WO2020199828A1 - 显示面板的阴极的制作方法、显示面板及显示装置 - Google Patents

显示面板的阴极的制作方法、显示面板及显示装置 Download PDF

Info

Publication number
WO2020199828A1
WO2020199828A1 PCT/CN2020/077620 CN2020077620W WO2020199828A1 WO 2020199828 A1 WO2020199828 A1 WO 2020199828A1 CN 2020077620 W CN2020077620 W CN 2020077620W WO 2020199828 A1 WO2020199828 A1 WO 2020199828A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionic liquid
liquid layer
layer
magnetic ionic
organic functional
Prior art date
Application number
PCT/CN2020/077620
Other languages
English (en)
French (fr)
Inventor
代青
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2020199828A1 publication Critical patent/WO2020199828A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes

Definitions

  • the present disclosure relates to the field of OLED panels, and in particular to a method for manufacturing a cathode of a display panel, a display panel and a display device.
  • a transparent cathode In a top-emission OLED device, in order for the light emitted by the light-emitting layer to pass through the cathode and exit from the top of the OLED, a transparent cathode is required. However, it is easy to damage the light-emitting layer during the process of making the transparent cathode.
  • the technical solution of a method for manufacturing a cathode of a display panel is as follows:
  • the magnetic ionic liquid layer is used as a buffer layer for sputtering ions, and a transparent metal oxide electrode is formed on the surface of the substrate on which the organic functional layer has been formed.
  • the magnetic ionic liquid layer is used as a buffer layer for sputtering ions on the surface of the substrate on which the organic functional layer has been formed.
  • a transparent metal oxide electrode is formed on the upper surface, thereby reducing the movement speed of sputtering ions through the magnetic ionic liquid layer in the process of forming the transparent metal oxide electrode, and preventing the sputtering ions from emitting light in the organic functional layer due to the excessive movement speed.
  • the layer causes physical damage and can effectively prevent sputtering ions from causing bombardment loss to the light-emitting layer.
  • forming a magnetic ionic liquid layer on the surface of the substrate on which the organic functional layer has been formed includes:
  • the magnetic ionic liquid layer is formed on the surface of the organic functional layer by using a material that is immiscible with the surface of the organic functional layer.
  • the method before forming the magnetic ionic liquid layer on the surface of the substrate on which the organic functional layer has been formed, the method further includes:
  • a metal electrode is formed on the surface of the organic functional layer by means of vacuum evaporation.
  • forming a magnetic ionic liquid layer on the surface of the substrate on which the organic functional layer has been formed includes:
  • the magnetic ionic liquid layer is formed on the metal electrode using a material that is compatible with the surface of the organic functional layer and immiscible with the metal electrode.
  • forming a magnetic ionic liquid layer on the surface of the substrate on which the organic functional layer has been formed includes:
  • the cation is composed of 1-butyl-3-methylimidazole [Emim], 1-butyl-3-methylimidazole [Bmim], 1-butyronitrile-3-methylimidazole, trihexyl-one Tetradecyl phosphorus [P6,6,6,14], choline [choline], tributyl-monomethyl quaternary ammonium salt [Aliquat 336] at least one of the set of cations, the anion is At least one of the anion set consisting of [FeCl4], [MnCl4], [CoCl4], [GdCl6], and [Co(NCS)4].
  • forming a magnetic ionic liquid layer on the surface of the substrate on which the organic functional layer has been formed includes:
  • the magnetic ionic liquid layer is formed with a thickness greater than 0 micrometers and less than or equal to 2 micrometers.
  • forming a magnetic ionic liquid layer on the surface of the substrate on which the organic functional layer has been formed includes:
  • the magnetic ionic liquid layer with a viscosity of 20 mPa.s to 500 mPa.s is formed.
  • the method further includes:
  • a magnetic field is used to remove the magnetic ionic liquid layer.
  • using a magnetic field to remove the magnetic ionic liquid layer specifically includes:
  • a flat porous substrate is arranged at a set distance opposite to the magnetic ionic liquid layer; wherein the surface of the flat porous substrate facing the magnetic liquid layer has a plurality of blind holes;
  • a magnetic field is applied to the side of the planar porous substrate away from the magnetic ionic liquid layer, so that the magnetic ionic liquid layer is transferred into the blind hole under the action of the magnetic field.
  • a planar porous substrate at a set distance opposite to the magnetic ionic liquid layer which specifically includes:
  • the planar porous substrate is arranged at a distance of 1 mm to 5 mm opposite to the magnetic ionic liquid layer.
  • applying a magnetic field on the side of the planar porous substrate away from the magnetic ionic liquid layer specifically includes:
  • a magnet or electromagnet is arranged on the side of the planar porous substrate away from the magnetic ionic liquid layer.
  • an embodiment of the present disclosure provides a display panel, the display panel includes a substrate, a driving circuit, an anode, an organic functional layer, and a cathode are sequentially stacked on the substrate.
  • the transparent metal oxide electrode formed by the manufacturing method described in the aspect.
  • the cathode further includes a metal electrode located between the organic functional layer and the transparent metal oxide electrode.
  • the display panel further includes a magnetic ionic liquid layer with a thickness of 0-2 microns laminated on the transparent metal oxide electrode.
  • embodiments of the present disclosure also provide a display device, which includes the display panel described in the second aspect.
  • FIG. 1 is a flowchart of a method for manufacturing a cathode of a display panel provided by an embodiment of the disclosure
  • FIG. 2 is a schematic diagram of the structure of a substrate on which an organic functional layer has been formed
  • FIG. 3 is a first structural schematic diagram of forming a magnetic ionic liquid layer on the surface of a substrate on which an organic functional layer has been formed according to an embodiment of the disclosure
  • FIG. 4 is a second structural schematic diagram of forming a magnetic ionic liquid layer on the surface of a substrate on which an organic functional layer has been formed according to an embodiment of the disclosure
  • FIG. 5 is a first schematic diagram of forming a transparent metal oxide electrode on the surface of a substrate with a magnetic ionic liquid layer formed by magnetron sputtering according to an embodiment of the disclosure
  • FIG. 6 is a schematic diagram of a transparent metal oxide electrode formed on the surface of an organic functional layer provided by an embodiment of the disclosure
  • FIG. 7 is a second schematic diagram of forming a transparent metal oxide electrode on the surface of a substrate with a magnetic ionic liquid layer by magnetron sputtering according to an embodiment of the disclosure
