WO2020197032A1 - 신틸레이터 조성물 및 이를 이용하는 신틸레이터 - Google Patents

신틸레이터 조성물 및 이를 이용하는 신틸레이터 Download PDF

Info

Publication number
WO2020197032A1
WO2020197032A1 PCT/KR2019/015539 KR2019015539W WO2020197032A1 WO 2020197032 A1 WO2020197032 A1 WO 2020197032A1 KR 2019015539 W KR2019015539 W KR 2019015539W WO 2020197032 A1 WO2020197032 A1 WO 2020197032A1
Authority
WO
WIPO (PCT)
Prior art keywords
scintillator
light
perovskite nanoparticles
scintillator composition
composition
Prior art date
Application number
PCT/KR2019/015539
Other languages
English (en)
French (fr)
Inventor
임현식
김형상
조상은
Original Assignee
동국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190117368A external-priority patent/KR102288775B1/ko
Application filed by 동국대학교 산학협력단 filed Critical 동국대학교 산학협력단
Publication of WO2020197032A1 publication Critical patent/WO2020197032A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens

Definitions

  • the present invention relates to a scintillator, and more particularly, to a scintillator compound formed by mixing an inorganic crystalline compound and a light-absorbing compound, and a scintillator manufactured using the same.
  • a scintillator refers to a material that generates light when radiation such as X-ray and gamma rays collides with it or a component processed into various shapes or types of materials.
  • the scintillator may refer to a light-generating material itself, or to a part in which the material is processed into a certain shape or combined with other components.
  • the types of substances constituting the scintillator are largely divided into inorganic compounds and organic compounds, and are classified into liquid, gas, and solid depending on the phase of the substance.
  • an inorganic compound or an organic compound may be used depending on the radiation target for light conversion and the use of the radiation.
  • the material constituting the scintillator needs to convert radiation into visible light.
  • phosphors are mainly used to convert radiation into visible light.
  • Phosphors used are Gadolinium Oxysulfide (GoS) or Cesium Iodide (CsI). Comparing these, CsI has the advantage of being able to obtain an image at a low radiation dose and providing excellent image quality. In addition, GoS has the advantage of having a lower price than CsI.
  • Organic compounds used as scintillators include anthracene, stilbene, naphthalene, and the like. They have a benzene ring structure connected in various ways, have excellent durability, and have the advantage of short decay time. However, when the sources are not parallel, it exhibits an anisotropic reaction in which the energy resolution rapidly decreases. In addition, it is not easily processed and has a disadvantage in that it is not possible to manufacture a large-sized detector.
  • the inorganic compound has the advantage of high luminous efficiency, and the organic compound has a fast transition speed. Accordingly, an organic compound is used as a scintillator in a measurement environment requiring a rapid signal, and an inorganic compound is used as a scintillator in a measurement environment requiring a fine image.
  • inorganic compounds are more widely used than organic compounds because they have a higher linearity in which the incident amount of radiation or energy is proportional to the amount of light emission compared to organic compounds.
  • the inorganic compound is used for the scintillator, higher light efficiency is required to obtain a clearer image.
  • the material constituting the scintillator has a high light quantity, excellent linearity, and a fast transition speed.
  • a first technical problem to be achieved by the present invention is to provide a scintillator composition having a high light quantity and excellent linearity.
  • a second technical problem to be achieved by the present invention is to provide a scintillator using the scintillator composition provided by the achievement of the first technical problem.
  • the perovskite nanoparticles for performing a light-emitting operation by recombination of electron-hole pairs; And it provides a scintillator composition comprising a light absorbing compound for bonding to the surface of the perovskite nanoparticles, generating electrons by incident light, and transferring the generated electrons to the perovskite nanoparticles do.
  • the present invention for achieving the above-described second technical problem provides a scintillator formed using the scintillator composition provided by the achievement of the first technical problem.
  • the light absorbing compound and the inorganic compound constitute a scintillator composition.
  • the inorganic compound has perovskite nanoparticles
  • the light-absorbing compound has diphenoloxazole.
  • the perovskite nanoparticles and the light-absorbing compound diphenoloxazole are not used independently, but act as a scintillator composition through mutual bonding. That is, diphenoloxazole absorbs radiation or light in a wide wavelength band and forms electrons having high energy.
  • the high-energy electrons that are formed are more likely to move to the perovskite nanoparticles to create secondary electron-holes and to recombine rather than recombine in the light-absorbing compound. That is, electrons move to the perovskite nanoparticles, and light emission is performed through recombination in the perovskite nanoparticles.
  • FIG. 1 is a schematic diagram for explaining the production of perovskite nanoparticles according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the crystal structure of perovskite nanoparticles prepared by the process of FIG. 1.
  • FIG. 3 are images showing perovskite nanoparticles prepared by FIG. 1 according to a preferred embodiment of the present invention.
  • FIG. 4 is a graph showing the lattice constant of the perovskite nanoparticles prepared in FIG. 1 according to a preferred embodiment of the present invention.
  • FIG. 5 is a graph showing PL data according to the lattice constant of FIG. 4 according to a preferred embodiment of the present invention.
  • FIG. 6 is a graph showing a band gap according to the type of perovskite nanoparticles of FIG. 3 according to a preferred embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing a scintillator composition according to a preferred embodiment of the present invention.
  • FIG. 8 is a conceptual diagram showing the movement of electrons in a scintillator composition according to a preferred embodiment of the present invention.
  • FIG. 9 is a graph showing RL characteristics of a scintillator compound for explaining the operation model of FIG. 8 according to a preferred embodiment of the present invention.
  • FIG. 10 is a graph showing linear optical characteristics of the scintillator composition of FIG. 9 according to a preferred embodiment of the present invention.
  • FIG. 11 is a graph showing a change in peak intensity of a scintillator composition according to a preferred embodiment of the present invention.
  • FIG. 12 is a graph showing optical characteristics according to a change in concentration of perovskite nanoparticles according to a preferred embodiment of the present invention.
  • FIG. 13 is a graph showing the RL strength of perovskite nanoparticles and diphenyloxazole according to a preferred embodiment of the present invention.
  • FIG. 14 is a graph showing RL characteristics according to a change in concentration of diphenyloxazole according to a preferred embodiment of the present invention.
  • 16 is a schematic diagram illustrating a method of manufacturing a liquid scintillator according to a preferred embodiment of the present invention.
  • 17 is an image of a plastic scintillator manufactured according to a preferred embodiment of the present invention.
  • the scintillator composition or scintillator compound refers to a material having fluorescence or scintillation properties.
  • the scintillator composition which refers to the material itself, is formed into a scintillator through various processes.
  • the scintillator refers to a structure that uses a defined scintillator composition or the like as a scintillator, and forms visible light when X-rays or radiation are incident. Accordingly, the scintillator has a form in which the scintillator composition is dispersed in a substrate or coated on a substrate.
  • FIG. 1 is a schematic diagram for explaining the production of perovskite nanoparticles according to a preferred embodiment of the present invention.
  • lead halide (PbX 3 ), oleic acid (OA), and oleylamine (OLA) are added to a container and mixed to form a first synthetic solution. Then, the inside of the container is maintained in a vacuum state.
  • Cs-oleate is added to the container in which the first synthesis solution is formed.
  • Cs-oleate is formed by mixing CsCO 3 and oleic acid in a vacuum state. Nitrogen gas is supplied to the container into which Cs-oleate is added, and a second mixed solution is formed in the container.
  • perovskite nanoparticles are formed in a container supplied with nitrogen gas. It is preferable that the formed perovskite nanoparticles have the formula of CsPbX 3 .
  • organic ligands are bound to the surface of perovskite nanoparticles.
  • the organic ligand is oleylamine or oleic acid.
  • oleylamine binds to the halide atom X of perovskite nanoparticles and provides dispersibility to individual perovskite nanoparticles.
  • the perovskite nanoparticles prepared through this are well dispersed in a solvent and can have high processability.
  • FIG. 2 is a schematic diagram showing the crystal structure of perovskite nanoparticles prepared by the process of FIG. 1.
  • halide X is located on all surfaces of the hexahedron and forms a face centered cubic (FCC) with alkali metal Cs disposed at all vertices of the hexahedron.
  • the alkali metal Cs forms a body centered cubic (BCC) structure with the central metal Pb.
  • the halide disposed on the surface of the hexahedron has a -3 valency, and it is easy to bind with other cations.
  • the halide used in FIG. 3 is preferably Cl, Br or I.
  • FIG. 3 are images showing perovskite nanoparticles prepared by FIG. 1 according to a preferred embodiment of the present invention.
  • perovskite nanoparticles having a chemical formula of CsPbX 3 are formed by synthesis.
  • the formed perovskite nanoparticles have a size of 10 nm or more in diameter, and exhibit different optical behaviors from quantum dots whose emission wavelength is determined by the size of the particles. That is, the emission wavelength of the perovskite nanoparticles of the present invention is determined according to the type of halide.
  • the formed perovskite nanoparticles each form a single crystal.
  • the emission wavelength is determined according to the type of the nanoparticles regardless of the size of the nanoparticles formed as single crystals.
  • the perovskite nanoparticles are polycrystalline or amorphous, a problem occurs in light emission.
  • the perovskite nanoparticles are polycrystalline or amorphous, a problem occurs in light emission.
  • since there is no structure in which an electric field is directly applied to the perovskite nanoparticles when a defect occurs on the surface of the nanoparticles, exciton quenching occurs, thereby reducing the efficiency of the light emission operation. Occurs.
  • perovskite nanoparticles are polycrystalline, grain boundaries between crystal grains act as defects.
  • FIG. 4 is a graph showing the lattice constant of the perovskite nanoparticles prepared in FIG. 1 according to a preferred embodiment of the present invention.
  • FIG. 5 is a graph showing photoluminescence (PL) data according to the lattice constant of FIG. 4 according to a preferred embodiment of the present invention.
  • CsPbCl 3 with the smallest lattice constant represents the highest energy PL characteristic
  • CsPbI 3 with the largest lattice constant represents the lowest energy PL characteristic. This is independent of the PL intensity, that is, CsPbCl 3 is excited by incident light to form light with the shortest wavelength, and CsPbI 3 is excited by incident light to form light with the longest wavelength.
  • FIG. 6 is a graph showing a band gap according to the type of perovskite nanoparticles of FIG. 3 according to a preferred embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing a scintillator composition according to a preferred embodiment of the present invention.
  • an organic ligand is bound to the surface of the perovskite nanoparticles prepared in FIG. 1.
  • the organic ligand is oleylamine or oleic acid.
  • Oleylamine may bind to halide atoms of perovskite nanoparticles, and oleic acid may bind to Cs or Pb of perovskite.
  • Perovskite nanoparticles do not aggregate with each other by the organic ligand, and maintain a well-dispersed state in the solution.
  • a light-absorbing compound is introduced into the perovskite nanoparticles to which the organic ligand is bound.
  • the light-absorbing compound is an organic material and binds to the surface of perovskite nanoparticles.
  • the light-absorbing compound may be bonded with Cs or Pb atoms in a region where the organic ligand is not bonded on the surface of the perovskite nanoparticle, and the light-absorbing compound is a part of oleic acid bonded to the perovskite nanoparticle. Or it may be bonded to the Cs or Pb atom by substituting all. Chemical bonding is achieved between the light-absorbing compound and the perovskite nanoparticles.
  • the light-absorbing compound may be diphenyloxazole (2,5-diphenyloxazole; PPO).
  • Diphenyloxazole has an oxazole ring, and a nitrogen atom of oxazole can form a chemical bond with an atom on the surface of the perovskite nanoparticle.
  • an unshared electron pair at the nitrogen atom of the oxazole may form a chemical bond with Cs or Pb of perovskite nanoparticles.
  • the light-absorbing compound is bonded to the organic ligand-bound perovskite nanoparticles to form a scintillate composition.
