WO2020196226A1 - Heat-resistant packaging bag and method for manufacturing same - Google Patents

Heat-resistant packaging bag and method for manufacturing same Download PDF

Info

Publication number
WO2020196226A1
WO2020196226A1 PCT/JP2020/012208 JP2020012208W WO2020196226A1 WO 2020196226 A1 WO2020196226 A1 WO 2020196226A1 JP 2020012208 W JP2020012208 W JP 2020012208W WO 2020196226 A1 WO2020196226 A1 WO 2020196226A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
heat
resin layer
resin
film
Prior art date
Application number
PCT/JP2020/012208
Other languages
French (fr)
Japanese (ja)
Inventor
廣田 宗久
山田 俊樹
源英 畠
連 松▲崎▼
村上 恵喜
厚 深堀
Original Assignee
東洋製罐株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐株式会社 filed Critical 東洋製罐株式会社
Priority to JP2021509294A priority Critical patent/JPWO2020196226A1/ja
Publication of WO2020196226A1 publication Critical patent/WO2020196226A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/20Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • B65D81/26Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators

Definitions

  • the present invention relates to a heat-resistant packaging bag and a method for manufacturing the same. More specifically, the present invention comprises a multilayer film having a small number of laminating times and a reduced amount of adhesive used, and is excellent in productivity and flavor.
  • the packaging bag and its manufacturing method are particularly important.
  • Packaging bags containing food and drink have heat resistance that can be used for heat sterilization such as boil sterilization and retort sterilization, or heat cooking such as water bath and microwave oven heating, and impact resistance that can withstand drop impacts.
  • it is formed of a multilayer film (laminated body) formed by laminating layers made of various materials in order to satisfy required performance such as barrier properties.
  • Patent Document 1 describes biaxially stretched polyethylene terephthalate (hereinafter, may be referred to as “PET”)-based film and polybutylene terephthalate (hereinafter, “PET”) in order from the outer surface in order to prevent holes due to microwave heating.
  • PET biaxially stretched polyethylene terephthalate
  • PET polybutylene terephthalate
  • a packaging bag made of a laminate made of a film (sometimes called PBT) and a thermosetting resin layer has been proposed.
  • Patent Document 2 includes a laminate including an outer surface and an inner surface, and a sealing portion for joining the inner surfaces of the laminate, and the laminate is a base material / adhesive in order from the outer surface side to the inner surface side.
  • the base material comprises 51% by mass or more of polybutylene terephthalate
  • the adhesive layer contains a cured product of a polyol and an aliphatic isocyanate compound, and the aliphatic isocyanate with respect to the hydroxy group of the polyol. Bags have been proposed in which the isocyanate group of the compound has a molar ratio of 3.5 or more.
  • a laminated body mainly composed of PET film and PBT film having excellent heat resistance is used, but since it is laminated via an adhesive layer, it is a thermosetting resin.
  • Two laminating steps are required to form a three-layered laminate including the layers.
  • the number of layers of the laminated body increases, the number of laminations increases, such as providing a barrier layer to improve the barrier property of the packaging bag. Therefore, the laminating method by film laminating using an adhesive is inferior in productivity and economy. ..
  • the amount of adhesive used also increases, so that not only the problems of productivity and economy but also the influence on the flavor of the contents are concerned.
  • the print layer is formed inside the laminate in order to protect the print layer, but the print layer is an inner layer (sealant layer). If it is close to, the printing ink may impair the flavor of the contents.
  • an object of the present invention is to provide a layer having the performance required for a packaging bag and to use a multilayer film having a layer structure capable of reducing the number of times of laminating, which has excellent heat resistance in productivity, economy and flavor.
  • Another object of the present invention is to provide a manufacturing method for efficiently manufacturing a multilayer film having a layer having a performance required for a packaging bag with a small number of laminating times to obtain a packaging bag.
  • the base material comprises a base material layer made of a polyester resin, a functional resin layer based on a polyester resin adjacent to the base material layer, a printing layer, and a multilayer film having at least a top coat layer.
  • a heat-resistant packaging bag characterized in that the layer and the functional resin layer are laminated films by coextrusion.
  • the functional resin layer is at least one layer of a barrier resin layer, a heat-sealing resin layer, an oxygen-absorbing resin layer, an easily-openable resin layer, and an impact-resistant resin layer.
  • the functional resin layer is a thermosetting resin layer, and a barrier layer composed of a vapor-deposited layer or a coating layer is formed on the base material layer.
  • the functional resin layer is a barrier resin layer composed of a polyester resin layer having a barrier layer composed of a vapor deposition layer or a coating layer, and the base material layer and the polyester resin layer are laminated films by coextrusion. 5.
  • the heat-sealable resin layer is formed on one surface of the base material layer, and any one of the oxygen-absorbing resin layer, the easily-openable resin layer, and the impact-resistant resin layer is formed on the other surface.
  • the three layers of the heat-sealing resin layer, the base material layer, the oxygen-absorbing resin layer, the easily-openable resin layer, and the impact-resistant resin layer are coextruded. Being a laminated film, 6.
  • the functional resin layer is any one of the barrier resin layer, the oxygen absorbing resin layer, the easily openable resin layer, and the impact resistant resin layer, and the functional resin of the base material layer.
  • a thermosetting layer made of polyolefin is formed via an adhesive on the surface opposite to the surface adjacent to the layers.
  • the print layer is formed on the outer surface side of the base material layer, and the top coat layer is formed on the outer surface side of the print layer. Is preferable.
  • a laminated film composed of a base material layer made of a polyester resin and a functional resin layer based on a polyester resin is formed by coextrusion lamination, and an adhesive is applied to the base material layer side of the laminated film.
  • a method for producing a heat-resistant packaging bag which comprises superimposing and heat-sealing heat-sealing layers made of polyolefin so as to be on the inner surface.
  • a laminated film composed of a heat-sealing resin layer made of a polyester resin, a base material layer made of a polyester resin, and a functional resin layer based on a polyester resin is further formed by coextrusion laminating, and the laminated film is formed.
  • a multilayer film formed by forming a top coat layer on the print layer is laminated so that the heat-sealable resin layers are on the inner surface.
  • a method for producing a heat-resistant packaging bag which comprises making a bag by heat-sealing.
  • the functional resin layer is a barrier resin layer composed of a polyester resin layer having a barrier layer composed of a vapor deposition layer or a coating layer, and the vapor deposition layer or the coating layer is used. It is preferable to form a barrier layer by forming it on the laminated film.
  • the amount of adhesive used is reduced by using a multilayer film in which the functional resin layer required for the packaging bag is efficiently laminated, and productivity, economy and flavor are achieved. Is excellent. Further, according to the method for producing a packaging bag of the present invention, the functional resin layer can be efficiently laminated by coextrusion, which is excellent in productivity and economy.
  • FIG. 1 It is a figure which shows an example of the layer structure of the multilayer film used for the packaging bag of this invention. It is a figure which shows another example of the layer structure of the multilayer film used for the packaging bag of this invention. It is a figure which shows another example of the layer structure of the multilayer film used for the packaging bag of this invention. It is a figure which shows another example of the layer structure of the multilayer film used for the packaging bag of this invention. It is a figure which shows another example of the layer structure of the multilayer film used for the packaging bag of this invention. It is a figure which shows another example of the layer structure of the multilayer film used for the packaging bag of this invention.
  • the heat-resistant packaging bag of the present invention is made of a multilayer film having at least a base material layer made of a polyester resin and a functional resin layer based on a polyester resin adjacent to the base material layer, and the base material layer and the functionality.
  • the resin layer is a laminated film produced by coextrusion. That is, since the base resin of the base material layer and the functional resin layer is made of polyester resin, the packaging bag of the present invention has heat resistance that can be used for retort sterilization and the like. Further, since the base resin of the base material layer and the functional resin layer are both made of polyester resin, they can be laminated without using an adhesive, so that they can be produced as one laminated film by coextrusion. is there.
  • the number of times of laminating in the present specification means the number of times of laminating by a film laminating method in which films are bonded to each other using an adhesive such as dry laminating, and excludes coextruded laminating or extruded laminating in which films are formed and laminated at the same time. Is what you do.
  • the polyester resin constituting the base material layer the polyester resin conventionally used for the heat-resistant packaging bag can be used without limitation, but in particular, the polyester resin mainly composed of ethylene terephthalate unit and / or butylene terephthalate is mainly used.
  • the polyester to be used can be preferably used.
  • a polyester mainly composed of an ethylene terephthalate unit is a polyester in which 50 mol% or more of a carboxylic acid component is composed of a terephthalic acid component and 50% or more of an alcohol component is an ethylene glycol component, and a polyester mainly composed of a butylene terephthalate unit.
  • the resin is a polyester in which 50 mol% or more of the dicarboxylic acid component is composed of terephthalic acid and 50 mol% or more of the alcohol component is 1,4-butanediol, and these polyesters may be homopolyesters or copolymerized polyesters. Alternatively, it may be a blend of two or more of these.
  • carboxylic acid component other than the terephthalic acid component examples include isophthalic acid, naphthalenedicarboxylic acid, p- ⁇ -oxyethoxybenzoic acid, biphenyl-4,4'-dicarboxylic acid, diphenoxyethane-4,4'-dicarboxylic acid, and 5 -Sodium sulfoisophthalic acid, hexahydroterephthalic acid, adipic acid, sebacic acid, trimellitic acid, pyromellitic acid and the like can be mentioned.
  • alcohol components other than ethylene glycol and 1,4-butanediol propylene glycol, neopentyl glycol, 1,6-hexylene glycol, diethylene glycol, triethylene glycol, cyclohexanedimethanol, bisphenol A ethylene oxide adduct, etc.
  • Alcohol components such as glycerol, trimethylolpropane, pentaerythritol, dipentaerythritol, and sorbitan can be mentioned.
  • polyethylene naphthalate, polybutylene naphthalate and the like can also be preferably used as the polyester resin constituting the base material layer.
  • polyester resin that can be used for the base material layer recycled polyester or biomass polyester can also be used in addition to the above polyester resin.
  • Recycled polyester is polyester recycled by mechanical recycling, and is generally recycled by crushing and cleaning the recovered polyester bottle.
  • This polyester contains ethylene glycol and carboxylic acid as alcohol components. It contains terephthalic acid and isophthalic acid as components.
  • the recycled polyester may contain virgin polyester together with the recycled polyester.
  • Biomass polyester is a polyester generally made of biomass ethanol-derived ethylene glycol produced from sugar cane, corn, or the like as a diol component, and the above-mentioned fossil fuel-derived dicarboxylic acid as a dicarboxylic acid component.
  • the biomass polyester may contain virgin polyester together with the biomass polyester.
  • the polyester resin should have a molecular weight capable of forming a film, and the intrinsic viscosity measured using a phenol / tetrachloroethane mixed solvent as a solvent is 0.5 dL / g or more, particularly in the range of 0.6 to 1.5 dL / g. It is preferable from the viewpoint of mechanical strength.
  • the thickness of the base material layer is preferably in the range of 5 to 50 ⁇ m, particularly 10 to 30 ⁇ m, from the viewpoint of the mechanical strength of the packaging bag and the like.
  • the thickness of the base material layer is thinner than the above range, the mechanical strength and crack resistance are inferior to those in the above range, while if it is thicker than the above range, the tear is torn as compared to the case in the above range. It becomes inferior in sex and economy.
  • the functional resin provided in the packaging bag of the present invention is based on a polyester resin that can be laminated by coextrusion with the base material layer, and is not limited to the barrier resin layer, the thermosetting resin layer, and the like.
  • examples thereof include an oxygen-absorbing resin layer, an easily-openable resin layer, an impact-resistant resin layer, a chemical-resistant layer, a puncture-resistant layer, and a heat-resistant layer.
  • a barrier resin layer and a heat-sealing property are particularly exemplified. It is preferably at least one layer of a resin layer, an oxygen-absorbing resin layer, an easily-openable resin layer, and an impact-resistant resin layer.
  • the polyester resin exemplified as the polyester resin that can be used for the base material layer can be used, and recycled polyester and biomass polyester can also be used.
  • the polyester resin that is the base of the functional resin layer should also have a molecular weight capable of forming a film like the polyester resin of the base material layer, and preferably has an intrinsic viscosity in the above range.
  • the polyester resin exemplified for the above-mentioned base material layer is used as a base film, and this polyester resin is coextruded with the polyester resin constituting the base material layer to form a laminated film, which is formed on the laminated film (base).
  • the following barrier layer is formed on the inside or outside of the material layer.
  • a base film layer an impact resistant resin layer for improving strength described later, or the like can be used as a base film.
  • a metal oxide vapor deposition layer such as aluminum oxide, an inorganic oxide vapor deposition layer represented by a silicon oxide vapor deposition layer, or an inorganic vapor deposition layer represented by a hydrocarbon-based vapor deposition layer such as diamond-like carbon is used.
  • the coated coating barrier layer can be exemplified.
  • the thickness of the base film for forming the barrier layer is preferably in the range of 5 to 50 ⁇ m, particularly 10 to 30 ⁇ m. If the thickness of the base film is thinner than the above range, the mechanical strength and crack resistance are inferior to those in the above range, while if it is thicker than the above range, the tearability is lower than that in the above range. And it becomes inferior in economy.
  • a known heat-sealable polyester resin can be used as the resin constituting the heat-sealable polyester resin layer that can be co-extruded with the base material layer.
  • a known heat-sealable polyester resin can be used.
  • an amorphous polyester such as PETG
  • a low melting point polyester resin such as an ethylene terephthalate / isophthalate copolymer
  • a polyester resin having a high glass transition temperature (Tg) and a low glass transition temperature (Tg) are blended.
  • a polyester resin made of a polyester resin or a polyester-based thermoplastic elastomer such as polytetramethylene glycol-modified polybutylene terephthalate (PBT-PTMG) can be used.
  • the thickness of the heat seal layer is preferably in the range of 15 to 150 ⁇ m, particularly 40 to 80 ⁇ m. If the thickness of the heat seal layer is thinner than the above range, the drop strength and heat sealability will be inferior to those in the above range, while if it is thicker than the above range, it will be inferior to the above range. It becomes inferior in tearability and economy.
  • ⁇ Oxygen absorbing resin layer As the resin composition constituting the oxygen-absorbing resin layer that can be co-extruded with the base material layer, a known oxygen-absorbing resin composition containing the above-mentioned polyester resin as a matrix resin, an oxidizing organic component, and a transition metal catalyst. Can be used.
  • the thickness of the oxygen absorbing resin layer is preferably in the range of 5 to 50 ⁇ m, particularly 10 to 20 ⁇ m. If the thickness of the oxygen-absorbing resin layer is thinner than the above range, the mechanical strength and crack resistance are inferior to those in the above range, while if it is thicker than the above range, it is inferior to the above range. It becomes inferior in tearability and economy.
  • the polyester-based resin composition constituting the easily-openable resin layer that can be co-extruded with the base material layer comprises a blend of polybutylene terephthalate and polyethylene terephthalate containing a polytetramethylene glycol unit, and polyethylene terephthalate and a polyester elastomer.
  • a polyester-based resin composition having linear tearability such as a blend in which a polyester elastomer is dispersed in polyethylene terephthalate, can be preferably used.
  • the thickness of the easy-to-open resin layer is preferably in the range of 5 to 50 ⁇ m, particularly 10 to 20 ⁇ m.
  • the thickness of the easy-to-open resin layer is thinner than the above range, the mechanical strength and crack resistance are inferior to those in the above range, while if it is thicker than the above range, it is inferior to the case in the above range. It becomes inferior in tearability and economy.
  • the impact-resistant resin layer that can be co-extruded with the base material layer improves puncture resistance, drop impact resistance, and the like.
  • the polyester resin capable of exhibiting such a function include polyesters mainly composed of butylene terephthalate units, and in particular, homopolybutylene terephthalate can be preferably used.
  • Nylon is generally used as the impact-resistant resin layer, but by using a polyester-based resin, it is possible to impart a moisture barrier property that can be used for retort sterilization, water bathing, and the like.
  • the thickness of the impact-resistant resin layer is preferably in the range of 5 to 50 ⁇ m, particularly 10 to 20 ⁇ m.
  • the thickness of the impact-resistant resin layer is thinner than the above range, the piercing strength and drop strength are inferior.
  • the thickness is thicker than the above range, the film is too hard to handle at the time of bag making and filling of contents. It becomes inferior in economic efficiency.
  • the packaging bag of the present invention has a printed layer on the outside and / or inside of the base material layer, but in the present invention, it is particularly preferable that the printed layer is formed on the outside of the base material layer. .. That is, when the print layer is formed on the outside of the base material layer, it is possible to effectively prevent the flavor of the contents from being lowered due to the influence of the printing ink, and the print layer and the top coat layer are formed at the same time after the laminated film is formed. Since this can be done, it is possible to prevent scratches on the print layer.
  • the printing layer is formed inside the base material layer, it is preferable to form the barrier layer inside the printing layer from the viewpoint of the flavor property of the contents.
  • a resin layer such as the above-mentioned base material layer or functional resin layer is used.
  • the resin layer used as the printing base material is subjected to surface treatment such as corona treatment, plasma treatment, flame treatment, etc. to improve the known adhesiveness, and the adhesiveness of polyurethane resin, modified polyester resin, etc. is improved. Therefore, it is also possible to provide an anchor coat layer.
  • a compounding agent for a film for example, an antiblocking agent such as amorphous silica, various antistatic agents, a lubricant, an antioxidant, an ultraviolet absorber, and the like are blended in a resin layer to be a printing base material according to a known formulation. be able to.
  • the printing layer uses conventionally known printing inks such as ultraviolet curable type, electron beam curable type, and solvent type, and conventional gravure printing method, inkjet printing, electrophotographic printing, flexo printing method, offset printing method, screen printing method, and the like.
  • a known printing method can be appropriately selected.
  • a plurality of printing inks of a single color or a plurality of colors are used on one side of the resin layer serving as the printing base material, using a printing roller and a printing means such as gravure.
  • the printing layer may have a two-layer structure consisting of a solid printing layer and a pattern layer.
  • the printing ink it is preferable to use an ink using a heat-curable urethane resin or the like as a binder, but the printing ink is not limited to this, and is not limited to this, but is limited to acrylic resin, polyester resin, salt vinegar resin, and polyamide resin.
  • Ink using a resin, an epoxy resin, a nitrocellulose resin, a chlorinated polypropylene resin or the like as a binder can also be used.
  • an ink used by blending a plurality of the above resins can also be used.
  • a polyisocyanate resin, an amino resin, or the like can be added as an ink curing agent.
  • top coat layer When the print layer is formed on the outer surface side, it is preferable to form a top coat layer for protecting the print layer.
  • a coating composed of a conventionally known coating composition such as a thermosetting coating material, an ultraviolet curing type coating material, and an electron beam curing type coating material using an unsaturated polyester resin, an epoxy resin, a curable acrylic resin or the like.
  • a film or a resin layer made of a single or blended nitrocellulose resin, acrylic resin, polycarbonate resin and the like can be used.
  • a polyisocyanate resin, an amino resin, or the like can be added as a curing agent for the thermosetting paint.
  • the top coat layer is formed of a thermosetting paint, it is desirable to bake it at a temperature equal to or lower than the melting point of the base resin.
  • Heat seal layer in addition to the above-mentioned heat-sealing resin layer made of a polyester resin that can be coextruded with the base material layer as the functional resin layer, a heat-sealing layer by film lamination or the like can be formed. That is, when the functional resin layer constituting the laminated film by coextrusion with the base material layer is a functional resin layer other than the heat-sealing layer, the heat-sealing layer is further formed on the laminated film.
  • a heat-sealing layer made of polyolefin or the like conventionally used for the heat-sealing layer can be used, but from the viewpoint of heat resistance, it is preferably made of polypropylene. ..
  • Adhesive layer As described above, in the present invention, when the base material layer and the functional resin layer are coextruded to form a laminated film and another resin layer is further laminated on the laminated film, film lamination or extrusion is performed as described later. It can be laminated by laminating, and a known adhesive depending on the laminating method can be used. For example, in dry lamination, polyurethane-based, polyacrylic-based, polyester-based, epoxy-based, and polyvinyl acetate-based adhesives can be used, and in hot melt lamination, ethylene-vinyl acetate copolymer (EVA) and the like can be used. Hot melt adhesives can be used. In the present invention, it is particularly desirable to use a solvent-free urethane-based adhesive in order to reduce the influence of the solvent in the adhesive on the flavor of the contents.
  • EVA ethylene-vinyl acetate copolymer
  • a functional resin layer 2 is formed on one surface of the base material layer 1, and a printing layer 3 is formed on the side of the base material layer 1 opposite to the functional resin layer 2.
  • a top coat layer 4 for protecting the print layer is formed on the print layer 3.
  • the base material layer 1 and the functional resin layer 2 are formed as a laminated film 10 by coextrusion, and printing is applied to the base material layer side of the laminated film 10 and a top coat layer is formed. There is. In this embodiment, the number of laminations is zero.
  • the packaging bag can be manufactured by superimposing the multilayer films shown in FIG. 1 so that the heat-sealing layers face each other and heat-sealing.
  • a film made of a heat-sealing resin such as polypropylene is laminated on the functional resin layer side with a film laminate or a molten resin extruded and laminated via an adhesive. As a result, a multilayer film is formed.
  • the multilayer film shown in FIG. 2 is a multilayer film in which a barrier resin layer 5 having a barrier layer 5b formed on a base film 5a made of a polyester resin is formed as a functional resin layer.
  • the base film 5a of the base film layer 1 and the barrier resin layer 5 is formed as a laminated film 10 by coextrusion, and the barrier layer 5b is formed on the base film 5a side of the laminated film 10.
  • the printing layer 3 and the top coat layer 4 are formed on the base material layer 1 side as in FIG. 1, and the heat seal layer 7 is laminated on the barrier layer 5b side via the adhesive layer 8.
  • the result is a multilayer film used for packaging bags.
  • the number of times of laminating is one.
  • a vapor deposition layer 5b and a vapor deposition layer are formed on the side of the substrate layer 1 of the laminated film 10 in which a heat seal layer 2 made of polyester resin as a functional resin layer is coextruded with the substrate layer 1. It is a multilayer film in which a printing layer 3 and a top coat layer are formed on 5b. In this embodiment, the number of laminations is zero.
  • functional resin layers 2a and 2b are formed as laminated films by coextrusion on both surfaces of the base material layer 1, and a heat seal layer 2a made of polyester resin is formed as the functional resin layer 2a. Then, an impact-resistant resin layer, an easily-openable resin layer, or the like can be formed as the functional resin layer 2b on the other side. A printing layer 3 and a top coat layer 4 are formed on the functional resin layer 2b. In this embodiment, the number of laminations is zero.
  • a base material layer 1 and a functional resin layer 2 such as an impact resistant resin layer or an easily openable resin layer are formed as a laminated film by coextrusion, and a printing layer is formed on the functional resin layer 2.
  • 3 and the top coat layer 4 are formed, and a heat seal layer 7 made of a heat sealable resin such as a polypropylene film is laminated on the base material layer 1 via an adhesive layer 8.
  • the number of times of laminating is one.
  • the base material layer 1 is located inside, but of course, the functional resin layer 2 and the base material layer 1 can be reversed.
  • the multilayer film constituting the packaging bag of the present invention is not limited to the above-mentioned layer structure, and can take various aspects.
  • the printing layer is formed inside, the base material layer and the functional resin layer are co-extruded to form a laminated film, the printing layer is formed on the inner surface side of the laminated film, and the barrier layer is formed on the printing layer.
  • the heat seal layer By forming and laminating this with a heat seal layer, it is possible to prevent the flavor property from being impaired (coextrusion laminated film of base material layer / functional resin layer / printing layer / barrier layer / adhesive layer / heat seal). layer).
  • at least one type of functional resin layer may be provided depending on the intended use of the packaging bag, and all functional resin layers may be provided.
  • a laminated film in which a base material layer made of polyester resin and at least one functional resin layer based on polyester resin are laminated by coextrusion is used.
  • the production of the laminated film by coextrusion can be performed by a conventionally known method. Using an extruder corresponding to each type of resin layer, melts of each resin are superposed in a multilayer multiplex die, and this is die orifice. It is done by extruding from.
  • This film material is preliminarily formed as a laminated film by a T-die method, an inflation film forming method, or the like.
  • the laminated film can be either an unstretched film or a stretched film, but a stretched film is desirable from the viewpoint of mechanical strength and the like.
  • the film is laminated with an adhesive to the film made of a heat-resistant heat-sealing resin such as polypropylene described above. ..
  • the heat seal layer can be bonded to the laminated film by conventionally known methods such as dry lamination, non-solvent dry lamination, and hot melt lamination.
  • the heat-sealing layer made of polyester resin when a heat-sealing resin layer made of polyester resin is formed as the functional resin layer, the heat-sealing layer made of polyester resin, the base material layer made of polyester resin, and the polyester resin A three-layer laminated film composed of a functional resin layer based on the above is formed by coextrusion lamination, and a print layer is formed on the functional resin layer side of the laminated film as described later, and then the print layer is formed.
  • the top coat layer on the top coat layer the multilayer film can be formed with zero number of laminating without using an adhesive.
  • the base layer 5a made of a polyester resin as a base for forming the barrier layer 5b and the base material layer 1 are coextruded.
  • a multilayer film having a barrier resin layer can be formed.
  • the barrier layer 5b is formed by forming the barrier layer 5b using the base material layer 1 of the laminated film 10 in which the heat-sealing polyester resin layer 2 and the base material layer 1 are co-extruded as the base layer.
  • a multilayer film with the above can be formed.
  • the packaging bag of the present invention is made by superimposing and heat-sealing the above-mentioned multilayer films so that the heat-sealing layers are on the inner surface.
  • the shape of the packaging bag is not limited as long as it is made of the above-mentioned multilayer film, and various shapes such as a pillow type pouch, a gusset type pouch, and a standing pouch can be adopted.
  • the print layer and the top coat layer are formed on the outside of the multilayer film, it is preferable to form the print layer and the top coat layer in the state of the multilayer film, but the print layer and the top coat are formed.
  • a packaging bag obtained by first creating a packaging bag obtained by stacking and heat-sealing a multilayer film in which necessary layers are laminated except for a layer so that the heat-sealing layers face each other is first prepared, and a printing layer and a printing layer are formed on the outer surface of the packaging bag.
  • a top coat layer may be formed.
  • the printed surface of the PET film is laminated with aluminum (AL) foil as a laminated surface
  • the AL foil surface is laminated with 50 ⁇ m unstretched polypropylene (CPP film) as a laminated surface to form a multilayer film, further heat resistance.
  • a packaging bag was prepared. This heat-resistant packaging bag was filled with 200 g of ultrapure water, sterilized and cooled by the method described later, and used as a reference sample for sensory evaluation. In the 4-point evaluation of Reference Example 1, the average value was 1.4 and the standard deviation was 0.48. In the 4-point evaluation of Reference Example 2, the average value was 1.3 and the standard deviation was 0.55.
  • a print layer was formed on the vapor-deposited surface or the non-deposited surface of the base film on which the barrier layer was formed by a gravure method.
  • a coating composition using epoxy as a base resin is used, and an amount of 2 mg / m 2 is applied by a gravure method and baked at 130 ° C. to form a top coat layer. ..
  • a CPP film as a heat-sealing layer is dry-laminated using a urethane-based adhesive (3 ⁇ m) on a stretched film that does not form a heat-sealing layer as a functional resin layer.
  • a multilayer film was molded. Next, this multilayer film was made into a bag with a three-way seal to prepare a heat-resistant packaging bag having a width of 130 mm and a length of 175 mm.
  • Example 1 According to the casting film molding method, PET is supplied to the first and third extruders (set temperature 280 ° C.) and PBT is supplied to the second extruder (set temperature 250 ° C.), and PET / PBT / is formed as a layer structure.
  • the stretched film was molded according to the method for molding the stretched film. This film had a total layer thickness of 19 ⁇ m.
  • a barrier layer made of an alumina vapor deposition film is formed on one side of the stretched film, and a print layer is formed on the barrier layer by a gravure method, and then the print layer forming surface is used as a laminate surface to form a urethane adhesive.
  • a multilayer film was formed by dry laminating with a CPP film as a heat seal layer.
  • the layer structure is shown in Table 1.
  • a heat-resistant packaging bag was produced by superimposing the CPP film surfaces of the obtained multilayer film on each other and heat-sealing them. The results of productivity and economic evaluation and sensory evaluation are shown in Table 1.
  • Example 2 According to the casting film molding method, PBT is supplied to the first and third extruders (set temperature 250 ° C.) and PET is supplied to the second extruder (set temperature 280 ° C.), and PBT / PET / is formed as a layer structure.
  • the stretched film was molded according to the method for molding the stretched film. This film had a total layer thickness of 17 ⁇ m.
  • Example 2 Next, a barrier layer, a printing layer, and a CPP film were laminated on this stretched film in the same manner as in Example 1 to form a multilayer film, and a heat-resistant packaging bag was further produced.
  • Table 1 shows the results of the layer composition, productivity and economic efficiency evaluation, and sensory evaluation of the multilayer film.
  • PET is used in the first extruder (set temperature 280 ° C.)
  • PBT is used in the second extruder (set temperature 250 ° C.)
  • PBT is used in the third extruder (set temperature 250 ° C.).
  • the stretched film was molded according to the method for molding the stretched film.
  • This film had a total layer thickness of 17 ⁇ m.
  • a barrier layer made of an alumina-deposited film was formed on the PET surface of this stretched film, and a printing layer was formed on the barrier layer to form a multilayer film, and a heat-resistant packaging bag was further produced.
  • Table 1 shows the results of the layer composition, productivity and economic efficiency evaluation, and sensory evaluation of the multilayer film.
  • Example 4 According to the casting film molding method, PET is supplied to the first and third extruders (set temperature 280 ° C.) and PBT is supplied to the second extruder (set temperature 250 ° C.), and PET / PBT / is formed as a layer structure.
  • the stretched film was molded according to the method for molding the stretched film. This film had a total layer thickness of 19 ⁇ m.
  • a barrier layer made of an alumina vapor deposition film was formed on one side of the stretched film, and a top coat layer was formed on the printed layer and the printed layer by a gravure method on the surface without the barrier layer. Further, in the same manner as in Example 1, the barrier layer side of the stretched film was used as a laminating surface, and the film was laminated with a CPP film to form a multilayer film, and a heat-resistant packaging bag was further produced. Table 1 shows the results of the layer composition, productivity and economic efficiency evaluation, and sensory evaluation of the multilayer film.
  • Example 5 According to the casting film molding method, PBT is supplied to the first and third extruders (set temperature 250 ° C.) and PET is supplied to the second extruder (set temperature 280 ° C.), and PBT / PET / is formed as a layer structure.
  • the stretched film was molded according to the method for molding the stretched film. This film had a total layer thickness of 17 ⁇ m.
  • a barrier layer made of an alumina vapor deposition film was formed on one side of the stretched film, and a top coat layer was formed on the printed layer and the printed layer by a gravure method on the surface without the barrier layer. Further, in the same manner as in Example 1, the barrier layer side of the stretched film was used as a laminating surface, and the film was laminated with a CPP film to form a multilayer film, and a heat-resistant packaging bag was further produced. Table 1 shows the results of the layer composition, productivity and economic efficiency evaluation, and sensory evaluation of the multilayer film.
  • a barrier layer made of an alumina-deposited film was formed on one side of the PET film, and a printing layer was formed on the barrier layer by a gravure method. Further, according to the above description, the print layer forming surface of the PET film is laminated with a nylon (NY) film as a laminating surface, and the NY film surface is laminated with a CPP film as a laminating surface to form a three-layer multilayer film. A heat-resistant packaging bag was produced. Table 1 shows the results of the layer composition, productivity and economic efficiency evaluation, and sensory evaluation of the multilayer film.
  • the packaging bag of the present invention has the performance required for a packaging bag such as heat resistance and barrier properties, and is made of a multilayer film in which the number of times of lamination is small and the amount of adhesive used is reduced, so that productivity and economy are economical. It has excellent flavor and can be suitably used for food applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Food Science & Technology (AREA)
  • Laminated Bodies (AREA)

Abstract

The heat-resistant packaging bag according to the present invention comprises a multilayer film having at least a substrate layer formed of a polyester resin, and a polyester resin-based functional resin layer adjacent to the substrate layer, each of the substrate layer and the functional resin layer being formed of a co-extruded laminate film, to thus include a layer having properties required from a packaging bag. The present invention also reduces the number of laminates, to lead to excellent productivity, economic efficiency, and flavors.

Description

耐熱性包装袋及びその製造方法Heat-resistant packaging bag and its manufacturing method
 本発明は、耐熱性を有する包装袋及びその製造方法に関するものであり、より詳細には、ラミネート回数が少なく、接着剤の使用量が低減された多層フィルムから成り、生産性及びフレーバー性に優れた包装袋及びその製造方法に関する。 The present invention relates to a heat-resistant packaging bag and a method for manufacturing the same. More specifically, the present invention comprises a multilayer film having a small number of laminating times and a reduced amount of adhesive used, and is excellent in productivity and flavor. The packaging bag and its manufacturing method.
 飲食品等を内容物とする包装袋は、ボイル殺菌やレトルト殺菌等の加熱殺菌、或いは湯煎や電子レンジ加熱等の加熱調理に対応可能な耐熱性や、落下衝撃等に耐え得る耐衝撃性、或いはバリア性等の必要な性能を満足するために、種々の材料から成る層を積層して成る多層フィルム(積層体)から形成されている。
 例えば、下記特許文献1には、電子レンジ加熱による穴あきを防止するために、外面から順に2軸延伸ポリエチレンテレフタレート(以下、「PET」ということがある)系フィルム、ポリブチレンテレフタレート(以下、「PBT」ということがある)系フィルム及び熱接着性樹脂層から成る積層体から成る包装袋が提案されている。
Packaging bags containing food and drink have heat resistance that can be used for heat sterilization such as boil sterilization and retort sterilization, or heat cooking such as water bath and microwave oven heating, and impact resistance that can withstand drop impacts. Alternatively, it is formed of a multilayer film (laminated body) formed by laminating layers made of various materials in order to satisfy required performance such as barrier properties.
For example, Patent Document 1 below describes biaxially stretched polyethylene terephthalate (hereinafter, may be referred to as “PET”)-based film and polybutylene terephthalate (hereinafter, “PET”) in order from the outer surface in order to prevent holes due to microwave heating. A packaging bag made of a laminate made of a film (sometimes called PBT) and a thermosetting resin layer has been proposed.
 また下記特許文献2には、外面及び内面を含む積層体と、前記積層体の内面同士を接合するシール部と、を備え、前記積層体は、外面側から内面側へ順に基材/接着剤層/シーラント層、基材/印刷層/接着剤層/シーラント層、基材/透明ガスバリア層/印刷層/接着剤層/シーラント層、又は基材/透明ガスバリア層/接着剤層/シーラント層、からなり、前記基材は、51質量%以上のポリブチレンテレフタレートを含み、前記接着剤層は、ポリオールと脂肪族系イソシアネート化合物との硬化物を含み、前記ポリオールのヒドロキシ基に対する前記脂肪族系イソシアネート化合物のイソシアネート基のモル比が3.5以上である、袋が提案されている。 Further, Patent Document 2 below includes a laminate including an outer surface and an inner surface, and a sealing portion for joining the inner surfaces of the laminate, and the laminate is a base material / adhesive in order from the outer surface side to the inner surface side. Layer / sealant layer, substrate / printing layer / adhesive layer / sealant layer, substrate / transparent gas barrier layer / printing layer / adhesive layer / sealant layer, or substrate / transparent gas barrier layer / adhesive layer / sealant layer, The base material comprises 51% by mass or more of polybutylene terephthalate, the adhesive layer contains a cured product of a polyol and an aliphatic isocyanate compound, and the aliphatic isocyanate with respect to the hydroxy group of the polyol. Bags have been proposed in which the isocyanate group of the compound has a molar ratio of 3.5 or more.
特開2006-143223号公報Japanese Unexamined Patent Publication No. 2006-143223 特開2018-58357号公報Japanese Unexamined Patent Publication No. 2018-58357
 上記特許文献1に記載された発明においては、PETフィルム及びPBTフィルムを主体とする耐熱性に優れた積層体が使用されているが、接着層を介して積層されているため、熱接着性樹脂層を含めた3層構成の積層体を形成するのに2回のラミネート工程が必要である。更に包装袋のバリア性を向上させるためにバリア層を設ける等、積層体の層数が増えればラミネート回数も増えることから、接着剤を用いたフィルムラミネートによる積層方法では生産性及び経済性に劣る。また接着層の数が増えると接着剤の使用量も増えるため、生産性及び経済性の問題だけでなく、内容物のフレーバーへの影響も懸念される。 In the invention described in Patent Document 1, a laminated body mainly composed of PET film and PBT film having excellent heat resistance is used, but since it is laminated via an adhesive layer, it is a thermosetting resin. Two laminating steps are required to form a three-layered laminate including the layers. Further, as the number of layers of the laminated body increases, the number of laminations increases, such as providing a barrier layer to improve the barrier property of the packaging bag. Therefore, the laminating method by film laminating using an adhesive is inferior in productivity and economy. .. Further, as the number of adhesive layers increases, the amount of adhesive used also increases, so that not only the problems of productivity and economy but also the influence on the flavor of the contents are concerned.
 また上記特許文献2のように、印刷層を有する袋の場合、印刷層を保護するために印刷層を積層体の内部に形成することが行われているが、印刷層が内層(シーラント層)に近いと印刷インクにより内容物のフレーバーが損なわれるおそれがある。このような問題を解決するために、印刷層と内層(シーラント層)の間にバリア層を形成することも考えられるが、前述したとおり、層数が増加するとラミネート回数が増えることになり、やはり生産性及び経済性の点で、未だ十分満足するものではない。 Further, in the case of a bag having a print layer as in Patent Document 2, the print layer is formed inside the laminate in order to protect the print layer, but the print layer is an inner layer (sealant layer). If it is close to, the printing ink may impair the flavor of the contents. In order to solve such a problem, it is conceivable to form a barrier layer between the printing layer and the inner layer (sealant layer), but as described above, as the number of layers increases, the number of laminations increases, and so on. In terms of productivity and economy, we are still not fully satisfied.
 従って本発明の目的は、包装袋に要求される性能を有する層を備えると共に、ラミネート回数を低減可能な層構成を有する多層フィルムを用いた、生産性及び経済性並びにフレーバー性に優れた耐熱性包装袋を提供することである。
 本発明の他の目的は、包装袋に要求される性能を有する層を備えた多層フィルムを、少ないラミネート回数で効率よく製造して包装袋とする製造方法を提供することである。
Therefore, an object of the present invention is to provide a layer having the performance required for a packaging bag and to use a multilayer film having a layer structure capable of reducing the number of times of laminating, which has excellent heat resistance in productivity, economy and flavor. To provide a packaging bag.
Another object of the present invention is to provide a manufacturing method for efficiently manufacturing a multilayer film having a layer having a performance required for a packaging bag with a small number of laminating times to obtain a packaging bag.
 本発明によれば、ポリエステル樹脂から成る基材層、該基材層に隣接するポリエステル樹脂をベースとする機能性樹脂層、印刷層、及びトップコート層を少なくとも有する多層フィルムから成り、前記基材層と前記機能性樹脂層が共押出による積層フィルムであることを特徴とする耐熱性包装袋が提供される。 According to the present invention, the base material comprises a base material layer made of a polyester resin, a functional resin layer based on a polyester resin adjacent to the base material layer, a printing layer, and a multilayer film having at least a top coat layer. Provided is a heat-resistant packaging bag characterized in that the layer and the functional resin layer are laminated films by coextrusion.
 本発明の耐熱性包装袋においては、
1.前記多層フィルムが印刷層を有すること、
2.前記機能性樹脂層が、バリア性樹脂層,ヒートシール性樹脂層,酸素吸収性樹脂層,易開封性樹脂層,耐衝撃性樹脂層の少なくとも1層であること、
3.前記機能性樹脂層が、ヒートシール性樹脂層であり、前記基材層に蒸着層又はコーティング層から成るバリア層が形成されていること、
4.前記機能性樹脂層が、蒸着層又はコーティング層から成るバリア層を有するポリエステル樹脂層から成るバリア性樹脂層であり、前記基材層と前記ポリエステル樹脂層が共押出による積層フィルムであること、
5.前記基材層の一方の面に前記ヒートシール性樹脂層が形成され、他方の面に前記酸素吸収性樹脂層,前記易開封性樹脂層,前記耐衝撃性樹脂層の何れか1層が形成されており、前記ヒートシール性樹脂層、前記基材層、及び前記酸素吸収性樹脂層,前記易開封性樹脂層,前記耐衝撃性樹脂層の何れか1層、の3層が共押出による積層フィルムであること、
6.前記機能性樹脂層が、前記バリア性樹脂層,前記酸素吸収性樹脂層,前記易開封性樹脂層,前記耐衝撃性樹脂層の何れか1層であり、前記基材層の前記機能性樹脂層が隣接する面の反対側の面には、ポリオレフィンから成るヒートシール層が接着剤を介して形成されていること、
7.前記基材層の外面側に前記印刷層が形成されており、前記印刷層の外面側にトップコート層が形成されていること、
が好適である。
In the heat-resistant packaging bag of the present invention,
1. 1. That the multilayer film has a printing layer,
2. 2. The functional resin layer is at least one layer of a barrier resin layer, a heat-sealing resin layer, an oxygen-absorbing resin layer, an easily-openable resin layer, and an impact-resistant resin layer.
3. 3. The functional resin layer is a thermosetting resin layer, and a barrier layer composed of a vapor-deposited layer or a coating layer is formed on the base material layer.
4. The functional resin layer is a barrier resin layer composed of a polyester resin layer having a barrier layer composed of a vapor deposition layer or a coating layer, and the base material layer and the polyester resin layer are laminated films by coextrusion.
5. The heat-sealable resin layer is formed on one surface of the base material layer, and any one of the oxygen-absorbing resin layer, the easily-openable resin layer, and the impact-resistant resin layer is formed on the other surface. The three layers of the heat-sealing resin layer, the base material layer, the oxygen-absorbing resin layer, the easily-openable resin layer, and the impact-resistant resin layer are coextruded. Being a laminated film,
6. The functional resin layer is any one of the barrier resin layer, the oxygen absorbing resin layer, the easily openable resin layer, and the impact resistant resin layer, and the functional resin of the base material layer. A thermosetting layer made of polyolefin is formed via an adhesive on the surface opposite to the surface adjacent to the layers.
7. The print layer is formed on the outer surface side of the base material layer, and the top coat layer is formed on the outer surface side of the print layer.
Is preferable.
 本発明によればまた、ポリエステル樹脂から成る基材層及びポリエステル樹脂をベースとする機能性樹脂層から成る積層フィルムを共押出ラミネートにより形成し、該積層フィルムの前記基材層側に、接着剤を介してポリオレフィンから成るヒートシール層を形成し、前記積層フィルムの前記機能性樹脂層側に、印刷層を形成した後、該印刷層上にトップコート層を形成して成る多層フィルムを、前記ポリオレフィンから成るヒートシール層同士が内面となるように重ね合わせヒートシールすることにより製袋することを特徴とする耐熱性包装袋の製造方法が提供される。
 本発明によれば更に、ポリエステル樹脂から成るヒートシール性樹脂層、ポリエステル樹脂から成る基材層、及びポリエステル樹脂をベースとする機能性樹脂層から成る積層フィルムを共押出ラミネートにより形成し、該積層フィルムの前記機能性樹脂層側に、印刷層を形成した後、該印刷層上にトップコート層を形成して成る多層フィルムを、前記ヒートシール性樹脂層同士が内面となるように重ね合わせてヒートシールすることにより製袋することを特徴とする耐熱性包装袋の製造方法が提供される。
According to the present invention, a laminated film composed of a base material layer made of a polyester resin and a functional resin layer based on a polyester resin is formed by coextrusion lamination, and an adhesive is applied to the base material layer side of the laminated film. A multilayer film formed by forming a heat-sealing layer made of polyolefin, forming a printing layer on the functional resin layer side of the laminated film, and then forming a top coat layer on the printing layer. Provided is a method for producing a heat-resistant packaging bag, which comprises superimposing and heat-sealing heat-sealing layers made of polyolefin so as to be on the inner surface.
According to the present invention, a laminated film composed of a heat-sealing resin layer made of a polyester resin, a base material layer made of a polyester resin, and a functional resin layer based on a polyester resin is further formed by coextrusion laminating, and the laminated film is formed. After forming a print layer on the functional resin layer side of the film, a multilayer film formed by forming a top coat layer on the print layer is laminated so that the heat-sealable resin layers are on the inner surface. Provided is a method for producing a heat-resistant packaging bag, which comprises making a bag by heat-sealing.
 本発明の耐熱性包装袋の製造方法においては、前記機能性樹脂層が、蒸着層又はコーティング層から成るバリア層を有するポリエステル樹脂層から成るバリア性樹脂層であり、前記蒸着層又はコーティング層を前記積層フィルム上に形成することによりバリア層を形成することが好適である。 In the method for producing a heat-resistant packaging bag of the present invention, the functional resin layer is a barrier resin layer composed of a polyester resin layer having a barrier layer composed of a vapor deposition layer or a coating layer, and the vapor deposition layer or the coating layer is used. It is preferable to form a barrier layer by forming it on the laminated film.
 本発明の耐熱性包装袋においては、包装袋に要求される機能性樹脂層が効率よくラミネートされた多層フィルムを用いることにより、接着剤の使用量が低減され、生産性、経済性及びフレーバー性に優れている。
 また本発明の包装袋の製造方法によれば、共押出により機能性樹脂層を効率よくラミネートすることができ、生産性及び経済性に優れている。
In the heat-resistant packaging bag of the present invention, the amount of adhesive used is reduced by using a multilayer film in which the functional resin layer required for the packaging bag is efficiently laminated, and productivity, economy and flavor are achieved. Is excellent.
Further, according to the method for producing a packaging bag of the present invention, the functional resin layer can be efficiently laminated by coextrusion, which is excellent in productivity and economy.
本発明の包装袋に用いる多層フィルムの層構成の一例を示す図である。It is a figure which shows an example of the layer structure of the multilayer film used for the packaging bag of this invention. 本発明の包装袋に用いる多層フィルムの層構成の他の一例を示す図である。It is a figure which shows another example of the layer structure of the multilayer film used for the packaging bag of this invention. 本発明の包装袋に用いる多層フィルムの層構成の他の一例を示す図である。It is a figure which shows another example of the layer structure of the multilayer film used for the packaging bag of this invention. 本発明の包装袋に用いる多層フィルムの層構成の他の一例を示す図である。It is a figure which shows another example of the layer structure of the multilayer film used for the packaging bag of this invention. 本発明の包装袋に用いる多層フィルムの層構成の他の一例を示す図である。It is a figure which shows another example of the layer structure of the multilayer film used for the packaging bag of this invention.
(耐熱性包装袋)
 本発明の耐熱性包装袋は、ポリエステル樹脂から成る基材層、該基材層に隣接するポリエステル樹脂をベースとする機能性樹脂層を少なくとも有する多層フィルムから成り、前記基材層と前記機能性樹脂層が共押出による積層フィルムであることが重要な特徴である。
 すなわち、基材層及び機能性樹脂層のベース樹脂がポリエステル樹脂から成ることにより、本発明の包装袋はレトルト殺菌等にも対応可能な耐熱性を有している。また基材層及び機能性樹脂層のベース樹脂が共にポリエステル樹脂から成ることにより、これらは接着剤を用いることなく積層可能であることから、共押出により一つの積層フィルムとして製造することが可能である。このため、本発明においては、包装体を構成する多層フィルムのラミネート回数を低減することが可能となる。
 尚、本明細書におけるラミネート回数は、ドライラミネート等の接着剤を用いてフィルム同士を貼り合せるフィルムラミネート方法による積層回数を意味し、フィルムの形成と積層を同時に行う共押出ラミネート又は押出ラミネートを除外するものである。
(Heat-resistant packaging bag)
The heat-resistant packaging bag of the present invention is made of a multilayer film having at least a base material layer made of a polyester resin and a functional resin layer based on a polyester resin adjacent to the base material layer, and the base material layer and the functionality. An important feature is that the resin layer is a laminated film produced by coextrusion.
