WO2020196450A1 - 加熱されたワイヤーによる処理を提供する装置 - Google Patents

加熱されたワイヤーによる処理を提供する装置 Download PDF

Info

Publication number
WO2020196450A1
WO2020196450A1 PCT/JP2020/012837 JP2020012837W WO2020196450A1 WO 2020196450 A1 WO2020196450 A1 WO 2020196450A1 JP 2020012837 W JP2020012837 W JP 2020012837W WO 2020196450 A1 WO2020196450 A1 WO 2020196450A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
heated
gas
unit
supply unit
Prior art date
Application number
PCT/JP2020/012837
Other languages
English (en)
French (fr)
Inventor
高橋 直樹
プラカッシ スリダラ ムルティ
Original Assignee
アトナープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アトナープ株式会社 filed Critical アトナープ株式会社
Publication of WO2020196450A1 publication Critical patent/WO2020196450A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • G01N27/623Ion mobility spectrometry combined with mass spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes

Definitions

  • the present invention relates to an apparatus that provides processing with a heated wire that functions as a cathode, catalyst, etc.
  • Japanese Patent Application Laid-Open No. 2017-107816 describes a technique for providing a filament for thermionic emission that can guarantee a long life and for improving the analysis accuracy of a mass spectrometer using the filament for thermionic emission. It is disclosed. Therefore, it is a thermoelectron emission filament including a core material through which an electric current flows and an electron emission layer formed so as to cover the surface of the core material, and the electron emission layer is densely blocking gas substantially. It is disclosed that it is characterized by having a gas.
  • the life of the heated wire has become an issue for maintaining a stable service for a long period of time.
  • One aspect of the present invention is an apparatus that provides a pretreatment for the main treatment of the inflowing gas by a heated wire in a container into which the gas flows.
  • the device has a wire feeding unit that continuously or intermittently updates the wire to be heated, with the heated position of the wire substantially fixed with respect to the inflow of gas.
  • the wires such as the cathode are heated in a gas atmosphere, it is difficult to expect great progress even if the life is extended.
  • Even if a plurality of wires are prepared in advance if the state of the heated wire with respect to the inflowing gas changes when the wire to be heated is switched, the influence not only on the pretreatment but also on the main treatment can be avoided. Absent.
  • the wire supply unit continuously or intermittently updates the wire to be heated with the heated position of the wire substantially fixed with respect to the inflow of gas. Therefore, even if the life of the heated wire is limited, the life of the wire to be heated can be renewed to substantially extend the life, and the influence on the pretreatment and the main treatment can be minimized. be able to.
  • the wire supply unit may include a disc on which a plurality of wires to be heated are mounted and a mechanism for rotating the disc.
  • the wire feeding unit may include a pair of rolls for continuously feeding the wire to be heated.
  • the device may include a wire to be heated or a management unit that manages the history of the heated portion of the wire to be heated.
  • An example of a heated wire is a cathode that supplies an electron stream.
  • An example of an apparatus having a cathode is an ion source that supplies an electron flow to a gas to be ionized to provide an ion flow.
  • One aspect of the present invention is a system having the above-mentioned device and a main processing device that mainly processes gas.
  • This system may be a measurement system, for example, the heated wire is a cathode that supplies an electron stream, and the main processing device is a gas analyzer that analyzes the gas ionized by the electron stream.
  • the system may be a measurement system or a processing system, for example, a device that supplies plasma for alternating current processing. That is, in the system, the heated wire may be the cathode that supplies the electron stream, and the main processing device may be the device that supplies the plasma of the inflowing gas generated by the electron stream.
  • the system may be a cracking system, for example, a heated wire is a catalyst that catalytically decomposes the inflowing gas, and the main processing apparatus is an apparatus that forms a film by cracking species. You may.
  • One other aspect of the invention is a control method for a system having a device that provides a pretreatment for the main treatment of the gas by a wire heated in a container into which the gas flows.
  • the device has a wire feed unit that continuously or intermittently updates the wire to be heated, and the control method is such that the wire feed unit substantially fixes the heated position of the wire with respect to the inflow of gas. In the state, it includes continuously or intermittently updating the wire to be heated.
  • the wire supply unit includes a disc on which a plurality of wires to be heated are mounted, and updating may include rotating the disc.
  • the wire feeding unit includes a pair of rolls for continuously feeding the wire to be heated, and updating may include rotating the rolls.
  • the control method may further include managing the history of the wire to be heated or the heated portion of the wire to be heated.
  • One still different aspect of the invention is a program that controls a system having a device that provides a pretreatment for the main treatment of the gas by a heated wire in a container into which the gas flows.
  • This program (program product) may be recorded and provided on an appropriate type of recording medium (memory).
  • the device has a wire supply unit that continuously or intermittently updates the wire to be heated, and the program states that the wire supply unit substantially fixes the heated position of the wire with respect to the inflow of gas. Includes instructions to execute continuous or intermittent updating of the wire to be heated.
  • FIG. 5 is a perspective view showing an example of an ionization unit including a different wire feeder.
  • FIG. 7 is an enlarged view showing a part of the apparatus shown in FIG. 7.
  • One embodiment of the present invention is a gas analyzer, an example of which is a mass spectrometer. Highly resistant sensors are required for applications in environments where corrosive gases are used, such as monitoring semiconductor manufacturing processes.
  • the outline of the quadrupole mass spectrometer will be described as an example of the gas analyzer with reference to FIG.
  • the quadrupole mass spectrometer (mass spectrometer) 91 includes an ionization device (ionization unit, ion source) 90 that ionizes the gas (gas sample, sample gas) 9 to be analyzed, and a gas that analyzes the ionized gas 8. Includes an analysis unit (gas analysis section) 20.
  • the gas analysis unit 20 includes a quadrupole unit 21 which is a filter unit and a detection unit (Faraday cup) 30 that collects gas ions 8 that reach between the electrodes of the quadrupole.
  • the quadrupole portion 21 includes a plurality of vertically extending electrodes, typically four, which are arranged at predetermined intervals in the circumferential direction.
  • the mass spectrometer 91 includes a vacuum container (housing) 19 for accommodating the ionization device 90 and the gas analysis unit 20, and the gas 9 flowing into the housing 19 is ionized by the ionization device 90.
  • the ionizing device 90 includes a grid 11 and a filament 12 that functions as a cathode that supplies an electron flow 13.
  • An example of the grid 11 is configured by assembling thin metal wires in a grid pattern and a cylindrical shape.
  • the filaments 12 are connected to metal support pins installed at predetermined intervals in the circumferential direction on the support frame, and are arranged on the outer periphery of the grid 11.
  • An example of the filament 12 is a base material made of iridium coated with yttrium oxide by electrodeposition treatment.
  • a focus electrode 25 is interposed between the quadrupole portion 21 and the ionizing device 90 so that ions directed toward the quadrupole portion 21 converge efficiently.
  • the focus electrode 25 is, for example, electrically connected to a support pin of the filament 12, and the potential of the filament 12 and the potential of the focus electrode 25 are equal to each other.
  • the conventional mass spectrometer 91 is designed to operate under conditions for a pure gas, that is, an environment that is not a corrosive gas.
  • the cathode material corresponding to this condition (filament material), Y 2 O 3 / Ir , i.e., the core material is made of iridium Ir
  • the electron emission layer may filaments consisting of yttrium oxide (yttria, Y 2 O 3) ..
  • yttrium Y of Y 2 O 3 reacts with fluorine F or a fluorine-based gas to become yttrium fluoride YF 3 or yttrium oxyfluoride YOF, which are evaporative.
  • the tungsten W material is effective as a filament material (cathode material) for a gas containing fluorocarbon CFx as a component.
  • tungsten W has a sufficient life in a gas such as carbon tetrachloride CCl 4 , hydrochloric acid HCl, tungsten fluoride WF 6 , tungsten chloride WCL 6 or the like.
  • the filament 12 may be coated with Si, SiO 2 , SiN or the like, and the function may be impaired, particularly when the mass spectrometer 91 is started or stopped. It is also possible to clean with a corrosive gas containing methane fluoride CF 4 , nitrogen trifluoride NF 3, etc., but this may further shorten the life of the filament 12.
  • FIG. 2 shows a gas analyzer as one of the embodiments of the present invention.
  • This gas analyzer 1 is a mass spectrometer, and its basic configuration is the same as that of the mass spectrometer 91 shown in FIG. That is, the mass spectrometer (gas analyzer) 1 includes an ionizer (ionization unit) 10 and a gas analyzer 20.
  • the mass spectrometer 1 further includes a vacuum container (housing) 19 for accommodating the ionization unit 10, the focus electrode 25, the quadrupole filter unit 21, and the detection unit 30.
  • the mass spectrometer 1 may include a system that maintains the housing 19 in a negative pressure (vacuum), for example, a vacuum pump (turbomolecular pump, roots pump (not shown)).
  • the mass spectrometer 1 ionizes the sampling gas 9 from the process 5 to be monitored or inspected in the semiconductor manufacturing process or the like by the ionization unit 10, and analyzes the ionized gas 8 by the gas analysis unit 20.
  • the mass spectrometer 1 is an ionization unit control device (ionization unit control circuit, ion source drive circuit) 18 that controls the ionization unit 10, and a quadrupole that supplies RF and DC power for driving to the quadrupole filter unit 21. It has a drive circuit 28.
