束选择矩阵,L为正整数;
该w2b,1,...w2b,L的循环映射方式为:从W1的矩阵里选择对应相同或者不同DFT向量的矩阵用于相邻传输资源,当选择不同DFT向量时,选择的DFT向量连续或不连续;
对W1中的波束进行相位旋转的第二级预编码矩阵W2c={w2c,k}k=1,2,...,其中,w2c,k是相位变换矩阵,该w2c,1,...w2c,K的循环映射方式为:从第二级编码矩阵W2c={w2c,k}k=1,2,...中选择不连续相位。
其中,Θ={0,π/}或者Θ={π/2,3π/2}。
其中,映射到两个相邻的传输资源的矩阵的分离度大于一预设值。
其中,根据距离测量量,最大化映射到两个相邻的传输资源的W2b的两个矩阵的分离度,所述W2b的两个矩阵的分离度大于第一预设值。
其中,映射到相邻传输资源的W2c里的相位变换矩阵w2c,k的距离大于第二预设值。
其中,所述传输模块还用于发送确定的所述一组可以循环映射到不同的传输资源的矩阵的指示信息。
其中,所述传输模块通过半静态信令或者动态信令发送确定的所述一组可以循环映射到不同的传输资源的矩阵的指示信息。
本公开的实施例还提供一种信号传输的方法,包括:
获取确定的一组可以循环映射到不同的传输资源的矩阵;其中,所述矩阵集合Ω={W}∈C,码本C为矩阵W的集合;
接收在传输资源的不同位置传输的赋形后的信号,所述信号是采用所述矩阵对一层或者多层信号进行赋形后的信号。
其中,所述矩阵W为至少一个离散傅里叶变换DFT向量V通过变换相位φ产生;
所述矩阵集合Ω中的矩阵W对应的DFT向量的集合构成一组相邻DFT向量V={V1,V2,...VN};
所述矩阵集合Ω中的矩阵W对应的相位集合构成一组相邻相位Θ={φ1,φ2,...φK};
映射于相邻传输资源的矩阵W对应的DFT向量,在V={V1,V2,...VN}中非连续,或者映射于相邻传输资源的矩阵W对应的相位φ,在Θ={φ1,φ2,...φK}中非连续。
其中,所述码本C为两级码本结构,码本C中的矩阵W=W1W2=W1W2bW2c;
其中,每个W1矩阵由N个相邻的指向不同角度的离散傅里叶变换DFT波束组成;其中,N为正整数;
对W1中的波束进行选择的第二级预编码矩阵W2b={w2b,1,...w2b,L},其中,w2b,1,...w2b,L为波束选择矩阵,L为正整数,该w2b,1,...w2b,L的循环映射方式为:从W1的矩阵里选择对应非连续DFT向量的矩阵,用于相邻传输资源;
对W1中的波束进行相位旋转的第二级预编码矩阵W2c={w2c,k}k=1,2,...,其中,w2c,k是相位变换矩阵。
其中,所述码本C为两级码本结构,码本C中的矩阵W=W1W2=W1W2bW2c;
其中,每个W1矩阵由N个相邻的指向不同角度的离散傅里叶变换DFT向量组成;其中,N为正整数;
对W1中的DFT向量进行选择的第二级预编码矩阵W2b={w2b,1,...w2b,L},其中,w2b,1,...w2b,L为波束选择矩阵,L为正整数;
该w2b,1,...w2b,L的循环映射方式为:从W1的矩阵里选择对应相同或者不同DFT向量的矩阵用于相邻传输资源,当选择不同DFT向量时,选择的DFT向量连续或不连续;
对W1中的波束进行相位旋转的第二级预编码矩阵W2c={w2c,k}k=1,2,...,其中,w2c,k是相位变换矩阵,该w2c,1,...w2c,K的循环映射方式为:从第二级编码矩阵W2c={w2c,k}k=1,2,...中选择不连续相位。
本公开的实施例还提供一种信号传输的装置,包括:
获取模块,用于获取确定的一组可以循环映射到不同的传输资源的矩阵;其中,所述矩阵集合Ω={W}∈C,码本C为矩阵W的集合;
接收模块,用于接收在传输资源的不同位置传输的赋形后的信号,所述信号是采用所述矩阵对一层或者多层信号进行赋形后的信号。
本公开的实施例还提供一种上行信道反馈的方法,包括:
发送设备确定一组可以循环映射到不同的传输资源的矩阵;
所述发送设备传输一层或者多层采用所述矩阵进行编码的数据到接收设备;
所述发送设备接收,接收设备发送的信道状态信息CSI反馈,CSI至少包括一个指示信息,用于指示一个选择的所述预编码矩阵。
其中,上行信道反馈的方法还包括:所述发送设备向接收设备指示多个矩阵。
本公开的实施例还提供一种发送设备,包括:
确定模块,用于确定一组可以循环映射到不同的传输资源的矩阵;
传输模块,用于传输一层或者多层采用所述矩阵进行编码的数据到接收设备;
接收模块,用于接收接收设备发送的信道状态信息CSI反馈,CSI至少包括一个指示信息,用于指示一个选择的所述预编码矩阵。
本公开的实施例还提供一种上行信道反馈的方法,包括:
接收设备接收多个矩阵,多个矩阵是一组可以循环映射到不同的传输资源的矩阵;
所述接收设备产生信道状态信息CSI,该CSI至少包括一个指示信息,用于指示一个选择的所述矩阵;
所述接收设备发送CSI给发送设备。
本公开的实施例还提供一种接收设备,包括:
接收模块,用于接收多个矩阵,多个矩阵是一组可以循环映射到不同的传输资源的矩阵;
反馈模块,用于产生信道状态信息CSI,该CSI至少包括一个指示信息,用于指示一个选择的所述矩阵;
发送模块,用于发送CSI给发送设备。
本公开的实施例还提供一种信号传输的装置,包括处理器、收发机和存储器;
其中,所述处理器用于读取所述存储器中的程序,执行下列过程:
确定一个码本C,所述码本C为矩阵W的集合;
从所述码本C中确定一组矩阵集合Ω={W}∈C;以及
产生一层或者多层信号,并采用所述Ω中的矩阵对所述信号进行赋形,并循环映射到传输资源的不同位置,并在所述传输资源的不同位置发送赋形后的信号;
所述收发机用于接收和发送数据;
所述存储器用于保存所述处理器执行操作时所使用的数据。
本公开的实施例还提供一种信号传输的装置,包括处理器、收发机和存储器;
其中,所述处理器用于读取所述存储器中的程序,执行下列过程:
获取确定的一组可以循环映射到不同的传输资源的矩阵;其中,所述矩阵集合Ω={W}∈C,码本C为矩阵W的集合;以及
接收在传输资源的不同位置传输的赋形后的信号,所述信号是采用所述矩阵对一层或者多层信号进行赋形后的信号;
所述收发机用于接收和发送数据;
所述存储器用于保存所述处理器执行操作时所使用的数据。
本公开的实施例还提供一种发送设备,包括处理器、收发机和存储器;
其中,所述处理器用于读取所述存储器中的程序,执行下列过程:
确定一组可以循环映射到不同的传输资源的矩阵;
传输一层或者多层采用所述矩阵进行编码的数据到接收设备;以及
接收接收设备发送的信道状态信息CSI反馈,CSI至少包括一个指示信息,用于指示一个选择的所述预编码矩阵;
所述收发机用于接收和发送数据;
所述存储器用于保存所述处理器执行操作时所使用的数据。
本公开的实施例还提供一种接收设备,包括处理器、收发机和存储器;
其中,所述处理器用于读取所述存储器中的程序,执行下列过程:
接收多个矩阵,多个矩阵是一组可以循环映射到不同的传输资源的矩阵;
产生信道状态信息CSI,该CSI至少包括一个指示信息,用于指示一个选择的所述矩阵;以及
