WO2020196704A1 - Curable composition, cured product, and method for using curable composition - Google Patents

Curable composition, cured product, and method for using curable composition Download PDF

Info

Publication number
WO2020196704A1
WO2020196704A1 PCT/JP2020/013528 JP2020013528W WO2020196704A1 WO 2020196704 A1 WO2020196704 A1 WO 2020196704A1 JP 2020013528 W JP2020013528 W JP 2020013528W WO 2020196704 A1 WO2020196704 A1 WO 2020196704A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable composition
component
group
mass
carbon atoms
Prior art date
Application number
PCT/JP2020/013528
Other languages
French (fr)
Japanese (ja)
Inventor
学 宮脇
秀一 中山
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to KR1020217010696A priority Critical patent/KR20210145119A/en
Priority to JP2021509562A priority patent/JP7487175B2/en
Priority to CN202080023933.6A priority patent/CN113574116B/en
Publication of WO2020196704A1 publication Critical patent/WO2020196704A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/24Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen halogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • the present invention provides a curable composition having good coatability even when the concentration of the curable component is increased, a cured product having a low refractive index obtained by curing the curable composition, and the curable composition.
  • the present invention relates to a method of using as an adhesive for an optical element fixing material or a sealing material for an optical element fixing material.
  • the curable composition has been variously improved according to the application, and has been widely used industrially as a raw material for optical parts and molded articles, an adhesive, a coating agent, and the like. Further, the curable composition has also attracted attention as a composition for an optical element fixing material such as an adhesive for an optical element fixing material and a sealing material for an optical element fixing material.
  • Optical elements include various lasers such as semiconductor lasers (LDs), light emitting elements such as light emitting diodes (LEDs), light receiving elements, composite optical elements, optical integrated circuits, and the like.
  • LDs semiconductor lasers
  • LEDs light emitting diodes
  • optical elements of blue light and white light having a shorter peak wavelength of light emission have been developed and widely used. The brightness of such a light emitting element having a short peak wavelength of light emission is dramatically increased, and the amount of heat generated by the optical element tends to be further increased accordingly.
  • Patent Documents 1 to 3 propose compositions for optical device fixing materials containing a polysilsesquioxane compound as a main component.
  • some of the conventional curable compositions contain a large amount of solvent in order to improve the coatability, but when curing such a curable composition, drying conditions and curing conditions are required. Without strict control, the solvent may remain in the cured product and it may not be possible to form a cured product having the desired properties.
  • Japanese Unexamined Patent Publication No. 2004-359933 Japanese Unexamined Patent Publication No. 2005-263869 Japanese Unexamined Patent Publication No. 2006-328231
  • the present invention has been made in view of the above-mentioned actual conditions of the prior art, and even if the concentration of the curable component is increased, the curable composition having good coatability and the curable composition are cured. It is an object of the present invention to provide a cured product having a low refractive index and a method for using the curable composition as an adhesive for an optical element fixing material or a sealing material for an optical element fixing material.
  • the present inventors have made extensive studies on a curable composition containing a curable polysilsesquioxane compound.
  • the curable composition containing a specific curable polysilsesquioxane compound and a specific silicone oligomer having a methyl group has good coatability even if the curable component is increased in concentration.
  • they have found that a cured product having a low refractive index can be obtained by curing this curable composition, and have completed the present invention.
  • R 1 is an unsubstituted alkyl group having 1 to 10 carbon atoms, an alkyl group having a substituent having 1 to 10 carbon atoms, an aryl group having an unsubstituted carbon number of 6 to 12 carbon atoms, and a carbon number having a substituent (substituted group). At least one selected from the group consisting of 6-12 aryl groups.
  • the repeating unit derived from the trifunctional silane compound is contained in an amount of 50 mol% or more in all the repeating units.
  • the amount of the repeating unit represented by the formula (b-1) is 80 mol% or more in the repeating unit derived from the trifunctional silane compound.
  • the mass average molecular weight (Mw) is 100 to 2,000.
  • the curable composition according to [1].
  • the amount of the repeating unit represented by the formula (a-1) in the component (A) is 50 to 100 mol% in all the repeating units in the component (A), according to [1] or [2].
  • Curable composition [4] The curable composition according to any one of [1] to [3], wherein the refractive index of the component (A) is 1.300 to 1.450. [5] The curable composition according to any one of [1] to [4], wherein the refractive index of the component (B) is 1.300 to 1.450. [6] The curable composition according to any one of [1] to [5], wherein the total amount of the component (A) and the component (B) is 30 to 100% by mass in the solid content of the curable composition. ..
  • a curable composition having good coatability even if the concentration of the curable component is increased, a cured product having a low refractive index obtained by curing the curable composition, and the curable property.
  • a method of using the composition as an adhesive for an optical element fixing material or a sealing material for an optical element fixing material is provided.
  • the present invention will be described in detail by dividing it into 1) a curable composition, 2) a cured product, and 3) a method of using the curable composition.
  • Curable composition contains the following component (A) and component (B).
  • the "curable polysilsesquioxane compound” is defined as a predetermined condition such as heating.
  • the component (A) constituting the curable composition of the present invention has a repeating unit represented by the following formula (a-1) and has a mass average molecular weight (Mw) of 4,000 to 20,000. It is a polysilsesquioxane compound (hereinafter, may be referred to as “polysilsesquioxane compound (A)”).
  • R 1 is an unsubstituted alkyl group having 1 to 10 carbon atoms, an alkyl group having a substituent and having 1 to 10 carbon atoms, an unsubstituted aryl group having 6 to 12 carbon atoms, and an unsubstituted alkyl group. , At least one selected from the group consisting of aryl groups having 6 to 12 carbon atoms having substituents.
  • the number of carbon atoms of the "alkyl group unsubstituted 1 to 10 carbon atoms" represented by R 1 is preferably from 1 to 6, 1 to 3 more preferred.
  • Examples of the "unsubstituted alkyl group having 1 to 10 carbon atoms” include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group and n-. Examples thereof include a pentyl group, an n-hexyl group, an n-octyl group, an n-nonyl group and an n-decyl group.
  • the number of carbon atoms of the "alkyl group having 1 to 10 carbon atoms having substituent" represented by R 1 is preferably from 1 to 6, 1 to 3 more preferred. It should be noted that this carbon number means the carbon number of the portion excluding the substituent (the portion of the alkyl group). Therefore, when R 1 is an "alkyl group having 1 to 10 carbon atoms having a substituent", the carbon number of R 1 may exceed 10. Examples of the alkyl group of the “alkyl group having 1 to 10 carbon atoms having a substituent” include the same as those shown as the “unsubstituted alkyl group having 1 to 10 carbon atoms”.
  • the number of atoms of the substituent (excluding the number of hydrogen atoms) of the "alkyl group having 1 to 10 carbon atoms having a substituent” is usually 1 to 30, preferably 1 to 20.
  • substituent of the "alkyl group having 1 to 10 carbon atoms having a substituent” include halogen atoms such as fluorine atom, chlorine atom and bromine atom; cyano group; formula: group represented by OG; and the like.
  • G represents a hydroxyl-protecting group.
  • the hydroxyl-protecting group is not particularly limited, and examples thereof include known protecting groups known as hydroxyl-protecting groups.
  • acyl-based protecting groups trimethylsilyl groups, triethylsilyl groups, t-butyldimethylsilyl groups, t-butyldiphenylsilyl groups and other silyl protecting groups; methoxymethyl groups, methoxyethoxymethyl groups, 1-ethoxyethyl groups.
  • Acetal-based protecting groups such as tetrahydropyran-2-yl group and tetrahydrofuran-2-yl group; alkoxycarbonyl-based protecting groups such as t-butoxycarbonyl group; methyl group, ethyl group, t-butyl group, octyl group , Allyl group, triphenylmethyl group, benzyl group, p-methoxybenzyl group, fluorenyl group, trityl group, benzhydryl group and other ether-based protecting groups; and the like.
  • the number of carbon atoms of the "unsubstituted aryl group having 6 to 12 carbon atoms" represented by R 1 6 is preferred.
  • Examples of the "unsubstituted aryl group having 6 to 12 carbon atoms” include a phenyl group, a 1-naphthyl group, a 2-naphthyl group and the like.
  • the number of carbon atoms of the "aryl group having 6 to 12 carbon atoms having a substituent" represented by R 1 6 is preferred.
  • this carbon number means the carbon number of the portion (the portion of an aryl group) excluding the substituent. Therefore, when R 1 is an "aryl group having 6 to 12 carbon atoms having a substituent", the carbon number of R 1 may exceed 12.
  • Examples of the aryl group of the "aryl group having 6 to 12 carbon atoms having a substituent" include those similar to those shown as the "substituted aryl group having 6 to 12 carbon atoms".
  • the number of atoms of the substituent (excluding the number of hydrogen atoms) of the "aryl group having 6 to 12 carbon atoms having a substituent” is usually 1 to 30, preferably 1 to 20.
  • substituent of the "aryl group having 6 to 12 carbon atoms having a substituent" include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group and a t-butyl.
  • Alkyl groups such as groups, n-pentyl groups, n-hexyl groups, n-heptyl groups, n-octyl groups and isooctyl groups; halogen atoms such as fluorine atoms, chlorine atoms and bromine atoms; alkoxys such as methoxy groups and ethoxy groups. Group; etc.
  • R 1 is preferably at least one selected from the group consisting of an unsubstituted alkyl group having 1 to 10 carbon atoms and an alkyl group having a fluorine atom and having 1 to 10 carbon atoms.
  • the polysilsesquioxane compound (A) in which R 1 is an alkyl group having a fluorine atom and having 1 to 10 carbon atoms a curable composition or a cured product having a low refractive index can be easily obtained.
  • the alkyl group having a fluorine atom and having 1 to 10 carbon atoms include a group represented by the composition formula: Cm H (2 mn + 1) F n (m is an integer of 1 to 10, n is 1 or more, (2 m + 1)). It is the following integer.) Among these, 3,3,3-trifluoropropyl group is preferable.
  • the repeating unit represented by the above formula (a-1) is represented by the following formula.
  • O 1/2 means that an oxygen atom is shared with adjacent repeating units.
  • the polysilsesquioxane compound (A) has three oxygen atoms bonded to a silicon atom, which is generally called a T site, and other groups (R 1 ). Has a partial structure in which one is bonded.
  • T-site contained in the polysilsesquioxane compound (A) include those represented by the following formulas (a-3) to (a-5).
  • R 1 has the same meaning as described above.
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. Examples of the alkyl group having 1 to 10 carbon atoms R 2, a methyl group, an ethyl group, n- propyl group, an isopropyl group, n- butyl group, s- butyl group, an isobutyl group, a t- butyl group and the like can be mentioned. A plurality of R 2 to each other may all be different mutually be the same. Further, in the above formulas (a-3) to (a-5), a Si atom is bonded to *.
  • the polysilsesquioxane compound (A) is a ketone solvent such as acetone; an aromatic hydrocarbon solvent such as benzene; a sulfur-containing solvent such as dimethyl sulfoxide; an ether solvent such as tetrahydrofuran; an ester solvent such as ethyl acetate. Since it is soluble in various organic solvents such as a solvent; a halogen-containing solvent such as chloroform; and a mixed solvent composed of two or more of these, these solvents are used to prepare the polysilsesquioxane compound (A). 29 Si-NMR in a solution state can be measured.
  • the polysilsesquioxane compound (A) used in the present invention preferably contains 10 to 50 mol% of T2 sites, and more preferably 15 to 35 mol%. Further, the polysilsesquioxane compound (A) used in the present invention preferably contains 50 to 90 mol% of T3 sites, more preferably 60 to 85 mol%, from the viewpoint of excellent balance between molecular weight and curability. preferable.
  • the content ratio of the repeating unit represented by the above formula (a-1) in the polysilsesquioxane compound (A) is preferably 50 to 100 mol%, more preferably 70 to 100 mol%, based on all the repeating units. 90 to 100 mol% is more preferable, and 100 mol% is particularly preferable.
  • the polysilsesquioxane compound (A) may be one having one kind of R 1 (monopolymer) or one having two or more kinds of R 1 (copolymer).
  • the polysilsesquioxane compound (A) is a copolymer
  • the polysilsesquioxane compound (A) is any of a random copolymer, a block copolymer, a graft copolymer, an alternating copolymer and the like.
  • a random copolymer is preferable.
  • the structure of the polysilsesquioxane compound (A) may be any of a ladder type structure, a double decker type structure, a cage type structure, a partially cleaved cage type structure, a cyclic type structure, and a random type structure. ..
  • the mass average molecular weight (Mw) of the polysilsesquioxane compound (A) is 4,000 to 20,000, preferably 6,000 to 16,000, and more preferably 8,000 to 13,000.
  • the molecular weight distribution (Mw / Mn) of the polysilsesquioxane compound (A) is not particularly limited, but is usually 1.0 to 10.0, preferably 1.1 to 6.0.
  • Mw / Mn molecular weight distribution
  • the mass average molecular weight (Mw) and the number average molecular weight (Mn) can be determined, for example, as standard polystyrene-equivalent values by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent.
  • the refractive index (nD) of the polysilsesquioxane compound (A) at 25 ° C. is preferably 1.300 to 1.450, more preferably 1.350 to 1.440, and further preferably 1.400 to 1.435. preferable.
  • the refractive index of the polysilsesquioxane compound (A) at 25 ° C. is in the range of 1.300 to 1.450, it is easy to obtain a curable composition or a cured product having a low refractive index. Become.
  • the refractive index of the polysilsesquioxane compound (A) can be measured using a pen refractometer.
  • the polysilsesquioxane compound (A) can be used alone or in combination of two or more.
  • the method for producing the polysilsesquioxane compound (A) is not particularly limited.
  • the following equation (a-6) is not particularly limited.
  • the following equation (a-6) is not particularly limited.
  • R 1 has the same meaning as described above.
  • R 3 represents an alkyl group having 1 to 10 carbon atoms
  • X 1 represents a halogen atom
  • p represents an integer of 0 to 3. Multiple R 3 and a plurality of X 1 are each, be the same as each other, may be different from each other.
  • the polysilsesquioxane compound (A) can be produced by polycondensing at least one of the silane compounds (1) represented by (1).
  • Examples of the alkyl group having 1 to 10 carbon atoms of R 3 include those similar to those shown as the alkyl group having 1 to 10 carbon atoms of R 2 .
  • the halogen atom of X 1 include a chlorine atom and a bromine atom.
  • silane compound (1) examples include alkyltrialkoxysilane compounds such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, and ethyltripropoxysilane; Alkylhalogenoalkoxysilane compounds such as methylchlorodimethoxysilane, methylchlorodiethoxysilane, methyldichloromethoxysilane, methylbromodimethoxysilane, ethylchlorodimethoxysilane, ethylchlorodiethoxysilane, ethyldichloromethoxysilane, ethylbromodimethoxysilane; Alkyltrihalogenosilane compounds such as methyltrichlorosilane, methyltribromosilane, ethyltrichlorosilane, and ethyltripropoxy
  • Substituted alkyltrialkoxysilane compounds such as 3,3,3-trifluoropropyltrimethoxysilane, 3,3,3-trifluoropropyltriethoxysilane, 2-cyanoethyltrimethoxysilane, and 2-cyanoethyltriethoxysilane; 3,3,3-Trifluoropropylchlorodimethoxysilane, 3,3,3-trifluoropropylchlorodiethoxysilane, 3,3,3-trifluoropropyldichloromethoxysilane, 3,3,3-trifluoropropyldichloro Substituted alkylhalogenoalkoxysilane compounds such as ethoxysilane, 2-cyanoethylchlorodimethoxysilane, 2-cyanoethylchlorodiethoxysilane, 2-cyanoethyldichloromethoxysilane, 2-cyanoethyld
  • Phenyltrialkoxysilane compounds having or not having a substituent such as phenyltrimethoxysilane and 4-methoxyphenyltrimethoxysilane
  • Phenylhalogenoalkoxysilane compounds having or not having a substituent such as phenylchlorodimethoxysilane, phenyldichloromethoxysilane, 4-methoxyphenylchlorodimethoxysilane, 4-methoxyphenyldichloromethoxysilane
  • Phenyltrihalogenosilane compounds having or not having a substituent such as phenyltrichlorosilane and 4-methoxyphenyltrichlorosilane; and the like can be mentioned.
  • These silane compounds (1) can be used alone or in combination of two or more.
  • the method for polycondensing the silane compound (1) is not particularly limited.
  • a method of adding a predetermined amount of a polycondensation catalyst to the silane compound (1) in a solvent or without a solvent and stirring at a predetermined temperature can be mentioned. More specifically, (a) a method of adding a predetermined amount of an acid catalyst to the silane compound (1) and stirring at a predetermined temperature, and (b) adding a predetermined amount of a base catalyst to the silane compound (1).
  • a method of stirring at a predetermined temperature, (c) a predetermined amount of acid catalyst is added to the silane compound (1), and after stirring at a predetermined temperature, an excess amount of base catalyst is added to make the reaction system basic.
  • a method of stirring at a predetermined temperature and the like is preferable because the desired polysilsesquioxane compound (A) can be efficiently obtained.
  • the polycondensation catalyst used may be either an acid catalyst or a base catalyst. Further, two or more polycondensation catalysts may be used in combination, but at least an acid catalyst is preferably used.
  • the acid catalyst include inorganic acids such as phosphoric acid, hydrochloric acid, boric acid, sulfuric acid and nitric acid; and organic acids such as citric acid, acetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid and p-toluenesulfonic acid; Can be mentioned.
  • at least one selected from phosphoric acid, hydrochloric acid, boric acid, sulfuric acid, citric acid, acetic acid, and methanesulfonic acid is preferable.
  • aqueous ammonia As the base catalyst, aqueous ammonia; trimethylamine, triethylamine, lithium diisopropylamide, lithium bis (trimethylsilyl) amide, pyridine, 1,8-diazabicyclo [5.4.0] -7-undecene, aniline, picolin, 1,4- Diazabicyclo [2.2.2]
  • Organic bases such as octane and imidazole; organic hydroxides such as tetramethylammonium hydroxide and tetraethylammonium hydroxide; sodium methoxydone, sodium alkoxide, sodium t-butoxide, potassium t-butoxide
  • Metal alkoxides such as; metal hydrides such as sodium hydride and calcium hydride; metal hydroxides such as sodium hydroxide, potassium hydroxide and calcium hydroxide; metal carbonates such as sodium carbonate, potassium carbonate and magnesium carbonate; Metallic hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbon
  • the amount of the polycondensation catalyst used is usually in the range of 0.05 to 10 mol%, preferably 0.1 to 5 mol%, based on the total mol amount of the silane compound (1).
  • the solvent to be used can be appropriately selected according to the type of the silane compound (1) and the like.
  • water aromatic hydrocarbons such as benzene, toluene and xylene
  • esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate and methyl propionate
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone.
  • Alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, s-butyl alcohol, t-butyl alcohol; and the like. These solvents can be used alone or in combination of two or more.
  • a polycondensation reaction is carried out in an aqueous system in the presence of an acid catalyst, and then an organic solvent and an excessive amount of a base catalyst (ammonia water, etc.) are added to the reaction solution.
  • the polycondensation reaction may be further carried out under basic conditions.
  • the amount of the solvent used is 0.1 liter or more and 10 liters or less, preferably 0.1 liter or more and 2 liters or less, per 1 mol of the total mol amount of the silane compound (1).
  • the temperature at which the silane compound (1) is polycondensed is usually in the temperature range from 0 ° C. to the boiling point of the solvent used, preferably in the range of 20 ° C. or higher and 100 ° C. or lower. If the reaction temperature is too low, the progress of the polycondensation reaction may be insufficient. On the other hand, if the reaction temperature becomes too high, it becomes difficult to suppress gelation. The reaction is usually complete in 30 minutes to 30 hours.
  • the monomer R 1 is an alkyl group having a fluorine atom, it tends to be inferior in reactivity than the monomer wherein R 1 is normal alkyl group.
  • the polysilsesquioxane compound (A) having the desired molecular weight can be easily obtained.
  • the portion of OR 3 or X 1 of the silane compound (1) in which dealcoholization or the like does not occur is the polysilsesquioxane compound (A).
  • the repeating unit represented by the formula (a-3) in addition to the repeating unit represented by the formula (a-3), the repeating unit represented by the formulas (a-4) and (a-5) is contained. May be included.
  • Component (B) The component (B) constituting the curable composition of the present invention has a repeating unit represented by the following formula (b-1) and satisfies the above requirements 1 to 3 (hereinafter, "silicone oligomer (B)”. ) ”.).
  • the silicone oligomer (B) has a repeating unit derived from a trifunctional silane compound.
  • the trifunctional silane compound is a compound having one silicon atom and three hydrolyzable groups bonded to the silicon atom.
  • the hydrolyzable group refers to a group having hydrolyzable / polycondensable properties such as an alkoxy group and a halogen atom.
  • Examples of the trifunctional silane compound include the silane compound (1) represented by the formula (a-6) shown as a raw material for producing the polysilsesquioxane compound (A).
  • the silicone oligomer (B) may or may not have a repeating unit derived from a tetrafunctional silane compound.
  • the tetrafunctional silane compound is a compound having one silicon atom and four hydrolyzable groups bonded to the silicon atom.
  • Examples of the tetrafunctional silane compound include tetramethoxysilane, tetraethoxysilane, methoxytriethoxysilane, dimethoxydiethoxysilane, trimethoxyethoxysilane, trimethoxychlorosilane, triethoxychlorosilane, dimethoxydichlorosilane, diethoxydichlorosilane, and methoxytrichlorosilane. , Ethoxytrichlorosilane, tetrachlorosilane, tetrabromosilane and the like.
  • the amount of the repeating unit derived from the trifunctional silane compound contained in the silicone oligomer (B) is 50 mol% or more, preferably 70 to 100 mol%, and more preferably 90 to 100 mol% in all the repeating units.
  • the amount of the repeating unit derived from the trifunctional silane compound is 50 mol% or more in all the repeating units, the compatibility of the silicone oligomer (B) with the polysilsesquioxane compound (A) is enhanced.
  • the amount of the repeating unit represented by the formula (b-1) in the silicone oligomer (B) is 80 mol% or more, preferably 85 to 100 mol%, more preferably 90 to 100 mol, of the repeating unit derived from the trifunctional silane compound. %.
  • the amount of the repeating unit represented by the formula (b-1) is less than 80 mol% in the repeating unit derived from the trifunctional silane compound, it becomes difficult to obtain a curable composition or a cured product having a low refractive index.
  • the silicone oligomer (B) contains a repeating unit derived from a trifunctional silane compound other than the repeating unit represented by the formula (b-1), such a repeating unit is represented by the following formula (b-2). Things can be mentioned.
  • R 4 is an unsubstituted alkyl group having 2 to 10 carbon atoms, an alkyl group of 1 to 10 carbon atoms having a substituent group, an unsubstituted aryl group having 6 to 12 carbon atoms and, , At least one selected from the group consisting of aryl groups having 6 to 12 carbon atoms having substituents.
  • R 4 include the same as those shown as specific examples of R 1 .
  • each repeating unit contained in the silicone oligomer (B) and its content ratio are the same as those described above as the method for determining the structure of the polysilsesquioxane compound (A) (measurement result of 29 Si-NMR). It can be obtained by the method based on).
  • the mass average molecular weight (Mw) of the silicone oligomer (B) is 100 to 2,000, preferably 200 to 1,800, more preferably 300 to 1,500, and even more preferably 400 to 1,200. Particularly preferably, it is 500 to 900.
  • Mw mass average molecular weight
  • the mass average molecular weight (Mw) can be determined, for example, as a standard polystyrene-equivalent value by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent.
  • GPC gel permeation chromatography
  • THF tetrahydrofuran
  • the refractive index (nD) of the silicone oligomer (B) at 25 ° C. is preferably 1.300 to 1.450, more preferably 1.350 to 1.430, and even more preferably 1.380 to 1.410.
  • the refractive index of the silicone oligomer (B) at 25 ° C. is in the range of 1.300 to 1.450, a curable composition or a cured product having a low refractive index can be easily obtained.
  • the refractive index of the silicone oligomer (B) can be measured using a pen refractometer.
  • the silicone oligomer (B) can be used alone or in combination of two or more.
  • the method for producing the silicone oligomer (B) is not particularly limited.
  • the target silicone oligomer (B) can be produced by appropriately changing the reaction conditions and the like in the same method as described as the method for producing the polysilsesquioxane compound (A). Further, as the silicone oligomer (B), a commercially available silicone oligomer may be used.
  • the curable composition of the present invention contains a polysilsesquioxane compound (A) and a silicone oligomer (B).
  • the total amount of the polysilsesquioxane compound (A) and the silicone oligomer (B) is preferably 30 to 100% by mass, more preferably 40 to 95% by mass, still more preferably 40% by mass, based on the solid content of the curable composition. Is 50 to 90% by mass, particularly preferably 55 to 85% by mass.
  • the "solid content” refers to a component other than the solvent in the curable composition.
  • the content of the silicone oligomer (B) is 1 to 110 parts by mass, preferably 10 to 80 parts by mass, and more preferably 20 to 60 parts by mass with respect to 100 parts by mass of the polysilsesquioxane compound (A). Yes, more preferably 32 to 45 parts by mass. If the content of the component (B) is too small, it becomes difficult to obtain a curable composition or a cured product having a low refractive index. On the other hand, if the content of the component (B) is too large, it becomes difficult to form a cured product having excellent adhesiveness.
  • the curable composition of the present invention may contain a silane coupling agent as the component (C).
  • a silane coupling agent refers to a silane compound having a silicon atom, a functional group, and a hydrolyzable group bonded to the silicon atom.
  • a functional group refers to a group having a reactivity with another compound (mainly an organic substance), for example, a group having a nitrogen atom such as an amino group, a substituted amino group, an isocyanate group, or a group having an isocyanurate skeleton; acid anhydride.
  • the silane coupling agent can be used alone or in combination of two or more.
  • the content thereof is not particularly limited and can be appropriately determined depending on the intended purpose.
  • silane coupling agent a silane coupling agent having a nitrogen atom in the molecule or a silane coupling agent having an acid anhydride structure in the molecule is preferable.
  • a curable composition containing a silane coupling agent having a nitrogen atom in the molecule or a silane coupling agent having an acid anhydride structure in the molecule tends to give a cured product having better heat resistance and adhesiveness.
  • silane coupling agent having a nitrogen atom in the molecule examples include a trialkoxysilane compound represented by the following formula (c-1), a dialkoxyalkylsilane compound represented by the formula (c-2), or dialkoxy. Examples thereof include arylsilane compounds.
  • R a represents a methoxy group, an ethoxy group, n- propoxy group, isopropoxy group, n- butoxy group, an alkoxy group having 1 to 6 carbon atoms such as t- butoxy.
  • R b is an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and a t-butyl group; or a phenyl group, a 4-chlorophenyl group and a 4-.
  • R c represents an organic group having 1 to 10 carbon atoms and having a nitrogen atom. Further, R c may be bonded to a group containing another silicon atom. Specific examples of the organic group having 1 to 10 carbon atoms R c is, N-2- (aminoethyl) -3-aminopropyl group, 3-aminopropyl group, N-(1,3-dimethyl - butylidene) amino Examples thereof include a propyl group, a 3-ureidopropyl group and an N-phenyl-aminopropyl group.
  • R c is, as the compound where an organic group bonded with groups containing other silicon atoms, having an isocyanurate skeleton
  • examples thereof include a silane coupling agent (isocyanurate-based silane coupling agent) and a silane coupling agent having a urea skeleton (urea-based silane coupling agent).
  • the silane coupling agent having a nitrogen atom in the molecule an isocyanurate-based silane coupling agent and a urea-based silane coupling agent are preferable because a cured product having better adhesiveness can be easily obtained.
  • the molecule has 4 or more alkoxy groups bonded to a silicon atom. Having 4 or more alkoxy groups bonded to a silicon atom means that the total count of the alkoxy groups bonded to the same silicon atom and the alkoxy groups bonded to different silicon atoms is 4 or more.
  • Examples of the isocyanurate-based silane coupling agent having 4 or more alkoxy groups bonded to a silicon atom include a compound represented by the following formula (c-3).
  • Examples of the urea-based silane coupling agent having 4 or more alkoxy groups bonded to a silicon atom include compounds represented by the following formula (c-4).
  • Ra has the same meaning as above.
  • t1 to t5 independently represents an integer of 1 to 10, preferably an integer of 1 to 6, and particularly preferably 3.
  • 1,3,5-N-tris (3-trimethoxysilylpropyl) isocyanurate and 1,3,5-N-tris (3-) are examples of the silane coupling agent having a nitrogen atom in the molecule.
  • Triethoxysilylpropyl) isocyanurate hereinafter referred to as "isocyanurate compound”
  • N, N'-bis (3-trimethoxysilylpropyl) urea N, N'-bis (3-triethoxysilylpropyl) urea
  • urea compound a combination of the above isocyanurate compound and urea compound is preferably used.
  • the content thereof is not particularly limited, but the amount thereof has the above component (A) and a nitrogen atom in the molecule.
  • the mass ratio of the silane coupling agent [(A component: silane coupling agent having a nitrogen atom in the molecule], preferably 100: 0.1 to 100: 90, more preferably 100: 0.3 to 100:
  • the amount is 60, more preferably 100: 1 to 100: 50, still more preferably 100: 3 to 100: 40, and particularly preferably 100: 5 to 100: 35.
  • the cured product of the curable composition containing the component (A) and the silane coupling agent having a nitrogen atom in the molecule at such a ratio becomes excellent in heat resistance and adhesiveness.
  • a silane coupling agent having an acid anhydride structure in a molecule is an organosilicon compound having both a group having an acid anhydride structure and a hydrolyzable group in one molecule. Specific examples thereof include compounds represented by the following formula (c-5).
  • Q represents a group having an acid anhydride structure
  • R d represents an alkyl group, or have a substituent, or having no substituent phenyl group having 1 to 6 carbon atoms
  • R e is a carbon It represents an alkoxy group or a halogen atom of the number 1 to 6
  • i and k represent an integer of 1 to 3
  • j represents an integer of 0 to 2
  • i + j + k 4.
  • R ds may be the same or different from each other.
  • k is 2 or 3
  • among a plurality of R e may be different from each be the same.
  • i 2 or 3
  • a plurality of Qs may be the same or different from each other.
  • the following formula is used as Q
  • h represents an integer of 0 to 10) and the like, and the group represented by (Q1) is particularly preferable.
  • silane coupling agent having an acid anhydride structure in the molecule examples include 2- (trimethoxysilyl) ethyl anhydride succinic anhydride, 2- (triethoxysilyl) ethyl anhydride succinic anhydride, and 3- (trimethoxysilyl) propyl anhydride succinic anhydride.
  • Tri (1 to 6 carbon atoms) alkoxysilyl (2 to 8 carbon atoms) alkyl succinic anhydride such as acids, 3- (triethoxysilyl) propyl succinic anhydride;
  • Di (1 to 6 carbon atoms) alkoxymethylsilyl (2 to 8 carbon atoms) alkyl succinic anhydride such as 2- (dimethoxymethylsilyl) ethyl succinic anhydride; 2- (Methoxydimethylsilyl) ethyl succinic anhydride, etc.
  • Trihalogenosilyl (2-8 carbon atoms) alkyl succinic anhydride such as 2- (trichlorosilyl) ethyl succinic anhydride, 2- (tribromosilyl) ethyl succinic anhydride;
  • Dihalogenomethylsilyl (2-8 carbon atoms) alkyl succinic anhydride such as 2- (dichloromethylsilyl) ethyl succinic anhydride;
  • Examples thereof include halogenodimethylsilyl (2 to 8 carbon atoms) alkyl succinic anhydride, such as 2- (chlorodimethylsilyl) ethyl succinic anhydride.
  • silane coupling agent having an acid anhydride structure in the molecule tri (1 to 6 carbon atoms) alkoxysilyl (2 to 8 carbon atoms) alkyl succinic anhydride is preferable, and 3- (trimethoxysilyl) is preferable.
  • silane coupling agent having an acid anhydride structure in the molecule tri (1 to 6 carbon atoms) alkoxysilyl (2 to 8 carbon atoms) alkyl succinic anhydride is preferable, and 3- (trimethoxysilyl) is preferable.
  • Succinic anhydride or 3- (triethoxysilyl) propyl succinic anhydride is particularly preferred.
  • the content thereof is not particularly limited, but the amount thereof is acid anhydride in the above component (A) and the molecule.
  • the mass ratio of the silane coupling agent having a physical structure [(A component: silane coupling agent having an acid anhydride structure in the molecule], preferably 100: 0.1 to 100:30, more preferably 100: The amount is 0.3 to 100: 20, more preferably 100: 0.5 to 100: 15, and even more preferably 100: 1 to 100:10.
  • the cured product of the curable composition containing the component (A) and the silane coupling agent having an acid anhydride structure in the molecule at such a ratio becomes more excellent in adhesiveness.
  • the curable composition of the present invention may contain other components as long as the object of the present invention is not impaired.
  • other components include fine particles, antioxidants, ultraviolet absorbers, light stabilizers and the like.
  • the materials of the fine particles include metals; metal oxides; minerals; metal carbonates such as calcium carbonate and magnesium carbonate; metal sulfates such as calcium sulfate and barium sulfate; metal hydroxides such as aluminum hydroxide; aluminum silicate and silicic acid.
  • metal silicates such as calcium and magnesium silicate; inorganic components such as silica; silicones; organic components such as acrylic polymers; and the like.
  • the fine particles used may have a modified surface.
  • fine particles can be used alone or in combination of two or more.
  • the content of the fine particles is not particularly limited, but is usually preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 35% by mass or less, based on the component (A).
  • Antioxidant is added to prevent oxidative deterioration during heating.
  • examples of the antioxidant include phosphorus-based antioxidants, phenol-based antioxidants, sulfur-based antioxidants, and the like.
  • Examples of phosphorus-based antioxidants include phosphites, oxaphosphaphenanthrene oxides, and the like.
  • Examples of the phenolic antioxidant include monophenols, bisphenols, and high molecular weight phenols.
  • Examples of the sulfur-based antioxidant include dilauryl-3,3'-thiodipropionate, dimyristyl-3,3'-thiodipropionate, and distearyl-3,3'-thiodipropionate.
  • antioxidants can be used alone or in combination of two or more.
  • the content of the antioxidant is not particularly limited, but is usually 10% by mass or less with respect to the component (A).
  • the UV absorber is added for the purpose of improving the light resistance of the obtained cured product.
  • examples of the ultraviolet absorber include salicylic acids, benzophenones, benzotriazoles, hindered amines and the like.
  • the ultraviolet absorber may be used alone or in combination of two or more.
  • the content of the ultraviolet absorber is not particularly limited, but is usually 10% by mass or less with respect to the component (A).
  • the light stabilizer is added for the purpose of improving the light resistance of the obtained cured product.
  • the light stabilizer include poly [ ⁇ 6- (1,1,3,3, -tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl ⁇ ⁇ (2,2,6). , 6-Tetramethyl-4-piperidin) imino ⁇ hexamethylene ⁇ (2,2,6,6-tetramethyl-4-piperidine) imino ⁇ ] and other hindered amines.
  • These light stabilizers can be used alone or in combination of two or more.
  • the content of the light stabilizer is usually 20% by mass or less with respect to the component (A).
  • the curable composition of the present invention may contain a solvent.
  • the solvent is not particularly limited as long as it can dissolve or disperse the components of the curable composition of the present invention.
  • the solvent include acetates such as diethylene glycol monobutyl ether acetate and 1,6-hexanediol diacetate; tripropylene glycol-n-butyl ether; glycerin diglycidyl ether, butanediol diglycidyl ether, diglycidyl aniline, neopentyl glycol glycidyl ether.
  • the solvent can be used alone or in combination of two or more.
  • the solid content concentration is preferably 70% by mass or more and less than 100% by mass, more preferably 74 to 98% by mass, still more preferably 78.
  • the amount is up to 95% by mass. Since the curable composition of the present invention is a combination of the component (A) and the component (B), it has good coatability even if it does not contain a large amount of solvent (that is, even if the solid content concentration is high). Has. When a curable composition having a high solid content concentration is used, the cured product contains almost no solvent even if the drying conditions and curing conditions of the coating film are not strictly controlled, so that the cured product has certain characteristics. Can be stably formed.
  • the curable composition of the present invention contains the component (B), it has a low refractive index.
  • the refractive index (nD) of the curable composition of the present invention at 25 ° C. is usually less than 1.450, preferably 1.380 to 1.440, more preferably 1.400 to 1.435, and even more. It is preferably 1.410 to 1.430.
  • the refractive index (nD) of the curable composition can be measured using a pen refractometer.
  • the curable composition of the present invention can be prepared, for example, by mixing the above-mentioned component (A), component (B), and, if desired, other components at a predetermined ratio and defoaming.
  • the mixing method and defoaming method are not particularly limited, and known methods can be used.
  • the cured product of the present invention is obtained by curing the curable composition of the present invention.
  • Examples of the method for curing the curable composition of the present invention include heat curing.
  • the heating temperature at the time of curing is usually 100 to 200 ° C., and the heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
  • the cured product of the present invention is excellent in heat resistance and adhesiveness. It can be confirmed that the cured product of the present invention has these characteristics, for example, as follows. That is, a predetermined amount of the curable composition of the present invention is applied to the mirror surface of the silicon chip, the coated surface is placed on the adherend, pressure-bonded, and heat-treated to cure. This is left on the measurement stage of a bond tester preheated to a predetermined temperature (for example, 100 ° C.) for 30 seconds, and from a position at a height of 100 ⁇ m from the adherend, in the horizontal direction (shear direction) with respect to the adhesive surface. Apply stress and measure the adhesive force between the test piece and the adherend.
  • a predetermined amount of the curable composition of the present invention is applied to the mirror surface of the silicon chip, the coated surface is placed on the adherend, pressure-bonded, and heat-treated to cure. This is left on the measurement stage of a bond tester preheated to a predetermined temperature (for example, 100 ° C.
  • Adhesion of the cured product of the present invention is preferably at 100 ° C. is 30 N / 4 mm 2 or more, more preferably 35N / 4 mm 2 or more, and still more preferably 40N / 4 mm 2 or more.
  • “4 mm 2” means "2 mm square", that is, 2 mm x 2 mm (a square having a side of 2 mm).
  • the cured product of the present invention has a low refractive index. Therefore, the cured product of the present invention is preferably used as an adhesive layer having a low refractive index.
  • the refractive index (nD) of the cured product of the present invention at 25 ° C. is usually less than 1.450, preferably 1.380 to 1.440, more preferably 1.400 to 1.435, and even more preferably. It is 1.410 to 1.430.
  • the refractive index (nD) of the cured product can be measured by the method described in Examples.
  • the cured product of the present invention is preferably used as an optical element fixing material.
  • the method of the present invention is a method of using the curable composition of the present invention as an adhesive for an optical element fixing material or a sealing material for an optical element fixing material.
  • the optical element include a light emitting element such as an LED and an LD, a light receiving element, a composite optical element, and an optical integrated circuit.
  • the curable composition of the present invention can be suitably used as an adhesive for an optical element fixing material.
  • the composition is applied to one or both adhesive surfaces of a material to be adhered (optical element and its substrate, etc.). , After crimping, heat-curing to firmly bond the materials to be bonded to each other.
  • the amount of the curable composition of the present invention applied is not particularly limited as long as it can firmly bond the materials to be bonded to each other by curing.
  • the thickness of the coating film of the curable composition is 0.5 to 5 ⁇ m, preferably 1 to 3 ⁇ m.
  • Substrate materials for adhering optical elements include glasses such as soda lime glass and heat-resistant hard glass; ceramics; sapphire; iron, copper, aluminum, gold, silver, platinum, chromium, titanium and alloys of these metals. , Stainless steel (SUS302, SUS304, SUS304L, SUS309, etc.); polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, ethylene-vinyl acetate copolymer, polystyrene, polycarbonate, polymethylpentene, polysulfone, polyether ether ketone , Polyethersulfone, polyphenylene sulfide, polyetherimide, polyimide, polyamide, acrylic resin, norbornene-based resin, cycloolefin resin, synthetic resin such as glass epoxy resin; and the like.
  • glasses such as soda lime glass and heat-resistant hard glass
  • ceramics such as soda lime glass and heat-resistant hard glass
  • sapphire iron,
  • the heating temperature at the time of heat curing is usually 100 to 200 ° C., although it depends on the curable composition used.
  • the heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
  • the curable composition of the present invention can be suitably used as a sealing material for an optical element fixing material.
  • a method of using the curable composition of the present invention as a sealing material for an optical element fixing material for example, the composition is molded into a desired shape to obtain a molded body containing an optical element, and then this Examples thereof include a method of manufacturing an optical device encapsulant by heating and curing the material.
  • the method for molding the curable composition of the present invention into a desired shape is not particularly limited, and a known molding method such as a normal transfer molding method or a casting method can be adopted.
  • the heating temperature for heat curing depends on the curable composition used and the like, but is usually 100 to 200 ° C.
  • the heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
  • the obtained optical device encapsulant uses the curable composition of the present invention, it is excellent in heat resistance and adhesiveness.
  • the mass average molecular weight (Mw) and number average molecular weight (Mn) of the curable polysilsesquioxane compound obtained in the production example and the silicone oligomer of component B are standard polystyrene conversion values, and are set to the following equipment and conditions. It was measured.
  • Solvent tetrahydrofuran Injection amount: 80 ⁇ l Measurement temperature: 40 ° C Flow velocity: 1 ml / min Detector: Differential refractometer
  • the IR spectrum of the curable polysilsesquioxane compound obtained in the production example was measured using a Fourier transform infrared spectrophotometer (Spectrum 100, manufactured by PerkinElmer).
  • 29 Si-NMR measurement In order to investigate the repeating unit of the silane compound polymer [component (A) and component (B)] and its amount, 29 Si-NMR measurement was performed under the following conditions.
  • Measurement method inverse gate decoupling method 29 Si flip angle: 90 ° 29 Si 90 ° pulse width: 8.0 ⁇ s
  • Repeat time 5s Number of integrations: 9200 observation width: 30 kHz
  • the mass average molecular weight (Mw) of this product was 7,800, and the molecular weight distribution (Mw / Mn) was 4.52.
  • the IR spectral data of the curable polysilsesquioxane compound (A1) is shown below. Si-CH 3 : 1272 cm -1 , 1409 cm -1 , Si-O: 1132 cm -1 Moreover, as a result of performing 29 Si-NMR spectrum measurement, the peak integral value ratio of T1, T2, and T3 was 0:24:76.
  • the refractive index (nD) of the curable polysilsesquioxane compound (A1) at 25 ° C. was 1.427.
  • the mass average molecular weight (Mw) of this product was 5,500, and the molecular weight distribution was 3.40.
  • the IR spectral data of the curable polysilsesquioxane compound (A2) is shown below. Si-CH 3 : 1272 cm -1 , 1409 cm -1 , Si-O: 1132 cm -1 , CF: 1213 cm -1 Moreover, as a result of performing 29 Si-NMR spectrum measurement, the peak integral value ratio of T1, T2, and T3 was 2:27:71.
  • the refractive index (nD) of the curable polysilsesquioxane compound (A2) at 25 ° C. was 1.410.
  • Curable polysilsesquioxane compound (A1) [curable PSQ (A1)]: Curable polysilsesquioxane compound obtained in Production Example 1
  • Curable polysilsesquioxane compound (A2) [curable PSQ (A2)]: The curable polysilsesquioxane compound obtained in Production Example 2.
  • Silicone oligomer (B1) Commercially available silicone oligomer, mass average molecular weight (Mw) 700 • Ratio of CH 3- SiO 3/2 in repeating unit derived from trifunctional silane compound 100 mol% Refractive index (nD) at 25 ° C. 1.394
  • Silicone oligomer (B2) Commercially available silicone oligomer, mass average molecular weight (Mw) 900 • Ratio of CH 3- SiO 3/2 in repeating unit derived from trifunctional silane compound 100 mol% Refractive index at 25 ° C (nD) 1.397
  • Silicone oligomer (B3) Commercially available silicone oligomer, mass average molecular weight (Mw) 1000 • Ratio of CH 3- SiO 3/2 in repeating unit derived from trifunctional silane compound 100 mol% Refractive index (nD) at 25 ° C. 1.407
  • Silicone oligomer (B4) Commercially available silicone oligomer, mass average molecular weight (Mw) 1000 • Ratio of CH 3- SiO 3/2 in repeating unit derived from trifunctional silane compound 100 mol% Refractive index at 25 ° C (nD) 1.403
  • Silicone oligomer (B5) Commercially available silicone oligomer, mass average molecular weight (Mw) 1000 -Ratio of CH 3- SiO 3/2 in repeating unit derived from trifunctional silane compound 48 mol% (PhSiO 3/2 is 52 mol%) Refractive index (nD) at 25 ° C. 1.509
  • Silicone oligomer (B6) Commercially available silicone oligomer, mass average molecular weight (Mw) 1200 -Ratio of CH 3- SiO 3/2 in repeating unit derived from trifunctional silane compound 47 mol% (PhSiO 3/2 is 53 mol%) Refractive index (nD) at 25 ° C. 1.529
  • Silicone oligomer (B7) Commercially available silicone oligomer, mass average molecular weight (Mw) 1200 -Ratio of CH 3- SiO 3/2 in repeating unit derived from trifunctional silane compound 34 mol% (PhSiO 3/2 is 64 mol%) Refractive index at 25 ° C (nD) 1.525
  • Silane Coupling Agent (C1) 1,3,5-N-Tris [3- (trimethoxysilyl) propyl] Isocyanurate Silane Coupling Agent (C2): 3- (Trimethoxysilyl) Propyl succinic anhydride
  • Refractive index measurement (cured product) A mold made of polytetrafluoroethylene is placed on the demolded glass, a curable composition is poured into the mold, and after heating and defoaming, the glass is heated and cured at 170 ° C. for 2 hours to cure the thickness to about 1 mm. Pieces were made. Under a standard environment, a flat cured single surface is crimped onto the prism of an Abbe refractometer (DR-A1 manufactured by Atago Co., Ltd.), and the interface between the prism and the cured piece is irradiated with sodium D line (589 nm) at 25 ° C. The refractive index (nD) was measured.
  • DR-A1 Abbe refractometer
  • the curable composition was poured into a mold having a length of 25 mm and a width of 20 mm so as to have a thickness of 1 mm, and heated at 140 ° C. for 6 hours to be cured to obtain a test piece.
  • the obtained test piece was measured for transmittance (%) at a wavelength of 450 nm with a spectrophotometer (MPC-3100, manufactured by Shimadzu Corporation).
  • Example 2 A curable composition having a solid content concentration of 76.8% by mass was obtained in the same manner as in Example 1 except that 35 parts by mass of the silicone oligomer (B1) was used in Example 1. When the refractive index (nD) of this product was measured at 25 ° C., it was 1.421.
  • Example 3 A curable composition having a solid content concentration of 80.6% by mass was obtained in the same manner as in Example 1 except that 70 parts by mass of the silicone oligomer (B1) was used in Example 1. When the refractive index (nD) of this product was measured at 25 ° C., it was 1.417.
  • Example 4 A curable composition having a solid content concentration of 80.6% by mass in the same manner as in Example 1 except that 70 parts by mass of the silicone oligomer (B2) was used instead of the silicone oligomer (B1) in Example 1.
  • Got The refractive index (nD) of this product was measured at 25 ° C. and found to be 1.419.
  • Example 5 A curable composition having a solid content concentration of 80.6% by mass in the same manner as in Example 1 except that 70 parts by mass of the silicone oligomer (B3) was used instead of the silicone oligomer (B1) in Example 1. Got When the refractive index (nD) of this product was measured at 25 ° C., it was 1.422.
  • Example 6 A curable composition having a solid content concentration of 80.6% by mass in the same manner as in Example 1 except that 70 parts by mass of the silicone oligomer (B4) was used instead of the silicone oligomer (B1) in Example 1.
  • Got The refractive index (nD) of this product was measured at 25 ° C. and found to be 1.420.
  • Example 1 A curable composition having a solid content concentration of 80.6% by mass in the same manner as in Example 1 except that 70 parts by mass of the silicone oligomer (B5) was used instead of the silicone oligomer (B1) in Example 1.
  • Got The refractive index (nD) of this product was measured at 25 ° C. and found to be 1.456.
  • Comparative Example 2 A curable composition having a solid content concentration of 80.6% by mass in the same manner as in Example 1 except that 70 parts by mass of the silicone oligomer (B6) was used instead of the silicone oligomer (B1) in Example 1. Got When the refractive index (nD) of this product was measured at 25 ° C., it was 1.462.
  • Example 8 to 19 Comparative Examples 4 to 10.
  • a curable composition was obtained in the same manner as in Example 1 except that each component was changed to that shown in Table 1.
  • the curable compositions of Examples 1 to 6 contain the component (B), the refractive index is low.
  • the curable compositions of Comparative Examples 1 to 3 have a high refractive index because they contain a silicone oligomer that does not satisfy the requirements of the component (B).
  • the cured products obtained in Examples 7 to 19 have a low refractive index and a high light transmittance. Further, it has sufficient adhesive strength and its variation is small.
  • the cured products obtained in Comparative Examples 4 to 10 cannot achieve both low refractive index and high adhesive strength. For this reason, these cured products are inferior in at least one of the properties.
  • the curable compositions of Examples 7 to 19 have a high solid content concentration of 74.9 to 86.1% by mass, but have good coatability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The present invention is: a curable composition containing a component (A) and a component (B), with the content of the component (B) being 1-110 parts by mass relative to 100 parts by mass of the component (A); a cured product obtained by curing this curable composition; and a method for using the curable composition as an adhesive for an optical element fixing material or as a sealing material for an optical element fixing material. This curable composition exhibits good coatability. This cured product has a low refractive index. Component (A): A curable polysilsesquioxane compound which has a repeating unit represented by formula (a-1) and has a mass average molecular weight (Mw) of 4000-20,000. Formula (a-1): R1SiO3/2 (R1 is at least one type of group selected from the group consisting of an unsubstituted alkyl group having 1-10 carbon atoms, a substituted alkyl group having 1-10 carbon atoms, an unsubstituted aryl group having 6-12 carbon atoms and a substituted aryl group having 6-12 carbon atoms.) Component (B): A specific silicone oligomer which has a repeating unit represented by formula (b-1). Formula (b-1): CH3-SiO3/2

