WO2020199792A1 - 通信方法、装置、计算机可读介质及电子设备 - Google Patents

通信方法、装置、计算机可读介质及电子设备 Download PDF

Info

Publication number
WO2020199792A1
WO2020199792A1 PCT/CN2020/076623 CN2020076623W WO2020199792A1 WO 2020199792 A1 WO2020199792 A1 WO 2020199792A1 CN 2020076623 W CN2020076623 W CN 2020076623W WO 2020199792 A1 WO2020199792 A1 WO 2020199792A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
target service
delay
downlink
uplink
Prior art date
Application number
PCT/CN2020/076623
Other languages
English (en)
French (fr)
Inventor
王涛
Original Assignee
腾讯科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 腾讯科技(深圳)有限公司 filed Critical 腾讯科技(深圳)有限公司
Priority to KR1020217024835A priority Critical patent/KR20210109625A/ko
Priority to EP20783725.3A priority patent/EP3952437A4/en
Priority to SG11202105527VA priority patent/SG11202105527VA/en
Priority to JP2021540492A priority patent/JP7174857B2/ja
Publication of WO2020199792A1 publication Critical patent/WO2020199792A1/zh
Priority to US17/324,734 priority patent/US20210274389A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5003Managing SLA; Interaction between SLA and QoS
    • H04L41/5009Determining service level performance parameters or violations of service level contracts, e.g. violations of agreed response time or mean time between failures [MTBF]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • H04L43/0858One way delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]