发送CSI给发送设备;
所述收发机用于接收和发送数据;
所述存储器用于保存所述处理器执行操作时所使用的数据。
本公开的上述方案至少包括以下有益效果:
本公开的上述方案,通过确定一组可以循环映射到不同的传输资源的矩阵;在传输资源的不同位置传输采用所述矩阵对一层或者多层信号进行赋形后的信号。可以提高传输信道的传输性能。
图1为本公开的一些实施例的信号传输的方法流程图;
图2为本公开的一些实施例的信号传输的方法流程图;
图3为本公开的接收设备侧的信号传输的方法流程图;
图4为应用于CSI反馈时,发送设备侧的方法流程图;
图5为应用于CSI反馈时,接收设备侧的方法流程图。
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
如图1所示,本公开的一些实施例提供一种信号传输的方法,包括:
步骤11,确定一个码本C,所述码本C为矩阵W的集合;
步骤12,从所述码本C中确定一矩阵Ω={W}∈C;
码本为两级以及两级以上的码本结构的预编码矩阵;
步骤13,产生一层或者多层信号,并采用所述Ω中的矩阵对所述信号进行赋形,并循环映射到传输资源的不同位置;
步骤14,在所述传输资源的不同位置发送赋形后的信号。
本公开的一些实施例通过确定一组可以循环映射到不同的传输资源的矩
阵;在传输资源的不同位置传输采用所述矩阵对一层或者多层信号进行赋形后的信号。可以提高传输信道的传输性能。
如图2所示,本公开的一些实施例提供一种信号传输的方法,包括:
步骤21,确定一个码本C,所述码本C为矩阵W的集合;
步骤22,从所述码本C中确定一矩阵Ω={W}∈C;
码本为两级以及两级以上的码本结构的预编码矩阵;
步骤23,发送确定的所述一组可以循环映射到不同的传输资源的矩阵的指示信息;
具体的,通过半静态信令或者动态信令发送确定的所述一组可以循环映射到不同的传输资源的矩阵的指示信息需要说明的是,该步骤是可选的;
步骤24,产生一层或者多层信号,并采用所述Ω中的矩阵对所述信号进行赋形,并循环映射到传输资源的不同位置;
步骤25,在所述传输资源的不同位置发送赋形后的信号。
本公开的实施例中,通过确定一组可以循环映射到不同的传输资源的矩阵,并发送给接收设备,在传输资源的不同位置传输采用所述矩阵对一层或者多层信号进行赋形后的信号,可以提高传输信道的传输性能。
本公开的一些实施例中,所述矩阵W为至少一个离散傅里叶变换DFT向量V通过变换相位φ产生;
所述矩阵Ω中的矩阵W对应的DFT向量的集合构成一组相邻DFT向量V={V1,V2,...VN};
所述矩阵Ω中的矩阵W对应的相位集合构成一组相邻相位Θ={φ1,φ2,...φK};
映射于相邻传输资源的矩阵W对应的DFT向量,在V={V1,V2,...VN}中非连续,或者映射于相邻传输资源的矩阵W对应的相位φ,在Θ={φ1,φ2,...φK}中非连续。
其中,所述码本C为两级码本结构,码本C中的矩阵W=W1W2=W1W2bW2c;
其中,每个W1矩阵由N个相邻的指向不同角度的离散傅里叶变换DFT波束组成;其中,N为正整数;
对W1中的波束进行选择的第二级预编码矩阵W2b={w2b,1,...w2b,L},其中,w2b,1,...w2b,L为波束选择矩阵,L为正整数,该w2b,1,...w2b,L的循环映射方式为:从W1的矩阵里选择对应非连续DFT向量的矩阵,用于相邻传输资源;
对W1中的波束进行相位旋转的第二级预编码矩阵W2c={w2c,k}k=1,2,...,其中,
w2c,k是相位变换矩阵。
其中,所述码本C为两级码本结构,码本C中的矩阵W=W1W2=W1W2bW2c;
其中,每个W1矩阵由N个相邻的指向不同角度的离散傅里叶变换DFT向量组成;其中,N为正整数;
对W1中的DFT向量进行选择的第二级预编码矩阵W2b={w2b,1,...w2b,L},其中,w2b,1,...w2b,L为波束选择矩阵,L为正整数;
该w2b,1,...w2b,L的循环映射方式为:从W1的矩阵里选择对应相同或者不同DFT向量的矩阵用于相邻传输资源,当选择不同DFT向量时,选择的DFT向量连续或不连续;
对W1中的波束进行相位旋转的第二级预编码矩阵W2c={w2c,k}k=1,2,...,其中,w2c,k是相位变换矩阵,该w2c,1,...w2c,K的循环映射方式为:从第二级编码矩阵W2c={w2c,k}k=1,2,...中选择不连续相位。
上述实施例中,Θ={0,π/}或者Θ={π/2,3π/2}。
其中,以4Tx/8Tx LTE码本为例,X1,k={Vk,1,Vk,2,...Vk,N}表示传输一层数据时,一组的N个预编码向量,每一个预编码向量对应一个波束;
如果w1,k和w1,k+1有N/2个重叠的波束,码本W1有2ONt/N个矩阵,否则W1有ONt/N个矩阵。
对于第二级预编码矩阵W2,传输一层数据时,每个w2b,l由一组列选择向量{e1,e2,...eN}组成,其中ei是单位阵IN的第i列,1≤l≤L;
传输两层数据时,每个w2b,l由一组列选择矩阵{(e1,e1),(e2,e2),...(eN,eN)}组成,其列是{e1,e2,…eN}的一个子集,其中ei是IN×N的第i列,IN×N是一个N乘N的单位阵,1≤i≤N。
即{e1,e2,…eN}意味着从W1矩阵中连续选择(或认为是连续的DFT波束)。
对于第二级预编码矩阵W2,传输一层数据时,W2c={w2c,1,...w2c,M},其中其中,是将两个极化方向的波束赋形角
度联合起来的相位旋转矢量,j为常数;其中,1≤k≤M;在LTH码本中,在一些场景下
N=4时,W2c的列选择矩阵可以是下列矩阵中的一个:{(e1 e1),(e2 e2),(e3 e3),(e4 e4)};即两层数据使用相同的DFT波束赋形矢量,相位旋转的码本W2c={w2c,k}k=1,2,...可以写为其中
W2c中的矩阵也可以具有(ei ej),1≤i≤N,1≤j≤N,i≠j的形式,即两层数据选择不同的DFT波束。
另外,上述实施例中,映射到两个相邻的传输资源的矩阵的分离度大于一预设值。
具体的,根据距离测量量,最大化映射到两个相邻的传输资源的W2b的两个矩阵的分离度,所述W2b的两个矩阵的分离度大于第一预设值。
所述W2b的两个矩阵的分离度大于第一预设值。该距离量测量可以是欧式距离(Huclidean distance),或切比雪夫距离(Chebychev distance),也可能是其他可能的距离测量量。
映射到相邻传输资源的W2c里的相位变换矩阵w2c,k的距离大于第二预设值。
具体的,本公开中的预编码循环并不限定于集合{(e1,e1),(e2,e2),...(eN,eN)};
对于rank-1,基于波束选择码本W2b={w2b,1,...w2b,L}的预编码的循环被设计为从w1的矩阵里选择非连续的或非顺序的DFT波束用于相邻时间/频率资源的预编码。
具体的,一个可能的实例是基于一个单一的或多元的距离测量量来最大化映射到两个相邻的时间/频率资源的两个w2b矩阵的分离度(separation)。