  • the perovskite nanoparticles to which the organic ligands described in FIG. 1 are bound are dispersed in a solvent.
  • a solvent octane or toluene may be used.
  • the light-absorbing compound is added to the solution.
  • the light-absorbing compound achieves chemical bonding to the surface of the perovskite.
  • diphenyloxazole may be chemically bonded to Cs or Pb atoms on the perovskite surface, and chemically bonded to Cs or Pb atoms by replacing the bonded oleic acid.
  • the formed scintillator composition does not exhibit a simple mixture of perovskite nanoparticles and a light-absorbing compound, and exhibits scintillation properties due to a new mechanism by chemical bonding of the two materials.
  • a light-absorbing compound that can be used can be bonded or bonded to the surface of perovskite nanoparticles, and high-energy electrons can be generated in radiation with energy higher than the band gap of perovskite nanoparticles. It is preferable.
  • FIG. 8 is a conceptual diagram showing the movement of electrons in a scintillator composition according to a preferred embodiment of the present invention.
  • the left side shows the energy level of the diphenyloxazole single molecule
  • the right side shows the band gap of the perovskite nanoparticles.
  • perovskite nanoparticles in which a plurality of molecules form crystal grains use a bandgap model
  • diphenyloxazole bound to the surface of perovskite nanoparticles in molecular units uses energy levels in molecular units.
  • Diphenyloxazole bonded to the perovskite surface absorbs light in a very wide band to form electrons.
  • incident high-energy radiation or light is absorbed by diphenyloxazole molecules distributed on the perovskite surface, forming electrons with high-energy.
  • Electrons generated in diphenyloxazole are easily transferred to perovskite nanoparticles due to their short molecular length. Electrons transferred to the perovskite nanoparticles can generate secondary electrons and holes, and form light having a wavelength corresponding to the band gap of the perovskite nanoparticles through recombination.
  • the generated electrons need to have high-energy, and light (eg, radiation) with energy in a region higher than visible or ultraviolet rays is Required. That is, diphenyloxazole, an organic substance bound to the surface of perovskite nanoparticles, absorbs high-energy light such as X-ray, and the electrons formed at this time move to the perovskite nanoparticles, and the perovskite nanoparticles Contributes to its luminescence.
  • light eg, radiation
  • the light emission operation is very slight or does not occur, and the light emission operation occurs mainly in perovskite nanoparticles.
  • the perovskite nanoparticles perform light emission by a secondary electron-hole pair by electrons transferred from the light-absorbing compound rather than forming excitons by directly inputting light incident from the outside during the light emission operation. That is, rather than a light-emitting operation by light directly incident on the perovskite nanoparticles, a light-emitting operation due to activated electrons transferred from the diphenyloxazole bound to the perovskite nanoparticles is led.
  • diphenyloxazole forms activated primary electrons. Since the formed primary electrons have very high energy, they move to the perovskite nanoparticles chemically bonded with diphenyloxazole. In addition, the primary electron maintains a higher energy state than the conduction band of the perovskite nanoparticles.
  • the primary electrons transferred to the perovskite nanoparticles move to the conduction band, forming secondary electron-hole pairs. That is, the light emission operation may be performed while the primary electrons moved to the conduction band move to the valence band, and the light emission operation may be performed by recombination of the secondary electron-hole pair.
  • FIG. 9 is a graph showing RL characteristics of a scintillator compound for explaining the operation model of FIG. 8 according to a preferred embodiment of the present invention.
  • Radioluminescence (RL) of only perovskite nanoparticles has a very low value.
  • a compound in which diphenyloxazole is bound to perovskite nanoparticles has a very high value. That is, when diphenyloxazole is bonded to the surface of the perovskite nanoparticles, it can be seen that a kind of optical amplification phenomenon occurs.
  • the inventors of the present invention interpret the above phenomenon as follows.
  • the scintillator compound composed of only perovskite nanoparticles can form electrons by high-energy radiation of a short wavelength, but the number of generated electrons is limited and the scintillation efficiency characteristics are limited.
  • the scintillation efficiency characteristics of the composition comprising the perovskite nanoparticles and diphenyloxazole may be greatly improved.
  • the scintillator composition composed of only perovskite nanoparticles reflects light from the surface due to its inherent refractive index when light is incident. Accordingly, some of the incident light is reflected to the outside, and the light incident on the perovskite nanoparticles corresponds to a portion of the light incident on the surface. Therefore, the scintillator composition composed of only perovskite nanoparticles exhibits low RL characteristics.
  • the scintillator composition in which diphenyloxazole is bonded to the surface of perovskite nanoparticles exhibits very excellent RL properties.
  • diphenyloxazole When high-energy radiation or light is incident, diphenyloxazole generates electrons with high energy, and the generated electrons migrate to perovskite nanoparticles.
  • High-energy electrons transferred to the perovskite nanoparticles perform light emission while moving from the perovskite nanoparticles to a low energy band.
  • electrons of high energy transferred to the perovskite nanoparticles form a two-way electron-hole pair in the perovskite nanoparticles, and a light emission operation by recombination may be performed.
  • FIG. 10 is a graph showing linear light emission characteristics of the scintillator composition of FIG. 9 according to a preferred embodiment of the present invention.
  • the dotted line shows the optical characteristics when only perovskite nanoparticles are used as the scintillator composition
  • the solid line is the light of the scintillator composition using perovskite nanoparticles and diphenyloxazole. It shows the characteristics.
  • the red line is the characteristic of the scintillator composition using CsPbI 3 to form red light
  • the green line is the characteristic of the scintillator composition using CsPbBr 3 to form green light
  • the blue line is CsPbCl 3 to form blue light. It is a characteristic of the scintillator composition to be used.
  • the increase in RL intensity appears insignificant even when the applied amount of radiation increases.
  • the RL intensity linearly increases in proportion to the amount of radiation applied. Through this, linearity in proportion to the applied amount of radiation can be obtained, and a sharper and differentiated image can be obtained.
  • FIG. 11 is a graph showing a change in peak intensity of a scintillator composition according to a preferred embodiment of the present invention.
  • the scintillator composition comprising only perovskite nanoparticles and the scintillator composition comprising perovskite nanoparticles and diphenyloxazole of the present invention
  • diphenyloxazole hardly generates light of a natural wavelength to the applied radiation, and the wavelength of light formed in the scintillator composition is determined by perovskite nanoparticles.
  • diphenyloxazole absorbs the energy of radiation to form a large amount of electrons, and performs a function of transferring the formed electrons to the perovskite nanoparticles.
  • FIG. 12 is a graph showing luminescence characteristics according to whether or not diphenyloxazole is included while varying the concentration of perovskite nanoparticles according to a preferred embodiment of the present invention.
  • the intensity of RL increases as the concentration of perovskite nanoparticles increases.
  • the increase in the strength of RL is insignificant even if the concentration of perovskite nanoparticles increases. That is, an increase in concentration does not appear as an improvement in optical properties with perovskite nanoparticles alone.
  • the inventors of the present invention believe that even if the incident amount of radiation increases or the concentration of perovskite nanoparticles increases, a large amount of electrons formed in the perovskite nanoparticles are thermal energy through indirect recombination inside. Is scattered, and only a few electrons are interpreted as participating in the light emission operation.
  • diphenyloxazole forms electrons above a specific energy, and these electrons participate in recombination with a high probability in perovskite nanoparticles to improve light efficiency.
  • FIG. 13 is a graph showing the RL strength of perovskite nanoparticles and diphenyloxazole according to a preferred embodiment of the present invention.
  • CsPbBr 3 when diphenyloxazole is used alone, RL characteristics of low intensity appear in a wide wavelength range.
  • CsPbBr 3 also exhibits low-intensity RL characteristics in a wavelength band of 500 nm to 570 nm.
  • the scintillator composition in which each material is applied at the same concentration exhibits very high strength RL properties.
  • the peak wavelength has the same value as that of the perovskite nanoparticle.
  • the scintillator composition in which diphenyloxazole is bonded to CsPbBr 3 light does not appear in the wavelength band when diphenyloxazole is used alone.
  • Diphenyl oxazole If used by itself, or the peak appears at about 350 nm to 500 nm band, the CsPbBr 3-diphenyl-oxazole is combined with a scintillator composition of the light peaks at a unique emission band of diphenyl oxazole the Rarely appear.
  • FIG. 14 is a graph showing RL characteristics according to a change in concentration of diphenyloxazole according to a preferred embodiment of the present invention.
  • CsPbBr 3 is used as perovskite nanoparticles, and the concentration of diphenyloxazole is increased to 0.001 g/mL to 0.05 g/mL.
  • the RL strength of the scintillator composition As the concentration of diphenyloxazole increases, the RL strength of the scintillator composition also increases. That is, it can be seen that diphenyloxazole plays an important role in improving the luminescence properties of the scintillator composition. However, diphenyloxazole does not participate in changing the emission wavelength of the scintillator composition. It can be seen that the emission wavelength is determined by perovskite nanoparticles, and the intensity of emission depends on the concentration of diphenyloxazole. Of course, it has been described in FIG. 12 that an increase in the concentration of perovskite nanoparticles causes an increase in the intensity of light emission when diphenyloxazole is supplied.
  • the delay time is related to the afterimage of the scintillator composition. That is, as the delay time increases, an afterimage appears in the image of the CCD. Therefore, it should be understood that the shorter the delay time, the better the characteristic in order to obtain a fast response characteristic or a fine image.
  • Perovskite nanoparticles have very short delay times. However, the delay time is slightly increased by the light absorbing compound diphenyloxazole. As is known, the light-absorbing compound has a shorter delay time compared to the conventional inorganic compound. That is, diphenyloxazole has a shorter delay time compared to conventional inorganic compounds. However, the delay time slightly increases compared to the case where perovskite nanoparticles are used alone due to the phenomenon of electron transfer in diphenyloxazole.
  • 16 is a schematic diagram illustrating a method of manufacturing a liquid scintillator according to a preferred embodiment of the present invention.
  • a sealing member is prepared between two substrates.
  • the sealing member may have various shapes and may have various materials. For example, it may be ceramic powder through a blazing technique, or may have a ring-type metal material. That is, any sealing member that is disposed between the upper and lower substrates and can accommodate a liquid scintillator composition filling the spaced space between the substrates may be possible.
  • liquid scintillator composition a non-polar solvent such as octane or toluene is used in a composition containing perovskite nanoparticles and diphenyloxazole.
  • 17 is an image of a plastic scintillator manufactured according to a preferred embodiment of the present invention.
  • PDMS is added to a liquid composition containing perovskite nanoparticles, diphenyloxazole, and the solvent used in FIG. 16. Subsequently, after molding is performed, a plastic scintillator having elasticity and flexibility is manufactured by removing the solvent by an appropriate method such as heating.
  • the perovskite nanoparticles used in FIG. 17 include CsPbBr 3 and CsPbCl 3 .
  • the perovskite nanoparticles and the light-absorbing compound, diphenoloxazole are not used independently, and act as a scintillator composition through mutual bonding. That is, diphenoloxazole absorbs radiation or light in a wide wavelength band and forms electrons corresponding to a specific wavelength.
  • the electrons formed have a higher probability of recombining by moving to the perovskite nanoparticles than the probability of recombining in the light-absorbing compound. That is, electrons move to the perovskite nanoparticles, and light emission is performed through recombination in the perovskite nanoparticles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Measurement Of Radiation (AREA)

