WO2020195974A1 - Nanocarbon dispersion liquid, method for producing same, nanocarbon dispersing agent, and electromagnetic wave-shielding material - Google Patents

Nanocarbon dispersion liquid, method for producing same, nanocarbon dispersing agent, and electromagnetic wave-shielding material Download PDF

Info

Publication number
WO2020195974A1
WO2020195974A1 PCT/JP2020/011197 JP2020011197W WO2020195974A1 WO 2020195974 A1 WO2020195974 A1 WO 2020195974A1 JP 2020011197 W JP2020011197 W JP 2020011197W WO 2020195974 A1 WO2020195974 A1 WO 2020195974A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanocarbon
dispersion
mass
dispersion liquid
electromagnetic wave
Prior art date
Application number
PCT/JP2020/011197
Other languages
French (fr)
Japanese (ja)
Inventor
篤 田村
彰太 福島
英秋 込山
光次 田中
純司 根本
Original Assignee
北越コーポレーション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北越コーポレーション株式会社 filed Critical 北越コーポレーション株式会社
Priority to JP2021509058A priority Critical patent/JP7177912B2/en
Publication of WO2020195974A1 publication Critical patent/WO2020195974A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose

Definitions

  • the present disclosure relates to a nanocarbon dispersion liquid containing nanocarbon and cellulose nanocrystals, a method for producing the same, and a nanocarbon dispersant containing cellulose nanocrystals.
  • nanocarbons such as carbon nanotubes and nanographenes have high surface energy, a strong van der Waals force acts on the surface of the nanocarbons even if the nanocarbons are dispersed in the medium. Therefore, nanocarbons tend to aggregate. Therefore, it is required to stably disperse nanocarbon.
  • a method for dispersing nanocarbons a method for dispersing carbon nanotubes in which water is added to a crushed mixture obtained by crushing monosaccharide or low sugar crystals, carbon nanotubes, and a nonionic or anionic surfactant is disclosed. (See, for example, Patent Document 1). Further, a method for dispersing carbon nanotubes using carboxymethyl cellulose as a dispersant is disclosed (see, for example, Patent Document 2). Further, a method for dispersing carbon nanotubes using cellulose nanofibers as a dispersant is disclosed (see, for example, Patent Document 3). Further, a method of dispersing multi-walled carbon nanotubes having an average fiber outer diameter in the range of 50 to 110 nm with sodium carboxymethyl cellulose is disclosed (see, for example, Patent Document 4).
  • Patent Document 1 has a problem that only a low-concentration carbon nanotube dispersion liquid having an upper limit value of about 5 g / L can be obtained.
  • a surfactant since a surfactant is used, the dispersion liquid tends to have a problem of foaming.
  • the viscosity of the dispersion tends to be high, and when it is attempted to be produced using a disperser, there is a problem that the disperser is blocked by the viscous dispersion.
  • Patent Document 3 since cellulose nanofibers are used, the viscosity of the dispersion tends to be high, and the concentration of carbon nanotubes in the examples is only 0.05% by mass at the maximum.
  • the method disclosed in Patent Document 4 can be applied only to multi-walled carbon nanotubes having a specific fiber diameter, and it is difficult to stably disperse carbon nanotubes having a fiber diameter of 50 nm or less and a small fiber diameter (large specific surface area). Met.
  • the present disclosure is to obtain (1) a dispersion liquid in which nanocarbons such as carbon nanotubes are stably dispersed and have fluidity, a method for producing the dispersion liquid, and (2) a dispersion liquid. It is an object of the present invention to provide a nanocarbon dispersant to be added and (3) an electromagnetic wave shielding material.
  • the nanocarbon dispersion liquid according to the present invention is characterized by containing nanocarbon, cellulose nanocrystals, and a dispersion medium.
  • the concentration of the nanocarbon is preferably 1% by mass or more. Even if the concentration of nanocarbon is 1% by mass or more, the stability and fluidity of the nanocarbon dispersion can be improved.
  • the mass-based content ratio (nanocarbon: cellulose nanocrystal) of the nanocarbon and the cellulose nanocrystal is preferably 1: 0.1 to 1:10.
  • the stability and fluidity of the nanocarbon dispersion can be improved.
  • the concentration of the nanocarbon is 1% by mass or more and 4% by mass or less, and the total concentration of the nanocarbon and the cellulose nanocrystal exceeds 1% by mass and 15% by mass.
  • the following is preferable. Even if the concentration of nanocarbon is high, the stability and fluidity of the nanocarbon dispersion can be improved.
  • the dispersion medium is a polar solvent.
  • a nanocarbon dispersion having higher dispersibility can be obtained.
  • the polar solvent is alcohols, ketones, amides, water, or a mixture thereof.
  • a nanocarbon dispersion having even higher dispersibility can be obtained.
  • the method for producing a nanocarbon dispersion according to the present invention is characterized in that a mixed solution containing nanocarbon, cellulose nanocrystals, and a dispersion medium is dispersed by a disperser.
  • the mixed solution is a mixed solution prepared by adding the cellulose nanocrystals to the dispersion medium, stirring the mixture, and then adding the nanocarbons.
  • the compatibility between the dispersion medium and the nanocarbon is less likely to be impaired, and the nanocarbon is less likely to float on the dispersion medium.
  • the cellulose nanocrystal is a spray-dried product. It is possible to easily adjust the concentration of cellulose nanocrystals.
  • the disperser is a homogenizer. A nanocarbon dispersion with more stable dispersibility can be obtained.
  • the nanocarbon dispersant according to the present invention is characterized by containing cellulose nanocrystals.
  • the electromagnetic wave shielding material according to the present invention has a base material and a coating layer provided on the surface of the base material, and the coating layer contains nanocarbon and cellulose nanocrystals in a mutually mixed state. It is characterized by.
  • the electromagnetic wave shielding material according to the present invention has the shape of a film, and the film is characterized by containing nanocarbon and cellulose nanocrystals in a mutually mixed state.
  • a dispersion liquid in which nanocarbons such as carbon nanotubes are stably dispersed and has fluidity and a method for producing the dispersion liquid and (2) nanocarbon dispersion added to obtain the dispersion liquid.
  • Agents and (3) electromagnetic wave shielding materials can be provided.
  • Nanocarbon dispersion liquid contains nanocarbon, cellulose nanocrystals, and a dispersion medium.
  • the nanocarbon refers to nanocarbon such as carbon nanotubes (hereinafter, also referred to as CNT), fullerenes, graphene nanoplatelets by a CVD method or a mechanical peeling method.
  • CNT carbon nanotubes
  • These nanocarbons may have a single layer or a structure having two or more layers.
  • these nanocarbon dispersions will be described, but the CNT dispersion will be described in detail below as a representative example.
  • CNT Since CNT has an intermediate conductivity between that of fullerene and that of graphene, it has a feature that it is easy to use industrially.
  • the CNT those having different fiber lengths, fiber diameters and BET specific surface areas are used depending on the application.
  • the fiber length range is 1 ⁇ m to 500 ⁇ m
  • the fiber diameter range is 0.4 nm to 150 nm.
  • the range of BET specific surface area is 10 m 2 / g to 2500 m 2 / g.
  • those having a small specific surface area have a large fiber diameter and are relatively easy to disperse, but as the specific surface area increases (as the fiber diameter decreases), dispersion tends to become difficult.
  • Some CNTs have a functional group such as a carboxyl group introduced on the surface in order to improve dispersibility, but even in such a CNT, as the specific surface area increases (as the fiber diameter decreases), the CNTs disperse. Tends to be difficult. Specifically, when the BET specific surface area of the CNT into which a functional group such as a carboxyl group has been introduced exceeds 100 m 2 / g, it may be difficult to sufficiently disperse the CNT with a conventional dispersant such as carboxymethyl cellulose. In particular, it has become difficult to obtain a dispersion having a high concentration, and it has been difficult to obtain a dispersion having a CNT concentration of more than 1% by mass.
  • a functional group such as a carboxyl group introduced on the surface in order to improve dispersibility, but even in such a CNT, as the specific surface area increases (as the fiber diameter decreases), the CNTs disperse. Tends to be difficult. Specifically, when the B
  • CNTs are dispersed by using cellulose nanocrystals (hereinafter, also referred to as CNC) as a dispersant.
  • the CNC is an acicular crystal obtained by subjecting a plant-derived cellulose fiber, particularly a wood-derived cellulose fiber, to a chemical treatment such as acid hydrolysis.
  • the number average fiber diameter of CNC is 4 nm to 70 nm
  • the number average fiber length is 25 nm to 1000 nm
  • the BET specific surface area is 100 m 2 / g to 500 m 2 / g
  • the aspect ratio is less than 50. is there.
  • the aspect ratio is a dimensionless number obtained by dividing the number average fiber length by the number average fiber diameter.
  • CNF Cellulose nanocrystals are also called cellulose nanowhiskers.
  • CNC cellulose nanofibers
  • CNF has a number average fiber diameter equivalent to that of CNC, but has a fiber length longer than that of CNC. It refers to a fibrous material having a fiber length of 10 times or more, generally 5 ⁇ m or more, and a CNC aspect ratio of more than 100.
  • CNC is an acicular crystal and does not have a large aspect ratio like a fibrous material such as CNF.
  • the major axis of CNC is also referred to as fiber length
  • the minor axis is also referred to as fiber diameter.
  • CNC having a fiber length shorter than that of CNF is suitable.
  • the number average fiber length of the CNC is preferably 25 nm to 500 nm, more preferably 100 nm to 400 nm, and most preferably 200 nm to 300 nm. If the average fiber length is less than 25 nm, the CNCs may aggregate with each other. If the number average fiber length exceeds 500 nm, the viscosity of the dispersion liquid tends to increase, and the fluidity of the dispersion liquid tends to be impaired when the concentration of CNTs is increased.
  • the viscosity measured with a B-type viscometer (20 ° C., 60 rpm, rotation time 1 minute) is 100 mPa ⁇ s or less in the case of a 2% by mass aqueous solution of CNC, and the fluidity is good, but CNF 2
  • the mass% aqueous solution often exceeds 10,000 mPa ⁇ s, resulting in impaired fluidity.