Definitions

  • This application relates to the field of computer and communication technology, specifically, to the data communication process.
  • QoS flow Quality of Service flow
  • PDU Protocol Data Unit
  • QFI QoS Flow ID, QoS flow ID
  • the embodiments of the present application provide a communication method, device, computer-readable medium, and electronic equipment, which can monitor the total delay of uplink transmission and downlink transmission of the target service at least to a certain extent, and meet the requirements of the service layer. QoS requirements.
  • a communication method including: obtaining a total delay tolerance for uplink transmission and downlink transmission of a target service; generating a transmission time for the target service according to the total delay tolerance Delay indication message, the transmission delay indication message includes QoS flow indication information for uplink transmission of the target service and QoS flow indication information for downlink transmission of the target service; configure the transmission delay indication message to An access network entity, so that the access network entity monitors the transmission delay of the target service according to the transmission delay indication message.
  • a communication method including: obtaining a transmission delay indication message configured by a core network entity for a target service, where the transmission delay indication message is determined by the core network entity according to the Generated by the total delay tolerance of the uplink transmission and the downlink transmission of the target service, the transmission delay indication message includes the QoS flow indication information of the uplink transmission of the target service and the QoS flow indication information of the downlink transmission of the target service; Monitoring the transmission delay of the target service according to the transmission delay indication message.
  • a communication device including: an acquiring unit, configured to acquire a total delay tolerance of uplink transmission and downlink transmission for a target service; and a generating unit, configured to obtain a total delay tolerance according to the total delay tolerance.
  • Generating a transmission delay indication message for the target service where the transmission delay indication message includes QoS flow indication information for uplink transmission of the target service and QoS flow indication information for downlink transmission of the target service;
  • the configuration unit is configured to configure the transmission delay indication message to an access network entity, so that the access network entity monitors the transmission delay of the target service according to the transmission delay indication message.
  • the obtaining unit is configured to: receive a notification message sent by an application function entity, and obtain the total delay tolerance according to the notification message; or based on the communication with the application function entity Obtain the total delay tolerance; or obtain the total delay tolerance pre-configured by the application function entity.
  • the generating unit is configured to: generate information indicating the total delay tolerance according to the total delay tolerance, and send the information to the target service's uplink transmission and Downlink transmission is allocated respectively QoS flow indication information; the transmission delay indication message is generated according to the information used to indicate the total delay tolerance and the QoS flow indication information respectively allocated to the uplink transmission and the downlink transmission of the target service .
  • the generating unit is configured to: determine the uplink delay tolerance and the downlink delay tolerance of the target service according to the total delay tolerance; and according to the uplink delay tolerance Generating the QoS flow indication information for the uplink transmission, and generating the QoS flow indication information for the downlink transmission according to the downlink delay tolerance.
  • the generating unit is configured to: divide the total delay tolerance to obtain the uplink delay tolerance and the downlink delay tolerance of the target service; or receive application functions The segmentation between the uplink delay tolerance and the downlink delay tolerance of the target service notified by the entity, and the uplink delay tolerance and the downlink delay tolerance are determined according to the segmentation and the total delay tolerance; Or receive the priority of the uplink transmission and downlink transmission of the target service notified by the application function entity, and determine the uplink delay tolerance and the downlink delay tolerance according to the priority and the total delay tolerance.
  • the QoS flow indication information of the uplink transmission of the target service includes: one QoS flow indication information corresponding to all the uplink data of the target service; or is related to the target service
  • the different types of uplink data respectively correspond to QoS flow indication information, where the QoS flow indication information respectively corresponding to the different types of uplink data are different.
  • the QoS flow indication information of the downlink transmission of the target service includes: one QoS flow indication information corresponding to all the downlink data of the target service; or is related to the target service QoS flow indication information corresponding to different types of downlink data respectively, wherein the QoS flow indication information respectively corresponding to the different types of downlink data are different.
  • the obtaining unit is configured to obtain the total delay from an application function entity through a policy control function entity Tolerance; or through the network exposure function entity to obtain the total delay tolerance from the application function entity, and forward it to the policy control function entity.
  • a communication device including: an acquiring unit configured to acquire a transmission delay indication message configured by a core network entity for a target service, where the transmission delay indication message is the core Generated by the network entity according to the total delay tolerance of the uplink transmission and downlink transmission of the target service, and the transmission delay indication message includes the QoS flow indication information of the uplink transmission of the target service and the downlink transmission of the target service QoS flow indication information; a monitoring unit, configured to monitor the transmission delay of the target service according to the transmission delay indication message.
  • the monitoring unit is configured to: if the transmission delay indication message further includes information for indicating the total delay tolerance, then according to the total delay tolerance Monitor the total delay of the uplink transmission and downlink transmission of the target service; if the QoS flow indication information of the uplink transmission includes an uplink delay tolerance, monitor the uplink transmission delay of the target service according to the uplink delay tolerance ; If the downlink transmission QoS flow indication information includes a downlink delay tolerance, the downlink transmission delay of the target service is monitored according to the downlink delay tolerance.
  • the QoS flow indication information for uplink transmission includes QoS flow indication information corresponding to different types of uplink data of the target service, and the QoS flow indication for downlink transmission
  • the information includes QoS flow indication information corresponding to different types of downlink data of the target service
  • the monitoring unit is configured to: monitor the transmission of the specified type of uplink data of the target service according to the transmission delay indication message Delay, and the transmission delay of the specified type of downlink data of the target service; wherein, the specified type of uplink data and the specified type of downlink data are located in the same protocol data unit PDU session or are located in different PDU session.
  • the target service includes a cloud game service;
  • the specified type of uplink data includes game manipulation data, and the specified type of downlink data includes multimedia data obtained by rendering a game scene .
  • the monitoring unit is configured to: monitor the transmission delay between the user equipment and the access network entity for the target service according to the transmission delay indication message; and/ Or according to the transmission delay indication message and the delay information between the access network entity and the user plane function entity, the transmission delay between the user equipment and the user plane function entity for the target service is monitored.
  • a computer-readable medium having a computer program stored thereon, and the computer program, when executed by a processor, implements the communication method as described in the above-mentioned embodiment.
  • an electronic device including: one or more processors; a storage device, configured to store one or more programs, when the one or more programs are When multiple processors are executed, the one or more processors implement the communication method described in the foregoing embodiment.
  • a computer program product including instructions, which when run on a computer, causes the computer to execute the communication method described in the foregoing embodiment.
  • the total delay tolerance for uplink transmission and downlink transmission for the target service is obtained, the transmission delay indication message for the target service is generated according to the total delay tolerance, and the The transmission delay indication message is configured to the access network entity.
  • the corresponding total delay tolerance can be obtained for different services, and the dynamic adjustment of the total delay tolerance for the service is realized.
  • the access network The entity can monitor the transmission delay of the target service according to the transmission delay indication message, which is beneficial to realize the monitoring of the total delay of the uplink transmission and the downlink transmission of the target service, and meets the QoS requirements of the service layer.
  • FIG. 1 shows a schematic diagram of an exemplary system architecture to which the technical solutions of the embodiments of the present application can be applied;
  • Figure 2 shows a flowchart of a communication method according to an embodiment of the present application
  • Fig. 3 shows a flowchart of generating a transmission delay indication message for a target service according to a total delay tolerance according to an embodiment of the present application
  • Fig. 4 shows a flowchart of generating a transmission delay indication message for a target service according to a total delay tolerance according to an embodiment of the present application
  • Fig. 5 shows a flowchart of a communication method according to an embodiment of the present application
  • Fig. 6 shows a schematic diagram of a cloud game business scenario according to an embodiment of the present application
  • FIG. 7 shows a schematic diagram of an interaction process between AF, CN entity and RAN entity according to an embodiment of the present application
  • FIG. 8 shows a schematic diagram of an interaction process between an AF and a CN entity according to an embodiment of the present application
  • Fig. 9 shows a schematic diagram of another interaction process between AF and CN entities according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of another interaction process between AF, CN entity and RAN entity according to an embodiment of the present application
  • Fig. 11 shows a schematic diagram of another interaction process between AF, CN entity and RAN entity according to an embodiment of the present application
  • FIG. 12 shows a schematic diagram of a cloud game business scene according to another embodiment of the present application.
  • Fig. 13 shows a block diagram of a communication device according to an embodiment of the present application.
  • Fig. 14 shows a block diagram of a communication device according to an embodiment of the present application.
  • FIG. 15 shows a schematic structural diagram of a computer system suitable for implementing an electronic device according to an embodiment of the present application.
  • FIG. 1 shows a schematic diagram of an exemplary system architecture to which the technical solutions of the embodiments of the present application can be applied.
  • the system architecture 100 may include User Equipment (UE) 101 (User Equipment 101 may be a smart phone as shown in FIG. 1, or it may be a tablet computer, a portable computer, a desktop computer, etc.), The base station 102, the core network entity 103, and the application function (AF for short) entity 104.
  • UE User Equipment
  • the base station 102 the core network entity 103, and the application function (AF for short) entity 104.
  • AF application function
  • FIG. 1 the numbers of user equipment 101, base station 102, core network entity 103, and application function entity 104 shown in FIG. 1 are merely illustrative. According to implementation needs, there can be any number of user equipment, base stations, core network entities, and application function entities.
  • the core network entity 103 can obtain the total delay tolerance for the uplink transmission and downlink transmission of the target service configured by the application function entity 104.
  • the core network entity 103 can send data through the receiving application function entity 104 To obtain the total delay tolerance, or the core network entity 103 may obtain the total delay tolerance based on the contract information with the application function entity 104, or the core network entity 103 may also obtain the application function entity 104 in advance. The configured total delay tolerance.
  • the core network entity 103 may generate a transmission delay indication message for the target service according to the total delay tolerance.
  • the transmission delay indication message includes the QoS flow indication information for the uplink transmission of the target service and the QoS flow indication information for the downlink transmission of the target service.
  • the transmission delay indication message is further configured to the base station 102, so that the base station 102 can be based on the transmission time. The delay indicates the transmission delay of the message monitoring target service.
  • the base station 102 may monitor the transmission delay between the user equipment 101 and the base station 102 for the target service according to the transmission delay indication message; or according to the transmission delay indication message, and the base station 102 and
  • the delay information between user plane function (User Plane Function, UPF) entities monitors the transmission delay of the target service between the user equipment 101 and the user plane function entity.
  • UPF User Plane Function
  • FIG. 2 shows a flowchart of a communication method according to an embodiment of the present application, and the communication method may be executed by the core network entity 103 as shown in FIG. 1.
  • the communication method includes at least S210 to S230, which are described in detail as follows:
  • the target service by obtaining the total delay tolerance for uplink transmission and downlink transmission for the target service, the total delay tolerance corresponding to the service can be obtained for different services, so as to realize the delay tolerance against Dynamic adjustment of business.
  • the target service may be a service that requires a total delay tolerance of uplink transmission and downlink transmission, for example, cloud game service.
  • Cloud gaming business is a gaming method based on cloud computing.
  • cloud gaming In the operating mode of cloud gaming, user equipment needs to send game control data to the cloud (such as sensor data on the user equipment, motion data detected by the user equipment) Etc.), the cloud executes the rendering function according to the game control data sent by the user equipment, and then transmits the rendered multimedia data (including game images, sound data, etc.) to the user equipment through the network.
  • game control data such as sensor data on the user equipment, motion data detected by the user equipment
  • the cloud executes the rendering function according to the game control data sent by the user equipment, and then transmits the rendered multimedia data (including game images, sound data, etc.) to the user equipment through the network.
  • the advantage of cloud gaming is that the user equipment does not need to perform complex rendering calculations, which reduces the hardware requirements of the user equipment.
  • cloud gaming requires the network system to provide high-reliability and low-latency transmission of upstream game control data, and for downstream multimedia Data provides high-bandwidth and low-latency transmission, and cloud gaming requires the total delay of uplink transmission and downlink transmission to be lower than
  • the core network entity may receive the notification message sent by the application function entity, and then obtain the total delay tolerance for the uplink transmission and downlink transmission of the target service according to the notification message.
  • the core network entity may obtain the total delay tolerance of the uplink transmission and the downlink transmission based on the contracted agreement information with the application function entity.
  • the signing agreement information may be SLA (Service-Level Agreement, Service Level Agreement).
  • the core network entity may obtain the total delay tolerance of uplink transmission and downlink transmission pre-configured by the application function entity.
  • the core network entity may include a Policy Control Function (PCF) entity.
  • PCF Policy Control Function
  • the policy control function entity may obtain the total delay tolerance of uplink transmission and downlink transmission from the application function entity. The situation is applicable to the scenario where the policy control function entity and the application function entity are in a trusted domain.
  • the core network entity may include a policy control function entity and a network exposure function (NEF) entity, and the network exposure function entity may obtain the total delay of uplink transmission and downlink transmission from the application function entity Tolerance, and forwarded to the policy control function entity, this situation is applicable to the scenario where the policy control function entity and the application function entity are in different trusted domains.
  • NEF network exposure function
  • a transmission delay indication message for the target service is generated according to the total delay tolerance, and the transmission delay indication message includes a QoS flow indication for uplink transmission of the target service Information and QoS flow indication information of the downlink transmission of the target service.
  • the QoS flow indication information may be QFI. If applied in a 5G system, the QoS flow indication information may be 5QI (5G QoS Identifier).
  • the QoS flow indication information of the uplink transmission of the target service may include: one QoS flow indication information corresponding to all the uplink data of the target service. That is, in this embodiment, all the uplink data of the target service corresponds to one QoS flow indication information.
  • the uplink data of the cloud game service includes game control data and confirmation data for receiving multimedia data sent by the cloud, etc., then the game control data And the reception confirmation data corresponds to a QoS flow indication information.
  • the QoS flow indication information of the uplink transmission of the target service may include: QoS flow indication information respectively corresponding to different types of uplink data of the target service, wherein the different types of uplink data respectively correspond to The QoS flow indication information is different. That is, in this embodiment, different types of uplink data of the target service correspond to different QoS flow indication information.
  • the uplink data of a cloud game service includes game control data and reception confirmation data of multimedia data sent by the cloud, etc.
  • the game control data and the reception confirmation data respectively correspond to different QoS flow indication information.
  • the QoS flow indication information of the downlink transmission of the target service may include: one QoS flow indication information corresponding to all the downlink data of the target service. That is, in this embodiment, all the downlink data of the target service corresponds to one QoS flow indication information.
  • the downlink data of the cloud game service includes the reception confirmation data of the game control data sent by the user equipment and the multimedia data obtained after rendering. Then the reception confirmation data and multimedia data correspond to a QoS flow indication information.
  • the QoS flow indication information of the downlink transmission of the target service may include: QoS flow indication information respectively corresponding to different types of downlink data of the target service, wherein the different types of downlink data respectively correspond to The QoS flow indication information is different. That is, in this embodiment, different types of downlink data of the target service correspond to different QoS flow indication information.
  • the downlink data of the cloud game service includes the reception confirmation data of the game control data sent by the user equipment and the rendered multimedia Data, etc., then the reception confirmation data and multimedia data correspond to different QoS flow indication information.
  • the process of generating the transmission delay indication message for the target service according to the total delay tolerance may include the following S310 and S320:
  • information for indicating the total delay tolerance is generated according to the total delay tolerance, and QoS flow indication information is allocated to the uplink transmission and the downlink transmission of the target service respectively.
  • the QoS flow indication information allocated to the uplink transmission and the downlink transmission of the target service may not require the uplink and downlink to perform the total delay tolerance.
  • Absolute segmentation, that is, the QoS flows allocated to the uplink transmission and the downlink transmission of the target service may not clearly indicate the delay tolerance of the uplink transmission and the delay tolerance of the downlink transmission.
  • the transmission delay indication message is generated according to the information used to indicate the total delay tolerance and the QoS flow indication information respectively allocated to the uplink transmission and the downlink transmission of the target service.
  • the technical solution of the embodiment shown in FIG. 3 is to indicate the total delay tolerance of uplink transmission and downlink transmission through indication information other than the QoS flow indication information.
  • the process of generating the transmission delay indication message for the target service according to the total delay tolerance may include the following S410 and S420:
  • the uplink delay tolerance and the downlink delay tolerance of the target service are determined.
  • the core network entity (such as PCF) can receive the segmentation between the uplink delay tolerance and the downlink delay tolerance of the target service notified by the application function entity, and then according to the segmentation and the total delay The tolerance determines the upstream delay tolerance and the downstream delay tolerance. That is, in the technical solution of this embodiment, the application function entity can directly notify the division between the uplink delay tolerance and the downlink delay tolerance, and the core network entity can directly determine the uplink delay tolerance and the downlink delay tolerance based on the division. limit.
  • the core network entity (such as PCF) can receive the priority of the uplink transmission and downlink transmission of the target service notified by the application function entity, and then determine the uplink delay tolerance according to the priority and the total delay tolerance And the downstream delay tolerance. That is, in the technical solution of this embodiment, the application function entity does not clearly notify the division between the uplink delay tolerance and the downlink delay tolerance, but the priority of the uplink transmission and the downlink transmission is notified, and the core network entity can be based on this Priority is used to divide the total delay tolerance to determine the upstream delay tolerance and the downstream delay tolerance. For example, if the priority of uplink transmission is higher than the priority of downlink transmission, the uplink delay tolerance can be smaller than the downlink delay tolerance, and the total delay tolerance can be divided accordingly.
  • the core network entity (such as PCF) can directly divide the total delay tolerance to obtain the uplink delay tolerance and the downlink delay tolerance of the target service. That is, in this embodiment, the core network entity can also independently determine the uplink delay tolerance and the downlink delay tolerance according to the total delay tolerance. For example, the core network entity can determine the uplink transmission and downlink transmission delay requirements of various services based on historical data, and then independently determine the division of the uplink delay tolerance and the downlink delay tolerance for a certain service based on this.
  • the QoS flow indication information of the uplink transmission is generated according to the uplink delay tolerance
  • the QoS flow indication information of the downlink transmission is generated according to the downlink delay tolerance
  • the technical solution of the embodiment shown in FIG. 4 can directly indicate the uplink delay tolerance and the downlink delay tolerance through the QoS flow indication information, so there is no need to additionally indicate the total delay tolerance of the uplink transmission and the downlink transmission.
  • the transmission delay indication message is configured to the access network entity, so that the access network entity monitors the transmission delay of the target service according to the transmission delay indication message .
  • the access network entity may be a base station, and the access network entity monitoring the transmission delay of the target service according to the transmission delay indication message is to monitor the uplink transmission delay and the downlink transmission delay of the target service to ensure the uplink Transmission delay and downstream transmission delay do not exceed the total delay tolerance.
  • Fig. 5 shows a flowchart of a communication method according to an embodiment of the present application.
  • the communication method may be executed by an access network entity, which may be the base station 102 shown in Fig. 1.
  • the communication method includes at least S510 to S520, which are described in detail as follows:
  • the transmission delay indication message configured by the core network entity for the target service, where the transmission delay indication message is generated by the core network entity according to the total delay tolerance of uplink transmission and downlink transmission of the target service Yes, the transmission delay indication message includes QoS flow indication information for uplink transmission of the target service and QoS flow indication information for downlink transmission of the target service.
  • the core network entity may refer to the technical solution of the foregoing embodiment for the process of generating the transmission delay indication message according to the total delay tolerance of the uplink transmission and the downlink transmission of the target service.
  • the transmission delay of the target service is monitored according to the transmission delay indication message.
  • the transmission delay indication message includes the QoS flow indication information for the uplink transmission of the target service and the QoS flow indication information for the downlink transmission of the target service, it also includes the indication information for indicating the uplink transmission and the downlink transmission. According to the information of the total delay tolerance of transmission, the total delay of uplink transmission and downlink transmission of the target service can be monitored according to the total delay tolerance.
  • the upstream transmission delay tolerance is included in the QoS flow indication information for upstream transmission, the upstream transmission delay of the target service can be monitored according to the upstream delay tolerance.
  • the downlink transmission delay of the target service can be monitored according to the downlink delay tolerance.
  • a notification message may be sent to the core network entity or application function entity, so that the core network entity or application function entity can take corresponding measures.
  • the access network entity monitoring the transmission delay of the target service according to the transmission delay indication message may monitor the transmission of the target service between the user equipment and the access network entity according to the transmission delay indication message delay.
  • the access network entity monitoring the transmission delay of the target service according to the transmission delay indication message may be based on the transmission delay indication message and the delay information between the access network entity and the user plane function entity , To monitor the transmission delay of the target service between the user equipment and the user plane functional entity.