  • the ionization unit 10 includes a supply unit (wire supply device, cathode supply device) 50 that supplies a wire 52 that is heated as a cathode (filament) 12.
  • the wire supply unit 50 continuously or intermittently updates the wire 52 that functions as the cathode (filament) 12 that supplies the electron flow 13, and greatly extends the generation life of the electron flow 13 of the ionization unit 10. That is, in this ionization unit (ionization device) 10, the heated wire 52 functions as a cathode (filament) inside the container (vacuum container) 19 into which the gas (sample gas) 9 to be processed flows, and the gas.
  • the gas analysis unit 20 of the mass spectrometer 1 which is a gas analyzer is a device that performs a main process of gas analysis on the ionized gas 8. That is, the mass spectrometer 1 is an example of a system including an ionization unit 10 that performs pretreatment on the gas 9 and a gas analysis unit 20 that performs gas analysis, which is the main treatment.
  • the wire supply unit 50 holds the wire 52 to be heated in a state where the position of the heated wire 52 (the position where the wire 52 is heated) that functions as the cathode 12 is substantially fixed with respect to the inflow of the gas 9. Update continuously or intermittently. Therefore, the ionization unit 10 having the wire supply unit 50 is configured to be able to supply the ionization electron flow 13 at a fixed position to the inflowing gas (sampling gas) 9. That is, in the wire supply unit 50, the wire 52 that functions as the cathode (filament) 12 is renewed, but the position where it is heated as the cathode 12 is fixed, and certain conditions are met with respect to the gas 9 flowing into the container 19. Therefore, the electron flow 13 can be stably supplied from the heated wire 52.
  • FIG. 3 schematically shows the configuration of the ionization unit 10 including the wire supply unit 50 of this example.
  • the wire supply unit 50 is a rotation type, and includes a disk 51 in which a plurality of wires 52 to be heated are arranged so as to surround the grid 11, and a mechanism 53 for rotationally driving the disk 51.
  • the mechanism (rotational mechanism) 53 for rotationally driving the disc 51 may be a motor, a piezoelectric element such as a piezo element, or may be operated from the outside of the container 19 by using a link mechanism. Any mechanism may be sufficient as long as the disk 51 can be rotated and stopped at a predetermined position.
  • the update control unit (rotation control unit, position control unit) 18c of the control circuit 18 rotates the disk 51 via the rotation mechanism 53 to supply the electron flow 13 to any of the plurality of wires 52 to be heated. It is set at the position P1 determined as described above.
  • the wire supply unit 50 includes a power supply mechanism (power supply line) 59 that supplies filament power from the power control unit 18a of the control circuit 18 to the wire 52 set at the position P1 and is provided with a heating position (supply position).
  • the wire 52 set in P1 is heated and functions as a cathode (filament) 12 to generate a thermionic flow 13.
  • the control circuit 18 further includes a history management unit 18b that manages the heating time of the wire 52 at the heating position P1 and the history of the heated or unheated wire 52 arranged on the disk 51.
  • the history management unit 18b may continuously use the plurality of wires 52 to be heated at the heating position P1 until the end of the service life, and heats each of the plurality of wires 52 to be heated evenly for an appropriate time. May be used repeatedly.
  • the wire supply unit 50 may further include a physical shield or protective electrode 54 that protects another wire 52 to be heated that is not set at the heating position P1 from the electron flow 13 and the ion flow 8.
  • the protective electrode 54 may be a grid to which a negative voltage is applied in order to protect the wire 52 to be heated from the impact of the electron flow 13 and to prevent the diffusion of the electron flow 13.
  • the protective electrode 54 may be provided between the wire 52 and the grid 11 or between the wire 52 and the housing 19 so as to isolate it from deposits, chemical reactions or attacks.
  • the wire 52 that is not used (not heated) as the cathode (filament) 12 may be held at a potential that prevents deposits, reactions with gases and ions, or attacks. ..
  • the heating position (position where the wire is heated, supply position) P1 where the wire 52 is heated and becomes the generation point of the electron flow 13 is the gas to be analyzed (sampling gas, gas to be ionized) supplied from the process 5 to be monitored. ) 9 may be set so that the position of the electron flow 13 as a supply source is substantially fixed. For example, it may be a specific position inside the ionization unit 10, or may be a specific position with respect to the quadrupole portion 21 that performs gas analysis, which is the main process in the wake.
  • the flow or distribution of the sampling gas 9 and / the flow of electrons with respect to the quadrupole portion 21 which is the filter unit are changed, so that the tendency of ionization, the distribution of ions, and the filter unit are changed.
  • Sensitivity can change and, even if it does not significantly affect qualitative analysis, it can affect quantitative analysis and reduce reproducibility.
  • the ionization unit 10 even if the heated wire 52 is replaced, the position P1 at which the wire 52 is heated in the vacuum vessel 19 of the mass spectrometer 1 does not change.
  • the configuration of the supply path of the sampling gas 9 is modified so that the sampling gas 9 for the wire 52 that functions as the cathode (filament) 12 that is heated to generate thermions 13. You may adjust so that the supply conditions of are the same. Further, even if a circuit is provided so that when the wires 52 at different positions are heated as the cathode (filament) 12, the electron flow 13 generated by the wires 52 is supplied from the heating position P1 toward the grid 11. Good. However, one of the preferred methods for suppressing fluctuations in the conditions of the electron flow 13 and the ion flow 8 with respect to the quadrupole portion 21 of the wake moved to the fixed heating position P1 by rotating the disk 51. The wire 52 is heated to function as a cathode (filament) 12.
  • the heated wire 52 that supplies the electron flow 13 as the cathode 12 at the heating position P1 is corroded or thinned due to a corrosive component contained in the gas 9 from the process 5.
  • the disk 51 is rotated and a new wire 52 is set at the heating position P1.
  • the wire supply device 50 can move a plurality of wires 52 to be heated to the position P1 to be heated one after another and can be used for ionization.
  • the life of the function as the cathode 12 for supplying the electron flow 13 used for ionization can be extended, and the life of the ionization unit 10 becomes a bottleneck for the continuous operation of the mass spectrometer 1. It can be suppressed.
  • the plurality of wires 52 provided on the disk 51 of the wire feeding device 50 may be made of the same material or may be made of different materials.
  • An example of a wire feeder 50 provided with a wire 52 of a different material for example, for a typical gas 9 sets the wire 52 of the Y 2 O 3 / Ir in heating position P1, the measurement object of CFx component gas
  • gases such as CCl 4 , HCl, WF 6 , and WCL 6
  • a wire 52 made of tungsten W material is set at the heating position P1
  • gases such as CCl 4 , HCl, WF 6 , and WCL 6
  • a wire 52 made of a material suitable for the gas is set at the heating position P1. It may be set.
  • a bulk type rod-shaped wire 52 on the premise of consumption of these gases 9 may be prepared, and the wire 52 at the heating position P1 may be updated one after another.
  • the replacement (renewal, rotation) of the wire 52 being heated as the cathode (filament) 12 may be performed by monitoring the resistance value of the wire 52 operating as the cathode 12 to determine the degree of wear and rotation, and mass spectrometry.
  • the disc 51 may be rotated so that the gas component analyzed in the apparatus 1 heats the wire 52 of a type suitable for monitoring and measurement of the gas 9 of the component as the cathode 12. Further, in order to suppress fluctuations in the conditions of the electron flow 13 due to a large difference in the degree of wear of each wire 52, the disc 51 is prepared so that the degree of wear of each wire 52 is within a predetermined range.
  • a history management unit 18b that manages the history of the plurality of wires 52 may be provided.
  • the degree of wear of the individual wires 52 may be stored in a memory (not shown) and rotated so that the wires 52 are consumed in the optimum order.
  • Such an operation of the wire feeding device 50 may be realized by hardware or software (program, program product) as a control circuit 18 for controlling the ionization unit 10.
  • the control circuit 18 may include computer resources such as a memory and a CPU.
  • the wire supply unit 50 includes an instruction to execute to continuously or intermittently update the wire to be heated while the heated position P1 of the wire 52 with respect to the inflow of the gas 9 is substantially fixed.
  • the program (program product) 18p may be recorded and provided on a recording medium such as a memory.
  • FIG. 4 shows an example of a control method of the ionization unit 10 including the wire supply unit 50.
  • the wire supply unit 50 sets the wire 52 at the heating position P1 and heats the wire 52 so as to function as the cathode (filament) 12.
  • the state of the wire 52 during heating is monitored.
  • the ionization energy for which a large amount of data has been obtained in mass spectrometry is 70 eV, and the ionization voltage is often controlled to 70 V.
  • the mass spectrometer 1 is mounted on a mobile or handy type device, the power supply voltage is limited and the current consumption is limited. Therefore, there are cases where it is desired to limit the ionization voltage applied to the cathode (filament) 12.
  • the power control unit 18a monitors the current characteristics and usage time of the heated wire 52, and the current characteristics (resistance value) of the heated wire 52 is within a predetermined range depending on the operating conditions such as the usage time and operating temperature. When the deterioration exceeds the above, or when deterioration is expected, the wire 52 is automatically switched to a different wire and updated.
  • the history management unit 18b checks the history of the other wire 52 to be heated in step 74.
  • the update control unit 18c selects an appropriate wire 52 as the next heating target and sets it at the heating position P1. That is, in step 75, the wire supply unit 50 continuously or intermittently updates the wire 52 to be heated with the heated position P1 of the wire 52 substantially fixed to the inflow of gas. More specifically, the wire 52 at the heating position P1 is updated by rotating the disc 51 on which the plurality of wires 52 to be heated are mounted.