Description

硬化性組成物、硬化物、及び、硬化性組成物の使用方法Curable composition, cured product, and how to use the curable composition
 本発明は、硬化性成分を高濃度化しても、良好な塗布性を有する硬化性組成物、前記硬化性組成物が硬化してなる、屈折率が低い硬化物、及び、前記硬化性組成物を、光素子固定材用接着剤又は光素子固定材用封止材として使用する方法に関する。 The present invention provides a curable composition having good coatability even when the concentration of the curable component is increased, a cured product having a low refractive index obtained by curing the curable composition, and the curable composition. The present invention relates to a method of using as an adhesive for an optical element fixing material or a sealing material for an optical element fixing material.
 従来、硬化性組成物は用途に応じて様々な改良がなされ、光学部品や成形体の原料、接着剤、コーティング剤等として産業上広く利用されてきている。
 また、硬化性組成物は、光素子固定材用接着剤や光素子固定材用封止材等の光素子固定材用組成物としても注目を浴びてきている。
Conventionally, the curable composition has been variously improved according to the application, and has been widely used industrially as a raw material for optical parts and molded articles, an adhesive, a coating agent, and the like.
Further, the curable composition has also attracted attention as a composition for an optical element fixing material such as an adhesive for an optical element fixing material and a sealing material for an optical element fixing material.
 光素子には、半導体レーザー(LD)等の各種レーザーや発光ダイオード(LED)等の発光素子、受光素子、複合光素子、光集積回路等がある。
 近年においては、発光のピーク波長がより短波長である青色光や白色光の光素子が開発され広く使用されてきている。このような発光のピーク波長の短い発光素子の高輝度化が飛躍的に進み、これに伴い、光素子の発熱量がさらに大きくなっていく傾向にある。
Optical elements include various lasers such as semiconductor lasers (LDs), light emitting elements such as light emitting diodes (LEDs), light receiving elements, composite optical elements, optical integrated circuits, and the like.
In recent years, optical elements of blue light and white light having a shorter peak wavelength of light emission have been developed and widely used. The brightness of such a light emitting element having a short peak wavelength of light emission is dramatically increased, and the amount of heat generated by the optical element tends to be further increased accordingly.
 ところが、近年における光素子の高輝度化に伴い、光素子固定材用組成物の硬化物が、より高いエネルギーの光や光素子から発生するより高温の熱に長時間さらされ、接着力が低下するという問題が生じた。 However, with the increase in brightness of optical devices in recent years, the cured product of the composition for fixing the optical element is exposed to higher energy light or higher temperature heat generated from the optical element for a long time, and the adhesive strength is reduced. There was a problem of doing.
 この問題を解決するべく、特許文献1~3には、ポリシルセスキオキサン化合物を主成分とする光素子固定材用組成物が提案されている。 In order to solve this problem, Patent Documents 1 to 3 propose compositions for optical device fixing materials containing a polysilsesquioxane compound as a main component.
 ところで、硬化性組成物を用いて光素子等を固定する場合、目的に合った屈折率を有する硬化物を形成することが重要になることが多い。特に、従来の硬化性組成物やその硬化物は屈折率が高いものが多かったため、屈折率がより低い硬化性組成物が求められていた。 By the way, when fixing an optical element or the like using a curable composition, it is often important to form a cured product having a refractive index suitable for the purpose. In particular, since many of the conventional curable compositions and their cured products have a high refractive index, there has been a demand for a curable composition having a lower refractive index.
 また、従来の硬化性組成物の中には、塗布性を向上させるために溶媒を大量に含有するものもあったが、そのような硬化性組成物を硬化させる場合、乾燥条件や硬化条件を厳密に管理しないと、硬化物中に溶媒が残存し、目的の特性を有する硬化物を形成することができない場合があった。 In addition, some of the conventional curable compositions contain a large amount of solvent in order to improve the coatability, but when curing such a curable composition, drying conditions and curing conditions are required. Without strict control, the solvent may remain in the cured product and it may not be possible to form a cured product having the desired properties.
特開2004-359933号公報Japanese Unexamined Patent Publication No. 2004-359933 特開2005-263869号公報Japanese Unexamined Patent Publication No. 2005-263869 特開2006-328231号公報Japanese Unexamined Patent Publication No. 2006-328231
 本発明は、上記した従来技術の実情に鑑みてなされたものであり、硬化性成分を高濃度化しても、良好な塗布性を有する硬化性組成物、前記硬化性組成物が硬化してなる、屈折率が低い硬化物、及び、前記硬化性組成物を、光素子固定材用接着剤又は光素子固定材用封止材として使用する方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned actual conditions of the prior art, and even if the concentration of the curable component is increased, the curable composition having good coatability and the curable composition are cured. It is an object of the present invention to provide a cured product having a low refractive index and a method for using the curable composition as an adhesive for an optical element fixing material or a sealing material for an optical element fixing material.
 本発明者らは、上記課題を解決すべく、硬化性ポリシルセスキオキサン化合物を含有する硬化性組成物について鋭意検討を重ねた。
 その結果、特定の硬化性ポリシルセスキオキサン化合物と、メチル基を有する特定のシリコーンオリゴマーを含有する硬化性組成物は、硬化性成分を高濃度化しても、良好な塗布性を有するものであり、さらに、この硬化性組成物を硬化させることで屈折率が低い硬化物が得られることを見出し、本発明を完成するに至った。
In order to solve the above problems, the present inventors have made extensive studies on a curable composition containing a curable polysilsesquioxane compound.
As a result, the curable composition containing a specific curable polysilsesquioxane compound and a specific silicone oligomer having a methyl group has good coatability even if the curable component is increased in concentration. Furthermore, they have found that a cured product having a low refractive index can be obtained by curing this curable composition, and have completed the present invention.
 かくして本発明によれば、下記〔1〕~〔8〕の硬化性組成物、〔9〕、〔10〕の硬化物、及び〔11〕、〔12〕の硬化性組成物の使用方法が提供される。
〔1〕下記(A)成分、及び、(B)成分を含有する硬化性組成物であって、(B)成分の含有量が、(A)成分100質量部に対して1~110質量部である硬化性組成物。
(A)成分:下記式(a-1)で示される繰り返し単位を有し、質量平均分子量(Mw)が4,000~20,000である硬化性ポリシルセスキオキサン化合物
Thus, according to the present invention, the following methods of using the curable compositions [1] to [8], the cured products [9] and [10], and the curable compositions [11] and [12] are provided. Will be done.
[1] A curable composition containing the following component (A) and component (B), wherein the content of component (B) is 1 to 110 parts by mass with respect to 100 parts by mass of component (A). A curable composition that is.
Component (A): A curable polysilsesquioxane compound having a repeating unit represented by the following formula (a-1) and having a mass average molecular weight (Mw) of 4,000 to 20,000.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
〔Rは、無置換の炭素数1~10のアルキル基、置換基を有する炭素数1~10のアルキル基、無置換の炭素数6~12のアリール基、及び、置換基を有する炭素数6~12のアリール基からなる群から選ばれる少なくとも1つである。〕
(B)成分:下記式(b-1)で示される繰り返し単位を有し、下記要件1~要件3を満たすシリコーンオリゴマー
[R 1 is an unsubstituted alkyl group having 1 to 10 carbon atoms, an alkyl group having a substituent having 1 to 10 carbon atoms, an aryl group having an unsubstituted carbon number of 6 to 12 carbon atoms, and a carbon number having a substituent (substituted group). At least one selected from the group consisting of 6-12 aryl groups. ]
Component (B): Silicone oligomer having a repeating unit represented by the following formula (b-1) and satisfying the following requirements 1 to 3
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
〔要件1〕
 3官能シラン化合物由来の繰り返し単位を、全繰り返し単位中50mol%以上含む。
〔要件2〕
 式(b-1)で示される繰り返し単位の量が、3官能シラン化合物由来の繰り返し単位中80mol%以上である。
〔要件3〕
 質量平均分子量(Mw)が100~2,000である。
〔2〕式(a-1)中のRが、無置換の炭素数1~10のアルキル基、及び、フッ素原子を有する炭素数1~10のアルキル基からなる群から選ばれる少なくとも1種である、〔1〕に記載の硬化性組成物。
〔3〕(A)成分中の式(a-1)で示される繰り返し単位の量が、(A)成分中の全繰り返し単位中50~100mol%である、〔1〕又は〔2〕に記載の硬化性組成物。
〔4〕(A)成分の屈折率が、1.300~1.450である、〔1〕~〔3〕のいずれかに記載の硬化性組成物。
〔5〕(B)成分の屈折率が、1.300~1.450である、〔1〕~〔4〕のいずれかに記載の硬化性組成物。
〔6〕(A)成分と(B)成分の合計量が、硬化性組成物の固形分中30~100質量%である、〔1〕~〔5〕のいずれかに記載の硬化性組成物。
〔7〕さらに、下記(C)成分を含有する、〔1〕~〔6〕のいずれかに記載の硬化性組成物。
(C)成分:シランカップリング剤
〔8〕さらに溶媒を含有し、固形分濃度が、70質量%以上、100質量%未満である、〔1〕~〔7〕のいずれかに記載の硬化性組成物。
〔9〕前記〔1〕~〔8〕のいずれかに記載の硬化性組成物を硬化させて得られる硬化物。
〔10〕光素子固定材である〔9〕に記載の硬化物。
〔11〕前記〔1〕~〔8〕のいずれかに記載の硬化性組成物を、光素子固定材用接着剤として使用する方法。
〔12〕前記〔1〕~〔8〕のいずれかに記載の硬化性組成物を、光素子固定材用封止材として使用する方法。
[Requirement 1]
The repeating unit derived from the trifunctional silane compound is contained in an amount of 50 mol% or more in all the repeating units.
[Requirement 2]
The amount of the repeating unit represented by the formula (b-1) is 80 mol% or more in the repeating unit derived from the trifunctional silane compound.
[Requirement 3]
The mass average molecular weight (Mw) is 100 to 2,000.
[2] At least one selected from the group in which R 1 in the formula (a-1) consists of an unsubstituted alkyl group having 1 to 10 carbon atoms and an alkyl group having a fluorine atom and having 1 to 10 carbon atoms. The curable composition according to [1].
[3] The amount of the repeating unit represented by the formula (a-1) in the component (A) is 50 to 100 mol% in all the repeating units in the component (A), according to [1] or [2]. Curable composition.
[4] The curable composition according to any one of [1] to [3], wherein the refractive index of the component (A) is 1.300 to 1.450.
[5] The curable composition according to any one of [1] to [4], wherein the refractive index of the component (B) is 1.300 to 1.450.
[6] The curable composition according to any one of [1] to [5], wherein the total amount of the component (A) and the component (B) is 30 to 100% by mass in the solid content of the curable composition. ..
[7] The curable composition according to any one of [1] to [6], which further contains the following component (C).
Component (C): Silane coupling agent [8] The curability according to any one of [1] to [7], which further contains a solvent and has a solid content concentration of 70% by mass or more and less than 100% by mass. Composition.
[9] A cured product obtained by curing the curable composition according to any one of the above [1] to [8].
[10] The cured product according to [9], which is an optical element fixing material.
[11] A method in which the curable composition according to any one of [1] to [8] above is used as an adhesive for an optical element fixing material.
[12] A method in which the curable composition according to any one of [1] to [8] above is used as a sealing material for an optical element fixing material.
 本発明によれば、硬化性成分を高濃度化しても、良好な塗布性を有する硬化性組成物、前記硬化性組成物が硬化してなる、屈折率が低い硬化物、及び、前記硬化性組成物を、光素子固定材用接着剤又は光素子固定材用封止材として使用する方法が提供される。 According to the present invention, a curable composition having good coatability even if the concentration of the curable component is increased, a cured product having a low refractive index obtained by curing the curable composition, and the curable property. A method of using the composition as an adhesive for an optical element fixing material or a sealing material for an optical element fixing material is provided.
 以下、本発明を、1)硬化性組成物、2)硬化物、及び、3)硬化性組成物の使用方法、に項分けして詳細に説明する。 Hereinafter, the present invention will be described in detail by dividing it into 1) a curable composition, 2) a cured product, and 3) a method of using the curable composition.
1)硬化性組成物
 本発明の硬化性組成物は、下記(A)成分、及び、(B)成分を含有する。
(A)成分:上記式(a-1)で示される繰り返し単位を有し、質量平均分子量(Mw)が4,000~20,000である硬化性ポリシルセスキオキサン化合物
(B)成分:上記式(b-1)で示される繰り返し単位を有し、上記要件1~要件3を満たすシリコーンオリゴマー
 本発明において、「硬化性ポリシルセスキオキサン化合物」とは、加熱等の所定の条件を満たすことにより、単独で硬化物に変化するポリシルセスキオキサン化合物、又は、硬化性組成物において硬化性成分として機能するポリシルセスキオキサン化合物をいう。
1) Curable composition The curable composition of the present invention contains the following component (A) and component (B).
Component (A): Curable polysilsesquioxane compound (B) having a repeating unit represented by the above formula (a-1) and having a mass average molecular weight (Mw) of 4,000 to 20,000: Silicone oligomer having a repeating unit represented by the above formula (b-1) and satisfying the above requirements 1 to 3 In the present invention, the "curable polysilsesquioxane compound" is defined as a predetermined condition such as heating. A polysilsesquioxane compound that changes into a cured product by itself when filled, or a polysilsesquioxane compound that functions as a curable component in a curable composition.
〔(A)成分〕
 本発明の硬化性組成物を構成する(A)成分は、下記式(a-1)で示される繰り返し単位を有し、質量平均分子量(Mw)が4,000~20,000である硬化性ポリシルセスキオキサン化合物(以下、「ポリシルセスキオキサン化合物(A)」と表すことがある。)である。
[(A) component]
The component (A) constituting the curable composition of the present invention has a repeating unit represented by the following formula (a-1) and has a mass average molecular weight (Mw) of 4,000 to 20,000. It is a polysilsesquioxane compound (hereinafter, may be referred to as “polysilsesquioxane compound (A)”).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(a-1)中、Rは、無置換の炭素数1~10のアルキル基、置換基を有する炭素数1~10のアルキル基、無置換の炭素数6~12のアリール基、及び、置換基を有する炭素数6~12のアリール基からなる群から選ばれる少なくとも1つである。 In formula (a-1), R 1 is an unsubstituted alkyl group having 1 to 10 carbon atoms, an alkyl group having a substituent and having 1 to 10 carbon atoms, an unsubstituted aryl group having 6 to 12 carbon atoms, and an unsubstituted alkyl group. , At least one selected from the group consisting of aryl groups having 6 to 12 carbon atoms having substituents.
 Rで表される「無置換の炭素数1~10のアルキル基」の炭素数は、1~6が好ましく、1~3がより好ましい。
 「無置換の炭素数1~10のアルキル基」としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-ノニル基、n-デシル基等が挙げられる。
The number of carbon atoms of the "alkyl group unsubstituted 1 to 10 carbon atoms" represented by R 1 is preferably from 1 to 6, 1 to 3 more preferred.
Examples of the "unsubstituted alkyl group having 1 to 10 carbon atoms" include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group and n-. Examples thereof include a pentyl group, an n-hexyl group, an n-octyl group, an n-nonyl group and an n-decyl group.
 Rで表される「置換基を有する炭素数1~10のアルキル基」の炭素数は、1~6が好ましく、1~3がより好ましい。なお、この炭素数は、置換基を除いた部分(アルキル基の部分)の炭素数を意味するものである。したがって、Rが「置換基を有する炭素数1~10のアルキル基」である場合、Rの炭素数は10を超える場合もあり得る。
 「置換基を有する炭素数1~10のアルキル基」のアルキル基としては、「無置換の炭素数1~10のアルキル基」として示したものと同様のものが挙げられる。
The number of carbon atoms of the "alkyl group having 1 to 10 carbon atoms having substituent" represented by R 1 is preferably from 1 to 6, 1 to 3 more preferred. It should be noted that this carbon number means the carbon number of the portion excluding the substituent (the portion of the alkyl group). Therefore, when R 1 is an "alkyl group having 1 to 10 carbon atoms having a substituent", the carbon number of R 1 may exceed 10.
Examples of the alkyl group of the “alkyl group having 1 to 10 carbon atoms having a substituent” include the same as those shown as the “unsubstituted alkyl group having 1 to 10 carbon atoms”.
 「置換基を有する炭素数1~10のアルキル基」の置換基の原子数(ただし水素原子の数を除く)は、通常1~30、好ましくは1~20である。
 「置換基を有する炭素数1~10のアルキル基」の置換基としては、フッ素原子、塩素原子、臭素原子等のハロゲン原子;シアノ基;式:OGで表される基;等が挙げられる。
 ここで、Gは水酸基の保護基を表す。水酸基の保護基としては、特に制約はなく、水酸基の保護基として知られている公知の保護基が挙げられる。例えば、アシル系の保護基;トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、t-ブチルジフェニルシリル基等のシリル系の保護基;メトキシメチル基、メトキシエトキシメチル基、1-エトキシエチル基、テトラヒドロピラン-2-イル基、テトラヒドロフラン-2-イル基等のアセタール系の保護基;t-ブトキシカルボニル基等のアルコキシカルボニル系の保護基;メチル基、エチル基、t-ブチル基、オクチル基、アリル基、トリフェニルメチル基、ベンジル基、p-メトキシベンジル基、フルオレニル基、トリチル基、ベンズヒドリル基等のエーテル系の保護基;等が挙げられる。
The number of atoms of the substituent (excluding the number of hydrogen atoms) of the "alkyl group having 1 to 10 carbon atoms having a substituent" is usually 1 to 30, preferably 1 to 20.
Examples of the substituent of the "alkyl group having 1 to 10 carbon atoms having a substituent" include halogen atoms such as fluorine atom, chlorine atom and bromine atom; cyano group; formula: group represented by OG; and the like.
Here, G represents a hydroxyl-protecting group. The hydroxyl-protecting group is not particularly limited, and examples thereof include known protecting groups known as hydroxyl-protecting groups. For example, acyl-based protecting groups; trimethylsilyl groups, triethylsilyl groups, t-butyldimethylsilyl groups, t-butyldiphenylsilyl groups and other silyl protecting groups; methoxymethyl groups, methoxyethoxymethyl groups, 1-ethoxyethyl groups. Acetal-based protecting groups such as tetrahydropyran-2-yl group and tetrahydrofuran-2-yl group; alkoxycarbonyl-based protecting groups such as t-butoxycarbonyl group; methyl group, ethyl group, t-butyl group, octyl group , Allyl group, triphenylmethyl group, benzyl group, p-methoxybenzyl group, fluorenyl group, trityl group, benzhydryl group and other ether-based protecting groups; and the like.
 Rで表される「無置換の炭素数6~12のアリール基」の炭素数は6が好ましい。
 「無置換の炭素数6~12のアリール基」としては、フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。
The number of carbon atoms of the "unsubstituted aryl group having 6 to 12 carbon atoms" represented by R 1 6 is preferred.
Examples of the "unsubstituted aryl group having 6 to 12 carbon atoms" include a phenyl group, a 1-naphthyl group, a 2-naphthyl group and the like.
 Rで表される「置換基を有する炭素数6~12のアリール基」の炭素数は6が好ましい。なお、この炭素数は、置換基を除いた部分(アリール基の部分)の炭素数を意味するものである。したがって、Rが「置換基を有する炭素数6~12のアリール基」である場合、Rの炭素数は12を超える場合もあり得る。
 「置換基を有する炭素数6~12のアリール基」のアリール基としては、「無置換の炭素数6~12のアリール基」として示したものと同様のものが挙げられる。
The number of carbon atoms of the "aryl group having 6 to 12 carbon atoms having a substituent" represented by R 1 6 is preferred. In addition, this carbon number means the carbon number of the portion (the portion of an aryl group) excluding the substituent. Therefore, when R 1 is an "aryl group having 6 to 12 carbon atoms having a substituent", the carbon number of R 1 may exceed 12.
Examples of the aryl group of the "aryl group having 6 to 12 carbon atoms having a substituent" include those similar to those shown as the "substituted aryl group having 6 to 12 carbon atoms".
 「置換基を有する炭素数6~12のアリール基」の置換基の原子数(ただし水素原子の数を除く)は、通常1~30、好ましくは1~20である。
 「置換基を有する炭素数6~12のアリール基」の置換基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、イソオクチル基等のアルキル基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;等が挙げられる。
The number of atoms of the substituent (excluding the number of hydrogen atoms) of the "aryl group having 6 to 12 carbon atoms having a substituent" is usually 1 to 30, preferably 1 to 20.
Examples of the substituent of the "aryl group having 6 to 12 carbon atoms having a substituent" include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group and a t-butyl. Alkyl groups such as groups, n-pentyl groups, n-hexyl groups, n-heptyl groups, n-octyl groups and isooctyl groups; halogen atoms such as fluorine atoms, chlorine atoms and bromine atoms; alkoxys such as methoxy groups and ethoxy groups. Group; etc.
 これらの中でも、Rとしては、無置換の炭素数1~10のアルキル基、及び、フッ素原子を有する炭素数1~10のアルキル基からなる群から選ばれる少なくとも1種であることが好ましい。
 Rが、無置換の炭素数1~10のアルキル基であるポリシルセスキオキサン化合物(A)を用いることで、耐熱性及び接着性により優れる硬化物となる硬化性組成物が得られ易くなる。
 本明細書において、「接着性に優れる硬化物」とは、「接着強度が高い硬化物」を意味する。
 Rが、フッ素原子を有する炭素数1~10のアルキル基であるポリシルセスキオキサン化合物(A)を用いることで、屈折率が低い硬化性組成物や硬化物が得られ易くなる。
 フッ素原子を有する炭素数1~10のアルキル基としては、組成式:C(2m-n+1)で表される基(mは1~10の整数、nは1以上、(2m+1)以下の整数である。)が挙げられる。これらの中でも、3,3,3-トリフルオロプロピル基が好ましい。
Among these, R 1 is preferably at least one selected from the group consisting of an unsubstituted alkyl group having 1 to 10 carbon atoms and an alkyl group having a fluorine atom and having 1 to 10 carbon atoms.
By using the polysilsesquioxane compound (A) in which R 1 is an unsubstituted alkyl group having 1 to 10 carbon atoms, it is easy to obtain a curable composition which is a cured product having excellent heat resistance and adhesiveness. Become.
In the present specification, "a cured product having excellent adhesiveness" means "a cured product having high adhesive strength".
By using the polysilsesquioxane compound (A) in which R 1 is an alkyl group having a fluorine atom and having 1 to 10 carbon atoms, a curable composition or a cured product having a low refractive index can be easily obtained.