  • the access network entity since the time delay between the access network entity and the user plane function entity is basically fixed, the access network entity can according to the transmission delay between the user equipment and the access network entity for the target service, And the delay between the access network entity and the user plane function entity monitors the transmission delay between the user equipment and the user plane function entity for the target service.
  • the QoS flow indication information for uplink transmission includes QoS flow indication information corresponding to different types of uplink data of the target service
  • the QoS flow indication information for downlink transmission includes QoS flow indication information corresponding to different types of the target service.
  • the downlink data corresponds to the QoS flow indication information
  • the transmission delay of the specified type of uplink data of the target service and the transmission delay of the specified type of downlink data of the target service can be monitored according to the transmission delay indication message; where the specified type
  • the uplink data and the specified type of downlink data are located in the same protocol data unit (Protocol Data Unit, PDU) session or in different PDU sessions during transmission.
  • PDU Protocol Data Unit
  • the uplink data of the cloud game service includes game control data and the reception confirmation data of the multimedia data sent from the cloud (for easy distinction, this is called the first reception confirmation data), etc.
  • the downlink data includes the game control data sent to the user equipment.
  • the reception confirmation data (for easy distinction, called the second reception confirmation data) and the multimedia data obtained after rendering, then the game control data, the first reception confirmation data, the second reception confirmation data and the multimedia data respectively correspond to Different QoS flow indication information.
  • it is of little significance to receive confirmation data in the cloud game service it is possible to monitor only the transmission delay of the game control data and the transmission delay of the multimedia data of the cloud game service.
  • the game control data and the second reception confirmation data can be in one PDU session, and the multimedia data and the first reception confirmation data can be in another PDU session; or, the game control data, the first reception confirmation data, and the second reception confirmation data.
  • Data and multimedia data can be in the same PDU session.
  • the technical solutions of the above-mentioned embodiments of the present application facilitate monitoring of the total delay of the uplink transmission and downlink transmission of the target service, and meet the QoS requirements of the service layer.
  • a cloud game app (Application, application) runs on the user equipment 601, and the application function entity 602 may be a cloud rendering server.
  • the multimedia data is obtained by rendering according to the game control data sent by the user equipment 601.
  • the uplink data sent by the user equipment 601 includes A1 and B2, and the downlink data sent by the application function entity 602 includes A2 and B1.
  • A1 represents game control data, such as sensor data on user equipment 601, action data detected by user equipment 601, etc.
  • B2 represents multimedia data ack (that is, receiving confirmation data);
  • A2 represents game control data ack;
  • B1 represents Multimedia data, such as game images, sound data, etc.
  • the application scenario shown in FIG. 6 is a non-distributed application scenario, that is, all uplink data (including A1 and B2) corresponds to one QoS flow, and all downlink data (including A2 and B1) corresponds to one QoS flow.
  • AF Core Network
  • RAN Radio Access Network, radio access network entity
  • the RAN entity is a base station as an example for illustration
  • An interaction process between the two is shown in Figure 7, which may include the following steps:
  • the application function entity notifies the core network entity of the total delay tolerance of UL (UpLink, uplink)+DL (DownLink, downlink) and the dynamic segmentation of UL+DL.
  • the application function entity can notify the core network entity of the total delay tolerance of UL+DL and the dynamic segmentation of UL+DL based on the SLA interaction; or it can also notify the core network by means of static configuration.
  • the entity is configured without notification every time; of course, the application function entity can also be configured to the core network entity by means of dynamic configuration.
  • the interaction process between the application function entity and the core network entity may be that the AF directly interacts with the PCF, and then the PCF notifies the AMF of the determined delay tolerance, and then The AMF configures the delay tolerance to the base station.
  • the technical solution of this embodiment is suitable for application scenarios where AF and PCF are in the same trusted domain, such as a scenario where a network operator deploys the AF itself.
  • the interaction process between the application function entity and the core network entity may be that the AF interacts with the PCF through the NEF, and then the PCF notifies the AMF of the determined delay tolerance. In turn, the AMF configures the delay tolerance to the base station.
  • the technical solution of this embodiment is applicable to application scenarios where AF and PCF are in different trusted domains, such as a scenario where a third party deploys AF.
  • the application function entity can also adjust the code rate of the multimedia data sent to the user equipment according to the QoS monitoring results, network prediction conditions, and network resource conditions provided by the network system (such as the 5G system).
  • the network system such as the 5G system.
  • the QoS monitoring results are better, the network prediction is better, or the network resource status is sufficient, increase the code rate of the multimedia data sent to the user equipment to improve the cloud game displayed by the user equipment under the premise of ensuring fluency The clarity of the picture; and in the case of poor QoS monitoring results, poor network prediction or insufficient network resource status, reduce the bit rate of the multimedia data sent to the user equipment to improve the cloud game picture displayed by the user equipment Fluency.
  • the core network entity determines the delay tolerance of UL and DL according to the total delay tolerance of UL+DL and the dynamic segmentation of UL+DL.
  • the core network entity can determine the delay tolerance of UL and DL accordingly, Then according to the delay tolerance of UL and DL, the corresponding 5QI values are assigned to the uplink data and the downlink data.
  • the QoS flows allocated for the uplink data and the downlink data can already indicate the delay tolerance of the uplink transmission and the downlink transmission. Delay tolerance.
  • the core network entity configures the delay tolerance to the base station, so that the base station implements dynamic delay monitoring.
  • the core network entity may configure the 5QI values allocated for uplink data and downlink data to the base station.
  • the base station can monitor whether the delay of uplink transmission exceeds the delay tolerance of uplink transmission, and monitor whether the delay of downlink transmission exceeds the delay tolerance of downlink transmission. If the delay of uplink transmission exceeds the delay tolerance of uplink transmission, or the delay of downlink transmission exceeds the delay tolerance of downlink transmission, the base station may notify the core network entity and the application function entity.
  • FIG. 10 Another interaction process between the AF, CN entity and RAN entity is shown in Fig. 10, which may include the following steps:
  • the application function entity notifies the core network entity of the total delay tolerance of UL+DL and the transmission priority of UL and DL.
  • the core network entity determines the delay tolerance of UL and DL according to the total delay tolerance of UL+DL and the transmission priority of UL and DL.
  • the core network entity can determine the delay tolerance of UL and DL accordingly. For example, if the priority of uplink transmission is higher than the priority of downlink transmission, the uplink delay tolerance can be smaller than the downlink delay tolerance, and the total delay tolerance can be divided accordingly. Then the core network entity can allocate corresponding 5QI values for uplink data and downlink data according to the delay tolerance of UL and DL. In this case, the QoS flow allocated for uplink data and downlink data can already indicate the delay tolerance of uplink transmission. And the delay tolerance of downstream transmission.
  • the core network entity configures the delay tolerance to the base station, so that the base station implements dynamic delay monitoring.
  • the core network entity may configure the 5QI values allocated for uplink data and downlink data to the base station.
  • the base station can monitor whether the delay of uplink transmission exceeds the delay tolerance of uplink transmission, and monitor whether the delay of downlink transmission exceeds the delay tolerance of downlink transmission. If the delay of uplink transmission exceeds the delay tolerance of uplink transmission, or the delay of downlink transmission exceeds the delay tolerance of downlink transmission, the base station may notify the core network entity and the application function entity.
  • FIG. 6 Another interaction process between the AF, CN entity, and RAN entity is shown in Figure 11, which may include the following steps:
  • the application function entity notifies the core network entity of the total delay tolerance of UL+DL.
  • S1102 The core network entity allocates 5QI values to UL and DL according to the total delay tolerance of UL+DL.
  • the delay tolerance of UL and DL can be determined first.
  • the core network entity can determine the value based on historical data.
  • the cloud game business has the delay requirements for uplink transmission and downlink transmission, so as to independently determine the division of the uplink delay tolerance and the downlink delay tolerance for the cloud game business, and then divide the total delay tolerance to obtain the UL and DL delays According to this, 5QI values are assigned to UL and DL.
  • the QoS flows allocated for uplink data and downlink data can already indicate the delay tolerance of uplink transmission and the delay tolerance of downlink transmission.
  • the core network entity allocates 5QI values to UL and DL according to the total delay tolerance of UL+DL. It is also possible that the uplink and downlink do not require absolute division of the delay tolerance. In this case, The core network entity can introduce a new indication message to indicate to the base station the total delay tolerance of UL+DL.
  • the core network entity configures the delay tolerance to the base station, so that the base station implements dynamic delay monitoring.
  • the core network entity may be the uplink data
  • the 5QI values allocated to the downlink data are allocated to the base station.
  • the base station can monitor whether the delay of uplink transmission exceeds the delay tolerance of uplink transmission, and monitor whether the delay of downlink transmission exceeds the delay tolerance of downlink transmission. If the delay of uplink transmission exceeds the delay tolerance of uplink transmission, or the delay of downlink transmission exceeds the delay tolerance of downlink transmission, the base station may notify the core network entity and the application function entity.
  • the base station can monitor whether the total delay of uplink transmission and downlink transmission exceeds the total delay tolerance when performing uplink and downlink scheduling. If the total delay of uplink transmission and downlink transmission exceeds the total delay tolerance, the base station can notify the core network entity and the application function entity.
  • a cloud game app is running on the user equipment 1201, and the application function entity 1202 may be a cloud rendering server, which can be The sent game control data is rendered to obtain multimedia data.
  • the uplink data sent by the user equipment 1201 includes A1 and B2, and the downlink data sent by the application function entity 1202 includes A2 and B1.
  • A1 represents game control data, such as sensor data on user equipment 1201, action data detected by user equipment 1201, etc.
  • B2 represents ack of multimedia data (ie receiving confirmation data);
  • A2 represents ack of game control data;
  • B1 represents Multimedia data, such as game images, sound data, etc.
  • the application scenario shown in FIG. 12 is an application scenario of offloading, that is, the uplink data A1 and B2 correspond to different QoS flows, and the downlink data A2 and B1 also correspond to different QoS flows.
  • A1 and A2 may be in a PDU session
  • B1 and B2 may be in a PDU session
  • A1, A2, B1, and B2 may be in the same PDU session.
  • the base station When the base station is performing uplink and downlink scheduling, if the QoS flow can indicate the delay tolerance of uplink transmission and the delay tolerance of downlink transmission, the base station can only monitor whether the uplink transmission delay of A1 (that is, game control data) exceeds Corresponding uplink transmission delay tolerance, and monitoring whether the downlink transmission delay of B1 (ie, multimedia data) exceeds the corresponding downlink transmission delay tolerance. If the uplink transmission delay of A1 exceeds the corresponding uplink transmission delay tolerance, or the downlink transmission delay of B1 exceeds the corresponding downlink transmission delay tolerance, the base station may notify the core network entity and the application function entity.
  • A1 that is, game control data
  • B1 multimedia data
  • the base station When the base station is performing uplink and downlink scheduling, if the core network entity separately allocates QoS flows for uplink data and downlink data, the uplink and downlink do not require absolute division of the delay tolerance, and the core network entity introduces a new indication message to If the total delay tolerance of UL+DL is indicated to the base station, the base station can monitor whether the sum of the uplink transmission delay of A1 (ie game control data) and the downlink transmission delay of B1 (ie multimedia data) exceeds the total delay tolerance. If the sum of the uplink transmission delay of A1 and the downlink transmission delay of B1 exceeds the total delay tolerance, the base station may notify the core network entity and the application function entity.
  • A1 ie game control data
  • B1 ie multimedia data
  • the technical solution of the embodiment of the present application can ensure the total delay tolerance of part of the data flow in the uplink transmission and the part of the data flow in the downlink transmission, and effectively improve the performance of the QoS flow mechanism. flexibility.
  • the technical solutions of the embodiments shown in FIGS. 6 to 12 can not only monitor the total delay of the uplink transmission and the downlink transmission of the cloud game service, but also realize the dynamic delay tolerance of the uplink and the downlink, which effectively meets the QoS requirements of the service layer . It should be noted that, for other services that need to ensure the total delay of uplink transmission and downlink transmission, the technical solutions of the foregoing embodiments of the present application are also applicable.
  • Fig. 13 shows a block diagram of a communication device according to an embodiment of the present application.
  • a communication device 1300 includes: an acquisition unit 1302, a generation unit 1304, and a configuration unit 1306.
  • the obtaining unit 1302 is configured to obtain a total delay tolerance for uplink transmission and downlink transmission for the target service;
  • the generating unit 1304 is configured to generate a transmission delay indication message for the target service according to the total delay tolerance, and
  • the transmission delay indication message includes the QoS flow indication information for the uplink transmission of the target service and the QoS flow indication information for the downlink transmission of the target service;
  • the configuration unit 1306 is configured to configure the transmission delay indication message to the access network Entity, so that the access network entity monitors the transmission delay of the target service according to the transmission delay indication message.
  • the obtaining unit 1302 is configured to: receive a notification message sent by an application functional entity, and obtain the total delay tolerance according to the notification message; or based on the communication with the application functional entity Contracting agreement information, obtaining the total delay tolerance; or obtaining the total delay tolerance pre-configured by the application function entity.
  • the generating unit 1304 is configured to: generate information indicating the total delay tolerance according to the total delay tolerance, and transmit the information to the uplink and downlink of the target service. Transmission is respectively allocated QoS flow indication information; the transmission delay indication message is generated according to the information used to indicate the total delay tolerance and the QoS flow indication information respectively allocated to the uplink transmission and the downlink transmission of the target service.
  • the generating unit 1304 is configured to: determine the uplink delay tolerance and the downlink delay tolerance of the target service according to the total delay tolerance; according to the uplink delay tolerance The QoS flow indication information for the uplink transmission is generated, and the QoS flow indication information for the downlink transmission is generated according to the downlink delay tolerance.
  • the generating unit 1304 is configured to: divide the total delay tolerance to obtain the uplink delay tolerance and the downlink delay tolerance of the target service; or receive the application function entity The notified segmentation between the uplink delay tolerance and the downlink delay tolerance of the target service, and the uplink delay tolerance and the downlink delay tolerance are determined according to the segmentation and the total delay tolerance; or Receive the priority of the uplink transmission and downlink transmission of the target service notified by the application function entity, and determine the uplink delay tolerance and the downlink delay tolerance according to the priority and the total delay tolerance.
  • the QoS flow indication information of the uplink transmission of the target service includes: one QoS flow indication information corresponding to all the uplink data of the target service; or is related to the target service
  • the different types of uplink data respectively correspond to QoS flow indication information, where the QoS flow indication information respectively corresponding to the different types of uplink data are different.
  • the QoS flow indication information of the downlink transmission of the target service includes: one QoS flow indication information corresponding to all the downlink data of the target service; or is related to the target service QoS flow indication information corresponding to different types of downlink data respectively, wherein the QoS flow indication information respectively corresponding to the different types of downlink data are different.
  • the obtaining unit 1302 is configured to obtain the total delay capacity from the application function entity through the policy control function entity. Or obtain the total delay tolerance from the application function entity through the network exposure function entity, and forward it to the policy control function entity.
  • Fig. 14 shows a block diagram of a communication device according to an embodiment of the present application.
  • a communication device 1400 includes: an acquiring unit 1402 and a monitoring unit 1404.
  • the obtaining unit 1402 is configured to obtain a transmission delay indication message configured by a core network entity for the target service, where the transmission delay indication message is the total delay of the core network entity according to the uplink transmission and downlink transmission of the target service Generated by tolerance, the transmission delay indication message includes QoS flow indication information for uplink transmission of the target service and QoS flow indication information for downlink transmission of the target service; the monitoring unit 1404 is configured to perform according to the transmission delay The instruction message monitors the transmission delay of the target service.
  • the monitoring unit 1404 is configured to: if the transmission delay indication message further includes information for indicating the total delay tolerance, monitor according to the total delay tolerance The total delay of the uplink transmission and the downlink transmission of the target service; if the QoS flow indication information of the uplink transmission includes an uplink delay tolerance, monitor the uplink transmission delay of the target service according to the uplink delay tolerance; If the downlink transmission QoS flow indication information includes a downlink delay tolerance, the downlink transmission delay of the target service is monitored according to the downlink delay tolerance.
  • the QoS flow indication information for uplink transmission includes QoS flow indication information corresponding to different types of uplink data of the target service, and the QoS flow indication for downlink transmission The information includes QoS flow indication information corresponding to different types of downlink data of the target service;
  • the monitoring unit 1404 is configured to: monitor the transmission delay of the specified type of uplink data of the target service according to the transmission delay indication message , And the transmission delay of the specified type of downlink data of the target service; wherein, the specified type of uplink data and the specified type of downlink data are located in the same protocol data unit PDU session or are located in different PDUs during transmission In conversation.
  • the target service includes a cloud game service;
  • the specified type of uplink data includes game manipulation data, and the specified type of downlink data includes multimedia data obtained by rendering a game scene .
  • the monitoring unit 1404 is configured to: monitor the transmission delay between the user equipment and the access network entity for the target service according to the transmission delay indication message; and/or According to the transmission delay indication message and the delay information between the access network entity and the user plane function entity, the transmission delay between the user equipment and the user plane function entity for the target service is monitored.
  • FIG. 15 shows a schematic structural diagram of a computer system suitable for implementing an electronic device according to an embodiment of the present application.
  • the computer system 1500 includes a central processing unit (Central Processing Unit, CPU) 1501, which can be loaded into a random system according to a program stored in a read-only memory (Read-Only Memory, ROM) 1502 or from a storage part 1508. Access the programs in the memory (Random Access Memory, RAM) 1503 to execute various appropriate actions and processing, for example, execute the methods described in the foregoing embodiments. In RAM 1503, various programs and data required for system operation are also stored.
  • the CPU 1501, ROM 1502, and RAM 1503 are connected to each other through a bus 1504.
  • An Input/Output (I/O) interface 1505 is also connected to the bus 1504.
  • the following components are connected to the I/O interface 1505: input part 1506 including keyboard, mouse, etc.; output part 1507 such as cathode ray tube (Cathode Ray Tube, CRT), liquid crystal display (LCD), etc., and speakers ; A storage part 1508 including a hard disk, etc.; and a communication part 1509 including a network interface card such as a LAN (Local Area Network) card and a modem.
  • the communication section 1509 performs communication processing via a network such as the Internet.
  • the driver 1510 is also connected to the I/O interface 1505 as needed.
  • a removable medium 1511 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, etc., is installed on the drive 1510 as required, so that the computer program read therefrom is installed into the storage portion 1508 as required.
  • the process described below with reference to the flowchart can be implemented as a computer software program.
  • the embodiments of the present application include a computer program product, which includes a computer program carried on a computer-readable medium, and the computer program contains program code for executing the method shown in the flowchart.
  • the computer program may be downloaded and installed from the network through the communication part 1509, and/or installed from the removable medium 1511.
  • CPU central processing unit
  • the computer-readable medium shown in the embodiments of the present application may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the two.
  • the computer-readable storage medium may be, for example, but not limited to, an electric, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any combination of the above.
  • Computer-readable storage media may include, but are not limited to: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable Erasable Programmable Read Only Memory (EPROM), flash memory, optical fiber, portable compact disk read-only memory (Compact Disc Read-Only Memory, CD-ROM), optical storage device, magnetic storage device, or any suitable of the above The combination.
  • the computer-readable storage medium may be any tangible medium that contains or stores a program, and the program may be used by or in combination with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in a baseband or as a part of a carrier wave, and a computer-readable program code is carried therein.
  • This propagated data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer-readable signal medium may also be any computer-readable medium other than the computer-readable storage medium.
  • the computer-readable medium may send, propagate, or transmit the program for use by or in combination with the instruction execution system, apparatus, or device .
  • the program code contained on the computer-readable medium can be transmitted by any suitable medium, including but not limited to: wireless, wired, etc., or any suitable combination of the above.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of the code, and the above-mentioned module, program segment, or part of the code includes one or more executables for realizing the specified logic function. instruction.
  • the functions marked in the block may also occur in a different order from the order marked in the drawings. For example, two blocks shown in succession can actually be executed substantially in parallel, or they can sometimes be executed in the reverse order, depending on the functions involved.
  • each block in the block diagram or flowchart, and the combination of blocks in the block diagram or flowchart can be implemented by a dedicated hardware-based system that performs the specified functions or operations, or can be It is realized by a combination of dedicated hardware and computer instructions.
  • the units involved in the embodiments described in the present application can be implemented in software or hardware, and the described units can also be provided in a processor. Among them, the names of these units do not constitute a limitation on the unit itself under certain circumstances.
  • this application also provides a computer-readable medium.
  • the computer-readable medium may be included in the electronic device described in the above-mentioned embodiments; or it may exist alone without being assembled into the electronic device. in.
  • the foregoing computer-readable medium carries one or more programs, and when the foregoing one or more programs are executed by an electronic device, the electronic device realizes the method described in the foregoing embodiment.
  • the present application also provides a computer program product including instructions, which when run on a server, causes the server to execute the method described in the foregoing embodiment.
  • modules or units of the device for action execution are mentioned in the above detailed description, this division is not mandatory.
  • the features and functions of two or more modules or units described above may be embodied in one module or unit.
  • the features and functions of a module or unit described above can be further divided into multiple modules or units to be embodied.
  • the exemplary embodiments described herein can be implemented by software, or can be implemented by combining software with necessary hardware. Therefore, the technical solution according to the embodiments of the present application can be embodied in the form of a software product, which can be stored in a non-volatile storage medium (can be a CD-ROM, U disk, mobile hard disk, etc.) or on the network , Including several instructions to make a computing device (which can be a personal computer, a server, a touch terminal, or a network device, etc.) execute the method according to the embodiment of the present application.
  • a computing device which can be a personal computer, a server, a touch terminal, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本申请的实施例提供了一种通信方法、装置、计算机可读介质及电子设备。该通信方法包括:获取针对目标业务的上行传输和下行传输的总延迟容限;根据总延迟容限生成针对目标业务的传输时延指示消息,所述传输时延指示消息包括所述目标业务的上行传输的服务质量QoS流指示信息和所述目标业务的下行传输的QoS流指示信息;将所述传输时延指示消息配置给接入网实体,以使所述接入网实体根据所述传输时延指示消息监控所述目标业务的传输延迟。本申请实施例的技术方案可以针对不同的业务获取到相应的总延迟容限,实现了总延迟容限针对业务的动态调整,并且可以实现对目标业务的上行传输和下行传输的总延迟进行监控,有利于满足业务层的QoS需求。