  • FIG. 5 shows different examples of the gas analyzer according to the embodiment of the present invention.
  • FIG. 6 schematically shows a schematic configuration of an ionization unit 10 including a wire supply device.
  • This gas analyzer is a mass spectrometer 1, and its basic configuration is the same as that of the mass spectrometer 1 shown in FIG.
  • the ionization unit (ionization device) 10 of the mass spectrometer 1 includes a reel type (roll-to-roll type) wire supply unit (wire supply device) 50.
  • the wire supply unit 50 is in contact with the plus and minus filament posts (support pins, power supply pins) 57 and 58 arranged on both sides of the heating position P1 which is the supply position of the electron flow 13, and those posts 57 and 58.
  • a first reel (roll) 55 for supplying the wire 52 and a roll 56 for collecting the wire 52 are included. These pair of rolls 55 and 56 make it possible to continuously update the wire 52 present at the heating position P1 between the posts 57 and 58.
  • Filament power is supplied from the power control unit 18a to the wire 52 set at the heating position P1 between the posts 57 and 58 via the posts 57 and 58, and the wire 52 is heated. Therefore, the wire 52 arranged between the posts 57 and 58 functions as a cathode (filament) 12 and can supply thermions 13 from the fixed heating position P1.
  • a wire 52 made of a material that functions as a cathode (filament) 12 is wound around the supply roll (reel) 55, and the wire 52 that operates as the cathode (filament) 12 at the heating position P1 is consumed. , A new wire 52 is supplied from the roll 55. At the same time, the exhausted wire 52 is wound around the roll 56. Therefore, even if the wire 52 operating as the cathode (filament) 12 at the heating position P1 is thinned or consumed by a corrosive gas or the like, a new wire 52 is supplied to the heating position P1.
  • the ionization unit 10 the conditions for the gas (gas flow) 9 to be ionized and the quadrupole portion 21 of the gas analysis unit 20 which is the main processing device for the wake are continuously unchanged.
  • the electron flow 13 can be stably supplied.
  • the wire supply unit 50 may intermittently supply the wire 52 to the heating position P1 and update the wire 52 that operates as the cathode (filament) 12 with a new wire 52.
  • the rolls 55 and 56 may be continuously rotated at an appropriate speed to continuously or partially update the wire 52 acting as the cathode (filament) 12 at the heating position P1.
  • the wire supply unit 50, including the wire 52 wound around the rolls 55 and 56, may be programmed to suppress fluctuations in wear. For example, the degree of wear of the wire 52 operating as the cathode (filament) 12 is continuously moved from the roll 55 to the roll 56 at a constant speed while monitoring the degree of wear by the resistance value or the like.
  • the wire supply unit 50 may control the wire 52 to be wound from the roll 56 to the roll 55 in the opposite direction. Extreme wear of the wire 52 at the heating location (heating position) P1 can be suppressed, and troubles such as disconnection during movement of the wire 52 can be prevented.
  • the history management unit 18b may use software to manage the history of the degree of wear over the entire length of the wire 52. Further, in the control method described above, in the step of updating the wire, the wire supply unit 50 updates the wire 52 at the heating position P1 by rotating a pair of rolls for continuously supplying the wire 52 to be heated. To do.
  • FIG. 7 to 10 show different examples of the ionization unit 10 including the reel type wire supply device 50.
  • 7 is a perspective view showing the entire device 50
  • FIG. 8 is an enlarged perspective view showing a supply portion of the wire 52
  • FIG. 9 is a plan view showing the arrangement of the inside of the container 19, that is, the vacuum side 7.
  • FIG. 10 is a cross-sectional view taken along the line XX of FIG.
  • the wire feeder 50 includes a flange 61 for attaching to the vacuum vessel 19.
  • the wire feeding device 50 places the pair of rolls 55 and 56 arranged on the vacuum side (inside) 7 of the flange 61, the wires 52 supplied by these rolls 55 and 56, and the wires 52 at predetermined positions (heating).
  • the wire supply device 50 includes a motor 63 for driving the roll (reel) 55 arranged on the atmospheric pressure side (outside) 6 of the flange 61, and a tension adjusting mechanism (tensioner) 64 for generating tension on the roll 56.
  • a power feedthrough 66 that powers the filament posts 57 and 58.
  • the motor 63 and the roll 55 are connected by a shaft 65a
  • the tensioner 64 and the roll 56 are connected by a shaft 65b
  • these shafts 65a and 65b are connected by a suitable shaft penetration such as a ferrofluid feedthrough.
  • the seal 62 is connected via a flange 61 that separates the atmospheric pressure side 6 and the vacuum side 7.
  • FIG. 11 shows a further different example of the ionization unit 10 including the reel type wire supply device 50.
  • the wire feeder 50 places rolls 55 and 56 for supplying and recovering the wire 52 in the atmosphere 6 outside the vacuum vessel (housing) 19, and the wire 52 outside the vacuum vessel 19 via a suitable seal. I am trying to pull it out.
  • the rolls 55 and 56 arranged in the atmosphere 6 can be replaced as appropriate, the worn wire 52 is replaced, and the cathode (filament) 12 of the ionization unit 10 is substantially replaced. It is possible to further extend the life.
  • the ionization device 10 is described as an example of the device that provides the pretreatment including the wire supply unit 50.
  • a quadrupole type gas analysis unit 20 is described as an example as a main treatment device for performing the main treatment of the pretreated gas, and the system having the pretreatment device and the main treatment device is described as an example.
  • the mass spectrometer (gas analyzer) 1 will be described as an example.
  • the gas analysis unit 20 may be a quadrupole type, an ion trap type, or another type such as a Wien filter.
  • the system having the apparatus for performing the pretreatment and the main processing apparatus is not limited to the gas analyzer.
  • FIG. 12 shows a different example of a system having a preprocessing device and a main processing device.
  • This system 80 is a substrate manufacturing apparatus that forms a thin film or a layer on a substrate by a catalytic chemical vapor deposition method (Catalytic Chemical Vapor Deposition, Cat-CVD method).
  • the substrate manufacturing apparatus 80 introduces the raw material gas 81 into the vacuumed deposition chamber 89 via the header 82.
  • the raw material gas molecule 81 is brought into contact with the heated catalyst body 84, decomposed by using a catalytic cracking reaction there, and the decomposed gas (decomposed species) 85 is placed in the holder 87. It is transported to the substrate 86 to form a film.
  • No discharge plasma is used in the catalytic chemistry vapor deposition method. Therefore, it is possible to avoid the problem that charged particles in the plasma collide with the surface of the substrate or the surface of the film being deposited to generate defects, and further, it has the effect of being able to produce a high-quality film at a low temperature.
  • a metal wire heated by energization is often used as the heated catalyst body, it is also called a hot wire CVD (Hot-Wire CVD method, HWCVD) method.
  • the substrate manufacturing apparatus 80 of this example has a pretreatment unit 83 that thermally decomposes the raw material gas 81 by a hot wire, and a film forming unit 88 that forms a film on the substrate 86 by the decomposed gas 85.
  • the pretreatment unit 83 includes a wire supply unit 50 that supplies and updates the wire 52 containing the catalyst material to the heated position P1.
  • the wire supply unit 50 of this example is a reel type, and is a power supply post that supplies power to two rolls 55 and 56 for winding the wire 52 and a wire 52 at the position P1 to be heated to function as a heating catalyst 84. Includes 57 and 58.
  • the wire 52 functioning as the heating catalyst 84 When the wire 52 functioning as the heating catalyst 84 is consumed by the raw material gas 81, the wire 52 functioning as the heating catalyst 84 can be renewed by the wire supply unit 50, and the gas 85 for film formation can be used. It can be stably supplied to the substrate 86 for a long time.
  • FIG. 13 shows a further different example of a system having a preprocessing apparatus and a main processing apparatus.
  • This system 100 is a plasma processing apparatus having a plasma generation unit 109 and a plasma processing unit 110.
  • An example of the plasma processing unit 110 is a gas analysis unit 20 that analyzes a plasma-generated gas, and may be a substrate generation unit that adjusts the surface of a substrate or the like by plasma.
  • the plasma generation unit 109 includes a chamber 108 for confining the plasma 102 generated by the gas 101, a thermion supply source 103 for supplying the thermion 104 for plasma generation, and a reflector 105.
  • the thermionic supply source 103 includes a first wire supply unit 50 that supplies the wire 52 that functions as the cathode 12, and a second wire supply unit 50a that supplies the wire 52a that functions as the filament 12a.
  • the wire supply units 50 and 50a are reel type, the first wire supply unit 50 includes rolls 55 and 56 for supplying the wire 52, and the second wire supply unit 50a is a roll 55a for supplying the wire 52a. And 56a are included.
  • the wire 52a supplied to the position P1 heated by the second wire supply unit 50a is heated and functions as a filament 12a to generate thermions 104.
  • the wire 52 supplied to the position P1 heated by the first wire supply unit 50 is heated by thermions from the filament 12a to generate thermions 104 for plasma generation.
  • the thermionic supply source 103 of the plasma generation unit 109 is the main processing of the gas 101 by the heated wires 52 and 52a in the container (chamber) 108 into which the gas 101 flows.
  • the thermionic source 103 stabilizes the thermionics 104 for generating the plasma 102 for a long period of time by updating the filaments 12a and the wires 52a and 52 serving as the cathode 12 as needed even for the corrosive gas 101. Can be supplied.
  • the device having the wire supply device 50 for updating the wire at the heated position is not limited to the above.
  • the wire supply device 50 can also be applied to a device having a cathode such as a klystron that enables high-power microwave output, and a device that consumes metal such as a getter pump.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

