WO2020199367A1 - 电阻抗成像设备和方法 - Google Patents

电阻抗成像设备和方法 Download PDF

Info

Publication number
WO2020199367A1
WO2020199367A1 PCT/CN2019/091837 CN2019091837W WO2020199367A1 WO 2020199367 A1 WO2020199367 A1 WO 2020199367A1 CN 2019091837 W CN2019091837 W CN 2019091837W WO 2020199367 A1 WO2020199367 A1 WO 2020199367A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
electrical impedance
complex voltage
voltage signal
data acquisition
Prior art date
Application number
PCT/CN2019/091837
Other languages
English (en)
French (fr)
Inventor
张昕
王谊冰
张可
于洋
Original Assignee
北京华睿博视医学影像技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910261647.2A external-priority patent/CN109864712B/zh
Application filed by 北京华睿博视医学影像技术有限公司 filed Critical 北京华睿博视医学影像技术有限公司
Priority to JP2021560385A priority Critical patent/JP7244136B2/ja
Priority to EP19923630.8A priority patent/EP3949853A4/en
Priority to US17/440,469 priority patent/US20220160249A1/en
Publication of WO2020199367A1 publication Critical patent/WO2020199367A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0536Impedance imaging, e.g. by tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/743Displaying an image simultaneously with additional graphical information, e.g. symbols, charts, function plots
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/046Arrangements of multiple sensors of the same type in a matrix array
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical

Definitions

  • the present invention relates to electrical impedance imaging technology, and more particularly to a three-dimensional simultaneous multi-frequency complex electrical impedance imaging device and method applied to medical imaging.
  • EIT Electrical Impedance Tomography
  • the current electrical impedance imaging equipment uses a constant current source for excitation at a time, and then measures the generated voltage signal. After measuring the generated voltage signal, the electrical impedance imaging device switches the constant current source to the next position for excitation.
  • the position of the constant current source needs to be switched multiple times, which will limit the speed of data collection to a certain extent, which is not conducive to real-time image reconstruction.
  • the image displayed by current electrical impedance imaging equipment is a two-dimensional image, which reflects the conductivity or permittivity image of a certain section of human tissue.
  • two-dimensional images cannot reflect the three-dimensional structure information of biological tissues or organs, which may cause inconvenience to disease detection and diagnosis.
  • current electrical impedance imaging equipment can only display lung ventilation images, or display one of lung ventilation images and perfusion images alone, and cannot display lung ventilation images and perfusion images at the same time.
  • the simultaneous analysis of lung ventilation images and perfusion images has important medical significance.
  • an electrical impedance imaging device and method which is applied in the medical field, through simultaneous multi-frequency excitation and measurement of the biological tissue to be tested, and three-dimensional image reconstruction using the measured complex voltage signal, thereby qualitative or quantitative measurement
  • the electrical conductivity or dielectric constant characteristics of biological tissues are desired.
  • the purpose of the present invention is to provide a three-dimensional simultaneous multi-frequency complex electrical impedance medical imaging device, which uses simultaneous multi-frequency excitation and measurement of the biological tissue to be measured.
  • the measured complex voltage signal undergoes three-dimensional image reconstruction, thereby qualitatively or quantitatively measuring the electrical conductivity or dielectric constant characteristics of the biological tissue.
  • the first aspect of the present invention provides an electrical impedance imaging device.
  • the electrical impedance imaging device may include: a sensing module, in the form of an electrode array, fixed around a part of the human body to be measured; a data acquisition module, for applying a constant current excitation signal to the sensing module, and measuring the The complex voltage signal on the electrode array in the sensing module; the communication module is used to transmit the complex voltage signal collected by the data acquisition module to the data processing module, and transmit the control commands of the data processing module to the data acquisition module; data The processing module is used to perform signal processing and image reconstruction on the complex voltage signal collected by the data acquisition module; the imaging display module is used to display the calculation results and images generated by the data processing module; Module power supply.
  • the electrode array may include at least 16 electrodes.
  • the electrode array may include in-vivo electrodes inserted into the human body.
  • the data acquisition module may further include a constant current source, and the constant current sources in different data acquisition modules that are simultaneously excited are optically isolated.
  • the data acquisition module may further include: a constant current source for simultaneously applying excitation currents of multiple frequency components; and a voltmeter for simultaneously measuring multiple Frequency complex voltage signal; switch array, including several analog switches, used to turn on and off excitation current application and complex voltage signal measurement; control logic circuit, used to control switches and constant current sources and voltmeters in the switch array Switch between; multiple channels, used to transmit the excitation current to the sensing module and receive complex voltage signals from the sensing module.
  • the complex voltage signal can be expressed in the form of amplitude and phase, and can also be expressed in the form of real and imaginary parts.
  • the data processing module may have a three-dimensional image reconstruction function, and the imaging display module may display a three-dimensional reconstructed image.
  • the imaging display module can simultaneously and real-time display ventilation and perfusion images.
  • the electrical impedance imaging device may further include a calibration disk composed of resistive devices for calibrating the system error and distribution parameters of the device.
  • the second aspect of the present invention provides an electrical impedance imaging method.
  • the electrical impedance imaging method may include the following steps: applying a constant current excitation signal to the measured part of the human body and measuring the complex voltage signal on the measured part; performing signal processing and image reconstruction on the complex voltage signal according to a control command; displaying; The calculation result of signal processing on the complex voltage signal and the reconstructed image.
  • a third aspect of the present invention provides a computer-readable medium.
  • the computer-readable medium according to the third aspect of the present invention can be used to record instructions executable by a processor.
  • the processor executes the electrical impedance imaging method, including the following operations: Apply a constant current excitation signal, and measure the complex voltage signal on the measured part; perform signal processing and image reconstruction on the complex voltage signal according to the control command; display the calculation result of the complex voltage signal and the reconstructed image.
  • the electrical impedance imaging device is applied to medical imaging, can use the internal electrodes to perform simultaneous multi-frequency excitation and measurement of the biological tissue to be tested, and use the measured complex voltage signal to perform three-dimensional image reconstruction, which can display ventilation simultaneously and in real time And perfusion images, thereby increasing the number of collected data, increasing the speed of data collection, and increasing the sensitivity of the measurement signal to the conductivity of the tissue in the body, which is conducive to image analysis and comparison, disease detection and diagnosis.
  • Fig. 1 is a block diagram of an electrical impedance imaging device according to an embodiment of the present invention.
  • Fig. 2 is a block diagram of a data acquisition module of an electrical impedance imaging device according to an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of a ventilation image and a perfusion image displayed by an imaging display module of an electrical impedance imaging device according to an embodiment of the present invention.
  • Fig. 4 is a flowchart of an electrical impedance imaging method according to an embodiment of the present invention.
  • FIG. 1 is a block diagram of an electrical impedance imaging device 100 according to an embodiment of the present invention.