  • the number average fiber diameter of the CNC is preferably 5 nm to 60 nm, more preferably 10 nm to 50 nm, and most preferably 20 nm to 30 nm. If the average fiber diameter is less than 5 nm, the CNCs may aggregate with each other. If the number average fiber diameter exceeds 60 nm, the viscosity of the dispersion liquid may increase and the fluidity may decrease.
  • BET specific surface area of the CNC is preferably 120m 2 / g ⁇ 400m 2 / g, more preferably 150m 2 / g ⁇ 300m 2 / g, and most preferably 175m 2 / g ⁇ 250m 2 / g. If the BET specific surface area is less than 120 m 2 / g, the viscosity of the dispersion may increase and the fluidity may decrease. If the BET specific surface area exceeds 400 m 2 / g, the viscosity of the dispersion becomes high, and CNCs may aggregate with each other.
  • the aspect ratio of the CNC is preferably 5 to 40, more preferably 10 to 30, and most preferably 15 to 25. If the aspect ratio is less than 5, the CNCs may aggregate with each other. If the aspect ratio exceeds 40, the fluidity of the dispersion liquid when the CNT concentration is increased may decrease.
  • the number average fiber diameter and number average fiber length of CNC can be calculated according to the following. Using a transmission electron microscope (TEM, Transmission Electron Microscope) or a scanning electron microscope (SEM, Scanning Electron Microscope) on the surface of the CNC, at least three images of the CNC surface where the fields of view do not overlap are taken. To do. For the obtained image, two random axes are drawn vertically and horizontally for each image, and the fiber diameter and fiber length of the fibers intersecting the axes are visually read. At this time, the magnification is 5,000 times, 10,000 times, or 50,000 times depending on the size of the constituent fibers. The condition for the number of fibers intersecting the two axes is 20 or more.
  • TEM Transmission Electron Microscope
  • SEM Scanning Electron Microscope
  • CNC prepared by a chemical method such as acid hydrolysis using a strong acid with sulfuric acid, hydrochloric acid, hydrobromic acid or the like can be used for an aqueous suspension or slurry of cellulose fibers.
  • the strong acid is preferably sulfuric acid.
  • Negative charge is given by adding a sulfate ester group to the surface by hydrodispersing with sulfuric acid, and since the sulfate ester group has a large molecular weight, it also causes steric hindrance and has a large ability to disperse CNT. It is presumed that it will be.
  • the degree of polymerization of CNC is not particularly limited, but is preferably 100 to 500, and more preferably 200 to 400. If the degree of polymerization is less than 100, the dispersibility of CNTs may decrease. If the degree of polymerization exceeds 500, the viscosity of the dispersion liquid may increase and the fluidity may decrease.
  • CNT dispersion The details of the CNT dispersion have been described as a typical example of the nanocarbon dispersion, but even if the nanocarbon is another nanocarbon such as fullerene or graphene nanoplatelet, it is as good as the case of CNT. Nanocarbon dispersion can be obtained.
  • nanocarbons such as CNTs are stably dispersed in a dispersion medium.
  • CNTs having a BET specific surface area of 100 m 2 / g or more for example, CNTs having a BET specific surface area of 100 to 1000 m 2 / g can be stably dispersed.
  • the fiber diameter of CNTs having a BET specific surface area of 100 to 1000 m 2 / g is 30 nm or less, and many CNTs having such a fiber diameter are flexible and have excellent conductivity.
  • the concentration of nanocarbon is preferably 1% by mass or more. Even if the concentration of nanocarbon is 1% by mass or more, the stability and fluidity of the dispersion liquid of nanocarbon can be improved.
  • the content ratio contains more CNC than 1:10
  • the amount of nanocarbon is relatively small with respect to CNC, so that the effect of improving the dispersibility and stability of the nanocarbon dispersion has reached a plateau.
  • the upper limit of the concentration of nanocarbon is, for example, 4% by mass from the viewpoint of dispersibility.
  • the total concentration of nanocarbon and cellulose nanocrystals is preferably more than 1% by mass and 15% by mass or less. More preferably, it is 1.5% by mass or more and 13% by mass or less. Most preferably, it is 1.8% by mass or more and 5% by mass or less. If this total concentration is 1% by mass or less, nanocarbon may not be dispersed. If this total concentration exceeds 15% by mass, the viscosity of the dispersion liquid may increase and the fluidity may decrease.
  • the concentration of nanocarbon is 1% by mass or more and 4% by mass or less, and the total concentration of nanocarbon and cellulose nanocrystals is more than 1% by mass and 15% by mass or less. It is preferable to have. More preferably, the concentration of nanocarbon is 1% by mass or more and 3.5% by mass or less, and the total concentration of nanocarbon and cellulose nanocrystal is 1.5% by mass or more and 13% by mass or less. Most preferably, the concentration of nanocarbon is 1% by mass or more and 3% by mass or less, and the total concentration of nanocarbon and cellulose nanocrystal is 1.8% by mass or more and 5% by mass or less. Even if the concentration of nanocarbon is high, the stability and fluidity of the nanocarbon dispersion can be improved.
  • the dispersion medium can be arbitrarily selected depending on the intended use, but in order to fully exert the dispersion effect of CNC, it is preferable that the dispersion medium is a polar solvent in the nanocarbon dispersion liquid according to the present embodiment. ..
  • the polar solvent is preferably alcohols such as methanol and ethanol; ketones such as acetone and methyl ethyl ketone, amides such as N-methylpyrrolidone, water, or a mixture thereof. .. Water is particularly preferable. A nanocarbon dispersion having even higher dispersibility can be obtained.
  • the nanocarbon dispersion can contain various additives as long as the desired effect of the present invention is not impaired.
  • Additives include, for example, antioxidants, heat stabilizers, light stabilizers, UV absorbers, pigments, colorants, foaming agents, antistatic agents, flame retardants, lubricants, softeners, tackifiers, plasticizers, mold release agents. Agents, deodorants, fragrances or combinations thereof. Care must be taken when adding these additives, as they can affect the properties of nanocarbons.
  • the nanocarbon dispersion liquid according to the present embodiment can be applied to a substrate such as a film, dried and formed into a film, and the solvent can be directly removed from the dispersion liquid or put into a poor solvent.
  • a carbon nanotube / cellulose nanocrystal composite material can also be obtained by precipitating the solid content, filtering and drying.
  • the surfactant include a surfactant having a defoaming effect, a surfactant having a dispersing effect, and a surfactant having a viscosity adjusting effect.
  • the surfactant having a dispersing effect is used. It is preferable not to contain it. Surfactants with a dispersing effect can cause foaming.
  • the method for producing a nanocarbon dispersion liquid according to the present embodiment is characterized in that a mixed liquid containing nanocarbon, cellulose nanocrystals, and a dispersion medium is dispersed by a disperser.
  • CNC includes, for example, a slurry product dispersed in water and a spray-dried product obtained by drying the slurry product, both of which can be used.
  • the CNC is a spray-dried product.
  • CNC can be dispersed in water relatively easily even if it is a dried product, so that the concentration can be easily adjusted by using the dried product.
  • the order of addition of nanocarbon and CNC to the dispersion medium is not particularly limited, but in the method for producing a nanocarbon dispersion liquid according to the present embodiment, the mixed liquid simultaneously adds nanocarbon and CNC to the dispersion medium. It is preferable that the mixture is prepared by adding CNC to a dispersion medium and stirring, and then adding nanocarbon. Since nanocarbon has strong hydrophobicity, when the dispersion medium is water, if it is first added to the dispersion medium alone, it may float on the dispersion medium and easily impair compatibility.
  • the disperser used for the dispersion treatment is not particularly limited, and various known mechanical dispersion treatment machines can be used.
  • a stirrer equipped with an agitator, an ultrasonic disperser, a high shear stirrer, a biomixer or a homogenizer can be used.
  • Two or more kinds of these dispersers may be used in combination.
  • the mixed solution is pre-dispersed with an ultrasonic disperser and then dispersed with a homogenizer
  • the mixed solution is pre-dispersed with a biomixer, and then dispersed with a homogenizer. Dispersion processing of steps or more may be performed.
  • the disperser is a homogenizer.
  • the homogenizer includes, for example, an ultrasonic type, a stirring type, and a high pressure type, and a high pressure type, and a high pressure type homogenizer (high pressure homogenizer) is preferable.
  • the water jet method is preferable.
  • a water jet type high pressure homogenizer for example, there is Starburst (registered trademark) manufactured by Sugino Machine Limited.
  • the pressure homogenized dispersion treatment condition is preferably a pressure of 100 to 250 MPa and 1 to 10 passes. A nanocarbon dispersion cannot be obtained without dispersion treatment. If the pressure is less than 100 MPa, the dispersion may be insufficient. If the pressure exceeds 250 MPa or the number of passes exceeds 10, the dispersion does not proceed and the high temperature of the dispersion liquid may rise.
  • the nanocarbon dispersant is an agent for dispersing nanocarbon.
  • the nanocarbon dispersant according to the present embodiment contains cellulose nanocrystals.
  • Examples of the form of the nanocarbon dispersant include a slurry product in which cellulose nanocrystals are dispersed in water (hereinafter referred to as Form L), and a spray-dried product of cellulose nanocrystals obtained by drying the slurry product (hereinafter referred to as Form L).
  • Form L a slurry product in which cellulose nanocrystals are dispersed in water
  • Form L a spray-dried product of cellulose nanocrystals obtained by drying the slurry product
  • the nanocarbon dispersion liquid in which the dispersion medium is water can be easily prepared by adding the nanocarbon to the slurry product in the form L.
  • the form of use is, for example, adding nanocarbon and the nanocarbon dispersant to the dispersion medium at the same time, or in a liquid in which the nanocarbon is dispersed in the dispersion medium.
  • Nanocarbon dispersants may be added.
  • the dispersion medium is water, it is preferable to add the nanocarbon and the nanocarbon dispersant to the dispersion medium at the same time from the viewpoint of the hydrophobicity of the nanocarbon.
  • the nanocarbon dispersant is of form N, by adding nanocarbon to the dispersion of form N, a nanocarbon dispersion in which the dispersion medium is a dispersion medium other than water can be easily prepared.
  • the electromagnetic wave shielding material having a base material and a coating layer
  • the electromagnetic wave shielding material according to the present embodiment has a base material and a coating layer provided on the surface of the base material, and the coating layer contains nanocarbon and cellulose nanocrystals in a mutually mixed state. ..
