WO2020199644A1 - 原动机模拟方法、装置及多机同步系统频率特性模拟系统 - Google Patents

原动机模拟方法、装置及多机同步系统频率特性模拟系统 Download PDF

Info

Publication number
WO2020199644A1
WO2020199644A1 PCT/CN2019/124949 CN2019124949W WO2020199644A1 WO 2020199644 A1 WO2020199644 A1 WO 2020199644A1 CN 2019124949 W CN2019124949 W CN 2019124949W WO 2020199644 A1 WO2020199644 A1 WO 2020199644A1
Authority
WO
WIPO (PCT)
Prior art keywords
prime mover
circuit
mechanical power
reference value
simulation
Prior art date
Application number
PCT/CN2019/124949
Other languages
English (en)
French (fr)
Inventor
孙大卫
雷为民
高舜安
赵峰
王耀函
刘辉
程雪坤
李蕴红
Original Assignee
华北电力科学研究院有限责任公司
国网冀北电力有限公司电力科学研究院
国网冀北电力有限公司
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华北电力科学研究院有限责任公司, 国网冀北电力有限公司电力科学研究院, 国网冀北电力有限公司, 国家电网有限公司 filed Critical 华北电力科学研究院有限责任公司
Publication of WO2020199644A1 publication Critical patent/WO2020199644A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/32Circuit design at the digital level
    • G06F30/33Design verification, e.g. functional simulation or model checking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks

Definitions

  • This application relates to the technical field of power system characteristic simulation, for example, it relates to a prime mover simulation method and device and a multi-machine synchronization system frequency characteristic simulation system.
  • Frequency stability is the ability of the power system to maintain or restore the frequency to an allowable range without frequency collapse when the power system suffers a severe disturbance that causes a serious imbalance in the system's generation-load.
  • ASF model Average System Frequency model
  • SFR model System Frequency Response model
  • the ASF model aggregates the equations of motion of all generator rotors in the entire network into a single-unit model, retaining the independent response of the prime mover governor of each unit, reducing the system scale, and the amount of calculation is small, but for large-scale synchronous generators containing tens of thousands of units
  • the SFR model is simplified on the basis of the ASF model. The whole system is represented by a stand-alone model. Only the inertial time constant and reheat time constant of the system are considered. The maximum deviation of the system frequency under a given disturbance and its corresponding occurrence can be solved analytically. Time, although there is no need to separately model the prime movers of different units, the simulation effect is poor when the frequency characteristics are simulated, and it is difficult to reproduce the frequency characteristics of the system after a large power shortage occurs.
  • the embodiment of the application provides a prime mover simulation device for simulating the operation process of all prime movers in the entire network, improving the frequency characteristic simulation effect based on the control modeling workload, and simulating the multi-machine synchronization system after a large power shortage occurs.
  • the device includes: signal acquisition module, D/A converter, reference value acquisition module, steam turbine simulation circuit, mechanical power determination module and A/D converter;
  • the signal acquisition module is used to acquire the digital signal of the rotational speed and the electromagnetic power of the generator
  • the D/A converter is used to convert the rotational speed digital signal and the electromagnetic power digital signal of the generator into a rotational speed analog signal and an electromagnetic power analog signal;
  • the reference value obtaining module is configured to obtain the mechanical power reference value of the prime mover according to the rotational speed analog signal and the electromagnetic power analog signal;
  • the steam turbine simulation circuit is used to determine the mechanical power of the non-reheat unit of the prime mover according to the mechanical power reference value of the prime mover, and determine the mechanical power of the prime mover according to the mechanical power reference value and the proportional coefficient of the prime mover.
  • the mechanical power determination module is used to determine the mechanical power analog signal of the prime mover according to the mechanical power of the reheat unit and the mechanical power of the non-reheat unit of the prime mover;
  • the A/D converter is used to convert the mechanical power analog signal of the prime mover into a mechanical power digital signal.
  • the embodiment of the present application provides a method of using the above-mentioned prime mover simulation device to perform prime mover simulation, which is used to simulate the operation process of all prime movers in the entire network, and to improve the frequency characteristic simulation effect on the basis of the control modeling workload, which is more for simulation.
  • the frequency characteristics of the machine synchronization system after a large power shortage and the foundation for studying the frequency stability of the power system are laid.
  • the method includes:
  • the mechanical power analog signal of the prime mover is determined, and the mechanical power analog signal of the prime mover is converted into a mechanical power digital signal.
  • the embodiment of the application provides a frequency characteristic simulation system of a multi-machine synchronization system, which is used to simulate the frequency characteristic of a multi-machine synchronization system after a large power shortage occurs, and the frequency characteristic simulation effect is improved on the basis of the control modeling workload.
  • the system includes: electrical network module, generator module and the above-mentioned prime mover simulation device;
  • the electrical network module is used to generate the electromagnetic power digital signal of the generator
  • the generator module is used to generate the digital signal of the rotational speed of the generator, obtain the digital signal of the mechanical power of the prime mover, and adjust the digital signal of the rotational speed of the generator according to the digital signal of the mechanical power of the prime mover;
  • the prime mover simulation device is respectively connected to the electrical network module and the generator module, and is used to obtain the original generator based on the electromagnetic power digital signal of the generator generated by the electrical network module and the generator rotational speed digital signal generated by the generator module.
  • the mechanical power digital signal of the motive is respectively connected to the electrical network module and the generator module, and is used to obtain the original generator based on the electromagnetic power digital signal of the generator generated by the electrical network module and the generator rotational speed digital signal generated by the generator module.
  • the mechanical power digital signal of the motive is respectively connected to the electrical network module and the generator module, and is used to obtain the original generator based on the electromagnetic power digital signal of the generator generated by the electrical network module and the generator rotational speed digital signal generated by the generator module.
  • the mechanical power digital signal of the motive is respectively connected to the electrical network module and the generator module, and is used to obtain the original generator based on the electromagnetic power digital signal of the generator generated by the electrical network module and the generator rotational speed digital signal generated by the generator module.
  • the mechanical power digital signal of the motive
  • Figure 1 is a structural diagram of a prime mover simulation device in an embodiment of this application.
  • FIG. 2 is a structural diagram of a reference value obtaining module of the prime mover simulation device in an embodiment of the application;
  • FIG. 3 is a structural diagram of a reference value obtaining module, a steam turbine simulation circuit, and a mechanical power determining module of the prime mover simulation device in an embodiment of the application;
  • Figure 4 is a schematic diagram of a prime mover simulation method in an embodiment of the application.
  • FIG. 5 is a structural diagram of a frequency characteristic simulation system of a multi-machine synchronization system in an embodiment of the application
  • FIG. 6 is a diagram showing the results of a simulation experiment performed by a frequency characteristic simulation system of a multi-machine synchronization system in an embodiment of the application.
  • the device may include: a signal acquisition module 100, a D/A converter 200, a reference value acquisition module 300, a steam turbine simulation circuit 400, and a mechanical power determination module 500 and A/D converter 600;
  • the signal acquisition module 100 is used to acquire the digital signal of the rotational speed and the electromagnetic power of the generator;
  • the D/A converter 200 is used to convert the rotational speed digital signal and the electromagnetic power digital signal of the generator into a rotational speed analog signal and an electromagnetic power analog signal;
  • the reference value obtaining module 300 is configured to obtain the mechanical power reference value of the prime mover according to the rotational speed analog signal and the electromagnetic power analog signal;
  • the steam turbine simulation circuit 400 is used to determine the mechanical power of the prime mover according to the mechanical power reference value of the prime mover, and determine the prime mover according to the mechanical power reference value and the proportional coefficient of the prime mover.
  • the mechanical power determining module 500 is used to determine the mechanical power analog signal of the prime mover according to the mechanical power of the reheat unit and the mechanical power of the non-reheat unit of the prime mover;
  • the A/D converter 600 is used to convert the mechanical power analog signal of the prime mover into a mechanical power digital signal.
  • the prime mover simulation device performs unified modeling of all prime movers in the entire network, and not only simulates the operation of the governor in the prime mover of the entire network in the reference value obtaining module During the process, the steam turbine simulation circuit was used to simulate the operation process of the steam turbine in the prime mover of the whole network. After obtaining the mechanical power reference value of the prime mover, the mechanical power of the prime mover non-reheat unit was determined according to the mechanical power reference value of the prime mover.
  • the prime mover simulation device uses only one comprehensive model to simulate the operation process of all prime movers in the entire network, effectively controlling the modeling workload, and by adding the simulation of the steam turbine operation process in the prime mover to the prime mover simulation device , On the basis of the control modeling workload, the frequency characteristics simulation effect is improved, which lays the foundation for simulating the frequency characteristics of the multi-machine synchronous system after a large power shortage and studying the frequency stability of the power system.
  • the implementation of the prime mover simulation device in the embodiment of the present application will be described below with reference to the examples in FIGS. 2 to 3.
  • the structure shown in Figure 2 to Figure 3 is only an example of realizing the prime mover simulation device of the embodiment of the present application.