ガス(9)が流入する容器(19)内において加熱されたワイヤー(52)によりガスの主たる処理のための前処理を提供する装置(10)を提供する。この装置(10)は、ガスの流入に対するワイヤー(52)の加熱される位置を実質的に固定した状態で、加熱対象のワイヤー(52)を連続的に、または断続的に更新するワイヤー供給ユニット(50)を有する。ワイヤー供給ユニットは、複数の加熱対象のワイヤー(52)が搭載されたディスク(51)と、ディスク(51)を回転する機構(53)とを含んでもよい。

Description

加熱されたワイヤーによる処理を提供する装置
 本発明は、カソード、触媒体などとして機能する、加熱されたワイヤーによる処理を提供する装置に関するものである。
 日本国特開2017-107816号公報には、長寿命を担保できる熱電子放出用フィラメントを提供すること、及びこの熱電子放出用フィラメントを使用した質量分析計の分析精度を向上することに関する技術が開示されている。そのため、電流が流れる芯材と、前記芯材の表面を覆うように形成された電子放出層とを具備する熱電子放出用フィラメントであって、前記電子放出層がガスを実質的に遮断する緻密さを有することを特徴とすることが開示されている。
 カソード、触媒体などとして機能する、加熱されたワイヤーによる処理を提供する装置において、加熱されたワイヤーの寿命が、長時間にわたり安定したサービスを継続するための課題となっている。
 本発明の一態様は、ガスが流入する容器内において、加熱されたワイヤーにより、流入したガスの主たる処理のための前処理を提供する装置である。この装置は、ガスの流入に対するワイヤーの加熱される位置を実質的に固定した状態で、加熱対象のワイヤーを連続的に、または断続的に更新するワイヤー供給ユニットを有する。カソードなどのワイヤーがガス雰囲気中で加熱される以上、寿命を長期化するとしても大きな進展は望みにくい。一方、複数のワイヤーを事前に用意しておいても、加熱するワイヤーを切り替えるときに、流入するガスに対する加熱されたワイヤーの状態が変わると、前処理のみならず、主たる処理における影響が避けられない。本発明の装置においては、ワイヤー供給ユニットが、ガスの流入に対するワイヤーの加熱される位置を実質的に固定した状態で、加熱対象のワイヤーを連続的に、または断続的に更新する。このため、加熱されたワイヤーの寿命が限られていたとしても、加熱対象のワイヤーを更新することにより実質的な長寿命化を実現し、さらに、前処理および主たる処理に対する影響を最小限に止めることができる。
 ワイヤー供給ユニットは、複数の加熱対象のワイヤーが搭載されたディスクと、ディスクを回転する機構とを含んでもよい。ワイヤー供給ユニットは、加熱対象のワイヤーを連続的に供給するための一対のロールを含んでもよい。さらに、装置は、加熱対象のワイヤーまたは加熱対象のワイヤーの加熱された部分の履歴管理を行う管理ユニットを含んでもよい。
 加熱されたワイヤーの一例は、電子流を供給するカソードである。カソードを有する装置の一例は、イオン化対象のガスに対して電子流を供給してイオン流を提供するイオン源である。
 本発明の1つの態様は、上記の装置と、ガスの主たる処理を行う主処理装置とを有するシステムである。このシステムは、測定系のシステムであってもよく、例えば、加熱されたワイヤーは、電子流を供給するカソードであり、主処理装置は、電子流によりイオン化されたガスを分析するガス分析装置であってもよい。システムは、測定系または加工系であってもよく、例えば、交流の処理に対してプラズマを供給する装置であってもよい。すなわち、システムは、加熱されたワイヤーは、電子流を供給するカソードであり、主処理装置は、電子流により生成された、流入したガスのプラズマを供給する装置であってもよい。また、システムは加工系のシステムであってもよく、一例は、加熱されたワイヤーが、流入したガスを接触分解する触媒体であり、主処理装置は、分解種による膜を形成する装置であってもよい。
 本発明の他の態様の1つは、ガスが流入する容器内において加熱されたワイヤーによりガスの主たる処理のための前処理を提供する装置を有するシステムの制御方法である。装置は、加熱対象のワイヤーを連続的に、または断続的に更新するワイヤー供給ユニットを有し、制御方法は、ワイヤー供給ユニットが、ガスの流入に対するワイヤーの加熱される位置を実質的に固定した状態で、加熱対象のワイヤーを連続的に、または断続的に更新することを含む。
 ワイヤー供給ユニットは、複数の加熱対象のワイヤーが搭載されたディスクを含み、更新することは、ディスクを回転することを含んでもよい。ワイヤー供給ユニットは、加熱対象のワイヤーを連続的に供給するための一対のロールを含み、更新することは、ロールを回転することを含んでもよい。制御方法は、加熱対象のワイヤーまたは加熱対象のワイヤーの加熱された部分の履歴管理を行うことをさらに含んでもよい。
 本発明のさらに異なる態様の1つは、ガスが流入する容器内において加熱されたワイヤーによりガスの主たる処理のための前処理を提供する装置を有するシステムを制御するプログラムである。このプログラム(プログラム製品)は、適当なタイプの記録媒体(メモリ)に記録して提供してもよい。装置は、加熱対象のワイヤーを連続的に、または断続的に更新するワイヤー供給ユニットを有し、プログラムは、ワイヤー供給ユニットが、ガスの流入に対するワイヤーの加熱される位置を実質的に固定した状態で、加熱対象のワイヤーを連続的に、または断続的に更新することを実行する命令を含む。
従来の質量分析装置の一例を示すブロック図。 ワイヤー供給装置を含む質量分析装置の一例を示す図。 ワイヤー供給装置を含むイオン化ユニットの概略構成を示す図。 ワイヤー供給装置を含むイオン化ユニットの制御の概要を示すフローチャート。 異なるワイヤー供給装置を含む質量分析装置の例を示す図。 図5に示すワイヤー供給装置を含むイオン化ユニットの概略構成を示す図。 さらに異なるワイヤー供給装置を含むイオン化ユニットの一例を示す斜視図。 図7に示す装置の一部を拡大して示す図。 図7に示す装置の平面図。 図7に示す装置のX-X断面図。 さらに異なるワイヤー装置を含むイオン化ユニットを示す図。 基板製造装置の概略構成を示す図。 プラズマ処理装置の概略構成を示す図。
発明の実施の形態
 本発明の1つの実施形態はガス分析装置であり、その一例は質量分析装置である。半導体製造プロセスのモニタリングなどの、腐食性ガスが用いられる環境におけるアプリケーションにおいては、耐性の高いセンサーが求められている。
 図1を参照して、ガス分析装置の一例として四重極型質量分析計の概要を説明する。四重極質量分析計(質量分析装置)91は、分析対象のガス(ガスサンプル、サンプルガス)9をイオン化するイオン化装置(イオン化ユニット、イオン源)90と、イオン化されたガス8を分析するガス分析ユニット(ガス分析セクション)20とを含む。ガス分析ユニット20は、フィルター部である四重極部21と、四重極の各電極間を通って到達するガスイオン8を捕集する検出部(ファラデーカップ)30とを含む。四重極部21は、周方向に所定間隔で配置された上下方向に延びる複数本、典型的には4本の円柱状の電極を含む。質量分析装置91は、イオン化装置90およびガス分析ユニット20を収納する真空容器(ハウジング)19を含み、ハウジング19に流入したガス9をイオン化装置90によりイオン化する。
 イオン化装置90は、グリッド11と、電子流13を供給するカソードとして機能するフィラメント12とを含む。グリッド11の一例は、金属細線を格子状でかつ円筒形状に組み付けて構成される。フィラメント12は、支持フレームに周方向に所定間隔で設置された金属製の支持ピンに接続されており、グリッド11の外周に配置される。フィラメント12の一例は、イリジウムからなる母材の表面を電着処理により酸化イットリウムで被覆したものである。四重極部21とイオン化装置90との間には、四重極部21へ向かうイオンが効率よく収束するフォーカス電極25が介設されている。フォーカス電極25は、例えば、フィラメント12の支持ピンと電気的に接続されており、フィラメント12の電位とフォーカス電極25の電位とを同等としている。