  • the base material is, for example, a plate or non-woven fabric made of paper, rubber, or resin.
  • the material of the base material can be changed according to the form of the electromagnetic wave shielding material.
  • the base material has a single layer or a plurality of layers.
  • a form of the plurality of layers for example, there is a paper in which a pigment coating layer is provided on a high-quality paper which is a support, or a laminated paper which is made by laminating.
  • the thickness of the coating layer is preferably 0.1 ⁇ m to 15.0 ⁇ m, more preferably 2.0 ⁇ m to 10.0 ⁇ m, and further preferably 3.5 ⁇ m to 5.0 ⁇ m. If it is less than 0.1 ⁇ m, the electromagnetic wave shielding property of the electromagnetic wave shielding material may not be sufficiently obtained. If it is larger than 15.0 ⁇ m, it may be difficult to prepare an electromagnetic wave shielding material.
  • the dispersion liquid will be impregnated into the base material. Then, when the dispersion medium of the dispersion liquid evaporates, a coating layer is formed on the inner wall of the base material. In this case, even if the thickness of the coating layer is small, there is a possibility that the electromagnetic wave shielding property can be imparted if the base material is sufficiently impregnated with the dispersion liquid. For example, when the dispersion liquid permeates substantially uniformly in the thickness direction of the base material and the permeation depth into the base material exceeds 10.0 ⁇ m, electromagnetic wave shielding property can be imparted even if the thickness of the coating layer is small. there is a possibility.
  • the depth at which the coating layer is present is preferably 1.0 ⁇ m to 15.0 ⁇ m, more preferably 2.0 ⁇ m to 10.0 ⁇ m.
  • the nanocarbons in the coating layer are unevenly distributed and the cellulose nanocrystals are unevenly distributed, the nanocarbons are uniformly distributed, and the cellulose nanocrystals are unevenly distributed.
  • a state a state in which nanocarbons are unevenly distributed and cellulose nanocrystals are uniformly distributed, or a state in which nanocarbons are uniformly distributed and cellulose nanocrystals are uniformly distributed.
  • the nanocarbons in the coating layer are uniformly distributed and the cellulose nanocrystals are uniformly distributed.
  • An electromagnetic wave shielding material having a high electromagnetic wave shielding property can be obtained.
  • the electromagnetic wave shielding material can be produced by applying a nanocarbon dispersion liquid to a base material, evaporating the dispersion medium contained in the nanocarbon dispersion liquid, and providing a coating layer.
  • the mass-based content ratio of the nanocarbon and the cellulose nanocrystal contained in the coating layer is the same as the mass-based content ratio of the nanocarbon and the cellulose nanocrystal contained in the nanocarbon dispersion. ..
  • the electromagnetic wave shielding material according to the present embodiment has the shape of a film, and the film contains nanocarbon and cellulose nanocrystals in a mutually mixed state.
  • the thickness of the film is preferably 30 ⁇ m to 160 ⁇ m, more preferably 40 ⁇ m to 160 ⁇ m. If it is less than 30 ⁇ m, it may be necessary to increase the CNT concentration contained in the film in order to obtain sufficient electromagnetic wave shielding property. If it is larger than 160 ⁇ m, the electromagnetic wave shielding property of the electromagnetic wave shielding material is saturated, and the thickened electromagnetic wave shielding property may not be improved.
  • the mixed state is, for example, a state in which nanocarbons in the film are unevenly distributed and cellulose nanocrystals are unevenly distributed, a state in which nanocarbons are uniformly distributed and cellulose nanocrystals are unevenly distributed. It is a state in which nanocarbons are unevenly distributed and cellulose nanocrystals are uniformly distributed, or a state in which nanocarbons are uniformly distributed and cellulose nanocrystals are uniformly distributed.
  • the nanocarbons in the film are uniformly distributed and the cellulose nanocrystals are uniformly distributed.
  • the nanocarbons in the film can be uniformly distributed, and the cellulose nanocrystals can be uniformly distributed.
  • the electromagnetic wave shielding material can be produced by evaporating the dispersion medium contained in the nanocarbon dispersion liquid.
  • the mass-based content ratio of the nanocarbon and the cellulose nanocrystal contained in the film is the same as the mass-based content ratio of the nanocarbon and the cellulose nanocrystal contained in the nanocarbon dispersion.
  • the obtained suspension was concentrated by centrifugation, and then ion-exchanged water was added to adjust the solid content concentration to 2% by mass to obtain a second suspension.
  • the second suspension was defibrated by an ultrasonic homogenizer (US300E, manufactured by Nippon Seiki Seisakusho), and then water was removed by a spray dry method to obtain a powdery CNC.
  • CNT Carbon nanotube
  • A Carbon nanotube (trade name: K-nanos100P, multi-walled CNT, manufactured by Kumho Petrochemical, fiber length (Bundle Diameter) 3 ⁇ m, fiber diameter 8 to 15 nm, specific surface area 220 m 2 / g)
  • B Carbon nanotube (trade name: nanocil-7000, multi-walled CNT, manufactured by nanocil, number average fiber length 1.5 ⁇ m, number average fiber diameter 9.5 nm, specific surface area 250 to 300 m 2 / g)
  • Example 1 The obtained CNC was added to ion-exchanged water as a dispersant and stirred, and then CNT (A) was gradually added together with ion-exchanged water to obtain a mixed solution.
  • the concentration of CNC in the mixed solution was 2% by mass, and the concentration of CNT (A) was 2% by mass.
  • the obtained mixed solution was dispersed for 30 minutes using a biomixer (BM-2 type, Nissei Tokyo Office), filtered through a 60-mesh sieve, and then a high-pressure homogenizer (trade name: Ultimizer, manufactured by Sugino Machine Limited).
  • a carbon nanotube dispersion was obtained by passing the mixture 10 times at a pressure of 200 MPa.
  • Example 2 A carbon nanotube dispersion was obtained in the same manner as in Example 1 except that CNC was added so that the concentration of CNC in the mixed solution was 0.2% by mass.
  • Example 3 A carbon nanotube dispersion was obtained in the same manner as in Example 1 except that CNC was added so that the concentration of CNC in the mixed solution was 10% by mass.
  • Example 4 Same as in Example 1 except that CNT (A) was added so that the concentration of CNT (A) in the mixed solution was 1% by mass, and CNC was added so that the concentration of CNC was 1% by mass. A carbon nanotube dispersion was obtained.
  • Example 5 Same as in Example 1 except that CNT (A) was added so that the concentration of CNT (A) in the mixed solution was 1% by mass, and CNC was added so that the concentration of CNC was 0.1% by mass. A carbon nanotube dispersion was obtained.
  • Example 6 Same as in Example 1 except that CNT (A) was added so that the concentration of CNT (A) in the mixed solution was 1% by mass, and CNC was added so that the concentration of CNC was 10% by mass. A carbon nanotube dispersion was obtained.
  • Example 7 Change CNT (A) to CNT (B), add CNT (A) so that the concentration of CNT (B) in the mixed solution is 1.5% by mass, and the concentration of CNC is 1.5% by mass.
  • a carbon nanotube dispersion was obtained in the same manner as in Example 1 except that CNC was added so as to become.
  • Example 1 Carbon nanotubes in the same manner as in Example 1 except that the CNC was changed to cellulose nanofibers obtained by mechanically defibrating hardwood kraft pulp (processing machine: Super Mascoroider, manufactured by Masuko Sangyo Co., Ltd.). A dispersion was obtained.
  • Example 2 The treatment was carried out in the same manner as in Example 1 except that the CNC was changed to carboxymethyl cellulose (CMC, cellogen PR, manufactured by Dai-ichi Kogyo Seiyaku), but the viscosity increased during the high-pressure homogenizer treatment, and the inside of the high-pressure homogenizer was blocked for the purpose. It was not possible to obtain the carbon nanotube dispersion liquid.
  • CMC carboxymethyl cellulose
  • CNC was changed to carboxymethyl cellulose (CMC, cellogen WS-C, manufactured by Dai-ichi Kogyo Seiyaku), and CNT (A) was added so that the concentration of CNT (A) in the mixed solution was 1.5% by mass.
  • CMC carboxymethyl cellulose
  • A carboxymethyl cellulose
  • the treatment was carried out in the same manner as in Example 1 except that carboxymethyl cellulose was added so that the concentration of carboxymethyl cellulose became 1.5% by mass, but the viscosity increased during the high-pressure homogenizer treatment, and the inside of the high-pressure homogenizer was blocked for the purpose. It was not possible to obtain the carbon nanotube dispersion liquid.
  • Example 4 A carbon nanotube dispersion was obtained in the same manner as in Example 1 except that CNC was not added to the mixed solution.
  • Example 5 The same as in Example 1 except that the CNC was changed to a surfactant having a dispersing effect (sodium dodecyl sulfate, manufactured by Tokyo Chemical Industry Co., Ltd.), but a large amount of bubbles were generated at the stage of the dispersion treatment with the biomixer. , The treatment with the high pressure homogenizer could not be performed.
  • a surfactant having a dispersing effect sodium dodecyl sulfate, manufactured by Tokyo Chemical Industry Co., Ltd.
  • Table 1 shows the composition and evaluation of the nanocarbon dispersions obtained in each Example and Comparative Example. The following methods were used for the evaluation of the nanocarbon dispersion.
  • the nanocarbon dispersion obtained by the dispersion treatment was diluted with ion-exchanged water so that the CNT concentration was 0.05% by mass, left in a glass vial for 1 hour, and then evaluated by visual observation according to the following criteria. .. A: It is good because there is no sedimentation of aggregates and separation of CNT and water. B: There is no sedimentation of aggregates, and the separation between CNT and water is slight and good. C: There are fine aggregates, and a small separation between CNT and water can be confirmed (lower limit of practical use). D: Most of the agglomerates are large, and the separation from water is also large (not practical).
  • the viscosity of the nanocarbon dispersion obtained by the dispersion treatment was adjusted to 20 ° C. using a B-type viscometer (No. 1 to 4 rotor) (trade name: B-type viscometer, model: BM, manufactured by Tokyo Keiki Seisakusho). The viscosity was measured by rotating at a rotation speed of 60 rpm for 1 minute, and the value was evaluated according to the following criteria A to D.