  • part or all of the structural units in the device can be deformed, for example, by adding or reducing adder circuits. Or a multiplier circuit to achieve the same function.
  • the reference value obtaining module 300 includes: a governor simulation circuit 310 and a servo motor simulation circuit 320, and a governor simulation circuit 310 for simulating the speed of the generator Signal, the reference value of the prime mover's speed and the reference value of the prime mover's power to determine the prime mover's electromagnetic power reference value; the servo motor simulation circuit 320 is used to simulate the generator's electromagnetic power signal and the prime mover's electromagnetic power reference value, Determine the mechanical power reference value of the prime mover.
  • the related technology usually only simulates the operation process of the governor in the prime mover of the whole network, but lacks the simulation of the servo motor and the steam turbine in the prime mover. This makes the simulation effect poor when performing frequency characteristic simulation, and it is impossible to reproduce the large power of the system Frequency characteristics after vacancy. Therefore, the servo motor simulation circuit 320 and the steam turbine simulation circuit 400 are added to the prime mover simulation device in the embodiment of the present application, and the mechanical power reference value of the prime mover is obtained in the servo motor simulation circuit 320, and then based on the prime mover in the steam turbine simulation circuit 400 The mechanical power reference value of the prime mover is the mechanical power of the reheat unit and the mechanical power of the non-reheat unit. By simulating the operation process of the servo motor and the steam turbine, the simulation accuracy of the prime mover simulation device is effectively improved, laying a foundation for reproducing the frequency characteristics of the system after a large power shortage.
  • the governor simulation circuit 310 includes: a first adder circuit, a second adder circuit, and a first multiplier circuit
  • the servo motor simulation circuit 320 includes: The third adder circuit.
  • the input end of the first adder circuit is connected to the rotational speed analog signal of the generator and the rotational speed reference value of the prime mover; the output end of the first adder circuit is connected to the input end of the first multiplier circuit; the output end of the first multiplier circuit is connected to the second adder
  • the input of the second adder circuit is connected to the power reference value of the prime mover; the output of the second adder circuit obtains the electromagnetic power reference value of the prime mover;
  • the input of the third adder circuit is connected to the electromagnetic power of the generator The power analog signal and the reference value of the electromagnetic power of the prime mover obtained at the output of the second adder circuit; the output end of the third adder circuit obtains the reference value of the mechanical power of the prime mover.
  • the servo motor simulation circuit 320 further includes: a fourth adder circuit, a second multiplier circuit, a third multiplier circuit, and an integrator circuit.
  • the output terminal of the second adder circuit is respectively connected to the input terminal of the third adder circuit and the input terminal of the third multiplier circuit; the output terminal of the third adder circuit is connected to the input terminal of the second multiplier circuit and the input terminal of the integrator circuit respectively;
  • the input ends of the adder circuit are respectively connected to the output ends of the second multiplier circuit, the output ends of the integrator circuit and the output ends of the third multiplier circuit; the output ends of the fourth adder circuit obtain the mechanical power reference value of the prime mover.
  • the proportional coefficient includes: the proportional coefficient of the high pressure cylinder, the proportional coefficient of the low pressure cylinder, and the proportional coefficient of the intermediate pressure cylinder.
  • the steam turbine simulation circuit 400 includes: a first integration circuit, a second integration circuit, a third integration circuit, a fourth integration circuit, a fourth multiplier circuit, a fifth multiplier circuit, and a sixth multiplication circuit. And the fifth adder circuit.
  • the input terminal of the first integration circuit is connected to the reference value obtaining module 300 to obtain the mechanical power reference value of the prime mover; the output terminal of the first integration circuit is respectively connected to the input terminal and the second integral circuit of the fourth multiplier circuit constructed by the proportional coefficient of the high pressure cylinder
  • the input of the circuit; the output of the second integral circuit is connected to the input of the third integral circuit and the input of the sixth multiplier circuit constructed by the proportional coefficient of the medium-pressure cylinder; the output of the third integral circuit is connected with the proportional coefficient of the low-pressure cylinder
  • the input terminal of the fifth multiplier circuit; the input terminal of the fifth adder circuit is respectively connected to the output terminal of the fourth multiplier circuit, the output terminal of the fifth multiplier circuit and the output terminal of the sixth multiplier circuit; the output terminal of the fifth adder circuit is obtained
  • the mechanical power of the reheat unit of the prime mover; the input terminal of the fourth integration circuit is connected to the reference value obtaining module 300 to obtain the mechanical power reference value of the prime mover; the output of
  • the steam turbine simulation circuit 400 further includes: a first limiter circuit.
  • the first limiter circuit can effectively protect the first integral circuit, the second integral circuit, the third integral circuit, the fourth multiplier circuit, the fifth multiplier circuit, the sixth multiplier circuit, and the fifth adder in the steam turbine simulation circuit 400 ⁇ circuits.
  • the mechanical power reference value of the prime mover obtained by the reference value obtaining module 300 is connected to the input terminal of the first integrating circuit through the first amplitude limiting circuit.
  • the steam turbine simulation circuit 400 further includes: a second limiter circuit.
  • the second limiting circuit can effectively protect the fourth integrating circuit in the steam turbine simulation circuit 400.
  • the mechanical power reference value of the prime mover obtained by the reference value obtaining module 300 is connected to the input terminal of the fourth integrating circuit through the second limiting circuit.
  • the mechanical power determination module 500 includes: a seventh multiplier circuit, an eighth multiplier circuit, and a sixth adder circuit.
  • the input end of the seventh multiplier circuit constructed from the reheat unit coefficients is connected to the steam turbine simulation circuit 400 to obtain the mechanical power of the reheat unit of the prime mover;
  • the input end of the eighth multiplier circuit constructed from the non-reheat unit coefficients is connected Enter the steam turbine simulation circuit 400 to obtain the prime mover's non-reheat unit mechanical power;
  • the output of the seventh multiplier circuit and the output of the eighth multiplier circuit are connected to the input of the sixth adder circuit; the output of the sixth adder circuit is obtained
  • the mechanical power analog signal of the prime mover is obtained.
  • the embodiment of the present application also provides a method of using the above-mentioned device to perform prime mover simulation, as described in the following embodiment.
  • Fig. 4 is a schematic diagram of a prime mover simulation method in an embodiment of the application. As shown in Fig. 4, the method includes:
  • Step 401 Acquire the rotational speed digital signal and the electromagnetic power digital signal of the generator, and convert the rotational speed digital signal and the electromagnetic power digital signal of the generator into a rotational speed analog signal and an electromagnetic power analog signal.
  • Step 402 Obtain the mechanical power reference value of the prime mover according to the rotational speed analog signal and the electromagnetic power analog signal.
  • Step 403 Determine the mechanical power of the non-reheat unit of the prime mover according to the mechanical power reference value of the prime mover, and determine the mechanical power of the reheat unit of the prime mover according to the mechanical power reference value and the proportional coefficient of the prime mover. .
  • Step 404 Determine the mechanical power analog signal of the prime mover according to the mechanical power of the reheat unit and the mechanical power of the non-reheat unit of the prime mover, and convert the mechanical power analog signal of the prime mover into a mechanical power digital signal.
  • the mechanical power analog signal of the prime mover is determined as follows:
  • the sum of the first mechanical power and the second mechanical power is used as the mechanical power analog signal of the prime mover.
  • the embodiment of the present application also provides a frequency characteristic simulation system of a multi-machine synchronization system, as described in the following embodiment.
  • FIG. 5 is a structural diagram of a frequency characteristic simulation system of a multi-machine synchronization system in an embodiment of the application. As shown in FIG. 5, the system includes: an electric network module 501, a generator module 502 and the aforementioned prime mover simulation device 503;
  • the electrical network module 501 is used to generate the electromagnetic power digital signal of the generator
  • the generator module 502 is used to generate the digital signal of the rotational speed of the generator, obtain the digital signal of the mechanical power of the prime mover, and adjust the digital signal of the rotational speed of the generator according to the digital signal of the mechanical power of the prime mover;
  • the prime mover simulation device 503 is respectively connected to the electrical network module and the generator module, and is used to obtain the prime mover according to the electromagnetic power digital signal of the generator generated by the electrical network module and the generator rotational speed digital signal generated by the generator module Digital signal of mechanical power.