 従来の質量分析装置91は、純粋なガス、すなわち、腐食性ガスではない環境を対象とした条件で稼働するように設計されている。この条件に対応したカソード材料(フィラメント材料)としては、Y/Ir、すなわち、芯材がイリジウムIrからなり、電子放出層が酸化イットリウム(イットリア、Y)からなるフィラメントがある。このフィラメント12は、YのイットリウムYはフッ素Fまたはフッ素系のガスと反応し、フッ化イットリウムYFまたはオキシフッ化イットリウムYOFとなり、これらは蒸発性である。フッ化炭素CFxを成分として含むガスに対しては、タングステンW材料がフィラメント材料(カソード材料)として有効であるとされている。しかしながら、タングステンWは、四塩化炭素CCl、塩酸HCl、フッ化タングステンWF、塩化タングステンWCL等のガスまたは環境においては十分な寿命があるとは言えない。
 また、シリコンオイルが含まれる環境下では、特に、質量分析装置91の起動、停止時に、Si、SiO、SiNなどでフィラメント12がコーティングされ、機能が阻害されることがある。フッ化メタンCF、フッ化窒素NFなどを含む腐食性のガスによりクリーニングすることも可能であるが、それによりフィラメント12の寿命はさらに短くなる可能性がある。
 図2に、本発明の実施形態の1つとしてガス分析装置を示している。このガス分析装置1は、質量分析装置であり基本的な構成は図1に示した質量分析装置91と共通する。すなわち、質量分析装置(ガス分析装置)1は、イオン化装置(イオン化ユニット)10と、ガス分析ユニット20とを含む。質量分析装置1は、さらに、イオン化ユニット10と、フォーカス電極25と、四重極フィルター部21と、検出部30とを収納する真空容器(ハウジング)19を含む。質量分析装置1は、ハウジング19を負圧(真空)に維持するシステム、例えば、真空ポンプ(ターボモレキュラポンプ、ルーツポンプ(不図示))を含んでいてもよい。質量分析装置1は、半導体製造プロセスなどのモニタリングまたは検査対象のプロセス5からのサンプリングガス9をイオン化ユニット10でイオン化し、イオン化されたガス8をガス分析ユニット20により分析する。質量分析装置1は、イオン化ユニット10を制御するイオン化ユニット制御装置(イオン化ユニット制御回路、イオン源駆動回路)18と、四重極フィルター部21に駆動用のRFおよびDC電力を供給する四重極駆動回路28とを有する。
 イオン化ユニット10は、カソード(フィラメント)12として加熱されるワイヤー52を供給する供給ユニット(ワイヤー供給装置、カソード供給装置)50を含む。ワイヤー供給ユニット50は、電子流13を供給するカソード(フィラメント)12として機能するワイヤー52を連続的に、または断続的に更新し、イオン化ユニット10の電子流13の発生寿命を大幅に拡張する。すなわち、このイオン化ユニット(イオン化装置)10は、処理対象となるガス(サンプルガス)9が流入する容器(真空容器)19の内部において、加熱されたワイヤー52をカソード(フィラメント)として機能させ、ガス9の主たる処理であるガス分析ユニット20によるガス分析のための前処理として、電子流13によりガス9をイオン化する処理を提供する。また、ガス分析装置である質量分析装置1のガス分析ユニット20は、イオン化されたガス8に対してガス分析という主たる処理を行う装置である。すなわち、質量分析装置1は、ガス9に対して前処理を行うイオン化ユニット10と、主たる処理であるガス分析を行うガス分析ユニット20とを備えたシステムの一例である。
 このワイヤー供給ユニット50は、ガス9の流入に対し、カソード12として機能する加熱されたワイヤー52の位置(ワイヤー52が加熱される位置)を実質的に固定した状態で、加熱対象のワイヤー52を連続的に、または断続的に更新する。このため、ワイヤー供給ユニット50を有するイオン化ユニット10は、流入するガス(サンプリングガス)9に対して、一定の位置でイオン化用の電子流13を供給できるように構成されている。すなわち、ワイヤー供給ユニット50は、カソード(フィラメント)12として機能するワイヤー52は更新されるが、カソード12として加熱される位置は固定されており、容器19に流入するガス9に対して一定の条件で、加熱されたワイヤー52から電子流13を安定して供給できる。
 図3に、本例のワイヤー供給ユニット50を含むイオン化ユニット10の構成を模式的に示している。ワイヤー供給ユニット50は、回転タイプであり、複数の加熱対象のワイヤー52がグリッド11を囲むように配置されたディスク51と、ディスク51を回転駆動する機構53とを含む。ディスク51を回転駆動する機構(回転機構)53は、モーターであってもよく、ピエゾ素子などの圧電素子であってもよく、リンク機構を用いて容器19の外側から操作するものであってもよく、ディスク51を回転させて所定の位置で停止できる機構であればよい。制御回路18の更新制御ユニット(回転制御ユニット、位置制御ユニット)18cが回転機構53を介してディスク51を回転することにより、複数の加熱対象のワイヤー52のいずれかを、電子流13を供給するように定められた位置P1にセットする。ワイヤー供給ユニット50は、位置P1にセットされたワイヤー52に、制御回路18の電力制御ユニット18aからフィラメント電力を供給する電力供給機構(電力供給ライン)59を備えており、加熱位置(供給位置)P1にセットされたワイヤー52が加熱され、カソード(フィラメント)12として機能し、熱電子流13を発生させる。
 制御回路18は、さらに、加熱位置P1におけるワイヤー52の加熱時間や、ディスク51に配置された加熱済み、あるいは未加熱の加熱対象のワイヤー52の履歴を管理する履歴管理ユニット18bを含む。履歴管理ユニット18bは、複数の加熱対象のワイヤー52を、加熱位置P1において寿命に達するまで連続して使用してもよく、複数の加熱対象のワイヤー52のそれぞれを適当な時間だけ均等に加熱して繰り返し使用してもよい。
 ワイヤー供給ユニット50は、さらに、加熱位置P1にセットされていない他の加熱対象のワイヤー52を電子流13やイオン流8から保護する物理的な遮蔽または保護電極54を備えていてもよい。保護電極54は、電子流13の衝撃から加熱対象のワイヤー52を保護するため、および電子流13の拡散を防止するために負電圧が印加されたグリッドであってもよい。保護電極54は、ディポジット、化学反応あるいはアタックから隔離するようにワイヤー52とグリッド11との間、あるいはワイヤー52とハウジング19との間に設けてもよい。ディスク51の複数のワイヤー52の中で、カソード(フィラメント)12として使用されない(加熱されない)ワイヤー52は、ディポジットや、ガスおよびイオンとの反応あるいはアタックを防止するような電位に保持してもよい。
 ワイヤー52が加熱されて電子流13の生成箇所となる加熱位置(ワイヤーが加熱される位置、供給位置)P1は、モニタリング対象のプロセス5から供給される分析対象ガス(サンプリングガス、イオン化対象のガス)9に対する電子流13の供給源としての位置が実質的に固定されるように設定されていればよい。例えば、イオン化ユニット10の内部における特定の位置であってもよく、後流で主たる処理であるガス分析を行う四重極部21に対する特定の位置であってもよい。
 ガス分析装置(質量分析装置)1においては、サンプリングガス9の流れまたは分布、および/フィルター部である四重極部21に対する電子の流れが変わることにより、イオン化の傾向、イオンの分布、フィルター部の感度が変化する可能性があり、定性的な分析には大きな影響を及ぼさないとしても、定量分析には影響を与え、再現性が低下する可能性がある。このイオン化ユニット10においては、加熱されるワイヤー52が代わっても、質量分析装置1の真空容器19内においてワイヤー52が加熱される位置P1は変わらない。このため、加熱されるワイヤー52が代わっても、容器19に流入するガス9と、それに対して供給される電子流13との関係は変わらず、後流のガス分析ユニット20に供給されるイオン流8の状態の変動も抑制される。したがって、加熱されるワイヤー52が代わっても、再現性の高い測定(分析)を継続して行うことができる。
 複数のワイヤー52を搭載したディスク51を回転させる代わりに、サンプリングガス9の供給路の構成を変形して、加熱され熱電子13を発生するカソード(フィラメント)12と機能するワイヤー52に対するサンプリングガス9の供給条件が同一になるように調整してもよい。また、異なる位置のワイヤー52がカソード(フィラメント)12として加熱されたときに、そのワイヤー52により生成された電子流13が加熱位置P1からグリッド11に向けて供給されるような回路を設けてもよい。しかしながら、後流の四重極部21に対する電子流13およびイオン流8の条件の変動を抑制する好適な方法の1つは、ディスク51をローテーションすることにより、固定された加熱位置P1に移動したワイヤー52を加熱してカソード(フィラメント)12として機能させることである。