That is, since the base resin of the base material layer and the functional resin layer is made of polyester resin, the packaging bag of the present invention has heat resistance that can be used for retort sterilization and the like. Further, since the base resin of the base material layer and the functional resin layer are both made of polyester resin, they can be laminated without using an adhesive, so that they can be produced as one laminated film by coextrusion. is there. Therefore, in the present invention, it is possible to reduce the number of times of laminating the multilayer film constituting the package.
The number of times of laminating in the present specification means the number of times of laminating by a film laminating method in which films are bonded to each other using an adhesive such as dry laminating, and excludes coextruded laminating or extruded laminating in which films are formed and laminated at the same time. Is what you do.
[基材層]
 基材層を構成するポリエステル樹脂としては、従来耐熱性包装袋に使用されていたポリエステル樹脂を制限なく使用することができるが、特にエチレンテレフタレート単位を主体とするポリエステル樹脂及び/又はブチレンテレフタレートを主体とするポリエステルを好適に使用することができる。
 エチレンテレフタレート単位を主体とするポリエステルは、カルボン酸成分の50モル%以上がテレフタル酸成分から成り、且つアルコール成分の50%以上がエチレングリコール成分から成るポリエステルであり、ブチレンテレフタレート単位を主体とするポリエステル樹脂は、ジカルボン酸成分の50モル%以上がテレフタル酸から成り、且つアルコール成分の50モル%以上が1,4-ブタンジオールから成るポリエステルであり、これらのポリエステルは、ホモポリエステルでも共重合ポリエステルでも、或いはこれらの2種以上のブレンド物であってもよい。
[Base material layer]
As the polyester resin constituting the base material layer, the polyester resin conventionally used for the heat-resistant packaging bag can be used without limitation, but in particular, the polyester resin mainly composed of ethylene terephthalate unit and / or butylene terephthalate is mainly used. The polyester to be used can be preferably used.
A polyester mainly composed of an ethylene terephthalate unit is a polyester in which 50 mol% or more of a carboxylic acid component is composed of a terephthalic acid component and 50% or more of an alcohol component is an ethylene glycol component, and a polyester mainly composed of a butylene terephthalate unit. The resin is a polyester in which 50 mol% or more of the dicarboxylic acid component is composed of terephthalic acid and 50 mol% or more of the alcohol component is 1,4-butanediol, and these polyesters may be homopolyesters or copolymerized polyesters. Alternatively, it may be a blend of two or more of these.
 テレフタル酸成分以外のカルボン酸成分としては、イソフタル酸、ナフタレンジカルボン酸、p-β-オキシエトキシ安息香酸、ビフェニル-4,4’-ジカルボン酸、ジフェノキシエタン-4,4’-ジカルボン酸、5-ナトリウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、アジピン酸、セバシン酸、トリメリット酸、ピロメリット酸等を挙げることができる。
 一方、エチレングリコール、1,4-ブタンジオール以外のアルコール成分としては、プロピレングリコール、ネオペンチルグリコール、1,6-へキシレングリコール、ジエチレングリコール、トリエチレングリコール、シクロヘキサンジメタノール、ビスフェノールAエチレンオキサイド付加物、グリセロール、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、ソルビタン等のアルコール成分を挙げることができる。
 また基材層を構成するポリエステル樹脂としては、上記の他、ポリエチレンナフタレート、ポリブチレンナフタレート等も好適に使用することができる。
Examples of the carboxylic acid component other than the terephthalic acid component include isophthalic acid, naphthalenedicarboxylic acid, p-β-oxyethoxybenzoic acid, biphenyl-4,4'-dicarboxylic acid, diphenoxyethane-4,4'-dicarboxylic acid, and 5 -Sodium sulfoisophthalic acid, hexahydroterephthalic acid, adipic acid, sebacic acid, trimellitic acid, pyromellitic acid and the like can be mentioned.
On the other hand, as alcohol components other than ethylene glycol and 1,4-butanediol, propylene glycol, neopentyl glycol, 1,6-hexylene glycol, diethylene glycol, triethylene glycol, cyclohexanedimethanol, bisphenol A ethylene oxide adduct, etc. Alcohol components such as glycerol, trimethylolpropane, pentaerythritol, dipentaerythritol, and sorbitan can be mentioned.
In addition to the above, polyethylene naphthalate, polybutylene naphthalate and the like can also be preferably used as the polyester resin constituting the base material layer.
 また基材層に使用し得るポリエステル樹脂としては、上記ポリエステル樹脂以外にも、リサイクルポリエステルやバイオマスポリエステルを使用することもできる。
 リサイクルポリエステルは、メカニカルリサイクルによりリサイクルされたポリエステルであり、一般的には、回収されたポリエステルボトルを粉砕・清浄化してリサイクルされたポリエステルであり、このポリエステルには、アルコール成分としてエチレングリコール、カルボン酸成分としてテレフタル酸及びイソフタル酸が含まれている。
 リサイクルポリエステルには、リサイクルポリエステルと共にバージンポリエステルを含んでいてもよい。
As the polyester resin that can be used for the base material layer, recycled polyester or biomass polyester can also be used in addition to the above polyester resin.
Recycled polyester is polyester recycled by mechanical recycling, and is generally recycled by crushing and cleaning the recovered polyester bottle. This polyester contains ethylene glycol and carboxylic acid as alcohol components. It contains terephthalic acid and isophthalic acid as components.
The recycled polyester may contain virgin polyester together with the recycled polyester.
 バイオマスポリエステルは、一般にサトウキビやトウモロコシ等を原料として製造されたバイオマスエタノール由来のエチレングリコールをジオール成分として用い、ジカルボン酸成分として前述した化石燃料由来のジカルボン酸を用いて成るポリエステルである。
 バイオマスポリエステルには、バイオマスポリエステルと共にバージンポリエステルを含んでいてもよい。
Biomass polyester is a polyester generally made of biomass ethanol-derived ethylene glycol produced from sugar cane, corn, or the like as a diol component, and the above-mentioned fossil fuel-derived dicarboxylic acid as a dicarboxylic acid component.
The biomass polyester may contain virgin polyester together with the biomass polyester.
 基材層には、滑剤、アンチブロッキング剤、充填剤、酸化防止剤、着色剤、帯電防止剤等従来公知の樹脂用配合剤を公知の処方で配合することができる。
 ポリエステル樹脂は、フィルム形成可能な分子量を有するべきであり、溶媒としてフェノール/テトラクロロエタン混合溶媒を用いて測定した固有粘度が0.5dL/g以上、特に0.6~1.5dL/gの範囲にあることが、機械的強度の観点から好ましい。
 基材層の厚みは、包装袋の機械的強度等の観点から、5~50μm、特に10~30μmの範囲にあることが好適である。上記範囲よりも基材層の厚みが薄いと、上記範囲にある場合に比して機械的強度、耐クラック性に劣り、一方上記範囲よりも厚いと、上記範囲にある場合に比して引き裂き性及び経済性に劣るようになる。
Conventionally known compounding agents for resins such as lubricants, antiblocking agents, fillers, antioxidants, coloring agents, and antistatic agents can be blended in the base material layer with a known formulation.
The polyester resin should have a molecular weight capable of forming a film, and the intrinsic viscosity measured using a phenol / tetrachloroethane mixed solvent as a solvent is 0.5 dL / g or more, particularly in the range of 0.6 to 1.5 dL / g. It is preferable from the viewpoint of mechanical strength.
The thickness of the base material layer is preferably in the range of 5 to 50 μm, particularly 10 to 30 μm, from the viewpoint of the mechanical strength of the packaging bag and the like. If the thickness of the base material layer is thinner than the above range, the mechanical strength and crack resistance are inferior to those in the above range, while if it is thicker than the above range, the tear is torn as compared to the case in the above range. It becomes inferior in sex and economy.
[機能性樹脂層]
 本発明の包装袋が備える機能性樹脂は、基材層と共押出により積層が可能なポリエステル樹脂をベースとするものであり、これに限定されないが、バリア性樹脂層,ヒートシール性樹脂層,酸素吸収性樹脂層,易開封性樹脂層,耐衝撃性樹脂層、耐薬品性層、耐突刺性層、耐熱性層等を例示できるが、本発明においては特にバリア性樹脂層,ヒートシール性樹脂層,酸素吸収性樹脂層,易開封性樹脂層,耐衝撃性樹脂層の少なくとも1層であることが好ましい。
 機能性樹脂層のベース樹脂としては、基材層に使用し得るポリエステル樹脂として例示したポリエステル樹脂を使用することができ、リサイクルポリエステルやバイオマスポリエステルも使用することができる。
 機能性樹脂層のベースとなるポリエステル樹脂も、基材層のポリエステル樹脂と同様にフィルム形成可能な分子量を有するべきであり、上記範囲の固有粘度を有することが好ましい。
[Functional resin layer]
The functional resin provided in the packaging bag of the present invention is based on a polyester resin that can be laminated by coextrusion with the base material layer, and is not limited to the barrier resin layer, the thermosetting resin layer, and the like. Examples thereof include an oxygen-absorbing resin layer, an easily-openable resin layer, an impact-resistant resin layer, a chemical-resistant layer, a puncture-resistant layer, and a heat-resistant layer. In the present invention, a barrier resin layer and a heat-sealing property are particularly exemplified. It is preferably at least one layer of a resin layer, an oxygen-absorbing resin layer, an easily-openable resin layer, and an impact-resistant resin layer.
As the base resin of the functional resin layer, the polyester resin exemplified as the polyester resin that can be used for the base material layer can be used, and recycled polyester and biomass polyester can also be used.
The polyester resin that is the base of the functional resin layer should also have a molecular weight capable of forming a film like the polyester resin of the base material layer, and preferably has an intrinsic viscosity in the above range.
<バリア性樹脂層>
 バリア性樹脂層としては、上述した基材層について例示したポリエステル樹脂をベースフィルムとして用い、このポリエステル樹脂を、基材層を構成するポリエステル樹脂と共押出して積層フィルムとし、該積層フィルム上(基材層の内側又は外側)に以下のバリア層を形成する。またバリア性樹脂層は、基材層や後述する強度向上のための耐衝撃性樹脂層等をベースフィルムとして使用することもできる。
 バリア層としては、酸化アルミニウム等の金属酸化物蒸着層やケイ素酸化物蒸着層に代表される無機酸化物蒸着層、或いは、ダイヤモンドライクカーボン等の炭化水素系蒸着層に代表される無機蒸着層を有する無機蒸着フィルム、或いは、金属アルコキシドや金属ハロゲン化合物等の加水分解化合物によるメタロキサン結合を有する化合物からなるコーティング剤、或いはポリビニルアルコール系ポリマーやポリカルボン酸系ポリマー等のガスバリア性樹脂からなるコーティング剤を塗布したコーティングバリア層を例示できる。
 バリア層を形成するためのベースフィルムの厚みは、5~50μm、特に10~30μmの範囲にあることが好適である。上記範囲よりもベースフィルムの厚みが薄いと、上記範囲にある場合に比して機械的強度、耐クラック性に劣り、一方上記範囲よりも厚いと、上記範囲にある場合に比して引き裂き性及び経済性に劣るようになる。
<Barrier resin layer>
As the barrier resin layer, the polyester resin exemplified for the above-mentioned base material layer is used as a base film, and this polyester resin is coextruded with the polyester resin constituting the base material layer to form a laminated film, which is formed on the laminated film (base). The following barrier layer is formed on the inside or outside of the material layer. Further, as the barrier resin layer, a base film layer, an impact resistant resin layer for improving strength described later, or the like can be used as a base film.
As the barrier layer, a metal oxide vapor deposition layer such as aluminum oxide, an inorganic oxide vapor deposition layer represented by a silicon oxide vapor deposition layer, or an inorganic vapor deposition layer represented by a hydrocarbon-based vapor deposition layer such as diamond-like carbon is used. An inorganic vapor deposition film having a coating agent, a coating agent made of a compound having a metalloxane bond with a hydrolyzed compound such as a metal alkoxide or a metal halogen compound, or a coating agent made of a gas barrier resin such as a polyvinyl alcohol-based polymer or a polycarboxylic acid-based polymer. The coated coating barrier layer can be exemplified.
The thickness of the base film for forming the barrier layer is preferably in the range of 5 to 50 μm, particularly 10 to 30 μm. If the thickness of the base film is thinner than the above range, the mechanical strength and crack resistance are inferior to those in the above range, while if it is thicker than the above range, the tearability is lower than that in the above range. And it becomes inferior in economy.
<ヒートシール性ポリエステル樹脂層>
 基材層と共押出可能なヒートシール性ポリエステル樹脂層を構成する樹脂としては、ヒートシール性ポリエステル樹脂として公知のものを使用することができる。例えば、PETGのような非晶ポリエステルや、エチレンテレフタレート/イソフタレート共重合体のような低融点ポリエステル樹脂、或いは高ガラス転移温度(Tg)のポリエステル樹脂及び低ガラス転移温度(Tg)をブレンドして成るポリエステル樹脂、ポリテトラメチレングリコール変性ポリブチレンテレフタレート(PBT-PTMG)等のポリエステル系熱可塑性エラストマー、を使用することができる。
 ヒートシール層の厚みは、15~150μm、特に40~80μmの範囲にあることが好適である。上記範囲よりもヒートシール層の厚みが薄いと上記範囲にある場合に比して、落下強度及びヒートシール性が劣るようになり、一方上記範囲よりも厚いと上記範囲ある場合に比して、引裂き性及び経済性に劣るようになる。
<Heat-sealable polyester resin layer>
As the resin constituting the heat-sealable polyester resin layer that can be co-extruded with the base material layer, a known heat-sealable polyester resin can be used. For example, an amorphous polyester such as PETG, a low melting point polyester resin such as an ethylene terephthalate / isophthalate copolymer, or a polyester resin having a high glass transition temperature (Tg) and a low glass transition temperature (Tg) are blended. A polyester resin made of a polyester resin or a polyester-based thermoplastic elastomer such as polytetramethylene glycol-modified polybutylene terephthalate (PBT-PTMG) can be used.
The thickness of the heat seal layer is preferably in the range of 15 to 150 μm, particularly 40 to 80 μm. If the thickness of the heat seal layer is thinner than the above range, the drop strength and heat sealability will be inferior to those in the above range, while if it is thicker than the above range, it will be inferior to the above range. It becomes inferior in tearability and economy.
<酸素吸収性樹脂層>
 基材層と共押出可能な酸素吸収性樹脂層を構成する樹脂組成物としては、上述したポリエステル樹脂をマトリックス樹脂とし、酸化性有機成分及び遷移金属触媒を含有する公知の酸素吸収性樹脂組成物を使用することができる。
 酸素吸収性樹脂層の厚みは、5~50μm、特に10~20μmの範囲にあることが好適である。上記範囲よりも酸素吸収性樹脂層の厚みが薄いと、上記範囲にある場合に比して機械的強度、耐クラック性に劣り、一方上記範囲よりも厚いと、上記範囲にある場合に比して引裂き性、経済性に劣るようになる。
<Oxygen absorbing resin layer>
As the resin composition constituting the oxygen-absorbing resin layer that can be co-extruded with the base material layer, a known oxygen-absorbing resin composition containing the above-mentioned polyester resin as a matrix resin, an oxidizing organic component, and a transition metal catalyst. Can be used.
The thickness of the oxygen absorbing resin layer is preferably in the range of 5 to 50 μm, particularly 10 to 20 μm. If the thickness of the oxygen-absorbing resin layer is thinner than the above range, the mechanical strength and crack resistance are inferior to those in the above range, while if it is thicker than the above range, it is inferior to the above range. It becomes inferior in tearability and economy.
<易開封性樹脂層>
 基材層と共押出可能な易開封性樹脂層を構成するポリエステル系樹脂組成物としては、ポリテトラメチレングリコール単位を含有したポリブチレンテレフタレートとポリエチレンテレフタレートとのブレンド物、ポリエチレンテレフタレートとポリエステルエラストマーから成り、ポリエチレンテレフタレート中にポリエステルエラストマーが分散してなるブレンド物等の直線引裂き性を有するポリエステル系樹脂組成物を好適に使用できる。