Examples of the alkyl group having a fluorine atom and having 1 to 10 carbon atoms include a group represented by the composition formula: Cm H (2 mn + 1) F n (m is an integer of 1 to 10, n is 1 or more, (2 m + 1)). It is the following integer.) Among these, 3,3,3-trifluoropropyl group is preferable.
 前記式(a-1)で示される繰り返し単位は、下記式で示されるものである。本明細書において、O1/2とは、酸素原子が隣接する繰り返し単位と共有されていることを表す。 The repeating unit represented by the above formula (a-1) is represented by the following formula. As used herein, O 1/2 means that an oxygen atom is shared with adjacent repeating units.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(a-2)で示されるように、ポリシルセスキオキサン化合物(A)は、一般にTサイトと総称される、ケイ素原子に酸素原子が3つ結合し、それ以外の基(R)が1つ結合してなる部分構造を有する。
 ポリシルセスキオキサン化合物(A)に含まれるTサイトとしては、下記式(a-3)~(a-5)で示されるものが挙げられる。
As shown by the formula (a-2), the polysilsesquioxane compound (A) has three oxygen atoms bonded to a silicon atom, which is generally called a T site, and other groups (R 1 ). Has a partial structure in which one is bonded.
Examples of the T-site contained in the polysilsesquioxane compound (A) include those represented by the following formulas (a-3) to (a-5).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(a-3)~(a-5)中、Rは、前記と同じ意味を表す。Rは、水素原子又は炭素数1~10のアルキル基を表す。Rの炭素数1~10のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基等が挙げられる。複数のR同士は、すべて同一であっても相異なっていてもよい。また、上記式(a-3)~(a-5)中、*には、Si原子が結合している。 In the formulas (a-3) to (a-5), R 1 has the same meaning as described above. R 2 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. Examples of the alkyl group having 1 to 10 carbon atoms R 2, a methyl group, an ethyl group, n- propyl group, an isopropyl group, n- butyl group, s- butyl group, an isobutyl group, a t- butyl group and the like can be mentioned. A plurality of R 2 to each other may all be different mutually be the same. Further, in the above formulas (a-3) to (a-5), a Si atom is bonded to *.
 ポリシルセスキオキサン化合物(A)は、アセトン等のケトン系溶媒;ベンゼン等の芳香族炭化水素系溶媒;ジメチルスルホキシド等の含硫黄系溶媒;テトラヒドロフラン等のエーテル系溶媒;酢酸エチル等のエステル系溶媒;クロロホルム等の含ハロゲン系溶媒;及びこれらの2種以上からなる混合溶媒;等の各種有機溶媒に可溶であるため、これらの溶媒を用いて、ポリシルセスキオキサン化合物(A)の溶液状態での29Si-NMRを測定することができる。 The polysilsesquioxane compound (A) is a ketone solvent such as acetone; an aromatic hydrocarbon solvent such as benzene; a sulfur-containing solvent such as dimethyl sulfoxide; an ether solvent such as tetrahydrofuran; an ester solvent such as ethyl acetate. Since it is soluble in various organic solvents such as a solvent; a halogen-containing solvent such as chloroform; and a mixed solvent composed of two or more of these, these solvents are used to prepare the polysilsesquioxane compound (A). 29 Si-NMR in a solution state can be measured.
 ポリシルセスキオキサン化合物(A)の溶液状態での29Si-NMRを測定することにより、前記式(a-3)で示されるT3サイト、式(a-4)で示されるT2サイト、式(a-5)で示されるT1サイトの含有割合を求めることができる。
 本発明で用いるポリシルセスキオキサン化合物(A)は、硬化性の観点から、T2サイトを、10~50mol%含有するものが好ましく、15~35mol%含有するものがより好ましい。また本発明で用いるポリシルセスキオキサン化合物(A)は、分子量と硬化性のバランスにより優れる観点から、T3サイトを、50~90mol%含有するものが好ましく、60~85mol%含有するものがより好ましい。
By measuring 29 Si-NMR in a solution state of the polysilsesquioxane compound (A), the T3 site represented by the above formula (a-3), the T2 site represented by the formula (a-4), and the formula The content ratio of the T1 site represented by (a-5) can be determined.
From the viewpoint of curability, the polysilsesquioxane compound (A) used in the present invention preferably contains 10 to 50 mol% of T2 sites, and more preferably 15 to 35 mol%. Further, the polysilsesquioxane compound (A) used in the present invention preferably contains 50 to 90 mol% of T3 sites, more preferably 60 to 85 mol%, from the viewpoint of excellent balance between molecular weight and curability. preferable.
 ポリシルセスキオキサン化合物(A)中の前記式(a-1)で示される繰り返し単位の含有割合は、全繰り返し単位に対して、50~100mol%が好ましく、70~100mol%がより好ましく、90~100mol%がさらに好ましく、100mol%が特に好ましい。 The content ratio of the repeating unit represented by the above formula (a-1) in the polysilsesquioxane compound (A) is preferably 50 to 100 mol%, more preferably 70 to 100 mol%, based on all the repeating units. 90 to 100 mol% is more preferable, and 100 mol% is particularly preferable.
 ポリシルセスキオキサン化合物(A)は、1種のRを有するもの(単独重合体)であってもよく、2種以上のRを有するもの(共重合体)であってもよい。 The polysilsesquioxane compound (A) may be one having one kind of R 1 (monopolymer) or one having two or more kinds of R 1 (copolymer).
 ポリシルセスキオキサン化合物(A)が共重合体である場合、ポリシルセスキオキサン化合物(A)は、ランダム共重合体、ブロック共重合体、グラフト共重合体、交互共重合体等のいずれであってもよいが、製造容易性等の観点からは、ランダム共重合体が好ましい。
 また、ポリシルセスキオキサン化合物(A)の構造は、ラダー型構造、ダブルデッカー型構造、籠型構造、部分開裂籠型構造、環状型構造、ランダム型構造のいずれの構造であってもよい。
When the polysilsesquioxane compound (A) is a copolymer, the polysilsesquioxane compound (A) is any of a random copolymer, a block copolymer, a graft copolymer, an alternating copolymer and the like. However, from the viewpoint of ease of production and the like, a random copolymer is preferable.
Further, the structure of the polysilsesquioxane compound (A) may be any of a ladder type structure, a double decker type structure, a cage type structure, a partially cleaved cage type structure, a cyclic type structure, and a random type structure. ..
 ポリシルセスキオキサン化合物(A)の質量平均分子量(Mw)は4,000~20,000、好ましくは6,000~16,000、より好ましくは8,000~13,000である。質量平均分子量(Mw)が上記範囲内にあるポリシルセスキオキサン化合物(A)を用いることで、耐熱性及び接着性により優れる硬化物を与える硬化性組成物が得られ易くなる。 The mass average molecular weight (Mw) of the polysilsesquioxane compound (A) is 4,000 to 20,000, preferably 6,000 to 16,000, and more preferably 8,000 to 13,000. By using the polysilsesquioxane compound (A) having a mass average molecular weight (Mw) within the above range, it becomes easy to obtain a curable composition that gives a cured product having better heat resistance and adhesiveness.
 ポリシルセスキオキサン化合物(A)の分子量分布(Mw/Mn)は特に限定されないが、通常1.0~10.0、好ましくは1.1~6.0である。分子量分布(Mw/Mn)が上記範囲内にあるポリシルセスキオキサン化合物(A)を用いることで、耐熱性及び接着性により優れる硬化物を与える硬化性組成物が得られ易くなる。
 質量平均分子量(Mw)及び数平均分子量(Mn)は、例えば、テトラヒドロフラン(THF)を溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)による標準ポリスチレン換算値として求めることができる。
The molecular weight distribution (Mw / Mn) of the polysilsesquioxane compound (A) is not particularly limited, but is usually 1.0 to 10.0, preferably 1.1 to 6.0. By using the polysilsesquioxane compound (A) having a molecular weight distribution (Mw / Mn) within the above range, it becomes easy to obtain a curable composition that gives a cured product having better heat resistance and adhesiveness.
The mass average molecular weight (Mw) and the number average molecular weight (Mn) can be determined, for example, as standard polystyrene-equivalent values by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent.
 ポリシルセスキオキサン化合物(A)の25℃における屈折率(nD)は、1.300~1.450が好ましく、1.350~1.440がより好ましく、1.400~1.435がさらに好ましい。
 ポリシルセスキオキサン化合物(A)の25℃における屈折率(nD)が、1.300~1.450の範囲内であることで、屈折率が低い硬化性組成物や硬化物が得られ易くなる。
 ポリシルセスキオキサン化合物(A)の屈折率は、ペン屈折計を用いて測定することができる。
The refractive index (nD) of the polysilsesquioxane compound (A) at 25 ° C. is preferably 1.300 to 1.450, more preferably 1.350 to 1.440, and further preferably 1.400 to 1.435. preferable.
When the refractive index (nD) of the polysilsesquioxane compound (A) at 25 ° C. is in the range of 1.300 to 1.450, it is easy to obtain a curable composition or a cured product having a low refractive index. Become.
The refractive index of the polysilsesquioxane compound (A) can be measured using a pen refractometer.
 本発明において、ポリシルセスキオキサン化合物(A)は1種単独で、あるいは2種以上を組み合わせて用いることができる。 In the present invention, the polysilsesquioxane compound (A) can be used alone or in combination of two or more.
 ポリシルセスキオキサン化合物(A)の製造方法は特に限定されない。例えば、下記式(a-6) The method for producing the polysilsesquioxane compound (A) is not particularly limited. For example, the following equation (a-6)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式中、Rは前記と同じ意味を表す。Rは炭素数1~10のアルキル基を表し、Xはハロゲン原子を表し、pは0~3の整数を表す。複数のR、及び複数のXは、それぞれ、互いに同一であっても、相異なっていてもよい。)
で示されるシラン化合物(1)の少なくとも1種を重縮合させることにより、ポリシルセスキオキサン化合物(A)を製造することができる。
 Rの炭素数1~10のアルキル基としては、Rの炭素数1~10のアルキル基として示したものと同様のものが挙げられる。
 Xのハロゲン原子としては、塩素原子、及び臭素原子等が挙げられる。
(In the formula, R 1 has the same meaning as described above. R 3 represents an alkyl group having 1 to 10 carbon atoms, X 1 represents a halogen atom, and p represents an integer of 0 to 3. Multiple R 3 and a plurality of X 1 are each, be the same as each other, may be different from each other.)
The polysilsesquioxane compound (A) can be produced by polycondensing at least one of the silane compounds (1) represented by (1).
Examples of the alkyl group having 1 to 10 carbon atoms of R 3 include those similar to those shown as the alkyl group having 1 to 10 carbon atoms of R 2 .
Examples of the halogen atom of X 1 include a chlorine atom and a bromine atom.
 シラン化合物(1)の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリプロポキシシラン等のアルキルトリアルコキシシラン化合物類;
 メチルクロロジメトキシシラン、メチルクロロジエトキシシラン、メチルジクロロメトキシシラン、メチルブロモジメトキシシラン、エチルクロロジメトキシシラン、エチルクロロジエトキシシラン、エチルジクロロメトキシシラン、エチルブロモジメトキシシラン等のアルキルハロゲノアルコキシシラン化合物類;
 メチルトリクロロシラン、メチルトリブロモシラン、エチルトリクロロシラン、エチルトリブロモシラン等のアルキルトリハロゲノシラン化合物類;
Specific examples of the silane compound (1) include alkyltrialkoxysilane compounds such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, and ethyltripropoxysilane;
Alkylhalogenoalkoxysilane compounds such as methylchlorodimethoxysilane, methylchlorodiethoxysilane, methyldichloromethoxysilane, methylbromodimethoxysilane, ethylchlorodimethoxysilane, ethylchlorodiethoxysilane, ethyldichloromethoxysilane, ethylbromodimethoxysilane;
Alkyltrihalogenosilane compounds such as methyltrichlorosilane, methyltribromosilane, ethyltrichlorosilane, and ethyltribromosilane;
 3,3,3-トリフルオロプロピルトリメトキシシラン、3,3,3-トリフルオロプロピルトリエトキシシラン、2-シアノエチルトリメトキシシラン、2-シアノエチルトリエトキシシラン等の置換アルキルトリアルコキシシラン化合物類;
 3,3,3-トリフルオロプロピルクロロジメトキシシラン、3,3,3-トリフルオロプロピルクロロジエトキシシラン、3,3,3-トリフルオロプロピルジクロロメトキシシラン、3,3,3-トリフルオロプロピルジクロロエトキシシラン、2-シアノエチルクロロジメトキシシラン、2-シアノエチルクロロジエトキシシラン、2-シアノエチルジクロロメトキシシラン、2-シアノエチルジクロロエトキシシラン等の置換アルキルハロゲノアルコキシシラン化合物類;
 3,3,3-トリフルオロプロピルトリクロロシラン、2-シアノエチルトリクロロシラン等の置換アルキルトリハロゲノシラン化合物類;
Substituted alkyltrialkoxysilane compounds such as 3,3,3-trifluoropropyltrimethoxysilane, 3,3,3-trifluoropropyltriethoxysilane, 2-cyanoethyltrimethoxysilane, and 2-cyanoethyltriethoxysilane;
3,3,3-Trifluoropropylchlorodimethoxysilane, 3,3,3-trifluoropropylchlorodiethoxysilane, 3,3,3-trifluoropropyldichloromethoxysilane, 3,3,3-trifluoropropyldichloro Substituted alkylhalogenoalkoxysilane compounds such as ethoxysilane, 2-cyanoethylchlorodimethoxysilane, 2-cyanoethylchlorodiethoxysilane, 2-cyanoethyldichloromethoxysilane, 2-cyanoethyldichloroethoxysilane;
Substituted alkyltrihalogenosilane compounds such as 3,3,3-trifluoropropyltrichlorosilane and 2-cyanoethyltrichlorosilane;
 フェニルトリメトキシシラン、4-メトキシフェニルトリメトキシシラン等の、置換基を有する、又は置換基を有さないフェニルトリアルコキシシラン化合物類;
 フェニルクロロジメトキシシラン、フェニルジクロロメトキシシラン、4-メトキシフェニルクロロジメトキシシラン、4-メトキシフェニルジクロロメトキシシラン等の、置換基を有する、又は置換基を有さないフェニルハロゲノアルコキシシラン化合物類;
 フェニルトリクロロシラン、4-メトキシフェニルトリクロロシラン等の、置換基を有する、又は置換基を有さないフェニルトリハロゲノシラン化合物類;等が挙げられる。
 これらのシラン化合物(1)は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
Phenyltrialkoxysilane compounds having or not having a substituent, such as phenyltrimethoxysilane and 4-methoxyphenyltrimethoxysilane;
Phenylhalogenoalkoxysilane compounds having or not having a substituent, such as phenylchlorodimethoxysilane, phenyldichloromethoxysilane, 4-methoxyphenylchlorodimethoxysilane, 4-methoxyphenyldichloromethoxysilane;
Phenyltrihalogenosilane compounds having or not having a substituent such as phenyltrichlorosilane and 4-methoxyphenyltrichlorosilane; and the like can be mentioned.
These silane compounds (1) can be used alone or in combination of two or more.
 前記シラン化合物(1)を重縮合させる方法は特に限定されない。例えば、溶媒中、又は無溶媒で、シラン化合物(1)に、所定量の重縮合触媒を添加し、所定温度で撹拌する方法が挙げられる。より具体的には、(a)シラン化合物(1)に、所定量の酸触媒を添加し、所定温度で撹拌する方法、(b)シラン化合物(1)に、所定量の塩基触媒を添加し、所定温度で撹拌する方法、(c)シラン化合物(1)に、所定量の酸触媒を添加し、所定温度で撹拌した後、過剰量の塩基触媒を添加して、反応系を塩基性とし、所定温度で撹拌する方法等が挙げられる。これらの中でも、効率よく目的とするポリシルセスキオキサン化合物(A)を得ることができることから、(a)又は(c)の方法が好ましい。 The method for polycondensing the silane compound (1) is not particularly limited. For example, a method of adding a predetermined amount of a polycondensation catalyst to the silane compound (1) in a solvent or without a solvent and stirring at a predetermined temperature can be mentioned. More specifically, (a) a method of adding a predetermined amount of an acid catalyst to the silane compound (1) and stirring at a predetermined temperature, and (b) adding a predetermined amount of a base catalyst to the silane compound (1). A method of stirring at a predetermined temperature, (c) a predetermined amount of acid catalyst is added to the silane compound (1), and after stirring at a predetermined temperature, an excess amount of base catalyst is added to make the reaction system basic. , A method of stirring at a predetermined temperature and the like. Among these, the method (a) or (c) is preferable because the desired polysilsesquioxane compound (A) can be efficiently obtained.
 用いる重縮合触媒は、酸触媒及び塩基触媒のいずれであってもよい。また、2以上の重縮合触媒を組み合わせて用いてもよいが、少なくとも酸触媒を用いることが好ましい。
 酸触媒としては、リン酸、塩酸、ホウ酸、硫酸、硝酸等の無機酸;クエン酸、酢酸、メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸等の有機酸;等が挙げられる。これらの中でも、リン酸、塩酸、ホウ酸、硫酸、クエン酸、酢酸、及びメタンスルホン酸から選ばれる少なくとも1種が好ましい。
The polycondensation catalyst used may be either an acid catalyst or a base catalyst. Further, two or more polycondensation catalysts may be used in combination, but at least an acid catalyst is preferably used.
Examples of the acid catalyst include inorganic acids such as phosphoric acid, hydrochloric acid, boric acid, sulfuric acid and nitric acid; and organic acids such as citric acid, acetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid and p-toluenesulfonic acid; Can be mentioned. Among these, at least one selected from phosphoric acid, hydrochloric acid, boric acid, sulfuric acid, citric acid, acetic acid, and methanesulfonic acid is preferable.
 塩基触媒としては、アンモニア水;トリメチルアミン、トリエチルアミン、リチウムジイソプロピルアミド、リチウムビス(トリメチルシリル)アミド、ピリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、アニリン、ピコリン、1,4-ジアザビシクロ[2.2.2]オクタン、イミダゾール等の有機塩基;水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム等の有機水酸化物;ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムt-ブトキシド、カリウムt-ブトキシド等の金属アルコキシド;水素化ナトリウム、水素化カルシウム等の金属水素化物;水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等の金属水酸化物;炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム等の金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム等の金属炭酸水素塩;等が挙げられる。 As the base catalyst, aqueous ammonia; trimethylamine, triethylamine, lithium diisopropylamide, lithium bis (trimethylsilyl) amide, pyridine, 1,8-diazabicyclo [5.4.0] -7-undecene, aniline, picolin, 1,4- Diazabicyclo [2.2.2] Organic bases such as octane and imidazole; organic hydroxides such as tetramethylammonium hydroxide and tetraethylammonium hydroxide; sodium methoxydone, sodium alkoxide, sodium t-butoxide, potassium t-butoxide Metal alkoxides such as; metal hydrides such as sodium hydride and calcium hydride; metal hydroxides such as sodium hydroxide, potassium hydroxide and calcium hydroxide; metal carbonates such as sodium carbonate, potassium carbonate and magnesium carbonate; Metallic hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate; and the like.
 重縮合触媒の使用量は、シラン化合物(1)の総mol量に対して、通常、0.05~10mol%、好ましくは0.1~5mol%の範囲である。 The amount of the polycondensation catalyst used is usually in the range of 0.05 to 10 mol%, preferably 0.1 to 5 mol%, based on the total mol amount of the silane compound (1).
 重縮合時に溶媒を用いる場合、用いる溶媒は、シラン化合物(1)の種類等に応じて、適宜選択することができる。例えば、水;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル等のエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、s-ブチルアルコール、t-ブチルアルコール等のアルコール類;等が挙げられる。これらの溶媒は1種単独で、あるいは2種以上を組み合わせて用いることができる。また、上記(c)の方法を採用する場合、酸触媒の存在下、水系で重縮合反応を行った後、反応液に、有機溶媒と過剰量の塩基触媒(アンモニア水など)を添加し、塩基性条件下で、更に重縮合反応を行うようにしてもよい。 When a solvent is used for polycondensation, the solvent to be used can be appropriately selected according to the type of the silane compound (1) and the like. For example, water; aromatic hydrocarbons such as benzene, toluene and xylene; esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate and methyl propionate; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone. ; Alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, s-butyl alcohol, t-butyl alcohol; and the like. These solvents can be used alone or in combination of two or more. When the method (c) above is adopted, a polycondensation reaction is carried out in an aqueous system in the presence of an acid catalyst, and then an organic solvent and an excessive amount of a base catalyst (ammonia water, etc.) are added to the reaction solution. The polycondensation reaction may be further carried out under basic conditions.
 溶媒の使用量は、シラン化合物(1)の総mol量1mol当たり、0.1リットル以上10リットル以下、好ましくは0.1リットル以上2リットル以下である。 The amount of the solvent used is 0.1 liter or more and 10 liters or less, preferably 0.1 liter or more and 2 liters or less, per 1 mol of the total mol amount of the silane compound (1).
 シラン化合物(1)を重縮合させるときの温度は、通常0℃から用いる溶媒の沸点までの温度範囲、好ましくは20℃以上100℃以下の範囲である。反応温度があまりに低いと重縮合反応の進行が不十分となる場合がある。一方、反応温度が高くなりすぎるとゲル化抑制が困難となる。反応は、通常30分から30時間で完結する。 The temperature at which the silane compound (1) is polycondensed is usually in the temperature range from 0 ° C. to the boiling point of the solvent used, preferably in the range of 20 ° C. or higher and 100 ° C. or lower. If the reaction temperature is too low, the progress of the polycondensation reaction may be insufficient. On the other hand, if the reaction temperature becomes too high, it becomes difficult to suppress gelation. The reaction is usually complete in 30 minutes to 30 hours.
 なお、用いるモノマーの種類によっては、高分子量化が困難な場合がある。例えば、Rがフッ素原子を有するアルキル基であるモノマーは、Rが通常のアルキル基であるモノマーよりも反応性に劣る傾向がある。このような場合、触媒量を減らし、かつ、穏やかな条件で長時間反応を行うことにより、目的の分子量のポリシルセスキオキサン化合物(A)が得られ易くなる。 Depending on the type of monomer used, it may be difficult to increase the molecular weight. For example, the monomer R 1 is an alkyl group having a fluorine atom, it tends to be inferior in reactivity than the monomer wherein R 1 is normal alkyl group. In such a case, by reducing the amount of catalyst and carrying out the reaction for a long time under mild conditions, the polysilsesquioxane compound (A) having the desired molecular weight can be easily obtained.
 反応終了後は、酸触媒を用いた場合は、反応溶液に炭酸水素ナトリウム等のアルカリ水溶液を添加することにより中和を行い、また、塩基触媒を用いた場合は、反応溶液に塩酸等の酸を添加することにより中和を行い、その際に生じる塩をろ別又は水洗等により除去し、目的とするポリシルセスキオキサン化合物(A)を得ることができる。 After completion of the reaction, when an acid catalyst is used, neutralization is performed by adding an alkaline aqueous solution such as sodium hydrogen carbonate to the reaction solution, and when a base catalyst is used, an acid such as hydrochloric acid is added to the reaction solution. Neutralization is carried out by adding the above, and the salt generated at that time is removed by filtration, washing with water or the like, and the desired polysilsesquioxane compound (A) can be obtained.
 上記方法により、ポリシルセスキオキサン化合物(A)を製造する際、シラン化合物(1)のOR又はXのうち、脱アルコール等が起こらなかった部分は、ポリシルセスキオキサン化合物(A)中に残存する。このため、ポリシルセスキオキサン化合物(A)中に、前記式(a-3)で示される繰り返し単位以外に、前記式(a-4)、式(a-5)で示される繰り返し単位が含まれることがある。 When the polysilsesquioxane compound (A) is produced by the above method, the portion of OR 3 or X 1 of the silane compound (1) in which dealcoholization or the like does not occur is the polysilsesquioxane compound (A). ) Remains in. Therefore, in the polysilsesquioxane compound (A), in addition to the repeating unit represented by the formula (a-3), the repeating unit represented by the formulas (a-4) and (a-5) is contained. May be included.
〔(B)成分〕
 本発明の硬化性組成物を構成する(B)成分は、下記式(b-1)で示される繰り返し単位を有し、上記要件1~要件3を満たすシリコーンオリゴマー(以下、「シリコーンオリゴマー(B)」と表すことがある。)である。
[Component (B)]
The component (B) constituting the curable composition of the present invention has a repeating unit represented by the following formula (b-1) and satisfies the above requirements 1 to 3 (hereinafter, "silicone oligomer (B)". ) ”.).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 シリコーンオリゴマー(B)は、3官能シラン化合物由来の繰り返し単位を有する。
 3官能シラン化合物とは、ケイ素原子1個と、このケイ素原子に結合した加水分解性基3個とを有する化合物である。本明細書において、加水分解性基とは、アルコキシ基、ハロゲン原子等の加水分解・重縮合性を有する基をいう。
 3官能シラン化合物としては、ポリシルセスキオキサン化合物(A)の製造原料として示した、式(a-6)で示されるシラン化合物(1)が挙げられる。
The silicone oligomer (B) has a repeating unit derived from a trifunctional silane compound.
The trifunctional silane compound is a compound having one silicon atom and three hydrolyzable groups bonded to the silicon atom. In the present specification, the hydrolyzable group refers to a group having hydrolyzable / polycondensable properties such as an alkoxy group and a halogen atom.
Examples of the trifunctional silane compound include the silane compound (1) represented by the formula (a-6) shown as a raw material for producing the polysilsesquioxane compound (A).
 シリコーンオリゴマー(B)は、4官能シラン化合物由来の繰り返し単位を有していてもよいし、有していなくてもよい。
 4官能シラン化合物とは、ケイ素原子1個と、このケイ素原子に結合した加水分解性基4個とを有する化合物である。
 4官能シラン化合物としては、テトラメトキシシラン、テトラエトキシシラン、メトキシトリエトキシシラン、ジメトキシジエトキシシラン、トリメトキシエトキシシラン、トリメトキシクロロシラン、トリエトキシクロロシラン、ジメトキシジクロロシラン、ジエトキシジクロロシラン、メトキシトリクロロシラン、エトキシトリクロロシラン、テトラクロロシラン、テトラブロモシラン等が挙げられる。
The silicone oligomer (B) may or may not have a repeating unit derived from a tetrafunctional silane compound.
The tetrafunctional silane compound is a compound having one silicon atom and four hydrolyzable groups bonded to the silicon atom.
Examples of the tetrafunctional silane compound include tetramethoxysilane, tetraethoxysilane, methoxytriethoxysilane, dimethoxydiethoxysilane, trimethoxyethoxysilane, trimethoxychlorosilane, triethoxychlorosilane, dimethoxydichlorosilane, diethoxydichlorosilane, and methoxytrichlorosilane. , Ethoxytrichlorosilane, tetrachlorosilane, tetrabromosilane and the like.
 シリコーンオリゴマー(B)に含まれる、3官能シラン化合物由来の繰り返し単位の量は、全繰り返し単位中50mol%以上であり、好ましくは70~100mol%、より好ましくは90~100mol%である。
 3官能シラン化合物由来の繰り返し単位の量が、全繰り返し単位中50mol%以上であることで、シリコーンオリゴマー(B)は、ポリシルセスキオキサン化合物(A)との相溶性が高まる。
The amount of the repeating unit derived from the trifunctional silane compound contained in the silicone oligomer (B) is 50 mol% or more, preferably 70 to 100 mol%, and more preferably 90 to 100 mol% in all the repeating units.
When the amount of the repeating unit derived from the trifunctional silane compound is 50 mol% or more in all the repeating units, the compatibility of the silicone oligomer (B) with the polysilsesquioxane compound (A) is enhanced.
 シリコーンオリゴマー(B)中の式(b-1)で示される繰り返し単位の量は、3官能シラン化合物由来の繰り返し単位中80mol%以上であり、好ましくは85~100mol%、より好ましくは90~100mol%である。
 式(b-1)で示される繰り返し単位の量が、3官能シラン化合物由来の繰り返し単位中80mol%未満の場合、屈折率が低い硬化性組成物や硬化物が得られ難くなる。
The amount of the repeating unit represented by the formula (b-1) in the silicone oligomer (B) is 80 mol% or more, preferably 85 to 100 mol%, more preferably 90 to 100 mol, of the repeating unit derived from the trifunctional silane compound. %.
When the amount of the repeating unit represented by the formula (b-1) is less than 80 mol% in the repeating unit derived from the trifunctional silane compound, it becomes difficult to obtain a curable composition or a cured product having a low refractive index.
 シリコーンオリゴマー(B)が、式(b-1)で示される繰り返し単位以外の3官能シラン化合物由来の繰り返し単位を含む場合、そのような繰り返し単位としては、下記式(b-2)で示されるものが挙げられる。 When the silicone oligomer (B) contains a repeating unit derived from a trifunctional silane compound other than the repeating unit represented by the formula (b-1), such a repeating unit is represented by the following formula (b-2). Things can be mentioned.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(b-2)中、Rは、無置換の炭素数2~10のアルキル基、置換基を有する炭素数1~10のアルキル基、無置換の炭素数6~12のアリール基、及び、置換基を有する炭素数6~12のアリール基からなる群から選ばれる少なくとも1つである。 Wherein (b-2), R 4 is an unsubstituted alkyl group having 2 to 10 carbon atoms, an alkyl group of 1 to 10 carbon atoms having a substituent group, an unsubstituted aryl group having 6 to 12 carbon atoms and, , At least one selected from the group consisting of aryl groups having 6 to 12 carbon atoms having substituents.
 Rの具体例としては、Rの具体例として示したものと同様のものが挙げられる。 Specific examples of R 4 include the same as those shown as specific examples of R 1 .
 シリコーンオリゴマー(B)に含まれる各繰り返し単位の種類とその含有割合は、ポリシルセスキオキサン化合物(A)の構造決定方法として先に説明したものと同様の方法(29Si-NMRの測定結果に基づく方法)により求めることができる。 The type of each repeating unit contained in the silicone oligomer (B) and its content ratio are the same as those described above as the method for determining the structure of the polysilsesquioxane compound (A) (measurement result of 29 Si-NMR). It can be obtained by the method based on).
 シリコーンオリゴマー(B)の質量平均分子量(Mw)は100~2,000、好ましくは200~1,800、より好ましくは300~1,500であり、より更に好ましくは400~1,200であり、特に好ましくは500~900である。質量平均分子量(Mw)が上記範囲内にあるシリコーンオリゴマー(B)を用いることで、硬化性により優れる硬化性組成物が得られ易くなる。さらに、そのような硬化性組成物の硬化物は、接着性に優れる傾向がある。
 なお、本発明において、「硬化性に優れる」とは、硬化性組成物が短時間で硬化するという特性を意味する。
The mass average molecular weight (Mw) of the silicone oligomer (B) is 100 to 2,000, preferably 200 to 1,800, more preferably 300 to 1,500, and even more preferably 400 to 1,200. Particularly preferably, it is 500 to 900. By using the silicone oligomer (B) having a mass average molecular weight (Mw) within the above range, it becomes easy to obtain a curable composition having more excellent curability. Further, the cured product of such a curable composition tends to have excellent adhesiveness.
In the present invention, "excellent in curability" means that the curable composition is cured in a short time.
 質量平均分子量(Mw)は、例えば、テトラヒドロフラン(THF)を溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)による標準ポリスチレン換算値として求めることができる。 The mass average molecular weight (Mw) can be determined, for example, as a standard polystyrene-equivalent value by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent.
 シリコーンオリゴマー(B)の25℃における屈折率(nD)は、1.300~1.450が好ましく、1.350~1.430がより好ましく、1.380~1.410がさらに好ましい。
 シリコーンオリゴマー(B)の25℃における屈折率(nD)が、1.300~1.450の範囲内であることで、屈折率が低い硬化性組成物や硬化物が得られ易くなる。
 シリコーンオリゴマー(B)の屈折率は、ペン屈折計を用いて測定することができる。
The refractive index (nD) of the silicone oligomer (B) at 25 ° C. is preferably 1.300 to 1.450, more preferably 1.350 to 1.430, and even more preferably 1.380 to 1.410.
When the refractive index (nD) of the silicone oligomer (B) at 25 ° C. is in the range of 1.300 to 1.450, a curable composition or a cured product having a low refractive index can be easily obtained.
The refractive index of the silicone oligomer (B) can be measured using a pen refractometer.
 本発明において、シリコーンオリゴマー(B)は1種単独で、あるいは2種以上を組み合わせて用いることができる。 In the present invention, the silicone oligomer (B) can be used alone or in combination of two or more.
 シリコーンオリゴマー(B)の製造方法は特に限定されない。ポリシルセスキオキサン化合物(A)の製造方法として説明したものと同様の方法において、適宜、反応条件等を変更することにより、目的のシリコーンオリゴマー(B)を製造することができる。
 また、シリコーンオリゴマー(B)として、市販のシリコーンオリゴマーを使用してもよい。
The method for producing the silicone oligomer (B) is not particularly limited. The target silicone oligomer (B) can be produced by appropriately changing the reaction conditions and the like in the same method as described as the method for producing the polysilsesquioxane compound (A).
Further, as the silicone oligomer (B), a commercially available silicone oligomer may be used.
〔硬化性組成物〕
 本発明の硬化性組成物は、ポリシルセスキオキサン化合物(A)及びシリコーンオリゴマー(B)を含有する。
 ポリシルセスキオキサン化合物(A)とシリコーンオリゴマー(B)の合計量は、硬化性組成物の固形分中、好ましくは30~100質量%であり、より好ましくは40~95質量%、さらに好ましくは50~90質量%、特に好ましくは55~85質量%である。
 本発明において、「固形分」とは、硬化性組成物中の溶媒以外の成分をいう。
[Curable composition]
The curable composition of the present invention contains a polysilsesquioxane compound (A) and a silicone oligomer (B).
The total amount of the polysilsesquioxane compound (A) and the silicone oligomer (B) is preferably 30 to 100% by mass, more preferably 40 to 95% by mass, still more preferably 40% by mass, based on the solid content of the curable composition. Is 50 to 90% by mass, particularly preferably 55 to 85% by mass.
In the present invention, the "solid content" refers to a component other than the solvent in the curable composition.
 シリコーンオリゴマー(B)の含有量は、ポリシルセスキオキサン化合物(A)100質量部に対して1~110質量部であり、好ましくは10~80質量部、より好ましくは20~60質量部であり、より更に好ましくは32~45質量部である。(B)成分の含有量が少な過ぎると、屈折率が低い硬化性組成物や硬化物が得られ難くなる。一方、(B)成分の含有量が多過ぎると接着性に優れる硬化物を形成し難くなる。 The content of the silicone oligomer (B) is 1 to 110 parts by mass, preferably 10 to 80 parts by mass, and more preferably 20 to 60 parts by mass with respect to 100 parts by mass of the polysilsesquioxane compound (A). Yes, more preferably 32 to 45 parts by mass. If the content of the component (B) is too small, it becomes difficult to obtain a curable composition or a cured product having a low refractive index. On the other hand, if the content of the component (B) is too large, it becomes difficult to form a cured product having excellent adhesiveness.
 本発明の硬化性組成物は、(C)成分として、シランカップリング剤を含有してもよい。シランカップリング剤を含有する硬化性組成物を用いることで、接着性により優れる硬化物を形成し易くなる。
 シランカップリング剤とは、ケイ素原子と、官能基と、前記ケイ素原子に結合した加水分解性基とを有するシラン化合物をいう。
 官能基とは、他の化合物(主に有機物)と反応性を有する基をいい、例えば、アミノ基、置換アミノ基、イソシアネート基、イソシアヌレート骨格を有する基等の窒素原子を有する基;酸無水物基(酸無水物構造);ビニル基;アリル基;エポキシ基;(メタ)アクリル基;メルカプト基;等が挙げられる。
 本発明において、シランカップリング剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 本発明の硬化性組成物がシランカップリング剤を含有する場合、その含有量は特に限定されず、目的に応じて適宜決定することができる。
The curable composition of the present invention may contain a silane coupling agent as the component (C). By using a curable composition containing a silane coupling agent, it becomes easy to form a cured product having better adhesiveness.
The silane coupling agent refers to a silane compound having a silicon atom, a functional group, and a hydrolyzable group bonded to the silicon atom.
A functional group refers to a group having a reactivity with another compound (mainly an organic substance), for example, a group having a nitrogen atom such as an amino group, a substituted amino group, an isocyanate group, or a group having an isocyanurate skeleton; acid anhydride. Examples thereof include a physical group (acid anhydride structure); a vinyl group; an allyl group; an epoxy group; a (meth) acrylic group; a mercapto group; and the like.
In the present invention, the silane coupling agent can be used alone or in combination of two or more.
When the curable composition of the present invention contains a silane coupling agent, the content thereof is not particularly limited and can be appropriately determined depending on the intended purpose.
 シランカップリング剤としては、分子内に窒素原子を有するシランカップリング剤や分子内に酸無水物構造を有するシランカップリング剤が好ましい。 As the silane coupling agent, a silane coupling agent having a nitrogen atom in the molecule or a silane coupling agent having an acid anhydride structure in the molecule is preferable.
 分子内に窒素原子を有するシランカップリング剤や分子内に酸無水物構造を有するシランカップリング剤を含有する硬化性組成物は、耐熱性及び接着性により優れる硬化物を与える傾向がある。 A curable composition containing a silane coupling agent having a nitrogen atom in the molecule or a silane coupling agent having an acid anhydride structure in the molecule tends to give a cured product having better heat resistance and adhesiveness.
 分子内に窒素原子を有するシランカップリング剤としては、例えば、下記式(c-1)で表されるトリアルコキシシラン化合物、式(c-2)で表されるジアルコキシアルキルシラン化合物又はジアルコキシアリールシラン化合物等が挙げられる。 Examples of the silane coupling agent having a nitrogen atom in the molecule include a trialkoxysilane compound represented by the following formula (c-1), a dialkoxyalkylsilane compound represented by the formula (c-2), or dialkoxy. Examples thereof include arylsilane compounds.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記式中、Rは、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、t-ブトキシ基等の炭素数1~6のアルコキシ基を表す。複数のR同士は同一であっても相異なっていてもよい。
 Rは、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等の炭素数1~6のアルキル基;又は、フェニル基、4-クロロフェニル基、4-メチルフェニル基、1-ナフチル基等の、置換基を有する、又は置換基を有さないアリール基;を表す。
In the above formulas, R a represents a methoxy group, an ethoxy group, n- propoxy group, isopropoxy group, n- butoxy group, an alkoxy group having 1 to 6 carbon atoms such as t- butoxy. A plurality of R a each other may be different from each be the same.
R b is an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and a t-butyl group; or a phenyl group, a 4-chlorophenyl group and a 4-. Represents an aryl group having or not having a substituent, such as a methylphenyl group or a 1-naphthyl group.
 Rは、窒素原子を有する、炭素数1~10の有機基を表す。また、Rは、さらに他のケイ素原子を含む基と結合していてもよい。
 Rの炭素数1~10の有機基の具体例としては、N-2-(アミノエチル)-3-アミノプロピル基、3-アミノプロピル基、N-(1,3-ジメチル-ブチリデン)アミノプロピル基、3-ウレイドプロピル基、N-フェニル-アミノプロピル基等が挙げられる。
R c represents an organic group having 1 to 10 carbon atoms and having a nitrogen atom. Further, R c may be bonded to a group containing another silicon atom.
Specific examples of the organic group having 1 to 10 carbon atoms R c is, N-2- (aminoethyl) -3-aminopropyl group, 3-aminopropyl group, N-(1,3-dimethyl - butylidene) amino Examples thereof include a propyl group, a 3-ureidopropyl group and an N-phenyl-aminopropyl group.
 上記式(c-1)又は(c-2)で表される化合物のうち、Rが、他のケイ素原子を含む基と結合した有機基である場合の化合物としては、イソシアヌレート骨格を有するシランカップリング剤(イソシアヌレート系シランカップリング剤)や、ウレア骨格を有するシランカップリング剤(ウレア系シランカップリング剤)が挙げられる。 Of the above formula (c-1) or compounds represented by (c-2), R c is, as the compound where an organic group bonded with groups containing other silicon atoms, having an isocyanurate skeleton Examples thereof include a silane coupling agent (isocyanurate-based silane coupling agent) and a silane coupling agent having a urea skeleton (urea-based silane coupling agent).
 これらの中でも、分子内に窒素原子を有するシランカップリング剤としては、接着性により優れる硬化物が得られ易いことから、イソシアヌレート系シランカップリング剤、及びウレア系シランカップリング剤が好ましく、さらに、分子内に、ケイ素原子に結合したアルコキシ基を4以上有するものが好ましい。
 ケイ素原子に結合したアルコキシ基を4以上有するとは、同一のケイ素原子に結合したアルコキシ基と、異なるケイ素原子に結合したアルコキシ基との総合計数が4以上という意味である。
Among these, as the silane coupling agent having a nitrogen atom in the molecule, an isocyanurate-based silane coupling agent and a urea-based silane coupling agent are preferable because a cured product having better adhesiveness can be easily obtained. , It is preferable that the molecule has 4 or more alkoxy groups bonded to a silicon atom.
Having 4 or more alkoxy groups bonded to a silicon atom means that the total count of the alkoxy groups bonded to the same silicon atom and the alkoxy groups bonded to different silicon atoms is 4 or more.
 ケイ素原子に結合したアルコキシ基を4以上有するイソシアヌレート系シランカップリング剤としては、下記式(c-3)で表される化合物が挙げられる。ケイ素原子に結合したアルコキシ基を4以上有するウレア系シランカップリング剤としては、下記式(c-4)で表される化合物が挙げられる。 Examples of the isocyanurate-based silane coupling agent having 4 or more alkoxy groups bonded to a silicon atom include a compound represented by the following formula (c-3). Examples of the urea-based silane coupling agent having 4 or more alkoxy groups bonded to a silicon atom include compounds represented by the following formula (c-4).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式中、Rは上記と同じ意味を表す。t1~t5はそれぞれ独立して、1~10の整数を表し、1~6の整数であるのが好ましく、3であるのが特に好ましい。 In the formula, Ra has the same meaning as above. Each of t1 to t5 independently represents an integer of 1 to 10, preferably an integer of 1 to 6, and particularly preferably 3.
 これらの中でも、分子内に窒素原子を有するシランカップリング剤としては、1,3,5-N-トリス(3-トリメトキシシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-トリエトキシシリルプロピル)イソシアヌレート(以下、「イソシアヌレート化合物」という。)、N,N’-ビス(3-トリメトキシシリルプロピル)ウレア、N,N’-ビス(3-トリエトキシシリルプロピル)ウレア(以下、「ウレア化合物」という。)、及び、上記イソシアヌレート化合物とウレア化合物との組み合わせを用いるのが好ましい。 Among these, 1,3,5-N-tris (3-trimethoxysilylpropyl) isocyanurate and 1,3,5-N-tris (3-) are examples of the silane coupling agent having a nitrogen atom in the molecule. Triethoxysilylpropyl) isocyanurate (hereinafter referred to as "isocyanurate compound"), N, N'-bis (3-trimethoxysilylpropyl) urea, N, N'-bis (3-triethoxysilylpropyl) urea (Hereinafter referred to as "urea compound"), and a combination of the above isocyanurate compound and urea compound is preferably used.
 本発明の硬化性組成物が分子内に窒素原子を有するシランカップリング剤を含有する場合、その含有量は特に限定されないが、その量は、上記(A)成分と分子内に窒素原子を有するシランカップリング剤の質量比〔(A)成分:分子内に窒素原子を有するシランカップリング剤〕で、好ましくは100:0.1~100:90、より好ましくは100:0.3~100:60、より好ましくは100:1~100:50、さらに好ましくは100:3~100:40、特に好ましくは100:5~100:35となる量である。
 このような割合で(A)成分及び分子内に窒素原子を有するシランカップリング剤を含有する硬化性組成物の硬化物は、耐熱性及び接着性により優れたものになる。
When the curable composition of the present invention contains a silane coupling agent having a nitrogen atom in the molecule, the content thereof is not particularly limited, but the amount thereof has the above component (A) and a nitrogen atom in the molecule. The mass ratio of the silane coupling agent [(A component: silane coupling agent having a nitrogen atom in the molecule], preferably 100: 0.1 to 100: 90, more preferably 100: 0.3 to 100: The amount is 60, more preferably 100: 1 to 100: 50, still more preferably 100: 3 to 100: 40, and particularly preferably 100: 5 to 100: 35.
The cured product of the curable composition containing the component (A) and the silane coupling agent having a nitrogen atom in the molecule at such a ratio becomes excellent in heat resistance and adhesiveness.
 分子内に酸無水物構造を有するシランカップリング剤は、一つの分子中に、酸無水物構造を有する基と、加水分解性基の両者を併せ持つ有機ケイ素化合物である。具体的には下記式(c-5)で表される化合物が挙げられる。 A silane coupling agent having an acid anhydride structure in a molecule is an organosilicon compound having both a group having an acid anhydride structure and a hydrolyzable group in one molecule. Specific examples thereof include compounds represented by the following formula (c-5).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式中、Qは酸無水物構造を有する基を表し、Rは炭素数1~6のアルキル基、又は、置換基を有する、若しくは置換基を有さないフェニル基を表し、Rは炭素数1~6のアルコキシ基又はハロゲン原子を表し、i、kは1~3の整数を表し、jは0~2の整数を表し、i+j+k=4である。jが2であるとき、R同士は同一であっても相異なっていてもよい。kが2又は3のとき、複数のR同士は同一であっても相異なっていてもよい。iが2又は3のとき、複数のQ同士は同一であっても相異なっていてもよい。
 Qとしては、下記式
Wherein, Q represents a group having an acid anhydride structure, R d represents an alkyl group, or have a substituent, or having no substituent phenyl group having 1 to 6 carbon atoms, R e is a carbon It represents an alkoxy group or a halogen atom of the number 1 to 6, i and k represent an integer of 1 to 3, j represents an integer of 0 to 2, and i + j + k = 4. When j is 2, R ds may be the same or different from each other. when k is 2 or 3, among a plurality of R e may be different from each be the same. When i is 2 or 3, a plurality of Qs may be the same or different from each other.
The following formula is used as Q
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(式中、hは0~10の整数を表す。)で表される基等が挙げられ、(Q1)で表される基が特に好ましい。 (In the formula, h represents an integer of 0 to 10) and the like, and the group represented by (Q1) is particularly preferable.
 分子内に酸無水物構造を有するシランカップリング剤としては、2-(トリメトキシシリル)エチル無水コハク酸、2-(トリエトキシシリル)エチル無水コハク酸、3-(トリメトキシシリル)プロピル無水コハク酸、3-(トリエトキシシリル)プロピル無水コハク酸等の、トリ(炭素数1~6)アルコキシシリル(炭素数2~8)アルキル無水コハク酸;
2-(ジメトキシメチルシリル)エチル無水コハク酸等の、ジ(炭素数1~6)アルコキシメチルシリル(炭素数2~8)アルキル無水コハク酸;
2-(メトキシジメチルシリル)エチル無水コハク酸等の、(炭素数1~6)アルコキシジメチルシリル(炭素数2~8)アルキル無水コハク酸;
Examples of the silane coupling agent having an acid anhydride structure in the molecule include 2- (trimethoxysilyl) ethyl anhydride succinic anhydride, 2- (triethoxysilyl) ethyl anhydride succinic anhydride, and 3- (trimethoxysilyl) propyl anhydride succinic anhydride. Tri (1 to 6 carbon atoms) alkoxysilyl (2 to 8 carbon atoms) alkyl succinic anhydride, such as acids, 3- (triethoxysilyl) propyl succinic anhydride;
Di (1 to 6 carbon atoms) alkoxymethylsilyl (2 to 8 carbon atoms) alkyl succinic anhydride, such as 2- (dimethoxymethylsilyl) ethyl succinic anhydride;