  • the electrical impedance imaging device 100 is generally composed of a sensing module 101, a data acquisition module 102, a communication module 103, a data processing module 104, an imaging display module 105, and a power supply module 106.
  • the sensing module 101 and the data acquisition module 102 are electrically isolated from the communication module 103, the data processing module 104, the imaging display module 105, and the power supply module 106.
  • the sensing module 101 is fixed on the measured part of the human body, such as the chest cavity, the brain, the abdomen, or around the limbs, and adopts the form of an electrode array such as an impedance band and an electrode vest.
  • each sensor module contains at least 16 electrodes.
  • the electrode may take the form of an in-body electrode.
  • the so-called intracorporeal electrode refers to the placement of the electrode into the human body such as the esophagus and trachea.
  • the electrical impedance imaging device may include a plurality of sensing modules 101.
  • sensor module 1# sensor module 1#
  • sensor module 2# sensor module 3#
  • sensor module 3# sensor module 3#
  • the number of sensor modules is not limited to three, and may be more or less. They are collectively referred to as sensor modules, and they can all be labeled 101.
  • the data acquisition module 102 is used for applying a constant current excitation signal to the sensing module 101 and measuring the complex voltage signal on the electrode array in the sensing module 101.
  • the complex voltage signal can be expressed in the form of amplitude and phase, as well as in the form of real and imaginary parts.
  • three data acquisition modules are shown: data acquisition module 1#, data acquisition module 2#, data acquisition module 3#, corresponding to sensor module 1#, sensor module 2#, sensor module 3 #.
  • the number of data collection modules is not limited to three, and may be more or less. They are collectively referred to as data collection modules, and they can all be marked as 102.
  • the data acquisition module 102 includes multiple channels 1021, a switch array 1022, a control logic circuit 1023, a constant current source 1024 and a voltmeter 1025.
  • the multiplex channel 1021 is used for transmitting the excitation current to the sensing module 101 and receiving the complex voltage signal from the sensing module 101.
  • the switch array 1022 includes several analog switches for turning on and off the application of excitation current and the measurement of complex voltage signals.
  • the control logic circuit 1023 is used to control the switching between the switches in the switch array 1022 and the constant current source 1024 and the voltmeter 1025, which can be implemented by a field programmable gate array (FPGA).
  • FPGA field programmable gate array
  • constant current sources (not shown in Figure 1) in different data collection modules (for example, data collection module 1#, data collection module 2#, and data collection module 3#) can be simultaneously excited.
  • optical isolation is adopted between the constant current sources that are simultaneously excited.
  • simultaneous multi-frequency excitation and measurement methods are used.
  • the constant current source 1024 in FIG. 2 can apply excitation currents of multiple frequency components at the same time, and the voltmeter 1025 correspondingly measures complex voltage signals of multiple frequencies at the same time.
  • the communication module 103 is configured to transmit the voltage data (complex voltage signal) collected by the data acquisition module 102 to the data processing module 104, and may also transmit control commands of the data processing module 104 to the data acquisition module 102.
  • the communication module 103 may take the form of a serial interface circuit. Optical isolation is adopted between the communication module 103 and the data acquisition module 102.
  • the data processing module 104 is configured to perform signal processing and image reconstruction on the complex voltage signal collected by the data collection module 102.
  • the module 104 may be a computer or other device with computing functions and a corresponding computer program.
  • the module 104 uses a signal processing method to detect whether the measurement or excitation range is exceeded, and to detect the situation where the electrode is not in contact or the electrode falls off.
  • the module 104 has a three-dimensional image reconstruction function.
  • the module 104 can perform differential imaging using time domain difference or frequency domain difference.
  • the so-called differential imaging refers to the reconstruction of the difference between the measured data of two time or two frequency components, and the reconstructed image reflects the change of the conductivity or dielectric constant of the biological tissue between the two time or two frequency components. the amount.
  • the module 104 can also perform direct imaging.
  • the so-called direct imaging specifically refers to the reconstructed image reflecting the absolute conductivity or permittivity value of the biological tissue.
  • the imaging display module 105 is used for displaying calculation results and images generated by the data processing module.
  • the module 105 may be a display.
  • the imaging display module 105 can display a three-dimensional reconstructed image. Further, in a preferred embodiment of the present invention, the imaging display module 105 can display ventilation and perfusion images simultaneously and in real time.
  • Fig. 3 is a schematic diagram of a ventilation image and a perfusion image displayed by an imaging display module of an electrical impedance imaging device according to an embodiment of the present invention.
  • the left side shows the lung ventilation image
  • the right side shows the lung blood perfusion image.
  • the reconstruction process of lung ventilation image is as follows: firstly extract the ventilation signal from the measurement data, and then use the difference of the ventilation signal at different time to reconstruct the image.
  • the reconstruction process of the lung blood perfusion image is: first extract the perfusion signal from the measurement data, and then use the difference of the perfusion signal at different times to reconstruct the image.
  • Lung ventilation images and lung blood perfusion images are both images of changes in electrical conductivity.
  • the lung ventilation images reflect the changes in lung gas content at different times.
  • the blood perfusion image of the lung reflects the changes in the blood content of the lungs at different times.
  • the power supply module 106 is used to supply power to the sensing module 101, the data acquisition module 102, the communication module 103, the data processing module 104, and the imaging display module 105 described above.
  • the electrical impedance imaging device may use resistive devices to form a calibration disk (not shown) to calibrate the system error and distribution parameters of the device.
  • Fig. 4 is a flowchart of an electrical impedance imaging method according to an embodiment of the present invention.
  • the electrical impedance imaging method 400 starts in step S410.
  • a constant current excitation signal is applied to the measured part of the human body, and the complex voltage signal on the measured part is measured.