 易開封性樹脂層の厚みは、5~50μm、特に10~20μmの範囲にあることが好適である。上記範囲よりも易開封性樹脂層の厚みが薄いと、上記範囲ある場合に比して機械的強度、耐クラック性に劣り、一方上記範囲よりも厚いと、上記範囲にある場合に比して引き裂き性及び経済性に劣るようになる。
<Easy-opening resin layer>
The polyester-based resin composition constituting the easily-openable resin layer that can be co-extruded with the base material layer comprises a blend of polybutylene terephthalate and polyethylene terephthalate containing a polytetramethylene glycol unit, and polyethylene terephthalate and a polyester elastomer. , A polyester-based resin composition having linear tearability, such as a blend in which a polyester elastomer is dispersed in polyethylene terephthalate, can be preferably used.
The thickness of the easy-to-open resin layer is preferably in the range of 5 to 50 μm, particularly 10 to 20 μm. If the thickness of the easy-to-open resin layer is thinner than the above range, the mechanical strength and crack resistance are inferior to those in the above range, while if it is thicker than the above range, it is inferior to the case in the above range. It becomes inferior in tearability and economy.
<耐衝撃性樹脂層>
 基材層と共押出可能な耐衝撃性樹脂層は、耐突き刺し性や耐落下衝撃性等を向上させるものである。このような機能を発揮可能なポリエステル樹脂としては、ブチレンテレフタレート単位を主体とするポリエステルを例示でき、特にホモポリブチレンテレフタレートを好適に使用することができる。耐衝撃性樹脂層としては、一般にナイロンが使用されているが、ポリエステル系樹脂を使用することにより、レトルト殺菌や湯煎等にも対応可能な水分バリア性も付与できる。
 耐衝撃性樹脂層の厚みは、5~50μm、特に10~20μmの範囲にあることが好適である。上記範囲よりも耐衝撃性樹脂層の厚みが薄いと突き刺し強度および落下強度に劣り、一方上記範囲よりも厚いとフィルムが固すぎて製袋時や内容品充填時のハンドリングが困難になると同時に、経済性に劣るようになる。
<Impact resistant resin layer>
The impact-resistant resin layer that can be co-extruded with the base material layer improves puncture resistance, drop impact resistance, and the like. Examples of the polyester resin capable of exhibiting such a function include polyesters mainly composed of butylene terephthalate units, and in particular, homopolybutylene terephthalate can be preferably used. Nylon is generally used as the impact-resistant resin layer, but by using a polyester-based resin, it is possible to impart a moisture barrier property that can be used for retort sterilization, water bathing, and the like.
The thickness of the impact-resistant resin layer is preferably in the range of 5 to 50 μm, particularly 10 to 20 μm. If the thickness of the impact-resistant resin layer is thinner than the above range, the piercing strength and drop strength are inferior. On the other hand, if the thickness is thicker than the above range, the film is too hard to handle at the time of bag making and filling of contents. It becomes inferior in economic efficiency.
[印刷層]
 本発明の包装袋は、基材層の外側及び/又は内側に印刷層を有しているが、本発明においては、印刷層は基材層の外側に形成されていることが特に好適である。すなわち、基材層の外側に印刷層を形成する場合には、印刷インクの影響により内容物のフレーバーが低下することが有効に防止できると共に、積層フィルム形成後に印刷層及びトップコート層形成を同時行うことができることから、印刷層の傷つきを防止できる。尚、印刷層を基材層よりも内側に形成する場合には、印刷層よりも内側にバリア層を形成することが、内容物のフレーバー性の点から好ましい。
[Print layer]
The packaging bag of the present invention has a printed layer on the outside and / or inside of the base material layer, but in the present invention, it is particularly preferable that the printed layer is formed on the outside of the base material layer. .. That is, when the print layer is formed on the outside of the base material layer, it is possible to effectively prevent the flavor of the contents from being lowered due to the influence of the printing ink, and the print layer and the top coat layer are formed at the same time after the laminated film is formed. Since this can be done, it is possible to prevent scratches on the print layer. When the printing layer is formed inside the base material layer, it is preferable to form the barrier layer inside the printing layer from the viewpoint of the flavor property of the contents.
 印刷層を形成するために印刷を施す基材(印刷基材)としては、前述した基材層や機能性樹脂層等の樹脂層が用いられる。この印刷基材となる樹脂層には、コロナ処理やプラズマ処理や火炎処理等の公知の接着性を向上するための表面処理を行うことや、ポリウレタン樹脂や変性ポリエステル樹脂系などの接着性向上のためアンカーコート層を設けることも可能である。また、印刷基材となる樹脂層には、フィルム用配合剤、例えば非晶質シリカなどのアンチブロッキング剤、各種帯電防止剤、滑剤、酸化防止剤、紫外線吸収剤などを公知の処方に従って配合することができる。 As the base material (printing base material) to be printed to form the printing layer, a resin layer such as the above-mentioned base material layer or functional resin layer is used. The resin layer used as the printing base material is subjected to surface treatment such as corona treatment, plasma treatment, flame treatment, etc. to improve the known adhesiveness, and the adhesiveness of polyurethane resin, modified polyester resin, etc. is improved. Therefore, it is also possible to provide an anchor coat layer. Further, a compounding agent for a film, for example, an antiblocking agent such as amorphous silica, various antistatic agents, a lubricant, an antioxidant, an ultraviolet absorber, and the like are blended in a resin layer to be a printing base material according to a known formulation. be able to.
 印刷層は、紫外線硬化型、電子線硬化型、溶剤型等の従来公知の印刷インキを用い、グラビア印刷方式、インクジェット印刷、電子写真印刷、フレキソ印刷方式、オフセット印刷方式、スクリーン印刷方式等の従来公知の印刷方法を適宜選択可能である。特に色数を豊富に使って色調豊かで美麗な文字や模様を印刷したい場合には、グラビア印刷により印刷層を形成することが好ましい。
 印刷層は、上述した印刷基材となる樹脂層の片面に、印刷ローラーを用いて、グラビア等の印刷手段を使って、単色あるいは複数色(例えば2~10色)の印刷インキを用い、複数色の場合は順次繰り返して印刷を行うことにより形成できる。
 また印刷層は、ベタ印刷層と絵柄層との二層構成とすることもできる。
 印刷インキとしては、熱硬化性のウレタン系樹脂等をバインダーとするインキを使用することが好適であるが、これに限定されず、アクリル系樹脂、ポリエステル系樹脂、塩酢ビ系樹脂、ポリアミド系樹脂、エポキシ系樹脂、ニトロセルロース系樹脂、塩素化ポリプロピレン系樹脂等をバインダーとするインキを使用することもできる。またバインダーとして上記樹脂の複数をブレンドして用いるインキを使用することもできる。更に、インキの硬化剤として、ポリイソシアネート系樹脂、アミノ系樹脂等を添加することもできる。
The printing layer uses conventionally known printing inks such as ultraviolet curable type, electron beam curable type, and solvent type, and conventional gravure printing method, inkjet printing, electrophotographic printing, flexo printing method, offset printing method, screen printing method, and the like. A known printing method can be appropriately selected. In particular, when it is desired to print beautiful characters and patterns with rich color tones using a large number of colors, it is preferable to form a print layer by gravure printing.
As the printing layer, a plurality of printing inks of a single color or a plurality of colors (for example, 2 to 10 colors) are used on one side of the resin layer serving as the printing base material, using a printing roller and a printing means such as gravure. In the case of color, it can be formed by repeating printing in sequence.
Further, the printing layer may have a two-layer structure consisting of a solid printing layer and a pattern layer.
As the printing ink, it is preferable to use an ink using a heat-curable urethane resin or the like as a binder, but the printing ink is not limited to this, and is not limited to this, but is limited to acrylic resin, polyester resin, salt vinegar resin, and polyamide resin. Ink using a resin, an epoxy resin, a nitrocellulose resin, a chlorinated polypropylene resin or the like as a binder can also be used. Further, as a binder, an ink used by blending a plurality of the above resins can also be used. Further, a polyisocyanate resin, an amino resin, or the like can be added as an ink curing agent.
[トップコート層]
 印刷層を外面側に形成する場合には、印刷層を保護するためのトップコート層を形成することが好ましい。
 トップコート層としては、不飽和ポリエステル樹脂、エポキシ系樹脂、硬化型アクリル系樹脂等を用いた、熱硬化型塗料、紫外線硬化型塗料、電子線硬化型塗料等従来公知の塗料組成物から成る塗膜や、ニトロセルロース系樹脂、アクリル系樹脂、ポリカーボネート系樹脂等を単一又はブレンドして成る樹脂層を、使用することができる。更に、熱硬化型塗料の硬化剤として、ポリイソシアネート系樹脂、アミノ系樹脂等を添加することもできる。
 トップコート層を熱硬化型塗料で形成する場合には、基材樹脂の融点以下の温度で焼付けすることが望ましい。
[Top coat layer]
When the print layer is formed on the outer surface side, it is preferable to form a top coat layer for protecting the print layer.
As the top coat layer, a coating composed of a conventionally known coating composition such as a thermosetting coating material, an ultraviolet curing type coating material, and an electron beam curing type coating material using an unsaturated polyester resin, an epoxy resin, a curable acrylic resin or the like. A film or a resin layer made of a single or blended nitrocellulose resin, acrylic resin, polycarbonate resin and the like can be used. Further, a polyisocyanate resin, an amino resin, or the like can be added as a curing agent for the thermosetting paint.
When the top coat layer is formed of a thermosetting paint, it is desirable to bake it at a temperature equal to or lower than the melting point of the base resin.
[ヒートシール層]
 本発明においては、機能性樹脂層として基材層と共押出可能なポリエステル樹脂から成る前述したヒートシール性樹脂層以外に、フィルムラミネート等によるヒートシール層を形成することができる。すなわち、基材層と共押出による積層フィルムを構成する機能性樹脂層がヒートシール層以外の機能性樹脂層である場合には、積層フィルムにヒートシール層を更に形成する。
 このような積層フィルムに更に形成するヒートシール層としては、従来ヒートシール層に使用されているポリオレフィン等から成るヒートシール層を使用できるが、耐熱性の観点から、ポリプロピレンから成ることが好適である。
[Heat seal layer]
In the present invention, in addition to the above-mentioned heat-sealing resin layer made of a polyester resin that can be coextruded with the base material layer as the functional resin layer, a heat-sealing layer by film lamination or the like can be formed. That is, when the functional resin layer constituting the laminated film by coextrusion with the base material layer is a functional resin layer other than the heat-sealing layer, the heat-sealing layer is further formed on the laminated film.
As the heat-sealing layer further formed on such a laminated film, a heat-sealing layer made of polyolefin or the like conventionally used for the heat-sealing layer can be used, but from the viewpoint of heat resistance, it is preferably made of polypropylene. ..
[接着剤層]
 上述したとおり、本発明においては、基材層と機能性樹脂層を共押出により積層フィルムとし、この積層フィルムにさらに他の樹脂層を積層する場合には、後述するように、フィルムラミネートや押出ラミネートによって積層することができ、積層方法に応じた公知の接着剤を使用することができる。
 例えば、ドライラミネーションでは、ポリウレタン系、ポリアクリル系、ポリエステル系、エポキシ系、ポリ酢酸ビニル系の接着剤を使用することができ、ホットメルトラミネーションでは、エチレン-酢酸ビニル共重合体(EVA)などのホットメルト接着剤を使用することができる。
 本発明においては特に、接着剤中の溶剤による内容物のフレーバーへの影響を低減するため、無溶剤型のウレタン系接着剤を使用することが望ましい。
[Adhesive layer]
As described above, in the present invention, when the base material layer and the functional resin layer are coextruded to form a laminated film and another resin layer is further laminated on the laminated film, film lamination or extrusion is performed as described later. It can be laminated by laminating, and a known adhesive depending on the laminating method can be used.
For example, in dry lamination, polyurethane-based, polyacrylic-based, polyester-based, epoxy-based, and polyvinyl acetate-based adhesives can be used, and in hot melt lamination, ethylene-vinyl acetate copolymer (EVA) and the like can be used. Hot melt adhesives can be used.
In the present invention, it is particularly desirable to use a solvent-free urethane-based adhesive in order to reduce the influence of the solvent in the adhesive on the flavor of the contents.
(層構成)
 本発明の包装袋に使用する多層フィルムを添付図面に基づいて説明する。
 図1に示す多層フィルムは、基材層1の一方の面に機能性樹脂層2が形成されており、基材層1の機能性樹脂層2とは反対側に印刷層3が形成されている。印刷層3の上には印刷層保護のためのトップコート層4が形成されている。
 この態様においては、基材層1と機能性樹脂層2が共押出により積層フィルム10として形成され、この積層フィルム10の基材層側に印刷が施されると共に、トップコート層が形成されている。この態様においては、ラミネート回数がゼロである。
 この態様においては、機能性樹脂層がヒートシール層である場合には、図1に示す多層フィルムをヒートシール層が向き合うように重ね合わせ、ヒートシールすることにより包装袋を製造することができる。
 また機能性樹脂層がヒートシール層以外である場合には、機能性樹脂層側に、ポリプロピレン等のヒートシール性樹脂から成るフィルムを、接着剤を介してフィルムラミネート、或いは溶融樹脂を押出ラミネートすることにより多層フィルムが形成される。
(Layer structure)
The multilayer film used for the packaging bag of the present invention will be described with reference to the accompanying drawings.
In the multilayer film shown in FIG. 1, a functional resin layer 2 is formed on one surface of the base material layer 1, and a printing layer 3 is formed on the side of the base material layer 1 opposite to the functional resin layer 2. There is. A top coat layer 4 for protecting the print layer is formed on the print layer 3.
In this embodiment, the base material layer 1 and the functional resin layer 2 are formed as a laminated film 10 by coextrusion, and printing is applied to the base material layer side of the laminated film 10 and a top coat layer is formed. There is. In this embodiment, the number of laminations is zero.
In this aspect, when the functional resin layer is a heat-sealing layer, the packaging bag can be manufactured by superimposing the multilayer films shown in FIG. 1 so that the heat-sealing layers face each other and heat-sealing.
When the functional resin layer is other than the heat-sealing layer, a film made of a heat-sealing resin such as polypropylene is laminated on the functional resin layer side with a film laminate or a molten resin extruded and laminated via an adhesive. As a result, a multilayer film is formed.
 図2に示す多層フィルムは、機能性樹脂層として、ポリエステル樹脂から成るベースフィルム5a上にバリア層5bが形成されたバリア性樹脂層5が形成された多層フィルムである。基材層1とバリア性樹脂層5のベースフィルム5aが共押出により積層フィルム10として形成され、この積層フィルム10のベースフィルム5a側にバリア層5bが形成されている。
 この態様においては、基材層1側には図1と同様に、印刷層3及びトップコート層4が形成され、バリア層5b側には、ヒートシール層7が接着剤層8を介して積層されて、包装袋に用いられる多層フィルムとなる。この態様においては、ラミネート回数が1回である。
The multilayer film shown in FIG. 2 is a multilayer film in which a barrier resin layer 5 having a barrier layer 5b formed on a base film 5a made of a polyester resin is formed as a functional resin layer. The base film 5a of the base film layer 1 and the barrier resin layer 5 is formed as a laminated film 10 by coextrusion, and the barrier layer 5b is formed on the base film 5a side of the laminated film 10.
In this embodiment, the printing layer 3 and the top coat layer 4 are formed on the base material layer 1 side as in FIG. 1, and the heat seal layer 7 is laminated on the barrier layer 5b side via the adhesive layer 8. The result is a multilayer film used for packaging bags. In this embodiment, the number of times of laminating is one.