Abstract

신틸레이터 조성물 및 이를 적용한 다양한 형태의 신틸레이터가 개시된다. 조성물은 페로브스카이트 나노입자와 광흡수 화합물인 디페닐옥사졸을 포함한다. 각각이 단독으로 사용되는 경우에 비해 매우 높은 방사선 (X-ray 및 감마선 등) 신틸레이션 특성을 나타낸다.

Description

신틸레이터 조성물 및 이를 이용하는 신틸레이터
본 발명은 신틸레이터에 관한 것으로, 더욱 상세하게는 무기 결정성 화합물과 광흡수 화합물을 혼합하여 형성된 신틸레이터 화합물 및 이를 이용하여 제작된 신틸레이터에 관한 것이다.
신틸레이터는 X-ray 및 감마선 등의 방사선이 충돌하면 빛을 생성하는 물질 또는 물질의 다양한 형상 또는 타입으로 가공된 부품을 지칭한다. 신틸레이터는 빛을 생성하는 물질 자체를 지칭하기도 하고, 상기 물질이 일정한 형태로 가공되거나, 다른 구성과 결합된 부품을 지칭하기도 한다.
신틸레이터를 구성하는 물질의 종류는 크게 무기 화합물과 유기 화합물로 나누어지며, 물질이 이루는 상(相)에 따라 액체, 기체 및 고체로 분류된다. 신틸레이터는 광 변환의 대상이 되는 방사선 및 방사선의 용도에 따라, 무기 화합물 또는 유기 화합물이 이용될 수 있다. 특히, 신티레이터를 구성하는 물질은 방사선을 가시광으로 변환할 필요가 있다.
즉, 방사선을 가시광으로 변환하기 위해 형광체가 주로 이용된다. 사용되는 형광체로는 가돌리늄 옥시산황화물(Gadolinium Oxysulfide ; GoS) 또는 요오드화세슘(Cesium Iodide ; CsI)가 있다. 이들을 비교하면, CsI는 낮은 방사선 량에서 영상을 얻을 수 있고, 우수한 화질을 제공한다는 장점이 있다. 또한, GoS는 CsI에 비해 낮은 가격을 가지는 장점이 있다.
섬광물질(scintillator)로 이용되는 유기 화합물로는 안트라센(anthracene), 스틸벤(stilbene) 또는 나프탈렌(naphthalene) 등이 있다. 이들은 다양한 방식으로 연결된 벤젠 고리 구조를 가지며, 내구성이 뛰어나고, 감쇠 시간이 짧다는 장점을 가진다. 그러나, 소스가 평행하지 않을 경우, 에너지 분해능이 급격히 저하하는 비등방성 반응을 나타낸다. 이외에 쉽게 가공되지 않으며, 큰 사이즈의 검출기를 제작할 수 없는 단점을 가진다.
설명된 무기 화합물과 유기 화합물을 평가하면, 무기 화합물은 높은 발광 효율의 장점을 가지고, 유기 화합물은 빠른 천이속도를 가진다. 따라서, 신속한 신호가 요구되는 계측 환경에서는 유기 화합물이 신틸레이터로 이용되고, 미세한 이미지까지 요구되는 계측 환경에서는 무기 화합물이 신틸레이터에 이용된다. 특히, 무기 화합물은 유기 화합물에 비해 방사선의 입사량 또는 에너지가 발광량에 비례하는 선형성이 높으므로 유기 화합물에 비해 많이 이용된다.
다만, 무기 화합물이 신틸레이터에 이용된다 하더라도 더욱 선명한 영상이 획득되기 위해 더 높은 광효율이 요구된다. 또한, 신틸레이터를 이루는 물질이 높은 광량, 뛰어난 선형성, 빠른 천이 속도를 가질 것은 여전히 요구되고 있다.
본 발명이 이루고자 하는 제1 기술적 과제는 높은 광량과 뛰어난 선형성을 가지는 신틸레이터 조성물을 제공하는데 있다.
본 발명이 이루고자 하는 제2 기술적 과제는 상기 제1 기술적 과제의 달성에 의해 제공되는 신틸레이터 조성물을 이용한 신틸레이터를 제공하는데 있다.
상술한 제1 기술적 과제를 달성하기 위한 본 발명은, 전자-정공 쌍의 재결합에 의해 발광 동작을 수행하는 페로브스카이트 나노입자; 및 상기 페로브스카이트 나노입자 표면에 결합되고, 입사되는 광에 의해 전자를 발생하고, 상기 발생된 전자를 상기 페로브스카이트 나노입자에 전달하기 위한 광흡수 화합물을 포함하는 신틸레이터 조성물을 제공한다.
또한, 상술한 제 2 기술적 과제를 달성하기 위한 본 발명은, 상기 제1 기술적 과제의 달성에 의해 제공되는 신틸레이터 조성물을 이용하여 형성된 신틸레이터를 제공한다.
상술한 본 발명에 따르면, 광흡수 화합물과 무기 화합물은 신틸레이터 조성물을 구성한다. 예컨대, 무기 화합물은 페로브스카이트 나노입자를 가지고, 광흡수 화합물은 디페놀옥사졸을 가진다. 다만, 페로브스카이트 나노입자와 광흡수 화합물인 디페놀옥사졸은 각각 독립적으로 사용되지 않으며, 상호간의 결합을 통해 신틸레이터 조성물로 작용한다. 즉, 디페놀옥사졸은 넓은 파장 대역에서 방사선 또는 광을 흡수하고, 높은 에너지를 가지는 전자를 형성한다. 형성된 고-에너지 전자들이 광흡수 화합물 내에서 재결합하는 확률보다는 페로브스카이트 나노입자로 이동하여 2차 전자-홀을 생성하고 재결합되는 확률이 더 높다. 즉, 전자들은 페로브스카이트 나노입자로 이동하고, 페로브스카이트 나노입자에서 재결합을 통해 발광 동작이 수행된다.
따라서, 페로브스카이트 나노입자가 단독으로 사용되는 경우에 비해 매우 높은 발광 특성이 확보된다.
도 1은 본 발명의 바람직한 실시예에 따라 페로브스카이트 나노입자의 제조를 설명하기 위한 모식도이다.
도 2는 상기 도 1의 과정에 의해 제조된 페로브스카이트 나노입자의 결정 구조를 도시한 모식도이다.
도 3은 본 발명의 바람직한 실시에 따라 상기 도 1에 의해 제조된 페로브스카이트 나노입자를 도시한 이미지들이다.
도 4는 본 발명의 바람직한 실시예에 따라 상기 도 1에서 제조된 페로브스카이트 나노입자의 격자 상수를 도시한 그래프이다.
도 5는 본 발명의 바람직한 실시예에 따라 상기 도 4의 격자 상수에 따른 PL 데이터를 도시한 그래프이다.
도 6은 본 발명의 바람직한 실시예에 따라 상기 도 3의 페로브스카이트 나노입자들의 종류에 따른 밴드갭을 도시한 그래프이다.
도 7은 본 발명의 바람직한 실시예에 따른 신틸레이터 조성물을 도시한 모식도이다.
도 8은 본 발명의 바람직한 실시예에 따라 신틸레이터 조성물의 전자의 이동을 도시한 개념도이다.
도 9는 본 발명의 바람직한 실시예에 따라 상기 도 8의 동작 모델을 설명하기 위한 신틸레이터 화합물의 RL 특성을 도시한 그래프이다.
도 10은 본 발명의 바람직한 실시예에 따라 상기 도 9의 신틸레이터 조성물의 선형적 광특성을 도시한 그래프이다.
도 11은 본 발명의 바람직한 실시예에 따른 신틸레이터 조성물의 피크 강도의 변화를 도시한 그래프이다.
도 12는 본 발명의 바람직한 실시예에 따라 페로브스카이트 나노입자의 농도 변화에 따른 광 특성을 도시한 그래프이다.
도 13은 본 발명의 바람직한 실시예에 따라 페로브스카이트 나노입자와 디페닐옥사졸의 RL 강도를 도시한 그래프이다.
도 14는 본 발명의 바람직한 실시예에 따라 디페닐옥사졸의 농도 변화에 따른 RL 특성을 도시한 그래프이다.
도 15는 본 발명의 바람직한 실시예에 따라 신틸레이터 조성물의 지연시간을 도시한 그래프들이다.
도 16은 본 발명의 바람직한 실시예에 따른 액체 신틸레이터의 제조방법을 설명하기 위한 모식도이다.
도 17은 본 발명의 바람직한 실시예에 따라 제조된 플라스틱 신틸레이터의 이미지이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다.