  • the data acquisition module (102 in FIG. 1) applies a constant to the measured part of the human body through the sensor module in the form of an electrode array (101 in FIG. 1). Flow excitation signal, and measure the complex voltage signal on the measured part reflected on the electrode array in the sensor module.
  • the electrode array may include at least 16 electrodes. Moreover, the electrode array may include in-vivo electrodes inserted into the human body.
  • the data acquisition module further includes a constant current source, and the constant current sources in different data acquisition modules that are simultaneously excited are optically isolated.
  • a constant current source (1024 in Figure 2) is used to simultaneously apply excitation currents of multiple frequency components.
  • the voltmeter (1025 in Figure 2) is used to simultaneously measure complex voltage signals of multiple frequencies.
  • the switch array (1022 in Fig. 2) contains several analog switches for turning on and off the application of excitation current and the measurement of complex voltage signals.
  • the control logic circuit (1023 in Figure 2) is used to control the switching between the switches in the switch array and the constant current source and voltmeter.
  • the multiple channels (1021 in FIG. 2) are used to transmit the excitation current to the sensing module (101 in FIG. 1) and receive complex voltage signals from the sensing module.
  • the complex voltage signal may be expressed in the form of amplitude and phase, or may be expressed in the form of real and imaginary parts.
  • step S420 signal processing and image reconstruction are performed on the complex voltage signal according to the control command.
  • the image reconstruction in step S420 may be a three-dimensional image reconstruction.
  • step S430 the calculation result of signal processing on the complex voltage signal and the reconstructed image are displayed.
  • the image reconstruction may be a three-dimensional image reconstruction
  • the displayed reconstructed image may be a three-dimensional reconstructed image.
  • step S430 not only the differential image can be displayed, but also the direct image can be displayed, that is, the reconstructed image reflects the absolute conductivity or permittivity value of the biological tissue.
  • the more important feature of the method 400 in step S430 is that both ventilation and perfusion images can be displayed simultaneously and in real time.
  • step S430 After step S430 is executed, the flow of method 400 ends.
  • the method 400 may additionally include a calibration step, that is, a calibration disk composed of resistive devices is used to calibrate the system error and distribution parameters of the electrical impedance imaging device.
  • the electrical impedance imaging method of the present invention may also include the steps or technical features listed below ( Among them, some steps or technical features have been mentioned in the description of the method steps above, but for emphasis, they are listed again here):
  • Excitation current containing multiple frequency components is applied to two or more electrodes at the same time, and the measuring electrode also measures voltage signals of multiple frequencies at the same time;
  • the measurement signal is a complex voltage signal, and the image reconstruction uses the complex voltage signal;
  • Electrodes 4. Use impedance bands, electrode vests and other electrode arrays for data collection, where the electrode array contains at least 16 electrodes;
  • the sensor module and data acquisition module are electrically isolated from the communication module, data processing module, imaging display module, and power supply module;
  • Direct imaging can be performed
  • the reconstructed and displayed image is a three-dimensional image
  • the equipment can display ventilation and perfusion images simultaneously and in real time;
  • the device and method of the present invention utilize simultaneous multi-frequency excitation and measurement.
  • the response characteristics of biological tissues to signal frequency can be used to increase the number of collected data, and on the other hand, the speed of data collection can be greatly improved.
  • the device and method of the present invention can use signal processing to automatically detect the situation of poor electrode contact or electrode shedding, thereby taking corresponding measures.
  • An outstanding feature of the present invention is the use of internal electrodes for data collection. This can greatly improve the sensitivity of the measurement signal to the conductivity of the internal tissues of the human body or organisms, especially the internal tissues of the thoracic cavity.
  • the invention can simultaneously use multiple constant current sources for excitation to improve the data collection speed.
  • the sensing module and the data acquisition module are electrically isolated from the communication module, the data processing module, the imaging display module, and the power supply module, which can greatly reduce the electrical interference to the data acquisition process.
  • the present invention also performs direct imaging, thereby quantitatively measuring the electrical conductivity and dielectric constant of human tissues.
  • the present invention reconstructs and displays three-dimensional images, and can display the three-dimensional structure of human tissues or organs, which is more beneficial to image analysis, disease detection and diagnosis.
  • Ventilation and perfusion images can be displayed at the same time, thereby facilitating comparative analysis.
  • the present invention uses resistance devices to form a calibration disk to calibrate the system errors and distribution parameters of the equipment, thereby greatly reducing the influence of the system errors and the distribution parameters on the measurement data.
  • Non-transitory computer readable media include various types of tangible storage media.
  • non-transitory computer readable media examples include magnetic recording media (such as floppy disks, magnetic tapes, and hard drives), magneto-optical recording media (such as magneto-optical disks), CD-ROM (compact disk read-only memory), CD-R, CD-R /W and semiconductor memory (such as ROM, PROM (programmable ROM), EPROM (erasable PROM), flash ROM and RAM (random access memory)).
  • these programs can be provided to computers by using various types of transitory computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves. Transitory computer-readable media can be used to provide a program to a computer through a wired communication path such as electric wires and optical fibers or a wireless communication path.
  • a computer program or a computer-readable medium for recording instructions executable by the processor, which when executed by the processor, cause the processor to execute the electrical impedance imaging method, Including the following operations: apply a constant current excitation signal to the measured part of the human body, and measure the complex voltage signal on the measured part; perform signal processing and image reconstruction on the complex voltage signal according to the control command; display the signal of the complex voltage signal The processed calculation results and the reconstructed image.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Computer Graphics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种电阻抗成像设备(100)和方法。电阻抗成像设备(100)由传感模块(101)、数据采集模块(102)、通讯模块(103)、数据处理模块(104)、成像显示模块(105)和电源模块(106)组成。电阻抗成像设备(100)应用于医学成像,可以利用体内电极对待测生物体组织进行同时多频激励和测量,利用测量到的复电压信号进行三维图像重建,可同时且实时显示通气和灌注图像,从而提高采集数据的数量,提高数据采集的速度,提高测量信号对体内组织电导率的敏感度,有利于图像分析对比、疾病检测和诊断。