 図3に示す多層フィルムは、機能性樹脂層としてポリエステル樹脂から成るヒートシール層2が基材層1と共押出により形成された積層フィルム10の基材層1の側に蒸着層5b、蒸着層5bの上に印刷層3及びトップコート層が形成された多層フィルムである。この態様においては、ラミネート回数はゼロである。 In the multilayer film shown in FIG. 3, a vapor deposition layer 5b and a vapor deposition layer are formed on the side of the substrate layer 1 of the laminated film 10 in which a heat seal layer 2 made of polyester resin as a functional resin layer is coextruded with the substrate layer 1. It is a multilayer film in which a printing layer 3 and a top coat layer are formed on 5b. In this embodiment, the number of laminations is zero.
 図4に示す多層フィルムは、基材層1の両方の面に機能性樹脂層2a,2bが共押出による積層フィルムとして形成され、機能性樹脂層2aとしてポリエステル樹脂から成るヒートシール層2aが形成され、他方の側の機能性樹脂層2bとして耐衝撃性樹脂層又は易開封性樹脂層等を形成することができる。機能性樹脂層2bの上には、印刷層3及びトップコート層4が形成される。この態様においてはラミネート回数がゼロである。 In the multilayer film shown in FIG. 4, functional resin layers 2a and 2b are formed as laminated films by coextrusion on both surfaces of the base material layer 1, and a heat seal layer 2a made of polyester resin is formed as the functional resin layer 2a. Then, an impact-resistant resin layer, an easily-openable resin layer, or the like can be formed as the functional resin layer 2b on the other side. A printing layer 3 and a top coat layer 4 are formed on the functional resin layer 2b. In this embodiment, the number of laminations is zero.
 図5に示す多層フィルムは、基材層1と、耐衝撃性樹脂層又は易開封性樹脂層等の機能性樹脂層2を共押出により積層フィルムとして形成し、機能性樹脂層2に印刷層3及びトップコート層4を形成し、基材層1にポリプロピレンフィルム等のヒートシール性樹脂から成るヒートシール層7が接着剤層8を介して積層されている。この態様においてはラミネート回数が1回である。また図では基材層1が内側に位置していたがもちろん、機能性樹脂層2と基材層1を逆にすることもできる。 In the multilayer film shown in FIG. 5, a base material layer 1 and a functional resin layer 2 such as an impact resistant resin layer or an easily openable resin layer are formed as a laminated film by coextrusion, and a printing layer is formed on the functional resin layer 2. 3 and the top coat layer 4 are formed, and a heat seal layer 7 made of a heat sealable resin such as a polypropylene film is laminated on the base material layer 1 via an adhesive layer 8. In this embodiment, the number of times of laminating is one. Further, in the figure, the base material layer 1 is located inside, but of course, the functional resin layer 2 and the base material layer 1 can be reversed.
 本発明の包装袋を構成する多層フィルムは上記層構成に限定されず、種々の態様を取ることができる。例えば、印刷層を内側に形成する場合には、基材層と機能性樹脂層を共押出して積層フィルムとし、この積層フィルムの内面側に印刷層を形成し、印刷層の上にバリア層を形成して、これをヒートシール層とフィルムラミネートすることにより、フレーバー性を損なうことが防止できる(基材層・機能性樹脂層の共押出積層フィルム/印刷層/バリア層/接着層/ヒートシール層)。
 また機能性樹脂層を包装袋の用途に応じて少なくとも1種以上有していればよく、すべての機能性樹脂層を備えていてもよい。
The multilayer film constituting the packaging bag of the present invention is not limited to the above-mentioned layer structure, and can take various aspects. For example, when the printing layer is formed inside, the base material layer and the functional resin layer are co-extruded to form a laminated film, the printing layer is formed on the inner surface side of the laminated film, and the barrier layer is formed on the printing layer. By forming and laminating this with a heat seal layer, it is possible to prevent the flavor property from being impaired (coextrusion laminated film of base material layer / functional resin layer / printing layer / barrier layer / adhesive layer / heat seal). layer).
Further, at least one type of functional resin layer may be provided depending on the intended use of the packaging bag, and all functional resin layers may be provided.
(多層フィルムの製造方法)
 本発明においては、包装袋の製造に用いる多層フィルムの作成に際して、ポリエステル樹脂から成る基材層とポリエステル樹脂をベースとする機能性樹脂層の少なくとも1種とが共押出により積層された積層フィルムを予め製造する。
 共押出による積層フィルムの製造は、従来公知の方法により行うことができ、各樹脂層の種類に対応する押出機を用い、多層多重ダイ中で各樹脂の溶融物を重ね合わせ、これをダイオリフィスから押し出すことにより行われる。このフィルム材を、Tダイ法、インフレーション製膜法等で予め積層フィルムとして製膜する。
 また積層フィルムは、未延伸又は延伸フィルムのいずれも使用できるが、延伸フィルムであることが機械的強度等の観点から望ましい。
(Manufacturing method of multilayer film)
In the present invention, when producing a multilayer film used for manufacturing a packaging bag, a laminated film in which a base material layer made of polyester resin and at least one functional resin layer based on polyester resin are laminated by coextrusion is used. Manufactured in advance.
The production of the laminated film by coextrusion can be performed by a conventionally known method. Using an extruder corresponding to each type of resin layer, melts of each resin are superposed in a multilayer multiplex die, and this is die orifice. It is done by extruding from. This film material is preliminarily formed as a laminated film by a T-die method, an inflation film forming method, or the like.
The laminated film can be either an unstretched film or a stretched film, but a stretched film is desirable from the viewpoint of mechanical strength and the like.
 製膜された積層フィルムが、機能性樹脂層としてヒートシール層を有していない場合には、前述したポリプロピレン等の耐熱性を有するヒートシール性樹脂から成るフィルムに接着剤を用いてフィルムラミネートする。
 ヒートシール層は、ドライラミネーション、ノンソルベントドライラミネーション、ホットメルトラミネーション等従来公知の方法により、積層フィルムに貼り合わすことができる。
When the formed laminated film does not have a heat-sealing layer as a functional resin layer, the film is laminated with an adhesive to the film made of a heat-resistant heat-sealing resin such as polypropylene described above. ..
The heat seal layer can be bonded to the laminated film by conventionally known methods such as dry lamination, non-solvent dry lamination, and hot melt lamination.
 また図4に示したように、機能性樹脂層としてポリエステル樹脂から成るヒートシール性樹脂層が形成される場合には、ポリエステル樹脂から成るヒートシール層、ポリエステル樹脂から成る基材層、及びポリエステル樹脂をベースとする機能性樹脂層から成る3層構成の積層フィルムを共押出ラミネートにより形成し、この積層フィルムの機能性樹脂層側に、後述するように、印刷層を形成した後、該印刷層上にトップコート層を形成することにより、接着剤を用いることなく、ラミネート回数ゼロで多層フィルムを形成することができる。 Further, as shown in FIG. 4, when a heat-sealing resin layer made of polyester resin is formed as the functional resin layer, the heat-sealing layer made of polyester resin, the base material layer made of polyester resin, and the polyester resin A three-layer laminated film composed of a functional resin layer based on the above is formed by coextrusion lamination, and a print layer is formed on the functional resin layer side of the laminated film as described later, and then the print layer is formed. By forming the top coat layer on the top coat layer, the multilayer film can be formed with zero number of laminating without using an adhesive.
 また、蒸着層又はコーティング層から成るバリア層を形成する場合には、図2に示す態様では、バリア層5bを形成するベースとなるポリエステル樹脂から成るベース層5aと基材層1を共押出して積層フィルムを作成し、このポリエステル樹脂層5a上に前述した蒸着層又はコーティング層5bを形成することにより、バリア性樹脂層を備えた多層フィルムが形成できる。また図3に示す態様では、ヒートシール性ポリエステル樹脂層2と基材層1が共押出された積層フィルム10の基材層1を、ベース層としてバリア層5bを形成することにより、バリア層5bを備えた多層フィルムが形成できる。 When forming a barrier layer composed of a vapor deposition layer or a coating layer, in the embodiment shown in FIG. 2, the base layer 5a made of a polyester resin as a base for forming the barrier layer 5b and the base material layer 1 are coextruded. By producing a laminated film and forming the above-mentioned vapor-deposited layer or coating layer 5b on the polyester resin layer 5a, a multilayer film having a barrier resin layer can be formed. Further, in the embodiment shown in FIG. 3, the barrier layer 5b is formed by forming the barrier layer 5b using the base material layer 1 of the laminated film 10 in which the heat-sealing polyester resin layer 2 and the base material layer 1 are co-extruded as the base layer. A multilayer film with the above can be formed.
(包装袋の製造方法)
 本発明の包装袋は、上述した多層フィルムを、ヒートシール層同士が内面となるように重ね合わせヒートシールすることにより製袋する。
 包装袋は、上述した多層フィルムから成る限り、その形状は制限されず、ピロータイプのパウチ、ガセットタイプのパウチ、スタンディングパウチ等の種々の形状を採用するができる。
 本発明の包装袋においては、多層フィルムの外側に印刷層及びトップコート層を形成する場合、多層フィルムの状態で印刷層及びトップコート層を形成することが好適であるが、印刷層及びトップコート層を除いて必要な層が積層された多層フィルムを、ヒートシール層同士が向き合うように重ねてヒートシールすることにより得られた包装袋を先に作成し、この包装袋の外面に印刷層及びトップコート層を形成してもよい。
(Manufacturing method of packaging bag)
The packaging bag of the present invention is made by superimposing and heat-sealing the above-mentioned multilayer films so that the heat-sealing layers are on the inner surface.
The shape of the packaging bag is not limited as long as it is made of the above-mentioned multilayer film, and various shapes such as a pillow type pouch, a gusset type pouch, and a standing pouch can be adopted.
In the packaging bag of the present invention, when the print layer and the top coat layer are formed on the outside of the multilayer film, it is preferable to form the print layer and the top coat layer in the state of the multilayer film, but the print layer and the top coat are formed. A packaging bag obtained by first creating a packaging bag obtained by stacking and heat-sealing a multilayer film in which necessary layers are laminated except for a layer so that the heat-sealing layers face each other is first prepared, and a printing layer and a printing layer are formed on the outer surface of the packaging bag. A top coat layer may be formed.
(評価方法)
1.生産性及び経済性評価
 包装袋の作成において、接着剤を用いたラミネート回数が少ないほど、生産性及び経済性が高いこととなる。そこで、後述する方法にて作製した耐熱性包装袋の多層フィルムにおいて、接着剤を使用したラミネートを1回も行わずに作製した場合を◎、接着剤使用ラミネート回数が1回の場合を○、接着剤使用ラミネート回数が2回以上の場合を×として評価した。
(Evaluation method)
1. 1. Productivity and economic efficiency evaluation In the preparation of packaging bags, the smaller the number of times of laminating with an adhesive, the higher the productivity and economic efficiency. Therefore, in the multilayer film of the heat-resistant packaging bag produced by the method described later, the case where the film is produced without laminating using the adhesive even once is ⊚, and the case where the number of times of laminating using the adhesive is once is ○. The case where the number of times of laminating using the adhesive was 2 or more was evaluated as x.
2.官能評価
 官能評価としては、パネル12人による4点評価法と、参考例1を基準(コントロール)とした有意差検定(危険率5%)を行った。
(1) 官能評価の有意差検定(危険率5%)の基準(コントロール)として、下記参考例1のサンプルを作製した。また、参考例1の比較用サンプルとして、無包装で殺菌を施していない超純水も下記参考例2として準備した。
 参考例1としては、ポリエチレンテレフタレート樹脂(PETフィルム)のコロナ処理面にグラビア方式で印刷層を形成した。さらに、前記PETフィルムの印刷面をラミネート面としてアルミニウム(AL)箔とラミネートし、AL箔面をラミネート面として50μmの無延伸ポリプロピレン(CPPフィルム)とラミネートして多層フィルムを成形し、さらに耐熱性包装袋を作製した。この耐熱性包装袋に、超純水を200g充填して後述する方法にて殺菌・冷却し、官能評価用基準サンプルとして供した。
 参考例1の4点評価においては、平均値は1.4、標準偏差は0.48であった。また、参考例2の4点評価においては、平均値は1.3、標準偏差は0.55であった。参考例1と参考例2を比較した場合、5%危険率で有意差なしの結果であり、参考例1の耐熱性包装袋は、無包装・未殺菌の超純水と同等の結果であることがわかった。このため、参考例1の耐熱性包装袋に充填された超純水を後述する実施例1~5及び比較例1の官能評価用の基準サンプルとして用いた。
2. 2. Sensory evaluation As the sensory evaluation, a 4-point evaluation method by 12 panels and a significant difference test (risk rate 5%) using Reference Example 1 as a reference (control) were performed.
(1) A sample of Reference Example 1 below was prepared as a criterion (control) for a significant difference test (risk rate 5%) of sensory evaluation. Further, as a comparative sample of Reference Example 1, unpacked and unsterilized ultrapure water was also prepared as Reference Example 2 below.
As Reference Example 1, a printing layer was formed on the corona-treated surface of polyethylene terephthalate resin (PET film) by a gravure method. Further, the printed surface of the PET film is laminated with aluminum (AL) foil as a laminated surface, and the AL foil surface is laminated with 50 μm unstretched polypropylene (CPP film) as a laminated surface to form a multilayer film, further heat resistance. A packaging bag was prepared. This heat-resistant packaging bag was filled with 200 g of ultrapure water, sterilized and cooled by the method described later, and used as a reference sample for sensory evaluation.
In the 4-point evaluation of Reference Example 1, the average value was 1.4 and the standard deviation was 0.48. In the 4-point evaluation of Reference Example 2, the average value was 1.3 and the standard deviation was 0.55. When Reference Example 1 and Reference Example 2 are compared, the result is that there is no significant difference at a risk rate of 5%, and the heat-resistant packaging bag of Reference Example 1 has the same result as unwrapped and unsterilized ultrapure water. I understand. Therefore, the ultrapure water filled in the heat-resistant packaging bag of Reference Example 1 was used as a reference sample for sensory evaluation of Examples 1 to 5 and Comparative Example 1 described later.
(2) 後述する方法にて作製した実施例1~5及び比較例1の耐熱性包装袋に超純水を200g充填し、130℃30分の蒸気レトルト殺菌を行った後に常温(25℃)に冷却し、官能評価用サンプルとして供した。
 4点評価は、パネル12人により、「(1点)無味」、「(2点)わずかに味がする」、「(3点)味がする」、「(4点)かなり味がする」の評点で評価し、実施例1~5及び比較例1の各サンプルの平均値と標準偏差を求めた。
 また、同様に12人のパネルにより、実施例1~5及び比較例1の各サンプルについて参考例1を基準(コントロール)とした有意差検定(危険率5%)を行った。危険率5%で有意差のあったものを「あり」、有意差のなかったものを「なし」として評価した。
(2) 200 g of ultrapure water was filled in the heat-resistant packaging bags of Examples 1 to 5 and Comparative Example 1 prepared by the method described later, and steam retort sterilization was performed at 130 ° C. for 30 minutes, and then the temperature was (25 ° C.). It was cooled to and used as a sample for sensory evaluation.
The 4-point evaluation was made by 12 panels, "(1 point) tasteless", "(2 points) slightly tasted", "(3 points) tasted", "(4 points) tasted considerably". The average value and standard deviation of each sample of Examples 1 to 5 and Comparative Example 1 were obtained.
Similarly, a significant difference test (risk rate 5%) was performed on each sample of Examples 1 to 5 and Comparative Example 1 by a panel of 12 people using Reference Example 1 as a reference (control). Those with a significant difference at a risk rate of 5% were evaluated as "yes", and those without a significant difference were evaluated as "none".
(耐熱性包装袋の作製方法)
1.材料