这个距离测量量可以是欧式距离(Huclidean distance),或切比雪夫距离(Chebychev distance),也可能是其他可能的距离测量量。
这样映射的目的是通过最大化两个相邻的时间/频率资源的等效预编码信道的差异,以获得最大的分集增益。
这是由于无线传播信道是连续的,两个时间/频率资源越近,它们的相关
性越大。映射到两个相邻的时间/频率资源的预编码矩阵分离度越大(即距离越大),接收设备消除信道深衰落、接收性能更鲁棒的可能性越大。
在本公开的一些实施例中,假设W2b={e1,e2,e3,e4},W的循环被设计为采用以下的W2b矩阵映射到相邻的时间/频率资源:
在本公开的一些实施例中,{e1,e3,e2,e4}被映射到四个连续的时间/频率资源。
在本公开的一些实施例中,{e1,e4,e2,e3}被映射到四个连续的时间/频率资源。
类似地,对rank-2,基于W2b={w2b,1,...w2b,L}码本的预编码的循环的设计为增加(或最大化)映射到相邻的时间/频率资源的两个预编码矩阵的距离。
作为一个实施例,假设W2b={(e1,e1),(e2,e2),(e3,e3),(e4,e4)}。W的循环被设计为对应的W2b={(e1,e1),(e2,e2),(e3,e3),(e4,e4)}的循环采用如下的方式映射4个预编码:
在本公开的一些实施例中,{(e1,e1),(e3,e3),(e2,e2),(e4,e4)}被映射到四个相邻的时间/频率资源。
在本公开的一些实施例中,{(e1,e1),(e4,e4),(e2,e2),(e3,e3)}被映射到四个相邻的时间/频率资源。
相应地co-phasing矩阵的集合W2c可以表示为W2c={w2c,1,...w2c,M}。
同样道理,W2c里的co-phasing矩阵的映射应保证映射到相邻时间/频率资源的预编码矩阵的距离尽可能地大。
下面提供一些更详细的实施例。不失一般性,以8Tx(8端口)LTE两级码本结构为例。
在本公开的一些实施例中,LTE 8Tx两级码本结构
对于8Tx,rank-1的码本为:
rank-2的码本为:
用i1和i2分别表示W1和W2的序号。
对于rank-1:
i2=0,1,2,3,对应于W1的第一个波束(即e1),;
i2=4,5,6,7对应于W1的第二个波束(即e2);
i2=8,9,10,11对应于W1的第三个波束(即e3);
i2=12,13,14,15对应于W1的第四个波束(即e4)。
对于rank-2:
i2=0,1对应于波束对(e1,e1);
i2=2,3对应于波束对(e2,e2);
i2=4,5对应于波束对(e3,e3);
i2=6,7对应于波束对(e4,e4);
i2=8,9对应于波束对(e1,e2);
i2=10,11对应于波束对(e2,e3),;
i2=12,13对应于波束对(e1,e4);
i2=14,15对应于波束对(e2,e4)。
使用上述的实施例提到的方法,为了最大化循环的预编码矩阵的距离:
对于rank-1,如果预编码矩阵循环的波束选择矩阵(w2b)使用{e1,e4,e2,e3}的顺序,co-phasing使用则W2(i2)的循环使用{0,2,1,3,12,14,13,15,4,6,5,7,8,10,9,11}的顺序。
或者,
如果预编码矩阵循环的波束选择矩阵(w2b)使用{e1,e3,e2,e4}的顺序,co-phasing使用则W2(i2)的循环使用{0,2,1,3,8,10,9,11,4,6,5,7,12,14,13,15}的顺序。
对于rank-2,假设循环应用在对应于(e1,e1),(e2,e2),(e3,e3),(e4,e4)的W2矩阵。如果W2的循环采用{(e1,e1),(e4,e4),(e2,e2),(e3,e3)}的顺序进行波束选择,co-phasing使用则W2(i2)的循环采用{0,1,6,7,2,3,4,5}的顺序。
本公开的上述实施例,通过确定一组可以循环映射到不同的传输资源的矩阵;在传输资源的不同位置传输采用所述矩阵对一层或者多层信号进行赋形后的信号。可以提高传输信道的传输性能。
与上述实施例对应的,本公开的实施例还提供一种信号传输的装置,包括:
第一确定模块,用于确定一个码本C,所述码本C为矩阵W的集合;
第二确定模块,用于从所述码本C中确定一组矩阵Ω={W}∈C;
传输模块,用于产生一层或者多层信号,并采用所述Ω中的矩阵对所述信号进行赋形,并循环映射到传输资源的不同位置,并在所述传输资源的不同位
置发送赋形后的信号。
其中,所述矩阵W为至少一个离散傅里叶变换DFT向量V通过变换相位φ产生;
所述矩阵Ω中的矩阵W对应的DFT向量的集合构成一组相邻DFT向量V={V1,V2,...VN};
所述矩阵Ω中的矩阵W对应的相位集合构成一组相邻相位Θ={φ1,φ2,...φK};
映射于相邻传输资源的矩阵W对应的DFT向量,在V={V1,V2,...VN}中非连续,或者映射于相邻传输资源的矩阵W对应的相位φ,在Θ={φ1,φ2,...φK}中非连续。
其中,所述码本C为两级码本结构,码本C中的矩阵W=W1W2=W1W2bW2c;
其中,每个W1矩阵由N个相邻的指向不同角度的离散傅里叶变换DFT波束组成;其中,N为正整数;
对W1中的波束进行选择的第二级预编码矩阵W2b={w2b,1,...w2b,L},其中,w2b,1,...w2b,L为波束选择矩阵,L为正整数,该w2b,1,...w2b,L的循环映射方式为:从W1的矩阵里选择对应非连续DFT向量的矩阵,用于相邻传输资源;
对W1中的波束进行相位旋转的第二级预编码矩阵W2c={w2c,k}k=1,2,...,其中,w2c,k是相位变换矩阵。
其中,所述码本C为两级码本结构,码本C中的矩阵W=W1W2=W1W2bW2c;
其中,每个W1矩阵由N个相邻的指向不同角度的离散傅里叶变换DFT向量组成;其中,N为正整数;
对W1中的DFT向量进行选择的第二级预编码矩阵W2b={w2b,1,...w2b,L},其中,w2b,1,...w2b,L为波束选择矩阵,L为正整数;
该w2b,1,...w2b,L的循环映射方式为:从W1的矩阵里选择对应相同或者不同DFT向量的矩阵用于相邻传输资源,当选择不同DFT向量时,选择的DFT向量连续或不连续;
对W1中的波束进行相位旋转的第二级预编码矩阵W2c={w2c,k}k=1,2,...,其中,w2c,k是相位变换矩阵,该w2c,1,...w2c,K的循环映射方式为:从第二级编码矩阵W2c={w2c,k}k=1,2,...中选择不连续相位。
其中,Θ={0,π/}或者Θ={π/2,3π/2}。
其中,映射到两个相邻的传输资源的矩阵的分离度大于一预设值。
其中,根据距离测量量,最大化映射到两个相邻的传输资源的W2b的两个
矩阵的分离度,所述W2b的两个矩阵的分离度大于第一预设值。
其中,映射到相邻传输资源的W2c里的相位变换矩阵w2c,k的距离大于第二预设值。