  • the electrical network module 501 generates the electromagnetic power digital signal P eD of the generator
  • the generator module 502 generates the generator rotational speed digital signal ⁇ D
  • the prime mover simulation device 503 and the electrical network module respectively 501 is connected to the generator module 502
  • the digital signal acquisition module 100 obtains the generator's rotational speed digital signal ⁇ D and electromagnetic power digital signal P eD
  • the D/A converter 200 uses the D/A converter 200 to convert the generator's rotational speed digital signal ⁇ D and electromagnetic
  • the power digital signal P eD is converted into a rotational speed analog signal ⁇ S and an electromagnetic power analog signal P eS .
  • the generator rotational speed analog signal ⁇ S and electromagnetic power analog signal P eS are obtained .
  • the generator rotational speed analog signal ⁇ S and the rotational speed reference value ⁇ ref are input to the first adder circuit to obtain the generator rotational speed
  • the difference between the analog signal ⁇ S and the rotational speed reference value ⁇ ref is multiplied by the active frequency modulation coefficient K f through the first multiplier circuit, and then input into the second adder circuit together with the power reference value Pref to obtain the electromagnetic power reference
  • the value P eref where the speed reference value ⁇ ref can be 1 p.u., and the active frequency modulation coefficient K f can be 20.
  • the electromagnetic power reference value P eref of the prime mover is obtained according to the following formula:
  • an electromagnetic power reference value P prime mover After obtaining a prime mover Eref electromagnetic power reference value P, the reference value of the electromagnetic power of the prime mover and Eref electromagnetic power P P eS analog signal input of the third adder circuit, an electromagnetic power reference value P prime mover The difference between eref and the electromagnetic power analog signal P eS is then passed through the PI control circuit composed of an integrator circuit and a second multiplier circuit, and then compared with the electromagnetic power reference value P eref of the prime mover through the load feedforward coefficient K L. The output of the three multiplier circuits are superimposed to obtain the mechanical power reference value P mref of the prime mover , as follows:
  • the mechanical power reference value P mref of the prime mover is used as input, and the mechanical power P of the reheat unit is obtained through the combination of three first-order integrator circuits, three multiplier circuits, an adder circuit and a limiter circuit mS1 is as follows:
  • P mvF1 is the limiting value of the first limiting circuit.
  • the mechanical power reference value P mref of the prime mover is used as input, and the non-reheat unit mechanical power P mS2 is obtained through the combination of a first-order integrator circuit and a limiter circuit, as follows:
  • P mvF2 is the limiting value of the second limiting circuit.
  • the reheat unit mechanical power P mS1 and the non-reheat unit mechanical power P mS2 are respectively passed through the seventh multiplier circuit formed by the reheat unit coefficient R 1 and the eighth multiplier formed by the non-reheat unit coefficient R 2 After the circuit is added, the mechanical power analog signal P mS is obtained as the overall output, as follows:
  • the A/D converter 600 is used to convert the mechanical power analog signal P mS of the prime mover into a mechanical power digital signal P mD .
  • the generator module 502 obtains the mechanical power digital signal P mD of the prime mover, and then adjusts the rotational speed digital signal ⁇ D of the generator according to the mechanical power digital signal P mD of the prime mover.
  • the frequency characteristics simulation system of the multi-machine synchronization system provided in this example, analyze the generator speed after the power supply capacity of 3.6% of the power shortage occurs in the electric network module in the model, and compare it with the actual system after the 3.6% power shortage. The speed record data is compared, and the result is shown in Figure 6. It can be seen from FIG. 6 that the frequency characteristic simulation system of the multi-machine synchronous system provided by this application can reproduce the speed characteristic of the synchronous machine of the actual system, and then reproduce the frequency characteristic of the actual system.
  • the prime mover simulation device performs unified modeling of all prime movers in the entire network, and not only simulates the operation process of the governor in the prime mover of the entire network in the reference value acquisition module, but also uses The steam turbine simulation circuit simulates the operation process of the steam turbine in the prime mover of the whole network.
  • the mechanical power of the prime mover is determined according to the mechanical power reference value of the prime mover.
  • the mechanical power reference value and proportional coefficient determine the mechanical power of the reheat unit of the prime mover.
  • the mechanical power simulation signal of the prime mover is determined according to the mechanical power of the reheat unit of the prime mover and the mechanical power of the non-reheat unit.
  • the prime mover simulation device uses only one comprehensive model to simulate the operation process of all prime movers in the entire network, effectively controlling the modeling workload, and by adding the simulation of the steam turbine operation process in the prime mover to the prime mover simulation device , On the basis of the control modeling workload, the frequency characteristics simulation effect is improved, which lays the foundation for simulating the frequency characteristics of the multi-machine synchronous system after a large power shortage and studying the frequency stability of the power system.
  • the prime mover simulation method proposed in the embodiment of this application converts the generator's rotational speed digital signal and electromagnetic power digital signal into rotational speed analog signal and electromagnetic power analog signal by acquiring the rotational speed digital signal and electromagnetic power digital signal of the generator.
  • the analog signal and electromagnetic power analog signal are used to obtain the mechanical power reference value of the prime mover.
  • the prime mover's mechanical power reference value determine the prime mover's non-reheat unit mechanical power, and determine the prime mover's mechanical power reference value and proportional coefficient.
  • the mechanical power of the reheat unit of the prime mover is converting the generator's rotational speed digital signal and electromagnetic power digital signal into rotational speed analog signal and electromagnetic power analog signal by acquiring the rotational speed digital signal and electromagnetic power digital signal of the generator.
  • the analog signal and electromagnetic power analog signal are used to obtain the mechanical power reference value of the prime mover.
  • determine the prime mover's non-reheat unit mechanical power determine the prime mover's mechanical power reference value and proportional coefficient.
  • the mechanical power analog signal of the prime mover is determined, and the mechanical power analog signal of the prime mover is converted into mechanical power. Power digital signal.
  • the embodiment of this application only uses a comprehensive model to simulate the operation process of all prime movers in the entire network, effectively controlling the modeling workload, and through the prime mover simulation device
  • the simulation of the operation process of the steam turbine in the prime mover is added to improve the frequency characteristics simulation effect on the basis of the control modeling workload, which lays the foundation for simulating the frequency characteristics of the multi-machine synchronous system after a large power shortage and studying the frequency stability of the power system .
  • the frequency characteristics simulation system of the multi-machine synchronization system proposed in the embodiment of the application simulates the frequency characteristics of the multi-machine synchronization system after a large power shortage occurs.
  • the simulation device of the prime mover performs unified modeling of all prime movers in the entire network, not only for reference
  • the value acquisition module simulates the operation process of the governor in the prime mover of the whole network, and also uses the steam turbine simulation circuit to simulate the operation process of the steam turbine in the prime mover of the whole network.
  • the mechanical power reference value is used to determine the mechanical power of the prime mover’s non-reheat unit. According to the prime mover’s mechanical power reference value and proportional coefficient, the prime mover’s reheat unit mechanical power is determined.
  • the mechanical power of the reheat unit determines the mechanical power analog signal of the prime mover.
  • the generator module obtains the prime mover's mechanical power digital signal, and adjusts the generator's rotational speed digital signal according to the prime mover's mechanical power digital signal. It can simulate the frequency characteristics of a multi-machine synchronization system after a large power shortage occurs.
  • the embodiment of this application uses only one comprehensive model to simulate the operation process of all prime movers in the entire network, effectively controlling the modeling workload, and by adding the simulation of the steam turbine operation process in the prime mover to the prime mover simulation device, the control modeling work
  • the frequency characteristic simulation effect is improved on the basis of the quantity, which lays the foundation for studying the frequency stability of the power system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Eletrric Generators (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本申请公开了一种原动机模拟方法、装置及多机同步系统频率特性模拟系统,其中原动机模拟装置包括:信号获取模块,D/A转换器,参考值获得模块,汽轮机模拟电路,机械功率确定模块和A/D转换器;参考值获得模块,用于根据转速模拟信号和电磁功率模拟信号,获得机械功率参考值;汽轮机模拟电路,用于根据机械功率参考值,确定非再热机组机械功率,根据机械功率参考值和比例系数,确定再热机组机械功率;机械功率确定模块,用于根据再热机组机械功率和非再热机组机械功率,确定机械功率模拟信号。