  • B B-type viscosity is 1000 mPa ⁇ s or less, and the fluidity is good.
  • B-type viscosity is 2000 mPa ⁇ s or less, and fluidity can be confirmed (practical lower limit).
  • D B-type viscosity exceeds 5000 mPa ⁇ s and lacks fluidity (not practical).
  • Dispersion 1 corresponding to the dispersion of Example 6
  • dispersion 2 corresponding to the dispersion of Example 3
  • dispersion 3 corresponding to the dispersion of Example 1
  • dispersion corresponding to the dispersion of Example 5 Liquid 4 was prepared respectively.
  • the carbon nanotubes used in the preparation of the dispersion liquids 1 to 4 were CNT (A), and the dispersant was CNC.
  • Paper with a pigment coating layer on high-quality paper that is a support (“Mucoat Neos” (registered trademark) manufactured by Hokuetsu Corporation, basis weight 157 g / m 2 ) is prepared as a "paper base material” and dispersed. After the liquid 1 was coated on the paper with a bar coater, it was dried at 120 ° C. for 3 minutes to evaporate the water content, and a coated paper was prepared. That is, the "coated paper” is a paper base material provided with a coating layer containing CNT and CNC. For each of the dispersion liquid 2, the dispersion liquid 3, and the dispersion liquid 4, coated paper was prepared by the same operation as in the case of the dispersion liquid 1. Regarding the coating amount, the coating amount was adjusted so that the theoretical thickness of the coating layer of each coated paper was constant.
  • the dispersion liquid 1, the dispersion liquid 2, the dispersion liquid 3 and the dispersion liquid 4 were each placed in a petri dish having a diameter of 8.5 cm and dried at 50 ° C. overnight to evaporate the water content, respectively, to prepare a dried film. That is, the "dry film” is a sheet containing CNT and CNC, and is not provided on a base material such as paper. After production, the film-forming property of each of the obtained dry films was observed.
  • the specific evaluation criteria are as follows. A: A solid substance having the shape and flexibility of a film, having no cracks, and containing nanocarbon and cellulose nanocrystals in a mutually mixed state was formed on the entire surface of the petri dish.
  • a solid substance having the shape and flexibility of a film and containing nanocarbon and cellulose nanocrystals in a mutually mixed state was formed on the entire surface of the petri dish, but cracks were generated in this solid substance. It was.
  • C A solid substance having the shape and flexibility of the film, having no cracks, and containing nanocarbon and cellulose nanocrystals in a mutually mixed state was formed only in the black spot portion of the petri dish.
  • (Evaluation result of film formation property) 1a to 1d are images of the appearance of a dried film obtained by putting a carbon nanotube dispersion in a petri dish and drying it at 50 ° C. overnight.
  • Table 2 shows the evaluation results of the film-forming property of the dried film.
  • the dispersion liquids 1 to 3 have better CNT dispersibility than the dispersion liquid 4, and therefore have good film forming properties.
  • FIG. 4 is a graph in which "S 21 " is plotted against “mass ratio of CNT to total mass of CNT and CNC” shown in Table 2.
  • the “mass ratio of CNT to the total mass of CNT and CNC” is the ratio (mass%) occupied by CNT when the total of the mass of CNT and the mass of CNC is 100% by mass.
  • Table 2 shows the thickness of the coating layer of the dispersion liquid.
  • the thickness of the coating layer of the dispersion liquid means the thickness of the coating layer obtained by drying the dispersion liquid.
  • the thickness of the coating layer of the dispersion was measured by SEM analysis. Specifically, the thickness was obtained by subtracting the thickness of the paper base material (thickness of the woodfree paper and the thickness of the pigment coating layer) from the thickness of the entire coated paper.
  • the coated paper prepared from the dispersion liquids 1 to 3 has a frequency of both 300 MHz and 7 GHz as the mass ratio of CNT to the total mass of CNT and CNC increases.
  • the absolute value of "S 21 " has increased.
  • the coated paper prepared using the dispersion liquid 4 had a smaller absolute value of "S 21 " at both frequencies of 300 MHz and 7 GHz than the coated paper prepared using the dispersion liquid 3.
  • the absolute value of "S 21 " of the coated paper produced using the dispersion liquid 4 is smaller than the absolute value of "S 21 " of the coated paper produced using the dispersion liquid 3 as described above.
  • the dispersibility of the dispersion liquid 4 is poorer than that of the dispersion liquid 3, and it is considered that the electromagnetic wave shielding property is lowered.
  • each profile shown by the numerical value of 0.3 ⁇ m to 4.5 ⁇ m is the profile of the coated paper which has the coating layer of the dispersion liquid by the thickness, and is shown by the numerical value of 158 ⁇ m.
  • the profile is a profile of a dry film having a thickness of 158 ⁇ m.
  • a network analyzer "ZVA67” manufactured by ROHDE & SCHWARZ and a test fixture “TF-18C” manufactured by KEYCOM were used as the testing machine.
  • the measurement frequency was 500 MHz to 18 GHz.
  • FIG. 9 is a graph showing the evaluation results of electromagnetic wave absorption by the microstrip line method.
  • the vertical axis “Rtp” in FIG. 9 indicates the transmission attenuation factor. The larger the absolute value of the transmission attenuation factor, the higher the electromagnetic wave absorption.
  • the coated paper provided with the coating layer containing CNT and CNC has higher electromagnetic wave absorption than the paper base material and the aluminum foil. By this evaluation, it was possible to confirm the electromagnetic wave absorption of the coated paper containing CNT.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The purpose of the present disclosure is to provide: (1) a dispersion liquid in which nanocarbon such as carbon nanotubes is stably dispersed and which exhibits good fluidity, and a method for producing same; (2) a nanocarbon dispersing agent that is added in order to obtain the dispersion liquid; and (3) an electromagnetic wave-shielding material. This nanocarbon dispersion liquid contains nanocarbon, cellulose nanocrystals and a dispersion medium.

Description

ナノカーボン分散液及びその製造方法、ナノカーボン分散剤並びに電磁波遮蔽材Nanocarbon dispersion liquid and its manufacturing method, nanocarbon dispersant and electromagnetic wave shielding material
 本開示は、ナノカーボンとセルロースナノクリスタルとを含有するナノカーボン分散液及びその製造方法、並びにセルロースナノクリスタルを含有するナノカーボン分散剤に関する。 The present disclosure relates to a nanocarbon dispersion liquid containing nanocarbon and cellulose nanocrystals, a method for producing the same, and a nanocarbon dispersant containing cellulose nanocrystals.
 カーボンナノチューブ、ナノグラフェン等のナノカーボンは、表面エネルギーが高いため、媒体中にナノカーボンを分散させようとしても、ナノカーボン表面には強いファンデルワールス力が働く。したがって、ナノカーボンは凝集しやすい。このため、ナノカーボンを安定的に分散させることが要望されている。 Since nanocarbons such as carbon nanotubes and nanographenes have high surface energy, a strong van der Waals force acts on the surface of the nanocarbons even if the nanocarbons are dispersed in the medium. Therefore, nanocarbons tend to aggregate. Therefore, it is required to stably disperse nanocarbon.
 ナノカーボンの分散方法として、単糖又は少糖の結晶と、カーボンナノチューブと、非イオン又は陰イオン界面活性剤とを擂潰して得られる擂潰混合物に水を添加するカーボンナノチューブの分散方法が開示されている(例えば、特許文献1を参照。)。また、カルボキシメチルセルロースを分散剤とするカーボンナノチューブの分散方法が開示されている(例えば、特許文献2を参照。)。また、セルロースナノファイバーを分散剤とするカーボンナノチューブの分散方法が開示されている(例えば、特許文献3を参照。)。また、平均繊維外径が50~110nmの範囲である多層カーボンナノチューブをカルボキシメチルセルロースナトリウムで分散させる方法が開示されている(例えば、特許文献4を参照。)。 As a method for dispersing nanocarbons, a method for dispersing carbon nanotubes in which water is added to a crushed mixture obtained by crushing monosaccharide or low sugar crystals, carbon nanotubes, and a nonionic or anionic surfactant is disclosed. (See, for example, Patent Document 1). Further, a method for dispersing carbon nanotubes using carboxymethyl cellulose as a dispersant is disclosed (see, for example, Patent Document 2). Further, a method for dispersing carbon nanotubes using cellulose nanofibers as a dispersant is disclosed (see, for example, Patent Document 3). Further, a method of dispersing multi-walled carbon nanotubes having an average fiber outer diameter in the range of 50 to 110 nm with sodium carboxymethyl cellulose is disclosed (see, for example, Patent Document 4).
特開2008-230935号公報Japanese Unexamined Patent Publication No. 2008-230935 国際公開第2005/082775号International Publication No. 2005/082775 国際公開第2014/115560号International Publication No. 2014/115560 特開2016-028109号公報Japanese Unexamined Patent Publication No. 2016-028109
 しかしながら、特許文献1に開示の方法では、上限値約5g/Lの低濃度のカーボンナノチューブ分散液しか得られない問題がある。また、界面活性剤を使用しており、分散液に泡立ちの問題が生じやすい。特許文献2に開示の方法では、カルボキシメチルセルロースを用いるため分散液の粘度が高くなりやすく、分散機を用いて製造しようとすると、粘稠質の分散液によって分散機が閉塞する問題がある。特許文献3に開示の方法では、セルロースナノファイバーを用いるため分散液の粘度が高くなりやすく、実施例におけるカーボンナノチューブの濃度は、最高でも0.05質量%に過ぎない。特許文献4に開示の方法は、特定の繊維径を有する多層カーボンナノチューブにしか適用できず、繊維径50nm以下の繊維径が小さい(比表面積の大きい)カーボンナノチューブを安定的に分散させることは困難であった。 However, the method disclosed in Patent Document 1 has a problem that only a low-concentration carbon nanotube dispersion liquid having an upper limit value of about 5 g / L can be obtained. In addition, since a surfactant is used, the dispersion liquid tends to have a problem of foaming. In the method disclosed in Patent Document 2, since carboxymethyl cellulose is used, the viscosity of the dispersion tends to be high, and when it is attempted to be produced using a disperser, there is a problem that the disperser is blocked by the viscous dispersion. In the method disclosed in Patent Document 3, since cellulose nanofibers are used, the viscosity of the dispersion tends to be high, and the concentration of carbon nanotubes in the examples is only 0.05% by mass at the maximum. The method disclosed in Patent Document 4 can be applied only to multi-walled carbon nanotubes having a specific fiber diameter, and it is difficult to stably disperse carbon nanotubes having a fiber diameter of 50 nm or less and a small fiber diameter (large specific surface area). Met.