Description

电阻抗成像设备和方法
本国际申请要求申请日为2019年4月2日、申请号为201910261647.2的中国发明专利申请“电阻抗成像设备和方法”的优先权。
技术领域
本发明涉及电阻抗成像技术,更具体涉及一种应用于医学成像的三维同时多频复电阻抗成像设备和方法。
背景技术
电阻抗成像(Electrical Impedance Tomography,EIT)是一种无创的、以人体或其他生物体内部的电阻率分布为目标的重建体内组织图像的技术。人体是一个大的生物电导体,各组织、器官均有一定的阻抗,当人体的局部器官发生病变时,局部部位的阻抗必然与其他部位不同,因而可以通过阻抗的测量来对人体器官的病变进行诊断。
目前的电阻抗成像设备均使用体外电极进行数据采集,也就是说,电极全部排布在人体待测部位的外表面。这样采集到的信号对生物体内的电学不均匀性并不敏感。因此,EIT图像重建问题往往是个严重病态的问题。实际的测量数据往往含有噪声,而且图像重建所使用的正向模型往往具有误差,这将导致重建出的图像含有伪影。这些伪影甚至会掩盖真实的目标,从而使后续的图像解释和医学挖掘工作变得困难。
在数据采集过程中,目前的电阻抗成像设备每次使用一个恒流源进行激励,然后对产生的电压信号进行测量。在测量完产生的电压信号之后,电阻抗成像设备再将恒流源切换到下一个位置进行激励。当电极的数目很多时,需要对恒流源的位置进行多次切换,这会在一定程度上限制数据采集的速度,从而不利于实时图像重建。
在成像阶段,目前的电阻抗成像设备采用的是差分成像,重建出的图像反映的是两个时刻或两个频率之间人体组织电学特性的变化。然而,在实际应用中生物体组织定量的电学特性往往包含重要的医学信息,这在差分图像中是无法获得的。
目前的电阻抗成像设备显示出的图像为二维图像,反映出的是人体组织某个断面的电导率或介电常数图像。但是,二维图像无法反映生物体组织或器官的三维结构信息,这会对疾病的检测和诊断造成不便。
此外,目前的电阻抗成像设备或者只能显示肺部通气图像,或者单独显示肺部通气图像和灌注图像之一,无法同时显示肺部通气图像和灌注图像。而在实际应用中,对肺部通气图像和灌注图像的同步分析具有重要医学意义。
因此,希望能够提供一种电阻抗成像设备和方法,应用于医学领域,通过对待测生物体组织进行同时多频激励和测量,利用测量到的复电压信号进行三维图像重建,从而定性或定量测量生物体组织的电导率或介电常数特性。
发明内容
如前所述,为了解决现有技术中存在的问题,本发明的目的是提供一种三维同时多频复电阻抗医学成像设备,它通过对待测生物体组织进行同时多频激励和测量,利用测量到的复电压信号进行三维图像重建,从而定性或定量测量生物体组织的电导率或介电常数特性。
根据本发明的实施例,本发明的第一方面提供了一种电阻抗成像设备。所述电阻抗成像设备可以包括:传感模块,采用电极阵列的形式,固定在人体被测量部位的周围;数据采集模块,用于向所述传感模块施加恒流激励信号,并且测量所述传感模块中电极阵列上的复电压信号;通讯模块,用于将所述数据采集模块采集到的复电压信号传输给数据处理模块,并且将数据处理模块的控制命令传输到数据采集模块;数据处理模块,用于对所述数据采集模块采集到的复电压信号进行信号处理以及图像重建;成像显示模块,用于显示所述数据处理模块生成的计算结果以及图像;电源模块,用于向上述 模块供电。
在本发明第一方面的电阻抗成像设备中,优选地,所述电极阵列可以包括至少16个电极。所述电极阵列可以包括置入人体内的体内电极。
在本发明第一方面的电阻抗成像设备中,优选地,所述数据采集模块可以进一步包括恒流源,同时进行激励的不同数据采集模块中的恒流源之间采用光隔离。
在本发明第一方面的电阻抗成像设备中,优选地,所述数据采集模块可以进一步包括:恒流源,用于同时施加多个频率成分的激励电流;电压表,用于同时测量多个频率的复电压信号;开关阵列,包含若干个模拟开关,用于开启和关闭激励电流的施加与复电压信号的测量;控制逻辑电路,用于控制开关阵列中的开关与恒流源和电压表之间的切换;多路通道,用于将激励电流传递到所述传感模块以及从传感模块接收复电压信号。所述复电压信号可以用幅度和相位的形式表达,也可以用实部和虚部的形式表达。
在本发明第一方面的电阻抗成像设备中,优选地,所述数据处理模块可以具有三维图像重建功能,且所述成像显示模块可以显示三维的重建图像。
在本发明第一方面的电阻抗成像设备中,优选地,所述成像显示模块可以同时且实时显示通气和灌注图像。
优选地,本发明第一方面的电阻抗成像设备可以进一步包括使用电阻器件构成的校准盘,用于对设备的系统误差和分布参数进行校准。
根据本发明的实施例,本发明的第二方面提供了一种电阻抗成像方法。所述电阻抗成像方法可以包括如下步骤:向人体被测量部位施加恒流激励信号,并且测量被测量部位上的复电压信号;根据控制命令,对该复电压信号进行信号处理以及图像重建;显示对该复电压信号进行信号处理的计算结果以及重建的图像。
根据本发明的实施例,本发明的第三方面提供了一种计算机可读介质。根据本发明第三方面的计算机可读介质可以用于记录可由处理器执行的指令,所述指令在被处理器执行时,使得处理器执行电阻抗成像方法,包括如下操作:向人体被测量部位施加恒流激励信号,并且测量被测量部位上的复电压信号;根据控制命令,对该复电压信号进行信号处理以及图像重建;显示对该复电压信号进行信号处理的计算结果以及重建的图像。
根据本发明实施例的电阻抗成像设备应用于医学成像,可以利用体内电极对待测生物体组织进行同时多频激励和测量,利用测量到的复电压信号进行三维图像重建,可同时且实时显示通气和灌注图像,从而提高采集数据的数量,提高数据采集的速度,提高测量信号对体内组织电导率的敏感度,有利于图像分析对比、疾病检测和诊断。
附图说明
下面参考附图结合实施例说明本发明。
图1是根据本发明实施例的电阻抗成像设备的组成框图。
图2是根据本发明实施例的电阻抗成像设备的数据采集模块的组成框图。
图3是根据本发明实施例的电阻抗成像设备的成像显示模块所显示的通气图像和灌注图像的示意图。
图4是根据本发明实施例的电阻抗成像方法的流程图。
具体实施方式
附图仅用于示例说明,不能理解为对本发明的限制。下面结合附图和实施例对本发明的技术方案做进一步的说明。
图1是根据本发明实施例的电阻抗成像设备100的组成框图。
如图1所示,根据本发明的实施例,电阻抗成像设备100总体上由传感模块101、数据采集模块102、通讯模块103、数据处理模块104、成像显示 模块105和电源模块106组成。其中,传感模块101和数据采集模块102与通讯模块103、数据处理模块104、成像显示模块105、电源模块106在电气上实现光隔离。
传感模块101固定在人体被测量部位,如胸腔、脑部、腹部或四肢的周围,采用阻抗带、电极背心等电极阵列的形式。根据本发明的优选实施例,每个传感模块中至少包含16个电极。而且,在本发明的优选实施例中,电极可以采用体内电极的形式。所谓的体内电极是指,将该电极置入人体食道、气管等人体内位置。根据本发明实施例的电阻抗成像设备可以包含多个传感模块101。在图1中,示出了三个传感模块,分别为传感模块1#、传感模块2#、传感模块3#。本领域技术人员应该理解,图中只是示意,实际中传感模块的数量并不限定为三个,可能更多或更少,统称为传感模块,且都可被标注为101。