Description

原动机模拟方法、装置及多机同步系统频率特性模拟系统
本申请要求在2019年04月04日提交中国专利局、申请号为201910271151.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电力系统特性模拟技术领域,例如涉及原动机模拟方法、装置及多机同步系统频率特性模拟系统。
背景技术
频率稳定性是电力系统在遭受严重扰动导致系统发电-负荷出现严重不平衡时,频率能够保持或恢复到允许的范围内不发生频率崩溃的能力。对于频率稳定性的研究,学者们最初采用时域仿真的分析方法,该方法可以得到详细的系统频率动态响应曲线,并可以考虑频率动态的时空分布特征。但由于考虑因素较多,分析速度较慢,为此,有学者提出平均系统频率模型(Average System Frequency model,ASF模型)和系统频率响应模型(System Frequency Response model,SFR模型)的频率稳定性分析方法。ASF模型将全网所有发电机转子运动方程等值聚合为单机模型,保留了各机组原动机调速器的独立响应,降低了系统规模,计算量小,但是对于包含上万台机组的大型同步电网,采用ASF模型需要对全网所有的原动机分别进行建模,工作量极大。SFR模型则在ASF模型基础上进行了简化,全系统用单机模型来表示,仅考虑系统惯性时间常数和再热时间常数,可解析求解给定扰动下系统频率最大偏移量及其对应出现的时间,虽然无需分别对不同机组的原动机进行建模,但进行频率特性模拟时模拟效果较差,难以复现系统出现大型功率缺额后的频率特性。
发明内容
本申请实施例提供一种原动机模拟装置,用以模拟全网所有原动机的运行过程,在控制建模工作量的基础上提高频率特性模拟效果,为模拟多机同步系统出现大型功率缺额后的频率特性以及研究电力系统频率稳定性奠定基础,该装置包括:信号获取模块,D/A转换器,参考值获得模块,汽轮机模拟电路,机械功率确定模块和A/D转换器;
所述信号获取模块,用于获取发电机的转速数字信号和电磁功率数字信号;
所述D/A转换器,用于将所述的发电机的转速数字信号和电磁功率数字信号转换为转速模拟信号和电磁功率模拟信号;
所述参考值获得模块,用于根据所述转速模拟信号和电磁功率模拟信号,获得原动机的机械功率参考值;
所述汽轮机模拟电路,用于根据所述的原动机的机械功率参考值,确定原动机的非再热机组机械功率,根据所述的原动机的机械功率参考值和比例系数,确定原动机的再热机组机械功率;
所述机械功率确定模块,用于根据所述的原动机的再热机组机械功率和非再热机组机械功率,确定原动机的机械功率模拟信号;
所述A/D转换器,用于将所述的原动机的机械功率模拟信号转换为机械功率数字信号。
本申请实施例提供一种利用上述原动机模拟装置进行原动机模拟的方法,用以模拟全网所有原动机的运行过程,在控制建模工作量的基础上提高频率特性模拟效果,为模拟多机同步系统出现大型功率缺额后的频率特性以及研究电力系统频率稳定性奠定基础,该方法包括:
获取发电机的转速数字信号和电磁功率数字信号,将所述的发电机的转速数字信号和电磁功率数字信号转换为转速模拟信号和电磁功率模拟信号;
根据所述转速模拟信号和电磁功率模拟信号,获得原动机的机械功率参考值;
根据所述的原动机的机械功率参考值,确定原动机的非再热机组机械功率,根据所述的原动机的机械功率参考值和比例系数,确定原动机的再热机组机械功率;
根据所述的原动机的再热机组机械功率和非再热机组机械功率,确定原动机的机械功率模拟信号,将所述原动机的机械功率模拟信号转换为机械功率数字信号。
本申请实施例提供一种多机同步系统频率特性模拟系统,用以模拟多机同步系统出现大型功率缺额后的频率特性,在控制建模工作量的基础上提高频率特性模拟效果,为研究电力系统频率稳定性奠定基础,该系统包括:电网络模块,发电机模块和上述原动机模拟装置;
所述电网络模块,用于产生发电机的电磁功率数字信号;
所述发电机模块,用于产生发电机的转速数字信号,获取原动机的机械功率数字信号,以及根据原动机的机械功率数字信号调整发电机的转速数字信号;
所述原动机模拟装置,分别与所述电网络模块和发电机模块连接,用于根据电网络模块产生的发电机的电磁功率数字信号和发电机模块产生的发电机的 转速数字信号,获得原动机的机械功率数字信号。
附图说明
图1为本申请实施例中原动机模拟装置的结构图;
图2为本申请实施例中原动机模拟装置的参考值获得模块的结构图;
图3为本申请实施例中原动机模拟装置的参考值获得模块、汽轮机模拟电路以及机械功率确定模块的结构图;
图4为本申请实施例中原动机模拟方法的示意图;
图5为本申请实施例中多机同步系统频率特性模拟系统的结构图;
图6为本申请实施例中利用多机同步系统频率特性模拟系统进行模拟实验的结果图。
具体实施方式
下面结合附图对本申请实施例进行说明。在此,本申请的示意性实施例及其说明用于解释本申请,但并不作为对本申请的限定。
为了模拟全网所有原动机的运行过程,在控制建模工作量的基础上提高频率特性模拟效果,为模拟多机同步系统出现大型功率缺额后的频率特性以及研究电力系统频率稳定性奠定基础,本申请实施例提供一种原动机模拟装置,如图1所示,该装置可以包括:信号获取模块100,D/A转换器200,参考值获得模块300,汽轮机模拟电路400,机械功率确定模块500和A/D转换器600;
所述信号获取模块100,用于获取发电机的转速数字信号和电磁功率数字信号;
所述D/A转换器200,用于将所述的发电机的转速数字信号和电磁功率数字信号转换为转速模拟信号和电磁功率模拟信号;
所述参考值获得模块300,用于根据所述转速模拟信号和电磁功率模拟信号,获得原动机的机械功率参考值;
所述汽轮机模拟电路400,用于根据所述的原动机的机械功率参考值,确定原动机的非再热机组机械功率,根据所述的原动机的机械功率参考值和比例系数,确定原动机的再热机组机械功率;
所述机械功率确定模块500,用于根据所述的原动机的再热机组机械功率和非再热机组机械功率,确定原动机的机械功率模拟信号;
所述A/D转换器600,用于将所述的原动机的机械功率模拟信号转换为机械功率数字信号。
由图1所示可以得知,本申请实施例提供的原动机模拟装置,对全网所有原动机进行统一建模,不仅在参考值获得模块中模拟了全网原动机中调速器的运行过程,还利用汽轮机模拟电路模拟了全网原动机中汽轮机的运行过程,在获得原动机的机械功率参考值之后,根据原动机的机械功率参考值,确定原动机的非再热机组机械功率,根据原动机的机械功率参考值和比例系数,确定原动机的再热机组机械功率,根据原动机的再热机组机械功率和非再热机组机械功率,确定原动机的机械功率模拟信号。本申请实施例提供的原动机模拟装置仅利用一个综合模型实现全网所有原动机的运行过程模拟,有效控制了建模工作量,并且通过在原动机模拟装置中加入原动机中汽轮机运行过程的模拟,在控制建模工作量的基础上提高了频率特性模拟效果,为模拟多机同步系统出现大型功率缺额后的频率特性以及研究电力系统频率稳定性奠定基础。
下面结合图2-图3的示例说明本申请实施例的原动机模拟装置的实施。图2-图3所示的结构仅为实现本申请实施例原动机模拟装置的一个实例,在实施时完全可以将装置中的部分或全部结构单元进行变形,例如可以通过增加或减少加法器电路或乘法器电路来实现相同的功能。
如图2所示,本例的原动机模拟装置中,参考值获得模块300包括:调速器模拟电路310和伺服电机模拟电路320,调速器模拟电路310,用于根据发电机的转速模拟信号、原动机的转速参考值和原动机的功率参考值,确定原动机的电磁功率参考值;伺服电机模拟电路320,用于根据发电机的电磁功率模拟信号和原动机的电磁功率参考值,确定原动机的机械功率参考值。
相关技术中通常仅模拟全网原动机中调速器的运行过程,而缺少对于原动机中伺服电机和汽轮机的模拟,这使得进行频率特性模拟时模拟效果较差,无法复现系统出现大型功率缺额后的频率特性。因此,本申请实施例中原动机模拟装置中加入了伺服电机模拟电路320和汽轮机模拟电路400,在伺服电机模拟电路320中得到原动机的机械功率参考值,然后在汽轮机模拟电路400中根据原动机的机械功率参考值分别得到原动机的再热机组机械功率和非再热机组机械功率。通过模拟伺服电机和汽轮机的运行过程,有效提高了原动机模拟装置的模拟准确性,为复现系统出现大型功率缺额后的频率特性奠定基础。
如图3所示,本例的原动机模拟装置中,调速器模拟电路310包括:第一加法器电路、第二加法器电路和第一乘法器电路,所述伺服电机模拟电路320 包括:第三加法器电路。第一加法器电路输入端接入发电机的转速模拟信号和原动机的转速参考值;第一加法器电路输出端连接第一乘法器电路输入端;第一乘法器电路输出端连接第二加法器电路输入端;第二加法器电路输入端接入原动机的功率参考值;第二加法器电路输出端获得原动机的电磁功率参考值;第三加法器电路输入端接入发电机的电磁功率模拟信号和第二加法器电路输出端获得的原动机的电磁功率参考值;第三加法器电路输出端获得原动机的机械功率参考值。
本例的原动机模拟装置中,伺服电机模拟电路320还包括:第四加法器电路、第二乘法器电路、第三乘法器电路和积分器电路。第二加法器电路输出端分别连接第三加法器电路输入端和第三乘法器电路输入端;第三加法器电路输出端分别连接第二乘法器电路输入端和积分器电路输入端;第四加法器电路输入端分别连接第二乘法器电路输出端、积分器电路输出端和第三乘法器电路输出端;第四加法器电路输出端获得原动机的机械功率参考值。
实施例中,比例系数包括:高压缸比例系数、低压缸比例系数和中压缸比例系数。