 本開示は、このような問題に鑑み、(1)カーボンナノチューブ等のナノカーボンが安定的に分散し、流動性を有する分散液及びその分散液の製造方法、(2)分散液を得るために添加するナノカーボン分散剤並びに(3)電磁波遮蔽材を提供することを目的とする。 In view of these problems, the present disclosure is to obtain (1) a dispersion liquid in which nanocarbons such as carbon nanotubes are stably dispersed and have fluidity, a method for producing the dispersion liquid, and (2) a dispersion liquid. It is an object of the present invention to provide a nanocarbon dispersant to be added and (3) an electromagnetic wave shielding material.
 本発明者らは、上記の課題を解決するために、鋭意検討した結果、セルロースナノクリスタルを用いることによって、前記課題を解決できることを見出し、本発明を完成させた。 As a result of diligent studies to solve the above problems, the present inventors have found that the above problems can be solved by using cellulose nanocrystals, and have completed the present invention.
 本発明に係るナノカーボン分散液は、ナノカーボンとセルロースナノクリスタルと分散媒とを含有することを特徴とする。 The nanocarbon dispersion liquid according to the present invention is characterized by containing nanocarbon, cellulose nanocrystals, and a dispersion medium.
 本発明に係るナノカーボン分散液では、前記ナノカーボンの濃度が1質量%以上であることが好ましい。ナノカーボンの濃度が1質量%以上であっても、ナノカーボン分散液の安定性及び流動性を良好にすることができる。 In the nanocarbon dispersion liquid according to the present invention, the concentration of the nanocarbon is preferably 1% by mass or more. Even if the concentration of nanocarbon is 1% by mass or more, the stability and fluidity of the nanocarbon dispersion can be improved.
 本発明に係るナノカーボン分散液では、前記ナノカーボンと前記セルロースナノクリスタルとの質量基準の含有比率(ナノカーボン:セルロースナノクリスタル)が1:0.1~1:10であることが好ましい。ナノカーボン分散液の安定性及び流動性をより良好にすることができる。 In the nanocarbon dispersion liquid according to the present invention, the mass-based content ratio (nanocarbon: cellulose nanocrystal) of the nanocarbon and the cellulose nanocrystal is preferably 1: 0.1 to 1:10. The stability and fluidity of the nanocarbon dispersion can be improved.
 本発明に係るナノカーボン分散液では、前記ナノカーボンの濃度が1質量%以上4質量%以下であり、かつ前記ナノカーボンと前記セルロースナノクリスタルとの合計濃度が1質量%を超えて15質量%以下であることが好ましい。ナノカーボンの濃度が高くても、ナノカーボン分散液の安定性及び流動性をより良好にすることができる。 In the nanocarbon dispersion liquid according to the present invention, the concentration of the nanocarbon is 1% by mass or more and 4% by mass or less, and the total concentration of the nanocarbon and the cellulose nanocrystal exceeds 1% by mass and 15% by mass. The following is preferable. Even if the concentration of nanocarbon is high, the stability and fluidity of the nanocarbon dispersion can be improved.
 本発明に係るナノカーボン分散液では、前記分散媒が極性溶媒であることが好ましい。分散性がより高いナノカーボン分散液を得ることができる。 In the nanocarbon dispersion liquid according to the present invention, it is preferable that the dispersion medium is a polar solvent. A nanocarbon dispersion having higher dispersibility can be obtained.
 本発明に係るナノカーボン分散液では、前記極性溶媒が、アルコール類、ケトン類、アミド類若しくは水又はこれらの混合物であることが好ましい。分散性がさらに高いナノカーボン分散液を得ることができる。 In the nanocarbon dispersion according to the present invention, it is preferable that the polar solvent is alcohols, ketones, amides, water, or a mixture thereof. A nanocarbon dispersion having even higher dispersibility can be obtained.
 本発明に係るナノカーボン分散液の製造方法は、ナノカーボンとセルロースナノクリスタルと分散媒とを含有する混合液を分散機で分散処理することを特徴とする。 The method for producing a nanocarbon dispersion according to the present invention is characterized in that a mixed solution containing nanocarbon, cellulose nanocrystals, and a dispersion medium is dispersed by a disperser.
 本発明に係るナノカーボン分散液の製造方法では、前記混合液が、前記分散媒に前記セルロースナノクリスタルを添加して攪拌した後に前記ナノカーボンを添加して調製した混合液であることが好ましい。分散媒とナノカーボンとの相溶性が損なわれにくくなり、ナノカーボンが分散媒に浮きにくくなる。 In the method for producing a nanocarbon dispersion according to the present invention, it is preferable that the mixed solution is a mixed solution prepared by adding the cellulose nanocrystals to the dispersion medium, stirring the mixture, and then adding the nanocarbons. The compatibility between the dispersion medium and the nanocarbon is less likely to be impaired, and the nanocarbon is less likely to float on the dispersion medium.
 本発明に係るナノカーボン分散液の製造方法では、前記セルロースナノクリスタルがスプレードライ品であることが好ましい。セルロースナノクリスタルの濃度調整をしやすくすることができる。 In the method for producing a nanocarbon dispersion according to the present invention, it is preferable that the cellulose nanocrystal is a spray-dried product. It is possible to easily adjust the concentration of cellulose nanocrystals.
 本発明に係るナノカーボン分散液の製造方法では、前記分散機がホモジナイザーであることが好ましい。分散性がより安定したナノカーボン分散液を得ることができる。 In the method for producing a nanocarbon dispersion liquid according to the present invention, it is preferable that the disperser is a homogenizer. A nanocarbon dispersion with more stable dispersibility can be obtained.
 本発明に係るナノカーボン分散剤は、セルロースナノクリスタルを含有することを特徴とする。 The nanocarbon dispersant according to the present invention is characterized by containing cellulose nanocrystals.
 本発明に係る電磁波遮蔽材は、基材と該基材の表面に設けられた塗工層とを有し、該塗工層がナノカーボンとセルロースナノクリスタルとを相互に混合状態で含有することを特徴とする。 The electromagnetic wave shielding material according to the present invention has a base material and a coating layer provided on the surface of the base material, and the coating layer contains nanocarbon and cellulose nanocrystals in a mutually mixed state. It is characterized by.
 本発明に係る電磁波遮蔽材は、フィルムの形状を有し、該フィルムがナノカーボンとセルロースナノクリスタルとを相互に混合状態で含有することを特徴とする。 The electromagnetic wave shielding material according to the present invention has the shape of a film, and the film is characterized by containing nanocarbon and cellulose nanocrystals in a mutually mixed state.
 本開示によれば、(1)カーボンナノチューブ等のナノカーボンが安定的に分散し、流動性を有する分散液及びその分散液の製造方法、(2)分散液を得るために添加するナノカーボン分散剤並びに(3)電磁波遮蔽材を提供することができる。 According to the present disclosure, (1) a dispersion liquid in which nanocarbons such as carbon nanotubes are stably dispersed and has fluidity and a method for producing the dispersion liquid, and (2) nanocarbon dispersion added to obtain the dispersion liquid. Agents and (3) electromagnetic wave shielding materials can be provided.
分散液1を乾燥させて作製した乾燥フィルムの外観の画像である。It is an image of the appearance of the dried film produced by drying the dispersion liquid 1. 分散液2を乾燥させて作製した乾燥フィルムの外観の画像である。It is an image of the appearance of the dried film produced by drying the dispersion liquid 2. 分散液3を乾燥させて作製した乾燥フィルムの外観の画像である。It is an image of the appearance of the dried film produced by drying the dispersion liquid 3. 分散液4を乾燥させて作製した乾燥フィルムの外観の画像である。It is an image of the appearance of the dried film produced by drying the dispersion liquid 4. 電磁波の周波数45MHz~3GHzに対する透過損失の変化を示すグラフであって、紙基材及び分散液の塗工層が異なる塗工紙の比較を示す。It is a graph which shows the change of transmission loss with respect to the frequency of electromagnetic wave 45MHz to 3GHz, and shows the comparison of the coated paper which different coating layers of a paper base material and a dispersion liquid. 電磁波の周波数500MHz~18GHzに対する透過損失の変化を示すグラフであって、紙基材及び分散液の塗工層が異なる塗工紙の比較を示す。It is a graph which shows the change of transmission loss with respect to the frequency of electromagnetic wave 500MHz to 18GHz, and shows the comparison of the coated paper which different coating layers of a paper base material and a dispersion liquid. CNTとCNCとの合計質量に対するCNTの質量割合に対する電磁波の周波数300MHz及び7GHzにおける透過損失の変化を示すグラフである。It is a graph which shows the change of the transmission loss at the frequency of 300MHz and 7GHz of the electromagnetic wave with respect to the mass ratio of CNT with respect to the total mass of CNT and CNC. 電磁波の周波数45MHz~3GHzに対する透過損失の変化を示すグラフであって、紙基材及び分散液の塗工層の厚さが異なる塗工紙の比較を示す。It is a graph which shows the change of transmission loss with respect to the frequency of electromagnetic wave 45MHz to 3GHz, and shows the comparison of the coating paper which the thickness of the coating layer of a paper base material and a dispersion liquid is different. 電磁波の周波数500MHz~18GHzに対する透過損失の変化を示すグラフであって、紙基材及び分散液の塗工層の厚さが異なる塗工紙の比較を示す。It is a graph which shows the change of transmission loss with respect to the frequency of electromagnetic wave 500MHz to 18GHz, and shows the comparison of the coating paper which the thickness of the coating layer of a paper base material and a dispersion liquid is different. 分散液の塗工層の厚さ及び乾燥フィルムの厚さに対する電磁波の周波数300MHzにおける透過損失の変化を示すグラフである。It is a graph which shows the change of the transmission loss at the frequency of 300MHz of the electromagnetic wave with respect to the thickness of the coating layer of a dispersion liquid, and the thickness of a dry film. 分散液の塗工層の厚さ及び乾燥フィルムの厚さに対する電磁波の周波数7GHzにおける透過損失の変化を示すグラフである。It is a graph which shows the change of the transmission loss at the frequency 7GHz of an electromagnetic wave with respect to the thickness of the coating layer of a dispersion liquid, and the thickness of a dry film. 電磁波の周波数500MHz~18GHzに対する伝送減衰率の変化を示すグラフであって、紙基材、アルミ箔及び分散液の塗工層の厚さが異なる塗工紙の比較を示す。It is a graph which shows the change of the transmission attenuation rate with respect to the frequency of the electromagnetic wave 500MHz to 18GHz, and shows the comparison of the coated paper which the thickness of the coating layer of a paper base material, aluminum foil and a dispersion liquid is different.