数据采集模块102用于向传感模块101施加恒流激励信号以及测量传感模块101中电极阵列上的复电压信号。复电压信号可以用幅度和相位的形式表达,也可以用实部和虚部的形式表达。在图1中,示出了三个数据采集模块:数据采集模块1#、数据采集模块2#、数据采集模块3#,分别对应传感模块1#、传感模块2#、传感模块3#。本领域技术人员应该理解,图中只是示意,实际中数据采集模块的数量并不限定为三个,可能更多或更少,统称为数据采集模块,且都可被标注为102。
图2是根据本发明实施例的电阻抗成像设备100的数据采集模块102的组成框图。如图2中所示,数据采集模块102包含多路通道1021、开关阵列1022、控制逻辑电路1023、恒流源1024和电压表1025。多路通道1021用于将激励电流传递到传感模块101以及从传感模块101接收复电压信号。开关阵列1022包含若干个模拟开关,用于开启和关闭激励电流的施加与复电压信号的测量。控制逻辑电路1023用来控制开关阵列1022中的开关与恒流源1024和电压表1025之间的切换,可以用现场可编程门阵列(FPGA)实现。为了提高数据采集的速率,不同数据采集模块(例如数据采集模块1#、数据采集模块2#、数据采集模块3#)中的恒流源(图1中未示出)可以同 时进行激励。为了避免对人体同时激励时在人体上产生多个零电位从而对人体造成短路的危险,各个同时激励的恒流源之间采用光隔离。另外,为了利用生物组织对信号频率的响应特性,采用同时多频激励和测量方法。具体地说,图2中的恒流源1024可以同时施加多个频率成分的激励电流,电压表1025也相应地同时测量多个频率的复电压信号。
回到图1,通讯模块103用于将数据采集模块102采集到的电压数据(复电压信号)传输给数据处理模块104,也可以将数据处理模块104的控制命令传输给数据采集模块102。通讯模块103可以采用串行接口电路的形式。通讯模块103与数据采集模块102之间采用光隔离。
数据处理模块104用于对数据采集模块102采集到的复电压信号进行信号处理以及图像重建。该模块104可以是计算机等具有运算功能的设备以及相应的计算机程序。该模块104利用信号处理方法探测是否超出测量或激励范围,以及探测电极接触不好或电极脱落的情形。该模块104具有三维图像重建功能。传统上,该模块104可以使用时域差分或频域差分进行差分成像。所谓的差分成像是指,利用两个时刻或两个频率分量的测量数据的差进行重建,重建出的图像反映上述两个时刻或两个频率分量之间生物组织电导率或介电常数的变化量。该模块104还可以进行直接成像。所谓的直接成像,具体是指,重建图像反映生物组织绝对的电导率或介电常数值。
成像显示模块105用于显示数据处理模块生成的计算结果以及图像。该模块105可以是显示器。在优选实施例中,对应于具备三维图像重建功能的数据处理模块104,成像显示模块105可以显示三维的重建图像。进一步,在本发明的优选实施方案中,成像显示模块105可同时且实时显示通气和灌注图像。
图3是根据本发明实施例的电阻抗成像设备的成像显示模块所显示的通气图像和灌注图像的示意图。
在图3中,左侧显示的是肺部通气图像,右侧显示的是肺部血液灌注图 像。肺部通气图像的重建过程为:首先从测量数据中提取通气信号,然后利用不同时刻通气信号的差进行图像重建。类似地,肺部血液灌注图像的重建过程为:首先从测量数据中提取灌注信号,然后利用不同时刻灌注信号的差进行图像重建。肺部通气图像和肺部血液灌注图像均为电导率的变化图像。肺部通气图像反映的是不同时刻肺部气体含量的变化。肺部血液灌注图像反映的是不同时刻肺部血液含量的变化。本领域技术人员应当理解,尽管图3中示出的是二维图像截图,但实际应用中,也可以重建并显示三维图像,即同时并实时地显示三维通气图像和三维血液灌注图像。
此外,本领域技术人员应当理解,电源模块106用于向以上所描述的传感模块101、数据采集模块102、通讯模块103、数据处理模块104、成像显示模块105各个模块进行供电。
优选地,根据本发明实施例所述的电阻抗成像设备可以使用电阻器件构成校准盘(未示出),对设备的系统误差和分布参数进行校准。
图4是根据本发明实施例的电阻抗成像方法的流程图。
如图4中所示,根据本发明实施例的电阻抗成像方法400开始于步骤S410,在此步骤,向人体被测量部位施加恒流激励信号,并且测量被测量部位上的复电压信号。
参考之前对电阻抗成像设备的描述,在方法400中,由数据采集模块(图1中的102)通过采用电极阵列的形式的传感模块(图1中的101)向人体被测量部位施加恒流激励信号,并且测量传感模块中电极阵列上所反映出的被测量部位上的复电压信号。
电极阵列可以包括至少16个电极。而且,所述电极阵列可以包括置入人体内的体内电极。
所述数据采集模块内进一步包括恒流源,同时进行激励的不同数据采集 模块中的恒流源之间采用光隔离。
另一方面,参考对图2的描述,在数据采集模块内,恒流源(图2中的1024)用于同时施加多个频率成分的激励电流。电压表(图2中的1025)用于同时测量多个频率的复电压信号。开关阵列(图2中的1022)包含若干个模拟开关,用于开启和关闭激励电流的施加与复电压信号的测量。控制逻辑电路(图2中的1023)用于控制开关阵列中的开关与恒流源和电压表之间的切换。多路通道(图2中的1021)用于将激励电流传递到所述传感模块(图1的101)以及从传感模块接收复电压信号。所述复电压信号可以用幅度和相位的形式表达,或者可以用实部和虚部的形式表达。
接下来,在步骤S420,根据控制命令,对该复电压信号进行信号处理以及图像重建。
参考之前对电阻抗成像设备的描述,在方法400中,由于数据处理模块(图1中的104)可以具有三维图像重建功能,所以步骤S420中的图像重建可以是三维图像重建。
在步骤S430,显示对该复电压信号进行信号处理的计算结果以及重建的图像。
相应地,由于图像重建可以是三维图像重建,所以显示的重建图像可以是三维的重建图像。
另一方面,在步骤S430,不仅可以显示差分图像,也可以显示直接图像,即重建图像反映生物组织绝对的电导率或介电常数值。
在优选实施例中,方法400在步骤S430的更为重要的特征是,可以同时且实时显示通气和灌注图像这二者。
步骤S430执行完毕之后,方法400的流程结束。
此外,方法400也可以额外地包括一个校准步骤,即:使用电阻器件构成的校准盘,用于对电阻抗成像设备的系统误差和分布参数进行校准。
除了以上提到的方法步骤之外,本领域技术人员还应当理解,对应于本发明如上所述的电阻抗成像设备,本发明的电阻抗成像方法还可包括以下所列的步骤或技术特征(其中,有些步骤或技术特征已经在上面对方法步骤的描述中提及,但为了强调,在此再次列出):
1、同时多频激励和测量,在两个或多个电极上施加同时含有多个频率成分的激励电流,测量电极也同时测量多个频率的电压信号;
2、测量信号为复电压信号,图像重建利用复电压信号;
3、利用信号处理方法探测是否超出测量或激励范围,以及探测电极接触不好或电极脱落的情形;
4、利用阻抗带、电极背心等电极阵列进行数据采集,其中,电极阵列包含至少16个电极;
5、可以使用体内电极进行数据采集;
6、同时激励的各路恒流源之间采用光隔离;
7、传感模块和数据采集模块与通讯模块、数据处理模块、成像显示模块、电源模块在电气上实现光隔离;
8、使用时域差分进行差分成像;