 基材層の構成樹脂として、ポリエチレンテレフタレート樹脂(PET)又はポリブチレンテレフタレート樹脂(PBT)を、機能性樹脂層のベース樹脂として、バリア性樹脂層としてはポリエチレンテレフタレート樹脂(PET)又はポリブチレンテレフタレート樹脂(PBT)を、耐衝撃性樹脂層としてはポリブチレンテレフタレート樹脂(PBT)を、ヒートシール性樹脂層としてはポリテトラメチレングリコール変性ポリブチレンテレフタレート樹脂(PBT-PTMG)を用い、各種成形に供した。各樹脂とも成形前に乾燥処理を行った。また、機能性樹脂層としてヒートシール層を形成しない場合には、ヒートシール層構成フィルムとして、厚み50μmの無延伸ポリプロピレン(CPP)フィルムを用いた。
(How to make a heat-resistant packaging bag)
1. 1. Material Polyethylene terephthalate resin (PET) or polybutylene terephthalate resin (PBT) as the constituent resin of the base material layer, polyethylene terephthalate resin (PET) or polybutylene terephthalate as the barrier resin layer as the base resin of the functional resin layer. Polybutylene terephthalate resin (PBT) is used as the impact-resistant resin layer, polytetramethylene glycol-modified polybutylene terephthalate resin (PBT-PTMG) is used as the heat-sealable resin layer, and the resin (PBT) is used for various moldings. did. Each resin was dried before molding. When the heat seal layer was not formed as the functional resin layer, a non-stretched polypropylene (CPP) film having a thickness of 50 μm was used as the heat seal layer constituent film.
2.成形
(1)キャストフィルムの成形
 3層多層Tダイを備えたラボプラストミル((株)東洋精機製作所製)を用い多層共押出キャストフィルムを製膜した。第1、第2、第3の押出機から押出した樹脂をTダイにて合流させ、第1/第2/第3の順に積層された3種3層フィルムを製膜した。Tダイの温度設定はすべて280℃とし、押出機の温度設定は供給樹脂によって変化させた。
2. 2. Molding (1) Molding of cast film A multi-layer coextruded cast film was formed using a lab plast mill (manufactured by Toyo Seiki Seisakusho Co., Ltd.) equipped with a 3-layer multilayer T-die. The resins extruded from the first, second, and third extruders were merged with a T-die to form a three-kind three-layer film laminated in the order of 1st, 2nd, and 3rd. The temperature settings of all T-dies were set to 280 ° C., and the temperature settings of the extruder were changed depending on the supplied resin.
(2)延伸フィルムの成形
 前記キャストフィルムを延伸前原反として、二軸延伸試験装置(x6H-S:(株)東洋精機製作所)にて二軸延伸成形し、縦軸3.5倍、横軸3.5倍の延伸倍率で延伸フィルムを成形した。
(2) Molding of stretched film Using the cast film as the original fabric before stretching, biaxial stretching and molding was performed with a biaxial stretching test device (x6HS: Toyo Seiki Seisakusho Co., Ltd.), and the vertical axis was 3.5 times and the horizontal axis. A stretched film was formed at a stretching ratio of 3.5 times.
(3)バリア層の形成
 基材フィルムの片面に、アルミナを蒸発源として真空蒸着法により無機酸化物の蒸着膜を形成し、バリア層を形成した。
(3) Formation of Barrier Layer An inorganic oxide vapor deposition film was formed on one side of the base film by a vacuum vapor deposition method using alumina as an evaporation source to form a barrier layer.
(4)印刷層の形成
 前記バリア層を形成した基材フィルムの蒸着面もしくは非蒸着面にグラビア方式により印刷層を形成した。また、印刷層が最外層となる場合は、エポキシをベース樹脂とする塗料組成物を用い、2mg/mの量をグラビア方式で塗工して130℃で焼き付けし、トップコート層を形成した。
(4) Formation of Print Layer A print layer was formed on the vapor-deposited surface or the non-deposited surface of the base film on which the barrier layer was formed by a gravure method. When the printing layer is the outermost layer, a coating composition using epoxy as a base resin is used, and an amount of 2 mg / m 2 is applied by a gravure method and baked at 130 ° C. to form a top coat layer. ..
(5)積層体・積層袋の成形
 機能性樹脂層としてのヒートシール層を形成しない延伸フィルムに、ヒートシール層としてのCPPフィルムを、ウレタン系接着剤(3μm)を使用してドライラミネートにて多層フィルムを成形した。次いで、この多層フィルムを三方シールにより製袋し、幅130mm、長さ175mmの耐熱性包装袋を作製した。
(5) Molding of Laminated Body / Laminated Bag A CPP film as a heat-sealing layer is dry-laminated using a urethane-based adhesive (3 μm) on a stretched film that does not form a heat-sealing layer as a functional resin layer. A multilayer film was molded. Next, this multilayer film was made into a bag with a three-way seal to prepare a heat-resistant packaging bag having a width of 130 mm and a length of 175 mm.
(実施例1)
 前記キャストフィルムの成形方法に従い、第1、第3の押出機(設定温度280℃)にPETを、第2の押出機(設定温度250℃)にPBTを供給し、層構成としてPET/PBT/PETとなるキャストフィルムを成形した。このフィルムは全層厚みが200μm、各層厚みの比率はPET/PBT/PET=0.5/1/0.5であった。
 このキャストフィルムを延伸前原反として、前記延伸フィルムの成形方法に従い延伸フィルムを成形した。このフィルムは全層厚みが19μmであった。
 次いで前述した方法により、上記延伸フィルムの片面に、アルミナ蒸着膜によるバリア層、該バリア層の上にグラビア方式で印刷層を形成した後、該印刷層形成面をラミネート面として、ウレタン系接着剤(3μm)を使用して、ヒートシール層としてのCPPフィルムとドライラミネートして多層フィルムを成形した。層構成を表1に示す。
 得られた多層フィルムのCPPフィルム面同士を重ね合わせてヒートシールすることにより、耐熱性包装袋を作製した。
 生産性及び経済性評価、並びに官能評価について結果を表1に示す。
(Example 1)
According to the casting film molding method, PET is supplied to the first and third extruders (set temperature 280 ° C.) and PBT is supplied to the second extruder (set temperature 250 ° C.), and PET / PBT / is formed as a layer structure. A cast film to be PET was molded. The total layer thickness of this film was 200 μm, and the ratio of each layer thickness was PET / PBT / PET = 0.5 / 1 / 0.5.
Using this cast film as the original fabric before stretching, the stretched film was molded according to the method for molding the stretched film. This film had a total layer thickness of 19 μm.
Then, by the method described above, a barrier layer made of an alumina vapor deposition film is formed on one side of the stretched film, and a print layer is formed on the barrier layer by a gravure method, and then the print layer forming surface is used as a laminate surface to form a urethane adhesive. Using (3 μm), a multilayer film was formed by dry laminating with a CPP film as a heat seal layer. The layer structure is shown in Table 1.
A heat-resistant packaging bag was produced by superimposing the CPP film surfaces of the obtained multilayer film on each other and heat-sealing them.
The results of productivity and economic evaluation and sensory evaluation are shown in Table 1.
(実施例2)
 前記キャストフィルムの成形方法に従い、第1、第3の押出機(設定温度250℃)にPBTを、第2の押出機(設定温度280℃)にPETを供給し、層構成としてPBT/PET/PBTとなるキャストフィルムを成形した。このフィルムは全層厚みが170μm、各層厚みの比率がPET/PBT/PET=0.3/1/0.4であった。
 このキャストフィルムを延伸前原反として、前記延伸フィルムの成形方法に従い延伸フィルムを成形した。このフィルムは全層厚みが17μmであった。
 次いでこの延伸フィルムに、実施例1と同様にして、バリア層、印刷層、CPPフィルムを積層して多層フィルムを成形し、さらに耐熱性包装袋を作製した。
 多層フィルムの層構成、生産性及び経済性評価、並びに官能評価について結果を表1に示す。
(Example 2)
According to the casting film molding method, PBT is supplied to the first and third extruders (set temperature 250 ° C.) and PET is supplied to the second extruder (set temperature 280 ° C.), and PBT / PET / is formed as a layer structure. A cast film to be PBT was molded. The total layer thickness of this film was 170 μm, and the ratio of each layer thickness was PET / PBT / PET = 0.3 / 1 / 0.4.
Using this cast film as the original fabric before stretching, the stretched film was molded according to the method for molding the stretched film. This film had a total layer thickness of 17 μm.
Next, a barrier layer, a printing layer, and a CPP film were laminated on this stretched film in the same manner as in Example 1 to form a multilayer film, and a heat-resistant packaging bag was further produced.
Table 1 shows the results of the layer composition, productivity and economic efficiency evaluation, and sensory evaluation of the multilayer film.
(実施例3)
 前記キャストフィルムの成形方法に従い、第1の押出機(設定温度280℃)にPETを、第2の押出機(設定温度250℃)にPBTを、第3の押出機(設定温度250℃)にPBT-PTMG/PBT=8/2(重量比)のドライブレンド物を供給し、層構成としてPET/PBT/PBT-PTMGとなるキャストフィルムを成形した。このフィルムは全層厚みが200μm、各層厚みの比率がPET/PBT/PBT-PTMG=1/1/1であった。
 このキャストフィルムを延伸前原反として、前記延伸フィルムの成形方法に従い延伸フィルムを成形した。このフィルムは全層厚みが17μmであった。
 次いでこの延伸フィルムのPET面にアルミナ蒸着膜によるバリア層を、バリア層の上に印刷層を形成して多層フィルムを成形し、さらに耐熱性包装袋を作製した。
 多層フィルムの層構成、生産性及び経済性評価、並びに官能評価について結果を表1に示す。
(Example 3)
According to the casting film molding method, PET is used in the first extruder (set temperature 280 ° C.), PBT is used in the second extruder (set temperature 250 ° C.), and PBT is used in the third extruder (set temperature 250 ° C.). A dry blend of PBT-PTMG / PBT = 8/2 (weight ratio) was supplied, and a cast film having a layer structure of PET / PBT / PBT-PTMG was formed. The total layer thickness of this film was 200 μm, and the ratio of each layer thickness was PET / PBT / PBT-PTMG = 1/1/1.
Using this cast film as the original fabric before stretching, the stretched film was molded according to the method for molding the stretched film. This film had a total layer thickness of 17 μm.
Next, a barrier layer made of an alumina-deposited film was formed on the PET surface of this stretched film, and a printing layer was formed on the barrier layer to form a multilayer film, and a heat-resistant packaging bag was further produced.
Table 1 shows the results of the layer composition, productivity and economic efficiency evaluation, and sensory evaluation of the multilayer film.
(実施例4)
 前記キャストフィルムの成形方法に従い、第1、第3の押出機(設定温度280℃)にPETを、第2の押出機(設定温度250℃)にPBTを供給し、層構成としてPET/PBT/PETとなるキャストフィルムを成形した。このフィルムは全層厚みが200μm、各層厚みの比率がPET/PBT/PET=0.5/1/0.5であった。
 このキャストフィルムを延伸前原反として、前記延伸フィルムの成形方法に従い延伸フィルムを成形した。このフィルムは全層厚みが19μmであった。
 次いでこの延伸フィルムの片面にアルミナ蒸着膜によるバリア層を、バリア層が無い面にグラビア方式で印刷層と印刷層の上にトップコート層を形成した。さらに、実施例1と同様にして、延伸フィルムのバリア層側をラミネート面として、CPPフィルムとラミネートし多層フィルムを成形し、さらに耐熱性包装袋を作製した。
 多層フィルムの層構成、生産性及び経済性評価、並びに官能評価について結果を表1に示す。
(Example 4)
According to the casting film molding method, PET is supplied to the first and third extruders (set temperature 280 ° C.) and PBT is supplied to the second extruder (set temperature 250 ° C.), and PET / PBT / is formed as a layer structure. A cast film to be PET was molded. The total layer thickness of this film was 200 μm, and the ratio of each layer thickness was PET / PBT / PET = 0.5 / 1 / 0.5.
Using this cast film as the original fabric before stretching, the stretched film was molded according to the method for molding the stretched film. This film had a total layer thickness of 19 μm.
Next, a barrier layer made of an alumina vapor deposition film was formed on one side of the stretched film, and a top coat layer was formed on the printed layer and the printed layer by a gravure method on the surface without the barrier layer. Further, in the same manner as in Example 1, the barrier layer side of the stretched film was used as a laminating surface, and the film was laminated with a CPP film to form a multilayer film, and a heat-resistant packaging bag was further produced.
Table 1 shows the results of the layer composition, productivity and economic efficiency evaluation, and sensory evaluation of the multilayer film.
(実施例5)
 前記キャストフィルムの成形方法に従い、第1、第3の押出機(設定温度250℃)にPBTを、第2の押出機(設定温度280℃)にPETを供給し、層構成としてPBT/PET/PBTとなるキャストフィルムを成形した。このフィルムは全層厚みが170μm、各層厚みの比率がPBT/PET/PBT=0.3/1/0.4であった。
 このキャストフィルムを延伸前原反として、前記延伸フィルムの成形方法に従い延伸フィルムを成形した。このフィルムは全層厚みが17μmであった。
 次いでこの延伸フィルムの片面にアルミナ蒸着膜によるバリア層を、バリア層が無い面にグラビア方式で印刷層と印刷層の上にトップコート層を形成した。さらに、実施例1と同様にして延伸フィルムのバリア層側をラミネート面として、CPPフィルムとラミネートし多層フィルムを成形し、さらに耐熱性包装袋を作製した。
 多層フィルムの層構成、生産性及び経済性評価、並びに官能評価について結果を表1に示す。
(Example 5)
According to the casting film molding method, PBT is supplied to the first and third extruders (set temperature 250 ° C.) and PET is supplied to the second extruder (set temperature 280 ° C.), and PBT / PET / is formed as a layer structure. A cast film to be PBT was molded. The total layer thickness of this film was 170 μm, and the ratio of each layer thickness was PBT / PET / PBT = 0.3 / 1 / 0.4.
Using this cast film as the original fabric before stretching, the stretched film was molded according to the method for molding the stretched film. This film had a total layer thickness of 17 μm.
Next, a barrier layer made of an alumina vapor deposition film was formed on one side of the stretched film, and a top coat layer was formed on the printed layer and the printed layer by a gravure method on the surface without the barrier layer. Further, in the same manner as in Example 1, the barrier layer side of the stretched film was used as a laminating surface, and the film was laminated with a CPP film to form a multilayer film, and a heat-resistant packaging bag was further produced.
Table 1 shows the results of the layer composition, productivity and economic efficiency evaluation, and sensory evaluation of the multilayer film.
(比較例1)
 PETフィルムの片面にアルミナ蒸着膜によるバリア層、その上にグラビア方式で印刷層を形成した。さらに、前記記載に従い、前記PETフィルムの印刷層形成面をラミネート面としてナイロン(NY)フィルムとラミネートし、NYフィルム面をラミネート面としてCPPフィルムとラミネートして3層の多層フィルムを成形し、さらに耐熱性包装袋を作製した。
 多層フィルムの層構成、生産性及び経済性評価、並びに官能評価について結果を表1に示す。
(Comparative Example 1)
A barrier layer made of an alumina-deposited film was formed on one side of the PET film, and a printing layer was formed on the barrier layer by a gravure method. Further, according to the above description, the print layer forming surface of the PET film is laminated with a nylon (NY) film as a laminating surface, and the NY film surface is laminated with a CPP film as a laminating surface to form a three-layer multilayer film. A heat-resistant packaging bag was produced.
Table 1 shows the results of the layer composition, productivity and economic efficiency evaluation, and sensory evaluation of the multilayer film.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の包装袋は、耐熱性、バリア性等の包装袋に要求される性能を有すると共に、ラミネート回数が少なく、接着剤の使用量が低減された多層フィルムから成るため、生産性、経済性及びフレーバー性に優れており、食品用途に好適に使用することができる。 The packaging bag of the present invention has the performance required for a packaging bag such as heat resistance and barrier properties, and is made of a multilayer film in which the number of times of lamination is small and the amount of adhesive used is reduced, so that productivity and economy are economical. It has excellent flavor and can be suitably used for food applications.
 1 基材層、2 機能性樹脂層、3 印刷層、4 トップコート層、5 バリア性樹脂層、7 ヒートシール層、8 接着剤層。 1 base material layer, 2 functional resin layer, 3 printing layer, 4 top coat layer, 5 barrier resin layer, 7 heat seal layer, 8 adhesive layer.