 次に本発明について実施形態を示して詳細に説明するが、本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。 Next, the present invention will be described in detail by showing embodiments, but the present invention is not construed as being limited to these descriptions. The embodiments may be modified in various ways as long as the effects of the present invention are exhibited.
(ナノカーボン分散液)
 本実施形態に係るナノカーボン分散液は、ナノカーボンとセルロースナノクリスタルと分散媒とを含有する。
(Nanocarbon dispersion)
The nanocarbon dispersion liquid according to the present embodiment contains nanocarbon, cellulose nanocrystals, and a dispersion medium.
 本実施形態において、ナノカーボンとは、カーボンナノチューブ(以下、CNTともいう。)、フラーレン、CVD法又は機械的剥離法によるグラフェンナノプレートレット等のナノカーボンをいう。これらのナノカーボンは単層であっても2以上の多層の構造であってもよい。本実施形態では、これらのナノカーボンの分散液に関して説明するが、以下、代表例としてCNT分散液について詳細を述べる。 In the present embodiment, the nanocarbon refers to nanocarbon such as carbon nanotubes (hereinafter, also referred to as CNT), fullerenes, graphene nanoplatelets by a CVD method or a mechanical peeling method. These nanocarbons may have a single layer or a structure having two or more layers. In the present embodiment, these nanocarbon dispersions will be described, but the CNT dispersion will be described in detail below as a representative example.
 CNTは、フラーレンとグラフェンの導電性との中間的な導電性を有することから、工業的にも使用しやすい特徴を有する。CNTは、用途に応じて繊維長、繊維径及びBET比表面積が異なるものが用いられ、例えば、その繊維長の範囲は、1μm~500μmであり、繊維径の範囲は、0.4nm~150nmであり、BET比表面積の範囲は、10m/g~2500m/gである。一般的に、比表面積が小さいものは繊維径が大きく、比較的分散しやすいが、比表面積が大きくなるにつれ(繊維径が小さくなるにつれ)、分散が困難となる傾向にある。CNTには、分散性を向上させるために表面にカルボキシル基等の官能基が導入されたものがあるが、そのようなCNTにおいても比表面積が大きくなるにつれ(繊維径が小さくなるにつれ)、分散が困難となる傾向にある。具体的には、カルボキシル基等の官能基が導入されたCNTのBET比表面積が100m/gを超えると、カルボキシメチルセルロース等の従来の分散剤では十分な分散が困難となることがあった。特に高濃度の分散液を得ることが困難となり、CNT濃度が1質量%を超える分散液を得ることは困難であった。 Since CNT has an intermediate conductivity between that of fullerene and that of graphene, it has a feature that it is easy to use industrially. As the CNT, those having different fiber lengths, fiber diameters and BET specific surface areas are used depending on the application. For example, the fiber length range is 1 μm to 500 μm, and the fiber diameter range is 0.4 nm to 150 nm. Yes, the range of BET specific surface area is 10 m 2 / g to 2500 m 2 / g. In general, those having a small specific surface area have a large fiber diameter and are relatively easy to disperse, but as the specific surface area increases (as the fiber diameter decreases), dispersion tends to become difficult. Some CNTs have a functional group such as a carboxyl group introduced on the surface in order to improve dispersibility, but even in such a CNT, as the specific surface area increases (as the fiber diameter decreases), the CNTs disperse. Tends to be difficult. Specifically, when the BET specific surface area of the CNT into which a functional group such as a carboxyl group has been introduced exceeds 100 m 2 / g, it may be difficult to sufficiently disperse the CNT with a conventional dispersant such as carboxymethyl cellulose. In particular, it has become difficult to obtain a dispersion having a high concentration, and it has been difficult to obtain a dispersion having a CNT concentration of more than 1% by mass.
 そこで、本実施形態においては、分散剤としてセルロースナノクリスタル(以下、CNCともいう。)を使用して、CNTを分散させる。ここで、CNCとは、植物由来特に木材由来のセルロース繊維を酸加水分解等の化学的処理を施すことで得られる針状結晶物である。一般的に、CNCの数平均繊維径は4nm~70nmであり、数平均繊維長は25nm~1000nmであり、BET比表面積は100m/g~500m/gであり、アスペクト比は50未満である。ここでアスペクト比とは、数平均繊維長を数平均繊維径で除した無次元数である。セルロースナノクリスタルはセルロースナノウィスカーとも呼ばれる。なお、CNCとは別に、分散剤としてセルロースナノファイバー(以下、CNFともいう。)が知られているが、CNFとは、CNCと同等の数平均繊維径を有するが、CNCよりも繊維長が10倍以上長く、一般的には繊維長が5μm以上である繊維状物をいい、CNFのアスペクト比は100を超える。一方、CNCは針状結晶物であり、CNF等の繊維状物のようにアスペクト比は大きくないが、本実施形態においては、CNCの長径を繊維長ともいい、短径を繊維径ともいう。 Therefore, in the present embodiment, CNTs are dispersed by using cellulose nanocrystals (hereinafter, also referred to as CNC) as a dispersant. Here, the CNC is an acicular crystal obtained by subjecting a plant-derived cellulose fiber, particularly a wood-derived cellulose fiber, to a chemical treatment such as acid hydrolysis. Generally, the number average fiber diameter of CNC is 4 nm to 70 nm, the number average fiber length is 25 nm to 1000 nm, the BET specific surface area is 100 m 2 / g to 500 m 2 / g, and the aspect ratio is less than 50. is there. Here, the aspect ratio is a dimensionless number obtained by dividing the number average fiber length by the number average fiber diameter. Cellulose nanocrystals are also called cellulose nanowhiskers. In addition to CNC, cellulose nanofibers (hereinafter, also referred to as CNF) are known as dispersants. CNF has a number average fiber diameter equivalent to that of CNC, but has a fiber length longer than that of CNC. It refers to a fibrous material having a fiber length of 10 times or more, generally 5 μm or more, and a CNC aspect ratio of more than 100. On the other hand, CNC is an acicular crystal and does not have a large aspect ratio like a fibrous material such as CNF. However, in the present embodiment, the major axis of CNC is also referred to as fiber length, and the minor axis is also referred to as fiber diameter.
 CNTの濃度が比較的高い分散液を得るには、繊維長がCNFより短いCNCが好適である。本実施形態において、CNCの数平均繊維長は、25nm~500nmが好ましく、より好ましくは100nm~400nmであり、最も好ましくは200nm~300nmである。平均繊維長が25nm未満であると、CNC同士が凝集する可能性がある。数平均繊維長が500nmを超えると、分散液の粘度が高くなりやすく、CNTの濃度を高くした場合の分散液の流動性が損なわれやすくなる可能性がある。尚、CNFは繊維長が長すぎることから、CNTの分散が困難なだけでなく、分散液の流動性を大きく損ないやすいという特徴がある。例えば、B型粘度計(20℃、60rpm、回転時間1分)で測定した粘度は、CNCの2質量%水溶液であれば100mPa・s以下であり、流動性は良好であるが、CNFの2質量%水溶液は、10000mPa・sを超えることも多く、結果として流動性を損なう。 In order to obtain a dispersion liquid having a relatively high concentration of CNT, CNC having a fiber length shorter than that of CNF is suitable. In the present embodiment, the number average fiber length of the CNC is preferably 25 nm to 500 nm, more preferably 100 nm to 400 nm, and most preferably 200 nm to 300 nm. If the average fiber length is less than 25 nm, the CNCs may aggregate with each other. If the number average fiber length exceeds 500 nm, the viscosity of the dispersion liquid tends to increase, and the fluidity of the dispersion liquid tends to be impaired when the concentration of CNTs is increased. Since the fiber length of CNF is too long, not only is it difficult to disperse CNTs, but also the fluidity of the dispersion liquid is likely to be significantly impaired. For example, the viscosity measured with a B-type viscometer (20 ° C., 60 rpm, rotation time 1 minute) is 100 mPa · s or less in the case of a 2% by mass aqueous solution of CNC, and the fluidity is good, but CNF 2 The mass% aqueous solution often exceeds 10,000 mPa · s, resulting in impaired fluidity.
 本実施形態において、CNCの数平均繊維径は、5nm~60nmが好ましく、より好ましくは10nm~50nmであり、最も好ましくは20nm~30nmである。平均繊維径が5nm未満であると、CNC同士が凝集する可能性がある。数平均繊維径が60nmを超えると、分散液の粘度が高くなり、流動性が低下する可能性がある。 In the present embodiment, the number average fiber diameter of the CNC is preferably 5 nm to 60 nm, more preferably 10 nm to 50 nm, and most preferably 20 nm to 30 nm. If the average fiber diameter is less than 5 nm, the CNCs may aggregate with each other. If the number average fiber diameter exceeds 60 nm, the viscosity of the dispersion liquid may increase and the fluidity may decrease.
 本実施形態において、CNCのBET比表面積は、120m/g~400m/gが好ましく、より好ましくは150m/g~300m/gであり、最も好ましくは175m/g~250m/gである。BET比表面積が120m/g未満であると、分散液の粘度が高くなり、流動性が低下する可能性がある。BET比表面積が400m/gを超えると、分散液の粘度が高くなり、CNC同士が凝集する可能性がある。 In the present embodiment, BET specific surface area of the CNC is preferably 120m 2 / g ~ 400m 2 / g, more preferably 150m 2 / g ~ 300m 2 / g, and most preferably 175m 2 / g ~ 250m 2 / g. If the BET specific surface area is less than 120 m 2 / g, the viscosity of the dispersion may increase and the fluidity may decrease. If the BET specific surface area exceeds 400 m 2 / g, the viscosity of the dispersion becomes high, and CNCs may aggregate with each other.