2- (Methoxydimethylsilyl) ethyl succinic anhydride, etc. (1 to 6 carbon atoms) alkoxydimethylsilyl (2 to 8 carbon atoms) alkyl succinic anhydride;
2-(トリクロロシリル)エチル無水コハク酸、2-(トリブロモシリル)エチル無水コハク酸等の、トリハロゲノシリル(炭素数2~8)アルキル無水コハク酸;
2-(ジクロロメチルシリル)エチル無水コハク酸等の、ジハロゲノメチルシリル(炭素数2~8)アルキル無水コハク酸;
2-(クロロジメチルシリル)エチル無水コハク酸等の、ハロゲノジメチルシリル(炭素数2~8)アルキル無水コハク酸;等が挙げられる。
Trihalogenosilyl (2-8 carbon atoms) alkyl succinic anhydride, such as 2- (trichlorosilyl) ethyl succinic anhydride, 2- (tribromosilyl) ethyl succinic anhydride;
Dihalogenomethylsilyl (2-8 carbon atoms) alkyl succinic anhydride, such as 2- (dichloromethylsilyl) ethyl succinic anhydride;
Examples thereof include halogenodimethylsilyl (2 to 8 carbon atoms) alkyl succinic anhydride, such as 2- (chlorodimethylsilyl) ethyl succinic anhydride.
 これらの中でも、分子内に酸無水物構造を有するシランカップリング剤としては、トリ(炭素数1~6)アルコキシシリル(炭素数2~8)アルキル無水コハク酸が好ましく、3-(トリメトキシシリル)プロピル無水コハク酸又は3-(トリエトキシシリル)プロピル無水コハク酸が特に好ましい。 Among these, as the silane coupling agent having an acid anhydride structure in the molecule, tri (1 to 6 carbon atoms) alkoxysilyl (2 to 8 carbon atoms) alkyl succinic anhydride is preferable, and 3- (trimethoxysilyl) is preferable. ) Succinic anhydride or 3- (triethoxysilyl) propyl succinic anhydride is particularly preferred.
 本発明の硬化性組成物が分子内に酸無水物構造を有するシランカップリング剤を含有する場合、その含有量は特に限定されないが、その量は、上記(A)成分と分子内に酸無水物構造を有するシランカップリング剤の質量比〔(A)成分:分子内に酸無水物構造を有するシランカップリング剤〕で、好ましくは100:0.1~100:30、より好ましくは100:0.3~100:20、より好ましくは100:0.5~100:15、さらに好ましくは100:1~100:10となる量である。
 このような割合で(A)成分及び分子内に酸無水物構造を有するシランカップリング剤を含有する硬化性組成物の硬化物は、接着性により優れたものになる。
When the curable composition of the present invention contains a silane coupling agent having an acid anhydride structure in the molecule, the content thereof is not particularly limited, but the amount thereof is acid anhydride in the above component (A) and the molecule. The mass ratio of the silane coupling agent having a physical structure [(A component: silane coupling agent having an acid anhydride structure in the molecule], preferably 100: 0.1 to 100:30, more preferably 100: The amount is 0.3 to 100: 20, more preferably 100: 0.5 to 100: 15, and even more preferably 100: 1 to 100:10.
The cured product of the curable composition containing the component (A) and the silane coupling agent having an acid anhydride structure in the molecule at such a ratio becomes more excellent in adhesiveness.
 本発明の硬化性組成物は、本発明の目的を阻害しない範囲で、他の成分を含有してもよい。
 他の成分としては、微粒子、酸化防止剤、紫外線吸収剤、光安定剤等が挙げられる。
The curable composition of the present invention may contain other components as long as the object of the present invention is not impaired.
Examples of other components include fine particles, antioxidants, ultraviolet absorbers, light stabilizers and the like.
 微粒子を添加すると、塗布工程における作業性に優れる硬化性組成物を得ることができる場合がある。微粒子の材質としては、金属;金属酸化物;鉱物;炭酸カルシウム、炭酸マグネシウム等の金属炭酸塩;硫酸カルシウム、硫酸バリウム等の金属硫酸塩;水酸化アルミニウム等の金属水酸化物;珪酸アルミニウム、珪酸カルシウム、珪酸マグネシウム等の金属珪酸塩;シリカ等の無機成分;シリコーン;アクリル系重合体等の有機成分;等が挙げられる。
 また、用いる微粒子は表面が修飾されたものであってもよい。
When fine particles are added, a curable composition having excellent workability in the coating process may be obtained. The materials of the fine particles include metals; metal oxides; minerals; metal carbonates such as calcium carbonate and magnesium carbonate; metal sulfates such as calcium sulfate and barium sulfate; metal hydroxides such as aluminum hydroxide; aluminum silicate and silicic acid. Examples thereof include metal silicates such as calcium and magnesium silicate; inorganic components such as silica; silicones; organic components such as acrylic polymers; and the like.
Further, the fine particles used may have a modified surface.
 これらの微粒子は1種単独で、あるいは2種以上を組み合わせて用いることができる。微粒子の含有量は特に限定されないが、(A)成分に対して、通常50質量%以下が好ましく、40質量%以下がより好ましく、35質量%以下がより更に好ましい。 These fine particles can be used alone or in combination of two or more. The content of the fine particles is not particularly limited, but is usually preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 35% by mass or less, based on the component (A).
 酸化防止剤は、加熱時の酸化劣化を防止するために添加される。酸化防止剤としては、リン系酸化防止剤、フェノール系酸化防止剤、硫黄系酸化防止剤等が挙げられる。 Antioxidant is added to prevent oxidative deterioration during heating. Examples of the antioxidant include phosphorus-based antioxidants, phenol-based antioxidants, sulfur-based antioxidants, and the like.
 リン系酸化防止剤としては、ホスファイト類、オキサホスファフェナントレンオキサイド類等が挙げられる。フェノール系酸化防止剤としては、モノフェノール類、ビスフェノール類、高分子型フェノール類等が挙げられる。硫黄系酸化防止剤としては、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリル-3,3’-チオジプロピオネート等が挙げられる。 Examples of phosphorus-based antioxidants include phosphites, oxaphosphaphenanthrene oxides, and the like. Examples of the phenolic antioxidant include monophenols, bisphenols, and high molecular weight phenols. Examples of the sulfur-based antioxidant include dilauryl-3,3'-thiodipropionate, dimyristyl-3,3'-thiodipropionate, and distearyl-3,3'-thiodipropionate.
 これらの酸化防止剤は1種単独で、あるいは2種以上を組み合わせて用いることができる。酸化防止剤の含有量は特に限定されないが、(A)成分に対して、通常10質量%以下である。 These antioxidants can be used alone or in combination of two or more. The content of the antioxidant is not particularly limited, but is usually 10% by mass or less with respect to the component (A).
 紫外線吸収剤は、得られる硬化物の耐光性を向上させる目的で添加される。
 紫外線吸収剤としては、サリチル酸類、ベンゾフェノン類、ベンゾトリアゾール類、ヒンダードアミン類等が挙げられる。
 紫外線吸収剤は1種単独で、あるいは2種以上を組み合わせて用いることができる。紫外線吸収剤の含有量は特に限定されないが、(A)成分に対して、通常10質量%以下である。
The UV absorber is added for the purpose of improving the light resistance of the obtained cured product.
Examples of the ultraviolet absorber include salicylic acids, benzophenones, benzotriazoles, hindered amines and the like.
The ultraviolet absorber may be used alone or in combination of two or more. The content of the ultraviolet absorber is not particularly limited, but is usually 10% by mass or less with respect to the component (A).
 光安定剤は、得られる硬化物の耐光性を向上させる目的で添加される。
 光安定剤としては、例えば、ポリ[{6-(1,1,3,3,-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジン)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジン)イミノ}]等のヒンダードアミン類等が挙げられる。
 これらの光安定剤は1種単独で、あるいは2種以上を組み合わせて用いることができる。光安定剤の含有量は、(A)成分に対して、通常20質量%以下である。
The light stabilizer is added for the purpose of improving the light resistance of the obtained cured product.
Examples of the light stabilizer include poly [{6- (1,1,3,3, -tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2,2,6). , 6-Tetramethyl-4-piperidin) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidine) imino}] and other hindered amines.
These light stabilizers can be used alone or in combination of two or more. The content of the light stabilizer is usually 20% by mass or less with respect to the component (A).
 本発明の硬化性組成物は、溶媒を含有してもよい。溶媒は、本発明の硬化性組成物の成分を溶解又は分散し得るものであれば特に限定されない。
 溶媒としては、ジエチレングリコールモノブチルエーテルアセテート、1,6-ヘキサンジオールジアセテート等のアセテート類;トリプロピレングリコール-n-ブチルエーテル;グリセリンジグリシジルエーテル、ブタンジオールジグリシジルエーテル、ジグリシジルアニリン、ネオペンチルグリコールグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、アルキレンジグリシジルエーテル、ポリグリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル等のジグリシジルエーテル類;トリメチロールプロパントリグリシジルエーテル、グリセリントリグリシジルエーテル等のトリグリシジルエーテル類;4-ビニルシクロヘキセンモノオキサイド、ビニルシクロヘキセンジオキサイド、メチル化ビニルシクロヘキセンジオキサイド等のビニルヘキセンオキサイド類;等が挙げられる。
 溶媒は1種単独で、あるいは2種以上を組み合わせて用いることができる。
The curable composition of the present invention may contain a solvent. The solvent is not particularly limited as long as it can dissolve or disperse the components of the curable composition of the present invention.
Examples of the solvent include acetates such as diethylene glycol monobutyl ether acetate and 1,6-hexanediol diacetate; tripropylene glycol-n-butyl ether; glycerin diglycidyl ether, butanediol diglycidyl ether, diglycidyl aniline, neopentyl glycol glycidyl ether. , Cyclohexanedimethanol diglycidyl ether, alkylene diglycidyl ether, polyglycol diglycidyl ether, polypropylene glycol diglycidyl ether and other diglycidyl ethers; trimethylolpropane triglycidyl ether, glycerin triglycidyl ether and other triglycidyl ethers; 4 -Vinylhexene oxides such as vinylcyclohexene monooxide, vinylcyclohexendioxide, methylated vinylcyclohexendioxide; and the like.
The solvent can be used alone or in combination of two or more.
 本発明の硬化性組成物が溶媒を含有する場合、その含有量は、固形分濃度が、好ましくは70質量%以上、100質量%未満、より好ましくは74~98質量%、より更に好ましくは78~95質量%になる量である。
 本発明の硬化性組成物は(A)成分と(B)成分を併用するものであるため、溶媒を大量に含有しなくても(すなわち、固形分濃度が高くても)、良好な塗布性を有する。
 固形分濃度が高い硬化性組成物を用いる場合、塗膜の乾燥条件や、硬化条件を厳密に管理しなくても、硬化物には溶媒がほとんど含まれないため、一定の特性を有する硬化物を安定的に形成することができる。
When the curable composition of the present invention contains a solvent, the solid content concentration is preferably 70% by mass or more and less than 100% by mass, more preferably 74 to 98% by mass, still more preferably 78. The amount is up to 95% by mass.
Since the curable composition of the present invention is a combination of the component (A) and the component (B), it has good coatability even if it does not contain a large amount of solvent (that is, even if the solid content concentration is high). Has.
When a curable composition having a high solid content concentration is used, the cured product contains almost no solvent even if the drying conditions and curing conditions of the coating film are not strictly controlled, so that the cured product has certain characteristics. Can be stably formed.
 本発明の硬化性組成物は(B)成分を含有するため、屈折率が低い。
 本発明の硬化性組成物の、25℃における屈折率(nD)は、通常1.450未満であり、好ましくは1.380~1.440、より好ましくは1.400~1.435、より更に好ましくは1.410~1.430である。
 硬化性組成物の屈折率(nD)は、ペン屈折計を用いて測定することができる。
Since the curable composition of the present invention contains the component (B), it has a low refractive index.
The refractive index (nD) of the curable composition of the present invention at 25 ° C. is usually less than 1.450, preferably 1.380 to 1.440, more preferably 1.400 to 1.435, and even more. It is preferably 1.410 to 1.430.
The refractive index (nD) of the curable composition can be measured using a pen refractometer.
 本発明の硬化性組成物は、例えば、上記(A)成分と(B)成分、及び、所望により他の成分を所定割合で混合し、脱泡することにより調製することができる。
 混合方法、脱泡方法は特に限定されず、公知の方法を利用することができる。
The curable composition of the present invention can be prepared, for example, by mixing the above-mentioned component (A), component (B), and, if desired, other components at a predetermined ratio and defoaming.
The mixing method and defoaming method are not particularly limited, and known methods can be used.
2)硬化物
 本発明の硬化物は、本発明の硬化性組成物を硬化させて得られるものである。
 本発明の硬化性組成物を硬化させる方法としては加熱硬化が挙げられる。硬化させるときの加熱温度は、通常100~200℃であり、加熱時間は、通常10分から20時間、好ましくは30分から10時間である。
2) Cured product The cured product of the present invention is obtained by curing the curable composition of the present invention.
Examples of the method for curing the curable composition of the present invention include heat curing. The heating temperature at the time of curing is usually 100 to 200 ° C., and the heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
 本発明の硬化物は、耐熱性及び接着性に優れるものである。
 本発明の硬化物がこれらの特性を有することは、例えば、次のようにして確認することができる。すなわち、シリコンチップのミラー面に、本発明の硬化性組成物を所定量塗布し、塗布面を被着体の上に載せ、圧着し、加熱処理して硬化させる。これを、予め所定温度(例えば、100℃)に加熱したボンドテスターの測定ステージ上に30秒間放置し、被着体から100μmの高さの位置より、接着面に対し水平方向(せん断方向)に応力をかけ、試験片と被着体との接着力を測定する。
The cured product of the present invention is excellent in heat resistance and adhesiveness.
It can be confirmed that the cured product of the present invention has these characteristics, for example, as follows. That is, a predetermined amount of the curable composition of the present invention is applied to the mirror surface of the silicon chip, the coated surface is placed on the adherend, pressure-bonded, and heat-treated to cure. This is left on the measurement stage of a bond tester preheated to a predetermined temperature (for example, 100 ° C.) for 30 seconds, and from a position at a height of 100 μm from the adherend, in the horizontal direction (shear direction) with respect to the adhesive surface. Apply stress and measure the adhesive force between the test piece and the adherend.
 本発明の硬化物の接着力は、100℃において30N/4mm以上であることが好ましく、35N/4mm以上であることがより好ましく、40N/4mm以上であることがさらに好ましい。
 本明細書において、「4mm」とは、「2mm square」、すなわち、2mm×2mm(1辺が2mmの正方形)を意味する。
Adhesion of the cured product of the present invention is preferably at 100 ° C. is 30 N / 4 mm 2 or more, more preferably 35N / 4 mm 2 or more, and still more preferably 40N / 4 mm 2 or more.
In the present specification, "4 mm 2 " means "2 mm square", that is, 2 mm x 2 mm (a square having a side of 2 mm).
 本発明の硬化物は、屈折率が低いものである。したがって、本発明の硬化物は、屈折率が低い接着剤層等として好ましく用いられる。
 本発明の硬化物の、25℃における屈折率(nD)は、通常1.450未満であり、好ましくは1.380~1.440、より好ましくは1.400~1.435、より更に好ましくは1.410~1.430である。
 硬化物の屈折率(nD)は、実施例に記載の方法により測定することができる。
The cured product of the present invention has a low refractive index. Therefore, the cured product of the present invention is preferably used as an adhesive layer having a low refractive index.
The refractive index (nD) of the cured product of the present invention at 25 ° C. is usually less than 1.450, preferably 1.380 to 1.440, more preferably 1.400 to 1.435, and even more preferably. It is 1.410 to 1.430.
The refractive index (nD) of the cured product can be measured by the method described in Examples.
 上記特性を有することから、本発明の硬化物は、光素子固定材として好ましく用いられる。 Since it has the above characteristics, the cured product of the present invention is preferably used as an optical element fixing material.
3)硬化性組成物の使用方法
 本発明の方法は、本発明の硬化性組成物を、光素子固定材用接着剤又は光素子固定材用封止材として使用する方法である。
 光素子としては、LED、LD等の発光素子、受光素子、複合光素子、光集積回路等が挙げられる。
3) Method of using curable composition The method of the present invention is a method of using the curable composition of the present invention as an adhesive for an optical element fixing material or a sealing material for an optical element fixing material.
Examples of the optical element include a light emitting element such as an LED and an LD, a light receiving element, a composite optical element, and an optical integrated circuit.
〈光素子固定材用接着剤〉
 本発明の硬化性組成物は、光素子固定材用接着剤として好適に使用することができる。
 本発明の硬化性組成物を光素子固定材用接着剤として使用する方法としては、接着の対象とする材料(光素子とその基板等)の一方又は両方の接着面に該組成物を塗布し、圧着した後、加熱硬化させ、接着の対象とする材料同士を強固に接着させる方法が挙げられる。本発明の硬化性組成物の塗布量は、特に限定されず、硬化させることにより、接着の対象とする材料同士を強固に接着することができる量であればよい。通常、硬化性組成物の塗膜の厚みが0.5~5μm、好ましくは1~3μmとなる量である。
<Adhesive for optical element fixing material>
The curable composition of the present invention can be suitably used as an adhesive for an optical element fixing material.
As a method of using the curable composition of the present invention as an adhesive for an optical element fixing material, the composition is applied to one or both adhesive surfaces of a material to be adhered (optical element and its substrate, etc.). , After crimping, heat-curing to firmly bond the materials to be bonded to each other. The amount of the curable composition of the present invention applied is not particularly limited as long as it can firmly bond the materials to be bonded to each other by curing. Usually, the thickness of the coating film of the curable composition is 0.5 to 5 μm, preferably 1 to 3 μm.
 光素子を接着するための基板材料としては、ソーダライムガラス、耐熱性硬質ガラス等のガラス類;セラミックス;サファイア;鉄、銅、アルミニウム、金、銀、白金、クロム、チタン及びこれらの金属の合金、ステンレス(SUS302、SUS304、SUS304L、SUS309等)等の金属類;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、エチレン-酢酸ビニル共重合体、ポリスチレン、ポリカーボネート、ポリメチルペンテン、ポリスルホン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリイミド、ポリアミド、アクリル樹脂、ノルボルネン系樹脂、シクロオレフィン樹脂、ガラスエポキシ樹脂等の合成樹脂;等が挙げられる。 Substrate materials for adhering optical elements include glasses such as soda lime glass and heat-resistant hard glass; ceramics; sapphire; iron, copper, aluminum, gold, silver, platinum, chromium, titanium and alloys of these metals. , Stainless steel (SUS302, SUS304, SUS304L, SUS309, etc.); polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, ethylene-vinyl acetate copolymer, polystyrene, polycarbonate, polymethylpentene, polysulfone, polyether ether ketone , Polyethersulfone, polyphenylene sulfide, polyetherimide, polyimide, polyamide, acrylic resin, norbornene-based resin, cycloolefin resin, synthetic resin such as glass epoxy resin; and the like.
 加熱硬化させる際の加熱温度は、用いる硬化性組成物等にもよるが、通常100~200℃である。加熱時間は、通常10分から20時間、好ましくは30分から10時間である。 The heating temperature at the time of heat curing is usually 100 to 200 ° C., although it depends on the curable composition used. The heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
〈光素子固定材用封止材〉
 本発明の硬化性組成物は、光素子固定材用封止材として好適に用いることができる。
 本発明の硬化性組成物を光素子固定材用封止材として使用する方法としては、例えば、該組成物を所望の形状に成形して、光素子を内包した成形体を得た後、このものを加熱硬化させることにより、光素子封止体を製造する方法等が挙げられる。
 本発明の硬化性組成物を所望の形状に成形する方法としては、特に限定されるものではなく、通常のトランスファー成形法や、注型法等の公知のモールド法を採用できる。
<Encapsulating material for optical element fixing material>
The curable composition of the present invention can be suitably used as a sealing material for an optical element fixing material.
As a method of using the curable composition of the present invention as a sealing material for an optical element fixing material, for example, the composition is molded into a desired shape to obtain a molded body containing an optical element, and then this Examples thereof include a method of manufacturing an optical device encapsulant by heating and curing the material.
The method for molding the curable composition of the present invention into a desired shape is not particularly limited, and a known molding method such as a normal transfer molding method or a casting method can be adopted.
 加熱硬化させる際の加熱温度は、用いる硬化性組成物等にもよるが、通常、100~200℃である。加熱時間は、通常10分から20時間、好ましくは30分から10時間である。 The heating temperature for heat curing depends on the curable composition used and the like, but is usually 100 to 200 ° C. The heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
 得られる光素子封止体は、本発明の硬化性組成物を用いているので、耐熱性及び接着性に優れる。 Since the obtained optical device encapsulant uses the curable composition of the present invention, it is excellent in heat resistance and adhesiveness.
 以下、実施例を挙げて本発明を更に詳細に説明する。但し、本発明は、以下の実施例になんら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
(平均分子量測定)
 製造例で得た硬化性ポリシルセスキオキサン化合物、及び、B成分のシリコーンオリゴマーの質量平均分子量(Mw)及び数平均分子量(Mn)は、標準ポリスチレン換算値とし、以下の装置及び条件にて測定した。
 装置名:HLC-8220GPC、東ソー株式会社製
 カラム:TSKgelGMHXL、TSKgelGMHXL、及び、TSKgel2000HXLを順次連結したもの
 溶媒:テトラヒドロフラン
 注入量:80μl
 測定温度:40℃
 流速:1ml/分
 検出器:示差屈折計
(Measurement of average molecular weight)
The mass average molecular weight (Mw) and number average molecular weight (Mn) of the curable polysilsesquioxane compound obtained in the production example and the silicone oligomer of component B are standard polystyrene conversion values, and are set to the following equipment and conditions. It was measured.
Device name: HLC-8220GPC, manufactured by Tosoh Corporation Columns: TSKgelGMHXL, TSKgelGMHXL, and TSKgel2000HXL are sequentially linked. Solvent: tetrahydrofuran Injection amount: 80 μl
Measurement temperature: 40 ° C
Flow velocity: 1 ml / min Detector: Differential refractometer
(IRスペクトルの測定)
 製造例で得た硬化性ポリシルセスキオキサン化合物のIRスペクトルは、フーリエ変換赤外分光光度計(パーキンエルマー社製、Spectrum100)を使用して測定した。
(Measurement of IR spectrum)
The IR spectrum of the curable polysilsesquioxane compound obtained in the production example was measured using a Fourier transform infrared spectrophotometer (Spectrum 100, manufactured by PerkinElmer).
29Si-NMR測定)
 シラン化合物重合体〔(A)成分及び(B)成分〕の繰り返し単位とその量を調べるために、以下の条件で29Si-NMR測定を行った。
装置:ブルカー・バイオスピン社製 AV-500
29Si-NMR共鳴周波数:99.352MHz
プローブ:5mmφ溶液プローブ
測定温度:室温(25℃)
試料回転数:20kHz
測定法:インバースゲートデカップリング法
29Si フリップ角:90°
29Si 90°パルス幅:8.0μs
繰り返し時間:5s
積算回数:9200回
観測幅:30kHz
( 29 Si-NMR measurement)
In order to investigate the repeating unit of the silane compound polymer [component (A) and component (B)] and its amount, 29 Si-NMR measurement was performed under the following conditions.
Equipment: AV-500 manufactured by Bruker Biospin
29 Si-NMR resonance frequency: 99.352 MHz