Claims (11)

  1.  ポリエステル樹脂から成る基材層、該基材層に隣接するポリエステル樹脂をベースとする機能性樹脂層を少なくとも有する多層フィルムから成り、前記基材層と前記機能性樹脂層が共押出による積層フィルムであることを特徴とする耐熱性包装袋。 A laminated film composed of a base material layer made of polyester resin and a multilayer film having at least a functional resin layer based on polyester resin adjacent to the base material layer, and the base material layer and the functional resin layer are coextruded. A heat-resistant packaging bag characterized by being present.
  2.  前記多層フィルムが印刷層を有する請求項1記載の耐熱性包装袋。 The heat-resistant packaging bag according to claim 1, wherein the multilayer film has a printing layer.
  3.  前記機能性樹脂層が、バリア性樹脂層,ヒートシール性樹脂層,酸素吸収性樹脂層,易開封性樹脂層,耐衝撃性樹脂層の少なくとも1層である請求項1又は2記載の耐熱性包装袋。 The heat resistance according to claim 1 or 2, wherein the functional resin layer is at least one layer of a barrier resin layer, a heat-sealing resin layer, an oxygen-absorbing resin layer, an easily-openable resin layer, and an impact-resistant resin layer. Packaging bag.
  4.  前記機能性樹脂層が、ヒートシール性樹脂層であり、前記基材層に蒸着層又はコーティング層から成るバリア層が形成されている請求項1~3の何れかに記載の耐熱性包装袋。 The heat-resistant packaging bag according to any one of claims 1 to 3, wherein the functional resin layer is a heat-sealing resin layer, and a barrier layer composed of a vapor-deposited layer or a coating layer is formed on the base material layer.
  5.  前記機能性樹脂層が、蒸着層又はコーティング層から成るバリア層を有するポリエステル樹脂層から成るバリア性樹脂層であり、前記基材層と前記ポリエステル樹脂層が共押出による積層フィルムである請求項3記載の耐熱性包装袋。 3. The functional resin layer is a barrier resin layer made of a polyester resin layer having a barrier layer made of a vapor deposition layer or a coating layer, and the base material layer and the polyester resin layer are laminated films by coextrusion. Described heat resistant packaging bag.
  6.  前記基材層の一方の面に前記ヒートシール性樹脂層が形成され、他方の面に前記酸素吸収性樹脂層,前記易開封性樹脂層,前記耐衝撃性樹脂層の何れか1層が形成されており、前記ヒートシール性樹脂層、前記基材層、及び前記酸素吸収性樹脂層,前記易開封性樹脂層,前記耐衝撃性樹脂層の何れか1層、の3層が共押出による積層フィルムである請求項3記載の耐熱性包装袋。 The heat-sealable resin layer is formed on one surface of the base material layer, and any one of the oxygen-absorbing resin layer, the easily-openable resin layer, and the impact-resistant resin layer is formed on the other surface. The three layers of the heat-sealing resin layer, the base material layer, the oxygen-absorbing resin layer, the easily-openable resin layer, and the impact-resistant resin layer are coextruded. The heat-resistant packaging bag according to claim 3, which is a laminated film.
  7.  前記機能性樹脂層が、前記バリア性樹脂層,前記酸素吸収性樹脂層,前記易開封性樹脂層,前記耐衝撃性樹脂層の何れか1層であり、前記基材層の前記機能性樹脂層が隣接する面の反対側の面には、ポリオレフィンから成るヒートシール層が接着剤を介して形成されている請求項3記載の耐熱性包装袋。 The functional resin layer is any one of the barrier resin layer, the oxygen absorbing resin layer, the easily openable resin layer, and the impact resistant resin layer, and the functional resin of the base material layer. The heat-resistant packaging bag according to claim 3, wherein a thermosetting layer made of polyolefin is formed via an adhesive on the surface opposite to the surface adjacent to the layers.
  8.  前記基材層の外面側に前記印刷層が形成されており、前記印刷層の外面側にトップコート層が形成されている請求項2~7の何れかに記載の耐熱性包装袋。 The heat-resistant packaging bag according to any one of claims 2 to 7, wherein the printing layer is formed on the outer surface side of the base material layer, and the top coat layer is formed on the outer surface side of the printing layer.
  9.  ポリエステル樹脂から成る基材層及びポリエステル樹脂をベースとする機能性樹脂層から成る積層フィルムを共押出ラミネートにより形成し、該積層フィルムの前記基材層側に、接着剤を介してポリオレフィンから成るヒートシール層を形成し、前記積層フィルムの前記機能性樹脂層側に、印刷層を形成した後、該印刷層上にトップコート層を形成して成る多層フィルムを、前記ポリオレフィンから成るヒートシール層同士が内面となるように重ね合わせヒートシールすることにより製袋することを特徴とする耐熱性包装袋の製造方法。 A laminated film composed of a base material layer made of polyester resin and a functional resin layer based on polyester resin is formed by coextrusion lamination, and heat made of polyolefin is provided on the base material layer side of the laminated film via an adhesive. A multilayer film formed by forming a sealing layer, forming a printing layer on the functional resin layer side of the laminated film, and then forming a top coat layer on the printing layer is formed by heat-sealing layers made of the polyolefin. A method for producing a heat-resistant packaging bag, which comprises making a bag by superimposing and heat-sealing the film so that the surface is on the inner surface.
  10.  ポリエステル樹脂から成るヒートシール性樹脂層、ポリエステル樹脂から成る基材層、及びポリエステル樹脂をベースとする機能性樹脂層から成る積層フィルムを共押出ラミネートにより形成し、該積層フィルムの前記機能性樹脂層側に、印刷層を形成した後、該印刷層上にトップコート層を形成して成る多層フィルムを、前記ヒートシール性樹脂層同士が内面となるように重ね合わせてヒートシールすることにより製袋することを特徴とする耐熱性包装袋の製造方法。 A laminated film composed of a heat-sealable resin layer made of polyester resin, a base material layer made of polyester resin, and a functional resin layer based on polyester resin is formed by coextrusion lamination, and the functional resin layer of the laminated film is formed. After forming a printing layer on the side, a multilayer film formed by forming a top coat layer on the printing layer is overlapped so that the heat-sealing resin layers are on the inner surface, and heat-sealed. A method for manufacturing a heat-resistant packaging bag.
  11.  前記機能性樹脂層が、蒸着層又はコーティング層から成るバリア層を有するポリエステル樹脂層から成るバリア性樹脂層であり、前記蒸着層又はコーティング層を前記積層フィルム上に形成することによりバリア層を形成する請求項9又は10記載の耐熱性包装袋の製造方法。 The functional resin layer is a barrier resin layer composed of a polyester resin layer having a barrier layer composed of a vapor deposition layer or a coating layer, and the barrier layer is formed by forming the vapor deposition layer or the coating layer on the laminated film. The method for producing a heat-resistant packaging bag according to claim 9 or 10.
PCT/JP2020/012208 2019-03-25 2020-03-19 Heat-resistant packaging bag and method for manufacturing same WO2020196226A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021509294A JPWO2020196226A1 (en) 2019-03-25 2020-03-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019056628 2019-03-25
JP2019-056628 2019-03-25