9、使用频域差分进行差分成像;
10、可以进行直接成像;
11、重建和显示出的图像为三维图像;
12、设备可同时且实时显示通气和灌注图像;
13、使用电阻器件构成校准盘,对设备的系统误差和分布参数进行校准。
下面,针对本发明的设备与方法,与现有的技术进行比较,以总结本发明的优点。
本发明的设备和方法利用同时多频激励和测量,一方面可以利用生物组织对信号频率的响应特性从而提高采集数据的数量,另一方面可以大大提高 数据采集的速度。
本发明的设备和方法利用信号处理可以自动探测电极接触不好或电极脱落的情形,从而采取相应的措施。
本发明的一个突出特点是利用体内电极进行数据采集。这样可以大大提高测量信号对人体或生物体内部组织特别是胸腔内部组织电导率的敏感度。
本发明可以同时使用多个恒流源进行激励以提高数据采集速度。
本发明的设备和方法中,传感模块和数据采集模块与通讯模块、数据处理模块、成像显示模块、电源模块在电气上实现光隔离,可以大大减小对数据采集过程的电气干扰。
本发明除了可以进行差分成像之外,还进行直接成像,从而定量测量人体组织的电导率和介电常数。
本发明重建和显示三维图像,可以显示人体组织或器官的三维结构,从而更有利于图像分析、疾病检测和诊断。
本发明另一个突出特点是可同时显示通气和灌注图像,从而方便对比分析。
此外,本发明使用电阻器件构成校准盘,对设备的系统误差和分布参数进行校准,从而大大减小系统误差和分布参数对测量数据的影响。
本领域普通技术人员应该认识到,本发明的方法可以实现为计算机程序。如上结合图1、2、3所述,通过一个或多个程序执行上述实施例的方法,包括指令来使得计算机或处理器执行结合附图所述的算法。这些程序可以使用各种类型的非瞬时计算机可读介质存储并提供给计算机或处理器。非瞬时计算机可读介质包括各种类型的有形存贮介质。非瞬时计算机可读介质的示例 包括磁性记录介质(诸如软盘、磁带和硬盘驱动器)、磁光记录介质(诸如磁光盘)、CD-ROM(紧凑盘只读存储器)、CD-R、CD-R/W以及半导体存储器(诸如ROM、PROM(可编程ROM)、EPROM(可擦写PROM)、闪存ROM和RAM(随机存取存储器))。进一步,这些程序可以通过使用各种类型的瞬时计算机可读介质而提供给计算机。瞬时计算机可读介质的示例包括电信号、光信号和电磁波。瞬时计算机可读介质可以用于通过诸如电线和光纤的有线通信路径或无线通信路径提供程序给计算机。
因此,根据本发明,还可以提议一种计算机程序或一种计算机可读介质,用于记录可由处理器执行的指令,所述指令在被处理器执行时,使得处理器执行电阻抗成像方法,包括如下操作:向人体被测量部位施加恒流激励信号,并且测量被测量部位上的复电压信号;根据控制命令,对该复电压信号进行信号处理以及图像重建;显示对该复电压信号进行信号处理的计算结果以及重建的图像。
上面已经描述了本发明的各种实施例和实施情形。但是,本发明的精神和范围不限于此。本领域技术人员将能够根据本发明的教导而做出更多的应用,而这些应用都在本发明的范围之内。
也就是说,本发明的上述实施例仅仅是为清楚说明本发明所做的举例,而非对本发明实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、替换或改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 一种电阻抗成像设备,包括:
    传感模块,采用电极阵列的形式,固定在人体被测量部位的周围;
    数据采集模块,用于向所述传感模块施加恒流激励信号,并且测量所述传感模块中电极阵列上的复电压信号;
    通讯模块,用于将所述数据采集模块采集到的复电压信号传输给数据处理模块,并且将数据处理模块的控制命令传输到数据采集模块;
    数据处理模块,用于对所述数据采集模块采集到的复电压信号进行信号处理以及图像重建;
    成像显示模块,用于显示所述数据处理模块生成的计算结果以及图像;
    电源模块,用于向上述模块供电。
  2. 如权利要求1所述的电阻抗成像设备,其中,所述电极阵列包括至少16个电极。
  3. 如权利要求1或2所述的电阻抗成像设备,其中,所述电极阵列包括置入人体内的体内电极。
  4. 如权利要求1所述的电阻抗成像设备,其中,所述数据采集模块进一步包括恒流源,同时进行激励的不同数据采集模块中的恒流源之间采用光隔离。
  5. 如权利要求1所述的电阻抗成像设备,其中,所述数据采集模块进一步包括:
    恒流源,用于同时施加多个频率成分的激励电流;
    电压表,用于同时测量多个频率的复电压信号;
    开关阵列,包含若干个模拟开关,用于开启和关闭激励电流的施加与复电压信号的测量;
    控制逻辑电路,用于控制开关阵列中的开关与恒流源和电压表之间的切换;
    多路通道,用于将激励电流传递到所述传感模块以及从传感模块接收复电压信号,
    所述复电压信号用幅度和相位的形式表达,或者用实部和虚部的形式表达。
  6. 如权利要求1所述的电阻抗成像设备,其中,所述数据处理模块具有三维图像重建功能,且所述成像显示模块显示三维的重建图像。
  7. 如权利要求1所述的电阻抗成像设备,其中,所述成像显示模块同时且实时显示通气和灌注图像。
  8. 如权利要求1所述的电阻抗成像设备,进一步包括使用电阻器件构成的校准盘,用于对设备的系统误差和分布参数进行校准。
  9. 一种电阻抗成像方法,包括如下步骤:
    向人体被测量部位施加恒流激励信号,并且测量被测量部位上的复电压信号;
    根据控制命令,对该复电压信号进行信号处理以及图像重建;
    显示对该复电压信号进行信号处理的计算结果以及重建的图像。
  10. 一种计算机可读介质,用于记录可由处理器执行的指令,所述指令在被处理器执行时,使得处理器执行电阻抗成像方法,包括如下操作:
    向人体被测量部位施加恒流激励信号,并且测量被测量部位上的复电压信号;
    根据控制命令,对该复电压信号进行信号处理以及图像重建;
    显示对该复电压信号进行信号处理的计算结果以及重建的图像。
PCT/CN2019/091837 2019-04-02 2019-06-19 电阻抗成像设备和方法 WO2020199367A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021560385A JP7244136B2 (ja) 2019-04-02 2019-06-19 電気インピーダンス断層撮影装置及び方法
EP19923630.8A EP3949853A4 (en) 2019-04-02 2019-06-19 ELECTRICAL IMPEDANCE TOMOGRAPHY APPARATUS AND METHOD THEREOF
US17/440,469 US20220160249A1 (en) 2019-04-02 2019-06-19 Electrical impedance tomography apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910261647.2 2019-04-02
CN201910261647.2A CN109864712B (zh) 2019-04-02 电阻抗成像设备和方法