Probe: 5 mmφ solution Probe measurement temperature: Room temperature (25 ° C)
Sample rotation speed: 20 kHz
Measurement method: inverse gate decoupling method
29 Si flip angle: 90 °
29 Si 90 ° pulse width: 8.0 μs
Repeat time: 5s
Number of integrations: 9200 observation width: 30 kHz
29Si-NMR試料作製方法)
 緩和時間短縮のため、緩和試薬としてFe(acac)を添加し測定した。
シラン化合物重合体濃度:30質量%
Fe(acac)濃度:0.7質量%
測定溶媒:アセトン
内部標準:TMS
( 29 Si-NMR sample preparation method)
In order to shorten the relaxation time, Fe (acac) 3 was added as a relaxation reagent and measured.
Silane compound polymer concentration: 30% by mass
Fe (acac) 3 concentration: 0.7% by mass
Measuring solvent: Acetone Internal standard: TMS
(波形処理解析)
 フーリエ変換後のスペクトルの各ピークについて、ピークトップの位置によりケミカルシフトを求め、積分を行った。
(Waveform processing analysis)
For each peak of the spectrum after Fourier transform, the chemical shift was obtained from the position of the peak top and integrated.
(製造例1)
 300mlのナス型フラスコに、メチルトリエトキシシラン71.37g(400mmol)を仕込んだ後、これを撹拌しながら、蒸留水21.6mlに35質量%塩酸0.10g(メチルトリエトキシシランに対して0.25mol%)を溶解した水溶液を加え、全容を30℃にて2時間、次いで70℃に昇温して5時間撹拌した。
 内容物の撹拌を継続しながら、そこに、酢酸プロピル140gと、28質量%アンモニア水0.12g(メチルトリエトキシシランに対して0.5mol%)を加え、そのまま70℃で3時間撹拌した。
 反応液を室温まで放冷した後、そこに精製水を加えて分液処理を行い、水層のpHが7になるまでこの操作を繰り返した。有機層をエバポレーターで濃縮し、濃縮物を真空乾燥することにより、硬化性ポリシルセスキオキサン化合物(A1)を55.7g得た。このものの質量平均分子量(Mw)は7,800、分子量分布(Mw/Mn)は4.52であった。
 硬化性ポリシルセスキオキサン化合物(A1)のIRスペクトルデータを以下に示す。
Si-CH:1272cm-1,1409cm-1,Si-O:1132cm-1
 また、29Si-NMRスペクトル測定を行った結果、T1、T2、T3のピーク積分値比は、0:24:76であった。
 また、硬化性ポリシルセスキオキサン化合物(A1)の25℃における屈折率(nD)は、1.427であった。
(Manufacturing Example 1)
71.37 g (400 mmol) of methyltriethoxysilane was charged in a 300 ml eggplant-shaped flask, and then 0.10 g of 35 mass% hydrochloric acid (0 with respect to methyltriethoxysilane) was added to 21.6 ml of distilled water while stirring the mixture. An aqueous solution in which .25 mol%) was dissolved was added, and the whole volume was heated to 30 ° C. for 2 hours and then to 70 ° C. for 5 hours.
While continuing to stir the contents, 140 g of propyl acetate and 0.12 g of 28 mass% aqueous ammonia (0.5 mol% with respect to methyltriethoxysilane) were added thereto, and the mixture was stirred as it was at 70 ° C. for 3 hours.
After allowing the reaction solution to cool to room temperature, purified water was added thereto for liquid separation treatment, and this operation was repeated until the pH of the aqueous layer reached 7. The organic layer was concentrated with an evaporator, and the concentrate was vacuum dried to obtain 55.7 g of a curable polysilsesquioxane compound (A1). The mass average molecular weight (Mw) of this product was 7,800, and the molecular weight distribution (Mw / Mn) was 4.52.
The IR spectral data of the curable polysilsesquioxane compound (A1) is shown below.
Si-CH 3 : 1272 cm -1 , 1409 cm -1 , Si-O: 1132 cm -1
Moreover, as a result of performing 29 Si-NMR spectrum measurement, the peak integral value ratio of T1, T2, and T3 was 0:24:76.
The refractive index (nD) of the curable polysilsesquioxane compound (A1) at 25 ° C. was 1.427.
(製造例2)
 300mLのナス型フラスコに、3,3,3-トリフルオロプロピルトリメトキシシラン17.0g(77.7mmol)、及び、メチルトリエトキシシラン32.33g(181.3mmol)を仕込んだ後、これを撹拌しながら、蒸留水14.0gに35質量%塩酸0.0675g(HClの量が0.65mmol,シラン化合物の合計量に対して、0.25mol%)を溶解して得られた水溶液を加え、全容を30℃にて2時間、次いで70℃に昇温して20時間撹拌した。
 内容物の撹拌を継続しながら、そこに、28質量%アンモニア水0.0394g(NHの量が0.65mmol)と酢酸プロピル46.1gの混合溶液を加えて反応液のpHを6.9にし、そのまま70℃で40分間撹拌した。
 反応液を室温まで放冷した後、そこに、酢酸プロピル50g及び水100gを加えて分液処理を行い、反応生成物を含む有機層を得た。この有機層に硫酸マグネシウムを加えて乾燥処理を行った。硫酸マグネシウムを濾別除去した後、有機層をエバポレーターで濃縮し、次いで、得られた濃縮物を真空乾燥することにより、硬化性ポリシルセスキオキサン化合物(A2)を得た。このものの質量平均分子量(Mw)は5,500、分子量分布は3.40であった。
 硬化性ポリシルセスキオキサン化合物(A2)のIRスペクトルデータを以下に示す。
Si-CH:1272cm-1,1409cm-1,Si-O:1132cm-1,C-F:1213cm-1
 また、29Si-NMRスペクトル測定を行った結果、T1、T2、T3のピーク積分値比は、2:27:71であった。
 また、硬化性ポリシルセスキオキサン化合物(A2)の25℃における屈折率(nD)は、1.410であった。
(Manufacturing Example 2)
17.0 g (77.7 mmol) of 3,3,3-trifluoropropyltrimethoxysilane and 32.33 g (181.3 mmol) of methyltriethoxysilane were placed in a 300 mL eggplant-shaped flask, and the mixture was stirred. While adding an aqueous solution obtained by dissolving 0.0675 g of 35 mass% hydrochloric acid (the amount of HCl is 0.65 mmol, 0.25 mol% with respect to the total amount of the silane compound) in 14.0 g of distilled water. The whole volume was heated to 30 ° C. for 2 hours and then to 70 ° C. for 20 hours.
While continuing to stir the contents, a mixed solution of 0.0394 g of 28 mass% ammonia water (0.65 mmol of NH 3 ) and 46.1 g of propyl acetate was added thereto, and the pH of the reaction solution was 6.9. And stirred as it was at 70 ° C. for 40 minutes.
After allowing the reaction solution to cool to room temperature, 50 g of propyl acetate and 100 g of water were added thereto to carry out a liquid separation treatment to obtain an organic layer containing a reaction product. Magnesium sulfate was added to this organic layer and dried. After removing magnesium sulfate by filtration, the organic layer was concentrated by an evaporator, and then the obtained concentrate was vacuum-dried to obtain a curable polysilsesquioxane compound (A2). The mass average molecular weight (Mw) of this product was 5,500, and the molecular weight distribution was 3.40.
The IR spectral data of the curable polysilsesquioxane compound (A2) is shown below.
Si-CH 3 : 1272 cm -1 , 1409 cm -1 , Si-O: 1132 cm -1 , CF: 1213 cm -1
Moreover, as a result of performing 29 Si-NMR spectrum measurement, the peak integral value ratio of T1, T2, and T3 was 2:27:71.
The refractive index (nD) of the curable polysilsesquioxane compound (A2) at 25 ° C. was 1.410.
 実施例及び比較例で用いた化合物を以下に示す。
(A成分)
硬化性ポリシルセスキオキサン化合物(A1)〔硬化性PSQ(A1)〕:製造例1で得られた硬化性ポリシルセスキオキサン化合物
硬化性ポリシルセスキオキサン化合物(A2)〔硬化性PSQ(A2)〕:製造例2で得られた硬化性ポリシルセスキオキサン化合物
The compounds used in Examples and Comparative Examples are shown below.
(Component A)
Curable polysilsesquioxane compound (A1) [curable PSQ (A1)]: Curable polysilsesquioxane compound obtained in Production Example 1 Curable polysilsesquioxane compound (A2) [curable PSQ (A2)]: The curable polysilsesquioxane compound obtained in Production Example 2.
(B成分)
シリコーンオリゴマー(B1):市販のシリコーンオリゴマー
・質量平均分子量(Mw) 700
・3官能シラン化合物由来の繰り返し単位中のCH-SiO3/2の割合 100mol%
・25℃における屈折率(nD) 1.394
(B component)
Silicone oligomer (B1): Commercially available silicone oligomer, mass average molecular weight (Mw) 700
• Ratio of CH 3- SiO 3/2 in repeating unit derived from trifunctional silane compound 100 mol%
Refractive index (nD) at 25 ° C. 1.394
シリコーンオリゴマー(B2):市販のシリコーンオリゴマー
・質量平均分子量(Mw) 900
・3官能シラン化合物由来の繰り返し単位中のCH-SiO3/2の割合 100mol%
・25℃における屈折率(nD) 1.397
Silicone oligomer (B2): Commercially available silicone oligomer, mass average molecular weight (Mw) 900
• Ratio of CH 3- SiO 3/2 in repeating unit derived from trifunctional silane compound 100 mol%
Refractive index at 25 ° C (nD) 1.397
シリコーンオリゴマー(B3):市販のシリコーンオリゴマー
・質量平均分子量(Mw) 1000
・3官能シラン化合物由来の繰り返し単位中のCH-SiO3/2の割合 100mol%
・25℃における屈折率(nD) 1.407
Silicone oligomer (B3): Commercially available silicone oligomer, mass average molecular weight (Mw) 1000
• Ratio of CH 3- SiO 3/2 in repeating unit derived from trifunctional silane compound 100 mol%
Refractive index (nD) at 25 ° C. 1.407
シリコーンオリゴマー(B4):市販のシリコーンオリゴマー
・質量平均分子量(Mw) 1000
・3官能シラン化合物由来の繰り返し単位中のCH-SiO3/2の割合 100mol%
・25℃における屈折率(nD) 1.403
Silicone oligomer (B4): Commercially available silicone oligomer, mass average molecular weight (Mw) 1000
• Ratio of CH 3- SiO 3/2 in repeating unit derived from trifunctional silane compound 100 mol%
Refractive index at 25 ° C (nD) 1.403
シリコーンオリゴマー(B5):市販のシリコーンオリゴマー
・質量平均分子量(Mw) 1000
・3官能シラン化合物由来の繰り返し単位中のCH-SiO3/2の割合 48mol%(PhSiO3/2が、52mol%)
・25℃における屈折率(nD) 1.509
Silicone oligomer (B5): Commercially available silicone oligomer, mass average molecular weight (Mw) 1000
-Ratio of CH 3- SiO 3/2 in repeating unit derived from trifunctional silane compound 48 mol% (PhSiO 3/2 is 52 mol%)
Refractive index (nD) at 25 ° C. 1.509
シリコーンオリゴマー(B6):市販のシリコーンオリゴマー
・質量平均分子量(Mw) 1200
・3官能シラン化合物由来の繰り返し単位中のCH-SiO3/2の割合 47mol%(PhSiO3/2が、53mol%)
・25℃における屈折率(nD) 1.529
Silicone oligomer (B6): Commercially available silicone oligomer, mass average molecular weight (Mw) 1200
-Ratio of CH 3- SiO 3/2 in repeating unit derived from trifunctional silane compound 47 mol% (PhSiO 3/2 is 53 mol%)
Refractive index (nD) at 25 ° C. 1.529
シリコーンオリゴマー(B7):市販のシリコーンオリゴマー
・質量平均分子量(Mw) 1200
・3官能シラン化合物由来の繰り返し単位中のCH-SiO3/2の割合 34mol%(PhSiO3/2が、64mol%)
・25℃における屈折率(nD) 1.525
Silicone oligomer (B7): Commercially available silicone oligomer, mass average molecular weight (Mw) 1200
-Ratio of CH 3- SiO 3/2 in repeating unit derived from trifunctional silane compound 34 mol% (PhSiO 3/2 is 64 mol%)
Refractive index at 25 ° C (nD) 1.525
(C成分)
シランカップリング剤(C1):1,3,5-N-トリス〔3-(トリメトキシシリル)プロピル〕イソシアヌレート
シランカップリング剤(C2):3-(トリメトキシシリル)プロピルコハク酸無水物
(C component)
Silane Coupling Agent (C1): 1,3,5-N-Tris [3- (trimethoxysilyl) propyl] Isocyanurate Silane Coupling Agent (C2): 3- (Trimethoxysilyl) Propyl succinic anhydride
 実施例、及び比較例で得た硬化性組成物を用いて、それぞれ以下の測定、試験を行った。
〔屈折率測定(硬化性組成物)〕
 硬化性組成物を水平面上に吐出し、これに、ペン屈折計(株式会社アタゴ製、PEN-RI)の測定面を、25℃で圧着させることで屈折率(nD)を測定した。
The following measurements and tests were carried out using the curable compositions obtained in Examples and Comparative Examples, respectively.
[Refractive index measurement (curable composition)]
The curable composition was discharged onto a horizontal plane, and the measurement surface of a pen refractometer (manufactured by Atago Co., Ltd., PEN-RI) was pressure-bonded to this at 25 ° C. to measure the refractive index (nD).
〔屈折率測定(硬化物)〕
 離型処理したガラス上に、ポリテトラフルオロエチレン製の型を設置し、そこへ硬化性組成物を流し込み、加温・脱泡後に170℃で2時間加熱硬化させることで厚さ約1mmの硬化片を作製した。標準環境下、平らな硬化片面をアッベ屈折計(株式会社アタゴ製、DR-A1)のプリズム上に圧着し、プリズムと硬化片の界面へナトリウムD線(589nm)を照射して、25℃における屈折率(nD)を測定した。
[Refractive index measurement (cured product)]
A mold made of polytetrafluoroethylene is placed on the demolded glass, a curable composition is poured into the mold, and after heating and defoaming, the glass is heated and cured at 170 ° C. for 2 hours to cure the thickness to about 1 mm. Pieces were made. Under a standard environment, a flat cured single surface is crimped onto the prism of an Abbe refractometer (DR-A1 manufactured by Atago Co., Ltd.), and the interface between the prism and the cured piece is irradiated with sodium D line (589 nm) at 25 ° C. The refractive index (nD) was measured.
〔透過率〕
 硬化性組成物を、長さ25mm、幅20mmの型内に、厚みが1mmとなるように流し込み、140℃で6時間加熱して硬化させて、試験片を得た。得られた試験片につき、分光光度計(MPC-3100、島津製作所社製)にて、波長450nmの透過率(%)を測定した。
[Transmittance]
The curable composition was poured into a mold having a length of 25 mm and a width of 20 mm so as to have a thickness of 1 mm, and heated at 140 ° C. for 6 hours to be cured to obtain a test piece. The obtained test piece was measured for transmittance (%) at a wavelength of 450 nm with a spectrophotometer (MPC-3100, manufactured by Shimadzu Corporation).
〔接着強度評価〕
 一辺の長さが2mmの正方形(面積が4mm)のシリコンチップのミラー面に、実施例及び比較例で得た硬化性組成物を、それぞれ、厚さが約2μmになるように塗布し、塗布面を被着体(銀メッキ銅板)の上に載せ圧着した。その後、130℃で2時間加熱処理して硬化させて試験片付被着体を得た。この試験片付被着体を、予め100℃に加熱したボンドテスター(デイジ社製、シリーズ4000)の測定ステージ上に30秒間放置し、被着体から100μmの高さの位置より、スピード200μm/sで接着面に対し水平方向(せん断方向)に応力をかけ、100℃における、試験片と被着体との接着力(N/4mm)を測定した。
 また、接着力が50N/4mmを超えたものについては、同様の実験を合計40回行い、その結果に基づいて標準偏差を算出し、結果のばらつきの程度を調べた。
[Adhesive strength evaluation]
The curable compositions obtained in Examples and Comparative Examples were applied to the mirror surface of a square (area 4 mm 2 ) silicon chip having a side length of 2 mm so as to have a thickness of about 2 μm. The coated surface was placed on an adherend (silver-plated copper plate) and crimped. Then, it was heat-treated at 130 ° C. for 2 hours and cured to obtain an adherend with a test piece. The adherend with the test piece was left on the measurement stage of a bond tester (manufactured by Daige Co., Ltd., Series 4000) preheated to 100 ° C. for 30 seconds, and the speed was 200 μm / from a position 100 μm above the adherend. A stress was applied to the adhesive surface in the horizontal direction (shear direction) with s, and the adhesive force (N / 4 mm 2 ) between the test piece and the adherend at 100 ° C. was measured.
Further, for those having an adhesive strength exceeding 50 N / 4 mm 2 , the same experiment was performed a total of 40 times, the standard deviation was calculated based on the result, and the degree of variation in the result was examined.
(実施例1)
 硬化性ポリシルセスキオキサン化合物(A1)100質量部に、シリコーンオリゴマー(B1)10質量部を加え、さらに、ジエチレングリコールモノブチルエーテルアセテート:トリプロピレングリコール-n-ブチルエーテル=40:60(質量比)の混合溶剤を加え、全容を撹拌して、固形分濃度が72.9質量%の硬化性組成物を得た。このものの屈折率(nD)を25℃で測定したところ、1.427であった。
(Example 1)
To 100 parts by mass of the curable polysilsesquioxane compound (A1), 10 parts by mass of the silicone oligomer (B1) was added, and further, diethylene glycol monobutyl ether acetate: tripropylene glycol-n-butyl ether = 40: 60 (mass ratio). A mixed solvent was added and the whole volume was stirred to obtain a curable composition having a solid content concentration of 72.9% by mass. When the refractive index (nD) of this product was measured at 25 ° C., it was 1.427.
(実施例2)
 実施例1において、シリコーンオリゴマー(B1)35質量部を使用したこと以外は実施例1と同様にして、固形分濃度が76.8質量%の硬化性組成物を得た。このものの屈折率(nD)を25℃で測定したところ、1.421であった。
(Example 2)
A curable composition having a solid content concentration of 76.8% by mass was obtained in the same manner as in Example 1 except that 35 parts by mass of the silicone oligomer (B1) was used in Example 1. When the refractive index (nD) of this product was measured at 25 ° C., it was 1.421.
(実施例3)
 実施例1において、シリコーンオリゴマー(B1)70質量部を使用したこと以外は実施例1と同様にして、固形分濃度が80.6質量%の硬化性組成物を得た。このものの屈折率(nD)を25℃で測定したところ、1.417であった。
(Example 3)
A curable composition having a solid content concentration of 80.6% by mass was obtained in the same manner as in Example 1 except that 70 parts by mass of the silicone oligomer (B1) was used in Example 1. When the refractive index (nD) of this product was measured at 25 ° C., it was 1.417.
(実施例4)
 実施例1において、シリコーンオリゴマー(B1)に代えて、シリコーンオリゴマー(B2)70質量部を使用したこと以外は実施例1と同様にして、固形分濃度が80.6質量%の硬化性組成物を得た。このものの屈折率(nD)を25℃で測定したところ、1.419であった。
(Example 4)
A curable composition having a solid content concentration of 80.6% by mass in the same manner as in Example 1 except that 70 parts by mass of the silicone oligomer (B2) was used instead of the silicone oligomer (B1) in Example 1. Got The refractive index (nD) of this product was measured at 25 ° C. and found to be 1.419.
(実施例5)
 実施例1において、シリコーンオリゴマー(B1)に代えて、シリコーンオリゴマー(B3)70質量部を使用したこと以外は実施例1と同様にして、固形分濃度が80.6質量%の硬化性組成物を得た。このものの屈折率(nD)を25℃で測定したところ、1.422であった。
(Example 5)
A curable composition having a solid content concentration of 80.6% by mass in the same manner as in Example 1 except that 70 parts by mass of the silicone oligomer (B3) was used instead of the silicone oligomer (B1) in Example 1. Got When the refractive index (nD) of this product was measured at 25 ° C., it was 1.422.
(実施例6)
 実施例1において、シリコーンオリゴマー(B1)に代えて、シリコーンオリゴマー(B4)70質量部を使用したこと以外は実施例1と同様にして、固形分濃度が80.6質量%の硬化性組成物を得た。このものの屈折率(nD)を25℃で測定したところ、1.420であった。
(Example 6)
A curable composition having a solid content concentration of 80.6% by mass in the same manner as in Example 1 except that 70 parts by mass of the silicone oligomer (B4) was used instead of the silicone oligomer (B1) in Example 1. Got The refractive index (nD) of this product was measured at 25 ° C. and found to be 1.420.
(比較例1)
 実施例1において、シリコーンオリゴマー(B1)に代えて、シリコーンオリゴマー(B5)70質量部を使用したこと以外は実施例1と同様にして、固形分濃度が80.6質量%の硬化性組成物を得た。このものの屈折率(nD)を25℃で測定したところ、1.456であった。
(Comparative Example 1)
A curable composition having a solid content concentration of 80.6% by mass in the same manner as in Example 1 except that 70 parts by mass of the silicone oligomer (B5) was used instead of the silicone oligomer (B1) in Example 1. Got The refractive index (nD) of this product was measured at 25 ° C. and found to be 1.456.
(比較例2)
 実施例1において、シリコーンオリゴマー(B1)に代えて、シリコーンオリゴマー(B6)70質量部を使用したこと以外は実施例1と同様にして、固形分濃度が80.6質量%の硬化性組成物を得た。このものの屈折率(nD)を25℃で測定したところ、1.462であった。
(Comparative Example 2)
A curable composition having a solid content concentration of 80.6% by mass in the same manner as in Example 1 except that 70 parts by mass of the silicone oligomer (B6) was used instead of the silicone oligomer (B1) in Example 1. Got When the refractive index (nD) of this product was measured at 25 ° C., it was 1.462.
(比較例3)
 実施例1において、シリコーンオリゴマー(B1)に代えて、シリコーンオリゴマー(B7)70質量部を使用したこと以外は実施例1と同様にして、固形分濃度が80.6質量%の硬化性組成物を得た。このものの屈折率(nD)を25℃で測定したところ、1.461であった。
(Comparative Example 3)
A curable composition having a solid content concentration of 80.6% by mass in the same manner as in Example 1 except that 70 parts by mass of the silicone oligomer (B7) was used instead of the silicone oligomer (B1) in Example 1. Got When the refractive index (nD) of this product was measured at 25 ° C., it was 1.461.
(実施例7)
 硬化性ポリシルセスキオキサン化合物(A1)100質量部に、シリコーンオリゴマー(B1)10質量部を加え、さらに、ジエチレングリコールモノブチルエーテルアセテート:トリプロピレングリコール-n-ブチルエーテル=40:60(質量比)の混合溶剤を加え、全容を撹拌した。この混合物に対して、三本ロールミルによる分散処理を行った後、シランカップリング剤(C1)10質量部、シランカップリング剤(C2)3質量部を加え、全容を十分に混合、脱泡することにより、硬化性組成物を得た。
(Example 7)
To 100 parts by mass of the curable polysilsesquioxane compound (A1), 10 parts by mass of the silicone oligomer (B1) was added, and further, diethylene glycol monobutyl ether acetate: tripropylene glycol-n-butyl ether = 40:60 (mass ratio). The mixed solvent was added and the whole volume was stirred. After dispersing the mixture with a three-roll mill, 10 parts by mass of the silane coupling agent (C1) and 3 parts by mass of the silane coupling agent (C2) are added to thoroughly mix and defoam the whole mixture. As a result, a curable composition was obtained.
(実施例8~19、比較例4~10)
 実施例1において、各成分を第1表に示すものに変更したこと以外は、実施例1と同様にして硬化性組成物を得た。
(Examples 8 to 19, Comparative Examples 4 to 10)
A curable composition was obtained in the same manner as in Example 1 except that each component was changed to that shown in Table 1.
 実施例及び比較例で得られた硬化性組成物を用いて、硬化物の屈折率測定、透過率測定、接着強度評価を行った。結果を第2表に示す。 Using the curable compositions obtained in Examples and Comparative Examples, the refractive index of the cured product was measured, the transmittance was measured, and the adhesive strength was evaluated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 上記実施例及び比較例から以下のことが分かる。
 実施例1~6の硬化性組成物は(B)成分を含有するため、屈折率が低い。
 一方、比較例1~3の硬化性組成物は、(B)成分の要件を満たさないシリコーンオリゴマーを含有するため、屈折率が高い。
 実施例7~19で得られた硬化物は、屈折率が低く、光線透過率が高い。さらに、十分な接着強度を有し、かつ、そのばらつきが小さい。
 これに対し、比較例4~10で得られた硬化物は、低い屈折率と、高い接着強度の両立することができていない。このため、これらの硬化物は、少なくともどちらか一方の性質に劣っている。
 また、実施例7~19の硬化性組成物は、固形分濃度が74.9~86.1質量%と高いものであるが、良好な塗布性を有している。
The following can be seen from the above Examples and Comparative Examples.
Since the curable compositions of Examples 1 to 6 contain the component (B), the refractive index is low.
On the other hand, the curable compositions of Comparative Examples 1 to 3 have a high refractive index because they contain a silicone oligomer that does not satisfy the requirements of the component (B).
The cured products obtained in Examples 7 to 19 have a low refractive index and a high light transmittance. Further, it has sufficient adhesive strength and its variation is small.
On the other hand, the cured products obtained in Comparative Examples 4 to 10 cannot achieve both low refractive index and high adhesive strength. For this reason, these cured products are inferior in at least one of the properties.
Further, the curable compositions of Examples 7 to 19 have a high solid content concentration of 74.9 to 86.1% by mass, but have good coatability.