其中,所述传输模块还用于发送确定的所述一组可以循环映射到不同的传输资源的矩阵的指示信息。
其中,所述传输模块通过半静态信令或者动态信令发送确定的所述一组可以循环映射到不同的传输资源的矩阵的指示信息。
需要说明的是,该装置是与上述方法对应的装置,上述方法中的所有实现实例均适用于该装置的实施例中,也能达到相同的技术效果。
本公开的实施例还提供一种发送设备,包括:处理器;通过总线接口与所述处理器相连接的存储器,以及通过总线接口与处理器相连接的收发机;所述存储器用于存储所述处理器在执行操作时所使用的程序和数据;所述处理器,用于实现以下功能模块:
第一确定模块,用于确定一个码本C,所述码本C为矩阵W的集合;
第二确定模块,用于从所述码本C中确定一组矩阵Ω={W}∈C;
传输模块,用于产生一层或者多层信号,并采用所述Ω中的矩阵对所述信号进行赋形,并循环映射到传输资源的不同位置,并在所述传输资源的不同位置发送赋形后的信号。
该发送设备的实施例中,总线接口可以是总线架构中的接口,总线架构可以包括任意数量的互联的总线和桥,具体由处理器代表的一个或多个处理器和存储器代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起。总线接口提供接口。处理器负责管理总线架构和通常的处理,存储器可以存储处理器800在执行操作时所使用的数据。
本公开方法适用于下行链路(例如,从网络到移动终端)和上行链路(例如,从移动终端到网络)。上述声明中的“数据”可以是任意数字信息比特,包含但不限于用户面数据和/或控制面数据(携带发送到或来自于某一个UE或一组UE的控制信息)。
如图3所示,与上述方法对应的接收设备侧的信号传输的方法,包括:
步骤31,获取确定的一组可以循环映射到不同的传输资源的矩阵;其中,
所述矩阵Ω={W}∈C,码本C为矩阵W的集合;
步骤32,接收在传输资源的不同位置传输的赋形后的信号,所述信号是采用所述矩阵对一层或者多层信号进行赋形后的信号。
其中,所述矩阵W为至少一个离散傅里叶变换DFT向量V通过变换相位φ产生;
所述矩阵Ω中的矩阵W对应的DFT向量的集合构成一组相邻DFT向量V={V1,V2,...VN};
所述矩阵Ω中的矩阵W对应的相位集合构成一组相邻相位Θ={φ1,φ2,...φK};
映射于相邻传输资源的矩阵W对应的DFT向量,在V={V1,V2,...VN}中非连续,或者映射于相邻传输资源的矩阵W对应的相位φ,在Θ={φ1,φ2,...φK}中非连续。
其中,所述码本C为两级码本结构,码本C中的矩阵W=W1W2=W1W2bW2c;
其中,每个W1矩阵由N个相邻的指向不同角度的离散傅里叶变换DFT波束组成;其中,N为正整数;
对W1中的波束进行选择的第二级预编码矩阵W2b={w2b,1,...w2b,L},其中,w2b,1,...w2b,L为波束选择矩阵,L为正整数,该w2b,1,...w2b,L的循环映射方式为:从W1的矩阵里选择对应非连续DFT向量的矩阵,用于相邻传输资源;
对W1中的波束进行相位旋转的第二级预编码矩阵W2c={w2c,k}k=1,2,...,其中,w2c,k是相位变换矩阵。
其中,所述码本C为两级码本结构,码本C中的矩阵W=W1W2=W1W2bW2c;
其中,每个W1矩阵由N个相邻的指向不同角度的离散傅里叶变换DFT向量组成;其中,N为正整数;
对W1中的DFT向量进行选择的第二级预编码矩阵W2b={w2b,1,...w2b,L},其中,w2b,1,...w2b,L为波束选择矩阵,L为正整数;
该w2b,1,...w2b,L的循环映射方式为:从W1的矩阵里选择对应相同或者不同DFT向量的矩阵用于相邻传输资源,当选择不同DFT向量时,选择的DFT向量连续或不连续;
对W1中的波束进行相位旋转的第二级预编码矩阵W2c={w2c,k}k=1,2,...,其中,w2c,k是相位变换矩阵,该w2c,1,...w2c,K的循环映射方式为:从第二级编码矩阵W2c={w2c,k}k=1,2,...中选择不连续相位。进一步的,上述方法实施例中的所有所述矩阵的实例均适用于该接收设备的方法的实施例中,也能达到相同的技术效果。
与该接收设备的方法对应的,本公开的实施例还提供一种信号传输的装置,包括:
获取模块,用于获取确定的一组可以循环映射到不同的传输资源的矩阵;其中,所述矩阵Ω={W}∈C,码本C为矩阵W的集合;
接收模块,用于接收在传输资源的不同位置传输的赋形后的信号,所述信号是采用所述矩阵对一层或者多层信号进行赋形后的信号。需要说明的是,上述方法实施例中的所有一组所述预编码矩阵的实例均适用于该接收设备的方法的实施例中,也能达到相同的技术效果。
如图4所示,应用于CSI反馈时,发送设备侧的方法包括:
步骤41,发送设备确定一组可以循环映射到不同的传输资源的预编码矩阵;
步骤42,发送设备传输一层或者多层采用所述预编码矩阵进行编码的数据到接收设备;
步骤43,发送设备向接收设备指示多个预编码矩阵,可以通过RRC信令进行配置,该步骤是可选的;
步骤44,发送机接收,接收设备的CSI反馈,CSI至少包括一个指示信息,用于指示一个选择的所述预编码矩阵。同样的,该方法也适用于DMRS传输。
本公开的实施例还提供一种发送设备,包括:
确定模块,用于确定一组可以循环映射到不同的传输资源的矩阵;
传输模块,用于传输一层或者多层采用所述矩阵进行编码的数据到接收设备;
接收模块,用于接收接收设备发送的信道状态信息CSI反馈,CSI至少包括一个指示信息,用于指示一个选择的所述预编码矩阵。
如图5所示,应用于CSI反馈时,接收设备侧的方法包括:
步骤51,接收设备接收多个预编码矩阵,可以通过RRC信令进行获取,多个预编码矩阵是一组可以循环映射到不同的传输资源的预编码矩阵;
步骤52,接收设备产生CSI,该CSI至少包括一个指示信息,用于指示一个选择的所述预编码矩阵;
步骤53,接收设备发送CSI给发送设备。
同样的,该方法也适用于DMRS传输。
本公开的实施例还提供一种接收设备,包括:
接收模块,用于接收多个矩阵,多个矩阵是一组可以循环映射到不同的传输资源的矩阵;
反馈模块,用于产生信道状态信息CSI,该CSI至少包括一个指示信息,用于指示一个选择的所述矩阵;
发送模块,用于发送CSI给发送设备。
本公开的实施例还提供一种接收设备,包括:
处理器;通过总线接口与所述处理器相连接的存储器,以及通过总线接口与处理器相连接的收发机;所述存储器用于存储所述处理器在执行操作时所使用的程序和数据;所述处理器实现如下功能:
接收发送机的指示,该指示携带确定一组可以循环映射到不同的传输资源的预编码矩阵;需要说明的是,该步骤是可选的;接收一层或者多层数据,这里的数据已被一组可以循环映射到不同的传输资源的预编码矩阵进行编码。
其中,这里的一组可以循环映射到不同的传输资源的预编码矩阵可以按照本公开的一些实施例所述的方法进行映射。