또한, 본 발명에서 신틸레이터 조성물 또는 신틸레이터 화합물은 형광 특성 또는 섬광 특성을 가지는 물질을 지칭한다. 물질 자체를 지칭하는 신틸레이터 조성물 등은 다양한 공정을 통해 신틸레이터로 형성된다. 신틸레이터는 정의된 신틸레이터 조성물 등을 섬광체로 이용하며, X-선 또는 방사선의 입사에 대해 가시광을 형성하는 구조체를 지칭한다. 따라서, 신틸레이터는 신틸레이터 조성물이 기재 내에 분산된 형태 또는 기판 상에 코팅된 형태를 가진다.
실시예
도 1은 본 발명의 바람직한 실시예에 따라 페로브스카이트 나노입자의 제조를 설명하기 위한 모식도이다.
도 1을 참조하면, 납 할라이드(PbX3), 올레산(oleic acid ; OA) 및 올레일아민(oleylamine ; OLA)이 용기에 투입되고 혼합되어 제1 합성 용액이 형성된다. 이어서, 용기 내는 진공 상태로 유지된다.
제1 합성 용액이 형성된 용기에 Cs-oleate 가 투입된다. Cs-oleate 는 CsCO3 와 올레산이 진공상태에서 혼합되어 형성된다. Cs-oleate 가 투입된 용기에 질소 가스가 공급되고, 용기 내에서는 제2 혼합용액이 형성된다.
소정의 시간이 흐르고, 질소 가스가 공급되는 용기 내에서는 페로브스카이트 나노입자가 형성된다. 형성되는 페로브스카이트 나노입자는 CsPbX3의 화학식을 가짐이 바람직하다.
또한, 페로브스카이트 나노입자의 표면에는 유기 리간드가 결합된다. 유기 리간드는 올레일아민 또는 올레산이다. 특히, 올레일아민은 페로브스카이트 나노입자의 할라이드 원자 X와 결합하며, 개별적인 페로브스카이트 나노입자에 분산능을 제공한다. 이를 통해 제조된 페로브스카이트 나노입자는 용매에 잘 분산되며 높은 가공성을 가질 수 있다.
도 2는 상기 도 1의 과정에 의해 제조된 페로브스카이트 나노입자의 결정 구조를 도시한 모식도이다.
도 2를 참조하면, 할라이드 X가 육면체의 모든 표면에 위치하며, 육면체의 모든 꼭지점에 배치되는 알칼리 금속 Cs와 함께 면심입방구조(face centered cubic : FCC)를 이룬다. 또한, 알칼리 금속 Cs는 중심 금속인 Pb와 체심입방구조(body centered cubic ; BCC)를 이룬다. 특히, 면심입방구조에서 육면체의 표면에 배치되는 할라이드는 -3가를 가지며, 다른 양이온과의 결합이 용이한 특징이 있다.
상기 도 3에서 사용되는 할라이드는 Cl, Br 또는 I임이 바람직하다.
도 3은 본 발명의 바람직한 실시예에 따라 상기 도 1에 의해 제조된 페로브스카이트 나노입자를 도시한 이미지들이다.
도 3을 참조하면, 합성에 의해 CsPbX3의 화학식을 가지는 페로브스카이트 나노입자들이 형성된다. 형성된 페로브스카이트 나노입자들은 직경이 10 nm 이상의 크기를 가지며 입자의 사이즈에 의해 발광 파장이 결정된는 양자점과는 다른 광학적 거동을 나타낸다. 즉, 본 발명의 페로브스카이트 나노입자는 할라이드의 종류에 따라 발광 파장이 결정된다.
또한, 형성된 페로브스카이트 나노입자들은 각각이 단결정을 형성한다. 단결정으로 형성된 나노입자들의 사이즈에 무관하게 나노입자의 종류에 따라 발광 파장은 결정된다. 특히, 페로브스카이트 나노입자들이 다결정이거나 비정질인 경우, 발광 동작에 문제가 발생된다. 본 발명의 경우, 페로브스카이트 나노입자에 직접 전계가 인가되는 구조가 아니므로 나노입자의 표면에 결함이 발생되는 경우, 엑시톤의 소멸(exciton quenching)이 발생하여 발광 동작의 효율이 감소되는 문제가 발생된다. 페로브스카이트 나노입자가 다결정인 경우, 결정립들 사이의 그레인 바운더리가 결함으로 작용한다.
도 4는 본 발명의 바람직한 실시예에 따라 상기 도 1에서 제조된 페로브스카이트 나노입자의 격자 상수를 도시한 그래프이다.
또한, 도 5는 본 발명의 바람직한 실시예에 따라 상기 도 4의 격자 상수에 따른 PL(Photoluminescence) 데이터를 도시한 그래프이다.
도 4 및 도 5를 참조하면, 할라이드 원소의 크기가 클수록 페로브스카이트 결정의 격자 상수도 커짐을 알 수 있다. 또한, 격자 상수가 가장 작은 CsPbCl3는 가장 높은 에너지의 PL 특성을 나타내며, 격자 상수가 가장 큰 CsPbI3는 가장 낮은 에너지의 PL 특성을 나타낸다. 이는 PL 강도(intensity)와는 무관하며, 즉, CsPbCl3는 입사되는 광에 여기 되어 가장 짧은 파장의 광을 형성하며, CsPbI3는 입사되는 광에 여기 되어 가장 긴 파장의 광을 형성한다.
도 6은 본 발명의 바람직한 실시예에 따라 상기 도 3의 페로브스카이트 나노입자들의 종류에 따른 밴드갭을 도시한 그래프이다.
도 6을 참조하면, 상기 도 5와 동일한 경향의 특성이 나타난다. 즉, CsPbCl3가 가장 큰 밴드갭을 가지므로 단파장의 광을 형성하며, 가장 작은 밴드갭을 가진 CsPbI3는 가장 작은 밴드갭을 가지므로 장파장의 광을 형성할 수 있다.
도 7은 본 발명의 바람직한 실시예에 따른 신틸레이터 조성물을 도시한 모식도이다.
도 7을 참조하면, 도 1에서 제조된 페로브스카이트 나노입자의 표면에 유기 리간드가 결합된 상태이다. 상기 유기 리간드는 올레일아민 또는 올레산이다. 올레일아민은 페로브스카이트 나노입자의 할라이드 원자와 결합할 수 있으며, 올레산은 페로브스카이트의 Cs 또는 Pb와 결합될 수 있다. 유기 리간드에 의해 페로브스카이트 나노입자들은 상호간에 응집되지 않고, 용액 내에서 잘 분산된 상태를 유지한다.
또한, 유기 리간드가 결합된 페로브스카이트 나노입자에 광흡수 화합물이 도입된다. 상기 광흡수 화합물은 유기물이며, 페로브스카이트 나노입자의 표면에 결합한다. 예컨대, 광흡수 화합물은 페로브스카이트 나노입자의 표면에서 유기 리간드가 결합되지 않은 영역에서 Cs 또는 Pb 원자와 결합될 수 있으며, 상기 광흡수 화합물은 페로브스카이트 나노입자와 결합된 올레산의 일부 또는 전부를 치환하여 Cs 또는 Pb 원자와 결합될 수 있다. 광흡수 화합물과 페로브스카이트 나노입자 사이에는 화학적 결합이 달성된다. 예컨대, 광흡수 화합물은 디페닐옥사졸(2,5-diphenyloxazole ; PPO)일 수 있다. 디페닐옥사졸은 옥사졸의 고리를 가지며, 옥사졸의 질소 원자가 페로브스카이트 나노입자 표면의 원자와 화학적 결합을 이룰 수 있다.
예컨대, 디페닐옥사졸에서 옥사졸의 질소 원자에서 비공유 전자쌍은 페로브스카이트 나노입자의 Cs 또는 Pb와 화학적 결합을 이룰 수 있다. 유기 리간드가 결합된 페로브스카이트 나노입자에 광흡수 화합물이 결합되어 신틸레이트 조성물이 형성된다.
신틸레이터 조성물의 제조를 위해 상기 도 1에 설명된 유기 리간드가 결합된 페로브스카이트 나노입자들은 용매에 분산된다. 상기 용매로는 octane 또는 toluene 이 사용될 수 있다. 이어서, 광흡수 화합물이 용액에 투입된다. 광흡수 화합물이 투입되면, 광흡수 화합물은 페로브스카이트의 표면에 화학적 결합을 달성한다. 예컨대, 디페닐옥사졸은 페로브스카이트 표면의 Cs 또는 Pb 원자와 화학적으로 결합할 수 있으며, 결합된 올레산을 치환하여 Cs 또는 Pb 원자와 화학적으로 결합할 수 있다.