 このワイヤー供給装置50においては、加熱位置P1でカソード12として電子流13を供給している加熱されたワイヤー52が、プロセス5からのガス9に含まれる腐食性の成分などにより腐食または減肉などにより消耗が進むと、ディスク51を回転し、新たなワイヤー52を加熱位置P1にセットする。その新たなワイヤー52を加熱することにより、電子流13の発生源としての位置を動かさずに、カソード12をリフレッシュすることができ、安定した電子流13を供給することができる。ワイヤー供給装置50は、ディスク51を回転することにより、複数の加熱対象のワイヤー52を次々と加熱する位置P1へ移動させてイオン化のために使用することができる。このため、このイオン化ユニット10においては、イオン化に使用される電子流13を供給するカソード12としての機能の寿命を延長でき、イオン化ユニット10の寿命が質量分析装置1の継続的な運用のネックとなることを抑制できる。
 ワイヤー供給装置50のディスク51に設けられる複数のワイヤー52は同一の材料から構成されていてもよく、異なる材料により構成されていてもよい。異なる材料のワイヤー52を搭載したワイヤー供給装置50の一例は、例えば、通常のガス9に対してはY/Irのワイヤー52を加熱位置P1に設定し、測定対象がCFx成分のガスに対しては、タングステンW材料からなるワイヤー52を加熱位置P1に設定し、CCl、HCl、WF、WCLなどのガスに対しては、それに適した材料のワイヤー52を加熱位置P1に設定してもよい。また、これらのガス9に対する消耗を前提としたバルクタイプの棒状のワイヤー52を準備し、加熱位置P1のワイヤー52を次々と更新してもよい。
 カソード(フィラメント)12として加熱中のワイヤー52の交換(更新、ローテーション)は、カソード12として稼働中のワイヤー52の抵抗値などをモニタリングして消耗度を判断してローテーションしてもよく、質量分析装置1において分析されたガス成分により、その成分のガス9のモニタリング・測定に適したタイプのワイヤー52がカソード12として加熱されるようにディスク51をローテーションしてもよい。また、各ワイヤー52の消耗度に大きな差が発生することによる電子流13の条件の変動を抑制するために、各ワイヤー52の消耗度が所定の範囲内になるように、ディスク51に用意された複数のワイヤー52の履歴管理を行う履歴管理ユニット18bを設けてもよい。たとえば、個々のワイヤー52の消耗度をメモリ(不図示)に記憶しておき、最適な順番でワイヤー52の消耗が進むようにローテーションさせてもよい。ワイヤー供給装置50のこのような操作は、イオン化ユニット10を制御する制御回路18として、ハードウェアまたはソフトウェア(プログラム、プログラム製品)により実現されてもよい。制御回路18はメモリ、CPUなどのコンピュータ資源を備えていてもよい。ワイヤー供給ユニット50が、ガス9の流入に対するワイヤー52の加熱される位置P1を実質的に固定した状態で、加熱対象のワイヤーを連続的に、または断続的に更新することを実行する命令を含むプログラム(プログラム製品)18pをメモリなどの記録媒体に記録して提供してもよい。
 図4に、ワイヤー供給ユニット50を含むイオン化ユニット10の制御方法の一例を示している。ステップ71において、ワイヤー供給ユニット50により、加熱する位置P1にワイヤー52をセットし、カソード(フィラメント)12として機能するようにワイヤー52を加熱する。ステップ72において、加熱中のワイヤー52の状態を監視する。質量分析において多くのデータが得られているイオン化エネルギーは70eVであり、イオン化電圧を70Vに制御することが多い。さらに、モバイルまたはハンディタイプの機器に質量分析装置1が搭載される場合は、電源電圧が限られたり、消費電流が限られる。このため、カソード(フィラメント)12に印加されるイオン化電圧を制限したいケースもある。したがって、イオン化電圧を一定に保ちながら、経時変化等に応じてイオン化電流を所定の範囲に保持することは重要である。電力制御ユニット18aは、加熱されているワイヤー52の電流特性、使用時間をモニターし、使用時間、稼働温度などの稼働条件により、加熱されているワイヤー52の電流特性(抵抗値)が所定の範囲を超えて劣化したとき、あるいは劣化が想定されるときに、異なるワイヤー52に自動的に切り替えて更新する。
 したがって、ステップ73において、カソード12として加熱されているワイヤー52を更新する条件が発生すると、ステップ74において、履歴管理ユニット18bが、加熱対象の他のワイヤー52の履歴をチェックする。ステップ75において、更新制御ユニット18cが、次に加熱する対象として適当なワイヤー52を選択して加熱する位置P1にセットする。すなわち、ステップ75において、ワイヤー供給ユニット50が、ガスの流入に対するワイヤー52の加熱される位置P1を実質的に固定した状態で、加熱対象のワイヤー52を連続的に、または断続的に更新する。さらに具体的には、複数の加熱対象のワイヤー52が搭載されたディスク51を回転することにより、加熱位置P1におけるワイヤー52を更新する。
 図5に、本発明の実施形態のガス分析装置の異なる例を示している。図6に、ワイヤー供給装置を含むイオン化ユニット10の概略構成を模式的に示している。このガス分析装置は、質量分析装置1であり基本的な構成は図2に示した質量分析装置1と共通する。この質量分析装置1のイオン化ユニット(イオン化装置)10は、リールタイプ(ロールからロールへ巻き取るタイプ)のワイヤー供給ユニット(ワイヤー供給装置)50を含む。
 ワイヤー供給ユニット50は、電子流13の供給位置となる加熱位置P1の両側に配置されたプラスおよびマイナスのフィラメントポスト(支持ピン、電力供給ピン)57および58と、それらのポスト57および58に接するようにワイヤー52を供給する第1のリール(ロール)55と、ワイヤー52を回収するロール56とを含む。これら一対のロール55および56は、ポスト57および58の間の加熱位置P1に存在するワイヤー52を連続して更新することを可能とする。ポスト57および58の間の加熱位置P1にセットされたワイヤー52には、ポスト57および58を介して電力制御ユニット18aからフィラメント電力が供給され、ワイヤー52が加熱される。このため、ポスト57および58の間に配置されたワイヤー52は、カソード(フィラメント)12として機能し、固定された加熱位置P1から熱電子13を供給することができる。
 供給ロール(リール)55には、カソード(フィラメント)12として機能する材料からなるワイヤー52が巻き込まれて用意されており、加熱位置P1でカソード(フィラメント)12として動作するワイヤー52の消耗が進むと、ロール55から新たなワイヤー52が供給される。同時に、消耗されたワイヤー52はロール56に巻き取られる。したがって、加熱位置P1でカソード(フィラメント)12として稼働中のワイヤー52が腐食性のガスなどにより減肉したり消耗しても、新たなワイヤー52が加熱位置P1に供給される。このため、イオン化ユニット10においては、イオン化対象のガス(ガスフロー)9、および後流の主処理装置であるガス分析ユニット20の四重極部21に対する条件がほとんど変化しない状態で、継続して電子流13を安定して供給することができる。
 ワイヤー供給ユニット50は、加熱位置P1に対し、ワイヤー52を断続的に供給してカソード(フィラメント)12として稼働するワイヤー52を新しいワイヤー52に更新してもよい。ロール55および56を適当な速度で連続的に回転させて、加熱位置P1におけるカソード(フィラメント)12として稼働するワイヤー52を連続的に、また部分的に更新してもよい。ワイヤー供給ユニット50は、ロール55および56に巻き取られているワイヤー52を含めて、消耗度の変動を抑制するようにプログラムされてもよい。例えば、カソード(フィラメント)12として稼働しているワイヤー52の消耗度は抵抗値などでモニタリングしながら、あるいはモニタリングせずに一定のスピードで、ワイヤー52を継続的にロール55からロール56へ移動させ、ロール56に巻き取られると、逆方向に、ロール56からロール55にワイヤー52を巻き取る制御をワイヤー供給ユニット50が行ってもよい。加熱場所(加熱位置)P1におけるワイヤー52の極端な消耗を抑制でき、ワイヤー52の移動中の断線などのトラブルを防止できる。