Description

通信方法、装置、计算机可读介质及电子设备
本申请要求于2019年04月02日提交中国专利局、申请号为201910261362.9、申请名称为“通信方法、装置、计算机可读介质及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及计算机及通信技术领域,具体而言,涉及数据通信过程。
背景技术
为了实现更高速率的体验和更大带宽的接入能力,以及更低时延和高可靠的信息交互,业界提出了服务质量流(Quality of Service flow,简称QoS流)的网络架构,QoS流是在一个PDU(Protocol Data Unit,协议数据单元)会话中提供QoS区分的最小粒度,QFI(QoS Flow ID,QoS流标识)用于标识一个QoS流。
同时,依赖于移动通信技术的发展,衍生出了多种新型业务,比如云游戏业务,这些业务对于传输延迟的要求较高,并且对上下行传输的总延迟也会有一定的要求,但是目前的QoS机制受限,难以满足业务层的QoS要求。
发明内容
本申请的实施例提供了一种通信方法、装置、计算机可读介质及电子设备,进而至少在一定程度上可以实现对目标业务的上行传输和下行传输的总延迟进行监控,满足了业务层的QoS需求。
本申请的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本申请的实践而习得。
根据本申请实施例的一个方面,提供了一种通信方法,包括:获取针对目标业务的上行传输和下行传输的总延迟容限;根据所述总延迟容限生成针对所述目标业务的传输时延指示消息,所述传输时延指示消息包括所述目标业务的上行传输的服务质量QoS流指示信息和所述目标业务的下行传输的QoS流指示信息;将所述传输时延指示消息配置给接入网实体,以使所述接入网实体根据 所述传输时延指示消息监控所述目标业务的传输延迟。
根据本申请实施例的一个方面,提供了一种通信方法,包括:获取核心网实体配置的针对目标业务的传输时延指示消息,所述传输时延指示消息是所述核心网实体根据所述目标业务的上行传输和下行传输的总延迟容限生成的,所述传输时延指示消息包括所述目标业务的上行传输的QoS流指示信息和所述目标业务的下行传输的QoS流指示信息;根据所述传输时延指示消息监控所述目标业务的传输延迟。
根据本申请实施例的一个方面,提供了一种通信装置,包括:获取单元,用于获取针对目标业务的上行传输和下行传输的总延迟容限;生成单元,用于根据所述总延迟容限生成针对所述目标业务的传输时延指示消息,所述传输时延指示消息包括所述目标业务的上行传输的服务质量QoS流指示信息和所述目标业务的下行传输的QoS流指示信息;配置单元,用于将所述传输时延指示消息配置给接入网实体,以使所述接入网实体根据所述传输时延指示消息监控所述目标业务的传输延迟。
在本申请的一些实施例中,基于前述方案,所述获取单元配置为:接收应用功能实体发送的通知消息,根据所述通知消息获取所述总延迟容限;或基于与应用功能实体之间的签约协议信息,获取所述总延迟容限;或获取应用功能实体预先配置的所述总延迟容限。
在本申请的一些实施例中,基于前述方案,所述生成单元配置为:根据所述总延迟容限生成用于指示所述总延迟容限的信息,并向所述目标业务的上行传输和下行传输分别分配QoS流指示信息;根据用于指示所述总延迟容限的信息,以及向所述目标业务的上行传输和下行传输分别分配的QoS流指示信息,生成所述传输时延指示消息。
在本申请的一些实施例中,基于前述方案,所述生成单元配置为:根据所述总延迟容限,确定所述目标业务的上行延迟容限和下行延迟容限;根据所述上行延迟容限生成所述上行传输的QoS流指示信息,并根据所述下行延迟容限生成所述下行传输的QoS流指示信息。
在本申请的一些实施例中,基于前述方案,所述生成单元配置为:对所述总延迟容限进行分割,得到所述目标业务的上行延迟容限和下行延迟容限;或 接收应用功能实体通知的所述目标业务的上行延迟容限与下行延迟容限之间的分割情况,根据所述分割情况和所述总延迟容限确定所述上行延迟容限和所述下行延迟容限;或接收应用功能实体通知的所述目标业务的上行传输及下行传输的优先级,根据所述优先级和所述总延迟容限,确定所述上行延迟容限和所述下行延迟容限。
在本申请的一些实施例中,基于前述方案,所述目标业务的上行传输的QoS流指示信息包括:与所述目标业务的所有上行数据对应的一个QoS流指示信息;或与所述目标业务的不同类型的上行数据分别对应的QoS流指示信息,其中,所述不同类型的上行数据分别对应的QoS流指示信息不相同。
在本申请的一些实施例中,基于前述方案,所述目标业务的下行传输的QoS流指示信息包括:与所述目标业务的所有下行数据对应的一个QoS流指示信息;或与所述目标业务的不同类型的下行数据分别对应的QoS流指示信息,其中,所述不同类型的下行数据分别对应的QoS流指示信息不相同。
在本申请的一些实施例中,基于前述方案,在所述通信方法的执行主体是核心网实体的情况下;所述获取单元配置为:通过策略控制功能实体从应用功能实体获取所述总延迟容限;或通过网络暴露功能实体从应用功能实体获取所述总延迟容限,并转发给策略控制功能实体。
根据本申请实施例的一个方面,提供了一种通信装置,包括:获取单元,用于获取核心网实体配置的针对目标业务的传输时延指示消息,所述传输时延指示消息是所述核心网实体根据所述目标业务的上行传输和下行传输的总延迟容限生成的,所述传输时延指示消息包括所述目标业务的上行传输的QoS流指示信息和所述目标业务的下行传输的QoS流指示信息;监控单元,用于根据所述传输时延指示消息监控所述目标业务的传输延迟。
在本申请的一些实施例中,基于前述方案,所述监控单元配置为:若所述传输时延指示消息还包括用于指示所述总延迟容限的信息,则根据所述总延迟容限监控所述目标业务的上行传输和下行传输的总延迟;若所述上行传输的QoS流指示信息中包含有上行延迟容限,则根据所述上行延迟容限监控所述目标业务的上行传输延迟;若所述下行传输的QoS流指示信息中包含有下行延迟容限,则根据所述下行延迟容限监控所述目标业务的下行传输延迟。
在本申请的一些实施例中,基于前述方案,所述上行传输的QoS流指示信息包括与所述目标业务的不同类型的上行数据分别对应的QoS流指示信息,所述下行传输的QoS流指示信息包括与所述目标业务的不同类型的下行数据分别对应的QoS流指示信息;所述监控单元配置为:根据所述传输时延指示消息,监控所述目标业务的指定类型的上行数据的传输延迟,以及所述目标业务的指定类型的下行数据的传输延迟;其中,所述指定类型的上行数据与所述指定类型的下行数据在传输时位于同一个协议数据单元PDU会话中或位于不同的PDU会话中。
在本申请的一些实施例中,基于前述方案,所述目标业务包括云游戏业务;所述指定类型的上行数据包括游戏操控数据,所述指定类型的下行数据包括对游戏场景渲染得到的多媒体数据。
在本申请的一些实施例中,基于前述方案,所述监控单元配置为:根据所述传输时延指示消息,监控用户设备与接入网实体之间针对所述目标业务的传输延迟;和/或根据所述传输时延指示消息,以及接入网实体与用户面功能实体之间的时延信息,监控用户设备与所述用户面功能实体之间针对所述目标业务的传输延迟。
根据本申请实施例的一个方面,提供了一种计算机可读介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上述实施例中所述的通信方法。
根据本申请实施例的一个方面,提供了一种电子设备,包括:一个或多个处理器;存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如上述实施例中所述的通信方法。
根据本申请实施例的一方面,提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得所述计算机执行上述实施例中所述的通信方法。
在本申请的一些实施例所提供的技术方案中,通过获取针对目标业务的上行传输和下行传输的总延迟容限,根据该总延迟容限生成针对目标业务的传输时延指示消息,并将该传输时延指示消息配置给接入网实体,一方面使得能够针对不同的业务获取到相应的总延迟容限,实现了总延迟容限针对业务的动态 调整,另一方面也使得接入网实体能够根据该传输时延指示消息监控目标业务的传输延迟,有利于实现对目标业务的上行传输和下行传输的总延迟进行监控,满足了业务层的QoS需求。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1示出了可以应用本申请实施例的技术方案的示例性系统架构的示意图;
图2示出了根据本申请的一个实施例的通信方法的流程图;
图3示出了根据本申请的一个实施例的根据总延迟容限生成针对目标业务的传输时延指示消息的流程图;
图4示出了根据本申请的一个实施例的根据总延迟容限生成针对目标业务的传输时延指示消息的流程图;
图5示出了根据本申请的一个实施例的通信方法的流程图;
图6示出了根据本申请的一个实施例的云游戏业务的场景示意图;
图7示出了根据本申请的一个实施例的AF、CN实体和RAN实体之间的一种交互过程示意图;
图8示出了根据本申请的一个实施例的AF与CN实体之间的一种交互过程示意图;
图9示出了根据本申请的一个实施例的AF与CN实体之间的另一种交互过程示意图;
图10示出了根据本申请的一个实施例的AF、CN实体和RAN实体之间的另一种交互过程示意图;
图11示出了根据本申请的一个实施例的AF、CN实体和RAN实体之间的另 一种交互过程示意图;
图12示出了根据本申请的另一个实施例的云游戏业务的场景示意图;
图13示出了根据本申请的一个实施例的通信装置的框图;
图14示出了根据本申请的一个实施例的通信装置的框图;
图15示出了适于用来实现本申请实施例的电子设备的计算机系统的结构示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本申请将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。
此外,所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本申请的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本申请的技术方案而没有特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知方法、装置、实现或者操作以避免模糊本申请的各方面。
附图中所示的方框图仅仅是功能实体,不一定必须与物理上独立的实体相对应。即,可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
附图中所示的流程图仅是示例性说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解,而有的操作/步骤可以合并或部分合并,因此实际执行的顺序有可能根据实际情况改变。
图1示出了可以应用本申请实施例的技术方案的示例性系统架构的示意图。
如图1所示,系统架构100可以包括用户设备(User Equipment,简称 UE)101(用户设备101可以是图1中所示智能手机,还可以是平板电脑、便携式计算机、台式计算机等等)、基站102、核心网实体103和应用功能(Application Function,简称AF)实体104。
应该理解,图1中所示的用户设备101、基站102、核心网实体103和应用功能实体104的数目仅仅是示意性的。根据实现需要,可以具有任意数目的用户设备、基站、核心网实体和应用功能实体。
在本申请的一个实施例中,核心网实体103可以获取到应用功能实体104配置的针对目标业务的上行传输和下行传输的总延迟容限,比如核心网实体103可以通过接收应用功能实体104发送的通知消息来获取该总延迟容限,或者核心网实体103可以基于与应用功能实体104之间的签约协议信息来获取该总延迟容限,或者核心网实体103还可以获取应用功能实体104预先配置的总延迟容限。
在本申请的一个实施例中,核心网实体103在获取到针对目标业务的上行传输和下行传输的总延迟容限之后,可以根据该总延迟容限生成针对目标业务的传输时延指示消息,该传输时延指示消息包括目标业务的上行传输的QoS流指示信息和目标业务的下行传输的QoS流指示信息,进而将该传输时延指示消息配置给基站102,以使基站102根据该传输时延指示消息监控目标业务的传输延迟。
在本申请的一个实施例中,基站102可以根据该传输时延指示消息监控用户设备101与基站102之间针对该目标业务的传输延迟;也可以根据该传输时延指示消息,以及基站102与用户面功能(User Plane Function,简称UPF)实体之间的时延信息,监控用户设备101与用户面功能实体之间针对目标业务的传输延迟。
以下对本申请实施例的技术方案的实现细节进行详细阐述:
图2示出了根据本申请的一个实施例的通信方法的流程图,该通信方法可以由如图1中所示的核心网实体103来执行。参照图2所示,该通信方法至少包括S210至S230,详细介绍如下:
在S210中,获取针对目标业务的上行传输和下行传输的总延迟容限。
在本申请的一个实施例中,通过获取针对目标业务的上行传输和下行传输的总延迟容限,使得能够针对不同的业务获取到与该业务对应的总延迟容限,以便实现延迟容限针对业务的动态调整。其中,目标业务可以是对上行传输和下行传输的总延迟容限有要求的业务,比如可以是云游戏业务等。云游戏业务是以云计算(cloud computing)为基础的游戏方式,在云游戏的运行模式下,用户设备需要向云端发送游戏操控数据(比如用户设备上的传感器数据、用户设备检测到的动作数据等),云端根据用户设备发送的游戏操控数据执行渲染功能,然后将渲染完毕后的多媒体数据(包括游戏画面、声音数据等)通过网络传送给用户设备。云游戏的优点在于用户设备无需执行复杂的渲染计算处理,降低了对用户设备的硬件需求,但是云游戏要求网络系统能够对上行的游戏操控数据提供高可靠低时延的传输,对下行的多媒体数据提供高带宽低时延的传输,并且云游戏要求上行传输和下行传输的总时延要低于一定的阈值。
在本申请的一个实施例中,核心网实体可以通过接收应用功能实体发送的通知消息,然后根据该通知消息获取到针对目标业务的上行传输和下行传输的总延迟容限。
在本申请的一个实施例中,核心网实体可以基于与应用功能实体之间的签约协议信息来获取上行传输和下行传输的总延迟容限。签约协议信息可以是SLA(Service-Level Agreement,服务等级协议)。
在本申请的一个实施例中,核心网实体可以获取应用功能实体预先配置的上行传输和下行传输的总延迟容限。
在本申请的一个实施例中,核心网实体可以包括策略控制功能(Policy Control Function,简称PCF)实体,策略控制功能实体可以从应用功能实体获取上行传输和下行传输的总延迟容限,这种情况适用于策略控制功能实体和应用功能实体处于一个可信域的场景下。
在本申请的一个实施例中,核心网实体可以包括策略控制功能实体和网络暴露功能(Network Exposure Function,简称NEF)实体,网络暴露功能实体可以从应用功能实体获取上行传输和下行传输的总延迟容限,并转发给策略控制功能实体,这种情况适用于策略控制功能实体和应用功能实体处于 不同可信域的场景下。