형성된 신틸레이터 조성물은 페로브스카이트 나노입자와 광흡수 화합물이 단순 혼합된 특성이 나타나지 않으며, 이 두 물질의 화학적 결합에 따른 새로운 메카니즘에 의한 신틸레이션 특성을 나타낸다.
사용될 수 있는 광흡수 화합물은 페로브스카이트 나노입자의 표면에 결합 또는 접합될 수 있으며, 페로브스카이트 나노입자의 밴드갭보다 높은 에너지를 가지는 방사선에 고-에너지의 전자가 발생될 수 있는 물질임이 바람직하다.
도 8은 본 발명의 바람직한 실시예에 따라 신틸레이터 조성물의 전자의 이동을 도시한 개념도이다.
도 8을 참조하면, 좌측은 디페닐옥사졸 단분자의 에너지 레벨을 도시하고, 우측은 페로브스카이트 나노입자의 밴드갭을 나타낸다.
즉, 복수개의 분자들이 결정립을 형성하는 페로브스카이트 나노입자는 밴드갭 모델을 이용하고, 분자 단위로 페로브스카이트 나노입자의 표면에 결합되는 디페닐옥사졸은 분자 단위의 에너지 레벨을 이용하여 설명된다.
페로브스카이트 표면에 결합되는 디페닐옥사졸은 매우 넓은 대역의 광을 흡수하여 전자를 형성한다. 또한, 입사되는 고-에너지 방사선 또는 광은 페로브스카이트 표면에 분포되는 디페닐옥사졸 분자들에 의해 흡수되고, 고-에너지를 가진 전자를 형성한다. 디페닐옥사졸에서 발생된 전자들은 짧은 분자 길이로 인해 페로브스카이트 나노입자로 용이하게 이동된다. 페로브스카이트 나노입자로 이동된 전자들은 2차 전자 및 홀을 발생할 수 있고 재결합을 통해 페로브스카이드 나노입자의 밴드갭에 상응하는 파장의 광을 형성한다.
디페닐옥사졸에서 발생된 전자들이 페로브스카이트 나노 입자로 이동하기 위해서는 생성된 전자가 고-에너지를 가질 필요가 있으며, 가시광선 또는 자외선 보다 높은 영역의 에너지를 가진 광(예, 방사선)이 요구된다. 즉 페로브스카이트 나노입자의 표면에 결합된 유기물인 디페닐옥사졸이 X-ray 같은 고-에너지 광을 흡수하고, 이때 형성된 전자가 페로브스카이트 나노입자로 이동하여 페로브스카이트 나노 입자의 발광에 기여한다.
상술한 전자의 이동 모델에서 광흡수 화합물인 디페닐옥사졸에서는 발광 동작이 매우 미미하거나 일어나지 않으며, 발광 동작은 페로브스카이트 나노입자에서 주도적으로 발생된다. 페로브스카이트 나노입자는 발광 동작 시에 외부에서 입사되는 광이 직접 투입되어 엑시톤을 형성하기 보다는 광흡수 화합물에서 전달되는 전자에 의한 2차 전자-정공 쌍에 의해 발광 동작이 수행된다. 즉, 페로브스카이트 나노입자에 직접 입사되는 광에 의한 발광 동작 보다는 페로브스카이트 나노입자에 결합된 디페닐옥사졸로부터 전달된 활성화된 전자에 기인한 발광 동작이 주도적으로 발생된다.
즉, 고-에너지의 방사선이 입사되면, 디페닐옥사졸은 활성화된 1차 전자를 형성한다. 형성된 1차 전자들은 매우 높은 상태의 에너지를 가지므로 디페닐옥사졸과 화학적으로 결합된 페로브스카이트 나노입자로 이동한다. 또한, 1차 전자는 페로브스카이트 나노입자의 전도대역보다 높은 에너지 상태를 유지한다.
페로브스카이트 나노입자로 이동된 1차 전자는 전도대역으로 이동하면서 2차 전자-정공 쌍을 형성한다. 즉, 전도대역으로 이동된 1차 전자가 가전자 대역으로 이동하면서 발광 동작이 수행될 수 있으며, 2차 전자-정공 쌍의 재결합에 의한 발광 동작이 수행될 수 있다.
도 9는 본 발명의 바람직한 실시예에 따라 상기 도 8의 동작 모델을 설명하기 위한 신틸레이터 화합물의 RL 특성을 도시한 그래프이다.
도 9를 참조하면, 신틸레이터 화합물에 방사선이 조사되고, 신틸레이터 화합물에서 방출되는 광의 세기가 측정된다. 페로브스카이트 나노입자 만의 RL(Radioluminescence )은 매우 낮은 값을 가진다. 반면, 페로브스카이트 나노입자에 디페닐옥사졸이 결합된 화합물은 매우 높은 값을 가진다. 즉, 페로브스카이트 나노입자의 표면에 디페닐옥사졸이 결합될 경우, 일종이 광 증폭 현상이 발생됨을 알 수 있다.
상기 현상에 대해 본 발명의 발명자들은 다음과 같이 해석한다.
방사선이 입사되면, 디페닐옥사졸에서 전자가 생성되고, 전자는 페로브스카이트 나노입자로 이동하여 페로브스카이트 나노입자에서 재결합에 따른 신틸레이션 광을 발생한다. 따라서, 디페닐옥사졸에서 여기된 전자의 재결합에 따른 광의 발생은 거의 관찰되지 않는다. 물론 일부 전자들은 디페닐옥사졸 내에서 재결합되고, 매우 짧은 파장의 광을 형성할 수도 있으나 그 영향은 매우 미미하다.
또한, 페로브스카이트 나노입자 만으로 구성된 신틸레이터 화합물은 짧은 파장의 고-에너지 방사선에 의해 전자를 형성할 수 있으나, 생성된 전자들의 수가 한정적이고 신틸레이션 효율 특성이 제한된다. 그러나, 페로브스카이트 나노입자가 디페닐옥사졸과 결합되어 전자를 공급받는 경우 페로브스카이트 나노 입자와 디페닐옥사졸로 이루어진 조성물의 신틸레이션 효율 특성이 크게 향상될 수 있다.
이는 다른 모델로도 설명될 수 있다. 페로브스카이트 나노입자 만으로 구성된 신틸레이터 조성물은 광이 입사되면, 고유의 굴절률로 인해 광을 표면에서 반사한다. 따라서, 입사되는 광의 일부는 외부로 반사되며, 페로브스카이트 나노입자에 입사되는 광은 표면에 입사되는 광의 일부에 해당된다. 따라서, 페로브스카이트 나노입자 만으로 구성된 신틸레이터 조성물은 낮은 RL 특성을 나타낸다.
반면, 페로브스카이트 나노입자 표면에 디페닐옥사졸이 결합된 신틸레이터 조성물은 매우 뛰어난 RL 특성을 나타낸다. 고-에너지의 방사선 또는 광이 입사되면, 디페닐옥사졸은 높은 에너지를 가진 전자를 생성하고, 생성된 전자는 페로브스카이트 나노입자로 이동한다. 페로브스카이트 나노입자로 이동된 높은 에너지의 전자는 페로브스카이트 나노입자에서 낮은 에너지 대역으로 이동하면서 발광 동작을 수행한다. 또한, 페로브스카이트 나노입자로 이동한 높은 에너지의 전자는 페로브스카이트 나노입자 내에서 2자 전자-정공 쌍을 형성하고, 재결합에 의한 발광 동작을 수행할 수 있다.
도 10은 본 발명의 바람직한 실시예에 따라 상기 도 9의 신틸레이터 조성물의 선형적 발광 특성을 도시한 그래프이다.
도 10을 참조하면, 점선은 페로브스카이트 나노입자 만이 신틸레이터 조성물로 사용된 경우의 광특성을 도시한 것이며, 실선은 페로브스카이트 나노입자와 디페닐옥사졸을 이용한 신틸레이터 조성물의 광특성을 도시한 것이다. 또한, 붉은선은 적색광을 형성하는 CsPbI3가 사용된 신틸레이터 조성물의 특성이며, 초록선은 녹색광을 형성하는 CsPbBr3를 사용하는 신틸레이터 조성물의 특성이고, 청색선은 청색광을 형성하는 CsPbCl3를 사용하는 신틸레이터 조성물의 특성이다.