 リールタイプのワイヤー供給ユニット50の制御方法においては、ワイヤー52の全長にわたる消耗度の履歴管理を、履歴管理ユニット18bがソフトウェアを用いて行ってもよい。また、上述した制御方法において、ワイヤーを更新するステップでは、ワイヤー供給ユニット50が、加熱対象のワイヤー52を連続的に供給するための一対のロールを回転することにより加熱位置P1におけるワイヤー52を更新する。
 ワイヤー52にポスト57および58から電力を効率よく供給するためには、ワイヤー52がポスト57および58に対して継続的に接触していることが重要である。このため、ワイヤー52には常にある程度のテンション(引っ張り力)を加えておくことが好ましい。一例は、図6に示すように弾性部材69によりロール55および56の一方または双方を引っ張ることである。ワイヤー52を支持する他のポストを弾性的に動くようにしてもよく、ロール55および56の一方または双方が張力調整機構(テンショナ)を内蔵していてもよい。
 図7~図10に、リールタイプのワイヤー供給装置50を含むイオン化ユニット10の異なる例を示している。図7は、装置50の全体を示す斜視図であり、図8はワイヤー52の供給部分を拡大して示す斜視図であり、図9は容器19内、すなわち真空側7の配置を示す平面図であり、図10は、図7のX-X断面図である。ワイヤー供給装置50は、真空容器19に取り付けるためのフランジ61を含む。ワイヤー供給装置50は、フランジ61の真空側(内側)7に配置された、一対のロール55および56と、これらのロール55および56により供給されるワイヤー52と、ワイヤー52を所定の位置(加熱位置)P1で電力を供給して加熱するフィラメントポスト57および58とを含む。また、ワイヤー供給装置50は、フランジ61の大気圧側(外側)6に配置された、ロール(リール)55を駆動するモーター63と、ロール56に張力を発生させる張力調整機構(テンショナ)64と、フィラメントポスト57および58に電力を供給するパワーフィードスルー66とを含む。モーター63およびロール55はシャフト65aで接続され、テンショナ64とロール56とはシャフト65bで接続されており、これらのシャフト65aおよび65bは、強磁性流体フィードスルー(ferrofluid feedthrough)などの適当な軸貫通シール62を用いることにより、大気圧側6と真空側7とを仕切るフランジ61を介して接続されている。
 図11に、リールタイプのワイヤー供給装置50を含むイオン化ユニット10のさらに異なる例を示している。このワイヤー供給装置50は、ワイヤー52を供給および回収するロール55および56を真空容器(ハウジング)19の外の大気中6に配置し、ワイヤー52を適当なシールを介して真空容器19の外側に引き出せるようにしている。このワイヤー供給装置50においては、大気中6に配置されたロール55および56を適宜交換することが可能であり、消耗したワイヤー52を交換し、イオン化ユニット10のカソード(フィラメント)12の実質的な寿命をさらに延長することが可能となる。
 上記では、ワイヤー供給ユニット50を含む前処理を提供する装置としてイオン化装置10を例に説明している。また、前処理されたガスの主たる処理を行う主処理装置として、四重極タイプのガス分析ユニット20を例に説明しており、前処理を行う装置と主処理装置とを有するシステムとしては、質量分析装置(ガス分析装置)1を例に説明している。ガス分析ユニット20は、四重極タイプであってもよく、イオントラップ型であってもよく、ウィーンフィルターなどの他のタイプであってもよい。また、前処理を行う装置と主処理装置とを有するシステムはガス分析装置には限定されない。
 図12に、前処理を行う装置と主処理装置とを有するシステムの異なる例を示している。このシステム80は、触媒化学気相堆積法(Catalytic Chemical Vapor Deposition、Cat-CVD method)で基板上に薄膜または層を形成する基板製造装置である。この基板製造装置80は、原料ガス81を、ヘッダー82を介して、真空に引かれた堆積チャンバー89に導入する。チャンバー89内において、原料ガス分子81を、加熱した触媒体84に接触させ、そこでの接触分解反応(Catalytic Cracking Reaction)を用いて分解、その分解されたガス(分解種)85をホルダ87に設置された基板86に輸送して成膜する。触媒化学気相堆積法においては放電プラズマを一切用いない。このため、プラズマ中の荷電粒子が、基板表面や堆積中の膜表面に衝突し、欠陥を生成するといった問題が回避でき、さらに、低温で高品質膜を作ることができるという効果を有する。この方法では、加熱した触媒体として通電加熱された金属線を用いることが多いので、ホットワイヤーCVD(Hot-Wire CVD法、HWCVD)法とも呼ばれている。
 本例の基板製造装置80は、ホットワイヤーにより原料ガス81を熱分解する前処理ユニット83と、分解されたガス85により基板86の上に成膜する成膜ユニット88とを有する。前処理ユニット83は、触媒となる材料を含むワイヤー52を加熱される位置P1に供給し、更新するワイヤー供給ユニット50を含む。本例のワイヤー供給ユニット50はリールタイプであり、ワイヤー52を巻き取る2つのロール55および56と、加熱される位置P1のワイヤー52に電力を供給して加熱触媒体84として機能させる電力供給ポスト57および58とを含む。原料ガス81により加熱触媒体84として機能するワイヤー52が消耗した場合には、ワイヤー供給ユニット50により加熱触媒体84として機能するワイヤー52を更新することが可能であり、成膜用のガス85を安定して長時間にわたり基板86に供給できる。
 図13に、前処理を行う装置と主処理装置とを有するシステムのさらに異なる例を示している。このシステム100は、プラズマ生成ユニット109と、プラズマ処理ユニット110とを有するプラズマ処理装置である。プラズマ処理ユニット110の一例は、プラズマ化されたガスを分析するガス分析ユニット20であり、プラズマにより基板などの表面を調整する基板生成ユニットであってもよい。
 プラズマ生成ユニット109は、ガス101により生成されたプラズマ102を閉じ込めるチャンバー108と、プラズマ生成用の熱電子104を供給する熱電子供給源103と、リフレクター105とを含む。熱電子供給源103は、カソード12として機能するワイヤー52を供給する第1のワイヤー供給ユニット50と、フィラメント12aとして機能するワイヤー52aを供給する第2のワイヤー供給ユニット50aとを含む。ワイヤー供給ユニット50および50aは、リールタイプであり、第1のワイヤー供給ユニット50は、ワイヤー52を供給するロール55および56を含み、第2のワイヤー供給ユニット50aは、ワイヤー52aを供給するロール55aおよび56aを含む。第2のワイヤー供給ユニット50aにより加熱される位置P1へ供給されたワイヤー52aが加熱されてフィラメント12aとして機能し、熱電子104を生成する。第1のワイヤー供給ユニット50により加熱される位置P1へ供給されたワイヤー52は、フィラメント12aからの熱電子で加熱されてプラズマ生成用の熱電子104を発生する。
 このプラズマ処理装置(システム)100において、プラズマ生成ユニット109の熱電子供給源103は、ガス101が流入する容器(チャンバー)108内で、加熱されたワイヤー52および52aにより、ガス101の主たる処理であるプラズマ生成のための熱電子を生成する前処理を提供する装置である。熱電子供給源103は、腐食性のガス101に対しても、フィラメント12aおよびカソード12となるワイヤー52aおよび52を随時更新することにより、プラズマ102を生成するための熱電子104を長期間にわたり安定して供給できる。
 加熱される位置におけるワイヤーを更新するワイヤー供給装置50を有する装置は上記に限定されない。ワイヤー供給装置50は、大電力のマイクロ波出力を可能とするクライストロンなどのカソードを備えた装置や、ゲッターポンプなど金属が消費される装置についても適用できる。
 なお、上記においては、本発明の特定の実施形態を説明したが、様々な他の実施形態および変形例は本発明の範囲および精神から逸脱することなく当業者が想到し得ることであり、そのような他の実施形態および変形は以下の請求の範囲の対象となり、本発明は以下の請求の範囲により規定されるものである。

