WO2020196213A1 - Dehumidifier - Google Patents

Dehumidifier Download PDF

Info

Publication number
WO2020196213A1
WO2020196213A1 PCT/JP2020/012165 JP2020012165W WO2020196213A1 WO 2020196213 A1 WO2020196213 A1 WO 2020196213A1 JP 2020012165 W JP2020012165 W JP 2020012165W WO 2020196213 A1 WO2020196213 A1 WO 2020196213A1
Authority
WO
WIPO (PCT)
Prior art keywords
air passage
air
unit
heat radiating
cooling
Prior art date
Application number
PCT/JP2020/012165
Other languages
French (fr)
Japanese (ja)
Inventor
光義 山下
石川 淳
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2021509285A priority Critical patent/JP7372313B2/en
Priority to CN202080019787.XA priority patent/CN113597335A/en
Priority to TW109109875A priority patent/TWI825294B/en
Publication of WO2020196213A1 publication Critical patent/WO2020196213A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours

Definitions

  • the present invention relates to a dehumidifier.
  • a dehumidifier having a dehumidifying function is disclosed in Patent Document 1.
  • the dehumidifier described in Patent Document 1 includes a main body case, a refrigeration cycle mechanism, a radiator, a heat absorber, a dehumidifying rotor, and a refrigerant heat exchanger.
  • the main body case has an intake port and an exhaust port.
  • the refrigeration cycle mechanism is provided in the main body case.
  • the blower takes in air into the main body case from the intake port, passes the intake air in the order of the radiator and the heat absorber, and forms an air passage for blowing the air to the exhaust port.
  • the dehumidifying portion of the dehumidifying rotor is provided between the radiator and the heat absorber in the air passage.
  • the moisture absorbing portion of the dehumidifying rotor is provided between the heat absorber and the exhaust port in the air passage.
  • the refrigerant heat exchanger is provided between the moisture release section and the heat absorber in the air passage.
  • the radiator heat radiator
  • the heat absorber cooling unit
  • An object of the present invention is to provide a dehumidifier capable of suppressing a decrease in dehumidifying capacity.
  • the dehumidifier includes a heating part, a moisture releasing part, a cooling part, a moisture absorbing part, a heat radiating part, and a casing.
  • the air heated by the heating unit is supplied to the moisture release unit.
  • the cooling unit cools the air.
  • the hygroscopic part dehumidifies the air.
  • the heat radiating unit cools the cooling unit via a refrigerant.
  • a first air passage is formed in the casing. In the first air passage, the heating part, the moisture releasing part, the cooling part, the moisture absorbing part, and the heat radiating part have the heating part, the moisture releasing part, the cooling part, and the moisture absorbing part.
  • the unit and the heat radiating unit are arranged in this order.
  • the dehumidifier includes a cooling unit, a moisture absorbing portion, a heat radiating portion, a moisture releasing portion, and a casing.
  • the cooling unit cools the air.
  • the hygroscopic part dehumidifies the air.
  • the heat radiating unit cools the cooling unit via a refrigerant. Air heated by the heat radiating part is supplied to the moisture releasing part.
  • a first air passage is formed in the casing. In the first air passage, the moisture releasing portion, the cooling portion, the moisture absorbing portion, and the heat radiating portion have the heat radiating portion, the moisture releasing portion, the cooling portion, the moisture absorbing portion, and the heat radiating portion. Arranged in the order of the parts.
  • the dehumidifier of the present invention it is possible to suppress a decrease in the dehumidifying capacity of the dehumidifier.
  • FIG. 3 is a sectional view taken along line III-III of the dehumidifier shown in FIG. It is a schematic diagram which looked at the dehumidifier from the rear. It is a figure which shows the flow of the air through the 1st air passage. It is a schematic diagram which shows the inside of the dehumidifier which concerns on 2nd Embodiment of this invention. It is a schematic diagram which shows the inside of the dehumidifier which concerns on 3rd Embodiment of this invention. It is a figure which shows the damper of the 2nd posture.
  • FIG. 1 is a perspective view of the dehumidifier 100 according to the first embodiment of the present invention.
  • FIG. 2 is a schematic view showing the inside of the dehumidifier 100.
  • the dehumidifier 100 includes a casing 1, a cover member 2a, a drainage tank 4, and an operation unit 5.
  • Casing 1 is a hollow member.
  • the casing 1 is formed with an air outlet 2 and a pair of first suction ports 3a (see FIG. 3).
  • the air outlet 2 is formed on the front surface of the casing 1.
  • the air outlet 2 communicates between the inside and the outside of the casing 1.
  • the air outlet 2 discharges the air inside the casing 1 to the outside of the casing 1.
  • the air outlet 2 may be formed in the casing 1 and may be located at a place other than the front surface of the casing 1.
  • the cover member 2a is a substantially plate-shaped member. In FIG. 1, the cover member 2a covers the air outlet 2.
  • the cover member 2a is rotatably attached to the casing 1. By changing the rotation angle, the cover member 2a functions as a wind direction plate that defines the direction in which the air discharged from the air outlet 2 flows in a direction corresponding to the rotation angle of the cover member 2a.
  • the first suction port 3a is formed on the rear surface of the casing 1.
  • the first suction port 3a communicates the inside and the outside of the casing 1.
  • the first suction port 3a allows air outside the casing 1 to flow into the inside of the casing 1.
  • the first suction port 3a may be formed in the casing 1 and may be located at a place other than the rear surface of the casing 1.
  • the drainage tank 4 is detachably stored in the casing 1.
  • the drainage tank 4 stores the water generated by the dehumidifier 100.
  • the operation unit 5 is provided on the upper part of the casing 1.
  • the operation unit 5 receives an instruction from the outside.
  • FIG. 3 is a sectional view taken along line III-III of the dehumidifier 100 shown in FIG.
  • FIG. 4 is a schematic view of the dehumidifier 100 as viewed from the rear.
  • the vertical direction is a direction parallel to the vertical direction.
  • the front-back direction is a direction parallel to the horizontal direction.
  • the left-right direction is a direction perpendicular to each of the vertical direction and the front-back direction.
  • the dehumidifier 100 of the first embodiment is used in a state of being installed in the posture as shown in FIG.
  • the front direction of the front-back directions is an example of the first direction of the present invention.
  • the downward direction of the vertical direction is an example of the second direction of the present invention.
  • the dehumidifier 100 includes a heater 6, a dehumidifying rotor 7, a cooling unit 8, a heat radiating unit 9, a water collecting unit 10, a blower unit 11, and a compression unit 12. It further includes an expansion portion (not shown).
  • the heater 6, the dehumidifying rotor 7, the cooling unit 8, the heat radiating unit 9, the blower unit 11, and the compression unit 12 are arranged inside the casing 1 and are housed in the casing 1.
  • the heater 6 has a heating function of heating air by generating heat.
  • the heater 6 is an example of the heating unit of the present invention.
  • the dehumidifying rotor 7 includes a zeolite 71, a rotor 72, and a rotating shaft 73.
  • the rotor 72 is a substantially disk-shaped member.
  • the rotor 72 is provided with a plurality of zeolites 71 along the circumferential direction of the rotor 72.
  • the rotor 72 rotates about the rotation shaft 73.
  • the dehumidifying rotor 7 further includes a moisture releasing portion 7a and a moisture absorbing portion 7b.
  • the moisture release portion 7a is the upper portion of the rotor 72.
  • the moisture releasing portion 7a is located above the moisture absorbing portion 7b.
  • a first suction port 3a is arranged on the rear side of the moisture releasing portion 7a.
  • the moisture releasing portion 7a faces the heater 6.
  • the moisture releasing portion 7a is arranged behind the heater 6. Heat is supplied to the moisture discharging portion 7a from the heater 6.
  • the moisture absorbing portion 7b is the lower portion of the rotor 72.
  • the moisture absorbing portion 7b does not face the heater 6.
  • the zeolite 71 By rotating together with the rotor 72, the zeolite 71 alternately repeats a state of being located in the moisture releasing portion 7a and a state of being located in the moisture absorbing portion 7b.
  • the moisture absorbing part 7b dehumidifies the air. Specifically, the zeolite 71 located in the moisture absorbing portion 7b dehumidifies the air. As a result, dehumidified air (dry air) is released from the moisture absorbing portion 7b.
  • the moisture releasing section 7a has a moisture releasing function of releasing air containing moisture (high humidity air) dehumidified by the moisture absorbing section 7b by supplying air heated by the heater 6. Specifically, the air heated by the heater 6 is supplied to the zeolite 71 located in the moisture releasing portion 7a, so that the moisture dehumidified when the zeolite 71 is located in the moisture absorbing portion 7b is released in the moisture releasing portion 7a. It is vaporized. As a result, high-humidity air is discharged from the moisture-releasing portion 7a.
  • the heater 6 includes, for example, a nichrome heater or a ceramic heater, and operates on electric power.
  • the heater 6 has a heating function corresponding to the moisture releasing function of the moisture releasing portion 7a.
  • the heater 6 heats the air so that the temperature of the air supplied to the moisture releasing portion 7a becomes a predetermined temperature.
  • the predetermined temperature is a temperature at which the moisture-releasing portion 7a (zeolite 71) can effectively exert the moisture-releasing function.
  • the heater 6 heats the air so that the temperature of the air supplied to the moisture releasing portion 7a becomes a predetermined temperature by generating heat at, for example, about 200 ° C. to 300 ° C.
  • the compression unit 12 pumps the refrigerant.
  • the compression unit 12 includes a compressor.
  • the expansion unit depressurizes the refrigerant.
  • the swelling portion includes, for example, a capillary tube.
  • a refrigeration cycle is formed inside the casing 1.
  • the refrigeration cycle is a cycle in which a circulation path is formed in which the compression section 12, the heat dissipation section 9, the expansion section, and the cooling section 8 are connected in a ring shape, and the refrigerant is circulated through the circulation path by the compression section 12.
  • the temperature and pressure of the refrigerant are increased by the operation of the compression unit 12.
  • the high-temperature and high-pressure refrigerant is sent to the heat radiating unit 9.
  • the heat radiating unit 9 cools the refrigerant by dissipating the heat of the refrigerant into the air passing through the heat radiating unit 9.
  • the refrigerant that has passed through the heat radiating section 9 is sent to the expanding section.
  • the expansion unit decompresses the refrigerant cooled by the heat radiating unit 9 to generate a low-temperature and low-pressure refrigerant.
  • the refrigerant that has passed through the expansion unit is sent to the cooling unit 8.
  • the cooling unit 8 is cooled by supplying a low-temperature and low-pressure refrigerant from the expansion unit.
  • the refrigerant that has passed through the cooling unit 8 is sent to the compression unit 12.
  • the refrigerant circulates in the order of the compression unit 12, the heat dissipation unit 9, the expansion unit, and the cooling unit 8, so that the temperature rise of the cooling unit 8 is suppressed.
  • the temperature of the heat radiating unit 9 rises because the refrigerant whose temperature and pressure have been increased by the compression unit 12 is sent to the heat radiating unit 9.
  • the cooling unit 8 cools the air.
  • the cooling unit 8 includes an evaporator.
  • the cooling unit 8 has a shape extending along the vertical direction.
  • the cooling unit 8 is arranged to face the moisture absorbing unit 7b.
  • the cooling unit 8 is arranged behind the moisture absorbing unit 7b.
  • the cooling unit 8 cools the air to condense water vapor in the air. As a result, air is dehumidified and water is produced.
  • high humidity air is discharged from the moisture discharging portion 7a.
  • the air discharged from the moisture releasing section 7a is supplied to the cooling section 8.
  • the cooling unit 8 dehumidifies by forming dew condensation from the air discharged from the moisture releasing unit 7a.
  • the heat radiating unit 9 cools the cooling unit 8 by cooling the refrigerant in the refrigeration cycle. That is, the heat radiating unit 9 cools the cooling unit 8 via a refrigerant (for example, chlorofluorocarbon gas).
  • the heat radiating unit 9 includes a capacitor.
  • the heat radiating portion 9 is arranged in front of the moisture absorbing portion 7b.
  • the heat radiating unit 9 is arranged below the heater 6.
  • the water collecting unit 10 collects the water generated by the cooling unit 8.
  • the water collecting unit 10 is arranged below the cooling unit 8.
  • the water generated by the cooling unit 8 drops onto the water collecting unit 10.
  • the water collecting unit 10 is formed in a funnel shape, for example, and guides the supplied water to the drainage tank 4. As a result, water is stored in the drainage tank 4.
  • the blower unit 11 blows air.
  • the blower portion 11 includes a fan.
  • the blower portion 11 is arranged in front of the heat dissipation portion 9.
  • the dehumidifier 100 further includes a storage unit 13 and a control unit 14.
  • the storage unit 13 includes a main storage device (for example, a semiconductor memory) such as a ROM (Read Only Memory) and a RAM (Random Access Memory), and may further include an auxiliary storage device (for example, a hard disk drive).
  • a main storage device for example, a semiconductor memory
  • ROM Read Only Memory
  • RAM Random Access Memory
  • auxiliary storage device for example, a hard disk drive
  • the main storage device and / or the auxiliary storage device stores various computer programs executed by the control unit 14.
  • the control unit 14 includes processors such as a CPU (Central Processing Unit) and an MPU (Micro Processing Unit). The control unit 14 controls each element of the dehumidifier 100.
  • processors such as a CPU (Central Processing Unit) and an MPU (Micro Processing Unit).
  • the control unit 14 controls each element of the dehumidifier 100.
  • the blower portion 11 blows air to generate the first air passage F1.
  • the first air passage F1 includes a pair of first air passage portion F11, a second air passage portion F12, a third air passage portion F13, a fourth air passage portion F14, and a fifth air passage portion F15. ..
  • the first air passage portion F11 is located above each of the cooling portion 8 and the heat radiating portion 9, and to the side of each of the heater 6 and the moisture releasing portion 7a.
  • the first air passage portion F11 communicates with the first suction port 3a and extends forward from the first suction port 3a.
  • the front end portion F1a of the first air passage portion F11 is located substantially lateral to the heater 6 or in front of the heater 6.
  • the second air passage portion F12 is connected to the front end portion F1a of the first air passage portion F11, and extends from the front end portion F1a to the heater 6 side.
  • the end portion F2a on the heater 6 side of the second air passage portion F12 is located behind the heater 6.
  • the third air passage portion F13 is connected to the end portion F2a of the second air passage portion F12, and extends backward from the end portion F2a.
  • the third air passage portion F13 passes through the heater 6 and the moisture releasing portion 7a.
  • the rear end portion F3a of the third air passage portion F13 is located above the cooling portion 8.
  • the fourth air passage portion F14 is connected to the rear end portion F3a of the third air passage portion F13, and extends downward from the rear end portion F3a.
  • the fourth air passage portion F14 is formed in the cooling portion 8.
  • the fifth air passage portion F15 is connected to the lower end portion F4a of the fourth air passage portion F14, and extends forward from the lower end portion F4a.
  • the fifth air passage portion F15 passes through the moisture absorbing portion 7b and the heat radiating portion 9.
  • the fifth air passage portion F15 leads to the blower portion 11.
  • An exhaust air passage FZ is further formed inside the casing 1.
  • the exhaust air passage FZ is formed from the air blowing portion 11 to the air outlet 2.
  • the air that has flowed into the casing 1 through the first suction port 3a flows through the first air passage F1 and the exhaust air passage FZ, and then is discharged to the outside of the casing 1 from the air outlet 2.
  • the dehumidifier 100 further includes a plurality of wall portions. Each of the plurality of wall portions forms the first air passage F1 by partitioning the inside of the casing 1.
  • the plurality of wall portions include the first wall portion 15a to the sixth wall portion 15f.
  • the plurality of wall portions are plate-shaped members.
  • the plurality of wall portions are formed of, for example, resin.
  • the first wall portion 15a is arranged between the first air passage portion F11 and the third air passage portion F13.
  • the first wall portion 15a separates the first air passage portion F11 and the third air passage portion F13 from each other by partitioning the space located behind the moisture discharging portion 7a inside the casing 1 to the left and right.
  • the first wall portion 15a is arranged above the cooling portion 8.
  • a pair of first wall portions 15a are provided.
  • a third air passage portion F13 exists between the pair of first wall portions 15a.
  • the second wall portion 15b is arranged between the first air passage portion F11 and the third air passage portion F13.
  • the second wall portion 15b separates the first air passage portion F11 and the third air passage portion F13 from each other by partitioning the space located in front of the moisture discharging portion 7a inside the casing 1 to the left and right.
  • the second wall portion 15b is arranged above the heat radiating portion 9.
  • a pair of second wall portions 15b are provided.
  • a third air passage portion F13 exists between the pair of second wall portions 15b.
  • a heater 6 exists between the pair of second wall portions 15b.
  • the third wall portion 15c is arranged on the front side of the second wall portion 15b.
  • a second air passage portion F12 exists between the third wall portion 15c and the second wall portion 15b.
  • the third wall portion 15c is arranged on the front side of the heater 6.
  • the third wall portion 15c forms the second air passage portion F12 by partitioning the space located in front of the heater 6 in the inside of the casing 1 back and forth.
  • a second air passage portion F12 exists on the rear side of the third wall portion 15c.
  • the fourth wall portion 15d is arranged between the heater 6 and the heat radiating portion 9. Further, the fourth wall portion 15d is arranged between the moisture releasing portion 7a and the moisture absorbing portion 7b. The fourth wall portion 15d is connected to the lower part of the third wall portion 15c. The fourth wall portion 15d vertically partitions the space located below the heater 6 in the space inside the casing 1. Above the fourth wall portion 15d, there are a first air passage portion F11, a second air passage portion F12, and a third air passage portion F13. Below the fourth wall portion 15d, there is a fifth air passage portion F15.
  • the fifth wall portion 15e is arranged on the rear side of the cooling portion 8.
  • the fifth wall portion 15e is formed so as to cover the cooling portion 8 from behind.
  • the fifth wall portion 15e may be a part of the casing 1. Further, the fifth wall portion 15e may be a member different from the casing 1.
  • a gap S is formed between the fifth wall portion 15e and the fourth wall portion 15d.
  • the fourth air passage portion F14 exists in the gap S.
  • the sixth wall portion 15f is arranged on the front side of the cooling portion 8.
  • the sixth wall portion 15f faces the fifth wall portion 15e via the cooling portion 8.
  • a fourth air passage portion F14 exists between the sixth wall portion 15f and the fifth wall portion 15e.
  • the lower end fa of the sixth wall portion 15f is located above the lower end 81 of the cooling portion 8.
  • the fourth air passage portion F14 is connected to the fifth air passage portion F15 below the sixth wall portion 15f.
  • the first air passage F1 includes a heater 6, a moisture releasing portion 7a, a cooling portion 8, a moisture absorbing portion 7b, and a heat radiating portion 9.
  • the heater 6, the moisture releasing portion 7a, the cooling portion 8, the moisture absorbing portion 7b, and the heat radiating portion 9 are arranged in this order. Therefore, the air supplied from the outside of the casing 1 to the first air passage F1 flows in the order of the heater 6, the moisture releasing portion 7a, the cooling portion 8, the moisture absorbing portion 7b, and the heat radiating portion 9, and then the outside of the casing 1. Is discharged to.
  • FIG. 5 is a diagram showing the flow of air through the first air passage F1.
  • the air outside the casing 1 flows into the inside of the casing 1 through the first suction port 3a, and then the heater 6, the moisture releasing portion 7a, the cooling portion 8, and the moisture absorbing portion 7b. , And the heat radiating part 9 in this order, and the air is discharged from the air outlet 2 to the outside of the casing 1.
  • the air that has flowed into the casing 1 through the first suction port 3a is heated by the heater 6.
  • the air heated by the heater 6 is supplied to the moisture releasing portion 7a.
  • the air heated by the heater 6 vaporizes the moisture contained in the zeolite 71 located in the moisture releasing portion 7a. As a result, high humidity air is generated. High humidity air is discharged from the moisture releasing portion 7a.
  • the high humidity air discharged from the moisture releasing section 7a is cooled by the cooling section 8. As a result, condensation is formed.
  • the water generated by dew condensation is discharged to the drainage tank 4 via the water collecting section 10.
  • the air released from the cooling unit 8 is supplied to the moisture absorbing unit 7b.
  • the air supplied to the moisture absorbing portion 7b is dehumidified by the zeolite 71 located in the moisture absorbing portion 7b, and then discharged from the moisture absorbing portion 7b.
  • the dehumidified air released from the moisture absorbing portion 7b is supplied to the heat radiating portion 9 and then discharged from the outlet 2 to the outside of the casing 1.
  • the air cooled by the cooling unit 8 is supplied to the heat radiating unit 9. Therefore, since the heat radiating unit 9 can be cooled by the air cooled by the cooling unit 8, the temperature rise of the heat radiating unit 9 can be suppressed. As a result, the refrigerant can be effectively cooled by the heat radiating unit 9 in the refrigeration cycle, so that the cooling efficiency of the cooling unit 8 in the refrigeration cycle can be improved.
  • the cooling efficiency of the cooling unit 8 by the refrigeration cycle, it is possible to effectively secure the cooled state of the cooling unit 8.
  • the cooling capacity of the air by the cooling unit 8 can be improved. Therefore, the cooling unit 8 can effectively condense water vapor in the air to generate more water. As a result, it is possible to suppress a decrease in the dehumidifying capacity of the dehumidifier 100.
  • a heater 6, a moisture releasing portion 7a, a cooling portion 8, and a moisture absorbing portion 7b are arranged on one air passage (first air passage F1). Therefore, the process of dehumidifying by the moisture absorbing section 7b and the process of condensing the moisture dehumidified by the moisture absorbing section 7b by the heater 6, the moisture releasing section 7a, and the cooling section 8 can be performed with a simple device configuration.
  • the dehumidifier 100 may be operated with the heater 6 turned off.
  • a heat radiating unit 9 is arranged downstream of the cooling unit 8. Therefore, in the first air passage F1, when the dehumidifier 100 is operated with the heater 6 turned off, it is possible to prevent the air heated by the heat of the heat radiating unit 9 from flowing to the cooling unit 8, so that the heat radiating unit 9 It is possible to prevent the temperature of the cooling unit 8 from rising due to the heat of the cooling unit 8. As a result, it is possible to suppress a decrease in the cooling efficiency of the cooling unit 8 due to the refrigeration cycle, so that it is possible to suppress a decrease in the dehumidifying capacity of the dehumidifier 100.
  • the cooling unit 8 and the moisture absorbing unit 7b are arranged in the order of the cooling unit 8 and the moisture absorbing unit 7b.
  • the air flowing through the first air passage F1 is dehumidified by dew condensation of moisture in the air by the cooling unit 8.
  • the air flowing through the first air passage F1 is dehumidified by the moisture absorbing portion 7b. As a result, the amount of dehumidified air can be improved, so that the air can be effectively dried.
  • the air that has passed through the moisture releasing portion 7a is supplied to the cooling portion 8 along the vertical direction. Therefore, the time required for the air to pass through the cooling unit 8 can be increased, so that the cooling unit 8 can effectively cool the air.
  • the heater 6 is arranged at a place separated from the heat radiating unit 9 along the vertical direction. Therefore, the thickness of the dehumidifier 100 can be reduced as compared with the case where the heater 6 and the heat radiating portion 9 are arranged side by side in the front-rear direction.
  • the heater 6 does not have to be arranged above the heat radiating unit 9. That is, in the first air passage F1, the heater 6, the moisture releasing portion 7a, the cooling portion 8, the moisture absorbing portion 7b, and the heat radiating portion 9 are formed by the heater 6, the moisture releasing portion 7a, the cooling portion 8, and the moisture absorbing portion 7b. , And, as long as the heat radiating portions 9 are arranged in this order, the arrangement location of the heater 6 is not particularly limited. As a result, the degree of freedom in the installation location of the heater 6 can be improved.
  • FIG. 6 is a schematic view showing the inside of the dehumidifier 100 according to the second embodiment of the present invention.
  • the second embodiment is different from the first embodiment in that a plurality of air passages are formed inside the casing 1.
  • a plurality of air passages are formed inside the casing 1.
  • a second suction port 3b is further formed in the casing 1.
  • the second suction port 3b is formed on the rear surface of the casing 1.
  • the second suction port 3b communicates the inside and the outside of the casing 1.
  • the second suction port 3b allows air outside the casing 1 to flow into the inside of the casing 1.
  • the second suction port 3b is arranged below the first suction port 3a.
  • the second suction port 3b is located below the fifth wall portion 15e.
  • the second suction port 3b may be formed in the casing 1 and may be located at a place other than the rear surface of the casing 1.
  • a second air passage F2, a third air passage F3, and a fourth air passage F4 are further formed inside the casing 1.
  • the blower unit 11 blows air to generate each of the first air passage F1 to the fourth air passage F4.
  • the second air passage F2 is located below the first air passage F1.
  • the second air passage F2 communicates with the second suction port 3b.
  • the cooling unit 8, the moisture absorbing unit 7b, and the heat radiating unit 9 are arranged in the order of the cooling unit 8, the moisture absorbing unit 7b, and the heat radiating unit 9.
  • the second air passage F2 leads to the air blowing unit 11.
  • the air that has flowed into the casing 1 through the second suction port 3b flows through the second air passage F2 and the exhaust air passage FZ, and then is discharged to the outside of the casing 1 from the air outlet 2.
  • the second air passage F2 air flows in the order of the cooling unit 8, the moisture absorbing unit 7b, and the heat radiating unit 9.
  • the air flowing through the second air passage F2 is dehumidified by dew condensation of moisture in the air by the cooling unit 8. Further, the air flowing through the second air passage F2 is dehumidified by the moisture absorbing portion 7b. As a result, the air can be effectively dried. Further, in the second air passage F2, the air cooled by the cooling unit 8 is supplied to the heat radiating unit 9. Therefore, since the temperature rise of the heat radiating unit 9 can be suppressed, the cooling efficiency of the cooling unit 8 by the refrigeration cycle can be improved.
  • the third air passage F3 is located below the second air passage F2.
  • the third air passage F3 communicates with the second suction port 3b.
  • the cooling unit 8 and the heat radiating unit 9 are arranged in the order of the cooling unit 8 and the heat radiating unit 9.
  • the third air passage F3 leads to the air blowing unit 11.
  • the air that has flowed into the casing 1 through the second suction port 3b flows through the third air passage F3 and the exhaust air passage FZ, and then is discharged to the outside of the casing 1 from the air outlet 2.
  • the third air passage F3 air flows in the order of the cooling unit 8 and the heat radiating unit 9.
  • the air cooled by the cooling unit 8 is supplied to the heat radiating unit 9. Therefore, since the temperature rise of the heat radiating unit 9 can be suppressed, the cooling efficiency of the cooling unit 8 by the refrigeration cycle can be improved.
  • the fourth air passage F4 is located below the third air passage F3.
  • the fourth air passage F4 communicates with the second suction port 3b.
  • a heat radiating unit 9 is arranged in the fourth air passage F4.
  • the fourth air passage F4 leads to the air blowing unit 11.
  • the air that has flowed into the casing 1 through the second suction port 3b flows through the fourth air passage F4 and the exhaust air passage FZ, and then is discharged to the outside of the casing 1 from the air outlet 2.
  • the air that has flowed into the casing 1 is supplied to the heat radiating unit 9 when flowing through the fourth air passage F4. As a result, the heat radiating unit 9 can be cooled.
  • the first air passage F1 to the fourth air passage F4 are formed inside the casing 1.
  • the present invention is not limited to this. It is not necessary that all the air passages of the first air passage F1 to the fourth air passage F4 are formed inside the casing 1.
  • a first air passage F1 and at least one air passage of the second air passage F2 to the fourth air passage F4 may be formed inside the casing 1.
  • FIG. 7 is a schematic view showing the inside of the dehumidifier 100 according to the third embodiment of the present invention.
  • the third embodiment is different from the second embodiment in that each of the third air passage F3 and the fourth air passage F4 can be opened and closed.
  • the differences from the second embodiment will be mainly described.
  • the dehumidifier 100 further includes a damper 16.
  • the damper 16 opens and closes each of the third air passage F3 and the fourth air passage F4.
  • the damper 16 includes a shielding portion 16a, a supporting portion 16b, and a first drive source (not shown).
  • the damper 16 is an example of the opening / closing member of the present invention.
  • the shielding portion 16a is a substantially plate-shaped member.
  • the support portion 16b rotatably supports the shielding portion 16a with respect to the casing 1.
  • the support portion 16b includes, for example, a shaft member and a bracket.
  • the shaft member is attached to the shielding portion 16a.
  • the bracket is fixed to the casing 1 and rotatably supports the shaft member.
  • the first drive source rotates the shielding portion 16a.
  • the first drive source includes, for example, a motor.
  • the first drive source is controlled by the control unit 14.
  • the posture of the damper 16 is changed by changing the rotation angle of the shielding portion 16a by the first drive source.
  • FIG. 7 shows the damper 16 of the first posture ⁇ 1.
  • the damper 16 in the first posture ⁇ 1 closes the third air passage F3 and the fourth air passage F4 by the shielding portion 16a.
  • the first air passage F1 and the second air passage F2 are formed inside the casing 1.
  • FIG. 8 is a diagram showing a damper 16 in the second posture ⁇ 2.
  • the damper 16 in the second posture ⁇ 2 closes the fourth air passage F4 by the shielding portion 16a, but opens the third air passage F3.
  • the first air passage F1, the second air passage F2, and the third air passage F3 are formed inside the casing 1.
  • FIG. 9 is a diagram showing a damper 16 in the third posture ⁇ 3.
  • the damper 16 in the third posture ⁇ 3 opens the third air passage F3 and the fourth air passage F4.
  • the first air passage F1, the second air passage F2, the third air passage F3, and the fourth air passage F4 are formed inside the casing 1.
  • the posture of the damper 16 is changed to the first posture ⁇ 1, the second posture ⁇ 2, and the third posture ⁇ 3 by changing the rotation angle of the shielding portion 16a by the first drive source. You can switch to one of our postures. As a result, each of the third air passage F3 and the fourth air passage F4 can be opened and closed inside the casing 1.
  • the damper 16 can adjust the amount of air flowing through the first air passage F1 per unit time by opening and closing each of the third air passage F3 and the fourth air passage F4.
  • the air can be sufficiently dehumidified by the dehumidifier 100 even when the heater 6 is OFF.
  • the damper 16 reduces the amount of air flowing through the first air passage F1 per unit time by opening each of the third air passage F3 and the fourth air passage F4.
  • the dehumidifier 100 can effectively dehumidify the air by turning on the heater 6.
  • the damper 16 closes each of the third air passage F3 and the fourth air passage F4 to increase the amount of air flowing through the first air passage F1 per unit time.
  • the rotation speed of the fan included in the blower portion 11 is reduced.
  • the damper 16 is provided with the third air passage F3 and the fourth air passage F4, respectively. Is closed.
  • the rotation speed of the fan included in the blower portion 11 decreases, the decrease in the amount of air sucked into the first air passage F1 per unit time is suppressed, so that the driving sound of the dehumidifier 100 Can be effectively supplied to the first air passage F1 while reducing the amount of air.
  • FIG. 10 is a diagram showing a modified example of the damper 16.
  • the damper 16 includes a shutter 16d and a second drive source (not shown).
  • the shutter 16d is a member that can be expanded and contracted along the vertical direction and / or can be moved along the vertical direction.
  • the second drive source is a drive source that operates the shutter 16d.
  • the second drive source includes, for example, a motor.
  • the second drive source is controlled by the control unit 14.
  • the damper 16 expands and contracts the shutter 16d by the second drive source and / or moves it to wind one of the second air passage F2, the third air passage F3, and the fourth air passage F4. Open and close the road. As a result, it is possible to select whether or not to form each of the second air passage F2, the third air passage F3, and the fourth air passage F4 inside the casing 1.
  • the damper 16 is a unit of air flowing through the first air passage F1 by opening and closing one of the air passages of at least one of the second air passage F2, the third air passage F3, and the fourth air passage F4. The amount per hour can be effectively adjusted.
  • FIG. 11 is a schematic view showing the inside of the dehumidifier 100 according to the fourth embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of XII-XII of the dehumidifier 100 shown in FIG.
  • the fourth embodiment is different from the first embodiment in that a member for supplying the heat generated by the heat radiating unit 9 to the periphery of the heater 6 is provided.
  • a member for supplying the heat generated by the heat radiating unit 9 to the periphery of the heater 6 is provided.
  • the dehumidifier 100 further includes a supply unit 17.
  • the supply unit 17 supplies the heat generated by the heat dissipation unit 9 to the air flowing around the heater 6.
  • the supply unit 17 is a member having thermal conductivity.
  • the supply unit 17 is, for example, a metal rod-shaped member.
  • the supply unit 17 is fixed to the heat dissipation unit 9 and projects to the periphery of the heater 6.
  • the supply unit 17 projects onto the first air passage portion F11. Therefore, since the heat generated by the heat radiating unit 9 is supplied to the air flowing through the first air passage portion F11 through the supply unit 17, the air is generated not only by the heat of the heater 6 but also by the heat of the heat radiating unit 9. Can be heated. As a result, the air can be effectively heated.
  • the supply unit 17 may also be provided for each of the dehumidifier 100 of the second embodiment (see FIG. 6) and the dehumidifier 100 of the third embodiment (see FIGS. 7 and 10).
  • the heating unit 61 which is a modified example of the heater 6, will be described with reference to FIG.
  • FIG. 13 is a diagram showing a heating unit 61.
  • the heating unit 61 is two examples of the heating unit of the present invention.
  • the fifth embodiment is different from the first embodiment in that the heating unit 61 is used instead of the heater 6.
  • the differences from the first embodiment will be mainly described.
  • the heating unit 61 supplies the heat generated in the refrigeration cycle to the air, for example, upstream of the moisture release unit 7a.
  • the heating unit 61 is a portion of the tubular member through which the refrigerant is circulated in the refrigeration cycle, which is located between the compression unit 12 and the expansion unit, and the high-temperature refrigerant sent from the compression unit 12 is used. It flows.
  • the heating unit 61 is arranged upstream of the moisture release unit 7a. Upstream of the moisture release section 7a, the air is heated by the heat of the refrigerant generated from the heating section 61. As a result, the air heated by the heating unit 61 is supplied to the moisture releasing unit 7a.
  • a supply unit 17 as shown in FIGS. 11 and 12 may be used as the heating unit 61.
  • the supply section 17 is arranged upstream of the moisture release section 7a, and the heat of the heat dissipation section 9 is supplied upstream of the moisture release section 7a via the supply section 17.
  • the air heated by the heat of the heat radiating section 9 is supplied to the moisture releasing section 7a.
  • the heating unit 61 may be used instead of the heater 6.
  • the heating unit 61 instead of the heater 6, the electric power for operating the heater 6 becomes unnecessary, so that the running cost of the dehumidifier 100 can be reduced. Further, since the air is always heated by the heat generated in the refrigeration cycle or the heat generated in the heat radiating unit 9 and the heated air is supplied to the moisture releasing unit 7a, the efficiency is achieved by using the moisture releasing unit 7a. Can be dehumidified well.
  • FIG. 14 is a schematic view showing the inside of the dehumidifier 100 according to the sixth embodiment of the present invention.
  • the sixth embodiment is different from the first embodiment in that the heat radiating unit 9 is used instead of the heater 6.
  • the differences from the first embodiment will be mainly described.
  • the moisture releasing portion 7a, the cooling portion 8, the moisture absorbing portion 7b, and the heat radiating portion 9 are provided in the heat radiating portion 9, the moisture releasing portion 7a, and the cooling portion 8.
  • the moisture absorbing portion 7b and the heat radiating portion 9 are arranged in this order. Therefore, the air supplied from the outside of the casing 1 to the first air passage F1 flows in the order of the heat radiating section 9, the moisture releasing section 7a, the cooling section 8, the moisture absorbing section 7b, and the heat radiating section 9, and then the casing 1. It is discharged to the outside.
  • the air heated by the heat generated in the heat radiating unit 9 can be supplied to the moisture releasing unit 7a. That is, the heat radiating unit 9 can function as a substitute for the heater 6 of the first embodiment.
  • the running cost of the dehumidifier 100 can be reduced because the electric power for operating the heater 6 is not required.
  • the moisture releasing section 7a can be used for efficient dehumidification.
  • the air flowing through the heat radiating section 9 air having substantially the same temperature as the outside air
  • the air flowing through the heat radiating section 9 downstream of the moisture absorbing section 7b air cooled by the cooling section 8.
  • the heat radiating unit 9 can be effectively cooled.
  • the heat radiating unit 9 may be used instead of the heater 6.
  • FIG. 15 is a schematic view showing the inside of the dehumidifier 100 according to the seventh embodiment of the present invention.
  • FIG. 16 is a cross-sectional view taken along the line XVI-XVI of the dehumidifier 100 shown in FIG.
  • FIG. 17 is a schematic view of the dehumidifier 100 according to the seventh embodiment of the present invention as viewed from the rear.
  • the seventh embodiment is different from the first embodiment in that the flow direction of the air flowing through the moisture releasing portion 7a and the flowing direction of the air flowing through the moisture absorbing portion 7b are the same.
  • the differences from the first embodiment will be mainly described.
  • a third suction port 3c is formed in the casing 1 in place of the first suction port 3a.
  • the third suction port 3c is formed on the rear surface of the casing 1.
  • the third suction port 3c communicates the inside and the outside of the casing 1.
  • the third suction port 3c is arranged on the rear surface of the casing 1 at the upper part and at the center of the left and right sides.
  • a heater 6 is arranged in front of the third suction port 3c, and a moisture releasing portion 7a is arranged in front of the heater 6.
  • the heater 6 faces the third suction port 3c.
  • a cooling unit 8 is arranged below the heater 6.
  • a moisture absorbing portion 7b is arranged in front of the cooling portion 8, and a heat radiating portion 9 is arranged in front of the moisture absorbing portion 7b.
  • An air passage FA is formed inside the casing 1. The air that has flowed into the inside of the casing 1 flows along the air passage FA.
  • the air passage FA includes a first air passage portion F11A, a pair of second air passage portions F12A, a pair of third air passage portions F13A, and a pair of fourth air passage portions. Includes F14A and a pair of fifth air passage portions F15A.
  • the first air passage portion F11A communicates with the third suction port 3c and extends forward from the third suction port 3c.
  • the first air passage portion F11A passes through the heater 6 and the moisture releasing portion 7a.
  • a pair of second air passage portions F12A are connected to the front end portion F1A of the first air passage portion F11A.
  • the pair of second air passage portions F12A extend in opposite directions (left-right direction) so as to branch off from the front end portion F1A of the first air passage portion F11A.
  • the pair of second air passage portions F12A correspond to the pair of third air passage portions F13A, the pair of fourth air passage portions F14A, and the pair of fifth air passage portions F15A, respectively, and the corresponding second air passage portions.
  • F12A to the fifth air passage portion F15A are connected in order. That is, two sets of air passages composed of the second air passage portion F12A to the fifth air passage portion F15A are formed inside the casing 1.
  • the third air passage portion F13A extends backward from the tip portion F2A of the second air passage portion F12A.
  • the fourth air passage portion F14A extends downward from the rear end portion F3A of the third air passage portion F13A.
  • the fourth air passage portion F14A is formed in the cooling portion 8.
  • the fifth air passage portion F15A extends forward from the lower end portion F4A of the fourth air passage portion F14A.
  • the fifth air passage portion F15A passes through the moisture absorbing portion 7b and the heat radiating portion 9.
  • the fifth air passage portion F15A leads to the blower portion 11.
  • the plurality of wall portions partition the inside of the casing 1 so that the air passage FA is formed inside the casing 1.
  • the plurality of wall portions includes a pair of facing wall portions 15 ⁇ .
  • the pair of facing wall portions 15 ⁇ are arranged so as to be spaced apart from each other in the left-right direction.
  • a first air passage portion F11A is formed inside the pair of facing wall portions 15 ⁇ .
  • a heater 6 and a moisture releasing portion 7a are arranged inside the pair of facing wall portions 15 ⁇ .
  • Third air passage portions F13A are formed on the left and right outer sides of the pair of facing wall portions 15 ⁇ , respectively.
  • the facing wall portion 15 ⁇ is located between the first air passage portion F11A and the third air passage portion F13A.
  • the facing wall portion 15 ⁇ includes a shielding portion (guard portion) 15 ⁇ .
  • the shielding portion 15 ⁇ is a portion of the facing wall portion 15 ⁇ facing the moisture releasing portion 7a.
  • the shielding portion 15 ⁇ is located between the moisture releasing portion 7a and the third air passage portion F13A.
  • the shielding portion 15 ⁇ is formed so as to bulge outward to the left and right along the shape of the moisture releasing portion 7a, thereby restricting the moisture releasing portion 7a from protruding into the third air passage portion F13A.
  • the plurality of wall portions include the third wall portion 15c to the fourth wall portion 15d.
  • the third wall portion 15c is located in front of the facing wall portion 15 ⁇ .
  • the fourth wall portion 15d is located below the first air passage portion F11A to the third air passage portion F13A.
  • a pair of holes S1 are formed in the fourth wall portion 15d. The hole S1 is located above the cooling unit 8 and faces the cooling unit 8.
  • the plurality of wall portions further include the sixth wall portion 15f to the eighth wall portion 15h.
  • the sixth wall portion 15f is located between the cooling portion 8 and the dehumidifying rotor 7.
  • the seventh wall portion 15g is located behind the third air passage portion F13A and faces the third air passage portion F13A.
  • the eighth wall portion 15h is located behind the fourth air passage portion F14A.
  • the eighth wall portion 15h is located behind the cooling portion 8 and faces the cooling portion 8.
  • the air outside the casing 1 flows into the inside of the casing 1 through the third suction port 3c.
  • the air that has flowed into the casing 1 flows into the first air passage portion F11A, flows forward, and passes through the heater 6 and the moisture releasing portion 7a. Then, the air flows in the order of the second air passage portion F12A and the third air passage portion F13A.
  • the air flowing through the third air passage portion F13A is guided by the seventh wall portion 15g and flows into the fourth air passage portion F14. After passing through the hole S1, the air flowing into the fourth air passage portion F14 flows downward while being guided by the sixth wall portion 15f and the eighth wall portion 15h.
  • the air moves below the lower end fa of the sixth wall portion 15f, it flows into the fifth air passage portion F15A.
  • the air that has flowed into the fifth air passage portion F15A passes through the moisture absorbing portion 7b and the heat radiating portion 9 while flowing in the forward direction.
  • the air that has passed through the heat radiating unit 9 is discharged to the outside of the casing 1 through the air outlet 2.
  • the flow direction of the air flowing through the moisture releasing portion 7a and the flow direction of the air flowing through the moisture absorbing portion 7b are the same (forward direction). (See FIG. 15).
  • the wind from the moisture releasing portion 7a to the cooling portion 8 is compared with the case where the flow direction of the air flowing through the moisture releasing portion 7a and the flowing direction of the air flowing through the moisture absorbing portion 7b are opposite (see FIG. 2).
  • the distance of the road can be increased. According to this, it is possible to extend the time for the air discharged from the dehumidifying unit 7a to be cooled by the temperature difference from the outside air of the dehumidifier 100 until it is supplied to the cooling unit 8. As a result, the air can be supplied to the cooling unit 8 in a state of being cooled to some extent, so that the cooling unit 8 can further cool the air and effectively perform the dehumidifying treatment.
  • the heater 6 faces the third suction port 3c.
  • the heater 6 can be installed in a place that is easily visible from the outside of the casing 1.
  • the user can easily confirm the state of adhesion of dust or the like to the heater 6, so that the maintainability of the dehumidifier 100 can be improved.
  • the shielding portion 15 ⁇ of the facing wall portion 15 ⁇ is located between the moisture releasing portion 7a and the third air passage portion F13A.
  • the air flowing through the third air passage portion F13A is blocked by the shielding portion 15 ⁇ from flowing into the moisture releasing portion 7a.
  • the air having become high humidity by flowing through the moisture-releasing portion 7a on the first air passage portion F11A flows into the moisture-releasing portion 7a again when flowing through the third air passage portion F13A, it is released. It is possible to regulate dehumidification by the zeolite 71 located in the wet portion 7a.
  • the cooling unit 8 can effectively dehumidify.
  • the facing wall portion 15 ⁇ is an example of the wall portion of the present invention.
  • the shielding portion 15 ⁇ is an example of the shielding portion of the present invention.
  • the third air passage portion F13A is an example of the air passage portion of the present invention.
  • one eighth wall portion 15h is provided.
  • a pair of eighth wall portions 15h may be provided at intervals on the left and right.
  • a pair of eighth wall portions 15h are provided at locations facing each other with the pair of fourth air passage portions F14.
  • FIG. 18 is a schematic view of a modified example of the dehumidifier 100 according to the seventh embodiment of the present invention as viewed from the rear.
  • the vertical dimension of the eighth wall portion 15h can be changed.
  • the eighth wall portion 15h is divided into an upper portion h1 and a lower portion h2.
  • the upper portion h1 faces the upper portion of the cooling unit 8.
  • the upper portion h1 is integrally formed with another wall portion.
  • the lower portion h2 is slidably attached to the upper portion h1 in the vertical direction. By sliding the lower portion h2 in the vertical direction with respect to the upper portion h1, the vertical dimension of the eighth wall portion 15h is changed. As the amount of downward sliding of the lower portion h2 with respect to the upper portion h1 increases, the vertical dimension of the eighth wall portion 15h becomes larger. The larger the vertical dimension of the eighth wall portion 15h, the wider the region of the cooling portion 8 facing the eighth wall portion 15h.
  • the amount of air supplied through the heater 6 and the zeolite 71) increases, and the amount of air supplied through the second air passage F2 and the third air passage F3 shown in FIG. 6 (the amount of air supplied through the heater 6 and the zeolite 71) increases.
  • the amount of air supplied without going through) is reduced.
  • the dehumidifier 100 mainly functions as a zeolite-type dehumidifier.
  • the dehumidifier 100 mainly functions as a compressor type dehumidifier.
  • the vertical dimension of the eighth wall portion 15h may be changed by the operator or may be changed by the control unit 14 (see FIG. 15).
  • the dehumidifier 100 includes, for example, a temperature sensor and an actuator.
  • the temperature sensor is installed inside the casing 1 (for example, the third suction port 3c).
  • the actuator includes, for example, a motor and moves the lower portion h2 of the eighth wall portion 15h up and down.
  • the control unit 14 controls the actuator so that the lower portion h2 is located at the first predetermined position.
  • the control unit 14 controls the actuator so that the lower portion h2 is located at the second predetermined position higher than the first predetermined position.
  • the vertical dimension of the eighth wall portion 15h can be adjusted according to the air temperature, so that the dehumidifying efficiency of the dehumidifier 100 can be effectively improved.
  • the vertical dimension of the eighth wall portion 15h may be set according to the shipping location of the dehumidifier 100. For example, the higher the average temperature at the shipping location of the dehumidifier 100, the smaller the vertical dimension of the eighth wall portion 15h is set.
  • the dimensions of the 8th wall portion 15h can be changed. As a result, even if the type of the heater 6 (heating function) and / or the type of the moisture releasing portion 7a (humidifying function) is changed in design, the type of the heater 6 and / or the type of the moisture releasing portion 7a is changed. Since the vertical dimension of the eighth wall portion 15h can be adjusted accordingly, the degree of freedom in designing the dehumidifier 100 can be improved.
  • FIGS. 1 to 18 The embodiments of the present invention have been described above with reference to the drawings (FIGS. 1 to 18).
  • the present invention is not limited to the above-described embodiment, and can be implemented in various embodiments without departing from the gist thereof.
  • various inventions can be formed by appropriately combining the plurality of components disclosed in the above embodiments. For example, some components may be removed from all the components shown in the embodiments.
  • the drawings are schematically shown mainly for each component for easy understanding, and the number of each component shown may differ from the actual one due to the convenience of drawing.
  • each component shown in the above embodiment is an example, and is not particularly limited, and various modifications can be made without substantially deviating from the effect of the present invention.
  • the present invention can be used in the field of dehumidifiers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Drying Of Gases (AREA)

Abstract

This dehumidifier (100) is provided with a heater (6), a humidity releasing unit (7a), a cooling unit (8), a humidity absorbing unit (7b), a heat radiating unit (9), and a casing (1). Air heated by the heater (6) is supplied to the humidity releasing unit (7a). The cooling unit (8) cools the air. The humidity absorbing unit (7b) removes humidity from the air. The heat radiating unit (9) cools the cooling unit (8) via a refrigerant. A first air passage (F1) is formed in the casing (1). The heater (6), the humidity releasing unit (7a), the cooling unit (8), the humidity absorbing unit (7b), and the heat radiating unit (9) are arranged in the first air passage (F1) in the order of the heater (6), the humidity releasing unit (7a), the cooling unit (8), the humidity absorbing unit (7b), and the heat radiating unit (9).

Description

除湿機Dehumidifier
 本発明は、除湿機に関する。 The present invention relates to a dehumidifier.
 除湿機能を備えた除湿機が特許文献1に開示されている。特許文献1に記載の除湿機は、本体ケースと、冷凍サイクル機構と、放熱器と、吸熱器と、除湿ロータと、冷媒熱交換器とを備える。本体ケースは、吸気口と、排気口とを有する。冷凍サイクル機構は、本体ケース内に設けられる。送風機は、吸気口から本体ケース内に空気を吸気し、吸気した空気を放熱器及び吸熱器の順に通過させて排気口へ送風する風路を形成する。除湿ロータの放湿部は、風路において放熱器と吸熱器との間に設けられる。除湿ロータの吸湿部は、風路内において吸熱器と排気口との間に設けられる。冷媒熱交換器は、風路内において放湿部と吸熱器との間に設けられる。 A dehumidifier having a dehumidifying function is disclosed in Patent Document 1. The dehumidifier described in Patent Document 1 includes a main body case, a refrigeration cycle mechanism, a radiator, a heat absorber, a dehumidifying rotor, and a refrigerant heat exchanger. The main body case has an intake port and an exhaust port. The refrigeration cycle mechanism is provided in the main body case. The blower takes in air into the main body case from the intake port, passes the intake air in the order of the radiator and the heat absorber, and forms an air passage for blowing the air to the exhaust port. The dehumidifying portion of the dehumidifying rotor is provided between the radiator and the heat absorber in the air passage. The moisture absorbing portion of the dehumidifying rotor is provided between the heat absorber and the exhaust port in the air passage. The refrigerant heat exchanger is provided between the moisture release section and the heat absorber in the air passage.
国際公開WO2009/087734号公報International Publication WO2009 / 087734
 しかし、放熱器(放熱部)が吸熱器(冷却部)の上流に配置される。従って、放熱器には、吸熱器により冷却された空気が供給されなかった。その結果、放熱器の冷却が不十分となることで、冷凍サイクル機構による吸熱器の冷却効率が低下し、除湿機の除湿能力が低下するおそれがあった。 However, the radiator (heat radiator) is located upstream of the heat absorber (cooling unit). Therefore, the radiator was not supplied with the air cooled by the heat absorber. As a result, the cooling of the radiator is insufficient, so that the cooling efficiency of the heat absorber by the refrigeration cycle mechanism is lowered, and the dehumidifying capacity of the dehumidifier may be lowered.
 本発明は、除湿能力が低下することを抑制できる除湿機を提供することを目的とする。 An object of the present invention is to provide a dehumidifier capable of suppressing a decrease in dehumidifying capacity.
 本願の第1局面によれば、除湿機は、加熱部と、放湿部と、冷却部と、吸湿部と、放熱部と、ケーシングとを備える。放湿部には、前記加熱部により加熱された空気が供給される。冷却部は、空気を冷やす。吸湿部は、空気を除湿する。放熱部は、冷媒を介して前記冷却部を冷やす。ケーシングには、第1風路が形成される。前記第1風路には、前記加熱部と、前記放湿部と、前記冷却部と、前記吸湿部と、前記放熱部とが、前記加熱部、前記放湿部、前記冷却部、前記吸湿部、及び前記放熱部の順番に配置される。 According to the first aspect of the present application, the dehumidifier includes a heating part, a moisture releasing part, a cooling part, a moisture absorbing part, a heat radiating part, and a casing. The air heated by the heating unit is supplied to the moisture release unit. The cooling unit cools the air. The hygroscopic part dehumidifies the air. The heat radiating unit cools the cooling unit via a refrigerant. A first air passage is formed in the casing. In the first air passage, the heating part, the moisture releasing part, the cooling part, the moisture absorbing part, and the heat radiating part have the heating part, the moisture releasing part, the cooling part, and the moisture absorbing part. The unit and the heat radiating unit are arranged in this order.
 本願の第2局面によれば、除湿機は、冷却部と、吸湿部と、放熱部と、放湿部と、ケーシングとを備える。冷却部は、空気を冷やす。吸湿部は、空気を除湿する。放熱部は、冷媒を介して前記冷却部を冷やす。放湿部は、前記放熱部により加熱された空気が供給される。ケーシングには、第1風路が形成される。前記第1風路には、前記放湿部と、前記冷却部と、前記吸湿部と、前記放熱部とが、前記放熱部、前記放湿部、前記冷却部、前記吸湿部、及び前記放熱部の順番に配置される。 According to the second aspect of the present application, the dehumidifier includes a cooling unit, a moisture absorbing portion, a heat radiating portion, a moisture releasing portion, and a casing. The cooling unit cools the air. The hygroscopic part dehumidifies the air. The heat radiating unit cools the cooling unit via a refrigerant. Air heated by the heat radiating part is supplied to the moisture releasing part. A first air passage is formed in the casing. In the first air passage, the moisture releasing portion, the cooling portion, the moisture absorbing portion, and the heat radiating portion have the heat radiating portion, the moisture releasing portion, the cooling portion, the moisture absorbing portion, and the heat radiating portion. Arranged in the order of the parts.
 本発明の除湿機によれば、除湿機の除湿能力が低下することを抑制できる。 According to the dehumidifier of the present invention, it is possible to suppress a decrease in the dehumidifying capacity of the dehumidifier.
本発明の第1実施形態に係る除湿機の斜視図である。It is a perspective view of the dehumidifier which concerns on 1st Embodiment of this invention. 除湿機の内部を示す模式図である。It is a schematic diagram which shows the inside of a dehumidifier. 図2に示す除湿機のIII-III断面図である。FIG. 3 is a sectional view taken along line III-III of the dehumidifier shown in FIG. 除湿機を後方から見た模式図である。It is a schematic diagram which looked at the dehumidifier from the rear. 第1風路を通じた空気の流れを示す図である。It is a figure which shows the flow of the air through the 1st air passage. 本発明の第2実施形態に係る除湿機の内部を示す模式図である。It is a schematic diagram which shows the inside of the dehumidifier which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る除湿機の内部を示す模式図である。It is a schematic diagram which shows the inside of the dehumidifier which concerns on 3rd Embodiment of this invention. 第2姿勢のダンパを示す図である。It is a figure which shows the damper of the 2nd posture. 第3姿勢のダンパを示す図である。It is a figure which shows the damper of the 3rd posture. ダンパの変形例を示す図である。It is a figure which shows the modification of the damper. 本発明の第4実施形態に係る除湿機の内部を示す模式図である。It is a schematic diagram which shows the inside of the dehumidifier which concerns on 4th Embodiment of this invention. 図11に示す除湿機のXII-XII断面図である。It is a cross-sectional view of XII-XII of the dehumidifier shown in FIG. 加熱部を示す図である。It is a figure which shows the heating part. 本発明の第6実施形態に係る除湿機の内部を示す模式図である。It is a schematic diagram which shows the inside of the dehumidifier which concerns on 6th Embodiment of this invention. 本発明の第7実施形態に係る除湿機の内部を示す模式図である。It is a schematic diagram which shows the inside of the dehumidifier which concerns on 7th Embodiment of this invention. 図15に示す除湿機のXVI-XVI断面図である。It is a cross-sectional view of XVI-XVI of the dehumidifier shown in FIG. 本発明の第7実施形態に係る除湿機を後方から見た模式図である。It is a schematic diagram which looked at the dehumidifier which concerns on 7th Embodiment of this invention from the rear. 本発明の第7実施形態に係る除湿機の変形例を後方から見た模式図である。It is a schematic diagram which looked at the modification of the dehumidifier which concerns on 7th Embodiment of this invention from the rear.
 本発明の実施形態について、図面を参照しながら説明する。なお、図中、同一又は相当部分については同一の参照符号を付して説明を繰り返さない。 An embodiment of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are designated by the same reference numerals and the description is not repeated.
[第1実施形態]
 図1及び図2を参照して、本発明の第1実施形態に係る除湿機100について説明する。図1は、本発明の第1実施形態に係る除湿機100の斜視図である。図2は、除湿機100の内部を示す模式図である。
[First Embodiment]
The dehumidifier 100 according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a perspective view of the dehumidifier 100 according to the first embodiment of the present invention. FIG. 2 is a schematic view showing the inside of the dehumidifier 100.
 図1及び図2に示すように、除湿機100は、ケーシング1と、カバー部材2aと、排水タンク4と、操作部5とを備える。 As shown in FIGS. 1 and 2, the dehumidifier 100 includes a casing 1, a cover member 2a, a drainage tank 4, and an operation unit 5.
 ケーシング1は、中空の部材である。ケーシング1には、吹出口2と、一対の第1吸込口3a(図3参照)とが形成される。 Casing 1 is a hollow member. The casing 1 is formed with an air outlet 2 and a pair of first suction ports 3a (see FIG. 3).
 吹出口2は、ケーシング1の前面に形成される。吹出口2は、ケーシング1の内部と外部とを連通する。吹出口2は、ケーシング1の内部の空気をケーシング1の外部に放出する。吹出口2は、ケーシング1に形成されていればよく、ケーシング1の前面以外の場所に位置していてもよい。 The air outlet 2 is formed on the front surface of the casing 1. The air outlet 2 communicates between the inside and the outside of the casing 1. The air outlet 2 discharges the air inside the casing 1 to the outside of the casing 1. The air outlet 2 may be formed in the casing 1 and may be located at a place other than the front surface of the casing 1.
 カバー部材2aは、略板状の部材である。図1において、カバー部材2aは、吹出口2を覆っている。カバー部材2aは、ケーシング1に回転可能に取り付けられる。カバー部材2aは、回転角度を変更することで、吹出口2から放出される空気の流れる方向を、カバー部材2aの回転角度に応じた方向に規定する風向板として機能する。 The cover member 2a is a substantially plate-shaped member. In FIG. 1, the cover member 2a covers the air outlet 2. The cover member 2a is rotatably attached to the casing 1. By changing the rotation angle, the cover member 2a functions as a wind direction plate that defines the direction in which the air discharged from the air outlet 2 flows in a direction corresponding to the rotation angle of the cover member 2a.
 第1吸込口3aは、ケーシング1の後面に形成される。第1吸込口3aは、ケーシング1の内部と外部とを連通する。第1吸込口3aは、ケーシング1の外部の空気をケーシング1の内部に流入させる。第1吸込口3aは、ケーシング1に形成されていればよく、ケーシング1の後面以外の場所に位置していてもよい。 The first suction port 3a is formed on the rear surface of the casing 1. The first suction port 3a communicates the inside and the outside of the casing 1. The first suction port 3a allows air outside the casing 1 to flow into the inside of the casing 1. The first suction port 3a may be formed in the casing 1 and may be located at a place other than the rear surface of the casing 1.
 排水タンク4は、ケーシング1に着脱自在に格納される。排水タンク4は、除湿機100によって生成された水を貯留する。 The drainage tank 4 is detachably stored in the casing 1. The drainage tank 4 stores the water generated by the dehumidifier 100.
 操作部5は、ケーシング1の上部に設けられる。操作部5は、外部からの指示を受け付ける。 The operation unit 5 is provided on the upper part of the casing 1. The operation unit 5 receives an instruction from the outside.
 次に、図2~図4を参照して、除湿機100についてさらに説明する。図3は、図2に示す除湿機100のIII-III断面図である。図4は、除湿機100を後方から見た模式図である。 Next, the dehumidifier 100 will be further described with reference to FIGS. 2 to 4. FIG. 3 is a sectional view taken along line III-III of the dehumidifier 100 shown in FIG. FIG. 4 is a schematic view of the dehumidifier 100 as viewed from the rear.
 図2において、上下方向は鉛直方向に対して平行な方向である。前後方向は、水平方向に対して平行な方向である。左右方向は、上下方向、及び前後方向の各々の方向に対して垂直な方向である。第1実施形態の除湿機100は、図3に示すような姿勢に設置された状態で使用される。 In FIG. 2, the vertical direction is a direction parallel to the vertical direction. The front-back direction is a direction parallel to the horizontal direction. The left-right direction is a direction perpendicular to each of the vertical direction and the front-back direction. The dehumidifier 100 of the first embodiment is used in a state of being installed in the posture as shown in FIG.
 前後方向のうちの前方向は、本発明の第1方向の一例である。上下方向のうちの下方向は、本発明の第2方向の一例である。 The front direction of the front-back directions is an example of the first direction of the present invention. The downward direction of the vertical direction is an example of the second direction of the present invention.
 図2~図4に示すように、除湿機100は、ヒータ6と、除湿ロータ7と、冷却部8と、放熱部9と、集水部10と、送風部11と、圧縮部12と、膨張部(不図示)とをさらに備える。 As shown in FIGS. 2 to 4, the dehumidifier 100 includes a heater 6, a dehumidifying rotor 7, a cooling unit 8, a heat radiating unit 9, a water collecting unit 10, a blower unit 11, and a compression unit 12. It further includes an expansion portion (not shown).
 ヒータ6、除湿ロータ7、冷却部8、放熱部9、送風部11、及び圧縮部12は、ケーシング1の内部に配置され、ケーシング1に収容される。 The heater 6, the dehumidifying rotor 7, the cooling unit 8, the heat radiating unit 9, the blower unit 11, and the compression unit 12 are arranged inside the casing 1 and are housed in the casing 1.
 ヒータ6は、発熱することで空気を加熱する加熱機能を有する。ヒータ6は、本発明の加熱部の一例である。 The heater 6 has a heating function of heating air by generating heat. The heater 6 is an example of the heating unit of the present invention.
 除湿ロータ7は、ゼオライト71と、ロータ72と、回転軸73とを含む。ロータ72は、略円盤状の部材である。ロータ72には、ロータ72の周方向に沿って複数のゼオライト71が設けられる。ロータ72は、回転軸73を中心に回転する。 The dehumidifying rotor 7 includes a zeolite 71, a rotor 72, and a rotating shaft 73. The rotor 72 is a substantially disk-shaped member. The rotor 72 is provided with a plurality of zeolites 71 along the circumferential direction of the rotor 72. The rotor 72 rotates about the rotation shaft 73.
 除湿ロータ7は、放湿部7aと、吸湿部7bとをさらに含む。 The dehumidifying rotor 7 further includes a moisture releasing portion 7a and a moisture absorbing portion 7b.
 放湿部7aは、ロータ72のうちの上側部分である。放湿部7aは、吸湿部7bの上方に位置する。放湿部7aの後側には、第1吸込口3aが配置される。放湿部7aは、ヒータ6と対向する。放湿部7aは、ヒータ6の後方に配置される。放湿部7aには、ヒータ6から熱が供給される。 The moisture release portion 7a is the upper portion of the rotor 72. The moisture releasing portion 7a is located above the moisture absorbing portion 7b. A first suction port 3a is arranged on the rear side of the moisture releasing portion 7a. The moisture releasing portion 7a faces the heater 6. The moisture releasing portion 7a is arranged behind the heater 6. Heat is supplied to the moisture discharging portion 7a from the heater 6.
 吸湿部7bは、ロータ72のうちの下側部分である。吸湿部7bは、ヒータ6と対向しない。 The moisture absorbing portion 7b is the lower portion of the rotor 72. The moisture absorbing portion 7b does not face the heater 6.
 ゼオライト71は、ロータ72と共に回転することで、放湿部7aに位置する状態と、吸湿部7bに位置する状態とを交互に繰り返す。 By rotating together with the rotor 72, the zeolite 71 alternately repeats a state of being located in the moisture releasing portion 7a and a state of being located in the moisture absorbing portion 7b.
 吸湿部7bは、空気を除湿する。詳細には、吸湿部7bに位置するゼオライト71が空気を除湿する。その結果、吸湿部7bからは、除湿された空気(乾燥空気)が放出される。 The moisture absorbing part 7b dehumidifies the air. Specifically, the zeolite 71 located in the moisture absorbing portion 7b dehumidifies the air. As a result, dehumidified air (dry air) is released from the moisture absorbing portion 7b.
 放湿部7aは、ヒータ6により加熱された空気を供給されることで、吸湿部7bで除湿された水分を含む空気(高湿度の空気)を放出する放湿機能を有する。詳細には、放湿部7aに位置するゼオライト71に対してヒータ6により加熱された空気が供給されることで、ゼオライト71が吸湿部7bに位置する際に除湿した水分が放湿部7aで気化される。その結果、放湿部7aから高湿度の空気が放出される。 The moisture releasing section 7a has a moisture releasing function of releasing air containing moisture (high humidity air) dehumidified by the moisture absorbing section 7b by supplying air heated by the heater 6. Specifically, the air heated by the heater 6 is supplied to the zeolite 71 located in the moisture releasing portion 7a, so that the moisture dehumidified when the zeolite 71 is located in the moisture absorbing portion 7b is released in the moisture releasing portion 7a. It is vaporized. As a result, high-humidity air is discharged from the moisture-releasing portion 7a.
 ヒータ6と放湿部7aとの関係について説明する。 The relationship between the heater 6 and the moisture releasing portion 7a will be described.
 ヒータ6は、例えば、ニクロムヒータ又はセラミックヒータを含み、電力で稼働する。ヒータ6は、放湿部7aの放湿機能に応じた加熱機能を有する。言い換えれば、ヒータ6は、放湿部7aに供給される空気の温度が所定温度となるように、空気を加熱する。所定温度は、放湿部7a(ゼオライト71)が放湿機能を効果的に発揮できるような温度である。第1実施形態では、ヒータ6は、例えば、200℃~300℃程度で発熱することで、放湿部7aに供給される空気の温度が所定温度となるように、空気を加熱する。 The heater 6 includes, for example, a nichrome heater or a ceramic heater, and operates on electric power. The heater 6 has a heating function corresponding to the moisture releasing function of the moisture releasing portion 7a. In other words, the heater 6 heats the air so that the temperature of the air supplied to the moisture releasing portion 7a becomes a predetermined temperature. The predetermined temperature is a temperature at which the moisture-releasing portion 7a (zeolite 71) can effectively exert the moisture-releasing function. In the first embodiment, the heater 6 heats the air so that the temperature of the air supplied to the moisture releasing portion 7a becomes a predetermined temperature by generating heat at, for example, about 200 ° C. to 300 ° C.
 圧縮部12は、冷媒を圧送する。圧縮部12は、コンプレッサを含む。膨張部は、冷媒を減圧する。膨張部は、例えば、キャピラリーチューブを含む。ケーシング1の内部には、冷凍サイクルが形成される。冷凍サイクルは、圧縮部12と、放熱部9と、膨張部と、冷却部8とを環状に連結した循環路を形成し、圧縮部12により循環路を通じて冷媒を循環させるサイクルである。冷凍サイクルにおいて、圧縮部12が動作することにより冷媒が高温高圧化される。高温高圧化された冷媒は、放熱部9へ送られる。放熱部9は、放熱部9を通過する空気中に冷媒の熱を放熱することで、冷媒を冷やす。放熱部9を通過した冷媒は、膨張部へ送られる。膨張部は、放熱部9により冷やされた冷媒を減圧することで、低温低圧化された冷媒を生成する。膨張部を通過した冷媒は、冷却部8へ送られる。冷却部8は、膨張部から低温低圧化された冷媒を供給されることで冷却される。冷却部8を通過した冷媒は、圧縮部12へ送られる。冷凍サイクルにおいて、冷媒が、圧縮部12、放熱部9、膨張部、及び冷却部8の順番に循環することで、冷却部8の温度上昇が抑制される。なお、冷凍サイクルにおいて、放熱部9には、圧縮部12により高温高圧化された冷媒が送られるので、放熱部9の温度が上昇する。 The compression unit 12 pumps the refrigerant. The compression unit 12 includes a compressor. The expansion unit depressurizes the refrigerant. The swelling portion includes, for example, a capillary tube. A refrigeration cycle is formed inside the casing 1. The refrigeration cycle is a cycle in which a circulation path is formed in which the compression section 12, the heat dissipation section 9, the expansion section, and the cooling section 8 are connected in a ring shape, and the refrigerant is circulated through the circulation path by the compression section 12. In the refrigeration cycle, the temperature and pressure of the refrigerant are increased by the operation of the compression unit 12. The high-temperature and high-pressure refrigerant is sent to the heat radiating unit 9. The heat radiating unit 9 cools the refrigerant by dissipating the heat of the refrigerant into the air passing through the heat radiating unit 9. The refrigerant that has passed through the heat radiating section 9 is sent to the expanding section. The expansion unit decompresses the refrigerant cooled by the heat radiating unit 9 to generate a low-temperature and low-pressure refrigerant. The refrigerant that has passed through the expansion unit is sent to the cooling unit 8. The cooling unit 8 is cooled by supplying a low-temperature and low-pressure refrigerant from the expansion unit. The refrigerant that has passed through the cooling unit 8 is sent to the compression unit 12. In the refrigeration cycle, the refrigerant circulates in the order of the compression unit 12, the heat dissipation unit 9, the expansion unit, and the cooling unit 8, so that the temperature rise of the cooling unit 8 is suppressed. In the refrigeration cycle, the temperature of the heat radiating unit 9 rises because the refrigerant whose temperature and pressure have been increased by the compression unit 12 is sent to the heat radiating unit 9.
 冷却部8は、空気を冷やす。冷却部8は、エバポレータを含む。冷却部8は、上下方向に沿って延びる形状を有する。冷却部8は、吸湿部7bに対向配置される。冷却部8は、吸湿部7bの後方に配置される。 The cooling unit 8 cools the air. The cooling unit 8 includes an evaporator. The cooling unit 8 has a shape extending along the vertical direction. The cooling unit 8 is arranged to face the moisture absorbing unit 7b. The cooling unit 8 is arranged behind the moisture absorbing unit 7b.
 冷却部8は、空気を冷やすことで、空気中の水蒸気を結露させる。その結果、空気が除湿されると共に、水が生成される。 The cooling unit 8 cools the air to condense water vapor in the air. As a result, air is dehumidified and water is produced.
 第1実施形態では、放湿部7aから高湿度の空気が放出される。放湿部7aから放出された空気は、冷却部8に供給される。そして、冷却部8は、放湿部7aから放出された空気から結露を生成して除湿を行う。 In the first embodiment, high humidity air is discharged from the moisture discharging portion 7a. The air discharged from the moisture releasing section 7a is supplied to the cooling section 8. Then, the cooling unit 8 dehumidifies by forming dew condensation from the air discharged from the moisture releasing unit 7a.
 放熱部9は、冷凍サイクルにおいて、冷媒を冷やすことによって、冷却部8を冷やす。すなわち、放熱部9は、冷媒(例えば、フロンガス)を介して冷却部8を冷やす。放熱部9は、コンデンサを含む。放熱部9は、吸湿部7bの前方に配置される。放熱部9は、ヒータ6の下方に配置される。 The heat radiating unit 9 cools the cooling unit 8 by cooling the refrigerant in the refrigeration cycle. That is, the heat radiating unit 9 cools the cooling unit 8 via a refrigerant (for example, chlorofluorocarbon gas). The heat radiating unit 9 includes a capacitor. The heat radiating portion 9 is arranged in front of the moisture absorbing portion 7b. The heat radiating unit 9 is arranged below the heater 6.
 集水部10は、冷却部8で生成された水を回収する。集水部10は、冷却部8の下方に配置される。集水部10には冷却部8で生成された水が滴下する。 The water collecting unit 10 collects the water generated by the cooling unit 8. The water collecting unit 10 is arranged below the cooling unit 8. The water generated by the cooling unit 8 drops onto the water collecting unit 10.
 集水部10は、例えば、漏斗状に形成され、供給された水を排水タンク4へ案内する。その結果、排水タンク4に水が貯留される。 The water collecting unit 10 is formed in a funnel shape, for example, and guides the supplied water to the drainage tank 4. As a result, water is stored in the drainage tank 4.
 送風部11は、空気を送風する。送風部11は、ファンを含む。送風部11は、放熱部9の前方に配置される。 The blower unit 11 blows air. The blower portion 11 includes a fan. The blower portion 11 is arranged in front of the heat dissipation portion 9.
 除湿機100は、記憶部13と、制御部14とをさらに備える。 The dehumidifier 100 further includes a storage unit 13 and a control unit 14.
 記憶部13は、ROM(Read Only Memory)、及びRAM(Random Access Memory)のような主記憶装置(例えば、半導体メモリー)を含み、補助記憶装置(例えば、ハードディスクドライブ)をさらに含んでもよい。主記憶装置及び/又は補助記憶装置は、制御部14によって実行される種々のコンピュータープログラムを記憶する。 The storage unit 13 includes a main storage device (for example, a semiconductor memory) such as a ROM (Read Only Memory) and a RAM (Random Access Memory), and may further include an auxiliary storage device (for example, a hard disk drive). The main storage device and / or the auxiliary storage device stores various computer programs executed by the control unit 14.
 制御部14は、CPU(Central Processing Unit)及びMPU(Micro Processing Unit)のようなプロセッサーを含む。制御部14は、除湿機100の各要素を制御する。 The control unit 14 includes processors such as a CPU (Central Processing Unit) and an MPU (Micro Processing Unit). The control unit 14 controls each element of the dehumidifier 100.
 続いて、図2~図4を参照して、ケーシング1の内部に形成される第1風路F1について説明する。 Subsequently, the first air passage F1 formed inside the casing 1 will be described with reference to FIGS. 2 to 4.
 図2~図4に示すように、送風部11は、空気を送風することで、第1風路F1を生成する。 As shown in FIGS. 2 to 4, the blower portion 11 blows air to generate the first air passage F1.
 第1風路F1は、一対の第1風路部分F11と、第2風路部分F12と、第3風路部分F13と、第4風路部分F14と、第5風路部分F15とを含む。 The first air passage F1 includes a pair of first air passage portion F11, a second air passage portion F12, a third air passage portion F13, a fourth air passage portion F14, and a fifth air passage portion F15. ..
 第1風路部分F11は、冷却部8及び放熱部9の各々の上方、かつ、ヒータ6及び放湿部7aの各々の側方に位置する。第1風路部分F11は、第1吸込口3aに連通し、第1吸込口3aから前方向に延びる。第1風路部分F11の前端部F1aは、ヒータ6の略側方、又は、ヒータ6よりも前方に位置する。 The first air passage portion F11 is located above each of the cooling portion 8 and the heat radiating portion 9, and to the side of each of the heater 6 and the moisture releasing portion 7a. The first air passage portion F11 communicates with the first suction port 3a and extends forward from the first suction port 3a. The front end portion F1a of the first air passage portion F11 is located substantially lateral to the heater 6 or in front of the heater 6.
 第2風路部分F12は、第1風路部分F11の前端部F1aに連なり、前端部F1aからヒータ6側に延びる。第2風路部分F12のうちヒータ6側の端部F2aは、ヒータ6の後方に位置する。 The second air passage portion F12 is connected to the front end portion F1a of the first air passage portion F11, and extends from the front end portion F1a to the heater 6 side. The end portion F2a on the heater 6 side of the second air passage portion F12 is located behind the heater 6.
 第3風路部分F13は、第2風路部分F12の端部F2aに連なり、端部F2aから後方向に延びる。第3風路部分F13は、ヒータ6と放湿部7aとを通る。第3風路部分F13の後端部F3aは、冷却部8の上方に位置する。 The third air passage portion F13 is connected to the end portion F2a of the second air passage portion F12, and extends backward from the end portion F2a. The third air passage portion F13 passes through the heater 6 and the moisture releasing portion 7a. The rear end portion F3a of the third air passage portion F13 is located above the cooling portion 8.
 第4風路部分F14は、第3風路部分F13の後端部F3aに連なり、後端部F3aから下方向に延びる。第4風路部分F14は、冷却部8に形成される。 The fourth air passage portion F14 is connected to the rear end portion F3a of the third air passage portion F13, and extends downward from the rear end portion F3a. The fourth air passage portion F14 is formed in the cooling portion 8.
 第5風路部分F15は、第4風路部分F14の下端部F4aに連なり、下端部F4aから前方向に延びる。第5風路部分F15は、吸湿部7bと、放熱部9とを通る。第5風路部分F15は、送風部11に通じる。 The fifth air passage portion F15 is connected to the lower end portion F4a of the fourth air passage portion F14, and extends forward from the lower end portion F4a. The fifth air passage portion F15 passes through the moisture absorbing portion 7b and the heat radiating portion 9. The fifth air passage portion F15 leads to the blower portion 11.
 ケーシング1の内部には、排出風路FZがさらに形成される。排出風路FZは、送風部11から吹出口2に亘って形成される。 An exhaust air passage FZ is further formed inside the casing 1. The exhaust air passage FZ is formed from the air blowing portion 11 to the air outlet 2.
 第1吸込口3aを介してケーシング1の内部に流入した空気は、第1風路F1及び排出風路FZを流れた後、吹出口2からケーシング1の外部に排出される。 The air that has flowed into the casing 1 through the first suction port 3a flows through the first air passage F1 and the exhaust air passage FZ, and then is discharged to the outside of the casing 1 from the air outlet 2.
 第1風路F1では、ヒータ6、放湿部7a、冷却部8、吸湿部7b、及び放熱部9の順番に空気が流れる。 In the first air passage F1, air flows in the order of the heater 6, the moisture releasing portion 7a, the cooling portion 8, the moisture absorbing portion 7b, and the heat radiating portion 9.
 除湿機100は、複数の壁部をさらに備える。複数の壁部の各々は、ケーシング1の内部を仕切ることで、第1風路F1を形成する。 The dehumidifier 100 further includes a plurality of wall portions. Each of the plurality of wall portions forms the first air passage F1 by partitioning the inside of the casing 1.
 複数の壁部は、第1壁部15a~第6壁部15fを含む。複数の壁部は、板状の部材である。複数の壁部は、例えば、樹脂により形成される。 The plurality of wall portions include the first wall portion 15a to the sixth wall portion 15f. The plurality of wall portions are plate-shaped members. The plurality of wall portions are formed of, for example, resin.
 第1壁部15aは、第1風路部分F11と、第3風路部分F13との間に配置される。第1壁部15aは、ケーシング1の内部のうち放湿部7aの後方に位置する空間を左右に仕切ることで、第1風路部分F11と第3風路部分F13とを互いに区分する。第1壁部15aは、冷却部8の上方に配置される。第1実施形態では、一対の第1壁部15aが設けられる。一対の第1壁部15aの間には、第3風路部分F13が存在する。 The first wall portion 15a is arranged between the first air passage portion F11 and the third air passage portion F13. The first wall portion 15a separates the first air passage portion F11 and the third air passage portion F13 from each other by partitioning the space located behind the moisture discharging portion 7a inside the casing 1 to the left and right. The first wall portion 15a is arranged above the cooling portion 8. In the first embodiment, a pair of first wall portions 15a are provided. A third air passage portion F13 exists between the pair of first wall portions 15a.
 第2壁部15bは、第1風路部分F11と、第3風路部分F13との間に配置される。第2壁部15bは、ケーシング1の内部のうち放湿部7aの前方に位置する空間を左右に仕切ることで、第1風路部分F11と第3風路部分F13とを互いに区分する。第2壁部15bは、放熱部9の上方に配置される。第1実施形態では、一対の第2壁部15bが設けられる。一対の第2壁部15bの間には、第3風路部分F13が存在する。また、一対の第2壁部15bの間には、ヒータ6が存在する。 The second wall portion 15b is arranged between the first air passage portion F11 and the third air passage portion F13. The second wall portion 15b separates the first air passage portion F11 and the third air passage portion F13 from each other by partitioning the space located in front of the moisture discharging portion 7a inside the casing 1 to the left and right. The second wall portion 15b is arranged above the heat radiating portion 9. In the first embodiment, a pair of second wall portions 15b are provided. A third air passage portion F13 exists between the pair of second wall portions 15b. Further, a heater 6 exists between the pair of second wall portions 15b.
 第3壁部15cは、第2壁部15bの前側に配置される。第3壁部15cと第2壁部15bとの間には、第2風路部分F12が存在する。第3壁部15cは、ヒータ6の前側に配置される。第3壁部15cは、ケーシング1の内部のうちヒータ6の前方に位置する空間を前後に仕切ることで、第2風路部分F12を形成する。第3壁部15cの後側には、第2風路部分F12が存在する。 The third wall portion 15c is arranged on the front side of the second wall portion 15b. A second air passage portion F12 exists between the third wall portion 15c and the second wall portion 15b. The third wall portion 15c is arranged on the front side of the heater 6. The third wall portion 15c forms the second air passage portion F12 by partitioning the space located in front of the heater 6 in the inside of the casing 1 back and forth. A second air passage portion F12 exists on the rear side of the third wall portion 15c.
 第4壁部15dは、ヒータ6と放熱部9との間に配置される。また、第4壁部15dは、放湿部7aと吸湿部7bとの間に配置される。第4壁部15dは、第3壁部15cの下部に連なる。第4壁部15dは、ケーシング1の内部の空間のうちヒータ6の下方に位置する空間を上下に仕切る。第4壁部15dの上側には、第1風路部分F11と、第2風路部分F12と、第3風路部分F13とが存在する。第4壁部15dの下側には、第5風路部分F15が存在する。 The fourth wall portion 15d is arranged between the heater 6 and the heat radiating portion 9. Further, the fourth wall portion 15d is arranged between the moisture releasing portion 7a and the moisture absorbing portion 7b. The fourth wall portion 15d is connected to the lower part of the third wall portion 15c. The fourth wall portion 15d vertically partitions the space located below the heater 6 in the space inside the casing 1. Above the fourth wall portion 15d, there are a first air passage portion F11, a second air passage portion F12, and a third air passage portion F13. Below the fourth wall portion 15d, there is a fifth air passage portion F15.
 第5壁部15eは、冷却部8の後側に配置される。第5壁部15eは、冷却部8を後方から覆うように形成される。第5壁部15eは、ケーシング1の一部であってもよい。また、第5壁部15eは、ケーシング1とは別部材であってもよい。第5壁部15eと第4壁部15dとの間には、隙間Sが形成される。隙間Sには、第4風路部分F14が存在する。 The fifth wall portion 15e is arranged on the rear side of the cooling portion 8. The fifth wall portion 15e is formed so as to cover the cooling portion 8 from behind. The fifth wall portion 15e may be a part of the casing 1. Further, the fifth wall portion 15e may be a member different from the casing 1. A gap S is formed between the fifth wall portion 15e and the fourth wall portion 15d. The fourth air passage portion F14 exists in the gap S.
 第6壁部15fは、冷却部8の前側に配置される。第6壁部15fは、冷却部8を介して第5壁部15eと対向する。第6壁部15fと第5壁部15eとの間には、第4風路部分F14が存在する。第6壁部15fの下端faは、冷却部8の下端81よりも上方に位置する。第4風路部分F14は、第6壁部15fよりも下側で第5風路部分F15に連なる。 The sixth wall portion 15f is arranged on the front side of the cooling portion 8. The sixth wall portion 15f faces the fifth wall portion 15e via the cooling portion 8. A fourth air passage portion F14 exists between the sixth wall portion 15f and the fifth wall portion 15e. The lower end fa of the sixth wall portion 15f is located above the lower end 81 of the cooling portion 8. The fourth air passage portion F14 is connected to the fifth air passage portion F15 below the sixth wall portion 15f.
 以上、図2~図4を参照して説明したように、第1風路F1には、ヒータ6と、放湿部7aと、冷却部8と、吸湿部7bと、放熱部9とが、ヒータ6、放湿部7a、冷却部8、吸湿部7b、及び放熱部9の順番に配置される。従って、ケーシング1の外部から第1風路F1に供給された空気は、ヒータ6、放湿部7a、冷却部8、吸湿部7b、及び放熱部9の順番に流れた後、ケーシング1の外部に排出される。 As described above with reference to FIGS. 2 to 4, the first air passage F1 includes a heater 6, a moisture releasing portion 7a, a cooling portion 8, a moisture absorbing portion 7b, and a heat radiating portion 9. The heater 6, the moisture releasing portion 7a, the cooling portion 8, the moisture absorbing portion 7b, and the heat radiating portion 9 are arranged in this order. Therefore, the air supplied from the outside of the casing 1 to the first air passage F1 flows in the order of the heater 6, the moisture releasing portion 7a, the cooling portion 8, the moisture absorbing portion 7b, and the heat radiating portion 9, and then the outside of the casing 1. Is discharged to.
 次に、図2~図5を参照して、除湿機100の動作について説明する。図5は、第1風路F1を通じた空気の流れを示す図である。 Next, the operation of the dehumidifier 100 will be described with reference to FIGS. 2 to 5. FIG. 5 is a diagram showing the flow of air through the first air passage F1.
 図2~図5に示すように、ケーシング1の外部の空気は、第1吸込口3aを介してケーシング1の内部に流入した後、ヒータ6、放湿部7a、冷却部8、吸湿部7b、及び放熱部9の順番に流れて、吹出口2からケーシング1の外部に排出される。 As shown in FIGS. 2 to 5, the air outside the casing 1 flows into the inside of the casing 1 through the first suction port 3a, and then the heater 6, the moisture releasing portion 7a, the cooling portion 8, and the moisture absorbing portion 7b. , And the heat radiating part 9 in this order, and the air is discharged from the air outlet 2 to the outside of the casing 1.
 第1吸込口3aを介してケーシング1の内部に流入した空気は、ヒータ6により加熱される。ヒータ6により加熱された空気は、放湿部7aに供給される。そして、ヒータ6により加熱された空気は、放湿部7aに位置するゼオライト71に含まれる水分を気化する。その結果、高湿度の空気が生成される。高湿度の空気は、放湿部7aから放出される。 The air that has flowed into the casing 1 through the first suction port 3a is heated by the heater 6. The air heated by the heater 6 is supplied to the moisture releasing portion 7a. Then, the air heated by the heater 6 vaporizes the moisture contained in the zeolite 71 located in the moisture releasing portion 7a. As a result, high humidity air is generated. High humidity air is discharged from the moisture releasing portion 7a.
 放湿部7aから放出された高湿度の空気は、冷却部8により冷やされる。その結果、結露が生成される。結露により生成された水は、集水部10を介して排水タンク4に排出される。 The high humidity air discharged from the moisture releasing section 7a is cooled by the cooling section 8. As a result, condensation is formed. The water generated by dew condensation is discharged to the drainage tank 4 via the water collecting section 10.
 冷却部8から放出された空気は、吸湿部7bに供給される。吸湿部7bに供給された空気は、吸湿部7bに位置するゼオライト71により除湿された後、吸湿部7bから放出される。吸湿部7bから放出された除湿後の空気は、放熱部9に供給された後、吹出口2からケーシング1の外部へ放出される。 The air released from the cooling unit 8 is supplied to the moisture absorbing unit 7b. The air supplied to the moisture absorbing portion 7b is dehumidified by the zeolite 71 located in the moisture absorbing portion 7b, and then discharged from the moisture absorbing portion 7b. The dehumidified air released from the moisture absorbing portion 7b is supplied to the heat radiating portion 9 and then discharged from the outlet 2 to the outside of the casing 1.
 以上、図2~図5を参照して説明したように、第1風路F1では、冷却部8により冷却された空気が放熱部9に供給される。従って、冷却部8によって冷却された空気により放熱部9を冷却することができるので、放熱部9の温度上昇を抑制できる。その結果、冷凍サイクルにおいて、放熱部9により冷媒を効果的に冷やすことができるので、冷凍サイクルによる冷却部8の冷却効率を向上させることができる。 As described above with reference to FIGS. 2 to 5, in the first air passage F1, the air cooled by the cooling unit 8 is supplied to the heat radiating unit 9. Therefore, since the heat radiating unit 9 can be cooled by the air cooled by the cooling unit 8, the temperature rise of the heat radiating unit 9 can be suppressed. As a result, the refrigerant can be effectively cooled by the heat radiating unit 9 in the refrigeration cycle, so that the cooling efficiency of the cooling unit 8 in the refrigeration cycle can be improved.
 また、冷凍サイクルによる冷却部8の冷却効率が向上することで、冷却部8の冷えた状態を効果的に確保できる。冷却部8の冷えた状態が確保されると、冷却部8による空気の冷却能力を向上させることができる。従って、冷却部8は、空気中の水蒸気を効果的に結露させてより多くの水を生成することができる。その結果、除湿機100の除湿能力が低下することを抑制できる。 Further, by improving the cooling efficiency of the cooling unit 8 by the refrigeration cycle, it is possible to effectively secure the cooled state of the cooling unit 8. When the cold state of the cooling unit 8 is secured, the cooling capacity of the air by the cooling unit 8 can be improved. Therefore, the cooling unit 8 can effectively condense water vapor in the air to generate more water. As a result, it is possible to suppress a decrease in the dehumidifying capacity of the dehumidifier 100.
 また、1つの風路(第1風路F1)上に、ヒータ6と、放湿部7aと、冷却部8と、吸湿部7bとが配置される。従って、吸湿部7bにより除湿する処理と、吸湿部7bにより除湿された水分を、ヒータ6、放湿部7a、及び冷却部8により結露させる処理とを、簡素な装置構成で行うことができる。 Further, a heater 6, a moisture releasing portion 7a, a cooling portion 8, and a moisture absorbing portion 7b are arranged on one air passage (first air passage F1). Therefore, the process of dehumidifying by the moisture absorbing section 7b and the process of condensing the moisture dehumidified by the moisture absorbing section 7b by the heater 6, the moisture releasing section 7a, and the cooling section 8 can be performed with a simple device configuration.
 また、除湿機100の雰囲気の温度が十分に高い場合は、ヒータ6がOFFの状態でも、冷却部8により結露が生じる程度に空気を冷却できる。この場合、省電力化の観点から、ヒータ6がOFFの状態で除湿機100が稼働されることがある。また、第1風路F1では、冷却部8の下流に放熱部9が配置される。従って、第1風路F1では、ヒータ6がOFFの状態で除湿機100が稼働される場合、放熱部9の熱により加熱された空気が冷却部8に流れることを防止できるので、放熱部9の熱により冷却部8の温度が上昇することを防止できる。その結果、冷凍サイクルによる冷却部8の冷却効率の低下を抑制できるので、除湿機100の除湿能力が低下することを抑制できる。 Further, when the temperature of the atmosphere of the dehumidifier 100 is sufficiently high, the air can be cooled to the extent that dew condensation occurs by the cooling unit 8 even when the heater 6 is OFF. In this case, from the viewpoint of power saving, the dehumidifier 100 may be operated with the heater 6 turned off. Further, in the first air passage F1, a heat radiating unit 9 is arranged downstream of the cooling unit 8. Therefore, in the first air passage F1, when the dehumidifier 100 is operated with the heater 6 turned off, it is possible to prevent the air heated by the heat of the heat radiating unit 9 from flowing to the cooling unit 8, so that the heat radiating unit 9 It is possible to prevent the temperature of the cooling unit 8 from rising due to the heat of the cooling unit 8. As a result, it is possible to suppress a decrease in the cooling efficiency of the cooling unit 8 due to the refrigeration cycle, so that it is possible to suppress a decrease in the dehumidifying capacity of the dehumidifier 100.
 また、第1風路F1には、冷却部8、及び吸湿部7bが、冷却部8、及び吸湿部7bの順番に配置される。第1風路F1では、空気が、冷却部8及び吸湿部7bの順番に流れる。第1風路F1を流れる空気は、冷却部8により空気中の水分を結露されることによって除湿される。さらに、第1風路F1を流れる空気は、吸湿部7bにより除湿される。その結果、空気の除湿量を向上させることができるので、空気を効果的に乾燥させることができる。 Further, in the first air passage F1, the cooling unit 8 and the moisture absorbing unit 7b are arranged in the order of the cooling unit 8 and the moisture absorbing unit 7b. In the first air passage F1, air flows in the order of the cooling unit 8 and the moisture absorbing unit 7b. The air flowing through the first air passage F1 is dehumidified by dew condensation of moisture in the air by the cooling unit 8. Further, the air flowing through the first air passage F1 is dehumidified by the moisture absorbing portion 7b. As a result, the amount of dehumidified air can be improved, so that the air can be effectively dried.
 また、放湿部7aを通過した空気が上下方向に沿って冷却部8に供給される。従って、空気が冷却部8を通過するのにかかる時間を増やすことができるので、冷却部8により空気を効果的に冷却することができる。 Further, the air that has passed through the moisture releasing portion 7a is supplied to the cooling portion 8 along the vertical direction. Therefore, the time required for the air to pass through the cooling unit 8 can be increased, so that the cooling unit 8 can effectively cool the air.
 また、放熱部9に対してヒータ6が、上下方向に沿って離間した場所に配置される。従って、ヒータ6と放熱部9とを前後方向に沿って並べて配置する場合に比べて、除湿機100の厚みを薄くすることができる。 Further, the heater 6 is arranged at a place separated from the heat radiating unit 9 along the vertical direction. Therefore, the thickness of the dehumidifier 100 can be reduced as compared with the case where the heater 6 and the heat radiating portion 9 are arranged side by side in the front-rear direction.
 なお、ヒータ6は、放熱部9の上方に配置されなくてもよい。すなわち、第1風路F1において、ヒータ6と、放湿部7aと、冷却部8と、吸湿部7bと、放熱部9とが、ヒータ6、放湿部7a、冷却部8、吸湿部7b、及び放熱部9の順番に配置されていれば、ヒータ6の配置場所は特に限定されない。その結果、ヒータ6の設置場所の自由度を向上させることができる。 The heater 6 does not have to be arranged above the heat radiating unit 9. That is, in the first air passage F1, the heater 6, the moisture releasing portion 7a, the cooling portion 8, the moisture absorbing portion 7b, and the heat radiating portion 9 are formed by the heater 6, the moisture releasing portion 7a, the cooling portion 8, and the moisture absorbing portion 7b. , And, as long as the heat radiating portions 9 are arranged in this order, the arrangement location of the heater 6 is not particularly limited. As a result, the degree of freedom in the installation location of the heater 6 can be improved.
[第2実施形態]
 図6を参照して、本発明の第2実施形態に係る除湿機100について説明する。図6は、本発明の第2実施形態に係る除湿機100の内部を示す模式図である。
[Second Embodiment]
The dehumidifier 100 according to the second embodiment of the present invention will be described with reference to FIG. FIG. 6 is a schematic view showing the inside of the dehumidifier 100 according to the second embodiment of the present invention.
 第2実施形態は、ケーシング1の内部に複数の風路が形成される点が第1実施形態と異なる。以下では、主に第1実施形態と異なる点を説明する。 The second embodiment is different from the first embodiment in that a plurality of air passages are formed inside the casing 1. Hereinafter, the points different from the first embodiment will be mainly described.
 図6に示すように、ケーシング1には、第2吸込口3bがさらに形成される。 As shown in FIG. 6, a second suction port 3b is further formed in the casing 1.
 第2吸込口3bは、ケーシング1の後面に形成される。第2吸込口3bは、ケーシング1の内部と外部とを連通する。第2吸込口3bは、ケーシング1の外部の空気をケーシング1の内部に流入させる。第2吸込口3bは、第1吸込口3aの下方に配置される。第2吸込口3bは、第5壁部15eの下方に位置する。第2吸込口3bは、ケーシング1に形成されていればよく、ケーシング1の後面以外の場所に位置していてもよい。 The second suction port 3b is formed on the rear surface of the casing 1. The second suction port 3b communicates the inside and the outside of the casing 1. The second suction port 3b allows air outside the casing 1 to flow into the inside of the casing 1. The second suction port 3b is arranged below the first suction port 3a. The second suction port 3b is located below the fifth wall portion 15e. The second suction port 3b may be formed in the casing 1 and may be located at a place other than the rear surface of the casing 1.
 ケーシング1の内部には、第2風路F2と、第3風路F3と、第4風路F4とがさらに形成される。送風部11は、空気を送風することで、第1風路F1~第4風路F4の各々を生成する。 A second air passage F2, a third air passage F3, and a fourth air passage F4 are further formed inside the casing 1. The blower unit 11 blows air to generate each of the first air passage F1 to the fourth air passage F4.
 第2風路F2は、第1風路F1の下方に位置する。第2風路F2は、第2吸込口3bに連通する。第2風路F2には、冷却部8、吸湿部7b、及び放熱部9が、冷却部8、吸湿部7b、及び放熱部9の順番に配置される。第2風路F2は、送風部11に通じる。 The second air passage F2 is located below the first air passage F1. The second air passage F2 communicates with the second suction port 3b. In the second air passage F2, the cooling unit 8, the moisture absorbing unit 7b, and the heat radiating unit 9 are arranged in the order of the cooling unit 8, the moisture absorbing unit 7b, and the heat radiating unit 9. The second air passage F2 leads to the air blowing unit 11.
 第2吸込口3bを介してケーシング1の内部に流入した空気は、第2風路F2及び排出風路FZを流れた後、吹出口2からケーシング1の外部に排出される。 The air that has flowed into the casing 1 through the second suction port 3b flows through the second air passage F2 and the exhaust air passage FZ, and then is discharged to the outside of the casing 1 from the air outlet 2.
 第2風路F2では、冷却部8、吸湿部7b、及び放熱部9の順番に空気が流れる。第2風路F2を流れる空気は、冷却部8により空気中の水分を結露されることによって除湿される。さらに、第2風路F2を流れる空気は、吸湿部7bにより除湿される。その結果、空気を効果的に乾燥させることができる。また、第2風路F2では、冷却部8により冷却された空気が放熱部9に供給される。従って、放熱部9の温度上昇を抑制できるので、冷凍サイクルによる冷却部8の冷却効率を向上させることができる。 In the second air passage F2, air flows in the order of the cooling unit 8, the moisture absorbing unit 7b, and the heat radiating unit 9. The air flowing through the second air passage F2 is dehumidified by dew condensation of moisture in the air by the cooling unit 8. Further, the air flowing through the second air passage F2 is dehumidified by the moisture absorbing portion 7b. As a result, the air can be effectively dried. Further, in the second air passage F2, the air cooled by the cooling unit 8 is supplied to the heat radiating unit 9. Therefore, since the temperature rise of the heat radiating unit 9 can be suppressed, the cooling efficiency of the cooling unit 8 by the refrigeration cycle can be improved.
 第3風路F3は、第2風路F2の下方に位置する。第3風路F3は、第2吸込口3bに連通する。第3風路F3には、冷却部8、及び放熱部9が、冷却部8、及び放熱部9の順番に配置される。第3風路F3は、送風部11に通じる。 The third air passage F3 is located below the second air passage F2. The third air passage F3 communicates with the second suction port 3b. In the third air passage F3, the cooling unit 8 and the heat radiating unit 9 are arranged in the order of the cooling unit 8 and the heat radiating unit 9. The third air passage F3 leads to the air blowing unit 11.
 第2吸込口3bを介してケーシング1の内部に流入した空気は、第3風路F3及び排出風路FZを流れた後、吹出口2からケーシング1の外部に排出される。 The air that has flowed into the casing 1 through the second suction port 3b flows through the third air passage F3 and the exhaust air passage FZ, and then is discharged to the outside of the casing 1 from the air outlet 2.
 第3風路F3では、冷却部8、及び放熱部9の順番に空気が流れる。第3風路F3では、冷却部8により冷却された空気が放熱部9に供給される。従って、放熱部9の温度上昇を抑制できるので、冷凍サイクルによる冷却部8の冷却効率を向上させることができる。 In the third air passage F3, air flows in the order of the cooling unit 8 and the heat radiating unit 9. In the third air passage F3, the air cooled by the cooling unit 8 is supplied to the heat radiating unit 9. Therefore, since the temperature rise of the heat radiating unit 9 can be suppressed, the cooling efficiency of the cooling unit 8 by the refrigeration cycle can be improved.
 第4風路F4は、第3風路F3の下方に位置する。第4風路F4は、第2吸込口3bに連通する。第4風路F4には、放熱部9が配置される。第4風路F4は、送風部11に通じる。 The fourth air passage F4 is located below the third air passage F3. The fourth air passage F4 communicates with the second suction port 3b. A heat radiating unit 9 is arranged in the fourth air passage F4. The fourth air passage F4 leads to the air blowing unit 11.
 第2吸込口3bを介してケーシング1の内部に流入した空気は、第4風路F4及び排出風路FZを流れた後、吹出口2からケーシング1の外部に排出される。 The air that has flowed into the casing 1 through the second suction port 3b flows through the fourth air passage F4 and the exhaust air passage FZ, and then is discharged to the outside of the casing 1 from the air outlet 2.
 ケーシング1の内部に流入した空気は、第4風路F4を流れる際、放熱部9に供給される。その結果、放熱部9を冷やすことができる。 The air that has flowed into the casing 1 is supplied to the heat radiating unit 9 when flowing through the fourth air passage F4. As a result, the heat radiating unit 9 can be cooled.
 第2実施形態では、ケーシング1の内部には、第1風路F1~第4風路F4が形成される。しかし、本発明はこれに限定されない。ケーシング1の内部には、第1風路F1~第4風路F4の全ての風路が形成される必要はない。ケーシング1の内部には、第1風路F1と、第2風路F2~第4風路F4のうちの少なくとも1つの風路とが形成されていてもよい。 In the second embodiment, the first air passage F1 to the fourth air passage F4 are formed inside the casing 1. However, the present invention is not limited to this. It is not necessary that all the air passages of the first air passage F1 to the fourth air passage F4 are formed inside the casing 1. A first air passage F1 and at least one air passage of the second air passage F2 to the fourth air passage F4 may be formed inside the casing 1.
[第3実施形態]
 図7~図10を参照して、本発明の第3実施形態に係る除湿機100について説明する。図7は、本発明の第3実施形態に係る除湿機100の内部を示す模式図である。
[Third Embodiment]
The dehumidifier 100 according to the third embodiment of the present invention will be described with reference to FIGS. 7 to 10. FIG. 7 is a schematic view showing the inside of the dehumidifier 100 according to the third embodiment of the present invention.
 第3実施形態は、第3風路F3及び第4風路F4の各々が開閉可能である点が第2実施形態と異なる。以下では、主に第2実施形態と異なる点を説明する。 The third embodiment is different from the second embodiment in that each of the third air passage F3 and the fourth air passage F4 can be opened and closed. Hereinafter, the differences from the second embodiment will be mainly described.
 図7に示すように、除湿機100は、ダンパ16をさらに備える。 As shown in FIG. 7, the dehumidifier 100 further includes a damper 16.
 ダンパ16は、第3風路F3及び第4風路F4の各々を開閉する。ダンパ16は、遮蔽部16aと、支持部16bと、第1駆動源(不図示)とを含む。ダンパ16は、本発明の開閉部材の一例である。 The damper 16 opens and closes each of the third air passage F3 and the fourth air passage F4. The damper 16 includes a shielding portion 16a, a supporting portion 16b, and a first drive source (not shown). The damper 16 is an example of the opening / closing member of the present invention.
 遮蔽部16aは、略板状の部材である。支持部16bは、ケーシング1に対して遮蔽部16aを回転可能に支持する。支持部16bは、例えば、軸部材と、ブラケットとを含む。軸部材は、遮蔽部16aに取り付けられる。ブラケットは、ケーシング1に固定され、軸部材を回転可能に支持する。第1駆動源は、遮蔽部16aを回転させる。第1駆動源は、例えば、モータを含む。第1駆動源は、制御部14により制御される。 The shielding portion 16a is a substantially plate-shaped member. The support portion 16b rotatably supports the shielding portion 16a with respect to the casing 1. The support portion 16b includes, for example, a shaft member and a bracket. The shaft member is attached to the shielding portion 16a. The bracket is fixed to the casing 1 and rotatably supports the shaft member. The first drive source rotates the shielding portion 16a. The first drive source includes, for example, a motor. The first drive source is controlled by the control unit 14.
 第1駆動源により遮蔽部16aの回転角度が変更されることによって、ダンパ16の姿勢が変更される。 The posture of the damper 16 is changed by changing the rotation angle of the shielding portion 16a by the first drive source.
 図7は、第1姿勢α1のダンパ16を示す。図7に示すように、第1姿勢α1のダンパ16は、遮蔽部16aにより第3風路F3と第4風路F4とを閉じる。その結果、ダンパ16が第1姿勢α1のとき、ケーシング1の内部には、第1風路F1と第2風路F2とが形成される。 FIG. 7 shows the damper 16 of the first posture α1. As shown in FIG. 7, the damper 16 in the first posture α1 closes the third air passage F3 and the fourth air passage F4 by the shielding portion 16a. As a result, when the damper 16 is in the first posture α1, the first air passage F1 and the second air passage F2 are formed inside the casing 1.
 図8は、第2姿勢α2のダンパ16を示す図である。図8に示すように、第2姿勢α2のダンパ16は、遮蔽部16aにより第4風路F4を閉じるが、第3風路F3を開く。その結果、ダンパ16が第2姿勢α2のとき、ケーシング1の内部には、第1風路F1と第2風路F2と第3風路F3とが形成される。 FIG. 8 is a diagram showing a damper 16 in the second posture α2. As shown in FIG. 8, the damper 16 in the second posture α2 closes the fourth air passage F4 by the shielding portion 16a, but opens the third air passage F3. As a result, when the damper 16 is in the second posture α2, the first air passage F1, the second air passage F2, and the third air passage F3 are formed inside the casing 1.
 図9は、第3姿勢α3のダンパ16を示す図である。図9に示すように、第3姿勢α3のダンパ16は、第3風路F3と第4風路F4とを開く。その結果、ダンパ16が第3姿勢α3のとき、ケーシング1の内部には、第1風路F1と第2風路F2と第3風路F3と第4風路F4とが形成される。 FIG. 9 is a diagram showing a damper 16 in the third posture α3. As shown in FIG. 9, the damper 16 in the third posture α3 opens the third air passage F3 and the fourth air passage F4. As a result, when the damper 16 is in the third posture α3, the first air passage F1, the second air passage F2, the third air passage F3, and the fourth air passage F4 are formed inside the casing 1.
 図7~図9に示すように、第1駆動源により遮蔽部16aの回転角度が変更されることによって、ダンパ16の姿勢が、第1姿勢α1、第2姿勢α2、及び第3姿勢α3のうちのいずれかの姿勢に切り換えられる。その結果、ケーシング1の内部において、第3風路F3及び第4風路F4の各々を開閉することができる。 As shown in FIGS. 7 to 9, the posture of the damper 16 is changed to the first posture α1, the second posture α2, and the third posture α3 by changing the rotation angle of the shielding portion 16a by the first drive source. You can switch to one of our postures. As a result, each of the third air passage F3 and the fourth air passage F4 can be opened and closed inside the casing 1.
 また、ダンパ16は、第3風路F3、及び第4風路F4の各々を開閉することで、第1風路F1を流れる空気の単位時間当たりの量を調整することができる。 Further, the damper 16 can adjust the amount of air flowing through the first air passage F1 per unit time by opening and closing each of the third air passage F3 and the fourth air passage F4.
 ダンパ16により第1風路F1を流れる空気の単位時間当たりの量を調整する処理の第1例を説明する。 The first example of the process of adjusting the amount of air flowing through the first air passage F1 per unit time by the damper 16 will be described.
 夏のような高温高湿度の環境下では、ヒータ6がOFFの状態でも除湿機100により空気を十分に除湿できる。この場合、ダンパ16は、第3風路F3、及び第4風路F4の各々を開状態にすることで、第1風路F1を流れる空気の単位時間当たりの量を減らす。これに対し、冬のような低温低湿度の環境下では、ヒータ6がONの状態なることで除湿機100が空気を効果的に除湿できる。この場合、ダンパ16は、第3風路F3、及び第4風路F4の各々を閉状態にすることで、第1風路F1を流れる空気の単位時間当たりの量を増やす。 In a high temperature and high humidity environment such as summer, the air can be sufficiently dehumidified by the dehumidifier 100 even when the heater 6 is OFF. In this case, the damper 16 reduces the amount of air flowing through the first air passage F1 per unit time by opening each of the third air passage F3 and the fourth air passage F4. On the other hand, in a low temperature and low humidity environment such as winter, the dehumidifier 100 can effectively dehumidify the air by turning on the heater 6. In this case, the damper 16 closes each of the third air passage F3 and the fourth air passage F4 to increase the amount of air flowing through the first air passage F1 per unit time.
 ダンパ16により第1風路F1を流れる空気の単位時間当たりの量を調整する処理の第2例を説明する。 The second example of the process of adjusting the amount of air flowing through the first air passage F1 per unit time by the damper 16 will be described.
 除湿機100の駆動音を低減させたい場合、送風部11に含まれるファンの回転速度を低下させる。この場合、送風部11により第1風路F1に吸引される単位時間当たりの空気量が低下することを抑制するために、ダンパ16は、第3風路F3、及び第4風路F4の各々を閉状態にする。その結果、送風部11に含まれるファンの回転速度が低下しても、第1風路F1に吸引される単位時間当たりの空気量が低下することが抑制されるので、除湿機100の駆動音を低減させつつ、第1風路F1に空気を効果的に供給することができる。 When it is desired to reduce the driving noise of the dehumidifier 100, the rotation speed of the fan included in the blower portion 11 is reduced. In this case, in order to suppress a decrease in the amount of air sucked into the first air passage F1 by the blower portion 11 per unit time, the damper 16 is provided with the third air passage F3 and the fourth air passage F4, respectively. Is closed. As a result, even if the rotation speed of the fan included in the blower portion 11 decreases, the decrease in the amount of air sucked into the first air passage F1 per unit time is suppressed, so that the driving sound of the dehumidifier 100 Can be effectively supplied to the first air passage F1 while reducing the amount of air.
 次に、図10を参照して、ダンパ16の変形例について説明する。図10は、ダンパ16の変形例を示す図である。 Next, a modified example of the damper 16 will be described with reference to FIG. FIG. 10 is a diagram showing a modified example of the damper 16.
 図10に示すように、ダンパ16は、シャッタ16dと、第2駆動源(不図示)とを含む。シャッタ16dは、上下方向に沿って伸縮自在、及び/又は、上下方向に沿って移動可能な部材である。第2駆動源は、シャッタ16dを動作させる駆動源である。第2駆動源は、例えば、モータを含む。第2駆動源は制御部14により制御される。 As shown in FIG. 10, the damper 16 includes a shutter 16d and a second drive source (not shown). The shutter 16d is a member that can be expanded and contracted along the vertical direction and / or can be moved along the vertical direction. The second drive source is a drive source that operates the shutter 16d. The second drive source includes, for example, a motor. The second drive source is controlled by the control unit 14.
 ダンパ16は、第2駆動源によりシャッタ16dを伸縮、及び/又は、移動させることで、第2風路F2、第3風路F3、及び第4風路F4のうちの少なくとの1つの風路を開閉する。その結果、ケーシング1の内部において、第2風路F2、第3風路F3、及び第4風路F4の各々を形成するか否かを選択することができる。 The damper 16 expands and contracts the shutter 16d by the second drive source and / or moves it to wind one of the second air passage F2, the third air passage F3, and the fourth air passage F4. Open and close the road. As a result, it is possible to select whether or not to form each of the second air passage F2, the third air passage F3, and the fourth air passage F4 inside the casing 1.
 また、ダンパ16は、第2風路F2、第3風路F3、及び第4風路F4のうちの少なくとの1つの風路を開閉することで、第1風路F1を流れる空気の単位時間当たりの量を効果的に調整することができる。 Further, the damper 16 is a unit of air flowing through the first air passage F1 by opening and closing one of the air passages of at least one of the second air passage F2, the third air passage F3, and the fourth air passage F4. The amount per hour can be effectively adjusted.
[第4実施形態]
 図11及び図12を参照して、本発明の第4実施形態に係る除湿機100について説明する。図11は、本発明の第4実施形態に係る除湿機100の内部を示す模式図である。図12は、図11に示す除湿機100のXII-XII断面図である。
[Fourth Embodiment]
The dehumidifier 100 according to the fourth embodiment of the present invention will be described with reference to FIGS. 11 and 12. FIG. 11 is a schematic view showing the inside of the dehumidifier 100 according to the fourth embodiment of the present invention. FIG. 12 is a cross-sectional view of XII-XII of the dehumidifier 100 shown in FIG.
 第4実施形態は、放熱部9で発生した熱をヒータ6の周辺に供給するための部材が設けられる点が第1実施形態と異なる。以下では、主に、第1実施形態と異なる点を説明する。 The fourth embodiment is different from the first embodiment in that a member for supplying the heat generated by the heat radiating unit 9 to the periphery of the heater 6 is provided. Hereinafter, the differences from the first embodiment will be mainly described.
 図11及び図12に示すように、除湿機100は、供給部17をさらに備える。 As shown in FIGS. 11 and 12, the dehumidifier 100 further includes a supply unit 17.
 供給部17は、ヒータ6の周辺を流れる空気に対して、放熱部9で発生した熱を供給する。供給部17は、熱伝導性を有する部材である。供給部17は、例えば、金属製の棒状の部材である。供給部17は、放熱部9に固定され、ヒータ6の周辺に突出する。第4実施形態では、供給部17は、第1風路部分F11上に突出する。従って、第1風路部分F11を流れる空気に対して放熱部9で発生した熱が供給部17を介して供給されるので、ヒータ6の熱のみならず、放熱部9の熱によっても、空気を加熱できる。その結果、空気を効果的に加熱することができる。 The supply unit 17 supplies the heat generated by the heat dissipation unit 9 to the air flowing around the heater 6. The supply unit 17 is a member having thermal conductivity. The supply unit 17 is, for example, a metal rod-shaped member. The supply unit 17 is fixed to the heat dissipation unit 9 and projects to the periphery of the heater 6. In the fourth embodiment, the supply unit 17 projects onto the first air passage portion F11. Therefore, since the heat generated by the heat radiating unit 9 is supplied to the air flowing through the first air passage portion F11 through the supply unit 17, the air is generated not only by the heat of the heater 6 but also by the heat of the heat radiating unit 9. Can be heated. As a result, the air can be effectively heated.
 なお、供給部17は、第2実施形態の除湿機100(図6参照)、及び第3実施形態の除湿機100(図7及び図10参照)の各々に対しても設けられてもよい。 The supply unit 17 may also be provided for each of the dehumidifier 100 of the second embodiment (see FIG. 6) and the dehumidifier 100 of the third embodiment (see FIGS. 7 and 10).
[第5実施形態]
 図13を参照して、ヒータ6の変形例である加熱部61について説明する。図13は、加熱部61を示す図である。加熱部61は、本発明の加熱部の二例である。
[Fifth Embodiment]
The heating unit 61, which is a modified example of the heater 6, will be described with reference to FIG. FIG. 13 is a diagram showing a heating unit 61. The heating unit 61 is two examples of the heating unit of the present invention.
 図13に示すように、第5実施形態では、ヒータ6に代えて、加熱部61が用いられる点が、第1実施形態と異なる。以下では、主に、第1実施形態と異なる点を説明する。 As shown in FIG. 13, the fifth embodiment is different from the first embodiment in that the heating unit 61 is used instead of the heater 6. Hereinafter, the differences from the first embodiment will be mainly described.
 加熱部61は、例えば、放湿部7aの上流において、冷凍サイクルで発生した熱を空気に供給する。この場合、加熱部61は、冷凍サイクルにおいて冷媒が循環される管状の部材のうち、圧縮部12と、膨張部との間に位置する部分であり、圧縮部12から送られた高温の冷媒が流れる。加熱部61は、放湿部7aの上流に配置される。放湿部7aの上流では、加熱部61から発せられる冷媒の熱により、空気が加熱される。その結果、放湿部7aには、加熱部61により加熱された空気が供給される。 The heating unit 61 supplies the heat generated in the refrigeration cycle to the air, for example, upstream of the moisture release unit 7a. In this case, the heating unit 61 is a portion of the tubular member through which the refrigerant is circulated in the refrigeration cycle, which is located between the compression unit 12 and the expansion unit, and the high-temperature refrigerant sent from the compression unit 12 is used. It flows. The heating unit 61 is arranged upstream of the moisture release unit 7a. Upstream of the moisture release section 7a, the air is heated by the heat of the refrigerant generated from the heating section 61. As a result, the air heated by the heating unit 61 is supplied to the moisture releasing unit 7a.
 なお、加熱部61には、図11及び図12に示すような、供給部17が用いられてもよい。この場合、供給部17が放湿部7aの上流に配置され、供給部17を介して放熱部9の熱が放湿部7aの上流に供給される。その結果、放熱部9の熱で加熱された空気が、放湿部7aに供給される。 Note that, as the heating unit 61, a supply unit 17 as shown in FIGS. 11 and 12 may be used. In this case, the supply section 17 is arranged upstream of the moisture release section 7a, and the heat of the heat dissipation section 9 is supplied upstream of the moisture release section 7a via the supply section 17. As a result, the air heated by the heat of the heat radiating section 9 is supplied to the moisture releasing section 7a.
 また、第2実施形態~第4実施形態においても、ヒータ6に代えて、加熱部61が用いられてもよい。 Further, also in the second to fourth embodiments, the heating unit 61 may be used instead of the heater 6.
 以上、図13を参照して説明したように、ヒータ6に代えて加熱部61を用いることで、ヒータ6を稼働させるための電力が不要になるので、除湿機100のランニングコストを低減できる。また、常に、冷凍サイクルで発生した熱、又は、放熱部9で発生した熱により空気が加熱され、加熱された空気が放湿部7aに供給されるので、放湿部7aを使用して効率よく除湿することができる。 As described above with reference to FIG. 13, by using the heating unit 61 instead of the heater 6, the electric power for operating the heater 6 becomes unnecessary, so that the running cost of the dehumidifier 100 can be reduced. Further, since the air is always heated by the heat generated in the refrigeration cycle or the heat generated in the heat radiating unit 9 and the heated air is supplied to the moisture releasing unit 7a, the efficiency is achieved by using the moisture releasing unit 7a. Can be dehumidified well.
[第6実施形態]
 図14を参照して、本発明の第6実施形態に係る除湿機100について説明する。図14は、本発明の第6実施形態に係る除湿機100の内部を示す模式図である。
[Sixth Embodiment]
The dehumidifier 100 according to the sixth embodiment of the present invention will be described with reference to FIG. FIG. 14 is a schematic view showing the inside of the dehumidifier 100 according to the sixth embodiment of the present invention.
 第6実施形態では、ヒータ6に代えて、放熱部9が用いられる点が第1実施形態と異なる。以下では、主に、第1実施形態と異なる点を説明する。 The sixth embodiment is different from the first embodiment in that the heat radiating unit 9 is used instead of the heater 6. Hereinafter, the differences from the first embodiment will be mainly described.
 図14に示すように、第1風路F1には、放湿部7aと、冷却部8と、吸湿部7bと、放熱部9とが、放熱部9、放湿部7a、冷却部8、吸湿部7b、及び放熱部9の順番に配置される。従って、ケーシング1の外部から第1風路F1に供給された空気は、放熱部9、放湿部7a、冷却部8、吸湿部7b、及び放熱部9の順番に流れた後、ケーシング1の外部に排出される。その結果、放熱部9で発生した熱により加熱された空気を放湿部7aに供給できる。すなわち、放熱部9を、第1実施形態のヒータ6の代替物として機能させることができる。 As shown in FIG. 14, in the first air passage F1, the moisture releasing portion 7a, the cooling portion 8, the moisture absorbing portion 7b, and the heat radiating portion 9 are provided in the heat radiating portion 9, the moisture releasing portion 7a, and the cooling portion 8. The moisture absorbing portion 7b and the heat radiating portion 9 are arranged in this order. Therefore, the air supplied from the outside of the casing 1 to the first air passage F1 flows in the order of the heat radiating section 9, the moisture releasing section 7a, the cooling section 8, the moisture absorbing section 7b, and the heat radiating section 9, and then the casing 1. It is discharged to the outside. As a result, the air heated by the heat generated in the heat radiating unit 9 can be supplied to the moisture releasing unit 7a. That is, the heat radiating unit 9 can function as a substitute for the heater 6 of the first embodiment.
 また、ヒータ6を用いないことで、ヒータ6を稼働させるための電力が不要になるので、除湿機100のランニングコストを低減できる。また、常に、放熱部9で発生した熱により空気が加熱され、加熱された空気が放湿部7aに供給されるので、放湿部7aを使用して効率よく除湿することができる。また、放湿部7aの上流において、放熱部9を流れる空気(外気と略同じ温度の空気)と、吸湿部7bの下流において、放熱部9を流れる空気(冷却部8により冷却された空気)とにより、放熱部9を効果的に冷やすことができる。 Further, by not using the heater 6, the running cost of the dehumidifier 100 can be reduced because the electric power for operating the heater 6 is not required. Further, since the air is always heated by the heat generated by the heat radiating section 9 and the heated air is supplied to the moisture releasing section 7a, the moisture releasing section 7a can be used for efficient dehumidification. Further, the air flowing through the heat radiating section 9 (air having substantially the same temperature as the outside air) upstream of the moisture releasing section 7a and the air flowing through the heat radiating section 9 downstream of the moisture absorbing section 7b (air cooled by the cooling section 8). As a result, the heat radiating unit 9 can be effectively cooled.
 また、第2実施形態~第4実施形態においても、ヒータ6に代えて、放熱部9が用いられてもよい。 Further, also in the second to fourth embodiments, the heat radiating unit 9 may be used instead of the heater 6.
[第7実施形態]
 図15~ 図17を参照して、本発明の第7実施形態に係る除湿機100について説明する。図15は、本発明の第7実施形態に係る除湿機100の内部を示す模式図である。図16は、図15に示す除湿機100のXVI-XVI断面図である。図17は、本発明の第7実施形態に係る除湿機100を後方から見た模式図である。
[7th Embodiment]
The dehumidifier 100 according to the seventh embodiment of the present invention will be described with reference to FIGS. 15 to 17. FIG. 15 is a schematic view showing the inside of the dehumidifier 100 according to the seventh embodiment of the present invention. FIG. 16 is a cross-sectional view taken along the line XVI-XVI of the dehumidifier 100 shown in FIG. FIG. 17 is a schematic view of the dehumidifier 100 according to the seventh embodiment of the present invention as viewed from the rear.
 第7実施形態では、放湿部7aを流れる空気の流動方向と、吸湿部7bを流れる空気の流動方向とが同じである点が第1実施形態と異なる。以下では、主に、第1実施形態と異なる点を説明する。 The seventh embodiment is different from the first embodiment in that the flow direction of the air flowing through the moisture releasing portion 7a and the flowing direction of the air flowing through the moisture absorbing portion 7b are the same. Hereinafter, the differences from the first embodiment will be mainly described.
 除湿機100の各種構成要素の配置場所について説明する。 The location of various components of the dehumidifier 100 will be described.
 図15~図17に示すように、ケーシング1には、第1吸込口3aに代えて、第3吸込口3cが形成される。 As shown in FIGS. 15 to 17, a third suction port 3c is formed in the casing 1 in place of the first suction port 3a.
 第3吸込口3cは、ケーシング1の後面に形成される。第3吸込口3cは、ケーシング1の内部と外部とを連通する。第3吸込口3cは、ケーシング1の後面において、上部、かつ、左右中央部に配置される。第3吸込口3cの前方にはヒータ6が配置され、ヒータ6の前方には放湿部7aが配置される。ヒータ6は、第3吸込口3cと対向する。ヒータ6の下方には、冷却部8が配置される。冷却部8の前方には吸湿部7bが配置され、吸湿部7bの前方には放熱部9が配置される。 The third suction port 3c is formed on the rear surface of the casing 1. The third suction port 3c communicates the inside and the outside of the casing 1. The third suction port 3c is arranged on the rear surface of the casing 1 at the upper part and at the center of the left and right sides. A heater 6 is arranged in front of the third suction port 3c, and a moisture releasing portion 7a is arranged in front of the heater 6. The heater 6 faces the third suction port 3c. A cooling unit 8 is arranged below the heater 6. A moisture absorbing portion 7b is arranged in front of the cooling portion 8, and a heat radiating portion 9 is arranged in front of the moisture absorbing portion 7b.
 ケーシング1の内部には、風路FAが形成される。ケーシング1の内部に流入した空気は、風路FAに沿って流れる。 An air passage FA is formed inside the casing 1. The air that has flowed into the inside of the casing 1 flows along the air passage FA.
 続いて、図15~図17を参照して、風路FAについて説明する。 Subsequently, the air passage FA will be described with reference to FIGS. 15 to 17.
 図15~図17に示すように、風路FAは、第1風路部分F11Aと、一対の第2風路部分F12Aと、一対の第3風路部分F13Aと、一対の第4風路部分F14Aと、一対の第5風路部分F15Aとを含む。 As shown in FIGS. 15 to 17, the air passage FA includes a first air passage portion F11A, a pair of second air passage portions F12A, a pair of third air passage portions F13A, and a pair of fourth air passage portions. Includes F14A and a pair of fifth air passage portions F15A.
 第1風路部分F11Aは、第3吸込口3cに連通し、第3吸込口3cから前方向に延びる。第1風路部分F11Aは、ヒータ6と放湿部7aとを通る。 The first air passage portion F11A communicates with the third suction port 3c and extends forward from the third suction port 3c. The first air passage portion F11A passes through the heater 6 and the moisture releasing portion 7a.
 第1風路部分F11Aの前端部F1Aには、一対の第2風路部分F12Aが連なる。一対の第2風路部分F12Aは、第1風路部分F11Aの前端部F1Aから分岐するように、互いに反対の方向(左右方向)に延びる。 A pair of second air passage portions F12A are connected to the front end portion F1A of the first air passage portion F11A. The pair of second air passage portions F12A extend in opposite directions (left-right direction) so as to branch off from the front end portion F1A of the first air passage portion F11A.
 一対の第2風路部分F12Aは、それぞれ、一対の第3風路部分F13A、一対の第4風路部分F14A、及び一対の第5風路部分F15Aと対応し、対応する第2風路部分F12A~第5風路部分F15Aが順番に連なる。すなわち、ケーシング1の内部には、第2風路部分F12A~第5風路部分F15Aで構成される風路が二組形成される。 The pair of second air passage portions F12A correspond to the pair of third air passage portions F13A, the pair of fourth air passage portions F14A, and the pair of fifth air passage portions F15A, respectively, and the corresponding second air passage portions. F12A to the fifth air passage portion F15A are connected in order. That is, two sets of air passages composed of the second air passage portion F12A to the fifth air passage portion F15A are formed inside the casing 1.
 第3風路部分F13Aは、第2風路部分F12Aの先端部F2Aから後方向に延びる。第4風路部分F14Aは、第3風路部分F13Aの後端部F3Aから下方に延びる。第4風路部分F14Aは、冷却部8に形成される。第5風路部分F15Aは、第4風路部分F14Aの下端部F4Aから前方向に延びる。第5風路部分F15Aは、吸湿部7bと、放熱部9とを通る。第5風路部分F15Aは、送風部11に通じる。 The third air passage portion F13A extends backward from the tip portion F2A of the second air passage portion F12A. The fourth air passage portion F14A extends downward from the rear end portion F3A of the third air passage portion F13A. The fourth air passage portion F14A is formed in the cooling portion 8. The fifth air passage portion F15A extends forward from the lower end portion F4A of the fourth air passage portion F14A. The fifth air passage portion F15A passes through the moisture absorbing portion 7b and the heat radiating portion 9. The fifth air passage portion F15A leads to the blower portion 11.
 複数の壁部について説明する。 Explain multiple walls.
 複数の壁部は、ケーシング1の内部に風路FAが形成されるように、ケーシング1の内部を区画する。複数の壁部は、一対の対向壁部15αを含む。 The plurality of wall portions partition the inside of the casing 1 so that the air passage FA is formed inside the casing 1. The plurality of wall portions includes a pair of facing wall portions 15α.
 一対の対向壁部15αは、左右方向に互いに間隔を空けて配置される。一対の対向壁部15αの内側には、第1風路部分F11Aが形成される。一対の対向壁部15αの内側には、ヒータ6と、放湿部7aとが配置される。一対の対向壁部15αの左右外側には、それぞれ、第3風路部分F13Aが形成される。 The pair of facing wall portions 15α are arranged so as to be spaced apart from each other in the left-right direction. A first air passage portion F11A is formed inside the pair of facing wall portions 15α. A heater 6 and a moisture releasing portion 7a are arranged inside the pair of facing wall portions 15α. Third air passage portions F13A are formed on the left and right outer sides of the pair of facing wall portions 15α, respectively.
 対向壁部15αは、第1風路部分F11Aと第3風路部分F13Aとの間に位置する。対向壁部15αは、遮蔽部(ガード部)15βを含む。遮蔽部15βは、対向壁部15αのうち放湿部7aと対向する部分である。遮蔽部15βは、放湿部7aと第3風路部分F13Aとの間に位置する。遮蔽部15βは、放湿部7aの形状に沿って、左右外側に膨出するように形成されることで、放湿部7aが第3風路部分F13Aへはみ出ることを規制する。 The facing wall portion 15α is located between the first air passage portion F11A and the third air passage portion F13A. The facing wall portion 15α includes a shielding portion (guard portion) 15β. The shielding portion 15β is a portion of the facing wall portion 15α facing the moisture releasing portion 7a. The shielding portion 15β is located between the moisture releasing portion 7a and the third air passage portion F13A. The shielding portion 15β is formed so as to bulge outward to the left and right along the shape of the moisture releasing portion 7a, thereby restricting the moisture releasing portion 7a from protruding into the third air passage portion F13A.
 複数の壁部は、第3壁部15c~第4壁部15dを含む。第3壁部15cは、対向壁部15αの前方に位置する。第4壁部15dは、第1風路部分F11A~第3風路部分F13Aの下方に位置する。第4壁部15dには、一対の孔S1が形成される。孔S1は、冷却部8の上方に位置し、冷却部8と対向する。 The plurality of wall portions include the third wall portion 15c to the fourth wall portion 15d. The third wall portion 15c is located in front of the facing wall portion 15α. The fourth wall portion 15d is located below the first air passage portion F11A to the third air passage portion F13A. A pair of holes S1 are formed in the fourth wall portion 15d. The hole S1 is located above the cooling unit 8 and faces the cooling unit 8.
 複数の壁部は、第6壁部15f~第8壁部15hをさらに含む。第6壁部15fは、冷却部8と除湿ロータ7との間に位置する。第7壁部15gは、第3風路部分F13Aの後方に位置し、第3風路部分F13Aと対向する。第8壁部15hは、第4風路部分F14Aの後方に位置する。第8壁部15hは、冷却部8の後方に位置し、冷却部8と対向する。 The plurality of wall portions further include the sixth wall portion 15f to the eighth wall portion 15h. The sixth wall portion 15f is located between the cooling portion 8 and the dehumidifying rotor 7. The seventh wall portion 15g is located behind the third air passage portion F13A and faces the third air passage portion F13A. The eighth wall portion 15h is located behind the fourth air passage portion F14A. The eighth wall portion 15h is located behind the cooling portion 8 and faces the cooling portion 8.
 ケーシング1の内部の空気の流れについて説明する。 The air flow inside the casing 1 will be described.
 送風部11が稼働すると、ケーシング1の外部の空気は、第3吸込口3cを介してケーシング1の内部に流入する。ケーシング1の内部に流入した空気は、第1風路部分F11Aに流入し、前方向へ流れつつ、ヒータ6と放湿部7aとを通過する。そして、空気は、第2風路部分F12A及び第3風路部分F13Aの順番に流れる。第3風路部分F13Aを流れる空気は、第7壁部15gによりガイドされて、第4風路部分F14に流入する。第4風路部分F14に流入した空気は、孔S1を通過した後、第6壁部15f及び第8壁部15hによりガイドされつつ、下方へ流れる。そして、空気は、第6壁部15fの下端faよりも下方へ移動すると、第5風路部分F15Aに流入する。第5風路部分F15Aに流入した空気は、前方向へ流れつつ、吸湿部7bと放熱部9とを通過する。放熱部9とを通過した空気は、吹出口2を通じてケーシング1の外部に排出される。 When the blower portion 11 operates, the air outside the casing 1 flows into the inside of the casing 1 through the third suction port 3c. The air that has flowed into the casing 1 flows into the first air passage portion F11A, flows forward, and passes through the heater 6 and the moisture releasing portion 7a. Then, the air flows in the order of the second air passage portion F12A and the third air passage portion F13A. The air flowing through the third air passage portion F13A is guided by the seventh wall portion 15g and flows into the fourth air passage portion F14. After passing through the hole S1, the air flowing into the fourth air passage portion F14 flows downward while being guided by the sixth wall portion 15f and the eighth wall portion 15h. Then, when the air moves below the lower end fa of the sixth wall portion 15f, it flows into the fifth air passage portion F15A. The air that has flowed into the fifth air passage portion F15A passes through the moisture absorbing portion 7b and the heat radiating portion 9 while flowing in the forward direction. The air that has passed through the heat radiating unit 9 is discharged to the outside of the casing 1 through the air outlet 2.
 以上、図15~図17を参照して説明したように、風路FAにおいて、放湿部7aを流れる空気の流動方向と、吸湿部7bを流れる空気の流動方向とが、同じ(前方向)である(図15参照)。これにより、放湿部7aを流れる空気の流動方向と、吸湿部7bを流れる空気の流動方向とが反対である場合(図2参照)に比べて、放湿部7aから冷却部8までの風路の距離を長くすることができる。これによると、放湿部7aから放出された空気が、冷却部8に供給されるまでの間に、除湿機100の外気との温度差により冷やされる時間を延ばすことができる。その結果、空気を、ある程度冷やした状態で冷却部8に供給できるので、冷却部8は、空気をさらに冷やして、除湿処理を効果的に行うことができる。 As described above with reference to FIGS. 15 to 17, in the air passage FA, the flow direction of the air flowing through the moisture releasing portion 7a and the flow direction of the air flowing through the moisture absorbing portion 7b are the same (forward direction). (See FIG. 15). As a result, the wind from the moisture releasing portion 7a to the cooling portion 8 is compared with the case where the flow direction of the air flowing through the moisture releasing portion 7a and the flowing direction of the air flowing through the moisture absorbing portion 7b are opposite (see FIG. 2). The distance of the road can be increased. According to this, it is possible to extend the time for the air discharged from the dehumidifying unit 7a to be cooled by the temperature difference from the outside air of the dehumidifier 100 until it is supplied to the cooling unit 8. As a result, the air can be supplied to the cooling unit 8 in a state of being cooled to some extent, so that the cooling unit 8 can further cool the air and effectively perform the dehumidifying treatment.
 また、図15及び図16に示すように、ヒータ6は、第3吸込口3cと対向する。これにより、ケーシング1の外部から視認しやすい場所に、ヒータ6を設置できる。その結果、ヒータ6へのホコリ等の付着状況をユーザーが容易に確認できるので、除湿機100のメンテナンス性を向上させることができる。 Further, as shown in FIGS. 15 and 16, the heater 6 faces the third suction port 3c. As a result, the heater 6 can be installed in a place that is easily visible from the outside of the casing 1. As a result, the user can easily confirm the state of adhesion of dust or the like to the heater 6, so that the maintainability of the dehumidifier 100 can be improved.
 また、図16に示すように、対向壁部15αの遮蔽部15βは、放湿部7aと第3風路部分F13Aとの間に位置する。これにより、第3風路部分F13Aを流れる空気が、放湿部7aに流入することが、遮蔽部15βにより遮られる。これによると、第1風路部分F11A上の放湿部7aを流れることで高湿度となった空気が、第3風路部分F13Aを流れる際に、再び放湿部7aに流入して、放湿部7aに位置するゼオライト71により除湿されることを規制できる。その結果、第1風路部分F11A上の放湿部7aで生成された高湿度の空気を、高湿度の状態を維持しつつ、第2風路部分F12A~第4風路部分F14Aを通じて冷却部8に供給できるので、冷却部8で効果的に除湿できる。 Further, as shown in FIG. 16, the shielding portion 15β of the facing wall portion 15α is located between the moisture releasing portion 7a and the third air passage portion F13A. As a result, the air flowing through the third air passage portion F13A is blocked by the shielding portion 15β from flowing into the moisture releasing portion 7a. According to this, when the air having become high humidity by flowing through the moisture-releasing portion 7a on the first air passage portion F11A flows into the moisture-releasing portion 7a again when flowing through the third air passage portion F13A, it is released. It is possible to regulate dehumidification by the zeolite 71 located in the wet portion 7a. As a result, the high-humidity air generated in the moisture-releasing portion 7a on the first air passage portion F11A is cooled through the second air passage portion F12A to the fourth air passage portion F14A while maintaining the high humidity state. Since it can be supplied to 8, the cooling unit 8 can effectively dehumidify.
 対向壁部15αは、本発明の壁部の一例である。遮蔽部15βは、本発明の遮蔽部の一例である。第3風路部分F13Aは、本発明の風路部分の一例である。 The facing wall portion 15α is an example of the wall portion of the present invention. The shielding portion 15β is an example of the shielding portion of the present invention. The third air passage portion F13A is an example of the air passage portion of the present invention.
 なお、第7実施形態では、1つの第8壁部15hが設けられる。しかし、本発明はこれに限定されない。一対の第8壁部15hが、左右に間隔を空けて設けられてもよい。この場合、一対の第8壁部15hが、一対の第4風路部分F14と、それぞれ対向する場所に設けられる。 In the seventh embodiment, one eighth wall portion 15h is provided. However, the present invention is not limited to this. A pair of eighth wall portions 15h may be provided at intervals on the left and right. In this case, a pair of eighth wall portions 15h are provided at locations facing each other with the pair of fourth air passage portions F14.
 次に、図18を参照して、本発明の第7実施形態に係る除湿機100(図15~図17参照)の変形例について説明する。図18は、本発明の第7実施形態に係る除湿機100の変形例を後方から見た模式図である。 Next, a modified example of the dehumidifier 100 (see FIGS. 15 to 17) according to the seventh embodiment of the present invention will be described with reference to FIG. FIG. 18 is a schematic view of a modified example of the dehumidifier 100 according to the seventh embodiment of the present invention as viewed from the rear.
 図18に示すように、除湿機100の変形例では、第8壁部15hの上下方向の寸法を変更可能である。 As shown in FIG. 18, in the modified example of the dehumidifier 100, the vertical dimension of the eighth wall portion 15h can be changed.
 第8壁部15hの構造の一例について説明する。 An example of the structure of the eighth wall portion 15h will be described.
 第8壁部15hは、上側部分h1と、下側部分h2とに2分割されている。上側部分h1は、冷却部8の上側部分と対向している。上側部分h1は、他の壁部と一体的に形成される。下側部分h2は、上側部分h1に対して、上下方向にスライド可能に取り付けられている。上側部分h1に対して下側部分h2が上下方向にスライドすることで、第8壁部15hの上下方向の寸法が変更される。上側部分h1に対する下側部分h2の下方向へのスライド量が増加する程、第8壁部15hの上下方向の寸法が大きくなる。第8壁部15hの上下方向の寸法が大きくなる程、冷却部8のうち第8壁部15hと対向する領域が広くなる。 The eighth wall portion 15h is divided into an upper portion h1 and a lower portion h2. The upper portion h1 faces the upper portion of the cooling unit 8. The upper portion h1 is integrally formed with another wall portion. The lower portion h2 is slidably attached to the upper portion h1 in the vertical direction. By sliding the lower portion h2 in the vertical direction with respect to the upper portion h1, the vertical dimension of the eighth wall portion 15h is changed. As the amount of downward sliding of the lower portion h2 with respect to the upper portion h1 increases, the vertical dimension of the eighth wall portion 15h becomes larger. The larger the vertical dimension of the eighth wall portion 15h, the wider the region of the cooling portion 8 facing the eighth wall portion 15h.
 第8壁部15hと対向する領域が広くなる程、冷却部8に供給される空気のうち、図15に示す第1風路部分F11A~第4風路部分F14Aを通じて供給される空気の量(ヒータ6及びゼオライト71を経由して供給される空気の量)が多くなると共に、図6に示す第2風路F2及び第3風路F3を通じて供給される空気の量(ヒータ6及びゼオライト71を経由せずに供給される空気の量)が少なくなる。 The wider the region facing the eighth wall portion 15h, the larger the amount of air supplied to the cooling portion 8 through the first air passage portion F11A to the fourth air passage portion F14A shown in FIG. The amount of air supplied through the heater 6 and the zeolite 71) increases, and the amount of air supplied through the second air passage F2 and the third air passage F3 shown in FIG. 6 (the amount of air supplied through the heater 6 and the zeolite 71) increases. The amount of air supplied without going through) is reduced.
 外気の温度が低くなる場合は、空気中の飽和水蒸気量が少なくなる。この場合、除湿機100の除湿効率を向上させるためには、第8壁部15hの上下方向の寸法を長くして、ヒータ6及びゼオライト71を経由する空気の量を増加させることが好ましい。この場合、除湿機100は、主に、ゼオライト式の除湿機として機能する。 When the temperature of the outside air becomes low, the amount of saturated water vapor in the air decreases. In this case, in order to improve the dehumidifying efficiency of the dehumidifier 100, it is preferable to lengthen the vertical dimension of the eighth wall portion 15h to increase the amount of air passing through the heater 6 and the zeolite 71. In this case, the dehumidifier 100 mainly functions as a zeolite-type dehumidifier.
 これに対し、外気の温度が高くなる場合は、空気中の飽和水蒸気量が多くなる。この場合、除湿機100の除湿効率を向上させるためには、第8壁部15hの上下方向の寸法を短くして、ヒータ6及びゼオライト71を経由する空気の量を減少させることが好ましい。この場合、除湿機100は、主に、コンプレッサ式の除湿機として機能する。 On the other hand, when the temperature of the outside air rises, the amount of saturated water vapor in the air increases. In this case, in order to improve the dehumidifying efficiency of the dehumidifier 100, it is preferable to shorten the vertical dimension of the eighth wall portion 15h to reduce the amount of air passing through the heater 6 and the zeolite 71. In this case, the dehumidifier 100 mainly functions as a compressor type dehumidifier.
 第8壁部15hの上下方向の寸法は、作業者が変更してもよく、又は、制御部14(図15参照)が変更してもよい。 The vertical dimension of the eighth wall portion 15h may be changed by the operator or may be changed by the control unit 14 (see FIG. 15).
 制御部14が第8壁部15hの上下方向の寸法を変更する場合の装置構成について説明する。この場合、除湿機100は、例えば、温度センサと、アクチュエータとを備える。温度センサは、ケーシング1の内部(例えば、第3吸込口3c)に設置される。アクチュエータは、例えば、モータを含み、第8壁部15hの下側部分h2を上下動させる。温度センサの検出温度が所定値未満になると、下側部分h2が第1所定位置に位置するように、制御部14がアクチュエータを制御する。これに対し、温度センサの検出温度が所定値以上になると、下側部分h2が第1所定位置よりも高い第2所定位置に位置するように、制御部14がアクチュエータを制御する。その結果、気温に応じて、第8壁部15hの上下方向の寸法を調整できるので、除湿機100の除湿効率を効果的に向上させることができる。 The apparatus configuration when the control unit 14 changes the vertical dimension of the eighth wall portion 15h will be described. In this case, the dehumidifier 100 includes, for example, a temperature sensor and an actuator. The temperature sensor is installed inside the casing 1 (for example, the third suction port 3c). The actuator includes, for example, a motor and moves the lower portion h2 of the eighth wall portion 15h up and down. When the detection temperature of the temperature sensor becomes less than a predetermined value, the control unit 14 controls the actuator so that the lower portion h2 is located at the first predetermined position. On the other hand, when the detection temperature of the temperature sensor becomes equal to or higher than a predetermined value, the control unit 14 controls the actuator so that the lower portion h2 is located at the second predetermined position higher than the first predetermined position. As a result, the vertical dimension of the eighth wall portion 15h can be adjusted according to the air temperature, so that the dehumidifying efficiency of the dehumidifier 100 can be effectively improved.
 なお、除湿機100の出荷場所に応じて、第8壁部15hの上下方向の寸法が設定されてもよい。例えば、除湿機100の出荷場所の平均気温が高い程、第8壁部15hの上下方向の寸法が小さくなるように設定される。 The vertical dimension of the eighth wall portion 15h may be set according to the shipping location of the dehumidifier 100. For example, the higher the average temperature at the shipping location of the dehumidifier 100, the smaller the vertical dimension of the eighth wall portion 15h is set.
 以上のように、第8壁部15hの寸法が変更可能である。その結果、ヒータ6の種類(加熱機能)、及び/又は、放湿部7aの種類(放湿機能)が設計変更されても、ヒータ6の種類、及び/又は、放湿部7aの種類に応じて、第8壁部15hの上下方向の寸法を調整できるので、除湿機100の設計の自由度を向上させることができる。 As described above, the dimensions of the 8th wall portion 15h can be changed. As a result, even if the type of the heater 6 (heating function) and / or the type of the moisture releasing portion 7a (humidifying function) is changed in design, the type of the heater 6 and / or the type of the moisture releasing portion 7a is changed. Since the vertical dimension of the eighth wall portion 15h can be adjusted accordingly, the degree of freedom in designing the dehumidifier 100 can be improved.
 以上、図面(図1~図18)を参照しながら本発明の実施形態について説明した。但し、本発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲で種々の態様において実施することが可能である。また、上記の実施形態に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明の形成が可能である。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。図面は、理解しやすくするために、それぞれの構成要素を主体に模式的に示しており、図示された各構成要素の個数等は、図面作成の都合から実際とは異なる場合もある。また、上記の実施形態で示す各構成要素は一例であって、特に限定されるものではなく、本発明の効果から実質的に逸脱しない範囲で種々の変更が可能である。 The embodiments of the present invention have been described above with reference to the drawings (FIGS. 1 to 18). However, the present invention is not limited to the above-described embodiment, and can be implemented in various embodiments without departing from the gist thereof. In addition, various inventions can be formed by appropriately combining the plurality of components disclosed in the above embodiments. For example, some components may be removed from all the components shown in the embodiments. The drawings are schematically shown mainly for each component for easy understanding, and the number of each component shown may differ from the actual one due to the convenience of drawing. Further, each component shown in the above embodiment is an example, and is not particularly limited, and various modifications can be made without substantially deviating from the effect of the present invention.
 本発明は、除湿機の分野に利用可能である。 The present invention can be used in the field of dehumidifiers.
1   ケーシング
6   ヒータ(加熱部)
7a  放湿部
7b  吸湿部
8   冷却部
9   放熱部
100 除湿機
F1  第1風路
1 Casing 6 Heater (heating part)
7a Moisture release part 7b Moisture absorption part 8 Cooling part 9 Heat dissipation part 100 Dehumidifier F1 1st air passage

Claims (12)

  1.  加熱部と、
     前記加熱部により加熱された空気が供給される放湿部と、
     空気を冷やす冷却部と、
     空気を除湿する吸湿部と、
     冷媒を介して前記冷却部を冷やす放熱部と、
     第1風路が形成されるケーシングと
     を備え、
     前記第1風路には、前記加熱部と、前記放湿部と、前記冷却部と、前記吸湿部と、前記放熱部とが、前記加熱部、前記放湿部、前記冷却部、前記吸湿部、及び前記放熱部の順番に配置される、除湿機。
    With the heating part
    A moisture-releasing part to which the air heated by the heating part is supplied, and
    A cooling unit that cools the air,
    A hygroscopic part that dehumidifies the air,
    A heat radiating unit that cools the cooling unit via a refrigerant,
    With a casing in which the first air passage is formed
    In the first air passage, the heating part, the moisture releasing part, the cooling part, the moisture absorbing part, and the heat radiating part have the heating part, the moisture releasing part, the cooling part, and the moisture absorbing part. A dehumidifier that is arranged in the order of the parts and the heat dissipation part.
  2.  前記加熱部は、前記放湿部の放湿機能に応じた加熱機能を有する、請求項1に記載の除湿機。 The dehumidifier according to claim 1, wherein the heating unit has a heating function corresponding to the moisture release function of the moisture release unit.
  3.  前記第1風路において、前記放湿部を流れる空気の第1流動方向と、前記吸湿部を流れる空気の第2流動方向とが同じである、請求項1又は請求項2に記載の除湿機。 The dehumidifier according to claim 1 or 2, wherein in the first air passage, the first flow direction of the air flowing through the moisture discharging portion and the second flow direction of the air flowing through the moisture absorbing portion are the same. ..
  4.  前記ケーシングの内部に配置される壁部をさらに備え、
     前記第1風路は、前記放湿部の下流に位置し、かつ、前記冷却部の上流に位置する風路部分を含み、
     前記壁部は、前記風路部分と前記放湿部との間に位置する遮蔽部を含む、
     請求項3に記載の除湿機。
    Further provided with a wall portion arranged inside the casing,
    The first air passage includes an air passage portion located downstream of the moisture discharging portion and upstream of the cooling portion.
    The wall portion includes a shielding portion located between the air passage portion and the moisture releasing portion.
    The dehumidifier according to claim 3.
  5.  前記冷却部と、前記吸湿部と、前記放熱部とが、第1方向に沿って並び、
     前記放湿部を通過した空気が、前記第1方向に対して垂直な第2方向に沿って前記冷却部に供給されるように、前記放湿部と前記冷却部とが配置される、請求項1から請求項4のいずれか1項に記載の除湿機。
    The cooling portion, the moisture absorbing portion, and the heat radiating portion are arranged along the first direction.
    A claim that the dehumidifying section and the cooling section are arranged so that the air that has passed through the dehumidifying section is supplied to the cooling section along a second direction perpendicular to the first direction. The dehumidifier according to any one of claims 1 to 4.
  6.  前記放熱部に対して前記加熱部が、前記第2方向に沿って離間した場所に配置される、請求項5に記載の除湿機。 The dehumidifier according to claim 5, wherein the heating unit is arranged at a location separated from the heat radiating unit along the second direction.
  7.  前記ケーシングの内部には、第2風路がさらに形成され、
     前記第2風路には、前記冷却部と、前記吸湿部と、前記放熱部とが、前記冷却部、前記吸湿部、及び前記放熱部の順番に配置される、請求項1から請求項6のいずれか1項に記載の除湿機。
    A second air passage is further formed inside the casing.
    Claims 1 to 6 in which the cooling unit, the moisture absorbing portion, and the heat radiating portion are arranged in the order of the cooling portion, the moisture absorbing portion, and the heat radiating portion in the second air passage. The dehumidifier according to any one of the above.
  8.  前記ケーシングの内部には第3風路がさらに形成され、
     前記第3風路には、前記冷却部と、前記放熱部とが、前記冷却部、及び前記放熱部の順番に配置される、請求項7に記載の除湿機。
    A third air passage is further formed inside the casing.
    The dehumidifier according to claim 7, wherein the cooling unit and the heat radiating unit are arranged in the third air passage in the order of the cooling unit and the heat radiating unit.
  9.  前記ケーシングの内部には第4風路がさらに形成され、
     前記第4風路には、前記放熱部が配置される、請求項8に記載の除湿機。
    A fourth air passage is further formed inside the casing.
    The dehumidifier according to claim 8, wherein the heat radiating portion is arranged in the fourth air passage.
  10.  前記第2風路、前記第3風路、及び前記第4風路のうちの少なくとも1つの風路を開閉する開閉部材をさらに備える、請求項9に記載の除湿機。 The dehumidifier according to claim 9, further comprising an opening / closing member for opening / closing at least one of the second air passage, the third air passage, and the fourth air passage.
  11.  前記加熱部の周辺を流れる空気に対して前記放熱部で発生した熱を供給する供給部をさらに備える、請求項1又は請求項2に記載の除湿機。 The dehumidifier according to claim 1 or 2, further comprising a supply unit that supplies heat generated by the heat radiating unit to the air flowing around the heating unit.
  12.  空気を冷やす冷却部と、
     空気を除湿する吸湿部と、
     冷媒を介して前記冷却部を冷やす放熱部と、
     前記放熱部により加熱された空気が供給される放湿部と、
     第1風路が形成されるケーシングと
     を備え、
     前記第1風路には、前記放湿部と、前記冷却部と、前記吸湿部と、前記放熱部とが、前記放熱部、前記放湿部、前記冷却部、前記吸湿部、及び前記放熱部の順番に配置される、除湿機。
    A cooling unit that cools the air,
    A hygroscopic part that dehumidifies the air,
    A heat radiating unit that cools the cooling unit via a refrigerant,
    A moisture discharging part to which the air heated by the heat radiating part is supplied, and
    With a casing in which the first air passage is formed
    In the first air passage, the moisture releasing portion, the cooling portion, the moisture absorbing portion, and the heat radiating portion have the heat radiating portion, the moisture releasing portion, the cooling portion, the moisture absorbing portion, and the heat radiating portion. Dehumidifiers arranged in the order of the parts.
PCT/JP2020/012165 2019-03-26 2020-03-19 Dehumidifier WO2020196213A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021509285A JP7372313B2 (en) 2019-03-26 2020-03-19 dehumidifier
CN202080019787.XA CN113597335A (en) 2019-03-26 2020-03-19 Dehumidifier
TW109109875A TWI825294B (en) 2019-03-26 2020-03-24 Dehumidifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019058932 2019-03-26
JP2019-058932 2019-03-26

Publications (1)

Publication Number Publication Date
WO2020196213A1 true WO2020196213A1 (en) 2020-10-01

Family

ID=72611933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012165 WO2020196213A1 (en) 2019-03-26 2020-03-19 Dehumidifier

Country Status (4)

Country Link
JP (1) JP7372313B2 (en)
CN (1) CN113597335A (en)
TW (1) TWI825294B (en)
WO (1) WO2020196213A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022191023A1 (en) * 2021-03-09 2022-09-15 シャープ株式会社 Dehumidifier
WO2022201695A1 (en) * 2021-03-26 2022-09-29 アイリスオーヤマ株式会社 Dehumidifying device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006130465A (en) * 2004-11-09 2006-05-25 Matsushita Electric Ind Co Ltd Dehumidifying apparatus
JP2007260524A (en) * 2006-03-28 2007-10-11 Matsushita Electric Ind Co Ltd Dehumidifier
JP2009248071A (en) * 2008-04-11 2009-10-29 Mitsubishi Electric Corp Dehumidifier
JP2011092867A (en) * 2009-10-30 2011-05-12 Panasonic Corp Dehumidifier
JP2015190755A (en) * 2014-03-27 2015-11-02 株式会社アースクリーン東北 Desiccant air conditioner for food selling area
JP2018144019A (en) * 2017-03-01 2018-09-20 パナソニックIpマネジメント株式会社 Dehumidifier

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915443B (en) * 2004-11-09 2012-08-29 松下电器产业株式会社 Dehumidifier
JP2006220385A (en) * 2005-02-14 2006-08-24 Matsushita Electric Ind Co Ltd Dehumidifying device
US20070220914A1 (en) * 2006-03-27 2007-09-27 Rotor Source Inc. Hybrid desiccant dehumidifier
JP2008200615A (en) * 2007-02-21 2008-09-04 Matsushita Electric Ind Co Ltd Dehumidifying apparatus
CN101822934B (en) * 2010-02-01 2012-05-23 北京亚都空气污染治理技术有限公司 Air channel structure and air conditioning equipment with same
JP6390003B2 (en) * 2014-11-10 2018-09-19 パナソニックIpマネジメント株式会社 Dehumidifier

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006130465A (en) * 2004-11-09 2006-05-25 Matsushita Electric Ind Co Ltd Dehumidifying apparatus
JP2007260524A (en) * 2006-03-28 2007-10-11 Matsushita Electric Ind Co Ltd Dehumidifier
JP2009248071A (en) * 2008-04-11 2009-10-29 Mitsubishi Electric Corp Dehumidifier
JP2011092867A (en) * 2009-10-30 2011-05-12 Panasonic Corp Dehumidifier
JP2015190755A (en) * 2014-03-27 2015-11-02 株式会社アースクリーン東北 Desiccant air conditioner for food selling area
JP2018144019A (en) * 2017-03-01 2018-09-20 パナソニックIpマネジメント株式会社 Dehumidifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022191023A1 (en) * 2021-03-09 2022-09-15 シャープ株式会社 Dehumidifier
WO2022201695A1 (en) * 2021-03-26 2022-09-29 アイリスオーヤマ株式会社 Dehumidifying device

Also Published As

Publication number Publication date
CN113597335A (en) 2021-11-02
JPWO2020196213A1 (en) 2020-10-01
JP7372313B2 (en) 2023-10-31
TW202103775A (en) 2021-02-01
TWI825294B (en) 2023-12-11

Similar Documents

Publication Publication Date Title
JP4169747B2 (en) Air conditioner
CN100410590C (en) Humidifier
WO2020196213A1 (en) Dehumidifier
TWI586924B (en) Air conditioning unit
JP4296187B2 (en) Desiccant air conditioner
JP6998502B2 (en) Dehumidifier
JP5228337B2 (en) Hybrid dehumidifier
EP3136022B1 (en) Hybrid heat pump apparatus
JP2018161629A (en) Dehumidifying device
KR101957682B1 (en) Apparatus for dehumidification or humidification
KR101656770B1 (en) Built-in dehumidifier
WO2022191023A1 (en) Dehumidifier
JP6231418B2 (en) Cooling dehumidification system
JP5906708B2 (en) Humidity control device
JP5810993B2 (en) Humidity control device
JP2007071501A (en) Dehumidifying air-conditioner
JP2021104495A (en) Dehumidifier
JP7178283B2 (en) dehumidifier
KR20140147164A (en) Dehumidifier with drying painting function
JP2022088903A (en) Dehumidifier
JP2010145007A (en) Desiccant air conditioning system, and method for desiccant air conditioning using the same
JP2011196562A (en) Humidifier
JP2022137829A (en) dehumidifier
JP2023074836A (en) dehumidifier
JP2022137828A (en) Humidity conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777158

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509285

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20777158

Country of ref document: EP

Kind code of ref document: A1