上述接收设备中,总线接口可以是总线架构中的接口,总线架构可以包括任意数量的互联的总线和桥,具体由处理器代表的一个或多个处理器和存储器代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起。总线接口提供接口。处理器负责管理总线架构和通常的处理,存储器可以存储处理器800在执行操作时所使用的数据。
本公开的一些实施例所述的发送设备可以是基站,也可以是基站的发射机,接收设备可以是终端,也可以是终端的接收机;当然,发送设备也可以是终端,也可以是终端的发射机,接收设备也可以是基站,也可以是基站的接收机。
本公开的一些实施例提供一种MIMO通信下的预编码矩阵循环方案的设计,目的是在相邻的时间/频率资源上映射非连续/非顺序的波束。具体可以是基于一个特定的距离测量量,使用非连续/非顺序的波束,来最大化映射到相邻的时间/频率资源的预编码矩阵的距离。在非理想的通信信道条件下增强系统的鲁棒性以对抗信道幅度的衰减。
本公开是参照根据本公开的一些实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流
程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。
Claims (34)
- 一种信号传输的方法,包括:确定一个码本C,所述码本C为矩阵W的集合;从所述码本C中确定一矩阵集合Ω={W}∈C;产生一层或者多层信号,并采用所述Ω中的矩阵对所述信号进行赋形,并循环映射到传输资源的不同位置;在所述传输资源的不同位置发送赋形后的信号。
- 根据权利要求1所述的方法,其中,所述矩阵W为至少一个离散傅里叶变换DFT向量V通过变换相位φ产生;所述矩阵集合Ω中的矩阵W对应的DFT向量的集合构成一组相邻DFT向量V={V1,V2,...VN};所述矩阵集合Ω中的矩阵W对应的相位集合构成一组相邻相位Θ={φ1,φ2,...φK};映射于相邻传输资源的矩阵W对应的DFT向量,在V={V1,V2,...VN}中非连续,或者映射于相邻传输资源的矩阵W对应的相位φ,在Θ={φ1,φ2,...φK}中非连续。
- 根据权利要求2所述的方法,其中,所述码本C为两级码本结构,码本C中的矩阵W=W1W2=W1W2bW2c;其中,每个W1矩阵由N个相邻的指向不同角度的离散傅里叶变换DFT波束组成;其中,N为正整数;对W1中的波束进行选择的第二级预编码矩阵W2b={w2b,1,...w2b,L},其中,w2b,1,...w2b,L为波束选择矩阵,L为正整数,该w2b,1,...w2b,L的循环映射方式为:从W1的矩阵里选择对应非连续DFT向量的矩阵,用于相邻传输资源;对W1中的波束进行相位旋转的第二级预编码矩阵W2c={w2c,k}k=1,2,...,其中,w2c,k是相位变换矩阵。
- 根据权利要求2所述的方法,其中,所述码本C为两级码本结构,码本C中的矩阵W=W1W2=W1W2bW2c;其中,每个W1矩阵由N个相邻的指向不同角度的离散傅里叶变换DFT向量组成;其中,N为正整数;对W1中的DFT向量进行选择的第二级预编码矩阵W2b={w2b,1,...w2b,L},其中, w2b,1,...w2b,L为波束选择矩阵,L为正整数;该w2b,1,...w2b,L的循环映射方式为:从W1的矩阵里选择对应相同或者不同DFT向量的矩阵用于相邻传输资源,当选择不同DFT向量时,选择的DFT向量连续或不连续;对W1中的波束进行相位旋转的第二级预编码矩阵W2c={w2c,k}k=1,2,...,其中,w2c,k是相位变换矩阵,该w2c,1,...w2c,K的循环映射方式为:从第二级编码矩阵W2c={w2c,k}k=1,2,...中选择不连续相位。
- 根据权利要求2所述的方法,其中,Θ={0,π/}或者Θ={π/2,3π/2}。
- 根据权利要求3或4所述的方法,其中,映射到两个相邻的传输资源的矩阵的分离度大于一预设值。
- 根据权利要求6所述的方法,其中,根据距离测量量,最大化映射到两个相邻的传输资源的W2b的两个矩阵的分离度,所述W2b的两个矩阵的分离度大于第一预设值。
- 根据权利要求3或4所述的方法,其中,映射到相邻传输资源的W2c里的相位变换矩阵w2c,k的距离大于第二预设值。
- 根据权利要求1所述的方法,还包括:发送确定的所述一组可以循环映射到不同的传输资源的矩阵的指示信息。
- 根据权利要求9所述的方法,其中,发送确定的所述一组可以循环映射到不同的传输资源的矩阵的指示信息的步骤包括:通过半静态信令或者动态信令发送确定的所述一组可以循环映射到不同的传输资源的矩阵的指示信息。
- 一种信号传输的装置,包括:第一确定模块,用于确定一个码本C,所述码本C为矩阵W的集合;第二确定模块,用于从所述码本C中确定一组矩阵集合Ω={W}∈C;传输模块,用于产生一层或者多层信号,并采用所述Ω中的矩阵对所述信号进行赋形,并循环映射到传输资源的不同位置,并在所述传输资源的不同位置发送赋形后的信号。
- 根据权利要求11所述的装置,其中,所述矩阵W为至少一个离散傅里叶变换DFT向量V通过变换相位φ产生;所述矩阵集合Ω中的矩阵W对应的DFT向量的集合构成一组相邻DFT向量 V={V1,V2,...VN};所述矩阵集合Ω中的矩阵W对应的相位集合构成一组相邻相位Θ={φ1,φ2,...φK};映射于相邻传输资源的矩阵W对应的DFT向量,在V={V1,V2,...VN}中非连续,或者映射于相邻传输资源的矩阵W对应的相位φ,在Θ={φ1,φ2,...φK}中非连续。
- 根据权利要求12所述的装置,其中,所述码本C为两级码本结构,码本C中的矩阵W=W1W2=W1W2bW2c;其中,每个W1矩阵由N个相邻的指向不同角度的离散傅里叶变换DFT波束组成;其中,N为正整数;对W1中的波束进行选择的第二级预编码矩阵W2b={w2b,1,...w2b,L},其中,w2b,1,...w2b,L为波束选择矩阵,L为正整数,该w2b,1,...w2b,L的循环映射方式为:从W1的矩阵里选择对应非连续DFT向量的矩阵,用于相邻传输资源;对W1中的波束进行相位旋转的第二级预编码矩阵W2c={w2c,k}k=1,2,...,其中,w2c,k是相位变换矩阵。
- 根据权利要求12所述的装置,其中,所述码本C为两级码本结构,码本C中的矩阵W=W1W2=W1W2bW2c;其中,每个W1矩阵由N个相邻的指向不同角度的离散傅里叶变换DFT向量组成;其中,N为正整数;对W1中的DFT向量进行选择的第二级预编码矩阵W2b={w2b,1,...w2b,L},其中,w2b,1,...w2b,L为波束选择矩阵,L为正整数;该w2b,1,...w2b,L的循环映射方式为:从W1的矩阵里选择对应相同或者不同DFT向量的矩阵用于相邻传输资源,当选择不同DFT向量时,选择的DFT向量连续或不连续;对W1中的波束进行相位旋转的第二级预编码矩阵W2c={w2c,k}k=1,2,...,其中,w2c,k是相位变换矩阵,该w2c,1,...w2c,K的循环映射方式为:从第二级编码矩阵W2c={w2c,k}k=1,2,...中选择不连续相位。
- 根据权利要求12所述的装置,其中,Θ={0,π/}或者Θ={π/2,3π/2}。
- 根据权利要求13或14所述的装置,其中,映射到两个相邻的传输资源的矩阵的分离度大于一预设值。
- 根据权利要求16所述的装置,其中,根据距离测量量,最大化映射 到两个相邻的传输资源的W2b的两个矩阵的分离度,所述W2b的两个矩阵的分离度大于第一预设值。
- 根据权利要求13或14所述的装置,其中,映射到相邻传输资源的W2c里的相位变换矩阵w2c,k的距离大于第二预设值。
- 根据权利要求11所述的装置,其中,所述传输模块还用于发送确定的所述一组可以循环映射到不同的传输资源的矩阵的指示信息。
- 根据权利要求19所述的装置,其中,所述传输模块通过半静态信令或者动态信令发送确定的所述一组可以循环映射到不同的传输资源的矩阵的指示信息。
- 一种信号传输的方法,包括:获取确定的一组可以循环映射到不同的传输资源的矩阵;其中,所述矩阵集合Ω={W}∈C,码本C为矩阵W的集合;接收在传输资源的不同位置传输的赋形后的信号,所述信号是采用所述矩阵对一层或者多层信号进行赋形后的信号。
- 根据权利要求21所述的方法,其中,所述矩阵W为至少一个离散傅里叶变换DFT向量V通过变换相位φ产生;所述矩阵集合Ω中的矩阵W对应的DFT向量的集合构成一组相邻DFT向量V={V1,V2,...VN};所述矩阵集合Ω中的矩阵W对应的相位集合构成一组相邻相位Θ={φ1,φ2,...φK};映射于相邻传输资源的矩阵W对应的DFT向量,在V={V1,V2,...VN}中非连续,或者映射于相邻传输资源的矩阵W对应的相位φ,在Θ={φ1,φ2,...φK}中非连续。
- 根据权利要求22所述的方法,其中,所述码本C为两级码本结构,码本C中的矩阵W=W1W2=W1W2bW2c;其中,每个W1矩阵由N个相邻的指向不同角度的离散傅里叶变换DFT波束组成;其中,N为正整数;对W1中的波束进行选择的第二级预编码矩阵W2b={w2b,1,...w2b,L},其中,w2b,1,...w2b,L为波束选择矩阵,L为正整数,该w2b,1,...w2b,L的循环映射方式为:从W1的矩阵里选择对应非连续DFT向量的矩阵,用于相邻传输资源;对W1中的波束进行相位旋转的第二级预编码矩阵W2c={w2c,k}k=1,2,...,其中, w2c,k是相位变换矩阵。
- 根据权利要求22所述的方法,其中,所述码本C为两级码本结构,码本C中的矩阵W=W1W2=W1W2bW2c;其中,每个W1矩阵由N个相邻的指向不同角度的离散傅里叶变换DFT向量组成;其中,N为正整数;对W1中的DFT向量进行选择的第二级预编码矩阵W2b={w2b,1,...w2b,L},其中,w2b,1,...w2b,L为波束选择矩阵,L为正整数;该w2b,1,...w2b,L的循环映射方式为:从W1的矩阵里选择对应相同或者不同DFT向量的矩阵用于相邻传输资源,当选择不同DFT向量时,选择的DFT向量连续或不连续;对W1中的波束进行相位旋转的第二级预编码矩阵W2c={w2c,k}k=1,2,...,其中,w2c,k是相位变换矩阵,该w2c,1,...w2c,K的循环映射方式为:从第二级编码矩阵W2c={w2c,k}k=1,2,...中选择不连续相位。
- 一种信号传输的装置,包括:获取模块,用于获取确定的一组可以循环映射到不同的传输资源的矩阵;其中,所述矩阵集合Ω={W}∈C,码本C为矩阵W的集合;接收模块,用于接收在传输资源的不同位置传输的赋形后的信号,所述信号是采用所述矩阵对一层或者多层信号进行赋形后的信号。
- 一种上行信道反馈的方法,包括:发送设备确定一组可以循环映射到不同的传输资源的矩阵;所述发送设备传输一层或者多层采用所述矩阵进行编码的数据到接收设备;所述发送设备接收,接收设备发送的信道状态信息CSI反馈,CSI至少包括一个指示信息,用于指示一个选择的所述预编码矩阵。
- 根据权利要求26所述的上行信道反馈的方法,还包括:所述发送设备向接收设备指示多个矩阵。
- 一种发送设备,包括:确定模块,用于确定一组可以循环映射到不同的传输资源的矩阵;传输模块,用于传输一层或者多层采用所述矩阵进行编码的数据到接收设备;接收模块,用于接收接收设备发送的信道状态信息CSI反馈,CSI至少包括一个指示信息,用于指示一个选择的所述预编码矩阵。
- 一种上行信道反馈的方法,包括:接收设备接收多个矩阵,多个矩阵是一组可以循环映射到不同的传输资源的矩阵;所述接收设备产生信道状态信息CSI,该CSI至少包括一个指示信息,用于指示一个选择的所述矩阵;所述接收设备发送CSI给发送设备。
- 一种接收设备,包括:接收模块,用于接收多个矩阵,多个矩阵是一组可以循环映射到不同的传输资源的矩阵;反馈模块,用于产生信道状态信息CSI,该CSI至少包括一个指示信息,用于指示一个选择的所述矩阵;发送模块,用于发送CSI给发送设备。
- 一种信号传输的装置,包括处理器、收发机和存储器;其中,所述处理器用于读取所述存储器中的程序,执行下列过程:确定一个码本C,所述码本C为矩阵W的集合;从所述码本C中确定一组矩阵集合Ω={W}∈C;以及产生一层或者多层信号,并采用所述Ω中的矩阵对所述信号进行赋形,并循环映射到传输资源的不同位置,并在所述传输资源的不同位置发送赋形后的信号;所述收发机用于接收和发送数据;所述存储器用于保存所述处理器执行操作时所使用的数据。
- 一种信号传输的装置,包括处理器、收发机和存储器;其中,所述处理器用于读取所述存储器中的程序,执行下列过程:获取确定的一组可以循环映射到不同的传输资源的矩阵;其中,所述矩阵集合Ω={W}∈C,码本C为矩阵W的集合;以及接收在传输资源的不同位置传输的赋形后的信号,所述信号是采用所述矩阵对一层或者多层信号进行赋形后的信号;所述收发机用于接收和发送数据;所述存储器用于保存所述处理器执行操作时所使用的数据。
- 一种发送设备,包括处理器、收发机和存储器;其中,所述处理器用于读取所述存储器中的程序,执行下列过程:确定一组可以循环映射到不同的传输资源的矩阵;传输一层或者多层采用所述矩阵进行编码的数据到接收设备;以及接收接收设备发送的信道状态信息CSI反馈,CSI至少包括一个指示信息,用于指示一个选择的所述预编码矩阵;所述收发机用于接收和发送数据;所述存储器用于保存所述处理器执行操作时所使用的数据。
- 一种接收设备,包括处理器、收发机和存储器;其中,所述处理器用于读取所述存储器中的程序,执行下列过程:接收多个矩阵,多个矩阵是一组可以循环映射到不同的传输资源的矩阵;产生信道状态信息CSI,该CSI至少包括一个指示信息,用于指示一个选择的所述矩阵;以及发送CSI给发送设备;所述收发机用于接收和发送数据;所述存储器用于保存所述处理器执行操作时所使用的数据。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/335,660 US10911112B2 (en) | 2016-09-22 | 2017-09-12 | Signal transmission method and device |