Claims (15)

  1.  ガスが流入する容器内において加熱されたワイヤーにより前記ガスの主たる処理のための前処理を提供する装置であって、
     前記ガスの流入に対するワイヤーの加熱される位置を実質的に固定した状態で、加熱対象のワイヤーを連続的に、または断続的に更新するワイヤー供給ユニットを有する装置。
  2.  請求項1において、
     前記ワイヤー供給ユニットは、複数の前記加熱対象のワイヤーが搭載されたディスクと、
     前記ディスクを回転する機構とを含む、装置。
  3.  請求項1または2において、
     前記ワイヤー供給ユニットは、前記加熱対象のワイヤーを連続的に供給するための一対のロールを含む、装置。
  4.  請求項1ないし3のいずれかにおいて、
     前記加熱対象のワイヤーまたは前記加熱対象のワイヤーの加熱された部分の履歴管理を行う管理ユニットを含む、装置。
  5.  請求項1ないし4のいずれかにおいて、
     前記加熱されたワイヤーは、電子流を供給するカソードである、装置。
  6.  請求項5において、
     当該装置は、イオン化対象のガスに対して電子流を供給してイオン化するイオン化装置である、装置。
  7.  請求項1ないし4のいずれかに記載の装置と、
     前記ガスの主たる処理を行う主処理装置とを有するシステム。
  8.  請求項7において、
     前記加熱されたワイヤーは、電子流を供給するカソードであり、
     前記主処理装置は、前記電子流によりイオン化されたガスを分析するガス分析ユニットである、システム。
  9.  請求項7において、
     前記加熱されたワイヤーは、電子流を供給するカソードであり、
     前記主処理装置は、前記電子流により生成された前記ガスのプラズマを供給する装置である、システム。
  10.  請求項7において、
     前記加熱されたワイヤーは、前記ガスを接触分解する触媒体であり、
     前記主処理装置は、分解種による膜を形成する装置である、システム。
  11.  ガスが流入する容器内において加熱されたワイヤーにより前記ガスの主たる処理のための前処理を提供する装置を有するシステムの制御方法であって、
     前記装置は、加熱対象のワイヤーを連続的に、または断続的に更新するワイヤー供給ユニットを有し、
     前記ワイヤー供給ユニットが、前記ガスの流入に対するワイヤーの加熱される位置を実質的に固定した状態で、前記加熱対象のワイヤーを連続的に、または断続的に更新することを含む、方法。
  12.  請求項11において、
     前記ワイヤー供給ユニットは、複数の前記加熱対象のワイヤーが搭載されたディスクを含み、
     前記更新することは、前記ディスクを回転することを含む、方法。
  13.  請求項11において、
     前記ワイヤー供給ユニットは、前記加熱対象のワイヤーを連続的に供給するための一対のロールを含み、
     前記更新することは、前記ロールを回転することを含む、方法。
  14.  請求項11ないし13のいずれかにおいて、
     前記加熱対象のワイヤーまたは前記加熱対象のワイヤーの加熱された部分の履歴管理を行うことをさらに含む、方法。
  15.  ガスが流入する容器内において加熱されたワイヤーにより前記ガスの主たる処理のための前処理を提供する装置を有するシステムを制御するプログラムであって、
     前記装置は、加熱対象のワイヤーを連続的に、または断続的に更新するワイヤー供給ユニットを有し、
     前記ワイヤー供給ユニットが、前記ガスの流入に対するワイヤーの加熱される位置を実質的に固定した状態で、前記加熱対象のワイヤーを連続的に、または断続的に更新することを実行する命令を含む、プログラム。
     
PCT/JP2020/012837 2019-03-25 2020-03-24 加熱されたワイヤーによる処理を提供する装置 WO2020196450A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019057146A JP2022078366A (ja) 2019-03-25 2019-03-25 イオン化装置
JP2019-057146 2019-03-25

Publications (1)

Publication Number Publication Date
WO2020196450A1 true WO2020196450A1 (ja) 2020-10-01

Family

ID=72611956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012837 WO2020196450A1 (ja) 2019-03-25 2020-03-24 加熱されたワイヤーによる処理を提供する装置

Country Status (2)

Country Link
JP (1) JP2022078366A (ja)
WO (1) WO2020196450A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58500827A (ja) * 1981-05-26 1983-05-19 ヒユ−ズ・エアクラフト・カンパニ− フイラメント補給型カソ−ド
JPS60158654U (ja) * 1984-03-30 1985-10-22 株式会社島津製作所 イオン源装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58500827A (ja) * 1981-05-26 1983-05-19 ヒユ−ズ・エアクラフト・カンパニ− フイラメント補給型カソ−ド
JPS60158654U (ja) * 1984-03-30 1985-10-22 株式会社島津製作所 イオン源装置

Also Published As

Publication number Publication date
JP2022078366A (ja) 2022-05-25

Similar Documents

Publication Publication Date Title
US11942312B2 (en) Gas analyzer apparatus
JP6208109B2 (ja) イオン注入システムの性能を改善し、寿命を延ばす方法
US6821377B2 (en) Plasma processing apparatus
US20130112670A1 (en) Heat treatment apparatus
JP2009245988A (ja) プラズマ処理装置、チャンバ内部品及びチャンバ内部品の寿命検出方法
JP2010533933A (ja) プロセス監視に使用される分圧分析器のための原位置イオン源洗浄
WO2020196450A1 (ja) 加熱されたワイヤーによる処理を提供する装置
JP4976035B2 (ja) 帯電装置、プロセスカートリッジ及び画像形成装置
JP2007243020A (ja) プラズマ処理装置
US20170169981A1 (en) Thermionic emission filament, quadrupole mass spectrometer and residual gas analyzing method
JP2001230234A (ja) プラズマ処理装置及び方法
EP3951377B1 (en) Gas analyzing device and method for controlling gas analyzing device
JP3534716B2 (ja) プラズマ処理方法
KR102724713B1 (ko) 가스 분석 장치 및 가스 분석 장치의 제어 방법
JP3804561B2 (ja) プラズマ処理装置およびプラズマ処理方法
TW202433035A (zh) 半導體製造系統、其控制方法及控制該系統的電腦程式
JP2005248194A (ja) 薄膜蒸着装置及び薄膜蒸着方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20778348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP