WO2020196609A1 - ロータ及び回転電気機械 - Google Patents

ロータ及び回転電気機械 Download PDF

Info

Publication number
WO2020196609A1
WO2020196609A1 PCT/JP2020/013295 JP2020013295W WO2020196609A1 WO 2020196609 A1 WO2020196609 A1 WO 2020196609A1 JP 2020013295 W JP2020013295 W JP 2020013295W WO 2020196609 A1 WO2020196609 A1 WO 2020196609A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
magnetic pole
rotor
permanent magnets
permanent
Prior art date
Application number
PCT/JP2020/013295
Other languages
English (en)
French (fr)
Inventor
裕介 入野
貴晃 小野
勇二 中澤
辰也 戸成
久人 住友
竹本 真紹
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202080017516.0A priority Critical patent/CN113519105B/zh
Priority to EP20779970.1A priority patent/EP3920378A4/en
Publication of WO2020196609A1 publication Critical patent/WO2020196609A1/ja
Priority to US17/483,406 priority patent/US12027920B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • This disclosure relates to rotors and rotary electric machines.
  • BPM Buried Permanent Magnet
  • a BPM (Buried Permanent Magnet) type rotor in which a plurality of permanent magnets are embedded at intervals in the circumferential direction is known in the vicinity of the outer peripheral surface of the rotor core (see, for example, Non-Patent Document 1).
  • a plurality of permanent magnets constituting one magnetic pole are arranged at equal intervals in the circumferential direction.
  • the magnetic flux density distribution in the radial direction on the outer peripheral surface of the rotor core becomes a rectangular wave shape, so that iron loss generated in the stator due to harmonic components is generated. It may increase and the torque generated by the rotating electric machine may decrease.
  • the purpose of the present disclosure is to increase the torque generated by the rotating electric machine to which the rotor is applied.
  • the first aspect of the present disclosure is a rotor including a rotor core (31) having a plurality of magnetic poles (36), in which at least one of the plurality of magnetic poles (36) is three or more arranged in the circumferential direction.
  • a first magnetic pole (36) composed of a magnet hole (32) and a plurality of permanent magnets (34) housed in the plurality of magnet holes (32), respectively, and adjacent to each other in the rotor core (31).
  • the portion between the magnet holes (32) has a region extending along the radial direction, and the radially outer end face of the magnet hole (32) is the axial center (O) of the rotor core (31).
  • the first magnetic pole (36) has a plurality of magnet holes (32) in the circumferential direction, which is larger than the minimum value of the radial dimension of the portion between the outer surface in the direction and the outer peripheral surface of the rotor core (31).
  • the harmonic component of the radial magnetic flux density distribution on the outer peripheral surface of the rotor core (31) is It is configured to be reduced.
  • a plurality of magnet holes (32) are arranged at equal intervals in the circumferential direction, and a plurality of permanent magnets (34) are omitted.
  • the harmonic component of the radial magnetic flux density distribution on the outer peripheral surface of the rotor core (31) is reduced as compared with the magnetic poles having the same magnetic flux amount and number of magnets.
  • the first magnetic pole (36) is configured to reduce the harmonic component of the radial magnetic flux density distribution on the outer peripheral surface of the rotor core (31), thereby suppressing iron loss generated in the stator and rotating.
  • the torque generated by the electric machine can be increased.
  • a straight line passing through the center of the first magnetic pole (36) and the axial center (O) of the rotor (30) is defined as the magnetic pole center line (37).
  • the straight line passing through the center of the permanent magnet (34) and the axis (O) of the rotor (30) is set as the magnet center line (35), and the permanent magnets (34) at both ends in the circumferential direction of the first magnetic pole (36).
  • Is inclined with respect to the magnet center line (35) of the permanent magnet (34), and the permanent magnet (34) has a straight line parallel to the magnetizing direction of the magnet center line (35).
  • the permanent magnets (34) at both ends in the circumferential direction of the first magnetic pole (36) are inclined toward the radial outward side from the center toward the magnetic pole center line (37) of the first magnetic pole (36).
  • the angle formed by the straight line parallel to the magnetizing direction of the magnet and the magnet center line (35) of the permanent magnet (34) is larger than 0 ° and smaller than 90 °.
  • the magnetic flux generated by the first magnetic pole (36) composed of a plurality of permanent magnets (34) is concentrated in the center of the first magnetic pole (36).
  • the magnetic flux of the permanent magnets (34) at both ends in the circumferential direction of the first magnetic pole (36) is unlikely to flow into the adjacent magnetic pole (36), and thus is unlikely to be short-circuited in the rotor (30).
  • the torque generated by the rotating electric machine (10) to which the rotor (30) is applied can be increased.
  • a straight line parallel to the magnetizing direction of the permanent magnet (34) at both ends in the circumferential direction of the first magnetic pole (36) is the permanent magnet (34). It is inclined with respect to the magnet center line (35) of.
  • both ends of the first magnetic pole (36) composed of the plurality of permanent magnets (34) in the circumferential direction are suppressed. Based on the finding of the inventor of the present application that it is most effective to make a straight line parallel to the magnetizing direction of the permanent magnet (34) in the above-mentioned direction.
  • the rotating electric machine (10) to which the rotor (30) is applied While obtaining the effect of increasing the generated torque, the manufacturing cost of the rotor (30) can be suppressed by reducing the types of permanent magnets (34) having different magnetizing easy axes.
  • the portion of the rotor core (31) that is radially outer of the permanent magnet (34) is viewed from the axial direction. Filled with core material.
  • the portion of the rotor core (31) that is radially outer than the permanent magnet (34) is more likely to withstand the centrifugal force generated when the rotor (30) rotates. This is because there are no voids such as a flux barrier in the portion. In this way, the durability of the rotor (30) can be increased.
  • each permanent magnet (34) is housed in a magnet hole (32) formed in the rotor core (31). ing.
  • a sixth aspect of the present disclosure is, in any one of the first to fifth aspects, a magnet center on a straight line passing through the center of the permanent magnet (34) and the axis (O) of the rotor (30). Let it be a line (35), and each permanent magnet (34) is symmetrical with respect to its own magnet centerline (35).
  • the rotor (30) can be made suitable for high-speed rotation.
  • the permanent magnets (34) are arranged at equal intervals in the circumferential direction.
  • the rotor (30) can be made suitable for high-speed rotation.
  • the plurality of permanent magnets (34) are at least among the magnet width, the magnet thickness, the residual magnetic flux density, and the number of magnet holes (32) accommodated in the magnet holes (32).
  • the first magnetic pole (36) has a magnetic flux on the outer peripheral surface of the rotor core (31) more than the radial region of the magnet holes (32) at both ends in the circumferential direction of the first magnetic pole (36). It has a region where the amount is large.
  • the first magnetic pole (36) has a region on the outer peripheral surface of the rotor core (31) in which the amount of magnetic flux is larger than the radial region of the magnet holes (32) at both ends in the circumferential direction of the first magnetic pole (36). There is.
  • the magnetic flux density distribution in the radial direction on the outer peripheral surface of the rotor core (31) can be made close to a sinusoidal shape, and the harmonic component of the magnetic flux density distribution in the radial direction can be reduced.
  • the first magnetic pole (36) has a higher residual magnetic flux density than the permanent magnets (34) at both ends in the circumferential direction of the first magnetic pole (36). It has a permanent magnet (34).
  • the first magnetic pole (36) has a permanent magnet (34) having a higher residual magnetic flux density than the permanent magnets (34) at both ends in the circumferential direction of the first magnetic pole (36).
  • the amount of magnetic flux in the radial region of the magnet hole (32) in which the permanent magnet (34) having a large residual magnetic flux density is arranged increases.
  • the magnetic flux density distribution in the radial direction on the outer peripheral surface of the rotor core (31) can be made close to a sinusoidal shape, and the harmonic component of the magnetic flux density distribution in the radial direction can be reduced.
  • the first magnetic pole (36) is thicker than the permanent magnets (34) at both ends in the circumferential direction of the first magnetic pole (36). It has the permanent magnet (34).
  • the first magnetic pole (36) has a permanent magnet (34) that is thicker than the permanent magnets (34) at both ends in the circumferential direction of the first magnetic pole (36).
  • the amount of magnetic flux in the radial region of the magnet hole (32) in which the permanent magnet (34) having a thick magnet thickness is arranged increases.
  • the magnetic flux density distribution in the radial direction on the outer peripheral surface of the rotor core (31) can be made close to a sinusoidal shape, and the harmonic component of the magnetic flux density distribution in the radial direction can be reduced.
  • the amount of magnetic flux of the first magnetic pole (36) increases from both ends in the circumferential direction of the first magnetic pole (36) toward the center in the circumferential direction.
  • the amount of magnetic flux of the first magnetic pole (36) increases from both ends in the circumferential direction of the first magnetic pole (36) toward the center in the circumferential direction.
  • the magnetic flux density distribution in the radial direction on the outer peripheral surface of the rotor core (31) can be made closer to a sinusoidal shape, and the harmonic component of the magnetic flux density distribution in the radial direction can be reduced.
  • the first magnetic pole (36) is a permanent magnet (34) at both ends of the first magnetic pole (36) in the circumferential direction. It has the permanent magnet (34), which is wider than the magnet.
  • the first magnetic pole (36) has a permanent magnet (34) having a wider magnet width than the permanent magnets (34) at both ends in the circumferential direction of the first magnetic pole (36).
  • the amount of magnetic flux in the radial region of the magnet hole (32) in which the permanent magnet (34) having a wide magnet width is arranged increases.
  • the magnetic flux density distribution in the radial direction on the outer peripheral surface of the rotor core (31) can be made close to a sinusoidal shape, and the harmonic component of the magnetic flux density distribution in the radial direction can be reduced.
  • a plurality of the permanent magnets (34) are housed in the magnet hole (32), and the first magnetic pole (the first magnetic pole (34)) is accommodated. At least one of the magnet holes (32) in 36) has an average residual amount of more than the plurality of permanent magnets (34) accommodated in the magnet holes (32) at both ends in the circumferential direction of the first magnetic pole (36).
  • the plurality of permanent magnets (34) having a large magnetic flux density are housed.
  • a plurality of permanent magnets (34) are housed in the magnet holes (32). At least one of the magnet holes (32) in the first magnetic pole (36) has a higher average residual than a plurality of permanent magnets (34) housed in the magnet holes (32) at both ends in the circumferential direction of the first magnetic pole (36).
  • a plurality of permanent magnets (34) having a large magnetic flux density are housed.
  • the amount of magnetic flux in the radial region of the magnet hole (32) in which the plurality of permanent magnets (34) having a large average residual magnetic flux density are arranged increases.
  • the magnetic flux density distribution in the radial direction on the outer peripheral surface of the rotor core (31) can be made close to a sinusoidal shape, and the harmonic component of the magnetic flux density distribution in the radial direction can be reduced.
  • a fourteenth aspect of the present disclosure is, in the first aspect, the first magnetic pole (36) is formed in four or more of the magnet holes (32) arranged in the circumferential direction and the plurality of magnet holes (32). It is composed of a plurality of permanent magnets (34) housed in each, and the first magnetic pole (36) has a circumferential distance between the permanent magnets (34) adjacent to each other of the first magnetic pole (36).
  • the rotor is characterized by having a region smaller than the circumferential distance between the permanent magnet (34) at the circumferential end and the permanent magnet (34) adjacent thereto.
  • the first magnetic pole (36) has a circumferential distance between the permanent magnets (34) adjacent to each other, which is adjacent to the permanent magnet (34) at the circumferential end of the first magnetic pole (36). It has a region smaller than the circumferential distance from the permanent magnet (34) of.
  • the amount of magnetic flux in the radial region of the magnet hole (32) having a small circumferential distance between the permanent magnets (34) adjacent to each other increases.
  • the magnetic flux density distribution in the radial direction on the outer peripheral surface of the rotor core (31) can be made close to a sinusoidal shape, and the harmonic component of the magnetic flux density distribution in the radial direction can be reduced.
  • the first magnetic pole (36) has a circumferential distance between the permanent magnets (34) adjacent to each other, which is the circumference of the first magnetic pole (36). It becomes smaller from both ends in the direction toward the center in the circumferential direction.
  • the first magnetic pole (36) becomes smaller as the circumferential distance between the permanent magnets (34) adjacent to each other decreases from both ends in the circumferential direction of the first magnetic pole (36) toward the center in the circumferential direction. There is.
  • the magnetic flux density distribution in the radial direction on the outer peripheral surface of the rotor core (31) can be made closer to a sinusoidal shape, and the harmonic component of the magnetic flux density distribution in the radial direction can be reduced.
  • the plurality of magnet holes (32) are adjacent to each other with the first magnet hole (32a) and the second magnet hole (32b) adjacent to each other.
  • the plurality of permanent magnets (34) including the second magnet hole (32b) and the third magnet hole (32c) are the first permanent magnet (34a) housed in the first magnet hole (32a).
  • the first permanent magnet includes a second permanent magnet (34b) housed in the second magnet hole (32b) and a third permanent magnet (34c) housed in the third magnet hole (32c).
  • the circumferential distance between (34a) and the second permanent magnet (34b) is smaller than the circumferential distance between the second permanent magnet (34b) and the third permanent magnet (34c), and the first is The circumferential dimension of the portion composed of the core material between the magnet hole (32a) and the second magnet hole (32b) is between the second magnet hole (32b) and the third magnet hole (32c). It is smaller than the circumferential dimension of the part composed of the core material.
  • the circumferential distance between the first permanent magnet (34a) and the second permanent magnet (34b) is the circumferential distance between the second permanent magnet (34b) and the third permanent magnet (34c). Is smaller than.
  • the circumferential dimension of the portion composed of the core material between the first magnet hole (32a) and the second magnet hole (32b) is the core between the second magnet hole (32b) and the third magnet hole (32c). It is smaller than the circumferential dimension of the part made of material.
  • the magnetic flux density distribution in the radial direction on the outer peripheral surface of the rotor core (31) can be made close to a sinusoidal shape, and the harmonic component of the magnetic flux density distribution in the radial direction can be reduced.
  • the circumferential dimensions of the rotor core (31) in the portion made of the core material between the adjacent magnet holes (32) are the same as each other. It is formed to the dimensions.
  • the circumferential dimensions of the portions made of the core material between the adjacent magnet holes (32) are formed to have the same dimensions.
  • the circumferential dimension of the magnet hole (32) at the circumferential end of the first magnetic pole (36) becomes large, and between the permanent magnet (34) at the circumferential end and the permanent magnet (34) adjacent to it. The circumferential distance of is increased.
  • the magnetic flux density distribution in the radial direction on the outer peripheral surface of the rotor core (31) can be made close to a sinusoidal shape, and the harmonic component of the magnetic flux density distribution in the radial direction can be reduced.
  • An eighteenth aspect of the present disclosure comprises the rotor (30) according to any one of the first to 17th aspects and a stator (20) provided so as to face the rotor (30). It is a characteristic rotating electric machine.
  • the stator (20) has a coil (24, 25) wound around the teeth portion (23) of the stator (20) in a centralized winding manner. ..
  • the amount of interlinkage magnetic flux with respect to the teeth portion (23) of the stator (20) can be increased, and the generated torque can be further increased.
  • a twentieth aspect of the present disclosure comprises the rotor (30) according to any one of the second to seventh aspects and a stator (20) provided so as to face the rotor (30).
  • the stator (20) has coils (24,25) wound around the teeth portion (23) of the stator (20) in a centralized winding manner, and has a center of the first magnetic pole (36) and the rotor (30). ) Is the magnetic pole center line (37), and the straight line passing through the center of the permanent magnet (34) and the axis (O) of the rotor (30) is the magnet center line (O).
  • a state in which the magnetic pole center line (37) of the first magnetic pole (36) passes through the circumferential center of the teeth portion (23) when viewed from the axial direction is defined as a center-matching state.
  • the angle formed by the magnet center line (35) of the first magnetic pole (36) is set to ⁇ 1, and in the center-aligned state, the above-mentioned both ends in the circumferential direction of the first magnetic pole (36) when viewed from the axial direction.
  • ⁇ 2 be the angle formed by the straight line connecting the center of the outer peripheral surface of the permanent magnet (34) and the center of the inner peripheral surface of the teeth portion (23) and the magnet center line (35) of the magnetic pole (36).
  • the angle formed by the straight line parallel to the magnetizing direction of the permanent magnet (34) at both ends in the circumferential direction of the first magnetic pole (36) and the magnet center line (35) of the permanent magnet (34) is ⁇ 1. It is more than and less than ⁇ 2.
  • the magnetic fluxes of the permanent magnets (34) can be effectively interlocked with the teeth portion (23), and the magnetic fluxes of the permanent magnets (34) are prevented from interfering with each other. Can be done. As a result, the torque generated by the rotating electric machine (10) can be further increased.