 本実施形態において、CNCのアスペクト比は、5~40が好ましく、より好ましくは10~30であり、最も好ましくは15~25である。アスペクト比が5未満であると、CNC同士が凝集する可能性がある。アスペクト比が40を超えると、CNTの濃度を高くした場合の分散液の流動性が低下する可能性がある。 In the present embodiment, the aspect ratio of the CNC is preferably 5 to 40, more preferably 10 to 30, and most preferably 15 to 25. If the aspect ratio is less than 5, the CNCs may aggregate with each other. If the aspect ratio exceeds 40, the fluidity of the dispersion liquid when the CNT concentration is increased may decrease.
 CNCの数平均繊維径及び数平均繊維長は、次に従って算出することができる。CNCの表面部分に対し、透過型電子顕微鏡(TEM、Transmission Electron Microscope)又は走査型電子顕微鏡(SEM、Scanning Electron Microscope)を用いて、最低3枚の視野が重なっていないCNC表面部分の画像を撮影する。得られた画像に対し、1枚の画像あたり縦横2本ずつの無作為な軸を引き、軸に交差する繊維の繊維径及び繊維長を目視で読み取っていく。このとき、構成する繊維の大きさに応じて5000倍、10000倍、50000倍のいずれかの倍率で行う。なお、2本の軸と交差する繊維数の条件は20本以上とする。各々2本の軸に交差する繊維の繊維径及び繊維長の値を読み取る。したがって、最低20本×2×3=120個の繊維情報が得られる。こうして得られた繊維径及び繊維長のデータから数平均繊維径及び数平均繊維長を算出する。CNTの数平均繊維径及び数平均繊維長を算出する場合についても同様である。 The number average fiber diameter and number average fiber length of CNC can be calculated according to the following. Using a transmission electron microscope (TEM, Transmission Electron Microscope) or a scanning electron microscope (SEM, Scanning Electron Microscope) on the surface of the CNC, at least three images of the CNC surface where the fields of view do not overlap are taken. To do. For the obtained image, two random axes are drawn vertically and horizontally for each image, and the fiber diameter and fiber length of the fibers intersecting the axes are visually read. At this time, the magnification is 5,000 times, 10,000 times, or 50,000 times depending on the size of the constituent fibers. The condition for the number of fibers intersecting the two axes is 20 or more. Read the fiber diameter and fiber length values of the fibers that intersect each of the two axes. Therefore, information on at least 20 fibers × 2 × 3 = 120 fibers can be obtained. The number average fiber diameter and the number average fiber length are calculated from the fiber diameter and fiber length data thus obtained. The same applies to the case of calculating the number average fiber diameter and the number average fiber length of CNTs.
 本実施形態では、例えば、セルロース繊維の水懸濁液またはスラリーを、硫酸、塩酸、臭化水素酸等による強酸を用いた酸加水分解等の化学的手法で調製したCNCを使用することができる。強酸としては好ましくは硫酸である。硫酸で加水分散することにより表面に硫酸エステル基が付加されることで負の電荷が付与されるとともに、硫酸エステル基は分子量としても大きいことから立体障害にもなり、CNTを分散させる能力が大きくなるものと推察される。 In this embodiment, for example, CNC prepared by a chemical method such as acid hydrolysis using a strong acid with sulfuric acid, hydrochloric acid, hydrobromic acid or the like can be used for an aqueous suspension or slurry of cellulose fibers. .. The strong acid is preferably sulfuric acid. Negative charge is given by adding a sulfate ester group to the surface by hydrodispersing with sulfuric acid, and since the sulfate ester group has a large molecular weight, it also causes steric hindrance and has a large ability to disperse CNT. It is presumed that it will be.
 CNCの重合度は、特に限定するものではないが、100~500が好ましく、より好ましくは200~400である。重合度が100未満であると、CNTの分散性が低下する可能性がある。重合度が500を超えると、分散液の粘度が高くなり、流動性が低下する可能性がある。 The degree of polymerization of CNC is not particularly limited, but is preferably 100 to 500, and more preferably 200 to 400. If the degree of polymerization is less than 100, the dispersibility of CNTs may decrease. If the degree of polymerization exceeds 500, the viscosity of the dispersion liquid may increase and the fluidity may decrease.
 ナノカーボン分散液の代表例として、CNT分散液について詳細を述べたが、ナノカーボンがフラーレン、グラフェンナノプレートレット等の他のナノカーボンである場合であっても、CNTである場合と同様に良好なナノカーボン分散液が得られる。 The details of the CNT dispersion have been described as a typical example of the nanocarbon dispersion, but even if the nanocarbon is another nanocarbon such as fullerene or graphene nanoplatelet, it is as good as the case of CNT. Nanocarbon dispersion can be obtained.
 本実施形態のナノカーボン分散液では、このようなCNCを分散剤として用いることにより、CNT等のナノカーボンを分散媒に安定的に分散させる。特に、BET比表面積が100m/g以上のナノカーボン、例えばBET比表面積が100~1000m/gのCNTであっても安定的に分散させることが可能となる。BET比表面積が100~1000m/gのCNTの繊維径は30nm以下になると考えられ、このような繊維径のCNTは柔軟で導電性にも優れるものが多い。 In the nanocarbon dispersion liquid of the present embodiment, by using such CNC as a dispersant, nanocarbons such as CNTs are stably dispersed in a dispersion medium. In particular, even nanocarbons having a BET specific surface area of 100 m 2 / g or more, for example, CNTs having a BET specific surface area of 100 to 1000 m 2 / g can be stably dispersed. It is considered that the fiber diameter of CNTs having a BET specific surface area of 100 to 1000 m 2 / g is 30 nm or less, and many CNTs having such a fiber diameter are flexible and have excellent conductivity.
 本実施形態では、ナノカーボンの濃度が1質量%以上であることが好ましい。ナノカーボンの濃度が1質量%以上であっても、ナノカーボンの分散液の安定性及び流動性を良好にすることができる。 In this embodiment, the concentration of nanocarbon is preferably 1% by mass or more. Even if the concentration of nanocarbon is 1% by mass or more, the stability and fluidity of the dispersion liquid of nanocarbon can be improved.
 本実施形態に係るナノカーボン分散液では、ナノカーボン分散液におけるナノカーボンとCNCの含有比率は、特に限定するものではないが、ナノカーボンが安定的に分散した分散液とするには、質量基準で、ナノカーボン:セルロースナノクリスタル=1:0.1~1:10が好ましい。より好ましくは、ナノカーボン:セルロースナノクリスタル=1:0.5~1:5である。含有比率1:0.1よりも、セルロースナノクリスタルが少なく含有される含有比率であっても(例えば、ナノカーボン:セルロースナノクリスタル=1:0.01)、ナノカーボンの分散性の向上に効果があるが、ナノカーボンの濃度が例えば1質量%以上となるような比較的高い場合に、沈降物が生じやすくなる可能性がある。一方、1:10よりも、CNCが多く含有される含有比率であると、ナノカーボンがCNCに対して相対的に少なくなるため、ナノカーボン分散液の分散性及び安定性の向上効果は頭打ちとなる。ナノカーボンの濃度の上限値は、分散性の観点から、例えば4質量%である。 In the nanocarbon dispersion liquid according to the present embodiment, the content ratio of nanocarbon and CNC in the nanocarbon dispersion liquid is not particularly limited, but in order to obtain a dispersion liquid in which nanocarbon is stably dispersed, a mass standard is used. Therefore, nanocarbon: cellulose nanocrystal = 1: 0.1 to 1:10 is preferable. More preferably, nanocarbon: cellulose nanocrystal = 1: 0.5 to 1: 5. Even if the content ratio contains less cellulose nanocrystals than 1: 0.1 (for example, nanocarbon: cellulose nanocrystals = 1: 0.01), it is effective in improving the dispersibility of nanocarbons. However, when the concentration of nanocarbon is relatively high, for example, 1% by mass or more, sediment may easily occur. On the other hand, when the content ratio contains more CNC than 1:10, the amount of nanocarbon is relatively small with respect to CNC, so that the effect of improving the dispersibility and stability of the nanocarbon dispersion has reached a plateau. Become. The upper limit of the concentration of nanocarbon is, for example, 4% by mass from the viewpoint of dispersibility.
 本実施形態に係るナノカーボン分散液では、ナノカーボンとセルロースナノクリスタルとの合計濃度が1質量%を超えて15質量%以下であることが好ましい。より好ましくは1.5質量%以上13質量%以下である。最も好ましくは、1.8質量%以上5質量%以下である。この合計濃度が1質量%以下であると、ナノカーボンが分散できない可能性がある。この合計濃度が15質量%を超えると、分散液の粘度が高くなり、流動性が低下する可能性がある。 In the nanocarbon dispersion liquid according to the present embodiment, the total concentration of nanocarbon and cellulose nanocrystals is preferably more than 1% by mass and 15% by mass or less. More preferably, it is 1.5% by mass or more and 13% by mass or less. Most preferably, it is 1.8% by mass or more and 5% by mass or less. If this total concentration is 1% by mass or less, nanocarbon may not be dispersed. If this total concentration exceeds 15% by mass, the viscosity of the dispersion liquid may increase and the fluidity may decrease.
 本実施形態に係るナノカーボン分散液では、ナノカーボンの濃度が1質量%以上4質量%以下であり、かつナノカーボンとセルロースナノクリスタルとの合計濃度が1質量%を超えて15質量%以下であることが好ましい。より好ましくは、ナノカーボンの濃度が1質量%以上3.5質量%以下であり、かつナノカーボンとセルロースナノクリスタルとの合計濃度が1.5質量%以上13質量%以下である。最も好ましくは、ナノカーボンの濃度が1質量%以上3質量%以下であり、かつナノカーボンとセルロースナノクリスタルとの合計濃度が1.8質量%以上5質量%以下である。ナノカーボンの濃度が高くても、ナノカーボン分散液の安定性及び流動性をより良好にすることができる。 In the nanocarbon dispersion liquid according to the present embodiment, the concentration of nanocarbon is 1% by mass or more and 4% by mass or less, and the total concentration of nanocarbon and cellulose nanocrystals is more than 1% by mass and 15% by mass or less. It is preferable to have. More preferably, the concentration of nanocarbon is 1% by mass or more and 3.5% by mass or less, and the total concentration of nanocarbon and cellulose nanocrystal is 1.5% by mass or more and 13% by mass or less. Most preferably, the concentration of nanocarbon is 1% by mass or more and 3% by mass or less, and the total concentration of nanocarbon and cellulose nanocrystal is 1.8% by mass or more and 5% by mass or less. Even if the concentration of nanocarbon is high, the stability and fluidity of the nanocarbon dispersion can be improved.