Claims (12)

  1.  下記(A)成分、及び、(B)成分を含有する硬化性組成物であって、(B)成分の含有量が、(A)成分100質量部に対して1~110質量部である硬化性組成物。
    (A)成分:下記式(a-1)で示される繰り返し単位を有し、質量平均分子量(Mw)が4,000~20,000である硬化性ポリシルセスキオキサン化合物
    Figure JPOXMLDOC01-appb-C000001
    〔Rは、無置換の炭素数1~10のアルキル基、置換基を有する炭素数1~10のアルキル基、無置換の炭素数6~12のアリール基、及び、置換基を有する炭素数6~12のアリール基からなる群から選ばれる少なくとも1つである。〕
    (B)成分:下記式(b-1)で示される繰り返し単位を有し、下記要件1~要件3を満たすシリコーンオリゴマー
    Figure JPOXMLDOC01-appb-C000002
    〔要件1〕
     3官能シラン化合物由来の繰り返し単位を、全繰り返し単位中50mol%以上含む。
    〔要件2〕
     式(b-1)で示される繰り返し単位の量が、3官能シラン化合物由来の繰り返し単位中80mol%以上である。
    〔要件3〕
     質量平均分子量(Mw)が100~2,000である。
    A curable composition containing the following component (A) and component (B), wherein the content of component (B) is 1 to 110 parts by mass with respect to 100 parts by mass of component (A). Sex composition.
    Component (A): A curable polysilsesquioxane compound having a repeating unit represented by the following formula (a-1) and having a mass average molecular weight (Mw) of 4,000 to 20,000.
    Figure JPOXMLDOC01-appb-C000001
    [R 1 is an unsubstituted alkyl group having 1 to 10 carbon atoms, an alkyl group having a substituent having 1 to 10 carbon atoms, an aryl group having an unsubstituted carbon number of 6 to 12 carbon atoms, and a carbon number having a substituent (substituted group). At least one selected from the group consisting of 6-12 aryl groups. ]
    Component (B): Silicone oligomer having a repeating unit represented by the following formula (b-1) and satisfying the following requirements 1 to 3
    Figure JPOXMLDOC01-appb-C000002
    [Requirement 1]
    The repeating unit derived from the trifunctional silane compound is contained in an amount of 50 mol% or more in all the repeating units.
    [Requirement 2]
    The amount of the repeating unit represented by the formula (b-1) is 80 mol% or more in the repeating unit derived from the trifunctional silane compound.
    [Requirement 3]
    The mass average molecular weight (Mw) is 100 to 2,000.
  2.  式(a-1)中のRが、無置換の炭素数1~10のアルキル基、及び、フッ素原子を有する炭素数1~10のアルキル基からなる群から選ばれる少なくとも1種である、請求項1に記載の硬化性組成物。 R 1 in the formula (a-1) is at least one selected from the group consisting of an unsubstituted alkyl group having 1 to 10 carbon atoms and an alkyl group having a fluorine atom and having 1 to 10 carbon atoms. The curable composition according to claim 1.
  3.  (A)成分中の式(a-1)で示される繰り返し単位の量が、(A)成分中の全繰り返し単位中50~100mol%である、請求項1又は2に記載の硬化性組成物。 The curable composition according to claim 1 or 2, wherein the amount of the repeating unit represented by the formula (a-1) in the component (A) is 50 to 100 mol% in all the repeating units in the component (A). ..
  4.  (A)成分の屈折率が、1.300~1.450である、請求項1~3のいずれかに記載の硬化性組成物。 The curable composition according to any one of claims 1 to 3, wherein the refractive index of the component (A) is 1.300 to 1.450.
  5.  (B)成分の屈折率が、1.300~1.450である、請求項1~4のいずれかに記載の硬化性組成物。 The curable composition according to any one of claims 1 to 4, wherein the refractive index of the component (B) is 1.300 to 1.450.
  6.  (A)成分と(B)成分の合計量が、硬化性組成物の固形分中30~100質量%である、請求項1~5のいずれかに記載の硬化性組成物。 The curable composition according to any one of claims 1 to 5, wherein the total amount of the component (A) and the component (B) is 30 to 100% by mass in the solid content of the curable composition.
  7.  さらに、下記(C)成分を含有する、請求項1~6のいずれかに記載の硬化性組成物。
    (C)成分:シランカップリング剤
    The curable composition according to any one of claims 1 to 6, further comprising the following component (C).
    Ingredient (C): Silane coupling agent
  8.  さらに溶媒を含有し、固形分濃度が、70質量%以上、100質量%未満である、請求項1~7のいずれかに記載の硬化性組成物。 The curable composition according to any one of claims 1 to 7, further containing a solvent and having a solid content concentration of 70% by mass or more and less than 100% by mass.
  9.  請求項1~8のいずれかに記載の硬化性組成物を硬化させて得られる硬化物。 A cured product obtained by curing the curable composition according to any one of claims 1 to 8.
  10.  光素子固定材である請求項9に記載の硬化物。 The cured product according to claim 9, which is an optical element fixing material.
  11.  請求項1~8のいずれかに記載の硬化性組成物を、光素子固定材用接着剤として使用する方法。 A method in which the curable composition according to any one of claims 1 to 8 is used as an adhesive for an optical element fixing material.
  12.  請求項1~8のいずれかに記載の硬化性組成物を、光素子固定材用封止材として使用する方法。 A method in which the curable composition according to any one of claims 1 to 8 is used as a sealing material for an optical element fixing material.
PCT/JP2020/013528 2019-03-26 2020-03-26 Curable composition, cured product, and method for using curable composition WO2020196704A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217010696A KR20210145119A (en) 2019-03-26 2020-03-26 Curable composition, cured product, and method of using the curable composition
JP2021509562A JP7487175B2 (en) 2019-03-26 2020-03-26 CURABLE COMPOSITION, CURED PRODUCT, AND METHOD OF USE OF CURABLE COMPOSITION
CN202080023933.6A CN113574116B (en) 2019-03-26 2020-03-26 Curable composition, cured product, and method for using curable composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-058612 2019-03-26
JP2019058612 2019-03-26