  • the 21st aspect of the present disclosure is configured as a bearingless motor in which the rotor (30) is non-contactly supported in any one of the 18th to 20th aspects.
  • bearing force interference refers to a phenomenon in which an unintended bearing force is generated in another direction with respect to a bearing force control current for generating a bearing force in a certain direction.
  • FIG. 1 is a front view showing the configuration of the rotary electric machine of the first embodiment.
  • FIG. 2 is an enlarged front view showing a main part of the rotor.
  • FIG. 3 is an enlarged front view showing a main part of the rotary electric machine of FIG.
  • FIG. 4 is an enlarged front view for explaining the range in the magnetizing direction.
  • FIG. 5 is a graph showing the amount of interlinkage magnetic flux in the rotary electric machine according to the first embodiment in comparison with the amount of interlinkage magnetic flux in the conventional rotary electric machine.
  • FIG. 6 is a front view showing the configuration of the rotary electric machine of the second embodiment.
  • FIG. 7 is an enlarged front view showing a main part of the rotary electric machine of FIG. FIG.
  • FIG. 8 is an enlarged front view showing a main part of the rotating electric machine in the modified examples of the first and second embodiments.
  • FIG. 9 is a front view showing the configuration of the rotor of the third embodiment.
  • FIG. 10 is an enlarged front view showing a main part of the rotor.
  • FIG. 11 is a graph showing a magnetic flux density distribution in the radial direction in a conventional rotor.
  • FIG. 12 is a graph showing a magnetic flux density distribution in the radial direction in the rotor of the present embodiment.
  • FIG. 13 is an enlarged front view showing a main part of the rotor of the fourth embodiment.
  • FIG. 14 is an enlarged front view showing a main part of the rotor of the fifth embodiment.
  • FIG. 15 is an enlarged front view showing a main part of the rotor of the sixth embodiment.
  • FIG. 16 is an enlarged front view showing a main part of the rotor of the seventh embodiment.
  • FIG. 17 is an enlarged front view showing a main part of the rotor of the eighth embodiment.
  • Embodiment 1 The first embodiment will be described.
  • the rotary electric machine (10) of the present embodiment is a bearingless motor.
  • the side of the rotor (30) near the axis (O) is referred to as the “inner circumference side”
  • the side of the rotor (30) far from the axis (O) is referred to as the “outer circumference side”.
  • the direction of the axial center (O) of the rotor (30) is defined as the "axial direction”
  • the direction orthogonal to the axial center (O) of the rotor (30) is defined as the "diameter direction”.
  • the rotating electric machine (10) includes a stator (20) and a rotor (30).
  • the stator (20) includes a stator core (21), a drive coil (24), and a support coil (25).
  • the stator core (21) is a tubular member made of a magnetic material.
  • the stator core (21) has a substantially cylindrical back yoke portion (22) arranged on the outer peripheral side, and a plurality of tooth portions (23) protruding inward in the radial direction from the inner peripheral surface of the back yoke portion (22). ) And.
  • the drive coil (24) is a coil through which a drive current for rotationally driving the rotor (30) flows.
  • the drive coil (24) is wound around each tooth portion (23) in a centralized winding system.
  • the drive coil (24) constitutes a coil.
  • the support coil (25) is a coil through which a support current flows to support the rotor (30) in a non-contact manner.
  • the support coil (25) is wound around each tooth portion (23) in a centralized winding system.
  • the support coil (25) constitutes the coil.
  • the rotor (30) is a BPM (Buried Permanent Magnet) type rotor.
  • the rotor (30) is arranged inside the stator (20) in the radial direction so as to face the stator (20) with an air gap.
  • the rotor (30) includes a rotor core (31) and a permanent magnet (34).
  • the rotor core (31) is a tubular member made of a magnetic material.
  • the rotor core (31) has a plurality of magnet holes (32) formed in the vicinity of the outer peripheral surface.
  • the plurality of magnet holes (32) penetrate the rotor core (31) in the axial direction.
  • a shaft hole (33) for inserting a shaft (not shown) is formed in the center of the rotor core (31).
  • the permanent magnet (34) is a sintered magnet containing rare earths, but is not limited to this.
  • the permanent magnet (34) is housed in the magnet hole (32) of the rotor core (31).
  • one magnetic pole (36) is composed of four permanent magnets (34) arranged side by side in the circumferential direction.
  • a magnetic pole (36) composed of three or more magnet holes (32) arranged in the circumferential direction and a plurality of permanent magnets (34) housed in each of the plurality of magnet holes (32) is first. It is called a magnetic pole (36).
  • the portion between the adjacent magnet holes (32) in the rotor core (31) has a region extending along the radial direction.
  • the radial outer end face of the magnet hole (32) is substantially axisymmetric with respect to a straight line passing through the axial center (O) of the rotor core (31) and the circumferential center of the magnet hole (32).
  • the straight line passing through the axial center (O) of the rotor core (31) and the central portion in the circumferential direction of the magnet hole (32) is the center of the permanent magnet (34) and the axial center of the rotor (30).
  • the straight line passing through (O) is almost the same as the magnet center line (35).
  • the maximum value d1 of the radial dimension of the magnet hole (32) is larger than the minimum value d2 of the radial dimension of the portion between the radial outer surface of the magnet hole (32) and the outer peripheral surface of the rotor core (31). It is formed.
  • the first magnetic pole (36) is located on the outer peripheral surface of the rotor core (31) as compared with a magnetic pole in which a plurality of magnet holes are arranged at equal intervals in the circumferential direction and a plurality of permanent magnets are composed of substantially the same amount of magnetic flux and the number of magnets. It is configured to reduce the harmonic components of the radial magnetic flux density distribution.
  • a straight line passing through the center of the first magnetic pole (36) and the axial center (O) of the rotor (30) when viewed from the axial direction of the rotor (30) is the magnetic pole center line ( 37).
  • the straight line passing through the center of the permanent magnet (34) and the axis (O) of the rotor (30) when viewed from the axial direction of the rotor (30) is defined as the magnet center line (35).
  • the magnetizing direction of the permanent magnet (34) is indicated by an arrow.
  • the straight line parallel to the magnetizing direction of the permanent magnets (34) at both ends in the circumferential direction at the first magnetic pole (36) is inclined with respect to the magnet center line (35) of the permanent magnet (34).
  • the straight line parallel to the magnetizing direction of the permanent magnets (34) at both ends in the circumferential direction at the first magnetic pole (36) is that of the permanent magnet (34) as compared with the magnet center line (35) of the permanent magnet (34). It is inclined toward the magnetic pole center line (37) of the first magnetic pole (36) as it goes outward in the radial direction from the center.
  • the straight line parallel to the magnetizing direction of the two permanent magnets (34) in the middle portion of the first magnetic pole (36) is substantially parallel to the magnet center line (not shown) of the permanent magnet (34). is there.
  • the straight line parallel to the magnetizing direction of the two permanent magnets (34) in the middle portion of the first magnetic pole (36) may be inclined with respect to the magnet center line of the permanent magnet (34).
  • the magnetic pole center line (37) of the first magnetic pole (36) is the circumference of the teeth portion (23) facing the first magnetic pole (36). It passes through the center of direction.
  • the straight line parallel to the magnetizing direction of the permanent magnets (34) at both ends in the circumferential direction at the first magnetic pole (36) has a relative inclination of the permanent magnet (34) with respect to the magnet center line (35).
  • the direction is such that the center of the outer peripheral surface of the permanent magnet (34) and the end of the inner peripheral surface of the teeth portion (23) are connected.
  • the angle formed by the straight line parallel to the magnetizing direction of the permanent magnet (34) and the magnet center line (35) of the permanent magnet (34) is ⁇ 1 shown in FIG. When the angle is ⁇ 1 or more, the magnetic flux of each permanent magnet (34) is effectively interlinked with the tooth portion (23).
  • the straight line parallel to the magnetizing direction of the permanent magnets (34) at both ends in the circumferential direction at the first magnetic pole (36) has a relative inclination of the permanent magnet (34) with respect to the magnet center line (35).
  • the direction connects the center of the outer peripheral surface of the permanent magnet (34) and the center of the inner peripheral surface of the teeth portion (23).
  • the angle formed by the straight line parallel to the magnetizing direction of the permanent magnet (34) and the magnet center line (35) of the permanent magnet (34) is ⁇ 2 shown in FIG.
  • the angle is ⁇ 2 or less, the magnetic fluxes of the permanent magnets (34) are less likely to interfere with each other, and the magnetic fluxes of the permanent magnets (34) can be effectively used.
  • a through hole such as a flux barrier is not formed in the portion of the rotor core (31) that is radially outside the permanent magnet (34).
  • the portion of the rotor core (31) that is radially outside the permanent magnet (34) is filled with the core material when viewed from the axial direction.
  • Each permanent magnet (34) is symmetrical with respect to its own magnet centerline (35).
  • the permanent magnets (34) are arranged at equal intervals in the circumferential direction.
  • a plurality of magnet holes (32) are arranged at equal intervals in the circumferential direction, and a plurality of permanent magnets (34) have substantially the same magnetic flux amount and number of magnets.
  • the harmonic component of the magnetic flux density distribution in the radial direction on the outer peripheral surface of the rotor core (31) is reduced as compared with the formed magnetic poles.
  • the first magnetic pole (36) is configured to reduce the harmonic component of the radial magnetic flux density distribution on the outer peripheral surface of the rotor core (31), thereby suppressing iron loss generated in the stator and rotating.
  • the torque generated by the electric machine can be increased.
  • the first magnetic pole (36) in order to reduce the harmonic component of the radial magnetic flux density distribution, for example, the first magnetic pole (36) so that the radial magnetic flux density distribution on the outer peripheral surface of the rotor core (31) approaches a sinusoidal shape. Should be configured.
  • a straight line passing through the center of the first magnetic pole (36) and the axial center (O) of the rotor (30) is set as the magnetic pole center line (37), and the permanent magnet (34)
  • the magnet center line (35) is a straight line passing through the center of) and the axis (O) of the rotor (30), and the magnetizing direction of the permanent magnets (34) at both ends in the circumferential direction of the first magnetic pole (36).
  • a straight line parallel to is inclined with respect to the magnet center line (35) of the permanent magnet (34), and is radially outward from the center of the permanent magnet (34) with respect to the magnet center line (35).
  • the first magnetic pole (36) is inclined toward the center line (37) of the magnetic pole, and the magnetizing direction of the permanent magnets (34) at both ends in the circumferential direction of the first magnetic pole (36).
  • the angle formed by the parallel straight line and the magnet center line (35) of the permanent magnet (34) is greater than 0 ° and less than 90 °. Therefore, the magnetic flux generated by the first magnetic pole (36) composed of the plurality of permanent magnets (34) is concentrated in the center of the first magnetic pole (36).
  • the magnetic fluxes of the permanent magnets (34) at both ends in the circumferential direction of the first magnetic pole (36) are less likely to flow into the adjacent magnetic poles (36), and thus are less likely to be short-circuited in the rotor (30).
  • the permanent magnets (34) at both ends in the circumferential direction are the rotor (30) because the permanent magnets (34) of the adjacent magnetic poles (36) with different polarities are next to each other.
  • the magnetic flux is likely to short-circuit inside.
  • the straight line parallel to the magnetizing direction of the permanent magnets (34) at both ends in the circumferential direction is inclined in a predetermined direction, the short circuit of the magnetic flux in the rotor (30) described above occurs. It is unlikely to occur. Therefore, by effectively utilizing the magnetic flux of the permanent magnet (34), the torque generated by the rotating electric machine (10) to which the rotor (30) is applied can be increased.
  • a straight line parallel to the magnetizing direction of the permanent magnet (34) only at both ends in the circumferential direction of the first magnetic pole (36) is the magnet of the permanent magnet (34). It is inclined with respect to the center line (35). Therefore, by making the straight line parallel to the magnetizing direction of the permanent magnets (34) only at both ends in the circumferential direction of the magnetic pole in the above-mentioned direction, the torque generated by the rotating electric machine (10) to which the rotor (30) is applied can be increased. While obtaining the effect of increasing the size, it is possible to reduce the types of permanent magnets (34) having different magnetizing easy axes and reduce the manufacturing cost of the rotor (30).
  • the portion of the rotor core (31) that is radially outer of the permanent magnet (34) is filled with the core material when viewed from the axial direction. Therefore, the centrifugal force generated when the rotor (30) rotates is more easily tolerated by the portion of the rotor core (31) that is radially outer than the permanent magnet (34). This is because there are no voids such as a flux barrier in the portion. In this way, the durability of the rotor (30) can be increased.
  • each of the permanent magnets (34) is housed in a magnet hole (32) formed in the rotor core (31). Therefore, it is possible to prevent the permanent magnet (34) from scattering when the rotor (30) rotates.
  • each permanent magnet (34) has a symmetrical shape with respect to its own magnet center line (35).
  • the permanent magnets (34) are supported by elongated portions (hereinafter referred to as "bridges") between the permanent magnets (34) in the rotor core (31). If the permanent magnets (34) are symmetrical, the load applied to each bridge due to centrifugal force is evenly distributed. Therefore, the rotor (30) can be made suitable for high-speed rotation.
  • the permanent magnets (34) are arranged at equal intervals in the circumferential direction. Since there are no extremely large permanent magnets (34) and extremely small permanent magnets (34), the load borne by each bridge supporting the permanent magnets (34) is small. Therefore, the rotor (30) can be made suitable for high-speed rotation.
  • the rotary electric machine (10) of the present embodiment includes the rotor (30) and a stator (20) provided so as to face the rotor (30). Therefore, it is possible to provide a rotary electric machine (10) having a large generated torque.
  • the stator (20) is wound around the teeth portion (23) of the stator (20) in a centralized winding method, and the drive coil (24) and the support coil (24) are used. It has a coil (25).
  • each coil (24,25) is wound by the centralized winding method, each coil of magnetic flux generated by the permanent magnet (34) is compared with the case where each coil (24,25) is wound by the distributed winding method.
  • the amount of interlinkage with respect to (24,25) tends to decrease.
  • the effect of the magnetic flux of each permanent magnet (34) being concentrated at the center of each magnetic pole (36) becomes remarkable as in the present embodiment, and the generated torque is further increased. can do.
  • the rotary electric machine (10) of the present embodiment includes the rotor (30) and a stator (20) provided so as to face the rotor (30), and the stator (20) is the stator (20).
  • the teeth portion (23) of 20) has a coil (24,25) wound in a centralized winding manner, and the magnetic pole center line (37) of the first magnetic pole (36) is viewed from the axial direction.
  • the state of passing through the circumferential center of the teeth portion (23) is defined as the center-aligned state, and in the center-aligned state, the permanent magnets (34) at both ends of the first magnetic pole (36) in the circumferential direction when viewed from the axial direction.
  • the angle formed by the straight line connecting the center of the outer peripheral surface and the end of the inner peripheral surface of the teeth portion (23) and the magnet center line (35) of the first magnetic pole (36) is set to ⁇ 1, and the center is defined as ⁇ 1.
  • the center of the outer peripheral surface of the permanent magnet (34) at both ends in the circumferential direction of the first magnetic pole (36) and the center of the inner peripheral surface of the teeth portion (23) are connected when viewed from the axial direction.
  • the angle formed by the straight line and the magnet center line (35) of the magnetic pole (36) is set to ⁇ 2, and a straight line parallel to the magnetizing direction of the permanent magnet (34) at both ends in the circumferential direction of the first magnetic pole (36).
  • the angle formed by the permanent magnet (34) and the magnet center line (35) is ⁇ 1 or more and ⁇ 2 or less. Therefore, the magnetic fluxes of the permanent magnets (34) can be effectively interlocked with the teeth portion (23), and the magnetic fluxes of the permanent magnets (34) can be prevented from interfering with each other. As a result, the torque generated by the rotating electric machine (10) can be further increased.
  • the rotary electric machine (10) of the present embodiment is configured as a bearingless motor in which the rotor (30) is supported in a non-contact manner.
  • the inventor of the present application adds the above-mentioned ingenuity to the magnetizing directions of the permanent magnets (34) at both ends in the circumferential direction of the magnetic pole (36), thereby causing the interlinkage magnetic flux of the permanent magnets (34) of the magnetic pole (36). It was discovered that the unexpected effect of increasing the fundamental wave component and decreasing the harmonic component of is obtained. More specifically, as shown in FIG. 5, the fundamental wave component of the interlinkage magnetic flux due to each magnetic pole (36) is compared with the case where the magnetizing direction of each permanent magnet (34) is the radial direction as in the conventional case.
  • the ratio of the latter quintic component is The ratio of the former quintic component has decreased to about 30%. Due to the effect of reducing harmonic components, in a rotating electric machine (10) configured as a bearingless motor, in addition to increasing the generated torque, it is possible to increase the bearing capacity and reduce the bearing capacity interference. it can.
  • Embodiment 2 The second embodiment will be described.
  • the rotary electric machine (10) of the present embodiment is different from the first embodiment in the number of magnetic poles (36) and the configuration of the stator (20).
  • the points different from the first embodiment will be mainly described.
  • one magnetic pole (36) is composed of six permanent magnets (34) arranged adjacent to each other in the circumferential direction.
  • the magnetizing direction of the permanent magnet (34) is indicated by an arrow.
  • the straight line on the magnetic pole (36) parallel to the magnetizing direction of the permanent magnets (34) at both ends in the circumferential direction is inclined with respect to the magnet center line (35) of the permanent magnet (34).
  • the straight line parallel to the magnetizing direction of the permanent magnets (34) at both ends in the circumferential direction of the magnetic pole (36) is from the center of the permanent magnet (34) as compared with the magnet center line (35) of the permanent magnet (34). It is inclined toward the magnetic pole center line (37) of the magnetic pole (36) toward the outer side in the radial direction.
  • the straight line parallel to the magnetizing direction of the four permanent magnets (34) in the middle portion of the magnetic pole (36) is substantially parallel to the magnet center line (not shown) of the permanent magnet (34).
  • the straight line parallel to the magnetizing direction of the four permanent magnets (34) in the middle portion of the magnetic pole (36) may be inclined with respect to the magnet center line of the permanent magnet (34).
  • the drive coil and the support coil are wound around a plurality of teeth portions (23) by a distributed winding method.
  • Embodiment 2- The same effect as that of the first embodiment can be obtained by the rotor (30) and the rotary electric machine (10) of the present embodiment.
  • Embodiments 1 and 2- The embodiment may have the following configuration.
  • a straight line parallel to the magnetizing direction of the other permanent magnets (34) may also be inclined with respect to the magnet center line (35).
  • a straight line parallel to the magnetizing direction of the adjacent permanent magnets (34) may be inclined with respect to the magnet center line (35) (FIG. 8).
  • a straight line parallel to the magnetizing direction of all permanent magnets (34) may be inclined with respect to the magnet centerline (35).
  • the angle of inclination of the straight line parallel to the magnetizing direction of the permanent magnet (34) with respect to the magnetic pole center line (37) may decrease from both ends in the circumferential direction toward the center in the circumferential direction. preferable.
  • a straight line parallel to the magnetizing direction of the permanent magnets (34) at both ends in the circumferential direction at each magnetic pole (36) and a magnet center line (35) of the permanent magnet (34) are formed. It is said that the angle is preferably ⁇ 1 or more and ⁇ 2 or less as shown in FIG. However, the angle formed by the straight line parallel to the magnetizing direction of the permanent magnets (34) at both ends in the circumferential direction at each magnetic pole (36) and the magnet center line (35) of the permanent magnet (34) is larger than 0 °. It may be smaller than 90 °.
  • the latter also has the effect that the magnetic flux of the permanent magnet (34) is less likely to be short-circuited in the rotor (30) and the effect that the torque generated by the rotating electric machine (10) to which the rotor (30) is applied can be increased. ..
  • Embodiment 3 The third embodiment will be described.
  • the rotor (30) has four first magnetic poles (36).
  • the first magnetic pole (36) is composed of six magnet holes (32) arranged adjacent to each other in the circumferential direction and six permanent magnets (34) housed in the respective magnet holes (32).
  • the first magnetic pole (36) has a permanent magnet (34) having a higher residual magnetic flux density than the permanent magnets (34) at both ends in the circumferential direction of the first magnetic pole (36).
  • the permanent magnets (34) at both ends of the first magnetic pole (36) in the circumferential direction have a relatively smaller residual magnetic flux density than the other permanent magnets (34). ..
  • the amount of magnetic flux in the radial region of the magnet hole (32) in which the permanent magnet (34) having a large residual magnetic flux density is arranged is the circumferential direction of the first magnetic pole (36). It will be more than both ends.
  • FIG. 11 is a graph showing the magnetic flux density distribution in the radial direction in the conventional rotor (30).
  • the conventional rotor (30) in the first magnetic pole (36) constituting the N pole and the S pole, a plurality of magnet holes (32) are arranged at equal intervals in the circumferential direction, and a plurality of permanent magnets (34) are omitted. It is composed of the same amount of magnetic flux and the number of sheets.
  • the gap magnetic flux density distribution has a rectangular wavy shape. Therefore, in the conventional rotor (30), the iron loss generated in the stator (20) due to the harmonic component may increase.
  • FIG. 12 is a graph showing the magnetic flux density distribution in the radial direction in the rotor of the present embodiment.
  • a plurality of magnet holes (32) are arranged at equal intervals in the circumferential direction of the first magnetic poles (36) constituting the N pole and the S pole.
  • the permanent magnets (34) at both ends of the first magnetic pole (36) in the circumferential direction have a relatively smaller residual magnetic flux density than the other permanent magnets (34).
  • the gap magnetic flux density distribution is closer to a sinusoidal shape than that of a rectangular wave.
  • the magnetic flux density distribution in the radial direction on the outer peripheral surface of the rotor core (31) can be made close to a sinusoidal shape, and the harmonic component of the magnetic flux density distribution in the radial direction can be reduced.
  • the permanent magnets (34) at both ends of the first magnetic pole (36) in the circumferential direction have a relatively smaller residual magnetic flux density than the other permanent magnets (34). It is not limited. For example, three or more types of permanent magnets (34) having different residual magnetic flux densities may be used so that the residual magnetic flux density increases from both ends in the circumferential direction of the first magnetic pole (36) toward the center in the circumferential direction.
  • Embodiment 4 The fourth embodiment will be described.
  • the rotor (30) is composed of six magnet holes (32) arranged adjacent to each other in the circumferential direction and six permanent magnets (34) housed in the respective magnet holes (32). It has a configured first magnetic pole (36).
  • the first magnetic pole (36) has a permanent magnet (34) that is thicker than the permanent magnets (34) at both ends in the circumferential direction of the first magnetic pole (36).
  • the magnet thickness is the average length in the radial direction of the permanent magnet (34).
  • the two permanent magnets (34) in the center in the circumferential direction are relatively thicker than the other permanent magnets (34). It has become.
  • the amount of magnetic flux in the radial region of the magnet hole (32) in which the permanent magnet (34) having a thick magnet thickness is arranged increases.
  • the magnetic flux density distribution in the radial direction on the outer peripheral surface of the rotor core (31) can be made close to a sinusoidal shape, and the harmonic component of the magnetic flux density distribution in the radial direction can be reduced.
  • the magnet width is the average length of the permanent magnet (34) in the circumferential direction.
  • the two permanent magnets (34) in the center in the circumferential direction have a relatively wider magnet width than the other permanent magnets (34). You can do it like this.
  • Embodiment 5 The fifth embodiment will be described.
  • the rotor (30) is composed of six magnet holes (32) arranged adjacent to each other in the circumferential direction and six permanent magnets (34) housed in the respective magnet holes (32). It has a configured first magnetic pole (36).
  • the first magnetic pole (36) has three types of permanent magnets (34) having different magnet thicknesses.
  • the magnet thickness of the permanent magnet (34) becomes thicker from both ends in the circumferential direction of the first magnetic pole (36) toward the center in the circumferential direction.
  • the amount of magnetic flux in the radial region of the magnet hole (32) in which the permanent magnet (34) having a thick magnet thickness is arranged increases.
  • the magnetic flux density distribution in the radial direction on the outer peripheral surface of the rotor core (31) can be made closer to a sinusoidal shape, and the harmonic component of the magnetic flux density distribution in the radial direction can be reduced.
  • permanent magnets (34) having different magnet widths may be used instead of permanent magnets (34) having different magnet thicknesses.
  • the magnet width of the permanent magnet (34) may be widened from both ends in the circumferential direction of the first magnetic pole (36) toward the center in the circumferential direction.
  • Embodiment 6 The sixth embodiment will be described.
  • the rotor (30) has six magnet holes (32) arranged adjacent to each other in the circumferential direction, and a plurality of permanent magnets (34) housed in each magnet hole (32). It has a first magnetic pole (36) composed of).
  • two permanent magnets (34) are arranged side by side in the radial direction of the rotor (30) in one magnet hole (32).
  • At least one of the magnet holes (32) in the first magnetic pole (36) has a higher average residual magnetic flux density than the permanent magnets (34) housed in the magnet holes (32) at both ends in the circumferential direction of the first magnetic pole (36).
  • a large permanent magnet (34) is housed.
  • two permanent magnets (34) having the same residual magnetic flux density are housed in the two magnet holes (32) in the center in the circumferential direction. ing.
  • a permanent magnet (34) having the same residual magnetic flux density as the permanent magnet (34) in the center in the circumferential direction and a permanent magnet (34) having a smaller residual magnetic flux density than the permanent magnet (34) The magnets (34) (shown by hatching in FIG. 15) are housed one by one.
  • the two permanent magnets (34) housed in the two magnet holes (32) at the center of the first magnetic pole (36) in the circumferential direction are housed in the other four magnet holes (32), respectively.
  • the average residual magnetic flux density is relatively higher than that of one permanent magnet (34).
  • the amount of magnetic flux in the radial region of the magnet hole (32) in which the permanent magnet (34) having a large average residual magnetic flux density is arranged increases.
  • the magnetic flux density distribution in the radial direction on the outer peripheral surface of the rotor core (31) can be made close to a sinusoidal shape, and the harmonic component of the magnetic flux density distribution in the radial direction can be reduced.
  • the present embodiment has described a form in which two permanent magnets (34) are housed in one magnet hole (32), the present embodiment is not limited to this form.
  • the average residual magnetic flux density may be relatively increased by accommodating three or more permanent magnets (34) in the magnet hole (32) at the center of the first magnetic pole (36) in the circumferential direction.
  • the average residual magnetic flux density may be relatively reduced by accommodating only one permanent magnet (34) in the magnet holes (32) at both ends in the circumferential direction of the first magnetic pole (36).
  • Embodiment 7 >> The seventh embodiment will be described.
  • the rotor (30) is composed of six magnet holes (32) arranged adjacent to each other in the circumferential direction and six permanent magnets (34) housed in the respective magnet holes (32). It has a configured first magnetic pole (36).
  • the circumferential distance between the permanent magnets (34) adjacent to each other is the permanent magnet (34) at the circumferential end of the first magnetic pole (36) and the permanent magnet (34) adjacent thereto. It has a region smaller than the circumferential distance between and.
  • the plurality of magnet holes (32) include a first magnet hole (32a) and a second magnet hole (32b) adjacent to each other, and a second magnet hole (32b) and a third magnet hole (32c) adjacent to each other.
  • the first magnet hole (32a) is a magnet hole (32) arranged at the center in the circumferential direction of the first magnetic pole (36).
  • the third magnet hole (32c) is a magnet hole (32) arranged at both ends in the circumferential direction of the first magnetic pole (36).
  • the second magnet hole (32b) is a magnet hole (32) arranged between the first magnet hole (32a) and the third magnet hole (32c).
  • the circumferential dimensions of the first magnet hole (32a), the second magnet hole (32b), and the third magnet hole (32c) are substantially the same.
  • the first permanent magnet (34a) is housed in the first magnet hole (32a).
  • a second permanent magnet (34b) is housed in the second magnet hole (32b).
  • a third permanent magnet (34c) is housed in the third magnet hole (32c).
  • the magnet widths of the first permanent magnet (34a), the second permanent magnet (34b), and the third permanent magnet (34c) are substantially the same.
  • the circumferential distance Ma between the first permanent magnets (34a) adjacent to each other at the center of the circumferential direction of the first magnetic pole (36) is the circumferential direction between the first permanent magnet (34a) and the second permanent magnet (34b). It is smaller than the distance Mb.
  • the circumferential distance Mb between the first permanent magnet (34a) and the second permanent magnet (34b) is smaller than the circumferential distance Mc between the second permanent magnet (34b) and the third permanent magnet (34c). ing.
  • the circumferential distance between the permanent magnets (34) adjacent to each other decreases from both ends in the circumferential direction of the first magnetic pole (36) toward the center in the circumferential direction.
  • the circumferential dimension Wa of the portion composed of the core material between the adjacent first magnet holes (32a) is composed of the core material between the first magnet hole (32a) and the second magnet hole (32b). It is smaller than the circumferential dimension Wb of the portion.
  • the circumferential dimension Wb of the portion composed of the core material between the first magnet hole (32a) and the second magnet hole (32b) is between the second magnet hole (32b) and the third magnet hole (32c). It is smaller than the circumferential dimension Wc of the portion composed of the core material.
  • the amount of magnetic flux in the radial region of the magnet hole (32) where the circumferential distance between the permanent magnets (34) adjacent to each other is small increases.
  • the magnetic flux density distribution in the radial direction on the outer peripheral surface of the rotor core (31) can be made close to a sinusoidal shape, and the harmonic component of the magnetic flux density distribution in the radial direction can be reduced.
  • Embodiment 8 >> The eighth embodiment will be described. Hereinafter, the same parts as those in the seventh embodiment are designated by the same reference numerals, and only the differences will be described.
  • the rotor (30) consists of six magnet holes (32) arranged side by side in the circumferential direction and six permanent magnets (34) housed in the respective magnet holes (32). It has a configured first magnetic pole (36).
  • the first permanent magnet (34a) is housed in the first magnet hole (32a).
  • a second permanent magnet (34b) is housed in the second magnet hole (32b).
  • a third permanent magnet (34c) is housed in the third magnet hole (32c).
  • the magnet widths of the first permanent magnet (34a), the second permanent magnet (34b), and the third permanent magnet (34c) are substantially the same.
  • the circumferential dimension of the magnet hole (32) of the first magnetic pole (36) increases in the order of the first magnet hole (32a), the second magnet hole (32b), and the third magnet hole (32c).
  • the circumferential dimensions of the portion composed of the core material between the adjacent magnet holes (32) are formed to be the same as each other.
  • the circumferential dimension Wa of the portion composed of the core material between the adjacent first magnet holes (32a) is the core between the first magnet hole (32a) and the second magnet hole (32b). It is formed to have substantially the same dimensions as the circumferential dimension Wb of the portion made of the material.
  • the circumferential dimension Wb of the portion composed of the core material between the first magnet hole (32a) and the second magnet hole (32b) is between the second magnet hole (32b) and the third magnet hole (32c). It is formed to have substantially the same dimensions as the circumferential dimension Wc of the portion made of the core material.
  • the circumferential distance Ma between the first permanent magnets (34a) adjacent to each other at the center of the circumferential direction of the first magnetic pole (36) is the circumferential direction between the first permanent magnet (34a) and the second permanent magnet (34b). It is smaller than the distance Mb.
  • the circumferential distance Mb between the first permanent magnet (34a) and the second permanent magnet (34b) is smaller than the circumferential distance Mc between the second permanent magnet (34b) and the third permanent magnet (34c). ing.
  • the circumferential distance between the permanent magnets (34) adjacent to each other decreases from both ends in the circumferential direction of the first magnetic pole (36) toward the center in the circumferential direction.
  • the amount of magnetic flux in the radial region of the magnet hole (32) where the circumferential distance between the permanent magnets (34) adjacent to each other is small increases.
  • the magnetic flux density distribution in the radial direction on the outer peripheral surface of the rotor core (31) can be made close to a sinusoidal shape, and the harmonic component of the magnetic flux density distribution in the radial direction can be reduced.
  • the embodiment may have the following configuration.
  • each permanent magnet (34) is symmetrical with respect to its own magnet centerline (35).
  • each permanent magnet (34) may be asymmetric with respect to its own magnet centerline (35).
  • each permanent magnet (34) may have a recess only at one end in the circumferential direction to prevent an assembly error.
  • all the magnetic poles (36) are composed of a plurality of permanent magnets (34), but only some of the magnetic poles (36) are composed of a plurality of permanent magnets (34). May be good.
  • the rotor (30) is a BPM type rotor, but may be another type of rotor.
  • the rotor (30) may be an SPM (Surface Permanent Magnet) type rotor, an INSET type rotor, or a sequential pole type rotor.
  • the drive coil (24) and the support coil (25) are wound around the stator (20), but the drive coil (24) and the support coil (25) A shared coil having a function may be wound.
  • the rotating electric machine (10) is composed of a bearingless motor, but may be composed of, for example, an electric motor or a generator.
  • the present disclosure is useful for rotors and rotary electric machines.
  • Rotating electric machine 20 Stator 23 Teeth part 24 Driving coil (coil) 25 Support coil (coil) 30 Rotor 31 Rotor core 32 Magnet hole 32a 1st magnet hole 32b 2nd magnet hole 32c 3rd magnet hole 34 Permanent magnet 34a 1st permanent magnet 34b 2nd permanent magnet 34c 3rd permanent magnet 35 Magnet center line 36 magnetic pole (1st magnetic pole) ) 37 Magnetic pole centerline O axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