EP17852310.6A EP3518431A4 (en) | 2016-09-22 | 2017-09-12 | METHOD AND DEVICE FOR TRANSMITTING SIGNALS |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610842889.7A CN107863999B (zh) | 2016-09-22 | 2016-09-22 | 一种信号传输的方法及装置 |
CN201610842889.7 | 2016-09-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018054242A1 true WO2018054242A1 (zh) | 2018-03-29 |
Family
ID=61690183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/101367 WO2018054242A1 (zh) | 2016-09-22 | 2017-09-12 | 一种信号传输的方法及装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10911112B2 (zh) |
EP (1) | EP3518431A4 (zh) |
CN (1) | CN107863999B (zh) |
WO (1) | WO2018054242A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102315872A (zh) * | 2011-08-18 | 2012-01-11 | 北京理工大学 | 一种lte-a系统中非码本预编码的传输方法 |
CN102792605A (zh) * | 2010-03-08 | 2012-11-21 | Lg电子株式会社 | 传送预编码矩阵信息的方法和用户设备以及配置预编码矩阵的方法和基站 |
CN103001742A (zh) * | 2011-09-09 | 2013-03-27 | 中兴通讯股份有限公司 | 基于解调参考信号的开环mimo传输方法及装置 |
CN103475397A (zh) * | 2012-06-08 | 2013-12-25 | 中兴通讯股份有限公司 | 一种三维波束赋形的方法、通信站及移动站 |
CN103929266A (zh) * | 2013-01-15 | 2014-07-16 | 中兴通讯股份有限公司 | 控制信道传输、传输处理方法及装置、网络侧设备、终端 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2819715A1 (en) * | 2006-11-06 | 2008-05-15 | Qualcomm Incorporated | Mimo transmission with layer permutation in a wireless communication system |
KR101179627B1 (ko) * | 2008-12-22 | 2012-09-04 | 한국전자통신연구원 | 복조 참조 신호 할당 방법 및 장치 |
MY156614A (en) * | 2009-05-29 | 2016-03-15 | Panasonic Ip Corp America | Wireless communication apparatus and frequency hopping method |
WO2012108912A1 (en) * | 2011-02-07 | 2012-08-16 | Intel Corporation | Co-phasing of transmissions from multiple infrastructure nodes |
CN103782522B (zh) * | 2011-03-31 | 2017-02-01 | 华为技术有限公司 | 无线通信系统中的方法 |
US9136930B2 (en) * | 2012-07-16 | 2015-09-15 | Lg Electronics Inc. | Method and device for feeding back channel information in wireless communication system supporting multi-input multi-output scheme |
WO2014101242A1 (zh) * | 2012-12-31 | 2014-07-03 | 华为技术有限公司 | 报告信道状态信息csi的方法、用户设备和基站 |
US9281881B2 (en) * | 2013-02-12 | 2016-03-08 | Texas Instruments Incorporated | 4TX codebook enhancement in LTE |
CN103220024B (zh) * | 2013-04-18 | 2018-06-08 | 电子科技大学 | 一种多用户配对虚拟mimo系统的波束赋形方法 |
AU2014377267B2 (en) * | 2014-01-09 | 2018-01-25 | Huawei Technologies Co., Ltd. | Precoding matrix set determining method and apparatus, and parameter indication information sending method and apparatus |
WO2016183737A1 (en) * | 2015-05-15 | 2016-11-24 | Qualcomm Incorporated | Enhanced csi procedures for fd-mimo |
WO2017014610A1 (ko) * | 2015-07-23 | 2017-01-26 | 엘지전자 주식회사 | 다중 안테나 무선 통신 시스템에서 코드북 기반 신호 송수신 방법 및 이를 위한 장치 |
-
2016
- 2016-09-22 CN CN201610842889.7A patent/CN107863999B/zh active Active
-
2017
- 2017-09-12 EP EP17852310.6A patent/EP3518431A4/en active Pending
- 2017-09-12 WO PCT/CN2017/101367 patent/WO2018054242A1/zh unknown