페로브스카이트 나노입자 만으로 구성된 신틸레이터 조성물은 방사선 인가량이 증가하더라도 RL 강도의 증가량이 미미하게 나타난다. 그러나, 디페닐옥사졸이 포함된 신틸레이터 조성물은 방사선 인가량에 비례하여 RL 강도가 선형적으로 증가함을 알 수 있다. 이를 통해 방사선의 인가량에 비례하는 선형성을 얻을 수 있으며, 보다 선명하고, 차별화된 영상을 얻을 수 있다.
도 11은 본 발명의 바람직한 실시예에 따른 신틸레이터 조성물의 피크 강도의 변화를 도시한 그래프이다.
도 11을 참조하면, 페로브스카이트 나노입자 만으로 구성된 신틸레이터 조성물과 본 발명의 페로브스카이트 나노입자와 디페닐옥사졸이 포함된 신틸레이터 조성물에서 피크 위치의 변화는 거의 나타나지 않는다. 이는 디페닐옥사졸이 인가되는 방사선에 대해 고유 파장의 광을 거의 생성하지 않으며, 신틸레이터 조성물에서 형성되는 광의 파장은 페로브스카이트 나노입자에 의해서 결정됨을 의미한다. 다만, 디페닐옥사졸은 방사선의 에너지를 흡수하여 다량의 전자를 형성하고, 형성된 전자를 페로브스카이트 나노입자로 전달하는 기능을 수행한다.
도 12는 본 발명의 바람직한 실시예에 따라 페로브스카이트 나노입자의 농도 변화를 주면서 디페닐옥사졸의 포함 여부에 따른 발광 특성을 도시한 그래프이다.
도 12를 참조하면, 페로브스카이트 나노입자의 농도가 증가하면 RL의 강도도 증가함을 알 수 있다. 또한, 디페닐옥사졸이 포함되지 않은 경우, 페로브스카이트 나노입자의 농도가 증가하더라도 RL의 강도의 증가는 미미하다. 즉, 페로브스카이트 나노입자 단독으로는 농도의 증가가 광 특성의 향상으로 나타나지 않는다.
이와 같은 현상에 대해 본 발명의 발명자는 방사선의 입사량이 증가하거나, 페로브스카이드 나노입자의 농도가 증가하더라도, 페로브스카이트 나노입자에서 형성된 다량의 전자들은 내부에서 간접 재결합 등을 통해 열 에너지로 산란되고, 소수의 전자들만이 발광 동작에 참여하는 것으로 해석한다.
다만, 디페닐옥사졸은 특정 에너지 이상에서 전자를 형성하고, 이러한 전자들은 페로브스카이트 나노입자에서 높은 확률로 재결합에 참여하여 광 효율을 향상시키는 것으로 해석한다.
도 13은 본 발명의 바람직한 실시예에 따라 페로브스카이트 나노입자와 디페닐옥사졸의 RL 강도를 도시한 그래프이다.
도 13을 참조하면, 디페닐옥사졸 단독으로 사용되는 경우, 광범위한 파장대에서 낮은 강도의 RL 특성이 나타난다. 또한, CsPbBr3도 500 nm 내지 570 nm의 파장 대역에서 낮은 강도의 RL 특성을 나타낸다.
그러나, 각각의 물질을 동일 농도로 적용한 신틸레이터 조성물은 매우 높은 강도의 RL 특성을 보인다. 피크 파장은 페로브스카이트 나노입자의 피크와 동일한 값을 가진다.
또한, CsPbBr3에 디페닐옥사졸이 결합된 신틸레이터 조성물에서는 디페닐옥사졸이 단독으로 사용된 경우의 파장 대역에서 광이 나타나지 않는다. 디페닐옥사졸이 단독으로 사용된 경우, 약 350 nm 내지 500 nm 대역에서 피크가 나타나나, CsPbBr3에 디페닐옥사졸이 결합된 신틸레이터 조성물에서는 디페닐옥사졸의 고유 발광 대역에서 광의 피크가 거의 나타나지 않는다. 즉, 본 발명의 신틸레이터 조성물에서는 디페닐옥사졸에서 발광 동작이 거의 일어나지 않으며, 디페닐옥사졸에서 발생된 고-에너지의 전자들이 페로브스카이트 소재인 CsPbBr3으로 이동하여 발광 동작을 일으킴을 알 수 있다.
도 14는 본 발명의 바람직한 실시예에 따라 디페닐옥사졸의 농도 변화에 따른 RL 특성을 도시한 그래프이다.
도 14를 참조하면, 페로브스카이트 나노입자로 CsPbBr3가 이용되며, 디페닐옥사졸의 농도는 0.001 g/mL 내지 0.05 g/mL 까지 증가된다.
디페닐옥사졸의 농도가 증가하면 신틸레이터 조성물의 RL 강도도 증가한다. 즉, 디페닐옥사졸이 신틸레이터 조성물의 발광 특성을 향상시키는 중요한 역할을 알 수 있다. 그러나, 디페닐옥사졸은 신틸레이터 조성물의 발광 파장의 변경에는 참여하지 않는다. 발광 파장은 페로브스카이트 나노입자에 의해 결정되며, 발광의 세기는 디페닐옥사졸의 농도에 의존함을 알 수 있다. 물론, 상기 도 12에서 디페닐옥사졸이 공급된 상태에서 페로브스카이트 나노입자의 농도의 증가가 발광의 세기의 증가를 유발함은 설명된 상태이다.
도 15는 본 발명의 바람직한 실시예에 따라 신틸레이터 조성물의 지연시간을 도시한 그래프들이다.
도 15를 참조하면, 지연시간은 신틸레이터 조성물의 잔상과 관련된다. 즉, 지연시간이 증가할수록 CCD의 영상에서는 잔상이 나타난다. 따라서, 빠른 응답 특성 또는 미세한 영상을 얻기 위해서 지연시간은 짧을수록 특성이 향상된 것으로 이해되어야 한다.
페로브스카이트 나노입자는 매우 짧은 지연시간을 가진다. 다만, 광흡수 화합물인 디페닐옥사졸에 의해 지연시간은 다소 증가된다. 알려진 바에 따르면, 광흡수 화합물이 기존의 무기 화합물에 비해 짧은 지연시간을 가진다. 즉, 디페닐옥사졸은 기존의 무기 화합물에 비해 짧은 지연시간을 가진다. 다만, 디페닐옥사졸에서 전자의 이동에 따른 현상에 의해 페로브스카이트 나노입자가 단독으로 사용되는 경우에 비해 지연시간이 다소 증가한다.
도 16은 본 발명의 바람직한 실시예에 따른 액체 신틸레이터의 제조방법을 설명하기 위한 모식도이다.
도 16을 참조하면, 2 개의 기판들 사이에 밀봉 부재가 준비된다. 상기 밀봉 부재는 다양한 형상을 가지고, 다양한 재질을 가질 수 있다. 예컨대, 블래이징 기법을 통한 세라믹 분말일 수 있으며, 링 타입의 금속 재질을 가질 수도 있다. 즉, 밀봉 부재는 상부 및 하부의 기판들 사이에 배치되고, 기판들 사이의 이격공간을 채우는 액상의 신틸레이터 조성물을 수용할 수 있는 것이라면 어느 것이나 가능할 것이다.
또한, 상기 액상의 신틸레이터 조성물에는 페로브스카이트 나노입자 및 디페닐옥사졸이 포함된 조성물에 옥테인 또는 톨루엔 등의 비극성 용매가 사용된다.
도 17은 본 발명의 바람직한 실시예에 따라 제조된 플라스틱 신틸레이터의 이미지이다.
도 17을 참조하면, 페로브스카이트 나노입자, 디페닐옥사졸 및 상기 도 16에서 사용된 용매가 포함된 액상의 조성물에 PDMS가 추가된다. 이어서, 성형이 이루어진 다음, 용매를 가열 등의 적절한 방법으로 제거하면 신축성 및 가요성을 가지는 플라스틱 신틸레이터가 제조된다.
상기 도 17에서 사용된 페로브스카이트 나노입자는 CsPbBr3 및 CsPbCl3을 포함한다.
본 발명에서 페로브스카이트 나노입자와 광흡수 화합물인 디페놀옥사졸은 각각 독립적으로 사용되지 않으며, 상호간의 결합을 통해 신틸레이터 조성물로 작용한다. 즉, 디페놀옥사졸은 넓은 파장 대역에서 방사선 또는 광을 흡수하고, 특정 파장에 해당하는 전자를 형성한다. 형성된 전자는 광흡수 화합물 내에서 재결합되는 확률보다는 페로브스카이트 나노입자로 이동하여 재결합되는 확률이 더 높다. 즉, 전자들은 페로브스카이트 나노입자로 이동하고, 페로브스카이트 나노입자에서 재결합을 통해 발광 동작이 수행된다.
따라서, 페로브스카이트 나노입자가 단독으로 사용되는 경우에 비해 매우 높은 발광 특성이 확보된다.