Publications (1)

Publication Number Publication Date
WO2020196226A1 true WO2020196226A1 (en) 2020-10-01

Family

ID=72611915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012208 WO2020196226A1 (en) 2019-03-25 2020-03-19 Heat-resistant packaging bag and method for manufacturing same

Country Status (2)

Country Link
JP (1) JPWO2020196226A1 (en)
WO (1) WO2020196226A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06344526A (en) * 1993-06-11 1994-12-20 Sun A Chem Ind Co Ltd Easily strippable film
JP2003276760A (en) * 2002-03-25 2003-10-02 Dainippon Printing Co Ltd Bag with spout
JP2004160815A (en) * 2002-11-12 2004-06-10 Dainippon Printing Co Ltd Laminated material and packaging bag using the same
JP2012223992A (en) * 2011-04-20 2012-11-15 Toppan Printing Co Ltd Vapor deposition film and packaging material for heat treatment
JP2013035187A (en) * 2011-08-05 2013-02-21 Dainippon Printing Co Ltd Laminate having deodorization performance, and packaging body using the same
JP2016124566A (en) * 2014-12-26 2016-07-11 大日本印刷株式会社 Packaging material for mouth wash

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4765338B2 (en) * 2005-02-22 2011-09-07 東洋製罐株式会社 Packaging materials
JP6724448B2 (en) * 2016-03-18 2020-07-15 東洋紡株式会社 Laminated film, laminate and package

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06344526A (en) * 1993-06-11 1994-12-20 Sun A Chem Ind Co Ltd Easily strippable film
JP2003276760A (en) * 2002-03-25 2003-10-02 Dainippon Printing Co Ltd Bag with spout
JP2004160815A (en) * 2002-11-12 2004-06-10 Dainippon Printing Co Ltd Laminated material and packaging bag using the same
JP2012223992A (en) * 2011-04-20 2012-11-15 Toppan Printing Co Ltd Vapor deposition film and packaging material for heat treatment
JP2013035187A (en) * 2011-08-05 2013-02-21 Dainippon Printing Co Ltd Laminate having deodorization performance, and packaging body using the same
JP2016124566A (en) * 2014-12-26 2016-07-11 大日本印刷株式会社 Packaging material for mouth wash

Also Published As

Publication number Publication date
JPWO2020196226A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
EP1752285B1 (en) Heat shrink laminate film, molding utilizing the film, heat shrink label and container
NL2019329B1 (en) Multilayer laminate film assembly and standing pouch
JP2022116198A (en) bag
WO2018062331A1 (en) Laminated body
JP6511713B2 (en) Laminate for packaging material
JP2023160960A (en) Packaging bag and laminate
WO2004094139A1 (en) Heat-shrinkable milky film, shrink label and container with label
CN109070562B (en) Polyester laminated tube for container
JP7124285B2 (en) Laminate and bag composed of the laminate
EP3694715B1 (en) Use of high barrier and peelable polyester film for tray lidding, dual ovenable packaging applications and tray lidding dual ovenable packages obtained therefrom
US20200299043A1 (en) Fully recyclable polyethylene packaging
JP2000263727A (en) Laminated material and packaging container using the same
WO2020196226A1 (en) Heat-resistant packaging bag and method for manufacturing same
WO2022065379A1 (en) Stretched multilayer film and packaging bag formed of same
JP6511712B2 (en) Laminate for packaging material
JP2007125840A (en) Shrink film, shrink label, and labeled container
JP6936569B2 (en) Shrink label
JPH04214345A (en) Composite wrapping material and wrapping container using it
JP3914440B2 (en) Overwrap package
JP4658780B2 (en) Shrink film, shrink label and labeled container
JP7033266B2 (en) A method for manufacturing a laminated body, a bag composed of the laminated body, and the laminated body.
JP3917888B2 (en) Polyester-based laminated paper, production method thereof, food container material comprising the laminated paper
CN116171221A (en) Packaging film for cooking applications
JP7248199B2 (en) Unstretched polyester film and its manufacturing method
JP2000263726A (en) Laminated material and packaging container using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779842

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509294

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779842

Country of ref document: EP

Kind code of ref document: A1