  • FIG. 8 is a schematic diagram of a transparent metal oxide electrode formed on the surface of a metal electrode provided by an embodiment of the disclosure.
  • FIG. 9 is a schematic diagram of using a magnetic field to remove the magnetic ionic liquid layer provided by an embodiment of the disclosure.
  • a transparent cathode In a top-emission OLED device, in order for the light emitted by the light-emitting layer to pass through the cathode and exit from the top of the OLED, a transparent cathode is required.
  • a magnesium/silver (Mg/Ag) composite electrode In order for the light emitted by the light-emitting layer to pass through the cathode and exit from the top of the OLED, a transparent cathode is required.
  • Mg/Ag magnesium/silver
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the transparent cathode Due to the high transmittance of metal oxides, when the transparent cathode is made of metal oxides, it is generally formed by sputtering, but the sputtering process will damage the light-emitting layer under the transparent cathode, thereby affecting the luminous efficiency of OLED And life span.
  • the embodiments of the present disclosure provide a method for manufacturing a cathode of a display panel, a display panel, and a display device to solve the technical problem of damage to the light-emitting layer when the transparent cathode is manufactured by the sputtering process in the related art .
  • a method for manufacturing a cathode of a display panel includes: forming a magnetic ionic liquid layer on the surface of a substrate on which an organic functional layer has been formed; using magnetron sputtering, and using the magnetic ionic liquid layer as a buffer layer for sputtering ions, A transparent metal oxide electrode is formed on the surface of the substrate on which the organic functional layer has been formed.
  • the magnetic ionic liquid layer is used as a buffer layer for sputtering ions, and the organic functional layer has been formed.
  • a transparent metal oxide electrode is formed on the surface of the substrate of the layer, thereby reducing the movement speed of sputtering ions through the magnetic ionic liquid layer in the process of forming the transparent metal oxide electrode, and preventing the sputtering ions from affecting the organic function due to the excessive movement speed.
  • the light-emitting layer in the layer causes physical damage and can effectively prevent sputtering ions from causing bombardment loss to the light-emitting layer.
  • an embodiment of the present disclosure provides a method for manufacturing a cathode of a display panel.
  • the processing process of the method is as follows.
  • Step 100 forming a magnetic ionic liquid layer on the surface of the substrate on which the organic functional layer has been formed.
  • Step 200 Using magnetron sputtering, the magnetic ionic liquid layer is used as a buffer layer for sputtering ions, and a transparent metal oxide electrode is formed on the surface of the substrate on which the organic functional layer has been formed.
  • FIG. 2 is a schematic diagram of the structure of the substrate 10 on which the organic functional layer has been formed, including a glass substrate 101, an anode 102 laminated on the glass substrate 101, a driving circuit 103 that controls the anode 102, and an organic layer laminated on the driving circuit 103.
  • the functional layer 104, the organic functional layer 1041 includes a hole injection layer 1041, a hole transport layer 1042, a light emitting layer 1043, an electron transport layer 1044, and an electron injection layer 1045.
  • a material that is immiscible with the surface of the organic functional layer 104 is used to form the magnetic ionic liquid layer 20 on the surface of the organic functional layer 104.
  • the surface of the organic functional layer 104 is the electron injection layer 1045, and the magnetic ionic liquid layer 20 is made of a material that is immiscible with the surface of the organic functional layer 104, which can effectively prevent the magnetic ionic liquid layer 20 from damaging the surface of the organic functional layer 104.
  • the second method can be used.
  • Method 2 As shown in Figure 4, before forming the magnetic ionic liquid layer on the surface of the substrate on which the organic functional layer has been formed, vacuum evaporation is used to form the metal electrode 11 on the surface of the organic functional layer 104; The surface of the functional layer 104 is soluble and immiscible with the metal electrode 11 and forms the magnetic ionic liquid layer 20 on the metal electrode 11.
  • the metal electrode 11 is formed on the surface of the organic functional layer 104 by vacuum evaporation, and then the magnetic ionic liquid is formed on the metal electrode 11 Layer 20, the magnetic ionic liquid layer 20 is made of a material that is compatible with the surface 104 of the organic functional layer and immiscible with the metal electrode 11, so that the metal electrode 11 can be used to effectively protect the surface of the organic functional layer 104 and prevent the magnetic ionic liquid layer 20 is compatible with the surface of the organic functional layer 104.
  • a material composed of cations and anions may be used to form the magnetic ionic liquid layer.
  • the cation is composed of 1-butyl-3-methylimidazole [Emim], 1-butyl-3-methylimidazole [Bmim], 1-butyronitrile-3-methylimidazole, trihexyl-14 Alkyl phosphorus [P6, 6, 6, 14], choline [choline], tributyl-monomethyl quaternary ammonium salt [Aliquat 336] at least one of the cation set, the anion is composed of [FeCl4] , [MnCl4], [CoCl4] and [GdCl6], [Co(NCS)4] at least one of the set of anions.
  • the thickness of the formed magnetic ionic liquid layer 20 is greater than 0 micrometers and less than or equal to 2 micrometers.
  • the formed magnetic ionic liquid layer 20 has a viscosity of 20 mPa ⁇ s to 500 mPa ⁇ s.
  • magnetron sputtering can be used to use the magnetic ionic liquid layer 20 as a buffer layer for sputtering ions.
  • a transparent metal oxide electrode is formed on the surface of the substrate 10.
  • FIG. 5 is the first schematic diagram of forming a transparent metal oxide electrode on the surface of the substrate 10 on which the magnetic ionic liquid layer 20 is formed by magnetron sputtering in the above manner.
  • the substrate 10 containing the formed organic functional layer and the sputtering target 40 are arranged face-to-face in parallel.
  • the sputtering target 40 is a metal used for forming IZO or ITO. Oxide target; there is a thin magnetic ionic liquid layer 20 on the upper surface of the substrate 10 on which the organic functional layer has been formed.
  • the sputtering ions 30 of metal oxide IZO or ITO detach from the surface of the sputtering target 40 and fly to the surface of the substrate 10 under the action of a magnetic field.
  • the sputtering ions 30 When there is no magnetic ionic liquid layer 20 as a buffer layer, the sputtering ions 30 will cause bombardment damage to the organic layer 104 in the substrate 10, including pure physical bombardment damage and plasma electrical damage; and when the magnetic ionic liquid layer 20 is used as a buffer layer After the buffer layer, on the one hand, the electrical damage of the plasma can be completely shielded, while the physical bombardment damage can be adjusted by adjusting the thickness of the magnetic ionic liquid layer 20 to slow down the speed of the sputtering ions 30 reaching the surface of the substrate 10.
  • the ideal situation is the first The speed of the batch of sputtering ions reaching the surface of the light-emitting layer 1043 (EL) in the ion substrate 10 after being buffered by the ionic liquid is just close to zero. Specifically, it can be verified by a single experiment, on the one hand, by testing the luminescence spectrum and intensity variation, on the other hand, by testing the life difference of the actual device to establish the optimal ionic liquid layer thickness.
  • the transparent metal oxide electrode formed in the manner shown in FIG. 5 can be seen in FIG. 6, that is, a transparent metal oxide electrode 12 (ITO or IZO electrode) is formed on the surface of the substrate 10.
  • a transparent metal oxide electrode 12 ITO or IZO electrode
  • FIG. 7 is the second schematic diagram of forming a transparent metal oxide electrode on the surface of the substrate 10 on which the magnetic ionic liquid layer 20 is formed by using magnetron sputtering under the second method.
  • the metal electrode 11 Since the metal electrode 11 has been formed on the surface of the substrate 10 by vacuum evaporation, and the magnetic ionic liquid layer 20 is formed on the metal electrode 11, in the sputtering film formation process, the metal oxide IZO or ITO The sputtering ions 30 are separated from the surface of the sputtering target 40 and fly toward the metal electrode 11 on the surface of the substrate 10 under the action of a magnetic field. Since the process of forming the transparent metal oxide electrode in FIG. 7 is the same as the process of forming the transparent metal oxide electrode in FIG. 5, it will not be repeated here.
  • the transparent metal oxide electrode formed in the manner shown in FIG. 7 can be seen in FIG. 8, that is, a transparent metal oxide electrode 12 (ITO or IZO electrode) is formed on the surface of the metal electrode 11 of the substrate 10.
  • a transparent metal oxide electrode 12 ITO or IZO electrode
  • the magnetic ionic liquid layer 20 may be removed from the surface of the substrate 10 or not.
  • the magnetic ionic liquid layer 20 can be used as an encapsulation layer during subsequent processes, such as packaging processes, to prevent water and oxygen.
  • the magnetic ionic liquid layer 20 can be removed by a magnetic field, and then subsequent processes, such as packaging processes, can be performed.
  • a magnetic field to remove the magnetic ionic liquid layer 20 can be achieved in the following manner:
  • Figure 9 is a schematic diagram of using a magnetic field to remove the magnetic ionic liquid layer.
  • a flat porous substrate 50 is set at a set distance opposite to the magnetic ionic liquid layer 20; wherein the surface of the flat porous substrate 50 facing the magnetic liquid layer 20 has a plurality of blind holes 501; and then the flat porous substrate 50 is away from the magnetic ion
  • a magnetic field 60 is applied to one side of the liquid layer 20 so that the magnetic ionic liquid layer 20 is transferred into the blind hole 501 under the action of the magnetic field 60.
  • the magnetized magnetic ionic liquid layer 20 is transferred to the planar porous substrate 50, and a transparent metal oxide can be formed.
  • the magnetic ionic liquid layer 20 is quickly and conveniently removed from the surface of the substrate 10 after the electrode 12 is applied.
  • a planar porous substrate 50 is provided at a set distance opposite to the magnetic ionic liquid layer 20, which may be a planar porous substrate 50 provided at a distance of 1 mm to 5 mm opposite to the magnetic ionic liquid layer 20.
  • the magnetic ionic liquid layer 20 can be prevented from contacting the planar porous substrate 50, thereby preventing the planar porous substrate 50 from causing damage to the transparent metal oxide electrode 12. damage.
  • the magnetic field 60 applied on the side of the planar porous substrate 50 away from the magnetic ionic liquid layer 20 may be a magnet provided on the side of the planar porous substrate 50 away from the magnetic ionic liquid layer 20 or a magnetic field generated by an electromagnet.
  • the sputtering ions of the metal oxide preferentially contact the magnetic ionic liquid layer 20, thereby greatly reducing the damage of the sputtering ions to the light-emitting layer. And, due to the liquid characteristics of the magnetic ionic liquid layer 20, sputtering ions can penetrate the magnetic ionic liquid layer 20 and deposit on the surface of the substrate 10 to form a metal oxide film (ie, transparent metal oxide electrode 12), and interact with the underlying electrons The injection layer 1045 or the metal electrode 11 is in contact.
  • a metal oxide film ie, transparent metal oxide electrode 12
  • the magnetic ionic liquid layer 20 used is relatively thin, it can effectively slow down the rate of sputtering ions without changing the distribution of sputtering ions, so it will not have a significant impact on the uniformity and continuity of the metal oxide film formation .
  • an embodiment of the present disclosure provides a display panel.
  • the display panel includes a substrate, on which a driving circuit, an anode, an organic functional layer, and a cathode are sequentially stacked on the substrate.
  • the cathode includes a manufacturing method as described above. Transparent metal oxide electrode.
  • the cathode further includes a metal electrode located between the organic functional layer and the transparent metal oxide electrode.
  • the display panel further includes a magnetic ionic liquid layer with a thickness of 0-2 microns laminated on the transparent metal oxide electrode.
  • the magnetic ionic liquid layer can be used as an encapsulation layer to prevent water and oxygen corrosion.
  • an embodiment of the present disclosure provides a display device, which includes the display panel as described above.
  • the magnetic ionic liquid layer is used as a buffer layer for sputtering ions.
  • a transparent metal oxide electrode is formed on the surface of the substrate on which the organic functional layer has been formed, so that the magnetic ionic liquid layer reduces the speed of sputtering ions during the process of forming the transparent metal oxide electrode, and prevents the sputtering ions from moving too fast. It quickly causes physical damage to the light-emitting layer in the organic functional layer, and can effectively prevent sputtering ions from bombarding the light-emitting layer.
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Therefore, the embodiments of the present disclosure may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the embodiments of the present disclosure may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板的阴极的制作方法、显示面板及显示装置。显示面板的阴极的制作方法包括:在已形成有机功能层的基板表面上形成磁性离子液体层(100);采用溅射的方式,以所述磁性离子液体层作为溅射离子的缓冲层,在已形成有机功能层的基板表面上形成透明金属氧化物电极(200)。

Description

显示面板的阴极的制作方法、显示面板及显示装置
相关申请的交叉引用
本申请主张在2019年3月29日在中国提交的中国专利申请号No.201910249683.7的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及OLED面板领域,尤其是涉及一种显示面板的阴极的制作方法、显示面板及显示装置。
背景技术
在顶发射型OLED器件中,为了使发光层发出的光能够透过阴极从OLED的顶部出射,需要透明阴极。然而,在制作透明阴极过程中易于对发光层造成损伤。
发明内容
第一方面,本公开实施例提供的一种显示面板的阴极的制作方法的技术方案如下:
在已形成有机功能层的基板表面上形成磁性离子液体层;
采用磁控溅射的方式,以所述磁性离子液体层作为溅射离子的缓冲层,在已形成有机功能层的基板表面上形成透明金属氧化物电极。
通过在已形成有机功能层的基板表面上形成磁性离子液体层后,在采用磁控溅射的方式时,以磁性离子液体层作为溅射离子的缓冲层,在已形成有机功能层的基板表面上形成透明金属氧化物电极,从而在形成透明金属氧化物电极的过程中通过磁性离子液体层减小溅射离子的运动速度,防止溅射离子因运动速度过快而对有机功能层中的发光层造成物理损伤,并且还能有效的防止溅射离子对发光层造成轰击损失。
可选的,在已形成有机功能层的基板表面上形成磁性离子液体层,具体 包括:
采用与所述有机功能层表面不互溶的材料,在所述有机功能层表面上形成所述磁性离子液体层。
可选的,在已形成有机功能层的基板表面上形成磁性离子液体层之前,还包括:
采用真空蒸镀的方式,在所述有机功能层的表面形成金属电极。
可选的,在已形成有机功能层的基板表面上形成磁性离子液体层,具体包括:
采用与所述有机功能层表面相溶且与所述金属电极不互溶的材料,在所述金属电极上形成所述磁性离子液体层。
可选的,在已形成有机功能层的基板表面上形成磁性离子液体层,具体包括:
采用由阳离子和阴离子组成材料形成所述磁性离子液体层;
其中,所述阳离子为由1-丁基-3-甲基咪唑[Emim]、1-丁基-3-甲基咪唑[Bmim]、1-丁腈-3-甲基咪唑、三己基-一十四烷基磷[P6,6,6,14]、胆碱[choline]、三丁基-一甲基季铵盐[Aliquat 336]所构成的阳离子集合中的至少一种,所述阴离子为由[FeCl4]、[MnCl4]、[CoCl4]和[GdCl6]、[Co(NCS)4]所构成的阴离子集合中的至少一种。
可选的,在已形成有机功能层的基板表面上形成磁性离子液体层,具体包括:
形成厚度为大于0微米且小于等于2微米的所述磁性离子液体层。
可选的,在已形成有机功能层的基板表面上形成磁性离子液体层,具体包括:
形成粘度为20mPa.s至500mPa.s的所述磁性离子液体层。
可选的,在已形成有机功能层的基板表面上形成磁性离子液体层之后,还包括:
采用磁场去除所述磁性离子液体层。
可选的,采用磁场去除所述磁性离子液体层,具体包括:
在与所述磁性离子液体层相对的设定距离处设置一平面多孔基板;其中,所述平面多孔基板面向所述磁性液体层的表面具有多个盲孔;
在所述平面多孔基板远离所述磁性离子液体层的一侧施加磁场,使所述磁性离子液体层在磁场的作用下转移至所述盲孔内。
可选的,在与所述磁性离子液体层相对的设定距离处设置一平面多孔基板,具体包括:
在与所述磁性离子液体层相对的1mm~5mm距离处设置所述平面多孔基板。
可选的,在所述平面多孔基板远离所述磁性离子液体层的一侧施加磁场,具体包括:
在所述平面多孔基板远离所述磁性离子液体层的一侧设置磁铁或电磁铁。
第二方面,本公开实施例提供了一种显示面板,所述显示面板包括基板,在所述基板上依次层叠设置的驱动电路、阳极、有机功能层和阴极,所述阴极包括采用如第一方面所述制作方法形成的透明金属氧化物电极。
可选的,所述阴极还包括位于所述有机功能层和所述透明金属氧化物电极之间的金属电极。
可选的,所述显示面板还包括层叠于所述透明金属氧化物电极之上厚度为0~2微米的磁性离子液体层。
第三方面,本公开实施例还提供一种显示装置,该显示装置包如第二方面所述的显示面板。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅 是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的一种显示面板的阴极的制作方法的流程图;
图2为已形成有机功能层的基板的结构示意图;
图3为本公开实施例提供的在已形成有机功能层的基板表面上形成磁性离子液体层的结构示意图一;
图4为本公开实施例提供的在已形成有机功能层的基板表面上形成磁性离子液体层的结构示意图二;
图5为本公开实施例提供的采用磁控溅射的方式在形成有磁性离子液体层的基板表面上形成透明金属氧化物电极的示意图一;
图6为本公开实施例提供的在有机功能层表面形成的透明金属氧化物电极的示意图;
图7为本公开实施例提供的采用磁控溅射的方式在形成有磁性离子液体层的基板表面上形成透明金属氧化物电极的示意图二;
图8为本公开实施例提供的在金属电极表面形成的透明金属氧化物电极的示意图;
图9为本公开实施例提供的采用磁场去除磁性离子液体层的示意图。
具体实施方式
在顶发射型OLED器件中,为了使发光层发出的光能够透过阴极从OLED的顶部出射,需要透明阴极。通常制作透明阴极可用的材料体系有两种:一种是镁/银(Mg/Ag)复合电极,另一种是金属氧化物,例如氧化铟锡(Indium Tin Oxides,ITO)或铟锌氧化物(IZO)。
由于金属氧化物的透过率较高,在采用金属氧化物制作透明阴极时,一般采用溅射的方式形成,但溅射工艺会对透明阴极下方的发光层造成损伤,从而影响OLED的发光效率和寿命等。
鉴于此,本公开实施列提供一种显示面板的阴极的制作方法、显示面板 及显示装置,以解决相关技术中存在的在采用溅射工艺制作透明阴极时,存在对发光层造成损伤的技术问题。
本申请实施例中的技术方案为解决上述的技术问题,总体思路如下:
提供一种显示面板的阴极的制作方法,包括:在已形成有机功能层的基板表面上形成磁性离子液体层;采用磁控溅射的方式,以磁性离子液体层作为溅射离子的缓冲层,在已形成有机功能层的基板表面上形成透明金属氧化物电极。
在上述方案中,在已形成有机功能层的基板表面上形成磁性离子液体层后,在采用磁控溅射的方式时,以磁性离子液体层作为溅射离子的缓冲层,在已形成有机功能层的基板表面上形成透明金属氧化物电极,从而在形成透明金属氧化物电极的过程中通过磁性离子液体层减小溅射离子的运动速度,防止溅射离子因运动速度过快而对有机功能层中的发光层造成物理损伤,并且还能有效的防止溅射离子对发光层造成轰击损失。
为了更好的理解上述技术方案,下面通过附图以及具体实施例对本公开技术方案做详细的说明,应当理解本公开实施例以及实施例中的具体特征是对本公开技术方案的详细的说明,而不是对本公开技术方案的限定,在不冲突的情况下,本公开实施例以及实施例中的技术特征可以相互组合。
请参考图1,本公开实施例提供一种显示面板的阴极的制作方法,该方法的处理过程如下。
步骤100:在已形成有机功能层的基板表面上形成磁性离子液体层。
步骤200:采用磁控溅射的方式,以磁性离子液体层作为溅射离子的缓冲层,在已形成有机功能层的基板表面上形成透明金属氧化物电极。
请参见图2,为已形成有机功能层的基板10的结构示意图,包括玻璃基板101、层叠在玻璃基板101上的阳极102、控制阳极102的驱动电路103、层叠在驱动电路103之上的有机功能层104,该有机功能层1041包括空穴注入层1041、空穴传输层1042、发光层1043、电子传输层1044和电子注入层1045。
具体的,在已形成有机功能层的基板10表面上形成磁性离子液体层,有以下两种方式:
方式一、如图3所示,采用与有机功能层104表面不互溶的材料,在有机功能层104表面上形成磁性离子液体层20。有机功能层104的表面为电子注入层1045,磁性离子液体层20采用与有机功能层104表面不互溶的材料,可以有效的防止磁性离子液体层20破坏有机功能层104表面。
若采用的磁性离子液体层20与有机功能层104表面相溶,则可以采用方式二。
方式二、如图4所示,在已形成有机功能层的基板表面上形成磁性离子液体层之前,先采用真空蒸镀的方式,在有机功能层104的表面形成金属电极11;再采用与有机功能层104表面相溶且与金属电极11不互溶的材料,在金属电极11上形成磁性离子液体层20。
通过在已形成有机功能层的基板10表面上形成磁性离子液体层20之前,先采用真空蒸镀的方式,在有机功能层104的表面形成金属电极11,再在金属电极11上形成磁性离子液体层20,该磁性离子液体层20采用与有机功能层表104面相溶且与金属电极11不互溶的材料,这样可以利用金属电极11有效的对有机功能层104表面形成保护,防止磁性离子液体层20与有机功能层104表面相溶。
具体的,在已形成有机功能层的基板10表面上形成磁性离子液体层20时,可以采用由阳离子和阴离子组成材料形成磁性离子液体层。
其中,阳离子为由1-丁基-3-甲基咪唑[Emim]、1-丁基-3-甲基咪唑[Bmim]、1-丁腈-3-甲基咪唑、三己基-一十四烷基磷[P6,6,6,14]、胆碱[choline]、三丁基-一甲基季铵盐[Aliquat 336]所构成的阳离子集合中的至少一种,阴离子为由[FeCl4]、[MnCl4]、[CoCl4]和[GdCl6]、[Co(NCS)4]所构成的阴离子集合中的至少一种。
可选的,形成的磁性离子液体层20的厚度为大于0微米且小于等于2微米。
可选的,形成的磁性离子液体层20的粘度为20mPa.s至500mPa.s。
在已形成有机功能层的基板10表面上形成磁性离子液体层20之后,便可采用磁控溅射的方式,以磁性离子液体层20作为溅射离子的缓冲层,在已形成有机功能层的基板10表面上形成透明金属氧化物电极。
图5为在上述方式一下,采用磁控溅射的方式在形成有磁性离子液体层20的基板10表面上形成透明金属氧化物电极的示意图一。
在图5所示的磁控溅射方式的真空腔体内,包含已形成有机功能层的基板10与溅射靶材40之间面对面平行排列,溅射靶材40为形成IZO或ITO所用的金属氧化物靶材;已形成有机功能层的基板10上表面上有一层薄的磁性离子液体层20。在溅射成膜过程中,金属氧化物IZO或ITO的溅射离子30从溅射靶材40表面脱离、并在磁场作用下飞向基板10表面。
在没有磁性离子液体层20作为缓冲层时,溅射离子30会对基板10中的有机层104造成轰击损伤,包括纯物理轰击损伤和等离子体的电学损伤;而当有磁性离子液体层20作为缓冲层后,一方面等离子体的电学损伤可以完全屏蔽,而物理轰击损伤则可以通过调节磁性离子液体层20的厚度,来减缓溅射离子30达到基板10表面的速度,理想的状况是第一批溅射离子在经过离子液体的缓冲作用后到达离子基板10中的发光层1043(EL)表面时的速度正好接近于零。具体可以通过单项实验验证,一方面通过测试发光光谱和强度变化量,另一方面通过测试实际器件的寿命差异来确立最优的离子液体层厚度。
采用图5所示的方式形成的透明金属氧化物电极,可参见图6,即在基板10表面形成透明金属氧化物电极12(ITO或IZO电极)。
请参见图7,为在上述方式二下,采用磁控溅射的方式在形成有磁性离子液体层20的基板10表面上形成透明金属氧化物电极的示意图二。
由于在基板10表面已经先用真空蒸镀的方式形成了金属电极11,在金属电极11之上再形成的磁性离子液体层20,所以在溅射成膜过程中,金属氧化物IZO或ITO的溅射离子30从溅射靶材40表面脱离、并在磁场作用下飞向基板10表面的金属电极11。由于图7中形成透明金属氧化物电极的过程与图5中形成透明金属氧化物电极的过程相同,故在此不再赘述。
采用图7所示的方式形成的透明金属氧化物电极,可参见图8,即在基板10的金属电极11表面形成透明金属氧化物电极12(ITO或IZO电极)。
通过上述方式可以形成透明金属氧化物电极12之后,磁性离子液体层20可以从基板10表面去除,也可以不去除。
若不去除磁性离子液体层20,在进行后续工艺,如封装工艺时,可以将磁性离子液体层20作为封装层,防止水氧。
若去除磁性离子液体层20,则可以采用磁场去除磁性离子液体层20,之后再进行后续工艺,如封装工艺。
具体的,采用磁场去除磁性离子液体层20可以采用下述方式实现:
请参见图9,为采用磁场去除磁性离子液体层的示意图。先在与磁性离子液体层20相对的设定距离处设置一平面多孔基板50;其中,平面多孔基板50面向磁性液体层20的表面具有多个盲孔501;再在平面多孔基板50远离磁性离子液体层20的一侧施加磁场60,使磁性离子液体层20在磁场60的作用下转移至盲孔501内。
通过使用具有盲孔501的平面多孔基板50,并利用磁场60使磁性离子液体层20磁化,从而将被磁化了的磁性离子液体层20转移至平面多孔基板50中,可以在形成透明金属氧化物电极12之后快速、方便的将磁性离子液体层20从基板10表面去除。
具体的,在与磁性离子液体层20相对的设定距离处设置一平面多孔基板50,可以是在与磁性离子液体层20相对的1mm~5mm距离处设置平面多孔基板50。通过在与磁性离子液体层20相对的1mm~5mm距离处设置平面多孔基板50,可以使磁性离子液体层20与平面多孔基板50不接触,从而防止平面多孔基板50对透明金属氧化物电极12造成损伤。
具体的,在平面多孔基板50远离磁性离子液体层20的一侧施加的磁场60,可以是在平面多孔基板50远离磁性离子液体层20的一侧设置的磁铁或电磁铁产生的磁场。
在本公开提供的实施例中,由于磁性离子液体层20具有一定的粘度,使得金属氧化物的溅射离子优先接触到磁性离子液体层20,从而可以大大减缓溅射离子对发光层等的损伤;并且,由于磁性离子液体层20的液体特性,可以使溅射离子穿透磁性离子液体层20沉积到基板10表面形成金属氧化物薄膜(即透明金属氧化物电极12),并与底层的电子注入层1045或金属电极11接触。由于所用的磁性离子液体层20较薄,能够有效减缓溅射离子的速率,而并不会改变溅射离子的分布,所以对金属氧化物成膜的均一性和连续性不 会造成明显的影响。
基于同一发明构思,本公开一实施例中提供一种显示面板,该显示面板包括基板,在基板上依次层叠设置的驱动电路、阳极、有机功能层和阴极,阴极包括采用如上述制作方法形成的透明金属氧化物电极。
可选的,阴极还包括位于有机功能层和透明金属氧化物电极之间的金属电极。
可选的,显示面板还包括层叠于透明金属氧化物电极之上厚度为0~2微米的磁性离子液体层。该磁性离子液体层可以作为封装层,防止水氧侵蚀。
基于同一发明构思,本公开实施例中提供了一种显示装置,该显示装置包括如上所述的显示面板。
在本公开提供的实施例中,通过在已形成有机功能层的基板表面上形成磁性离子液体层后,在采用磁控溅射的方式时,以磁性离子液体层作为溅射离子的缓冲层,在已形成有机功能层的基板表面上形成透明金属氧化物电极,从而在形成透明金属氧化物电极的过程中通过磁性离子液体层减小溅射离子的运动速度,防止溅射离子因运动速度过快而对有机功能层中的发光层造成物理损伤,并且还能有效的防止溅射离子对发光层造成轰击损失。
本领域内的技术人员应明白,本公开实施例可提供为方法、系统、或计算机程序产品。因此,本公开实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开实施例是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的 功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (17)

  1. 一种显示面板的阴极的制作方法,包括:
    在已形成有机功能层的基板表面上形成磁性离子液体层;
    采用溅射的方式,以所述磁性离子液体层作为溅射离子的缓冲层,在已形成有机功能层的基板表面上形成透明金属氧化物电极。
  2. 如权利要求1所述的制作方法,其中,采用溅射的方式,以所述磁性离子液体层作为溅射离子的缓冲层,在已形成有机功能层的基板表面上形成透明金属氧化物电极,包括:
    采用磁控溅射的方式控制溅射离子穿过所述磁性离子液体层后沉积在已形成有机功能层的基板表面上。
  3. 如权利要求2所述的制作方法,其中,在已形成有机功能层的基板表面上形成磁性离子液体层,具体包括:
    采用与所述有机功能层表面不互溶的材料,在所述有机功能层表面上形成所述磁性离子液体层。
  4. 如权利要求2所述的制作方法,其中,在已形成有机功能层的基板表面上形成磁性离子液体层之前,还包括:
    采用真空蒸镀的方式,在所述有机功能层的表面形成金属电极。
  5. 如权利要求4所述的制作方法,其中,在已形成有机功能层的基板表面上形成磁性离子液体层,具体包括:
    采用与所述有机功能层表面相溶且与所述金属电极不互溶的材料,在所述金属电极上形成所述磁性离子液体层。
  6. 如权利要求1所述的制作方法,其中,在已形成有机功能层的基板表面上形成磁性离子液体层,具体包括:
    采用由阳离子和阴离子组成材料形成所述磁性离子液体层;
    其中,所述阳离子为由1-丁基-3-甲基咪唑[Emim]、1-丁基-3-甲基咪唑[Bmim]、1-丁腈-3-甲基咪唑、三己基-一十四烷基磷[P6,6,6,14]、胆碱[choline]、三丁基-一甲基季铵盐[Aliquat 336]所构成的阳离子集合中的至少一种,所述阴离子为由[FeCl4]、[MnCl4]、[CoCl4]和[GdCl6]、[Co(NCS)4]所构成的阴离 子集合中的至少一种。
  7. 如权利要求1所述的制作方法,其中,在已形成有机功能层的基板表面上形成磁性离子液体层,具体包括:
    形成厚度为大于0微米且小于等于2微米的所述磁性离子液体层。
  8. 如权利要求1所述的制作方法,其中,在已形成有机功能层的基板表面上形成磁性离子液体层,具体包括:
    形成粘度为20mPa.s至500mPa.s的所述磁性离子液体层。
  9. 如权利要求1-8任一项所述的制作方法,其中,在已形成有机功能层的基板表面上形成透明金属氧化物电极之后,还包括:
    去除所述磁性离子液体层。
  10. 如权利要求9所述的制作方法,其中,去除所述磁性离子液体层,具体包括:
    采用磁场去除所述磁性离子液体层。
  11. 如权利要求10所述的制作方法,其中,采用磁场去除所述磁性离子液体层,具体包括:
    在与所述磁性离子液体层相对的设定距离处设置一平面多孔基板;其中,所述平面多孔基板面向所述磁性液体层的表面具有多个盲孔;
    在所述平面多孔基板远离所述磁性离子液体层的一侧施加磁场,使所述磁性离子液体层在磁场的作用下转移至所述盲孔内。
  12. 如权利要求11所述的制作方法,其中,在与所述磁性离子液体层相对的设定距离处设置一平面多孔基板,具体包括:
    在与所述磁性离子液体层相对的1mm~5mm距离处设置所述平面多孔基板。
  13. 如权利要求11所述的制作方法,其中,在所述平面多孔基板远离所述磁性离子液体层的一侧施加磁场,具体包括:
    在所述平面多孔基板远离所述磁性离子液体层的一侧设置磁铁或电磁铁。
  14. 一种显示面板,包括基板,在所述基板上依次层叠设置的驱动电路、阳极、有机功能层和阴极,所述阴极包括采用如权利要求1-8任一权项所述制作方法形成的透明金属氧化物电极。
  15. 如权利要求14所述的显示面板,其中,所述阴极还包括位于所述有机功能层和所述透明金属氧化物电极之间的金属电极。
  16. 如权利要求14或15所述的显示面板,其中,所述显示面板还包括封装层;所述封装层包括层叠于所述透明金属氧化物电极之上厚度为0~2微米的磁性离子液体层。
  17. 一种显示装置,包括如权利要求114-16任一项所述的显示面板。
PCT/CN2020/077620 2019-03-29 2020-03-03 显示面板的阴极的制作方法、显示面板及显示装置 WO2020199828A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910249683.7A CN109950422B (zh) 2019-03-29 2019-03-29 一种显示面板的阴极的制作方法、显示面板及显示装置
CN201910249683.7 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020199828A1 true WO2020199828A1 (zh) 2020-10-08