- 2017-09-12 US US16/335,660 patent/US10911112B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102792605A (zh) * | 2010-03-08 | 2012-11-21 | Lg电子株式会社 | 传送预编码矩阵信息的方法和用户设备以及配置预编码矩阵的方法和基站 |
CN102315872A (zh) * | 2011-08-18 | 2012-01-11 | 北京理工大学 | 一种lte-a系统中非码本预编码的传输方法 |
CN103001742A (zh) * | 2011-09-09 | 2013-03-27 | 中兴通讯股份有限公司 | 基于解调参考信号的开环mimo传输方法及装置 |
CN103475397A (zh) * | 2012-06-08 | 2013-12-25 | 中兴通讯股份有限公司 | 一种三维波束赋形的方法、通信站及移动站 |
CN103929266A (zh) * | 2013-01-15 | 2014-07-16 | 中兴通讯股份有限公司 | 控制信道传输、传输处理方法及装置、网络侧设备、终端 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3518431A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3518431A1 (en) | 2019-07-31 |
CN107863999B (zh) | 2021-01-22 |
EP3518431A4 (en) | 2019-10-09 |
US20200028553A1 (en) | 2020-01-23 |
CN107863999A (zh) | 2018-03-30 |
US10911112B2 (en) | 2021-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11923932B2 (en) | Codebook subset restriction signaling | |
US11652515B2 (en) | Method and device for feeding back channel state information, and method and device for determining channel state information | |
US10476563B2 (en) | System and method for beam-formed channel state reference signals | |
TWI580210B (zh) | Method, system and equipment for channel status information measurement | |
WO2016008330A1 (zh) | 信道信息的量化反馈、数据的预编码方法及装置 | |
RU2676268C1 (ru) | Предварительное кодирование передачи из одномерной антенной решетки, которая включает в себя совместно поляризованные антенные элементы, выровненные по одной линии в единственном пространственном измерении решетки | |
CN106160952B (zh) | 一种信道信息反馈方法及装置 | |
US20150341097A1 (en) | CSI Feedback with Elevation Beamforming | |
US10574409B2 (en) | Information notification method and channel state information process execution method | |
WO2014071852A1 (zh) | 一种基于天线阵列的参考信号映射方法、装置及系统 | |
WO2017049644A1 (zh) | 一种资源选择的方法及装置和一种电子设备 | |
JP2020503711A (ja) | 拡張されたビームベースのコードブックサブセット制限シグナリング | |
WO2018171604A1 (zh) | 信息的传输方法和设备 | |
KR102100308B1 (ko) | 코드북 확정 방법 및 장치 | |
EP3343791A1 (en) | Methods and apparatuses for transmitting coding indication information and determining precoding matrix | |
US9876551B2 (en) | Mobile station and reporting method | |
CN110521129B (zh) | 用于无线通信网络中的预编码控制的方法和装置 | |
JP2018530937A (ja) | コードブック構成方法およびユーザー機器 | |
WO2014039056A1 (en) | Codebook construction using csi feedback for evolving deployment scenarios | |
US9356669B2 (en) | Method, system and device for transmitting pre-coded indication information and determining pre-coding matrix | |
EP3399658B1 (en) | Method and device for uplink information feedback and downlink data transmission | |
EP3512169B1 (en) | Beamforming transmission method and device | |
CN106537805B (zh) | 一种码本、基于该码本生成预编码器的方法与装置 | |
WO2018054242A1 (zh) | 一种信号传输的方法及装置 | |
US20210336680A1 (en) | Physical Uplink Control Channel Power Control for Beam Diversity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17852310 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017852310 Country of ref document: EP Effective date: 20190423 |