Claims (17)

  1. 전자-정공 쌍의 재결합에 의해 발광 동작을 수행하는 페로브스카이트 나노입자; 및
    상기 페로브스카이트 나노입자 표면에 결합되고, 입사되는 광에 의해 전자를 발생하고, 상기 발생된 전자를 상기 페로브스카이트 나노입자에 전달하기 위한 광흡수 화합물을 포함하는 신틸레이터 조성물.
  2. 제1항에 있어서, 상기 페로브스카이트 나노입자는 CsPbX3(X=Cl, Br 또는 I)의 조성을 가지며, 직경 10 nm 이상의 단결정인 것을 특징으로 하는 신틸레이터 조성물.
  3. 제2항에 있어서, 상기 광흡수 화합물에서 발생된 전자는 상기 페로브스카이트 나노입자로 이동하고, 상기 이동된 전자가 에너지 준위를 이동하여 발광 동작을 수행하거나, 발생된 2차 전자에 의해 발광 동작을 수행하는 것을 특징으로 하는 신틸레이터 조성물.
  4. 제2항에 있어서, 상기 광흡수 화합물은 상기 페로브스카이트 나노입자의 Cs 또는 Pb에 화학적으로 결합되는 것을 특징으로 하는 신틸레이터 조성물.
  5. 제1항에 있어서, 상기 신틸레이터 조성물의 발광 파장은 상기 페로브스카이트 나노입자의 재질에 의해 결정되는 것을 특징으로 하는 신틸레이터 조성물.
  6. 제1항에 있어서, 상기 광흡수 화합물은 디페놀옥사졸을 가지는 것을 특징으로 하는 신틸레이터 조성물.
  7. 제6항에 있어서, 상기 디페놀옥사졸은 발광 동작보다는 광의 흡수에 따라 발생된 전자의 이동 동작을 수행하는 것을 특징으로 하는 신틸레이터 조성물.
  8. 제6항에 있어서, 상기 디페닐옥사졸의 광의 흡수 대역은 상기 페로브스카이트 나노입자의 발광 대역보다 높은 에너지 레벨을 가지는 것을 특징으로 하는 신틸레이터 조성물.
  9. 제8항에 있어서, 상기 디페닐옥사졸은 발광 동작을 수행하지 않으며, 상기 발광 동작은 페로브스카이트 나노입자가 수행하는 것을 특징으로 하는 신틸레이터 조성물.
  10. 제1항에 있어서, 상기 신틸레이터 조성물은 X-선 또는 γ-선의 광을 흡수하여 가시광의 광을 형성하는 것을 특징으로 하는 신틸레이터 조성물.
  11. 제1항에 있어서, 상기 신틸레이터 조성물은 상기 페로브스카이트 나노입자의 표면에 결합되고, 상기 페로브스카이트 나노입자들을 분산시키는 유기 리간드를 더 포함하는 것을 특징으로 하는 신틸레이터 조성물.
  12. 제11항에 있어서, 상기 유기 리간드는 올레일아민 또는 올레산인 것을 특징으로 하는 신틸레이터 조성물.
  13. 제12항에 있어서, 상기 광흡수 화합물은 상기 올레산을 일부를 치환하여 상기 페로브스카이트 나노입자의 표면에 결합되는 것을 특징으로 하는 신틸레이터 조성물.
  14. 제1항 내지 제3항 중 어느 한 항의 신틸레이터 조성물을 이용하여 형성된 신틸레이터.
  15. 제14항에 있어서, 상기 신틸레이터는 상기 신틸레이터 조성물이 용매에 분산된 액상 타입인 것을 특징으로 하는 신틸레이터.
  16. 제15항에 있어서, 상기 용매는 비극성 용매로 옥테인 또는 톨루엔을 포함하는 것을 특징으로 하는 신틸레이터.
  17. 제14항에 있어서, 상기 신틸레이터는 상기 신틸레이터 조성물이 PDMS에 추가된 플라스틱 타입인 것을 특징으로 하는 신틸레이터.
PCT/KR2019/015539 2019-03-26 2019-11-14 신틸레이터 조성물 및 이를 이용하는 신틸레이터 WO2020197032A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190034379 2019-03-26
KR10-2019-0034379 2019-03-26
KR10-2019-0117368 2019-09-24
KR1020190117368A KR102288775B1 (ko) 2019-03-26 2019-09-24 신틸레이터 조성물 및 이를 이용하는 신틸레이터