複数の磁極(36)のうち少なくとも1つは、周方向に並んだ複数の永久磁石(34)で構成される第1磁極(36)を含む。第1磁極(36)における周方向両端の永久磁石(34)の着磁方向と平行な直線は、永久磁石(34)の磁石中心線(35)に対して傾斜し、かつ磁石中心線(35)に比べて、永久磁石(34)の中心から径方向外側に向かうにつれて第1磁極(36)の磁極中心線(37)に近づく方向に傾斜している。第1磁極(36)における周方向両端の永久磁石(34)の着磁方向と平行な直線と、永久磁石(34)の磁石中心線(35)とが成す角度は、0°よりも大きく90°よりも小さい。

Description

ロータ及び回転電気機械
 本開示は、ロータ及び回転電気機械に関するものである。
 従来より、ロータコアの外周面の近傍に、周方向に間隔をあけて複数の永久磁石が埋め込まれたBPM(Buried Permanent Magnet)型のロータが知られている(例えば、非特許文献1参照)。
R.P.Jastrzebski. et al. "Design of a bearingless 100kW electric motor for high-speed applications", 2015 18th International Conference on Electrical Machines and Systems (ICEMS), Oct. 25-28, 2015. pp.2008-2014
 ところで、従来のロータでは、1つの磁極を構成する複数の永久磁石が、周方向に等間隔に配置されている。ここで、同一の永久磁石を周方向に等間隔に配置した場合、ロータコアの外周面における径方向の磁束密度分布が矩形波状となるため、高調波成分に起因してステータに発生する鉄損が増大し、回転電気機械の発生トルクが小さくなるおそれがある。
 本開示の目的は、ロータが適用される回転電気機械の発生トルクを大きくすることにある。
 本開示の第1の態様は、複数の磁極(36)を有するロータコア(31)を備えたロータであって、前記複数の磁極(36)のうち少なくとも1つが、周方向に並んだ3つ以上の磁石孔(32)と、該複数の磁石孔(32)にそれぞれ収容された複数の永久磁石(34)とで構成される第1磁極(36)を含み、前記ロータコア(31)における隣り合う前記磁石孔(32)の間の部分は、径方向に沿って延びた領域を有しており、前記磁石孔(32)における径方向外側の端面は、前記ロータコア(31)の軸心(O)と該磁石孔(32)の周方向の中央部とを通る直線に対して略線対称であり、前記磁石孔(32)の径方向寸法の最大値は、該磁石孔(32)の径方向の外側面と前記ロータコア(31)の外周面との間の部分の径方向寸法の最小値よりも大きく、前記第1磁極(36)は、前記複数の磁石孔(32)が周方向に等間隔に配置され且つ前記複数の永久磁石(34)が略同じ磁束量及び枚数で構成される磁極に比べて、前記ロータコア(31)の外周面における径方向の磁束密度分布の高調波成分が低減されるように構成されている。
 第1の態様では、上述した要件で定義されるロータにおいて、第1磁極(36)では、複数の磁石孔(32)が周方向に等間隔に配置され且つ複数の永久磁石(34)が略同じ磁束量及び枚数で構成される磁極に比べて、ロータコア(31)の外周面における径方向の磁束密度分布の高調波成分が低減されるように構成されている。
 このように、第1磁極(36)を、ロータコア(31)の外周面における径方向の磁束密度分布の高調波成分が低減される構成とすることで、ステータに発生する鉄損を抑え、回転電気機械の発生トルクを大きくすることができる。
 本開示の第2の態様は、第1の態様において、前記第1磁極(36)の中心と前記ロータ(30)の軸心(O)とを通る直線を磁極中心線(37)とし、かつ前記永久磁石(34)の中心と前記ロータ(30)の軸心(O)とを通る直線を磁石中心線(35)として、前記第1磁極(36)における周方向両端の前記永久磁石(34)の着磁方向と平行な直線は、該永久磁石(34)の前記磁石中心線(35)に対して傾斜し、かつ該磁石中心線(35)に比べて、該永久磁石(34)の中心から径方向外側に向かうにつれて前記第1磁極(36)の前記磁極中心線(37)に近づく方向に傾斜しており、前記第1磁極(36)における周方向両端の前記永久磁石(34)の着磁方向と平行な直線と、該永久磁石(34)の前記磁石中心線(35)とが成す角度は、0°よりも大きく90°よりも小さい。
 第2の態様では、複数の永久磁石(34)で構成される第1磁極(36)で発生する磁束が、第1磁極(36)の中心に集中する。第1磁極(36)における周方向両端の永久磁石(34)の磁束が、隣の磁極(36)に流れ込みにくく、よってロータ(30)内で短絡しにくい。永久磁石(34)の磁束を有効活用することにより、ロータ(30)が適用される回転電気機械(10)の発生トルクを大きくすることができる。
 本開示の第3の態様は、第2の態様において、前記第1磁極(36)における周方向両端のみの前記永久磁石(34)の着磁方向と平行な直線が、該永久磁石(34)の前記磁石中心線(35)に対して傾斜している。
 第3の態様では、ロータ(30)内での永久磁石(34)の磁束の短絡を抑止するには、複数の永久磁石(34)で構成される第1磁極(36)の周方向両端の永久磁石(34)の着磁方向と平行な直線を、上述した方向にすることが最も有効であるという本願発明者の発見に基づく。第1磁極(36)の周方向両端のみの永久磁石(34)の着磁方向と平行な直線を、上述した方向にすることで、ロータ(30)が適用される回転電気機械(10)の発生トルクを大きくするという効果を得つつ、磁化容易軸が互いに異なる永久磁石(34)の種類を少なくしてロータ(30)の製造コストを抑制することができる。
 本開示の第4の態様は、第1乃至3の態様のうち何れか1つにおいて、前記ロータコア(31)のうち前記永久磁石(34)よりも径方向外側の部分が、軸方向から見てコア材料で満たされている。
 第4の態様では、ロータ(30)が回転するときに発生する遠心力に、ロータコア(31)のうち永久磁石(34)よりも径方向外側の部分が耐えやすくなる。当該部分にフラックスバリアなどの空隙が存在しないためである。このように、ロータ(30)の耐久性を高めることができる。
 本開示の第5の態様は、第1乃至4の態様のうち何れか1つにおいて、各前記永久磁石(34)は、前記ロータコア(31)に形成された磁石孔(32)内に収容されている。
 第5の態様では、ロータ(30)が回転するときに永久磁石(34)が飛散するのを抑止することができる。
 本開示の第6の態様は、第1乃至5の態様のうち何れか1つにおいて、前記永久磁石(34)の中心と前記ロータ(30)の軸心(O)とを通る直線を磁石中心線(35)とし、各前記永久磁石(34)は、自身の前記磁石中心線(35)に関して対称形である。
 第6の態様では、ロータ(30)を高速回転に適したものにできる。
 本開示の第7の態様は、第1乃至6の態様のうち何れか1つにおいて、各前記永久磁石(34)は、周方向に等間隔に配置されている。
 第7の態様では、ロータ(30)を高速回転に適したものにできる。
 本開示の第8の態様は、第1の態様において、前記複数の永久磁石(34)は、磁石幅、磁石厚、残留磁束密度、及び前記磁石孔(32)に収容される枚数のうち少なくとも1つが互いに異なり、前記第1磁極(36)は、前記ロータコア(31)の外周面において、該第1磁極(36)の周方向両端の前記磁石孔(32)の径方向の領域よりも磁束量が多くなる領域を有する。
 第8の態様では、複数の永久磁石(34)の磁石幅、磁石厚、残留磁束密度、及び前記磁石孔(32)に収容される枚数のうち少なくとも1つが、互いに異なるようにしている。 第1磁極(36)は、ロータコア(31)の外周面において、第1磁極(36)の周方向両端の磁石孔(32)の径方向の領域よりも磁束量が多くなる領域を有している。
 これにより、ロータコア(31)の外周面における径方向の磁束密度分布を正弦波状に近づけることができ、径方向の磁束密度分布の高調波成分を低減することができる。
 本開示の第9の態様は、第8の態様において、前記第1磁極(36)は、該第1磁極(36)の周方向両端の前記永久磁石(34)よりも残留磁束密度が大きい該永久磁石(34)を有する。
 第9の態様では、第1磁極(36)は、第1磁極(36)の周方向両端の永久磁石(34)よりも残留磁束密度が大きい永久磁石(34)を有している。ここで、ロータコア(31)の外周面では、残留磁束密度が大きい永久磁石(34)が配置された磁石孔(32)の径方向の領域の磁束量が増加することとなる。
 これにより、ロータコア(31)の外周面における径方向の磁束密度分布を正弦波状に近づけることができ、径方向の磁束密度分布の高調波成分を低減することができる。
 本開示の第10の態様は、第8又は9の態様において、前記第1磁極(36)は、該第1磁極(36)の周方向両端の前記永久磁石(34)よりも磁石厚が厚い該永久磁石(34)を有する。
 第10の態様では、第1磁極(36)は、第1磁極(36)の周方向両端の永久磁石(34)よりも磁石厚が厚い永久磁石(34)を有している。ここで、ロータコア(31)の外周面では、磁石厚が厚い永久磁石(34)が配置された磁石孔(32)の径方向の領域の磁束量が増加することとなる。
 これにより、ロータコア(31)の外周面における径方向の磁束密度分布を正弦波状に近づけることができ、径方向の磁束密度分布の高調波成分を低減することができる。
 本開示の第11の態様は、第8の態様において、前記第1磁極(36)は、該第1磁極(36)の周方向両端から周方向中央に向かうにつれて磁束量が多くなっている。
 第11の態様では、第1磁極(36)は、第1磁極(36)の周方向両端から周方向中央に向かうにつれて磁束量が多くなっている。
 これにより、ロータコア(31)の外周面における径方向の磁束密度分布を正弦波状により近づけることができ、径方向の磁束密度分布の高調波成分を低減することができる。
 本開示の第12の態様は、第8乃至10の態様のうち何れか1つにおいて、前記第1磁極(36)は、該第1磁極(36)の周方向両端の前記永久磁石(34)よりも磁石幅が広い該永久磁石(34)を有する。
 第12の態様では、第1磁極(36)は、第1磁極(36)の周方向両端の永久磁石(34)よりも磁石幅が広い永久磁石(34)を有している。ここで、ロータコア(31)の外周面では、磁石幅が広い永久磁石(34)が配置された磁石孔(32)の径方向の領域の磁束量が増加することとなる。
 これにより、ロータコア(31)の外周面における径方向の磁束密度分布を正弦波状に近づけることができ、径方向の磁束密度分布の高調波成分を低減することができる。
 本開示の第13の態様は、第8乃至12の態様のうち何れか1つにおいて、前記磁石孔(32)には、前記永久磁石(34)が複数枚ずつ収容され、前記第1磁極(36)における前記磁石孔(32)の少なくとも1つには、該第1磁極(36)の周方向両端の該磁石孔(32)に収容された前記複数の永久磁石(34)よりも平均残留磁束密度が大きい該複数の永久磁石(34)が収容されている。
 第13の態様では、磁石孔(32)には、永久磁石(34)が複数枚ずつ収容される。第1磁極(36)における磁石孔(32)の少なくとも1つには、第1磁極(36)の周方向両端の磁石孔(32)に収容された複数の永久磁石(34)よりも平均残留磁束密度が大きい複数の永久磁石(34)が収容される。ここで、ロータコア(31)の外周面では、平均残留磁束密度が大きい複数の永久磁石(34)が配置された磁石孔(32)の径方向の領域の磁束量が増加することとなる。
 これにより、ロータコア(31)の外周面における径方向の磁束密度分布を正弦波状に近づけることができ、径方向の磁束密度分布の高調波成分を低減することができる。
 本開示の第14の態様は、第1の態様において、前記第1磁極(36)は、周方向に並んだ4つ以上の前記磁石孔(32)と、該複数の磁石孔(32)にそれぞれ収容された複数の永久磁石(34)とで構成され、前記第1磁極(36)は、互いに隣り合う前記永久磁石(34)の間の周方向距離が、該第1磁極(36)の周方向端部の該永久磁石(34)とその隣りの該永久磁石(34)との間の周方向距離よりも小さい領域を有することを特徴とするロータである。
 第14の態様では、第1磁極(36)は、互いに隣り合う永久磁石(34)の間の周方向距離が、第1磁極(36)の周方向端部の永久磁石(34)とその隣りの永久磁石(34)との間の周方向距離よりも小さい領域を有している。ここで、ロータコア(31)の外周面では、互いに隣り合う永久磁石(34)の間の周方向距離が小さい磁石孔(32)の径方向の領域の磁束量が増加することとなる。
 これにより、ロータコア(31)の外周面における径方向の磁束密度分布を正弦波状に近づけることができ、径方向の磁束密度分布の高調波成分を低減することができる。
 本開示の第15の態様は、第14の態様において、前記第1磁極(36)は、互いに隣り合う前記永久磁石(34)の間の周方向距離が、該第1磁極(36)の周方向両端から周方向中央に向かうにつれて小さくなっている。
 第15の態様では、第1磁極(36)は、互いに隣り合う永久磁石(34)の間の周方向距離が、第1磁極(36)の周方向両端から周方向中央に向かうにつれて小さくなっている。
 これにより、ロータコア(31)の外周面における径方向の磁束密度分布を正弦波状により近づけることができ、径方向の磁束密度分布の高調波成分を低減することができる。
 本開示の第16の態様は、第14又は15の態様において、前記複数の磁石孔(32)は、互いに隣り合う第1磁石孔(32a)及び第2磁石孔(32b)と、互いに隣り合う該第2磁石孔(32b)及び第3磁石孔(32c)とを含み、前記複数の永久磁石(34)は、前記第1磁石孔(32a)に収容された第1永久磁石(34a)と、前記第2磁石孔(32b)に収容された第2永久磁石(34b)と、前記第3磁石孔(32c)に収容された第3永久磁石(34c)とを含み、前記第1永久磁石(34a)及び前記第2永久磁石(34b)の間の周方向距離は、該第2永久磁石(34b)及び前記第3永久磁石(34c)の間の周方向距離よりも小さく、前記第1磁石孔(32a)及び前記第2磁石孔(32b)の間のコア材料で構成された部分の周方向寸法は、該第2磁石孔(32b)及び前記第3磁石孔(32c)の間のコア材料で構成された部分の周方向寸法よりも小さい。
 第16の態様では、第1永久磁石(34a)及び第2永久磁石(34b)の間の周方向距離が、第2永久磁石(34b)及び第3永久磁石(34c)の間の周方向距離よりも小さくなっている。第1磁石孔(32a)及び第2磁石孔(32b)の間のコア材料で構成された部分の周方向寸法が、第2磁石孔(32b)及び第3磁石孔(32c)の間のコア材料で構成された部分の周方向寸法よりも小さくなっている。
 これにより、ロータコア(31)の外周面における径方向の磁束密度分布を正弦波状に近づけることができ、径方向の磁束密度分布の高調波成分を低減することができる。
 本開示の第17の態様は、第14又は15の態様において、前記ロータコア(31)において、隣り合う前記磁石孔(32)の間のコア材料で構成された部分における周方向寸法は、互いに同じ寸法に形成されている。
 第17の態様では、ロータコア(31)において、隣り合う磁石孔(32)の間のコア材料で構成された部分における周方向寸法が、互いに同じ寸法に形成される。ここで、第1磁極(36)の周方向端部の磁石孔(32)の周方向寸法が大きくなり、周方向端部の永久磁石(34)とその隣りの永久磁石(34)との間の周方向距離が大きくなる。
 これにより、ロータコア(31)の外周面における径方向の磁束密度分布を正弦波状に近づけることができ、径方向の磁束密度分布の高調波成分を低減することができる。
 本開示の第18の態様は、第1乃至17の態様のうち何れか1つに記載のロータ(30)と、前記ロータ(30)と対向して設けられるステータ(20)とを備えることを特徴とする回転電気機械である。
 第18の態様では、発生トルクの大きな回転電気機械(10)を提供することができる。
 本開示の第19の態様は、第18の態様において、前記ステータ(20)は、該ステータ(20)のティース部(23)に集中巻方式で巻回されるコイル(24,25)を有する。
 第19の態様では、ステータ(20)のティース部(23)に対する鎖交磁束量を増大させ、発生トルクをより一層大きくすることができる。
 本開示の第20の態様は、第2乃至7の態様のうち何れか1つに記載のロータ(30)と、前記ロータ(30)と対向して設けられるステータ(20)とを備え、前記ステータ(20)は、該ステータ(20)のティース部(23)に集中巻方式で巻回されるコイル(24,25)を有し、 前記第1磁極(36)の中心と前記ロータ(30)の軸心(O)とを通る直線を磁極中心線(37)とし、かつ前記永久磁石(34)の中心と前記ロータ(30)の軸心(O)とを通る直線を磁石中心線(35)として、前記第1磁極(36)の前記磁極中心線(37)が、軸方向から見て、前記ティース部(23)の周方向中心を通る状態を中心一致状態とし、前記中心一致状態において、軸方向から見て、前記第1磁極(36)の周方向両端の前記永久磁石(34)の外周面の中心と、前記ティース部(23)の内周面の端部とを結ぶ直線と、前記第1磁極(36)の前記磁石中心線(35)とが成す角度をθ1とし、前記中心一致状態において、軸方向から見て、前記第1磁極(36)の周方向両端の前記永久磁石(34)の外周面の中心と、前記ティース部(23)の内周面の中心とを結ぶ直線と、前記磁極(36)の前記磁石中心線(35)とが成す角度をθ2として、前記第1磁極(36)の周方向両端の前記永久磁石(34)の着磁方向と平行な直線と、該永久磁石(34)の前記磁石中心線(35)とが成す角度は、θ1以上かつθ2以下である。
 第20の態様では、ティース部(23)に対して各永久磁石(34)の磁束を有効に鎖交させることができ、かつ各永久磁石(34)の磁束が互いに干渉するのを抑止することができる。これにより、回転電気機械(10)の発生トルクをより一層大きくすることができる。
 本開示の第21の態様は、第18乃至20の態様のうち何れか1つにおいて、前記ロータ(30)が非接触で支持されるベアリングレスモータとして構成されている。
 第21の態様では、ベアリングレスモータとして構成された回転電気機械(10)において、発生トルクを大きくすることに加えて、支持力を大きくすると共に、支持力干渉を小さくすることができる。ここで、「支持力干渉」とは、ある方向において支持力を発生させるための支持力制御電流に対して、他の方向において意図しない支持力が発生する現象のことをいう。
図1は、実施形態1の回転電気機械の構成を示す正面図である。 図2は、ロータの要部を示す拡大正面図である。 図3は、図1の回転電気機械の要部を示す拡大正面図である。 図4は、着磁方向の範囲について説明するための拡大正面図である。 図5は、実施形態1の回転電気機械における鎖交磁束量を、従来の回転電気機械の鎖交磁束量と比較して示すグラフである。 図6は、実施形態2の回転電気機械の構成を示す正面図である。 図7は、図6の回転電気機械の要部を示す拡大正面図である。 図8は、実施形態1,2の変形例における回転電気機械の要部を示す拡大正面図である。 図9は、実施形態3のロータの構成を示す正面図である。 図10は、ロータの要部を示す拡大正面図である。 図11は、従来のロータにおける径方向の磁束密度分布を示すグラフ図である。 図12は、本実施形態のロータにおける径方向の磁束密度分布を示すグラフ図である。 図13は、本実施形態4のロータの要部を示す拡大正面図である。 図14は、本実施形態5のロータの要部を示す拡大正面図である。 図15は、本実施形態6のロータの要部を示す拡大正面図である。 図16は、本実施形態7のロータの要部を示す拡大正面図である。 図17は、本実施形態8のロータの要部を示す拡大正面図である。
 《実施形態1》
 実施形態1について説明する。本実施形態の回転電気機械(10)は、ベアリングレスモータである。以下の説明では、ロータ(30)の軸心(O)に近い側を「内周側」とし、ロータ(30)の軸心(O)から遠い側を「外周側」とする。また、ロータ(30)の軸心(O)の方向を「軸方向」とし、ロータ(30)の軸心(O)に直交する方向を「径方向」とする。
 図1及び図3に示すように、回転電気機械(10)は、ステータ(20)と、ロータ(30)とを備える。
 ステータ(20)は、ステータコア(21)と、駆動用コイル(24)と、支持用コイル(25)とを備える。
 ステータコア(21)は、磁性材料で構成された筒状の部材である。ステータコア(21)は、外周側に配置された実質的に円筒状のバックヨーク部(22)と、このバックヨーク部(22)の内周面から径方向内側に突出する複数のティース部(23)とを有する。
 駆動用コイル(24)は、ロータ(30)を回転駆動するための駆動電流が流れるコイルである。駆動用コイル(24)は、各ティース部(23)に集中巻方式で巻回されている。駆動用コイル(24)は、コイルを構成している。
 支持用コイル(25)は、ロータ(30)を非接触で支持するための支持電流が流れるコイルである。支持用コイル(25)は、各ティース部(23)に集中巻方式で巻回されている。支持用コイル(25)は、コイルを構成している。
 ロータ(30)は、BPM(Buried Permanent Magnet)型のロータである。ロータ(30)は、ステータ(20)の径方向内側に、当該ステータ(20)とエアギャップを隔てて対向するように配置される。ロータ(30)は、ロータコア(31)と、永久磁石(34)とを備える。
 ロータコア(31)は、磁性材料で構成された筒状の部材である。ロータコア(31)は、外周面の近傍に複数の磁石孔(32)が形成されている。複数の磁石孔(32)は、ロータコア(31)を軸方向に貫通している。ロータコア(31)の中心には、シャフト(図示せず)を挿通するためのシャフト孔(33)が形成されている。
 永久磁石(34)は、希土類を含有する焼結磁石であるが、これに限られない。永久磁石(34)は、ロータコア(31)の磁石孔(32)に収容されている。この例では、周方向に隣り合って並んだ4つの永久磁石(34)によって1つの磁極(36)が構成される。
 以下、周方向に並んだ3つ以上の磁石孔(32)と、複数の磁石孔(32)にそれぞれ収容された複数の永久磁石(34)とで構成される磁極(36)を、第1磁極(36)という。
 図2に示すように、ロータコア(31)における隣り合う磁石孔(32)の間の部分は、径方向に沿って延びた領域を有している。磁石孔(32)における径方向外側の端面は、ロータコア(31)の軸心(O)と磁石孔(32)の周方向の中央部とを通る直線に対して略線対称である。図2に示す例では、ロータコア(31)の軸心(O)と磁石孔(32)の周方向の中央部とを通る直線は、永久磁石(34)の中心とロータ(30)の軸心(O)とを通る直線を磁石中心線(35)と略一致している。
 磁石孔(32)の径方向寸法の最大値d1は、磁石孔(32)の径方向の外側面とロータコア(31)の外周面との間の部分の径方向寸法の最小値d2よりも大きく形成されている。
 第1磁極(36)は、複数の磁石孔が周方向に等間隔に配置され且つ複数の永久磁石が略同じ磁束量及び枚数で構成される磁極に比べて、ロータコア(31)の外周面における径方向の磁束密度分布の高調波成分が低減されるように構成されている。
 具体的に、図3に示すように、ロータ(30)の軸方向から見て、第1磁極(36)の中心とロータ(30)の軸心(O)とを通る直線を磁極中心線(37)とする。また、ロータ(30)の軸方向から見て、永久磁石(34)の中心とロータ(30)の軸心(O)とを通る直線を磁石中心線(35)とする。図3では、永久磁石(34)の着磁方向を矢印で示してある。
 第1磁極(36)における周方向両端の永久磁石(34)の着磁方向と平行な直線は、当該永久磁石(34)の磁石中心線(35)に対して傾斜している。第1磁極(36)における周方向両端の永久磁石(34)の着磁方向と平行な直線は、当該永久磁石(34)の磁石中心線(35)に比べて、当該永久磁石(34)の中心から径方向外側に向かうにつれて第1磁極(36)の磁極中心線(37)に近づく方向に傾斜している。一方、第1磁極(36)における中間部の2つの永久磁石(34)の着磁方向と平行な直線は、当該永久磁石(34)の磁石中心線(図示せず)と実質的に平行である。なお、第1磁極(36)における中間部の2つの永久磁石(34)の着磁方向と平行な直線は、当該永久磁石(34)の磁石中心線に対して傾斜していてもよい。
 図4を参照して、第1磁極(36)における周方向両端の永久磁石(34)の着磁方向の好ましい範囲について説明する。同図に示す状態(以下、「中心一致状態」ともいう。)では、第1磁極(36)の磁極中心線(37)が、第1磁極(36)に対向するティース部(23)の周方向中心を通っている。
 この中心一致状態において、第1磁極(36)における周方向両端の永久磁石(34)の着磁方向と平行な直線は、当該永久磁石(34)の磁石中心線(35)に対する傾きが相対的に小さい場合、当該永久磁石(34)の外周面の中心と、ティース部(23)の内周面の端部とを結ぶ方向であることが好ましい。この場合、当該永久磁石(34)の着磁方向と平行な直線と、永久磁石(34)の磁石中心線(35)とが成す角度は、図4に示すθ1である。当該角度がθ1以上であると、ティース部(23)に対して各永久磁石(34)の磁束が有効に鎖交する。
 中心一致状態において、第1磁極(36)における周方向両端の永久磁石(34)の着磁方向と平行な直線は、当該永久磁石(34)の磁石中心線(35)に対する傾きが相対的に大きい場合、当該永久磁石(34)の外周面の中心と、ティース部(23)の内周面の中心とを結ぶ方向であることが好ましい。この場合、当該永久磁石(34)の着磁方向と平行な直線と、永久磁石(34)の磁石中心線(35)とが成す角度は、図4に示すθ2である。当該角度がθ2以下であると、各永久磁石(34)の磁束が互いに干渉しにくく、各永久磁石(34)の磁束を有効利用できる。
 ロータコア(31)のうち永久磁石(34)よりも径方向外側の部分には、フラックスバリアなどの貫通孔が形成されていない。換言すると、ロータコア(31)のうち永久磁石(34)よりも径方向外側の部分は、軸方向から見てコア材料で満たされている。
 各永久磁石(34)は、自身の磁石中心線(35)に関して対称形である。各永久磁石(34)は、周方向に等間隔に配置されている。
  -実施形態1の効果-
 本実施形態のロータ(30)は、第1磁極(36)では、複数の磁石孔(32)が周方向に等間隔に配置され且つ複数の永久磁石(34)が略同じ磁束量及び枚数で構成される磁極に比べて、ロータコア(31)の外周面における径方向の磁束密度分布の高調波成分が低減されるように構成されている。
 このように、第1磁極(36)を、ロータコア(31)の外周面における径方向の磁束密度分布の高調波成分が低減される構成とすることで、ステータに発生する鉄損を抑え、回転電気機械の発生トルクを大きくすることができる。
 ここで、径方向の磁束密度分布の高調波成分を低減させるためには、例えば、ロータコア(31)の外周面における径方向の磁束密度分布が正弦波状に近づくように、第1磁極(36)を構成すればよい。
 本実施形態のロータ(30)は、前記第1磁極(36)の中心と前記ロータ(30)の軸心(O)とを通る直線を磁極中心線(37)とし、かつ前記永久磁石(34)の中心と前記ロータ(30)の軸心(O)とを通る直線を磁石中心線(35)として、前記第1磁極(36)における周方向両端の前記永久磁石(34)の着磁方向と平行な直線は、該永久磁石(34)の前記磁石中心線(35)に対して傾斜し、かつ該磁石中心線(35)に比べて、該永久磁石(34)の中心から径方向外側に向かうにつれて前記第1磁極(36)の前記磁極中心線(37)に近づく方向に傾斜しており、前記第1磁極(36)における周方向両端の前記永久磁石(34)の着磁方向と平行な直線と、該永久磁石(34)の前記磁石中心線(35)とが成す角度は、0°よりも大きく90°よりも小さい。したがって、複数の永久磁石(34)で構成される第1磁極(36)で発生する磁束が、当該第1磁極(36)の中心に集中する。当該第1磁極(36)における周方向両端の永久磁石(34)の磁束が、隣の磁極(36)に流れ込みにくく、よってロータ(30)内で短絡しにくい。より具体的には、任意の磁極(36)において、周方向両端の永久磁石(34)は、極性の異なる隣の磁極(36)の永久磁石(34)が隣にあるためにロータ(30)内で磁束が短絡しやすい。これに対し、本実施形態では、周方向両端の永久磁石(34)の着磁方向と平行な直線が所定の方向に傾斜しているため、上述のロータ(30)内での磁束の短絡が生じにくい。したがって、永久磁石(34)の磁束を有効活用することにより、ロータ(30)が適用される回転電気機械(10)の発生トルクを大きくすることができる。
 また、本実施形態のロータ(30)は、前記第1磁極(36)における周方向両端のみの前記永久磁石(34)の着磁方向と平行な直線が、該永久磁石(34)の前記磁石中心線(35)に対して傾斜している。したがって、当該磁極の周方向両端のみの永久磁石(34)の着磁方向と平行な直線を上述した方向にすることで、ロータ(30)が適用される回転電気機械(10)の発生トルクを大きくするという効果を得つつ、磁化容易軸が互いに異なる永久磁石(34)の種類を少なくしてロータ(30)の製造コストを抑制することができる。
 また、本実施形態のロータ(30)は、前記ロータコア(31)のうち前記永久磁石(34)よりも径方向外側の部分が、軸方向から見てコア材料で満たされている。したがって、ロータ(30)が回転するときに発生する遠心力に、ロータコア(31)のうち永久磁石(34)よりも径方向外側の部分が耐えやすくなる。当該部分にフラックスバリアなどの空隙が存在しないためである。このように、ロータ(30)の耐久性を高めることができる。
 また、本実施形態のロータ(30)は、各前記永久磁石(34)は、前記ロータコア(31)に形成された磁石孔(32)内に収容されている。したがって、ロータ(30)が回転するときに永久磁石(34)が飛散するのを抑止することができる。
 また、本実施形態のロータ(30)は、各前記永久磁石(34)が、自身の前記磁石中心線(35)に関して対称形である。永久磁石(34)は、ロータコア(31)における各永久磁石(34)間の細長い部分(以下、「ブリッジ」という。)によって支持されている。永久磁石(34)が対称形であれば、遠心力に起因して各ブリッジに加わる荷重は均等に分散する。したがって、ロータ(30)を高速回転に適したものにできる。
 また、本実施形態のロータ(30)は、各前記永久磁石(34)が、周方向に等間隔に配置されている。極端に大きい永久磁石(34)及び極端に小さい永久磁石(34)が存在しないため、永久磁石(34)を支持する各ブリッジが負担する荷重が小さくなる。したがって、ロータ(30)を高速回転に適したものにできる。
 また、本実施形態の回転電気機械(10)は、上記ロータ(30)と、上記ロータ(30)と対向して設けられるステータ(20)とを備える。したがって、発生トルクの大きな回転電気機械(10)を提供することができる。
 また、本実施形態の回転電気機械(10)は、上記ステータ(20)が、該ステータ(20)のティース部(23)に集中巻方式で巻回される駆動用コイル(24)及び支持用コイル(25)を有する。集中巻方式で各コイル(24,25)が巻回される場合、分布巻方式で各コイル(24,25)が巻回される場合に比べて、永久磁石(34)が生じる磁束の各コイル(24,25)に対する鎖交量が少なくなる傾向にある。そのような集中巻方式の場合には、本実施形態のように各永久磁石(34)の磁束が各磁極(36)の中心に集中することの影響が顕著になり、発生トルクをより一層大きくすることができる。
 また、本実施形態の回転電気機械(10)は、前記ロータ(30)と、前記ロータ(30)と対向して設けられるステータ(20)とを備え、前記ステータ(20)は、該ステータ(20)のティース部(23)に集中巻方式で巻回されるコイル(24,25)を有し、前記第1磁極(36)の前記磁極中心線(37)が、軸方向から見て、前記ティース部(23)の周方向中心を通る状態を中心一致状態とし、前記中心一致状態において、軸方向から見て、前記第1磁極(36)の周方向両端の前記永久磁石(34)の外周面の中心と、前記ティース部(23)の内周面の端部とを結ぶ直線と、前記第1磁極(36)の前記磁石中心線(35)とが成す角度をθ1とし、前記中心一致状態において、軸方向から見て、前記第1磁極(36)の周方向両端の前記永久磁石(34)の外周面の中心と、前記ティース部(23)の内周面の中心とを結ぶ直線と、前記磁極(36)の前記磁石中心線(35)とが成す角度をθ2として、前記第1磁極(36)の周方向両端の前記永久磁石(34)の着磁方向と平行な直線と、該永久磁石(34)の前記磁石中心線(35)とが成す角度は、θ1以上かつθ2以下である。したがって、ティース部(23)に対して各永久磁石(34)の磁束を有効に鎖交させることができ、かつ各永久磁石(34)の磁束が互いに干渉するのを抑止することができる。これにより、回転電気機械(10)の発生トルクをより一層大きくすることができる。
 また、本実施形態の回転電気機械(10)は、上記ロータ(30)が非接触で支持されるベアリングレスモータとして構成されている。ここで、本願発明者は、磁極(36)における周方向両端の永久磁石(34)の着磁方向について上述の工夫を加えることにより、当該磁極(36)の永久磁石(34)の鎖交磁束の基本波成分が増大しかつ高調波成分が減少するという予想外の効果が得られることを発見した。より具体的には、図5に示すように、各永久磁石(34)の着磁方向を従来のように放射方向とする場合に比べて、各磁極(36)による鎖交磁束の基本波成分が増大しかつ高調波成分が減少する。なお、同図に示す従来技術に係る鎖交磁束量(破線)と実施形態1に係る鎖交磁束量(実線)とを、それぞれの周波数成分に関して比較すると、後者の五次成分の比率が、前者の五次成分の比率の約30%にまで減少している。このような高調波成分の低減効果により、ベアリングレスモータとして構成された回転電気機械(10)において、発生トルクを大きくすることに加えて、支持力を大きくすると共に支持力干渉を小さくすることができる。
 《実施形態2》
 実施形態2について説明する。本実施形態の回転電気機械(10)は、磁極(36)の数及びステータ(20)の構成が前記実施形態1と異なる。以下、前記実施形態1と異なる点について主に説明する。
 図6及び図7に示すように、ロータ(30)において、1つの磁極(36)は、周方向に隣り合って並んだ6つの永久磁石(34)によって構成されている。図7では、永久磁石(34)の着磁方向を矢印で示してある。
 磁極(36)における周方向両端の永久磁石(34)の着磁方向と平行な直線は、当該永久磁石(34)の磁石中心線(35)に対して傾斜している。磁極(36)における周方向両端の永久磁石(34)の着磁方向と平行な直線は、当該永久磁石(34)の磁石中心線(35)に比べて、当該永久磁石(34)の中心から径方向外側に向かうにつれて磁極(36)の磁極中心線(37)に近づく方向に傾斜している。一方、磁極(36)における中間部の4つの永久磁石(34)の着磁方向と平行な直線は、当該永久磁石(34)の磁石中心線(図示せず)と実質的に平行である。なお、磁極(36)における中間部の4つの永久磁石(34)の着磁方向と平行な直線は、当該永久磁石(34)の磁石中心線に対して傾斜していてもよい。
 ステータ(20)において、駆動用コイル及び支持用コイル(共に図示せず)は、分布巻方式で複数のティース部(23)に巻回されている。
  -実施形態2の効果-
 本実施形態のロータ(30)及び回転電気機械(10)によっても、前記実施形態1と同様の効果が得られる。
 -実施形態1,2の変形例-
 前記実施形態については、以下のような構成としてもよい。
 前記実施形態1,2では、各磁極(36)において、周方向両端の永久磁石(34)のみが、自身の磁石中心線(35)に対して着磁方向と平行な直線が傾斜している。しかし、各磁極(36)において、それ以外の永久磁石(34)の着磁方向と平行な直線も、磁石中心線(35)に対して傾斜していてもよい。例えば、周方向両端の永久磁石(34)に加えてその隣の永久磁石(34)の着磁方向と平行な直線が磁石中心線(35)に対して傾斜していてもよいし(図8を参照)、全ての永久磁石(34)の着磁方向と平行な直線が磁石中心線(35)に対して傾斜していてもよい。ここで、各磁極(36)において、周方向両端から周方向中央に向かうにつれて、永久磁石(34)の着磁方向と平行な直線の磁極中心線(37)に対する傾斜の角度が小さくなることが好ましい。
 また、前記実施形態1,2では、各磁極(36)における周方向両端の永久磁石(34)の着磁方向と平行な直線と、永久磁石(34)の磁石中心線(35)とが成す角度は、図4に示すθ1以上かつθ2以下であることが好ましいとしている。しかし、各磁極(36)における周方向両端の永久磁石(34)の着磁方向と平行な直線と、永久磁石(34)の磁石中心線(35)とが成す角度は、0°よりも大きく90°よりも小さければよい。後者においても、ロータ(30)内で永久磁石(34)の磁束が短絡しにくいという効果や、ロータ(30)が適用される回転電気機械(10)の発生トルクを大きくできるという効果が得られる。
 《実施形態3》
 実施形態3について説明する。
 図9に示すように、ロータ(30)は、4つの第1磁極(36)を有する。第1磁極(36)は、周方向に隣り合って並んだ6つの磁石孔(32)と、それぞれの磁石孔(32)に収容された6つの永久磁石(34)とで構成されている。
 図10に示すように、第1磁極(36)は、第1磁極(36)の周方向両端の永久磁石(34)よりも残留磁束密度が大きい永久磁石(34)を有する。具体的に、第1磁極(36)の周方向両端の永久磁石(34)(図10にハッチングで示す)が、他の永久磁石(34)よりも残留磁束密度が相対的に小さくなっている。
 ここで、ロータコア(31)の外周面では、残留磁束密度が大きい永久磁石(34)が配置された磁石孔(32)の径方向の領域の磁束量が、第1磁極(36)の周方向両端よりも増加することとなる。
 以下、ロータコア(31)の外周面における径方向の磁束密度分布の変化について、図11及び図12を用いて説明する。
 図11は、従来のロータ(30)における径方向の磁束密度分布を示すグラフ図である。従来のロータ(30)では、N極及びS極を構成する第1磁極(36)は、複数の磁石孔(32)が周方向に等間隔に配置され且つ複数の永久磁石(34)が略同じ磁束量及び枚数で構成されている。
 図11に示すように、従来のロータ(30)では、ギャップ磁束密度分布が矩形波状となっている。そのため、従来のロータ(30)では、高調波成分に起因してステータ(20)に発生する鉄損が増大するおそれがある。
 図12は、本実施形態のロータにおける径方向の磁束密度分布を示すグラフ図である。本実施形態のロータ(30)では、N極及びS極を構成する第1磁極(36)は、複数の磁石孔(32)が周方向に等間隔に配置されている。一方、第1磁極(36)の周方向両端の永久磁石(34)は、他の永久磁石(34)よりも残留磁束密度が相対的に小さくなっている。
 図12に示すように、本実施形態のロータ(30)では、ギャップ磁束密度分布が、矩形波に比べて正弦波状に近づいている。これにより、ロータコア(31)の外周面における径方向の磁束密度分布を正弦波状に近づけることができ、径方向の磁束密度分布の高調波成分を低減することができる。
 なお、本実施形態では、第1磁極(36)の周方向両端の永久磁石(34)が、他の永久磁石(34)よりも残留磁束密度が相対的に小さくなっているが、この形態に限定するものではない。例えば、残留磁束密度の異なる3種類以上の永久磁石(34)を用いて、第1磁極(36)の周方向両端から周方向中央に向かうにつれて残留磁束密度が大きくなるようにしてもよい。
 《実施形態4》
 実施形態4について説明する。
 図13に示すように、ロータ(30)は、周方向に隣り合って並んだ6つの磁石孔(32)と、それぞれの磁石孔(32)に収容された6つの永久磁石(34)とで構成された第1磁極(36)を有する。
 第1磁極(36)は、第1磁極(36)の周方向両端の永久磁石(34)よりも磁石厚が厚い永久磁石(34)を有する。ここで、磁石厚とは、永久磁石(34)の径方向の平均長さである。具体的に、第1磁極(36)の6つの永久磁石(34)のうち、周方向中央の2つの永久磁石(34)が、他の永久磁石(34)よりも磁石厚が相対的に厚くなっている。ここで、ロータコア(31)の外周面では、磁石厚が厚い永久磁石(34)が配置された磁石孔(32)の径方向の領域の磁束量が増加することとなる。
 これにより、ロータコア(31)の外周面における径方向の磁束密度分布を正弦波状に近づけることができ、径方向の磁束密度分布の高調波成分を低減することができる。
 なお、磁石厚の異なる永久磁石(34)の代わりに、磁石幅の異なる永久磁石(34)を用いてもよい。ここで、磁石幅とは、永久磁石(34)の周方向の平均長さである。この場合、第1磁極(36)の6つの永久磁石(34)のうち、周方向中央の2つの永久磁石(34)を、他の永久磁石(34)よりも磁石幅が相対的に広くなるようにすればよい。
 《実施形態5》
 実施形態5について説明する。
 図14に示すように、ロータ(30)は、周方向に隣り合って並んだ6つの磁石孔(32)と、それぞれの磁石孔(32)に収容された6つの永久磁石(34)とで構成された第1磁極(36)を有する。第1磁極(36)は、磁石厚の異なる3種類の永久磁石(34)を有する。
 第1磁極(36)では、第1磁極(36)の周方向両端から周方向中央に向かうにつれて、永久磁石(34)の磁石厚が厚くなっている。ここで、ロータコア(31)の外周面では、磁石厚が厚い永久磁石(34)が配置された磁石孔(32)の径方向の領域の磁束量が増加することとなる。
 これにより、ロータコア(31)の外周面における径方向の磁束密度分布を正弦波状により近づけることができ、径方向の磁束密度分布の高調波成分を低減することができる。
 なお、磁石厚の異なる永久磁石(34)の代わりに、磁石幅の異なる永久磁石(34)を用いてもよい。この場合、第1磁極(36)では、第1磁極(36)の周方向両端から周方向中央に向かうにつれて、永久磁石(34)の磁石幅が広くなるようにすればよい。
 《実施形態6》
 実施形態6について説明する。
 図15に示すように、ロータ(30)は、周方向に隣り合って並んだ6つの磁石孔(32)と、それぞれの磁石孔(32)に複数枚ずつ収容された複数の永久磁石(34)とで構成された第1磁極(36)を有する。図15に示す例では、1つの磁石孔(32)には、2つの永久磁石(34)がロータ(30)の径方向に並んで配置されている。
 第1磁極(36)における磁石孔(32)の少なくとも1つには、第1磁極(36)の周方向両端の磁石孔(32)に収容された永久磁石(34)よりも平均残留磁束密度が大きい永久磁石(34)が収容されている。
 具体的に、第1磁極(36)の6つの磁石孔(32)のうち、周方向中央の2つの磁石孔(32)には、残留磁束密度が同じ永久磁石(34)が2つ収容されている。一方、残りの4つの磁石孔(32)には、周方向中央の永久磁石(34)と残留磁束密度が同じ永久磁石(34)と、当該永久磁石(34)よりも残留磁束密度が小さい永久磁石(34)(図15にハッチングで示す)とが1つずつ収容されている。
 ここで、第1磁極(36)の周方向中央の2つの磁石孔(32)にそれぞれ収容された2つの永久磁石(34)が、他の4つの磁石孔(32)にそれぞれ収容された2つの永久磁石(34)よりも平均残留磁束密度が相対的に大きくなっている。ここで、ロータコア(31)の外周面では、平均残留磁束密度が大きい永久磁石(34)が配置された磁石孔(32)の径方向の領域の磁束量が増加することとなる。
 これにより、ロータコア(31)の外周面における径方向の磁束密度分布を正弦波状に近づけることができ、径方向の磁束密度分布の高調波成分を低減することができる。
 なお、本実施形態では、1つの磁石孔(32)に2つの永久磁石(34)を収容した形態について説明したが、この形態に限定するものではない。例えば、第1磁極(36)の周方向中央の磁石孔(32)に永久磁石(34)を3枚以上収容することで、平均残留磁束密度を相対的に大きくしてもよい。また、第1磁極(36)の周方向両端の磁石孔(32)に永久磁石(34)を1枚だけ収容することで、平均残留磁束密度を相対的に小さくしてもよい。
 《実施形態7》
 実施形態7について説明する。
 図16に示すように、ロータ(30)は、周方向に隣り合って並んだ6つの磁石孔(32)と、それぞれの磁石孔(32)に収容された6つの永久磁石(34)とで構成された第1磁極(36)を有する。第1磁極(36)は、互いに隣り合う永久磁石(34)の間の周方向距離が、第1磁極(36)の周方向端部の永久磁石(34)とその隣りの永久磁石(34)との間の周方向距離よりも小さい領域を有する。
 具体的に、複数の磁石孔(32)は、互いに隣り合う第1磁石孔(32a)及び第2磁石孔(32b)と、互いに隣り合う第2磁石孔(32b)及び第3磁石孔(32c)とを含む。第1磁石孔(32a)は、第1磁極(36)の周方向中央に配置された磁石孔(32)である。第3磁石孔(32c)は、第1磁極(36)の周方向両端に配置された磁石孔(32)である。第2磁石孔(32b)は、第1磁石孔(32a)と第3磁石孔(32c)との間に配置された磁石孔(32)である。第1磁石孔(32a)、第2磁石孔(32b)、及び第3磁石孔(32c)の周方向寸法は、略同じである。
 第1磁石孔(32a)には、第1永久磁石(34a)が収容されている。第2磁石孔(32b)には、第2永久磁石(34b)が収容されている。第3磁石孔(32c)には、第3永久磁石(34c)が収容されている。第1永久磁石(34a)、第2永久磁石(34b)、及び第3永久磁石(34c)の磁石幅は略同じである。
 第1磁極(36)の周方向中央で隣り合う第1永久磁石(34a)同士の間の周方向距離Maは、第1永久磁石(34a)及び第2永久磁石(34b)の間の周方向距離Mbよりも小さくなっている。第1永久磁石(34a)及び第2永久磁石(34b)の間の周方向距離Mbは、第2永久磁石(34b)及び第3永久磁石(34c)の間の周方向距離Mcよりも小さくなっている。このように、第1磁極(36)は、互いに隣り合う永久磁石(34)の間の周方向距離が、第1磁極(36)の周方向両端から周方向中央に向かうにつれて小さくなっている。
 隣り合う第1磁石孔(32a)同士の間のコア材料で構成された部分の周方向寸法Waは、第1磁石孔(32a)及び第2磁石孔(32b)の間のコア材料で構成された部分の周方向寸法Wbよりも小さくなっている。第1磁石孔(32a)及び第2磁石孔(32b)の間のコア材料で構成された部分の周方向寸法Wbは、第2磁石孔(32b)及び第3磁石孔(32c)の間のコア材料で構成された部分の周方向寸法Wcよりも小さくなっている。
 ここで、ロータコア(31)の外周面では、互いに隣り合う永久磁石(34)の間の周方向距離が小さい磁石孔(32)の径方向の領域の磁束量が増加することとなる。
 これにより、ロータコア(31)の外周面における径方向の磁束密度分布を正弦波状に近づけることができ、径方向の磁束密度分布の高調波成分を低減することができる。
 《実施形態8》
 実施形態8について説明する。以下、前記実施形態7と同じ部分については同じ符号を付し、相違点についてのみ説明する。
 図17に示すように、ロータ(30)は、周方向に隣り合って並んだ6つの磁石孔(32)と、それぞれの磁石孔(32)に収容された6つの永久磁石(34)とで構成された第1磁極(36)を有する。
 第1磁石孔(32a)には、第1永久磁石(34a)が収容されている。第2磁石孔(32b)には、第2永久磁石(34b)が収容されている。第3磁石孔(32c)には、第3永久磁石(34c)が収容されている。第1永久磁石(34a)、第2永久磁石(34b)、及び第3永久磁石(34c)の磁石幅は略同じである。
 第1磁極(36)の磁石孔(32)の周方向寸法は、第1磁石孔(32a)、第2磁石孔(32b)、第3磁石孔(32c)の順に大きくなっている。
 ロータコア(31)において、隣り合う磁石孔(32)の間のコア材料で構成された部分における周方向寸法は、互いに同じ寸法に形成されている。
 具体的に、隣り合う第1磁石孔(32a)同士の間のコア材料で構成された部分の周方向寸法Waは、第1磁石孔(32a)及び第2磁石孔(32b)の間のコア材料で構成された部分の周方向寸法Wbと略同じ寸法に形成されている。第1磁石孔(32a)及び第2磁石孔(32b)の間のコア材料で構成された部分の周方向寸法Wbは、第2磁石孔(32b)及び第3磁石孔(32c)の間のコア材料で構成された部分の周方向寸法Wcと略同じ寸法に形成されている。
 第1磁極(36)の周方向中央で隣り合う第1永久磁石(34a)同士の間の周方向距離Maは、第1永久磁石(34a)及び第2永久磁石(34b)の間の周方向距離Mbよりも小さくなっている。第1永久磁石(34a)及び第2永久磁石(34b)の間の周方向距離Mbは、第2永久磁石(34b)及び第3永久磁石(34c)の間の周方向距離Mcよりも小さくなっている。このように、第1磁極(36)は、互いに隣り合う永久磁石(34)の間の周方向距離が、第1磁極(36)の周方向両端から周方向中央に向かうにつれて小さくなっている。
 ここで、ロータコア(31)の外周面では、互いに隣り合う永久磁石(34)の間の周方向距離が小さい磁石孔(32)の径方向の領域の磁束量が増加することとなる。
 これにより、ロータコア(31)の外周面における径方向の磁束密度分布を正弦波状に近づけることができ、径方向の磁束密度分布の高調波成分を低減することができる。
 《その他の実施形態》
 前記実施形態については、以下のような構成としてもよい。
 前記各実施形態では、各永久磁石(34)は、自身の磁石中心線(35)に関して対称形である。しかし、各永久磁石(34)は、自身の磁石中心線(35)に関して非対称であってもよい。例えば、各永久磁石(34)は、周方向一端のみに凹部を有し、これにより組付けミスを防止するものであってもよい。
 また、前記各実施形態では、全ての磁極(36)が複数の永久磁石(34)で構成されているが、一部の磁極(36)のみが複数の永久磁石(34)で構成されていてもよい。
 また、前記各実施形態では、ロータ(30)は、BPM型ロータであるが、その他のタイプのロータであってもよい。例えば、ロータ(30)は、SPM(Surface Permanent Magnet)型ロータ、INSET型ロータ、又はコンシクエントポール型ロータであってもよい。
 また、前記各実施形態では、ステータ(20)には、駆動用コイル(24)及び支持用コイル(25)が巻回されているが、駆動用コイル(24)及び支持用コイル(25)の機能を併せ持つ共用コイルが巻回されていてもよい。
 また、前記各実施形態では、回転電気機械(10)は、ベアリングレスモータにより構成されているが、例えば電動機又は発電機により構成されていてもよい。
 以上、実施形態及び変形例を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態及び変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。また、明細書及び特許請求の範囲の「第1」、「第2」、「第3」…という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。
 以上説明したように、本開示は、ロータ及び回転電気機械について有用である。
 10  回転電気機械
 20  ステータ
 23  ティース部
 24  駆動用コイル(コイル)
 25  支持用コイル(コイル)
 30  ロータ
 31  ロータコア
 32  磁石孔
 32a  第1磁石孔
 32b  第2磁石孔
 32c  第3磁石孔
 34  永久磁石
 34a  第1永久磁石
 34b  第2永久磁石
 34c  第3永久磁石
 35  磁石中心線
 36  磁極(第1磁極)
 37  磁極中心線
  O  軸心