继续参照图2所示,在S220中,根据所述总延迟容限生成针对所述目标业务的传输时延指示消息,所述传输时延指示消息包括所述目标业务的上行传输的QoS流指示信息和所述目标业务的下行传输的QoS流指示信息。
在本申请的一个实施例中,QoS流指示信息可以是QFI,如果应用于5G系统中,则QoS流指示信息可以是5QI(5G QoS Identifier)。
在本申请的一个实施例中,目标业务的上行传输的QoS流指示信息可以包括:与目标业务的所有上行数据对应的一个QoS流指示信息。即在该实施例中,目标业务的所有上行数据对应于一个QoS流指示信息,比如云游戏业务的上行数据包括游戏操控数据和对云端发送的多媒体数据的接收确认数据等,那么该游戏操控数据和接收确认数据对应于一个QoS流指示信息。
在本申请的一个实施例中,目标业务的上行传输的QoS流指示信息可以包括:与目标业务的不同类型的上行数据分别对应的QoS流指示信息,其中,所述不同类型的上行数据分别对应的QoS流指示信息不相同。即在该实施例中,目标业务的不同类型的上行数据对应于不同的QoS流指示信息,比如云游戏业务的上行数据包括游戏操控数据和对云端发送的多媒体数据的接收确认数据等,那么该游戏操控数据和接收确认数据分别对应于不同的QoS流指示信息。
在本申请的一个实施例中,目标业务的下行传输的QoS流指示信息可以包括:与目标业务的所有下行数据对应的一个QoS流指示信息。即在该实施例中,目标业务的所有下行数据对应于一个QoS流指示信息,比如云游戏业务的下行数据包括对用户设备发送的游戏操控数据的接收确认数据和渲染后得到的多媒体数据等,那么该接收确认数据和多媒体数据对应于一个QoS流指示信息。
在本申请的一个实施例中,目标业务的下行传输的QoS流指示信息可以包括:与目标业务的不同类型的下行数据分别对应的QoS流指示信息,其中,所述不同类型的下行数据分别对应的QoS流指示信息不相同。即在该实施例中,目标业务的不同类型的下行数据对应于不同的QoS流指示信息,比如云 游戏业务的下行数据包括对用户设备发送的游戏操控数据的接收确认数据和渲染后得到的多媒体数据等,那么该接收确认数据和多媒体数据对应于不同的QoS流指示信息。
在本申请的一个实施例中,如图3所示,根据总延迟容限生成针对目标业务的传输时延指示消息的过程,可以包括如下S310和S320:
在S310中,根据总延迟容限生成用于指示所述总延迟容限的信息,并向所述目标业务的上行传输和下行传输分别分配QoS流指示信息。
在本申请的一个实施例中,如果生成了用于指示总延迟容限的信息,那么向目标业务的上行传输和下行传输分别分配的QoS流指示信息可以不要求上下行对总延迟容限进行绝对的分割,即向目标业务的上行传输和下行传输分别分配的QoS流可以不明确指示上行传输的延迟容限和下行传输的延迟容限。
在S320中,根据用于指示所述总延迟容限的信息,以及向所述目标业务的上行传输和下行传输分别分配的QoS流指示信息,生成所述传输时延指示消息。
在本申请的一个实施例中,如果生成了用于指示上行传输和下行传输的总延迟容限的信息,并向目标业务的上行传输和下行传输分别分配了QoS流指示信息,则可以根据这些信息来生成传输时延指示消息,进而将该传输时延指示消息发送至接入网实体。
图3所示实施例的技术方案是通过QoS流指示信息之外的指示信息来指示上行传输和下行传输的总延迟容限。
在本申请的一个实施例中,如图4所示,根据总延迟容限生成针对目标业务的传输时延指示消息的过程可以包括如下S410和S420:
在S410中,根据总延迟容限,确定所述目标业务的上行延迟容限和下行延迟容限。
在本申请的一个实施例中,核心网实体(如PCF)可以接收应用功能实体通知的目标业务的上行延迟容限与下行延迟容限之间的分割情况,然后根据该分割情况和该总延迟容限确定上行延迟容限和下行延迟容限。即在该实施例的技术方案,应用功能实体可以直接通知上行延迟容限与下行延迟容限 之间的分割情况,进而核心网实体可以直接根据该分割情况来确定上行延迟容限和下行延迟容限。
在本申请的一个实施例中,核心网实体(如PCF)可以接收应用功能实体通知的目标业务的上行传输及下行传输的优先级,然后根据该优先级和总延迟容限确定上行延迟容限和下行延迟容限。即在该实施例的技术方案,应用功能实体并未明确通知上行延迟容限与下行延迟容限之间的分割情况,但是通知了上行传输及下行传输的优先级,进而核心网实体可以根据该优先级来对总延迟容限进行分割,以确定上行延迟容限和下行延迟容限。比如,若上行传输的优先级高于下行传输的优先级,则上行延迟容限可以小于下行延迟容限,进而可以据此对总延迟容限进行分割。
在本申请的一个实施例中,核心网实体(如PCF)可以直接对总延迟容限进行分割,得到目标业务的上行延迟容限和下行延迟容限。即在该实施例中,核心网实体也可以根据总延迟容限自主决定上行延迟容限和下行延迟容限。比如,核心网实体可以根据历史数据确定各种业务对上行传输及下行传输的延迟要求,进而据此自主决定针对某个业务的上行延迟容限和下行延迟容限的分割情况。
在S420中,根据上行延迟容限生成所述上行传输的QoS流指示信息,并根据所述下行延迟容限生成所述下行传输的QoS流指示信息。
图4所示实施例的技术方案可以通过QoS流指示信息直接指示上行延迟容限和下行延迟容限,因此无需额外指示上行传输和下行传输的总延迟容限。
继续参照图2所示,在S230中,将所述传输时延指示消息配置给接入网实体,以使所述接入网实体根据所述传输时延指示消息监控所述目标业务的传输延迟。
在本申请的一个实施例中,接入网实体可以是基站,接入网实体根据传输时延指示消息监控目标业务的传输延迟即是监控目标业务的上行传输延迟及下行传输延迟,以确保上行传输延迟和下行传输延迟不超过总延迟容限。以下实施例从接入网实体的角度对本申请技术方案进行阐述:
图5示出了根据本申请的一个实施例的通信方法的流程图,该通信方法 可以由接入网实体来执行,该接入网实体可以是图1中所示的基站102。参照图5所示,该通信方法至少包括S510至S520,详细介绍如下:
在S510中,获取核心网实体配置的针对目标业务的传输时延指示消息,所述传输时延指示消息是所述核心网实体根据所述目标业务的上行传输和下行传输的总延迟容限生成的,所述传输时延指示消息包括所述目标业务的上行传输的QoS流指示信息和所述目标业务的下行传输的QoS流指示信息。
在本申请的一个实施例中,核心网实体根据目标业务的上行传输和下行传输的总延迟容限生成传输时延指示消息的过程可以参照上述实施例的技术方案。
在S520中,根据所述传输时延指示消息监控所述目标业务的传输延迟。
在本申请的一个实施例中,如果传输时延指示消息除了包括目标业务的上行传输的QoS流指示信息和目标业务的下行传输的QoS流指示信息之外,还包括用于指示上行传输和下行传输的总延迟容限的信息,则可以根据该总延迟容限监控目标业务的上行传输和下行传输的总延迟。
在本申请的一个实施例中,如果上行传输的QoS流指示信息中包含有上行延迟容限,则可以根据上行延迟容限监控目标业务的上行传输延迟。
在本申请的一个实施例中,如果下行传输的QoS流指示信息中包含有下行延迟容限,则可以根据下行延迟容限监控目标业务的下行传输延迟。
在本申请的一个实施例中,如果接入网实体监测到目标业务的上行传输和下行传输的总延迟超过总延迟容限,或者监测到目标业务的上行传输延迟超过上行延迟容限,或者监测到目标业务的下行传输延迟超过下行延迟容限,则可以向核心网实体或应用功能实体发送通知消息,以便于核心网实体或应用功能实体采取相应的措施。
在本申请的一个实施例中,接入网实体根据传输时延指示消息监控目标业务的传输延迟可以是根据该传输时延指示消息,监控用户设备与接入网实体之间针对目标业务的传输延迟。
在本申请的一个实施例中,接入网实体根据传输时延指示消息监控目标业务的传输延迟可以是根据传输时延指示消息,以及接入网实体与用户面功能实体之间的时延信息,监控用户设备与用户面功能实体之间针对目标业务 的传输延迟。在该实施例中,由于接入网实体与用户面功能实体之间的时延基本上是固定的,因此接入网实体可以根据用户设备与接入网实体之间针对目标业务的传输延迟,以及接入网实体与用户面功能实体之间的时延监测用户设备与用户面功能实体之间针对目标业务的传输延迟。
在本申请的一个实施例中,如果上行传输的QoS流指示信息包括与目标业务的不同类型的上行数据分别对应的QoS流指示信息,下行传输的QoS流指示信息包括与目标业务的不同类型的下行数据分别对应的QoS流指示信息,那么可以根据传输时延指示消息,监控目标业务的指定类型的上行数据的传输延迟,以及目标业务的指定类型的下行数据的传输延迟;其中,该指定类型的上行数据与该指定类型的下行数据在传输时位于同一个协议数据单元(Protocol Data Unit,PDU)会话中或位于不同的PDU会话中。
比如,云游戏业务的上行数据包括游戏操控数据和对云端发送的多媒体数据的接收确认数据(为便于区分,称之为第一接收确认数据)等,下行数据包括对用户设备发送的游戏操控数据的接收确认数据(为便于区分,称之为第二接收确认数据)和渲染后得到的多媒体数据等,那么该游戏操控数据、第一接收确认数据、第二接收确认数据和多媒体数据分别对应于不同的QoS流指示信息。在这种情况下,由于云游戏业务中接收确认数据的意义不大,因此可以仅监控云游戏业务的游戏操控数据的传输延迟和多媒体数据的传输延迟。同时,游戏操控数据和第二接收确认数据可以处于一个PDU会话中,多媒体数据和第一接收确认数据可以处于另一个PDU会话中;或者,游戏操控数据、第一接收确认数据、第二接收确认数据和多媒体数据可以处于同一个PDU会话中。
本申请上述实施例的技术方案有利于实现对目标业务的上行传输和下行传输的总延迟进行监控,满足了业务层的QoS需求。
以下以目标业务为云游戏业务为例,对本申请实施例的技术方案的实现细节进行详细阐述:
在本申请的一个实施例中,如图6所示,在云游戏业务的场景下,用户设备601上运行有云游戏app(Application,应用程序),应用功能实体602可以是云渲染服务器,用于根据用户设备601发送的游戏操控数据进行渲染 得到多媒体数据。用户设备601发送的上行数据包括A1和B2,应用功能实体602发送的下行数据包括A2和B1。其中,A1表示游戏操控数据,如用户设备601上的传感器数据、用户设备601检测到的动作数据等;B2表示多媒体数据的ack(即接收确认数据);A2表示游戏操控数据的ack;B1表示多媒体数据,如游戏画面、声音数据等。
图6所示的应用场景为不分流的应用场景,即所有上行数据(包括A1和B2)对应于一个QoS流,所有下行数据(包括A2和B1)对应于一个QoS流。
在图6所示的应用场景下,AF、CN(Core Network,核心网)实体和RAN(Radio Access Network,无线接入网)实体(该实施例中以RAN实体是基站为例进行说明)之间的一种交互过程如图7所示,可以包括如下步骤:
S701,应用功能实体向核心网实体通知UL(UpLink,上行)+DL(DownLink,下行)的总延迟容限和UL+DL的动态分割。
在本申请的一个实施例中,应用功能实体可以基于SLA交互来向核心网实体通知UL+DL的总延迟容限和UL+DL的动态分割;或者也可以通过静态配置的方式来向核心网实体进行配置,无需每次都进行通知;当然,应用功能实体还可以通过动态配置的方式来向核心网实体进行配置。
在本申请的一个实施例中,如图8所示,应用功能实体与核心网实体之间的交互过程可以是由AF直接与PCF进行交互,然后由PCF将确定延迟容限通知给AMF,进而由AMF将延迟容限配置给基站。该实施例的技术方案适用于AF与PCF处于同一个可信域的应用场景中,如网络运营商自己部署AF的场景。
在本申请的一个实施例中,如图9所示,应用功能实体与核心网实体之间的交互过程可以是由AF通过NEF与PCF进行交互,然后由PCF将确定延迟容限通知给AMF,进而由AMF将延迟容限配置给基站。该实施例的技术方案适用于AF与PCF处于不同可信域的应用场景中,如第三方部署AF的场景。
在本申请的一个实施例中,应用功能实体还可以根据网络系统(如5G 系统)提供的QoS监测结果、网络预测情况和网络资源状况来调整发送给用户设备的多媒体数据的码率,进而可以在QoS监测结果较优、网络预测情况较好或网络资源状态较充足的情况下,增大发送给用户设备的多媒体数据的码率,以在保证流畅性的前提下提高用户设备显示的云游戏画面的清晰度;而在QoS监测结果较差、网络预测情况较差或网络资源状态不足的情况下,减小发送给用户设备的多媒体数据的码率,以提高用户设备显示的云游戏画面的流畅性。
S702,核心网实体根据UL+DL的总延迟容限和UL+DL的动态分割确定UL和DL的延迟容限。
在本申请的一个实施例中,由于应用功能实体已经通知了UL+DL的总延迟容限,以及UL+DL的动态分割,因此核心网实体可以据此来确定UL和DL的延迟容限,然后根据UL和DL的延迟容限为上行数据和下行数据分配相应的5QI值,在这种情况下,为上行数据和下行数据分别分配的QoS流已经能够指示上行传输的延迟容限和下行传输的延迟容限。
S703,核心网实体将延迟容限配置给基站,以使基站实施动态延迟监测。
在本申请的一个实施例中,核心网实体可以将为上行数据和下行数据分别分配的5QI值配置给基站。基站在进行上下行调度时,可以监测上行传输的延迟是否超过上行传输的延迟容限,并监测下行传输的延迟是否超过下行传输的延迟容限。如果上行传输的延迟超过了上行传输的延迟容限,或者下行传输的延迟超过了下行传输的延迟容限,则基站可以通知核心网实体和应用功能实体。
在图6所示的应用场景下,AF、CN实体和RAN实体之间的另一种交互过程如图10所示,可以包括如下步骤:
S1001,应用功能实体向核心网实体通知UL+DL的总延迟容限,以及UL和DL的传输优先级。
该实施例中应用功能实体与核心网实体之间的交互方式与前述实施例相同,在此不再赘述。
S1002,核心网实体根据UL+DL的总延迟容限,以及UL和DL的传输 优先级确定UL和DL的延迟容限。
在本申请的一个实施例中,由于应用功能实体通知了UL+DL的总延迟容限,以及UL和DL的传输优先级,因此核心网实体可以据此来确定UL和DL的延迟容限,比如,若上行传输的优先级高于下行传输的优先级,则上行延迟容限可以小于下行延迟容限,进而可以据此对总延迟容限进行分割。然后核心网实体可以根据UL和DL的延迟容限为上行数据和下行数据分配相应的5QI值,在这种情况下,为上行数据和下行数据分别分配的QoS流已经能够指示上行传输的延迟容限和下行传输的延迟容限。
S1003,核心网实体将延迟容限配置给基站,以使基站实施动态延迟监测。
在本申请的一个实施例中,核心网实体可以将为上行数据和下行数据分别分配的5QI值配置给基站。基站在进行上下行调度时,可以监测上行传输的延迟是否超过上行传输的延迟容限,并监测下行传输的延迟是否超过下行传输的延迟容限。如果上行传输的延迟超过了上行传输的延迟容限,或者下行传输的延迟超过了下行传输的延迟容限,则基站可以通知核心网实体和应用功能实体。
在图6所示的应用场景下,AF、CN实体和RAN实体之间的另一种交互过程如图11所示,可以包括如下步骤:
S1101,应用功能实体向核心网实体通知UL+DL的总延迟容限。
该实施例中应用功能实体与核心网实体之间的交互方式与前述实施例相同,在此不再赘述。
S1102,核心网实体根据UL+DL的总延迟容限向UL和DL分配5QI值。
在本申请的一个实施例中,核心网实体根据UL+DL的总延迟容限向UL和DL分配5QI值时,可以先确定UL和DL的延迟容限,比如核心网实体可以根据历史数据确定云游戏业务对上行传输及下行传输的延迟要求,以据此自主决定针对云游戏业务的上行延迟容限和下行延迟容限的分割情况,进而对总延迟容限进行划分得到UL和DL的延迟容限,并据此向UL和DL分配5QI值,在这种情况下,为上行数据和下行数据分别分配的QoS流已经能 够指示上行传输的延迟容限和下行传输的延迟容限。
在本申请的一个实施例中,核心网实体根据UL+DL的总延迟容限向UL和DL分配的5QI值也可以不要求上下行对延迟容限进行绝对的分割,在这种情况下,核心网实体可以引入新的指示消息来向基站指示UL+DL的总延迟容限。
S1103,核心网实体将延迟容限配置给基站,以使基站实施动态延迟监测。
在本申请的一个实施例中,如果核心网实体为上行数据和下行数据分别分配的QoS流已经能够指示上行传输的延迟容限和下行传输的延迟容限,那么核心网实体可以将为上行数据和下行数据分别分配的5QI值配置给基站。进而基站在进行上下行调度时,可以监测上行传输的延迟是否超过上行传输的延迟容限,并监测下行传输的延迟是否超过下行传输的延迟容限。如果上行传输的延迟超过了上行传输的延迟容限,或者下行传输的延迟超过了下行传输的延迟容限,则基站可以通知核心网实体和应用功能实体。
在本申请的一个实施例中,如果核心网实体为上行数据和下行数据分别分配的QoS流不要求上下行对延迟容限进行绝对的分割,且核心网实体引入了新的指示消息来向基站指示UL+DL的总延迟容限。那么基站在进行上下行调度时,可以监测上行传输和下行传输的总延迟是否超过总延迟容限。如果上行传输和下行传输的总延迟超过了总延迟容限,则基站可以通知核心网实体和应用功能实体。
在本申请的另一个实施例中,如图12所示,在云游戏业务的场景下,用户设备1201上运行有云游戏app,应用功能实体1202可以是云渲染服务器,用于根据用户设备1201发送的游戏操控数据进行渲染得到多媒体数据。用户设备1201发送的上行数据包括A1和B2,应用功能实体1202发送的下行数据包括A2和B1。其中,A1表示游戏操控数据,如用户设备1201上的传感器数据、用户设备1201检测到的动作数据等;B2表示多媒体数据的ack(即接收确认数据);A2表示游戏操控数据的ack;B1表示多媒体数据,如游戏画面、声音数据等。
图12所示的应用场景为分流的应用场景,即上行数据A1和B2分别对应于不同的QoS流,下行数据A2和B1也分别对应于不同的QoS流。其中,A1和A2可以位于一个PDU会话中,B1和B2可以位于一个PDU会话中;或者A1、A2、B1和B2可以位于同一个PDU会话中。
在图12所示的应用场景下,AF、CN实体和RAN实体之间的交互过程与前述实施例中的图7至图11所示的示例类似,具体的不同点如下:
(1)核心网实体在向上行数据和下行数据分别分配的QoS流时,需要针对不同的上行数据(即A1和B2)及不同的下行数据(即A2和B1)分别分配QoS流。
(2)基站在进行上下行调度时,如果QoS流中已经能够指示上行传输的延迟容限和下行传输的延迟容限,那么基站可以仅监测A1(即游戏操控数据)的上行传输延迟是否超过相应的上行传输延迟容限,并监测B1(即多媒体数据)的下行传输延迟是否超过相应的下行传输延迟容限。如果A1的上行传输延迟超过相应的上行传输延迟容限,或者B1的下行传输延迟超过相应的下行传输延迟容限,则基站可以通知核心网实体和应用功能实体。
(3)基站在进行上下行调度时,如果核心网实体为上行数据和下行数据分别分配的QoS流不要求上下行对延迟容限进行绝对的分割,且核心网实体引入了新的指示消息来向基站指示UL+DL的总延迟容限,那么基站可以监测A1(即游戏操控数据)的上行传输延迟与B1(即多媒体数据)的下行传输延迟之和是否超过了总延迟容限。如果A1的上行传输延迟与B1的下行传输延迟之和超过了总延迟容限,则基站可以通知核心网实体和应用功能实体。
可见,在图12所示的分流应用场景下,本申请实施例的技术方案能够保证上行传输中的部分数据流与下行传输中的部分数据流的总延迟容限,有效提高了QoS流机制的灵活性。
图6至图12所示实施例的技术方案既能够实现对云游戏业务的上行传输和下行传输的总延迟进行监控,也能够实现上下行的动态延迟容限,有效满足了业务层的QoS需求。需要说明的是,对于其它需要保证上行传输与下 行传输总延迟的业务,同样适用于本申请上述实施例的技术方案。
以下介绍本申请的装置实施例,可以用于执行本申请上述实施例中的通信方法。对于本申请装置实施例中未披露的细节,请参照本申请上述的通信方法的实施例。
图13示出了根据本申请的一个实施例的通信装置的框图。
参照图13所示,根据本申请的一个实施例的通信装置1300,包括:获取单元1302、生成单元1304和配置单元1306。
其中,获取单元1302用于获取针对目标业务的上行传输和下行传输的总延迟容限;生成单元1304用于根据所述总延迟容限生成针对所述目标业务的传输时延指示消息,所述传输时延指示消息包括所述目标业务的上行传输的QoS流指示信息和所述目标业务的下行传输的QoS流指示信息;配置单元1306用于将所述传输时延指示消息配置给接入网实体,以使所述接入网实体根据所述传输时延指示消息监控所述目标业务的传输延迟。
在本申请的一些实施例中,基于前述方案,获取单元1302配置为:接收应用功能实体发送的通知消息,根据所述通知消息获取所述总延迟容限;或基于与应用功能实体之间的签约协议信息,获取所述总延迟容限;或获取应用功能实体预先配置的所述总延迟容限。
在本申请的一些实施例中,基于前述方案,生成单元1304配置为:根据所述总延迟容限生成用于指示所述总延迟容限的信息,并向所述目标业务的上行传输和下行传输分别分配QoS流指示信息;根据用于指示所述总延迟容限的信息,以及向所述目标业务的上行传输和下行传输分别分配的QoS流指示信息,生成所述传输时延指示消息。
在本申请的一些实施例中,基于前述方案,生成单元1304配置为:根据所述总延迟容限,确定所述目标业务的上行延迟容限和下行延迟容限;根据所述上行延迟容限生成所述上行传输的QoS流指示信息,并根据所述下行延迟容限生成所述下行传输的QoS流指示信息。
在本申请的一些实施例中,基于前述方案,生成单元1304配置为:对所述总延迟容限进行分割,得到所述目标业务的上行延迟容限和下行延迟容限;或接收应用功能实体通知的所述目标业务的上行延迟容限与下行延迟容 限之间的分割情况,根据所述分割情况和所述总延迟容限确定所述上行延迟容限和所述下行延迟容限;或接收应用功能实体通知的所述目标业务的上行传输及下行传输的优先级,根据所述优先级和所述总延迟容限,确定所述上行延迟容限和所述下行延迟容限。
在本申请的一些实施例中,基于前述方案,所述目标业务的上行传输的QoS流指示信息包括:与所述目标业务的所有上行数据对应的一个QoS流指示信息;或与所述目标业务的不同类型的上行数据分别对应的QoS流指示信息,其中,所述不同类型的上行数据分别对应的QoS流指示信息不相同。
在本申请的一些实施例中,基于前述方案,所述目标业务的下行传输的QoS流指示信息包括:与所述目标业务的所有下行数据对应的一个QoS流指示信息;或与所述目标业务的不同类型的下行数据分别对应的QoS流指示信息,其中,所述不同类型的下行数据分别对应的QoS流指示信息不相同。
在本申请的一些实施例中,基于前述方案,在所述通信方法的执行主体是核心网实体的情况下;获取单元1302配置为:通过策略控制功能实体从应用功能实体获取所述总延迟容限;或通过网络暴露功能实体从应用功能实体获取所述总延迟容限,并转发给策略控制功能实体。
图14示出了根据本申请的一个实施例的通信装置的框图。
参照图14所示,根据本申请的一个实施例的通信装置1400,包括:获取单元1402和监控单元1404。
其中,获取单元1402用于获取核心网实体配置的针对目标业务的传输时延指示消息,所述传输时延指示消息是所述核心网实体根据所述目标业务的上行传输和下行传输的总延迟容限生成的,所述传输时延指示消息包括所述目标业务的上行传输的QoS流指示信息和所述目标业务的下行传输的QoS流指示信息;监控单元1404用于根据所述传输时延指示消息监控所述目标业务的传输延迟。
在本申请的一些实施例中,基于前述方案,监控单元1404配置为:若所述传输时延指示消息还包括用于指示所述总延迟容限的信息,则根据所述总延迟容限监控所述目标业务的上行传输和下行传输的总延迟;若所述上行传输的QoS流指示信息中包含有上行延迟容限,则根据所述上行延迟容限监 控所述目标业务的上行传输延迟;若所述下行传输的QoS流指示信息中包含有下行延迟容限,则根据所述下行延迟容限监控所述目标业务的下行传输延迟。
在本申请的一些实施例中,基于前述方案,所述上行传输的QoS流指示信息包括与所述目标业务的不同类型的上行数据分别对应的QoS流指示信息,所述下行传输的QoS流指示信息包括与所述目标业务的不同类型的下行数据分别对应的QoS流指示信息;监控单元1404配置为:根据所述传输时延指示消息,监控所述目标业务的指定类型的上行数据的传输延迟,以及所述目标业务的指定类型的下行数据的传输延迟;其中,所述指定类型的上行数据与所述指定类型的下行数据在传输时位于同一个协议数据单元PDU会话中或位于不同的PDU会话中。
在本申请的一些实施例中,基于前述方案,所述目标业务包括云游戏业务;所述指定类型的上行数据包括游戏操控数据,所述指定类型的下行数据包括对游戏场景渲染得到的多媒体数据。
在本申请的一些实施例中,基于前述方案,监控单元1404配置为:根据所述传输时延指示消息,监控用户设备与接入网实体之间针对所述目标业务的传输延迟;和/或根据所述传输时延指示消息,以及接入网实体与用户面功能实体之间的时延信息,监控用户设备与所述用户面功能实体之间针对所述目标业务的传输延迟。
图15示出了适于用来实现本申请实施例的电子设备的计算机系统的结构示意图。
需要说明的是,图15示出的电子设备的计算机系统1500仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。
如图15所示,计算机系统1500包括中央处理单元(Central Processing Unit,CPU)1501,其可以根据存储在只读存储器(Read-Only Memory,ROM)1502中的程序或者从存储部分1508加载到随机访问存储器(Random Access Memory,RAM)1503中的程序而执行各种适当的动作和处理,例如执行上述实施例中所述的方法。在RAM 1503中,还存储有系统操作所需的各种程序和数据。CPU 1501、ROM 1502以及RAM 1503通过总线1504彼此相连。 输入/输出(Input/Output,I/O)接口1505也连接至总线1504。
以下部件连接至I/O接口1505:包括键盘、鼠标等的输入部分1506;包括诸如阴极射线管(Cathode Ray Tube,CRT)、液晶显示器(Liquid Crystal Display,LCD)等以及扬声器等的输出部分1507;包括硬盘等的存储部分1508;以及包括诸如LAN(Local Area Network,局域网)卡、调制解调器等的网络接口卡的通信部分1509。通信部分1509经由诸如因特网的网络执行通信处理。驱动器1510也根据需要连接至I/O接口1505。可拆卸介质1511,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器1510上,以便于从其上读出的计算机程序根据需要被安装入存储部分1508。
特别地,根据本申请的实施例,下文参考流程图描述的过程可以被实现为计算机软件程序。例如,本申请的实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分1509从网络上被下载和安装,和/或从可拆卸介质1511被安装。在该计算机程序被中央处理单元(CPU)1501执行时,执行本申请的系统中限定的各种功能。
需要说明的是,本申请实施例所示的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、闪存、光纤、便携式紧凑磁盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本申请中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本申请中,计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数 据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、有线等等,或者上述的任意合适的组合。
附图中的流程图和框图,图示了按照本申请各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。其中,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,上述模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图或流程图中的每个方框、以及框图或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本申请实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现,所描述的单元也可以设置在处理器中。其中,这些单元的名称在某种情况下并不构成对该单元本身的限定。
作为另一方面,本申请还提供了一种计算机可读介质,该计算机可读介质可以是上述实施例中描述的电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被一个该电子设备执行时,使得该电子设备实现上述实施例中所述的方法。
作为另一方面,本申请还提供了一种包括指令的计算机程序产品,当其在服务器上运行时,使得服务器执行上述实施例中所述的方法。
应当注意,尽管在上文详细描述中提及了用于动作执行的设备的若干模 块或者单元,但是这种划分并非强制性的。实际上,根据本申请的实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本申请实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、触控终端、或者网络设备等)执行根据本申请实施方式的方法。
本领域技术人员在考虑说明书及实践这里公开的实施方式后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (18)

  1. 一种通信方法,应用于核心网实体,包括:
    获取针对目标业务的上行传输和下行传输的总延迟容限;
    根据所述总延迟容限生成针对所述目标业务的传输时延指示消息,所述传输时延指示消息包括所述目标业务的上行传输的服务质量QoS流指示信息和所述目标业务的下行传输的QoS流指示信息;
    将所述传输时延指示消息配置给接入网实体,以使所述接入网实体根据所述传输时延指示消息监控所述目标业务的传输延迟。
  2. 根据权利要求1所述的通信方法,所述获取针对目标业务的上行传输和下行传输的总延迟容限,包括:
    接收应用功能实体发送的通知消息,根据所述通知消息获取所述总延迟容限;或
    基于与应用功能实体之间的签约协议信息,获取所述总延迟容限;或
    获取应用功能实体预先配置的所述总延迟容限。
  3. 根据权利要求1所述的通信方法,所述根据所述总延迟容限生成针对所述目标业务的传输时延指示消息,包括:
    根据所述总延迟容限生成用于指示所述总延迟容限的信息,并向所述目标业务的上行传输和下行传输分别分配QoS流指示信息;
    根据用于指示所述总延迟容限的信息,以及向所述目标业务的上行传输和下行传输分别分配的QoS流指示信息,生成所述传输时延指示消息。
  4. 根据权利要求1所述的通信方法,所述根据所述总延迟容限生成针对所述目标业务的传输时延指示消息,包括:
    根据所述总延迟容限,确定所述目标业务的上行延迟容限和下行延迟容限;
    根据所述上行延迟容限生成所述上行传输的QoS流指示信息,并根据所述下行延迟容限生成所述下行传输的QoS流指示信息。
  5. 根据权利要求4所述的通信方法,所述根据所述总延迟容限,确定所 述目标业务的上行延迟容限和下行延迟容限,包括:
    对所述总延迟容限进行分割,得到所述目标业务的上行延迟容限和下行延迟容限;或
    接收应用功能实体通知的所述目标业务的上行延迟容限与下行延迟容限之间的分割情况,根据所述分割情况和所述总延迟容限,确定所述上行延迟容限和所述下行延迟容限;或
    接收应用功能实体通知的所述目标业务的上行传输及下行传输的优先级,根据所述优先级和所述总延迟容限,确定所述上行延迟容限和所述下行延迟容限。
  6. 根据权利要求1所述的通信方法,所述目标业务的上行传输的QoS流指示信息包括:
    与所述目标业务的所有上行数据对应的一个QoS流指示信息;或
    与所述目标业务的不同类型的上行数据分别对应的QoS流指示信息,其中,所述不同类型的上行数据分别对应的QoS流指示信息不相同。
  7. 根据权利要求1至6中任一项所述的通信方法,所述目标业务的下行传输的QoS流指示信息包括:
    与所述目标业务的所有下行数据对应的一个QoS流指示信息;或
    与所述目标业务的不同类型的下行数据分别对应的QoS流指示信息,其中,所述不同类型的下行数据分别对应的QoS流指示信息不相同。
  8. 根据权利要求1至6中任一项所述的通信方法,所述获取针对目标业务的上行传输和下行传输的总延迟容限,包括:
    策略控制功能实体从应用功能实体获取所述总延迟容限;或
    网络暴露功能实体从应用功能实体获取所述总延迟容限,并转发给策略控制功能实体。
  9. 一种通信方法,应用于接入网实体,包括:
    获取核心网实体配置的针对目标业务的传输时延指示消息,所述传输时延指示消息是所述核心网实体根据所述目标业务的上行传输和下行传输的总延 迟容限生成的,所述传输时延指示消息包括所述目标业务的上行传输的QoS流指示信息和所述目标业务的下行传输的QoS流指示信息;
    根据所述传输时延指示消息监控所述目标业务的传输延迟。
  10. 根据权利要求9所述的通信方法,所述根据所述传输时延指示消息监控所述目标业务的传输延迟,包括:
    若所述传输时延指示消息还包括用于指示所述总延迟容限的信息,则根据所述总延迟容限监控所述目标业务的上行传输和下行传输的总延迟;
    若所述上行传输的QoS流指示信息中包含有上行延迟容限,则根据所述上行延迟容限监控所述目标业务的上行传输延迟;
    若所述下行传输的QoS流指示信息中包含有下行延迟容限,则根据所述下行延迟容限监控所述目标业务的下行传输延迟。
  11. 根据权利要求9所述的通信方法,所述上行传输的QoS流指示信息包括与所述目标业务的不同类型的上行数据分别对应的QoS流指示信息,所述下行传输的QoS流指示信息包括与所述目标业务的不同类型的下行数据分别对应的QoS流指示信息;
    根据所述传输时延指示消息监控所述目标业务的传输延迟,包括:根据所述传输时延指示消息,监控所述目标业务的指定类型的上行数据的传输延迟,以及所述目标业务的指定类型的下行数据的传输延迟;
    其中,所述指定类型的上行数据与所述指定类型的下行数据在传输时位于同一个协议数据单元PDU会话中或位于不同的PDU会话中。
  12. 根据权利要求11所述的通信方法,所述目标业务包括云游戏业务;
    所述指定类型的上行数据包括游戏操控数据,所述指定类型的下行数据包括对游戏场景渲染得到的多媒体数据。
  13. 根据权利要求9至12中任一项所述的通信方法,所述根据所述传输时延指示消息监控所述目标业务的传输延迟,包括:
    根据所述传输时延指示消息,监控用户设备与接入网实体之间针对所述目标业务的传输延迟;和/或
    根据所述传输时延指示消息,以及接入网实体与用户面功能实体之间的时延信息,监控用户设备与所述用户面功能实体之间针对所述目标业务的传输延迟。
  14. 一种通信装置,包括:
    获取单元,用于获取针对目标业务的上行传输和下行传输的总延迟容限;
    生成单元,用于根据所述总延迟容限生成针对所述目标业务的传输时延指示消息,所述传输时延指示消息包括所述目标业务的上行传输的服务质量QoS流指示信息和所述目标业务的下行传输的QoS流指示信息;
    配置单元,用于将所述传输时延指示消息配置给接入网实体,以使所述接入网实体根据所述传输时延指示消息监控所述目标业务的传输延迟。
  15. 一种通信装置,包括:
    获取单元,用于获取核心网实体配置的针对目标业务的传输时延指示消息,所述传输时延指示消息是所述核心网实体根据所述目标业务的上行传输和下行传输的总延迟容限生成的,所述传输时延指示消息包括所述目标业务的上行传输的QoS流指示信息和所述目标业务的下行传输的QoS流指示信息;
    监控单元,用于根据所述传输时延指示消息监控所述目标业务的传输延迟。
  16. 一种计算机可读介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至8中任一项所述的通信方法,或实现如权利要求9至13中任一项所述的通信方法。
  17. 一种电子设备,包括:
    一个或多个处理器;
    存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如权利要求1至8中任一项所述的通信方法,或实现如权利要求9至13中任一项所述的通信方法。
  18. 一种包括指令的计算机程序产品,当其在计算机上运行时,使得所述计算机执行权利要求1至8中任一项所述的通信方法,或执行权利要求9至13中任一项所述的通信方法。
PCT/CN2020/076623 2019-04-02 2020-02-25 通信方法、装置、计算机可读介质及电子设备 WO2020199792A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217024835A KR20210109625A (ko) 2019-04-02 2020-02-25 통신 방법 및 장치, 컴퓨터 판독 가능형 매체 및 전자 장치
EP20783725.3A EP3952437A4 (en) 2019-04-02 2020-02-25 COMMUNICATIONS METHOD AND DEVICE, COMPUTER READABLE MEDIA AND ELECTRONIC DEVICE
SG11202105527VA SG11202105527VA (en) 2019-04-02 2020-02-25 Communication method and apparatus, computer-readable medium and electronic device
JP2021540492A JP7174857B2 (ja) 2019-04-02 2020-02-25 通信方法、装置、電子機器及びコンピュータプログラム
US17/324,734 US20210274389A1 (en) 2019-04-02 2021-05-19 Communication method and apparatus, computer-readable medium and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910261362.9 2019-04-02
CN201910261362.9A CN110062426B (zh) 2019-04-02 2019-04-02 通信方法、装置、计算机可读介质及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/324,734 Continuation US20210274389A1 (en) 2019-04-02 2021-05-19 Communication method and apparatus, computer-readable medium and electronic device

Publications (1)

Publication Number Publication Date
WO2020199792A1 true WO2020199792A1 (zh) 2020-10-08

Family

ID=67318221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076623 WO2020199792A1 (zh) 2019-04-02 2020-02-25 通信方法、装置、计算机可读介质及电子设备

Country Status (8)

Country Link
US (1) US20210274389A1 (zh)
EP (1) EP3952437A4 (zh)
JP (1) JP7174857B2 (zh)
KR (1) KR20210109625A (zh)
CN (1) CN110062426B (zh)
SG (1) SG11202105527VA (zh)
TW (1) TWI737232B (zh)
WO (1) WO2020199792A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023277745A1 (en) * 2021-07-01 2023-01-05 Telefonaktiebolaget Lm Ericsson (Publ) Control of dl and ul delay based on resource cost

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110062426B (zh) * 2019-04-02 2021-08-24 腾讯科技(深圳)有限公司 通信方法、装置、计算机可读介质及电子设备
CN115426677A (zh) * 2019-08-21 2022-12-02 华为技术有限公司 一种用户面信息上报方法及装置
EP4084526A4 (en) * 2020-01-21 2023-01-11 Huawei Technologies Co., Ltd. DATA TRANSMISSION METHOD, DEVICE AND SYSTEM
CN113543230A (zh) * 2020-04-16 2021-10-22 华为技术有限公司 一种数据传输的方法及通信装置
CN114071574B (zh) * 2020-07-31 2023-12-15 华为技术有限公司 QoS流控制方法及通信装置
CN112804707A (zh) * 2021-01-04 2021-05-14 腾讯科技(深圳)有限公司 数据传输方法、装置、计算机可读介质及电子设备
CN116938816A (zh) * 2021-01-04 2023-10-24 腾讯科技(深圳)有限公司 数据传输方法、装置、计算机可读介质及电子设备
WO2023143549A1 (zh) * 2022-01-29 2023-08-03 维沃移动通信有限公司 QoS的控制方法及通信设备
CN116744358A (zh) * 2022-03-04 2023-09-12 维沃移动通信有限公司 QoS控制方法及通信设备
CN117580058A (zh) * 2022-08-08 2024-02-20 华为技术有限公司 时延控制的方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111819A (zh) * 2011-03-04 2011-06-29 清华大学 一种延迟容忍网络
CN102638852A (zh) * 2011-02-12 2012-08-15 电信科学技术研究院 一种基于服务质量的调度方法、设备及系统
WO2018130741A1 (en) * 2017-01-13 2018-07-19 Nokia Technologies Oy Controlled downlink packet marking
WO2018145103A1 (en) * 2017-02-06 2018-08-09 Idac Holdings, Inc. Methods for qos management for 5g networks
CN109245936A (zh) * 2012-09-06 2019-01-18 华为技术有限公司 控制网络传输时延的方法、服务质量控制实体和通信设备
CN110062426A (zh) * 2019-04-02 2019-07-26 腾讯科技(深圳)有限公司 通信方法、装置、计算机可读介质及电子设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8208394B2 (en) * 2007-10-30 2012-06-26 Qualcomm Incorporated Service data unit discard timers
WO2011050540A1 (en) * 2009-10-31 2011-05-05 Huawei Technologies Co.,Ltd. Method in a wireless communication system for determining quality of service fulfilment
CN104186013B (zh) * 2014-03-14 2019-01-11 华为技术有限公司 一种数据处理装置及方法
US9642034B2 (en) * 2014-03-27 2017-05-02 Intel Corporation Systems, methods, and devices to support intra-QCI QoS-aware radio resource allocation
US20160182286A1 (en) * 2014-12-19 2016-06-23 Nokia Technologies Oy Method for provisioning non-real-time data
US20170317938A1 (en) * 2016-05-02 2017-11-02 Qualcomm Incorporated Determination of a data transmission schedule
CN107734562B (zh) * 2016-08-11 2020-04-03 华为技术有限公司 一种业务传输控制方法、相关设备及通信系统
CN109150808B (zh) * 2017-06-19 2021-11-09 华为技术有限公司 通信方法、装置和系统
US20190215729A1 (en) * 2018-03-15 2019-07-11 Intel Corporation Session description protocol mechanisms for signaling radio access network capabilities in multimedia telephony sessions
US20210014725A1 (en) * 2018-03-23 2021-01-14 Nokia Technologies Oy Allocating radio access network resources based on predicted video encoding rates
CN110519802B (zh) * 2018-05-21 2022-05-10 华为技术有限公司 一种数据处理方法、发送方法及装置
US11889342B2 (en) * 2018-10-30 2024-01-30 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for quality of service management
US20220191739A1 (en) * 2019-02-26 2022-06-16 Nec Corporation Communication control apparatus, communication control method, and non-transitory computer-readable medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102638852A (zh) * 2011-02-12 2012-08-15 电信科学技术研究院 一种基于服务质量的调度方法、设备及系统
CN102111819A (zh) * 2011-03-04 2011-06-29 清华大学 一种延迟容忍网络
CN109245936A (zh) * 2012-09-06 2019-01-18 华为技术有限公司 控制网络传输时延的方法、服务质量控制实体和通信设备
WO2018130741A1 (en) * 2017-01-13 2018-07-19 Nokia Technologies Oy Controlled downlink packet marking
WO2018145103A1 (en) * 2017-02-06 2018-08-09 Idac Holdings, Inc. Methods for qos management for 5g networks
CN110062426A (zh) * 2019-04-02 2019-07-26 腾讯科技(深圳)有限公司 通信方法、装置、计算机可读介质及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3952437A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023277745A1 (en) * 2021-07-01 2023-01-05 Telefonaktiebolaget Lm Ericsson (Publ) Control of dl and ul delay based on resource cost

Also Published As

Publication number Publication date
US20210274389A1 (en) 2021-09-02
KR20210109625A (ko) 2021-09-06
CN110062426A (zh) 2019-07-26
CN110062426B (zh) 2021-08-24
JP2022525496A (ja) 2022-05-17
EP3952437A1 (en) 2022-02-09
EP3952437A4 (en) 2022-06-01
SG11202105527VA (en) 2021-06-29
JP7174857B2 (ja) 2022-11-17
TWI737232B (zh) 2021-08-21
TW202102024A (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
WO2020199792A1 (zh) 通信方法、装置、计算机可读介质及电子设备
WO2022095795A1 (zh) 通信方法、装置、计算机可读介质及电子设备
WO2021093515A1 (zh) 一种数据传输的方法以及相关装置
CN108011899B (zh) 一种会话建立优化方法、装置和系统
WO2019228344A1 (zh) 资源配置方法、装置、终端及存储介质
EP3582543A1 (en) Ambr determination method, and communication entity
US20210385693A1 (en) Method and apparatus for controlling quality of service of sidelink communication, medium, and electronic device
WO2019095381A1 (zh) 业务配置方法及相关产品
CN114302426B (zh) 在异质网络控制服务质量的方法、装置、介质及电子设备
WO2021057777A1 (zh) 通信方法、装置、计算机可读介质及电子设备
CN111586600A (zh) 网络辅助信息提供方法及相关设备
TW201919428A (zh) 上行資料包資源配置方法和使用者終端
CN106792923A (zh) 一种配置QoS策略的方法及装置
EP4262248A1 (en) Communication method and apparatus for multicast and broadcast service, medium, and electronic device
TW201935975A (zh) 資源配置方法、終端及網路側設備
WO2018049626A1 (zh) 一种业务处理方法、相关设备及系统
US10694435B2 (en) Seamlessly handing over channel resources among user equipment
CN114338401A (zh) 资源分配方法、装置、电子设备和可读介质
WO2022247863A1 (zh) 策略生成方法、装置、终端、设备及会话管理单元
US20230354107A1 (en) Adjustment of network handover processing based on service time requirements
WO2023246339A1 (zh) 资源调度方法及使用方法、网络设备、终端设备及介质
US20230309136A1 (en) Scheduling time-critical data on a radio interface
WO2022237650A1 (zh) Dci大小对齐方法和设备
WO2020228435A1 (zh) 一种双连接修改的方法和设备
WO2023192928A1 (en) Edge application server discovery and identification of activated edge application servers and associated profiles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783725

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021540492

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217024835

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020783725

Country of ref document: EP

Effective date: 20211102