Publications (1)

Publication Number Publication Date
WO2020196704A1 true WO2020196704A1 (en) 2020-10-01

Family

ID=72611546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013528 WO2020196704A1 (en) 2019-03-26 2020-03-26 Curable composition, cured product, and method for using curable composition

Country Status (4)

Country Link
JP (1) JP7487175B2 (en)
KR (1) KR20210145119A (en)
CN (1) CN113574116B (en)
WO (1) WO2020196704A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02279779A (en) * 1989-04-20 1990-11-15 Showa Denko Kk Coating composition
JPH04306274A (en) * 1991-04-03 1992-10-29 Toshiba Silicone Co Ltd Surface-treating agent
JPH09279032A (en) * 1996-02-16 1997-10-28 Kanegafuchi Chem Ind Co Ltd Precured product based on silicon compound and method for making molding therefrom
JP2016146434A (en) * 2015-02-09 2016-08-12 住友化学株式会社 Method for manufacturing semiconductor light-emitting device and semiconductor light-emitting device
JP2016529365A (en) * 2013-08-28 2016-09-23 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Crosslinkable composition based on organosilicon compound and molded article produced thereby
WO2017110621A1 (en) * 2015-12-21 2017-06-29 住友化学株式会社 Silicone resin composition and use thereof
WO2017110948A1 (en) * 2015-12-22 2017-06-29 リンテック株式会社 Curable composition, method for producing curable composition, cured product, use of curable composition, and optical device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4734832B2 (en) 2003-05-14 2011-07-27 ナガセケムテックス株式会社 Encapsulant for optical element
JP2005263869A (en) 2004-03-16 2005-09-29 Nagase Chemtex Corp Resin composition for sealing optical semiconductor
JP2006328231A (en) 2005-05-26 2006-12-07 Nagase Chemtex Corp Resin composition for encapsulating optical element
JP4883269B2 (en) * 2005-11-29 2012-02-22 信越化学工業株式会社 Method for producing curable polymethylsiloxane resin

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02279779A (en) * 1989-04-20 1990-11-15 Showa Denko Kk Coating composition
JPH04306274A (en) * 1991-04-03 1992-10-29 Toshiba Silicone Co Ltd Surface-treating agent
JPH09279032A (en) * 1996-02-16 1997-10-28 Kanegafuchi Chem Ind Co Ltd Precured product based on silicon compound and method for making molding therefrom
JP2016529365A (en) * 2013-08-28 2016-09-23 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Crosslinkable composition based on organosilicon compound and molded article produced thereby
JP2016146434A (en) * 2015-02-09 2016-08-12 住友化学株式会社 Method for manufacturing semiconductor light-emitting device and semiconductor light-emitting device
WO2017110621A1 (en) * 2015-12-21 2017-06-29 住友化学株式会社 Silicone resin composition and use thereof
WO2017110948A1 (en) * 2015-12-22 2017-06-29 リンテック株式会社 Curable composition, method for producing curable composition, cured product, use of curable composition, and optical device

Also Published As

Publication number Publication date
KR20210145119A (en) 2021-12-01
TW202043370A (en) 2020-12-01
JP7487175B2 (en) 2024-05-20
CN113574116B (en) 2023-02-28
CN113574116A (en) 2021-10-29
JPWO2020196704A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP6761491B2 (en) Curable Compositions, Curables and How to Use Curable Compositions
JP6779235B2 (en) Curable composition, method of producing curable composition, cured product, method of using curable composition, and optical device
WO2013141360A1 (en) Curable composition, cured product, and method for using curable composition
JP6990033B2 (en) Adhesives for optical devices and their manufacturing methods
JP6821600B2 (en) Curable composition, method for producing curable composition, cured product, and method for using curable composition
JP6830565B1 (en) Curable composition, cured product, and how to use the curable composition
JP6840901B2 (en) Curable composition, cured product, and how to use the curable composition
WO2020196704A1 (en) Curable composition, cured product, and method for using curable composition
TWI841716B (en) Curable composition, cured product, and method of using the curable composition
JP7420610B2 (en) Curable composition, cured product, and method of using the curable composition
JP2020158609A (en) Curable composition, cured product and method for using curable composition
WO2021193452A1 (en) Curable composition, cured product, and method for using curable composition
JP6830563B2 (en) Curable Polysilsesquioxane Compounds, Curable Compositions, Curables, and How to Use Curable Compositions
JP6840900B2 (en) Curable composition, cured product, and how to use the curable composition
WO2021060561A1 (en) Curable composition, cured product, and method for using curable composition
WO2021060562A1 (en) Curable composition, cured product, and method for using curable composition
KR102672356B1 (en) Curable composition, method of producing the curable composition, cured product, method of using the curable composition, and optical device
WO2015041344A1 (en) Curable composition, cured product, and method for using curable composition
JP2023139659A (en) Adhesive paste, method for using adhesive paste, and method for manufacturing semiconductor device
JP2024004932A (en) Adhesive paste, method for using adhesive paste and method for producing light-emitting device
WO2022202119A1 (en) Curable composition and cured object

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779742

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509562

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779742

Country of ref document: EP

Kind code of ref document: A1