Claims (21)

  1.  複数の磁極(36)を有するロータコア(31)を備えたロータであって、
     前記複数の磁極(36)のうち少なくとも1つが、周方向に並んだ3つ以上の磁石孔(32)と、該複数の磁石孔(32)にそれぞれ収容された複数の永久磁石(34)とで構成される第1磁極(36)を含み、
     前記ロータコア(31)における隣り合う前記磁石孔(32)の間の部分は、径方向に沿って延びた領域を有しており、
     前記磁石孔(32)の径方向寸法の最大値は、該磁石孔(32)の径方向の外側面と前記ロータコア(31)の外周面との間の部分の径方向寸法の最小値よりも大きく、
     前記第1磁極(36)は、前記複数の磁石孔(32)が周方向に等間隔に配置され且つ前記複数の永久磁石(34)が略同じ磁束量及び枚数で構成される磁極に比べて、前記ロータコア(31)の外周面における径方向の磁束密度分布の高調波成分が低減されるように構成されている
    ことを特徴とするロータ。
  2.  請求項1において、
     前記第1磁極(36)の中心と前記ロータ(30)の軸心(O)とを通る直線を磁極中心線(37)とし、かつ前記永久磁石(34)の中心と前記ロータ(30)の軸心(O)とを通る直線を磁石中心線(35)として、
     前記第1磁極(36)における周方向両端の前記永久磁石(34)の着磁方向と平行な直線は、該永久磁石(34)の前記磁石中心線(35)に対して傾斜し、かつ該磁石中心線(35)に比べて、該永久磁石(34)の中心から径方向外側に向かうにつれて前記第1磁極(36)の前記磁極中心線(37)に近づく方向に傾斜しており、
     前記第1磁極(36)における周方向両端の前記永久磁石(34)の着磁方向と平行な直線と、該永久磁石(34)の前記磁石中心線(35)とが成す角度は、0°よりも大きく90°よりも小さい
    ことを特徴とするロータ。
  3.  請求項2において、
     前記第1磁極(36)における周方向両端のみの前記永久磁石(34)の着磁方向と平行な直線が、該永久磁石(34)の前記磁石中心線(35)に対して傾斜している
    ことを特徴とするロータ。
  4.  請求項1乃至3のうち何れか1つにおいて、
     前記ロータコア(31)のうち前記永久磁石(34)よりも径方向外側の部分が、軸方向から見てコア材料で満たされている
    ことを特徴とするロータ。
  5.  請求項1乃至4のうち何れか1つにおいて、
     各前記永久磁石(34)は、前記ロータコア(31)に形成された磁石孔(32)内に収容されている
    ことを特徴とするロータ。
  6.  請求項1乃至5のうち何れか1つにおいて、
     前記永久磁石(34)の中心と前記ロータ(30)の軸心(O)とを通る直線を磁石中心線(35)とし、
     各前記永久磁石(34)は、自身の前記磁石中心線(35)に関して対称形である
    ことを特徴とするロータ。
  7.  請求項1乃至6のうち何れか1つにおいて、
     各前記永久磁石(34)は、周方向に等間隔に配置されている
    ことを特徴とするロータ。
  8.  請求項1において、
     前記複数の永久磁石(34)は、磁石幅、磁石厚、残留磁束密度、及び前記磁石孔(32)に収容される枚数のうち少なくとも1つが互いに異なり、
     前記第1磁極(36)は、前記ロータコア(31)の外周面において、該第1磁極(36)の周方向両端の前記磁石孔(32)の径方向の領域よりも磁束量が多くなる領域を有する
    ことを特徴とするロータ。
  9.  請求項8において、
     前記第1磁極(36)は、該第1磁極(36)の周方向両端の前記永久磁石(34)よりも残留磁束密度が大きい該永久磁石(34)を有する
    ことを特徴とするロータ。
  10.  請求項8又は9において、
     前記第1磁極(36)は、該第1磁極(36)の周方向両端の前記永久磁石(34)よりも磁石厚が厚い該永久磁石(34)を有する
    ことを特徴とするロータ。
  11.  請求項8において、
     前記第1磁極(36)は、該第1磁極(36)の周方向両端から周方向中央に向かうにつれて磁束量が多くなっている
    ことを特徴とするロータ。
  12.  請求項8乃至10のうち何れか1つにおいて、
     前記第1磁極(36)は、該第1磁極(36)の周方向両端の前記永久磁石(34)よりも磁石幅が広い該永久磁石(34)を有する
    ことを特徴とするロータ。
  13.  請求項8乃至12のうち何れか1つにおいて、
     前記磁石孔(32)には、前記永久磁石(34)が複数枚ずつ収容され、
     前記第1磁極(36)における前記磁石孔(32)の少なくとも1つには、該第1磁極(36)の周方向両端の該磁石孔(32)に収容された前記複数の永久磁石(34)よりも平均残留磁束密度が大きい該複数の永久磁石(34)が収容されている
    ことを特徴とするロータ。
  14.  請求項1において、
     前記第1磁極(36)は、周方向に並んだ4つ以上の前記磁石孔(32)と、該複数の磁石孔(32)にそれぞれ収容された複数の永久磁石(34)とで構成され、
     前記第1磁極(36)は、互いに隣り合う前記永久磁石(34)の間の周方向距離が、該第1磁極(36)の周方向端部の該永久磁石(34)とその隣りの該永久磁石(34)との間の周方向距離よりも小さい領域を有する
    ことを特徴とするロータ。
  15.  請求項14において、
     前記第1磁極(36)は、互いに隣り合う前記永久磁石(34)の間の周方向距離が、該第1磁極(36)の周方向両端から周方向中央に向かうにつれて小さくなっている
    ことを特徴とするロータ。
  16.  請求項14又は15において、
     前記複数の磁石孔(32)は、互いに隣り合う第1磁石孔(32a)及び第2磁石孔(32b)と、互いに隣り合う該第2磁石孔(32b)及び第3磁石孔(32c)とを含み、
     前記複数の永久磁石(34)は、前記第1磁石孔(32a)に収容された第1永久磁石(34a)と、前記第2磁石孔(32b)に収容された第2永久磁石(34b)と、前記第3磁石孔(32c)に収容された第3永久磁石(34c)とを含み、
     前記第1永久磁石(34a)及び前記第2永久磁石(34b)の間の周方向距離は、該第2永久磁石(34b)及び前記第3永久磁石(34c)の間の周方向距離よりも小さく、
     前記第1磁石孔(32a)及び前記第2磁石孔(32b)の間のコア材料で構成された部分の周方向寸法は、該第2磁石孔(32b)及び前記第3磁石孔(32c)の間のコア材料で構成された部分の周方向寸法よりも小さい
    ことを特徴とするロータ。
  17.  請求項14又は15において、
     前記ロータコア(31)において、隣り合う前記磁石孔(32)の間のコア材料で構成された部分における周方向寸法は、互いに同じ寸法に形成されている
    ことを特徴とするロータ。
  18.  請求項1乃至17のうち何れか1つに記載のロータ(30)と、
     前記ロータ(30)と対向して設けられるステータ(20)とを備える
    ことを特徴とする回転電気機械。
  19.  請求項18において、
     前記ステータ(20)は、該ステータ(20)のティース部(23)に集中巻方式で巻回されるコイル(24,25)を有する
    ことを特徴とする回転電気機械。
  20.  請求項2乃至7のうち何れか1つに記載のロータ(30)と、
     前記ロータ(30)と対向して設けられるステータ(20)とを備え、
     前記ステータ(20)は、該ステータ(20)のティース部(23)に集中巻方式で巻回されるコイル(24,25)を有し、
     前記第1磁極(36)の中心と前記ロータ(30)の軸心(O)とを通る直線を磁極中心線(37)とし、かつ前記永久磁石(34)の中心と前記ロータ(30)の軸心(O)とを通る直線を磁石中心線(35)として、
     前記第1磁極(36)の前記磁極中心線(37)が、軸方向から見て、前記ティース部(23)の周方向中心を通る状態を中心一致状態とし、
     前記中心一致状態において、軸方向から見て、前記第1磁極(36)の周方向両端の前記永久磁石(34)の外周面の中心と、前記ティース部(23)の内周面の端部とを結ぶ直線と、前記第1磁極(36)の前記磁石中心線(35)とが成す角度をθ1とし、
     前記中心一致状態において、軸方向から見て、前記第1磁極(36)の周方向両端の前記永久磁石(34)の外周面の中心と、前記ティース部(23)の内周面の中心とを結ぶ直線と、前記磁極(36)の前記磁石中心線(35)とが成す角度をθ2として、
     前記第1磁極(36)の周方向両端の前記永久磁石(34)の着磁方向と平行な直線と、該永久磁石(34)の前記磁石中心線(35)とが成す角度は、θ1以上かつθ2以下である
    ことを特徴とする回転電気機械。
  21.  請求項18乃至20のうち何れか1つにおいて、
     前記ロータ(30)が非接触で支持されるベアリングレスモータとして構成されている
    ことを特徴とする回転電気機械。
PCT/JP2020/013295 2019-03-28 2020-03-25 ロータ及び回転電気機械 WO2020196609A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080017516.0A CN113519105B (zh) 2019-03-28 2020-03-25 转子和旋转电机
EP20779970.1A EP3920378A4 (en) 2019-03-28 2020-03-25 ROTOR AND ELECTRIC LATHE
US17/483,406 US12027920B2 (en) 2019-03-28 2021-09-23 Rotor, and rotary electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-062688 2019-03-28
JP2019062688 2019-03-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/483,406 Continuation US12027920B2 (en) 2019-03-28 2021-09-23 Rotor, and rotary electric machine

Publications (1)

Publication Number Publication Date
WO2020196609A1 true WO2020196609A1 (ja) 2020-10-01

Family

ID=72610028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013295 WO2020196609A1 (ja) 2019-03-28 2020-03-25 ロータ及び回転電気機械

Country Status (3)

Country Link
EP (1) EP3920378A4 (ja)
JP (1) JP6773244B2 (ja)
WO (1) WO2020196609A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354721A (ja) * 2001-05-29 2002-12-06 Hitachi Ltd 永久磁石式回転子を備えた回転電機
JP2005261169A (ja) * 2004-03-15 2005-09-22 Tokyo Univ Of Science ベアリングレスモータ用回転子およびベアリングレスモータ
JP2008125203A (ja) * 2006-11-10 2008-05-29 Meidensha Corp ベアリングレスモータに適用した順突極モータ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3429813A1 (de) * 1984-08-14 1986-02-27 Landert-Motoren-AG, Bülach, Zürich Permanent-synchronmotor mit asynchronem anlauf
CN103038981A (zh) * 2010-07-30 2013-04-10 株式会社日立制作所 旋转电机和使用它的电动车辆
JP5307849B2 (ja) * 2011-05-02 2013-10-02 三菱電機株式会社 電動機
JP5791794B2 (ja) * 2012-05-22 2015-10-07 三菱電機株式会社 永久磁石埋込型回転電機
JP6809047B2 (ja) * 2016-08-29 2021-01-06 富士電機株式会社 回転子及び永久磁石式回転電機
CN107070031B (zh) * 2017-05-15 2020-07-14 华中科技大学 一种转子、定子及多工作谐波永磁电机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354721A (ja) * 2001-05-29 2002-12-06 Hitachi Ltd 永久磁石式回転子を備えた回転電機
JP2005261169A (ja) * 2004-03-15 2005-09-22 Tokyo Univ Of Science ベアリングレスモータ用回転子およびベアリングレスモータ
JP2008125203A (ja) * 2006-11-10 2008-05-29 Meidensha Corp ベアリングレスモータに適用した順突極モータ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
R.P.JASTRZEBSKI ET AL.: "Design of a bearingless 100kW electric motor for high-speed applications", INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS, 2015, pages 2008 - 2014, XP032851791, DOI: 10.1109/ICEMS.2015.7385370
See also references of EP3920378A4

Also Published As

Publication number Publication date
EP3920378A4 (en) 2022-11-09
US20220014058A1 (en) 2022-01-13
CN113519105A (zh) 2021-10-19
EP3920378A1 (en) 2021-12-08
JP6773244B2 (ja) 2020-10-21
JP2020167928A (ja) 2020-10-08

Similar Documents

Publication Publication Date Title
US9502929B2 (en) Rotor and motor
US9716411B2 (en) Permanent-magnet-type rotating electric mechanism
JP5301868B2 (ja) 埋込磁石型モータ
JP3207654U (ja) 単相永久磁石モータ
WO2021149473A1 (ja) 磁気ギアード回転電機
US20230119389A1 (en) Rotor, Interior Permanent Magnet Motor, and Compressor
JP3672919B1 (ja) 永久磁石型回転モータ
CN100367639C (zh) 永磁式旋转电机
JPWO2020194390A1 (ja) 回転電機
US9276444B2 (en) Rotor and motor
JP2018098936A (ja) 磁石ユニット
WO2020196609A1 (ja) ロータ及び回転電気機械
JP5041415B2 (ja) アキシャルギャップ型モータ
JPWO2020194709A1 (ja) 回転電機
WO2018070430A1 (ja) 同期リラクタンス型回転電機
US12027920B2 (en) Rotor, and rotary electric machine
WO2021106153A1 (ja) 回転電機
JP5814160B2 (ja) ロータ及びモータ
JP2015201922A (ja) スイッチトリラクタンスモータ
KR102619942B1 (ko) Rfpm 모터 구조를 적용한 afpm 모터
WO2022172479A1 (ja) 回転電機
JP6100538B2 (ja) モータ
CN113519105B (zh) 转子和旋转电机
WO2023195258A1 (ja) ロータ、および回転電機
WO2023053604A1 (ja) ロータおよび回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779970

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020779970

Country of ref document: EP

Effective date: 20210901

NENP Non-entry into the national phase

Ref country code: DE