Publications (1)

Publication Number Publication Date
WO2020197032A1 true WO2020197032A1 (ko) 2020-10-01

Family

ID=72608941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015539 WO2020197032A1 (ko) 2019-03-26 2019-11-14 신틸레이터 조성물 및 이를 이용하는 신틸레이터

Country Status (1)

Country Link
WO (1) WO2020197032A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030066601A (ko) * 2000-08-18 2003-08-09 센스 프로테오믹 리미티드 친유성 또는 양친매성 섬광체 및 분석에서 이의 용도
KR20170126856A (ko) * 2014-11-28 2017-11-20 캠브리지 엔터프라이즈 리미티드 전계발광 소자
KR20180024943A (ko) * 2016-08-31 2018-03-08 경희대학교 산학협력단 페로브스카이트 화합물을 포함하는 신틸레이터를 구비한 엑스선 검출기
KR20180098915A (ko) * 2017-02-27 2018-09-05 경희대학교 산학협력단 부식 방지막을 포함하는 신틸레이터 패널 및 이를 포함하는 엑스선 검출기

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030066601A (ko) * 2000-08-18 2003-08-09 센스 프로테오믹 리미티드 친유성 또는 양친매성 섬광체 및 분석에서 이의 용도
KR20170126856A (ko) * 2014-11-28 2017-11-20 캠브리지 엔터프라이즈 리미티드 전계발광 소자
KR20180024943A (ko) * 2016-08-31 2018-03-08 경희대학교 산학협력단 페로브스카이트 화합물을 포함하는 신틸레이터를 구비한 엑스선 검출기
KR20180098915A (ko) * 2017-02-27 2018-09-05 경희대학교 산학협력단 부식 방지막을 포함하는 신틸레이터 패널 및 이를 포함하는 엑스선 검출기

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN, W.: "Novel radioluminescent nuclear battery: Spectral regulation of perovskite quantum dots", INTERNATIONAL JOURNAL OF ENERGY RESEARCH, vol. 42, no. 7, 12 May 2018 (2018-05-12), pages 2507 - 2517, XP055644736, DOI: 10.1002/er.4032 *
LIN, Y.: "pi-Conjugated Lewis Base: Efficient Trap-Passivation and Charge-Extraction for Hybrid Perovskite Solar Cells-Conjugated", ADVANCED MATERIALS, vol. 29, no. 7, 6 December 2016 (2016-12-06) - February 2017 (2017-02-01), pages 1604545 *

Similar Documents

Publication Publication Date Title
Xu et al. Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide
McGregor Materials for gamma-ray spectrometers: Inorganic scintillators
Hajagos et al. High‐Z sensitized plastic scintillators: a review
US7692153B2 (en) Scintillator crystal and radiation detector
Hu et al. Ultrafast inorganic scintillators for gigahertz hard X-ray imaging
Li et al. Preparation and characterization of multilayer Gd2O2S: Tb phosphor screen for X‐ray detection application
WO2015174584A1 (ko) 섬광체, 이의 제조 방법 및 응용
Hunyadi et al. Scintillator of polycrystalline perovskites for high‐sensitivity detection of charged‐particle radiations
WO2021033837A1 (ko) 신틸레이터 및 이의 제조방법
WO2020197032A1 (ko) 신틸레이터 조성물 및 이를 이용하는 신틸레이터
Zhao et al. Solution-Processed Hybrid Europium (II) Iodide Scintillator for Sensitive X-Ray Detection
Rajakrishna et al. Effect of high Z materials loading in the performance of polystyrene-based thin-film plastic scintillators
Komendo et al. New scintillator 6Li2CaSiO4: Eu2+ for neutron sensitive screens
KR102288775B1 (ko) 신틸레이터 조성물 및 이를 이용하는 신틸레이터
US10234571B1 (en) Radiation detector
JP4587843B2 (ja) ガラス状化イメージングプレート
Bliznyuk et al. Plastic Scintillators and Radiation Detectors Based on Triphenyl Pyrazoline Derivatives
Diwan Liquid Scintillators; Technology and Challenges
Rajakrishna et al. Epoxy Based Scintillators for Beta Radiation Detection
Bell Scintillators and Scintillation Detectors
Marshall et al. Developing Perovskite Halide Scintillator thin films for Fast-Timing applications
Liu et al. Indium-doped perovskite-related cesium copper halide scintillator films for high-performance X-ray imaging
CN106634973B (zh) 一种三价铈离子激活的闪烁体材料及其制备方法与应用
Rupert et al. Bismuth-loaded polymer scintillators for gamma ray spectroscopy
KR20220030889A (ko) 고효율 이미지 측정을 위한 다층 신틸레이터 박막 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921315

Country of ref document: EP

Kind code of ref document: A1