Family

ID=67012945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077620 WO2020199828A1 (zh) 2019-03-29 2020-03-03 显示面板的阴极的制作方法、显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN109950422B (zh)
WO (1) WO2020199828A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950422B (zh) * 2019-03-29 2020-11-17 京东方科技集团股份有限公司 一种显示面板的阴极的制作方法、显示面板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030044587A1 (en) * 2001-08-20 2003-03-06 Lu Min-Hao Michael Method of fabricating electrodes
US20090051280A1 (en) * 2006-02-14 2009-02-26 Tokyo Electron Limited Light-emitting device, method for manufacturing light-emitting device, and substrate processing apparatus
CN101562237A (zh) * 2008-04-17 2009-10-21 富士电机控股株式会社 有机发光元件
CN108987430A (zh) * 2017-06-05 2018-12-11 京东方科技集团股份有限公司 一种有机电致发光二极管、阵列基板及制作方法
CN109950422A (zh) * 2019-03-29 2019-06-28 京东方科技集团股份有限公司 一种显示面板的阴极的制作方法、显示面板及显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091072A (ja) * 1998-09-09 2000-03-31 Seizo Miyata 有機エレクトロルミネッセンス素子及びその製造方法
JP2006066553A (ja) * 2004-08-25 2006-03-09 Fuji Electric Holdings Co Ltd 有機el素子およびその製造方法
GB2460646B (en) * 2008-06-02 2012-03-14 Cambridge Display Tech Ltd Organic electroluminescence element
WO2010062643A1 (en) * 2008-10-28 2010-06-03 The Regents Of The University Of Michigan Stacked white oled having separate red, green and blue sub-elements
KR102277378B1 (ko) * 2015-01-19 2021-07-14 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 유기 발광 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030044587A1 (en) * 2001-08-20 2003-03-06 Lu Min-Hao Michael Method of fabricating electrodes
US20090051280A1 (en) * 2006-02-14 2009-02-26 Tokyo Electron Limited Light-emitting device, method for manufacturing light-emitting device, and substrate processing apparatus
CN101562237A (zh) * 2008-04-17 2009-10-21 富士电机控股株式会社 有机发光元件
CN108987430A (zh) * 2017-06-05 2018-12-11 京东方科技集团股份有限公司 一种有机电致发光二极管、阵列基板及制作方法
CN109950422A (zh) * 2019-03-29 2019-06-28 京东方科技集团股份有限公司 一种显示面板的阴极的制作方法、显示面板及显示装置

Also Published As

Publication number Publication date
CN109950422A (zh) 2019-06-28
CN109950422B (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
JP5026087B2 (ja) スパッタリング装置、透明導電膜の製造方法
US9425399B2 (en) Organic light-emitting diode (OLED) display panel, manufacturing method thereof and display device
WO2020199828A1 (zh) 显示面板的阴极的制作方法、显示面板及显示装置
JP4789535B2 (ja) スパッタリング装置、成膜方法
EP1939321B1 (en) Sputtering apparatus and film forming method
CN103314642A (zh) 有机el发光元件及其制造方法
WO2020093954A1 (zh) 电致发光器件的膜层分析方法、装置和存储介质
JP5352537B2 (ja) 成膜装置
JP6340674B2 (ja) 有機発光素子用の光取出し基板、その製造方法、及びこれを含む有機発光素子
CN104993070A (zh) 一种制作柔性oled显示器件的方法
KR102203556B1 (ko) 전기적 기능성 유기 물질 상에 표적 물질을 침착시키는 방법
US10480062B2 (en) Sputtering apparatus and sputtering method using the same
KR102378538B1 (ko) 표시 장치의 제조 방법
JP2005340225A (ja) 有機el素子
KR102257920B1 (ko) 성막 방법 및 성막 장치
JP2010272229A (ja) 有機電界発光素子の透明電極の製造方法
KR102150455B1 (ko) 스퍼터링 장치 및 이를 포함하는 증착장치
KR100848335B1 (ko) 복수의 대향 타겟식 스퍼터를 이용한 증착장치 및 이를이용한 증착방법
CN109207942B (zh) 一种金属膜层沉积方法和金属膜层沉积设备
CN100426548C (zh) 有机发光二极管结构
CN110299475B (zh) 有机电致发光器件和其制作方法
KR102150456B1 (ko) 스퍼터링 장치 및 방법
JP2005105391A (ja) 金属酸化物の成膜方法および成膜装置、有機el素子の製造方法および製造装置
KR102045820B1 (ko) 증착 장치 및 방법
TW453131B (en) Electro-luminescence device process and the structure thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20781863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20781863

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/02/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20781863

Country of ref document: EP

Kind code of ref document: A1