Publications (1)

Publication Number Publication Date
WO2020199367A1 true WO2020199367A1 (zh) 2020-10-08

Family

ID=66921858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091837 WO2020199367A1 (zh) 2019-04-02 2019-06-19 电阻抗成像设备和方法

Country Status (4)

Country Link
US (1) US20220160249A1 (zh)
EP (1) EP3949853A4 (zh)
JP (1) JP7244136B2 (zh)
WO (1) WO2020199367A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4265179A4 (en) * 2020-10-23 2024-02-14 Beijing Huarui Boshi Medical Imaging Technology Co., Ltd. ELECTRICAL IMPEDANCE IMAGING METHOD, SYSTEM, STORAGE MEDIUM AND ELECTRONIC DEVICE

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115444392B (zh) * 2022-08-31 2024-05-14 河南师范大学 一种基于电阻抗层析成像的非线性脑卒中分析方法
CN117414124B (zh) * 2023-12-15 2024-04-09 杭州永川科技有限公司 多频电阻抗磁感应成像方法、装置和计算机设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103690166A (zh) * 2013-12-16 2014-04-02 天津科技大学 一种基于pxi总线的呼吸过程三维电阻抗成像系统及其成像方法
CN104027112A (zh) * 2014-05-30 2014-09-10 南京邮电大学 一种电阻抗成像装置
CN104321011A (zh) * 2012-05-21 2015-01-28 通用电气公司 用于断层摄影成像的方法和系统
CN104582566A (zh) * 2012-08-20 2015-04-29 德尔格医疗有限责任公司 用于确定肺灌注的量的区域分布的装置
US20170172451A1 (en) * 2015-12-16 2017-06-22 General Electric Company System and method for enhanced electrical impedance tomography
CN109864712A (zh) * 2019-04-02 2019-06-11 北京华睿博视医学影像技术有限公司 电阻抗成像设备和方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3184610B2 (ja) * 1992-06-03 2001-07-09 大阪瓦斯株式会社 生体模倣実験用絶縁定電流源
GB9226376D0 (en) * 1992-12-18 1993-02-10 British Tech Group Tomography
JP3819283B2 (ja) * 2001-11-26 2006-09-06 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X線ct装置
WO2006098996A1 (en) * 2005-03-11 2006-09-21 Cardiac Pacemakers, Inc. Combined neural stimulation and cardiac resynchronization therapy
GB2454925A (en) * 2007-11-26 2009-05-27 Alistair Mcewan Code Division Multiplexed Electrical Impedance Tomography
US9468385B2 (en) * 2014-08-22 2016-10-18 Medtronic, Inc. Visual representation of a cardiac signal sensing test
KR101812587B1 (ko) * 2016-11-18 2018-01-30 주식회사 바이랩 피험자의 영상 모니터링 장치 및 그 방법과, 영상 모니터링 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104321011A (zh) * 2012-05-21 2015-01-28 通用电气公司 用于断层摄影成像的方法和系统
CN104582566A (zh) * 2012-08-20 2015-04-29 德尔格医疗有限责任公司 用于确定肺灌注的量的区域分布的装置
CN103690166A (zh) * 2013-12-16 2014-04-02 天津科技大学 一种基于pxi总线的呼吸过程三维电阻抗成像系统及其成像方法
CN104027112A (zh) * 2014-05-30 2014-09-10 南京邮电大学 一种电阻抗成像装置
US20170172451A1 (en) * 2015-12-16 2017-06-22 General Electric Company System and method for enhanced electrical impedance tomography
CN109864712A (zh) * 2019-04-02 2019-06-11 北京华睿博视医学影像技术有限公司 电阻抗成像设备和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3949853A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4265179A4 (en) * 2020-10-23 2024-02-14 Beijing Huarui Boshi Medical Imaging Technology Co., Ltd. ELECTRICAL IMPEDANCE IMAGING METHOD, SYSTEM, STORAGE MEDIUM AND ELECTRONIC DEVICE
US11925449B2 (en) 2020-10-23 2024-03-12 Beijing Huarui Boshi Medical Imaging Technology Co., Ltd. Electrical impedance imaging method, system, storage medium, and electronic device

Also Published As

Publication number Publication date
US20220160249A1 (en) 2022-05-26
EP3949853A1 (en) 2022-02-09
CN109864712A (zh) 2019-06-11
JP2022529418A (ja) 2022-06-22
JP7244136B2 (ja) 2023-03-22
EP3949853A4 (en) 2022-12-28

Similar Documents

Publication Publication Date Title
Gharibans et al. High-resolution electrogastrogram: a novel, noninvasive method for determining gastric slow-wave direction and speed
US6594521B2 (en) Method for localizing electrical activity in the body
US6330470B1 (en) Method for localizing electrical activity in the body
Harikumar et al. Electrical impedance tomography (EIT) and its medical applications: A review
WO2021135211A1 (zh) 基于电阻抗成像的三维血液灌注图像产生方法与装置
CN110811544B (zh) 使用振荡器对电极-组织接触进行的估计
WO2020199367A1 (zh) 电阻抗成像设备和方法
Zolgharni et al. Imaging cerebral haemorrhage with magnetic induction tomography: numerical modelling
CA2615845A1 (en) Index determination
Luo et al. Non-invasive electrical impedance tomography for multi-scale detection of liver fat content
US11730410B2 (en) Needle impedance electromyography and electrical impedance imaging for enhanced muscle diagnostics
EP2502557B1 (en) System and method for soft-field tomography data acquisition
JP3958628B2 (ja) 体脂肪測定装置
Atefi et al. Intracranial hemorrhage alters scalp potential distribution in bioimpedance cerebral monitoring: Preliminary results from FEM simulation on a realistic head model and human subjects
Ouypomkochagom et al. High-precision electrical impedance tomography system using package excitation
CN209847158U (zh) 电阻抗成像设备
Korolyuk et al. Improved system for identifying biological tissue temperature using electrical impedance tomography
CN109864712B (zh) 电阻抗成像设备和方法
Korjenevsky et al. Gynecologic electrical impedance tomograph
Dhar et al. Non-invasive bio-impedance measurement using voltage-current pulse technique
Kumar et al. Analysis and validation of medical application through electrical impedance based system
RU2790406C1 (ru) Способ диагностики и контроля лечения сердечных патологий
Bayford et al. Focus on advances in electrical impedance tomography
Wang et al. Conductivity characteristics of human lung tissues
RU2086172C1 (ru) Устройство для импеданс-визуализации местоположения патологического процесса

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923630

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021560385

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019923630

Country of ref document: EP

Effective date: 20211102