本例的原动机模拟装置中,汽轮机模拟电路400包括:第一积分电路、第二积分电路、第三积分电路、第四积分电路、第四乘法器电路、第五乘法器电路、第六乘法器电路和第五加法器电路。第一积分电路输入端接入参考值获得模块300得到的原动机的机械功率参考值;第一积分电路输出端分别连接由高压缸比例系数构造的第四乘法器电路的输入端和第二积分电路输入端;第二积分电路输出端分别连接第三积分电路输入端和由中压缸比例系数构造的第六乘法器电路的输入端;第三积分电路输出端连接由低压缸比例系数构造的第五乘法器电路的输入端;第五加法器电路输入端分别连接第四乘法器电路输出端、第五乘法器电路输出端和第六乘法器电路输出端;第五加法器电路输出端获得原动机的再热机组机械功率;第四积分电路输入端接入参考值获得模块300得到的原动机的机械功率参考值;第四积分电路输出端获得原动机的非再热机组机械功率。
本例的原动机模拟装置中,汽轮机模拟电路400还包括:第一限幅电路。第一限幅电路可以有效保护汽轮机模拟电路400中的第一积分电路、第二积分电路、第三积分电路、第四乘法器电路、第五乘法器电路、第六乘法器电路和第五加法器电路。参考值获得模块300得到的原动机的机械功率参考值经过第一限幅电路接入第一积分电路输入端。
本例的原动机模拟装置中,汽轮机模拟电路400还包括:第二限幅电路。第二限幅电路可以有效保护汽轮机模拟电路400中的第四积分电路。参考值获 得模块300得到的原动机的机械功率参考值经过第二限幅电路接入第四积分电路输入端。
本例的原动机模拟装置中,机械功率确定模块500包括:第七乘法器电路、第八乘法器电路和第六加法器电路。由再热机组系数构造的第七乘法器电路的输入端接入汽轮机模拟电路400,获得的原动机的再热机组机械功率;由非再热机组系数构造的第八乘法器电路的输入端接入汽轮机模拟电路400,获得的原动机的非再热机组机械功率;第七乘法器电路输出端和第八乘法器电路输出端连接第六加法器电路输入端;第六加法器电路输出端获得原动机的机械功率模拟信号。
本申请实施例还提供了一种利用上述的装置进行原动机模拟的方法,如下面的实施例所述。
图4为本申请实施例中原动机模拟方法的示意图,如图4所示,该方法包括:
步骤401、获取发电机的转速数字信号和电磁功率数字信号,将所述的发电机的转速数字信号和电磁功率数字信号转换为转速模拟信号和电磁功率模拟信号。
步骤402、根据所述转速模拟信号和电磁功率模拟信号,获得原动机的机械功率参考值。
步骤403、根据所述的原动机的机械功率参考值,确定原动机的非再热机组机械功率,根据所述的原动机的机械功率参考值和比例系数,确定原动机的再热机组机械功率。
步骤404、根据所述的原动机的再热机组机械功率和非再热机组机械功率,确定原动机的机械功率模拟信号,将所述原动机的机械功率模拟信号转换为机械功率数字信号。
一个实施例中,按如下方式确定原动机的机械功率模拟信号:
将原动机的再热机组机械功率与再热机组系数相乘,得到第一机械功率;
将原动机的非再热机组机械功率与非再热机组系数相乘,得到第二机械功率;
将所述第一机械功率与第二机械功率的和作为原动机的机械功率模拟信号。
本申请实施例还提供了一种多机同步系统频率特性模拟系统,如下面的实施例所述。
图5为本申请实施例中多机同步系统频率特性模拟系统的结构图,如图5所示,该系统包括:电网络模块501,发电机模块502和上述原动机模拟装置503;
所述电网络模块501,用于产生发电机的电磁功率数字信号;
所述发电机模块502,用于产生发电机的转速数字信号,获取原动机的机械功率数字信号,以及根据原动机的机械功率数字信号调整发电机的转速数字信号;
所述原动机模拟装置503,分别与电网络模块和发电机模块连接,用于根据电网络模块产生的发电机的电磁功率数字信号和发电机模块产生的发电机的转速数字信号,获得原动机的机械功率数字信号。
下面以图3-图5为例,说明本申请实施例的多机同步系统频率特性模拟系统是如何模拟多机同步系统出现大型功率缺额后的频率特性以及系统中的原动机模拟装置是如何实现原动机模拟的。
如图3-图5所示,首先,电网络模块501产生发电机的电磁功率数字信号P eD,发电机模块502产生发电机的转速数字信号ω D,原动机模拟装置503分别与电网络模块501和发电机模块502连接,通过数字信号获取模块100获取发电机的转速数字信号ω D和电磁功率数字信号P eD,然后利用D/A转换器200将发电机的转速数字信号ω D和电磁功率数字信号P eD转换为转速模拟信号ω S和电磁功率模拟信号P eS
本例中,在得到发电机的转速模拟信号ω S和电磁功率模拟信号P eS之后,将发电机的转速模拟信号ω S和转速参考值ω ref输入第一加法器电路,得到发电机的转速模拟信号ω S与转速参考值ω ref的差值。将转速模拟信号ω S和转速参考值ω ref的差值,经过第一乘法器电路,乘以有功调频系数K f,再与功率参考值P ref一起输入第二加法器电路,得到电磁功率参考值P eref,其中,转速参考值ω ref可以取1p.u.,有功调频系数K f可以取20。按如下公式获得原动机的电磁功率参考值P eref
P eref=(ω Sref)×K f+P ref       (1)
本例中,在得到原动机的电磁功率参考值P eref之后,将原动机的电磁功率参考值P eref与电磁功率模拟信号P eS输入第三加法器电路,得到原动机的电磁功率参考值P eref与电磁功率模拟信号P eS的差值,然后通过积分器电路和第二乘法器电路构成的PI控制电路,而后与原动机的电磁功率参考值P eref经过负荷前馈系数K L构成的第三乘法器电路输出叠加,得到原动机的机械功率参考值P mref,如下式:
P mref=P eref×K L+(P eref-P es)×K P+(P eref-P es)×K I/S   (2)
本例中,以原动机的机械功率参考值P mref作为输入,通过三个一阶积分电路、三个乘法器电路、一个加法器电路和一个限幅电路的组合,得到再热机组机械功率P mS1,如下式:
Figure PCTCN2019124949-appb-000001
其中,P mvF1为第一限幅电路的限幅值。
本例中,以原动机的机械功率参考值P mref作为输入,通过一个一阶积分电路和一个限幅电路的组合,得到非再热机组机械功率P mS2,如下式:
Figure PCTCN2019124949-appb-000002
式中,P mvF2为第二限幅电路的限幅值。
本例中,将再热机组机械功率P mS1和非再热机组机械功率P mS2分别通过再热机组系数R 1构成的第七乘法器电路和非再热机组系数R 2构成的第八乘法器电路后进行相加,得到机械功率模拟信号P mS作为整体输出,如下式:
P mS=P mS1×R 1+P mS2×R 2        (5)
本例中,在获得机械功率模拟信号P mS之后,利用A/D转换器600,将原动机的机械功率模拟信号P mS转换为机械功率数字信号P mD。发电机模块502获取原动机的机械功率数字信号P mD,然后根据原动机的机械功率数字信号P mD调整发电机的转速数字信号ω D
利用本例中提供的多机同步系统频率特性模拟系统,分析模型中电网络模块出现电源容量3.6%的功率缺额后的发电机转速,并将其与实际系统发生3.6%功率缺额后的发电机转速录波数据进行对比,结果如图6所示。由图6可以看出,根据本申请提供的多机同步系统频率特性模拟系统可复现实际系统的同步机转速特性,进而复现实际系统频率特性。
综上所述,本申请实施例提供的原动机模拟装置,对全网所有原动机进行统一建模,不仅在参考值获得模块中模拟了全网原动机中调速器的运行过程,还利用汽轮机模拟电路模拟了全网原动机中汽轮机的运行过程,在获得原动机 的机械功率参考值之后,根据原动机的机械功率参考值,确定原动机的非再热机组机械功率,根据原动机的机械功率参考值和比例系数,确定原动机的再热机组机械功率,最后根据原动机的再热机组机械功率和非再热机组机械功率,确定原动机的机械功率模拟信号。本申请实施例提供的原动机模拟装置仅利用一个综合模型实现全网所有原动机的运行过程模拟,有效控制了建模工作量,并且通过在原动机模拟装置中加入原动机中汽轮机运行过程的模拟,在控制建模工作量的基础上提高了频率特性模拟效果,为模拟多机同步系统出现大型功率缺额后的频率特性以及研究电力系统频率稳定性奠定基础。
本申请实施例提出的原动机模拟方法,通过获取发电机的转速数字信号和电磁功率数字信号,将发电机的转速数字信号和电磁功率数字信号转换为转速模拟信号和电磁功率模拟信号,根据转速模拟信号和电磁功率模拟信号,获得原动机的机械功率参考值,根据原动机的机械功率参考值,确定原动机的非再热机组机械功率,根据原动机的机械功率参考值和比例系数,确定原动机的再热机组机械功率,最后根据所述的原动机的再热机组机械功率和非再热机组机械功率,确定原动机的机械功率模拟信号,将原动机的机械功率模拟信号转换为机械功率数字信号。相比于相关技术中平均系统频率模型和系统频率响应模型,本申请实施例仅利用一个综合模型实现全网所有原动机的运行过程模拟,有效控制了建模工作量,并且通过在原动机模拟装置中加入原动机中汽轮机运行过程的模拟,在控制建模工作量的基础上提高了频率特性模拟效果,为模拟多机同步系统出现大型功率缺额后的频率特性以及研究电力系统频率稳定性奠定基础。
本申请实施例提出的多机同步系统频率特性模拟系统,模拟了多机同步系统出现大型功率缺额后的频率特性,在原动机的模拟装置中对全网所有原动机进行统一建模,不仅在参考值获得模块中模拟了全网原动机中调速器的运行过程,还利用汽轮机模拟电路模拟了全网原动机中汽轮机的运行过程,在获得原动机的机械功率参考值之后,根据原动机的机械功率参考值,确定原动机的非再热机组机械功率,根据原动机的机械功率参考值和比例系数,确定原动机的再热机组机械功率,最后根据原动机的再热机组机械功率和非再热机组机械功率,确定原动机的机械功率模拟信号。将原动机的机械功率模拟信号转换为原动机的机械功率数字信号之后,由发电机模块获取原动机的机械功率数字信号,根据原动机的机械功率数字信号调整发电机的转速数字信号,由此可以模拟多机同步系统出现大型功率缺额后的频率特性。本申请实施例仅利用一个综合模型实现全网所有原动机的运行过程模拟,有效控制了建模工作量,并且通过在原动机模拟装置中加入原动机中汽轮机运行过程的模拟,在控制建模工作量的基础上提高了频率特性模拟效果,为研究电力系统频率稳定性奠定基础。

Claims (12)

  1. 一种原动机模拟装置,包括:信号获取模块,D/A转换器,参考值获得模块,汽轮机模拟电路,机械功率确定模块和A/D转换器;
    所述信号获取模块,用于获取发电机的转速数字信号和电磁功率数字信号;
    所述D/A转换器,用于将所述的发电机的转速数字信号和电磁功率数字信号转换为转速模拟信号和电磁功率模拟信号;
    所述参考值获得模块,用于根据所述转速模拟信号和电磁功率模拟信号,获得原动机的机械功率参考值;
    所述汽轮机模拟电路,用于根据所述的原动机的机械功率参考值,确定原动机的非再热机组机械功率,根据所述的原动机的机械功率参考值和比例系数,确定原动机的再热机组机械功率;
    所述机械功率确定模块,用于根据所述的原动机的再热机组机械功率和非再热机组机械功率,确定原动机的机械功率模拟信号;
    所述A/D转换器,用于将所述的原动机的机械功率模拟信号转换为机械功率数字信号。
  2. 如权利要求1所述的原动机模拟装置,其中,所述参考值获得模块包括:
    调速器模拟电路,用于根据发电机的转速模拟信号、原动机的转速参考值和原动机的功率参考值,确定原动机的电磁功率参考值;
    伺服电机模拟电路,用于根据发电机的电磁功率模拟信号和原动机的电磁功率参考值,确定原动机的机械功率参考值。
  3. 如权利要求2所述的原动机模拟装置,其中,所述调速器模拟电路包括:第一加法器电路、第二加法器电路和第一乘法器电路,所述伺服电机模拟电路包括:第三加法器电路;
    第一加法器电路输入端接入发电机的转速模拟信号和原动机的转速参考值;第一加法器电路输出端连接第一乘法器电路输入端;第一乘法器电路输出端连接第二加法器电路输入端;第二加法器电路输入端接入原动机的功率参考值;第二加法器电路输出端获得原动机的电磁功率参考值;第三加法器电路输入端接入发电机的电磁功率模拟信号和第二加法器电路输出端获得的原动机的电磁功率参考值;第三加法器电路输出端获得原动机的机械功率参考值。
  4. 如权利要求3所述的原动机模拟装置,其中,所述伺服电机模拟电路还包括:第四加法器电路、第二乘法器电路、第三乘法器电路和积分器电路;
    第二加法器电路输出端分别连接第三加法器电路输入端和第三乘法器电路输入端;第三加法器电路输出端分别连接第二乘法器电路输入端和积分器电路 输入端;第四加法器电路输入端分别连接第二乘法器电路输出端、积分器电路输出端和第三乘法器电路输出端;第四加法器电路输出端获得原动机的机械功率参考值。
  5. 如权利要求1所述的原动机模拟装置,其中,所述比例系数包括:高压缸比例系数、低压缸比例系数和中压缸比例系数。
  6. 如权利要求1所述的原动机模拟装置,其中,所述汽轮机模拟电路包括:第一积分电路、第二积分电路、第三积分电路、第四积分电路、第四乘法器电路、第五乘法器电路、第六乘法器电路和第五加法器电路;
    第一积分电路输入端接入参考值获得模块得到的原动机的机械功率参考值;第一积分电路输出端分别连接第四乘法器电路输入端和第二积分电路输入端;第二积分电路输出端分别连接第三积分电路输入端和第六乘法器电路输入端;第三积分电路输出端连接第五乘法器电路输入端;第五加法器电路输入端分别连接第四乘法器电路输出端、第五乘法器电路输出端和第六乘法器电路输出端;第五加法器电路输出端获得原动机的再热机组机械功率;第四积分电路输入端接入参考值获得模块得到的原动机的机械功率参考值;第四积分电路输出端获得原动机的非再热机组机械功率。
  7. 如权利要求6所述的原动机模拟装置,其中,所述汽轮机模拟电路还包括:第一限幅电路;
    参考值获得模块得到的原动机的机械功率参考值经过第一限幅电路接入第一积分电路输入端。
  8. 如权利要求7所述的原动机模拟装置,其中,所述汽轮机模拟电路还包括:第二限幅电路;
    参考值获得模块得到的原动机的机械功率参考值经过第二限幅电路接入第四积分电路输入端。
  9. 如权利要求1所述的原动机模拟装置,其中,所述机械功率确定模块包括:第七乘法器电路、第八乘法器电路和第六加法器电路;
    第七乘法器电路输入端接入汽轮机模拟电路获得的原动机的再热机组机械功率;第八乘法器电路输入端接入汽轮机模拟电路获得的原动机的非再热机组机械功率;第七乘法器电路输出端和第八乘法器电路输出端连接第六加法器电路输入端;第六加法器电路输出端获得原动机的机械功率模拟信号。
  10. 一种利用权利要求1-9任一所述的装置进行原动机模拟的方法,包括:
    获取发电机的转速数字信号和电磁功率数字信号,将所述的发电机的转速 数字信号和电磁功率数字信号转换为转速模拟信号和电磁功率模拟信号;
    根据所述转速模拟信号和电磁功率模拟信号,获得原动机的机械功率参考值;
    根据所述的原动机的机械功率参考值,确定原动机的非再热机组机械功率,根据所述的原动机的机械功率参考值和比例系数,确定原动机的再热机组机械功率;
    根据所述的原动机的再热机组机械功率和非再热机组机械功率,确定原动机的机械功率模拟信号,将所述原动机的机械功率模拟信号转换为机械功率数字信号。
  11. 如权利要求10所述的方法,其中,按如下方式确定原动机的机械功率模拟信号:
    将原动机的再热机组机械功率与再热机组系数相乘,得到第一机械功率;
    将原动机的非再热机组机械功率与非再热机组系数相乘,得到第二机械功率;
    将所述第一机械功率与第二机械功率的和作为原动机的机械功率模拟信号。
  12. 一种多机同步系统频率特性模拟系统,包括:电网络模块,发电机模块和权利要求1-9任一项所述的原动机模拟装置;
    所述电网络模块,用于产生发电机的电磁功率数字信号;
    所述发电机模块,用于产生发电机的转速数字信号,获取原动机的机械功率数字信号,以及根据原动机的机械功率数字信号调整发电机的转速数字信号;
    所述原动机模拟装置,分别与所述电网络模块和发电机模块连接,用于根据电网络模块产生的发电机的电磁功率数字信号和发电机模块产生的发电机的转速数字信号,获得原动机的机械功率数字信号。
PCT/CN2019/124949 2019-04-04 2019-12-12 原动机模拟方法、装置及多机同步系统频率特性模拟系统 WO2020199644A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910271151.3A CN109918852B (zh) 2019-04-04 2019-04-04 原动机模拟方法、装置及多机同步系统频率特性模拟系统
CN201910271151.3 2019-04-04

Publications (1)

Publication Number Publication Date
WO2020199644A1 true WO2020199644A1 (zh) 2020-10-08

Family

ID=66968706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124949 WO2020199644A1 (zh) 2019-04-04 2019-12-12 原动机模拟方法、装置及多机同步系统频率特性模拟系统

Country Status (2)

Country Link
CN (1) CN109918852B (zh)
WO (1) WO2020199644A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109918852B (zh) * 2019-04-04 2024-06-18 华北电力科学研究院有限责任公司 原动机模拟方法、装置及多机同步系统频率特性模拟系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102301584A (zh) * 2009-01-30 2011-12-28 西门子公司 用于风力涡轮的电力系统频率惯性
CN102521441A (zh) * 2011-12-02 2012-06-27 中国电力科学研究院 一种发电机超速保护的电力系统机电暂态仿真建模方法
WO2016029944A1 (en) * 2014-08-28 2016-03-03 Abb Technology Ltd Control of a microgrid
KR20170032779A (ko) * 2015-09-15 2017-03-23 한국전력공사 발전소 시뮬레이터
CN108565854A (zh) * 2018-04-20 2018-09-21 华北电力科学研究院有限责任公司 用于复现电力系统频率特性的模拟方法及系统
CN208013689U (zh) * 2018-04-20 2018-10-26 华北电力科学研究院有限责任公司 一种vsg中的虚拟主汽压力模块的模拟装置
CN109918852A (zh) * 2019-04-04 2019-06-21 华北电力科学研究院有限责任公司 原动机模拟方法、装置及多机同步系统频率特性模拟系统
CN209460762U (zh) * 2019-04-04 2019-10-01 华北电力科学研究院有限责任公司 原动机模拟装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101042058B (zh) * 2007-04-27 2011-12-07 冯伟忠 一种高低位分轴布置的汽轮发电机组
CN104201953B (zh) * 2014-09-02 2016-08-17 东南大学 一种发电机组中汽轮机输出机械功率控制方法
US10103666B1 (en) * 2015-11-30 2018-10-16 University Of South Florida Synchronous generator modeling and frequency control using unscented Kalman filter
DE102016212364A1 (de) * 2016-07-06 2018-01-11 Universität Stuttgart Nachlaufströmungsumleitung unter Verwendung einer Feedbackregelung, um die Leistungsabgabe von Windparks zu verbessern
CN109445277B (zh) * 2018-12-14 2021-08-31 国网山东省电力公司电力科学研究院 基于数据自动寻取的功率控制参数自动调整系统及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102301584A (zh) * 2009-01-30 2011-12-28 西门子公司 用于风力涡轮的电力系统频率惯性
CN102521441A (zh) * 2011-12-02 2012-06-27 中国电力科学研究院 一种发电机超速保护的电力系统机电暂态仿真建模方法
WO2016029944A1 (en) * 2014-08-28 2016-03-03 Abb Technology Ltd Control of a microgrid
KR20170032779A (ko) * 2015-09-15 2017-03-23 한국전력공사 발전소 시뮬레이터
CN108565854A (zh) * 2018-04-20 2018-09-21 华北电力科学研究院有限责任公司 用于复现电力系统频率特性的模拟方法及系统
CN208013689U (zh) * 2018-04-20 2018-10-26 华北电力科学研究院有限责任公司 一种vsg中的虚拟主汽压力模块的模拟装置
CN109918852A (zh) * 2019-04-04 2019-06-21 华北电力科学研究院有限责任公司 原动机模拟方法、装置及多机同步系统频率特性模拟系统
CN209460762U (zh) * 2019-04-04 2019-10-01 华北电力科学研究院有限责任公司 原动机模拟装置

Also Published As

Publication number Publication date
CN109918852A (zh) 2019-06-21
CN109918852B (zh) 2024-06-18

Similar Documents

Publication Publication Date Title
Rimorov et al. Quasi-steady-state approach for analysis of frequency oscillations and damping controller design
Zhang et al. Synchrophasor measurement-based wind plant inertia estimation
CN113779697B (zh) 一种汽轮发电机组扭振联合仿真方法、装置及存储介质
CN109728597A (zh) 一种光伏逆变器低电压穿越特性拟合方法及系统
CN113507137A (zh) 基于DigSILENT/PF的风电场模型构建方法及相关装置
Chen et al. Online emergency control to suppress frequency oscillations based on damping evaluation using dissipation energy flow
CN113346546A (zh) 新能源并网逆变器的虚拟惯量控制方法
CN110061521A (zh) 一种考虑频率累积作用的最大风电渗透率快速评估方法
WO2020199644A1 (zh) 原动机模拟方法、装置及多机同步系统频率特性模拟系统
CN106406272A (zh) 一种风电场中静止无功发生器的控制器性能测试方法
CN114841005A (zh) 一种惯性响应阶段异步电机等效惯量评估方法
CN111740449B (zh) 风电机群对同步发电机组阻尼特性分析方法
CN209460762U (zh) 原动机模拟装置
Rojas et al. Real-time small-scale wind turbine emulator for a hybrid microgrid laboratory testbed
Wilches-Bernal Applications of wind generation for power system frequency control, inter-area oscillations damping and parameter identification
Jain et al. Real-time simulation of IEEE 10-generator 39-Bus system with power system stabilizers on miniature full spectrum simulator
CN113113908A (zh) 适用于现代大电网频率响应的时域解析方法与系统
CN113076628A (zh) 适用于现代大电网频率安全指标的解析方法与系统
Theodoro et al. A hybrid simulation tool for distributed generation integration studies
CN112186767A (zh) 含高比例可再生能源的海岛微电网频率稳定的优化控制方法
Zhang et al. Research of coordination control system between nonlinear robust excitation control and governor power system stabilizer in multi-machine power system
Ishchenko et al. Linearization of dynamic model of squirrel-cage induction generator wind turbine
Qu et al. Modeling and hardware-in-the-loop implementation of real-time aero-elastic-electrical co-simulation platform for PMSG wind turbine
Panwar et al. Significance of dynamic and transient analysis in the design and operation of hybrid energy systems
Singh et al. Time Domain Simulation of DFIG-Based Wind Power System using Differential Transform Method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922663

Country of ref document: EP

Kind code of ref document: A1