 分散媒は、用途に応じて任意に選択することができるが、CNCの分散効果を十分に発揮させるには、本実施形態に係るナノカーボン分散液では、分散媒が極性溶媒であることが好ましい。 The dispersion medium can be arbitrarily selected depending on the intended use, but in order to fully exert the dispersion effect of CNC, it is preferable that the dispersion medium is a polar solvent in the nanocarbon dispersion liquid according to the present embodiment. ..
 本実施形態に係るナノカーボン分散液では、極性溶媒が、メタノール、エタノール等のアルコール類;アセトン、メチルエチルケトン等のケトン類、N-メチルピロリドン等のアミド類若しくは水又はこれらの混合物であることが好ましい。特に好ましくは水である。分散性がさらに高いナノカーボン分散液を得ることができる。 In the nanocarbon dispersion according to the present embodiment, the polar solvent is preferably alcohols such as methanol and ethanol; ketones such as acetone and methyl ethyl ketone, amides such as N-methylpyrrolidone, water, or a mixture thereof. .. Water is particularly preferable. A nanocarbon dispersion having even higher dispersibility can be obtained.
 ナノカーボン分散液は、本発明の目的とする効果を損ねない範囲で、各種添加剤を含有することができる。添加剤は、例えば酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、顔料、着色剤、発泡剤、帯電防止剤、難燃剤、滑剤、軟化剤、粘着付与剤、可塑剤、離型剤、防臭剤、香料又はそれらの組合せである。これらの添加剤は、ナノカーボンの特性に影響を与える可能性があるため、添加の際には注意を要する。本実施形態に係るナノカーボン分散液は、フィルム等の基材に塗布、乾燥して、成膜することができるほか、分散液から直接、溶媒を除去するか、又は貧溶媒に投入して、固形分を析出させ、ろ過、乾燥することで、カーボンナノチューブ/セルロースナノクリスタル複合材料を得ることもできる。界面活性剤としては、例えば消泡効果を有する界面活性剤、分散効果を有する界面活性剤、又は粘度調整効果を有する界面活性剤があるが、本実施形態では、分散効果を有する界面活性剤を含有しないことが好ましい。分散効果を有する界面活性剤は泡立ちの発生の原因となる可能性がある。 The nanocarbon dispersion can contain various additives as long as the desired effect of the present invention is not impaired. Additives include, for example, antioxidants, heat stabilizers, light stabilizers, UV absorbers, pigments, colorants, foaming agents, antistatic agents, flame retardants, lubricants, softeners, tackifiers, plasticizers, mold release agents. Agents, deodorants, fragrances or combinations thereof. Care must be taken when adding these additives, as they can affect the properties of nanocarbons. The nanocarbon dispersion liquid according to the present embodiment can be applied to a substrate such as a film, dried and formed into a film, and the solvent can be directly removed from the dispersion liquid or put into a poor solvent. A carbon nanotube / cellulose nanocrystal composite material can also be obtained by precipitating the solid content, filtering and drying. Examples of the surfactant include a surfactant having a defoaming effect, a surfactant having a dispersing effect, and a surfactant having a viscosity adjusting effect. In the present embodiment, the surfactant having a dispersing effect is used. It is preferable not to contain it. Surfactants with a dispersing effect can cause foaming.
(ナノカーボン分散液の製造方法)
 本実施形態に係るナノカーボン分散液の製造方法は、ナノカーボンとセルロースナノクリスタルと分散媒とを含有する混合液を分散機で分散処理することを特徴とする。
(Manufacturing method of nanocarbon dispersion)
The method for producing a nanocarbon dispersion liquid according to the present embodiment is characterized in that a mixed liquid containing nanocarbon, cellulose nanocrystals, and a dispersion medium is dispersed by a disperser.
 CNCには、例えば、水に分散させた状態のスラリー品と、スラリー品を乾燥させて得たスプレードライ品が存在するが、そのどちらも使用することができる。本実施形態では、CNCがスプレードライ品であることが好ましい。CNCはCNFとは異なり、乾燥品でも比較的容易に水中に分散させることができるため、乾燥品を用いることで濃度調整を行いやすくすることができる。 CNC includes, for example, a slurry product dispersed in water and a spray-dried product obtained by drying the slurry product, both of which can be used. In this embodiment, it is preferable that the CNC is a spray-dried product. Unlike CNF, CNC can be dispersed in water relatively easily even if it is a dried product, so that the concentration can be easily adjusted by using the dried product.
 ナノカーボンとCNCの分散媒への添加順は特に限定するものではないが、本実施形態に係るナノカーボン分散液の製造方法では、混合液が、ナノカーボンとCNCとを分散媒に同時に添加して調製した混合液であるか、又は分散媒にCNCを添加して攪拌した後にナノカーボンを添加して調製した混合液であることが好ましい。ナノカーボンは疎水性が強いため、分散媒が水である場合、分散媒に単独で最初に添加すると、分散媒に浮いてしまい、相溶性を損ないやすい可能性がある。混合液の流動性は、ナノカーボンとCNCとの合計濃度及び質量基準の含有比率により異なるが、例えば質量基準でCNT:CNC=1:1の場合は、CNTとCNCとの合計濃度を2~6質量%とすると、適度な流動性を保て、次工程の分散処理に好適となる。 The order of addition of nanocarbon and CNC to the dispersion medium is not particularly limited, but in the method for producing a nanocarbon dispersion liquid according to the present embodiment, the mixed liquid simultaneously adds nanocarbon and CNC to the dispersion medium. It is preferable that the mixture is prepared by adding CNC to a dispersion medium and stirring, and then adding nanocarbon. Since nanocarbon has strong hydrophobicity, when the dispersion medium is water, if it is first added to the dispersion medium alone, it may float on the dispersion medium and easily impair compatibility. The fluidity of the mixed solution varies depending on the total concentration of nanocarbon and CNC and the content ratio based on mass. For example, when CNT: CNC = 1: 1 on a mass basis, the total concentration of CNT and CNC is 2 to 2. When it is set to 6% by mass, it is suitable for the dispersion treatment in the next step while maintaining an appropriate fluidity.
 分散処理に用いる分散機は特に限定するものではなく、各種公知の機械的分散処理機を用いることができ、例えば、アジテーターを備えた攪拌機、超音波分散機、高剪断攪拌機、バイオミキサー又はホモジナイザーを用いることができる。これらの分散機は2種以上を組み合わせて用いてもよい。例えば、混合液を超音波分散機でプレ分散処理をし、その後、ホモジナイザーで分散処理を行うこと、混合液をバイオミキサーでプレ分散処理をし、その後、ホモジナイザーで分散処理を行うこと等の2段階以上の分散処理を行ってもよい。 The disperser used for the dispersion treatment is not particularly limited, and various known mechanical dispersion treatment machines can be used. For example, a stirrer equipped with an agitator, an ultrasonic disperser, a high shear stirrer, a biomixer or a homogenizer can be used. Can be used. Two or more kinds of these dispersers may be used in combination. For example, the mixed solution is pre-dispersed with an ultrasonic disperser and then dispersed with a homogenizer, the mixed solution is pre-dispersed with a biomixer, and then dispersed with a homogenizer. Dispersion processing of steps or more may be performed.
 本実施形態に係るナノカーボン分散液の製造方法では、分散機がホモジナイザーであることが好ましい。ホモジナイザーで分散処理をすることで、より分散性の安定したナノカーボン分散液を得ることができる。また、ホモジナイザーには、例えば、超音波式、攪拌式、高圧式があるが、高圧式のホモジナイザー(高圧ホモジナイザー)が好ましい。また、高圧ホモジナイザーの中でもウォータージェット方式が好適である。ウォータージェット方式の高圧ホモジナイザーとしては、例えばスギノマシン製のスターバースト(登録商標)がある。高圧ホモジナイズドの分散処理条件は圧力100~250MPa、1~10パスが好ましい。分散処理しないと、ナノカーボン分散液が得られない。圧力100MPa未満であると、分散不十分となる可能性がある。圧力250MPaを超えるか、又はパス回数10回を超えると、分散が進まなくなり、分散液の高温が上昇する可能性がある。 In the method for producing a nanocarbon dispersion liquid according to the present embodiment, it is preferable that the disperser is a homogenizer. By performing the dispersion treatment with a homogenizer, a more stable nanocarbon dispersion can be obtained. Further, the homogenizer includes, for example, an ultrasonic type, a stirring type, and a high pressure type, and a high pressure type homogenizer (high pressure homogenizer) is preferable. Further, among the high pressure homogenizers, the water jet method is preferable. As a water jet type high pressure homogenizer, for example, there is Starburst (registered trademark) manufactured by Sugino Machine Limited. The pressure homogenized dispersion treatment condition is preferably a pressure of 100 to 250 MPa and 1 to 10 passes. A nanocarbon dispersion cannot be obtained without dispersion treatment. If the pressure is less than 100 MPa, the dispersion may be insufficient. If the pressure exceeds 250 MPa or the number of passes exceeds 10, the dispersion does not proceed and the high temperature of the dispersion liquid may rise.
(ナノカーボン分散剤)
 ナノカーボン分散剤は、ナノカーボンを分散させるための薬剤である。本実施形態に係るナノカーボン分散剤は、セルロースナノクリスタルを含有する。ナノカーボン分散剤の形態としては、例えば、セルロースナノクリスタルを水に分散させた状態のスラリー品(以下、形態Lという。)、該スラリー品を乾燥させて得られるセルロースナノクリスタルのスプレードライ品(以下、形態Mという。)、又は該スラリー品の分散媒を水以外の分散媒に置換した分散液(以下、形態Nという。)がある。ナノカーボン分散剤が、形態Lである場合、ナノカーボンを形態Lのスラリー品に添加することによって、分散媒が水であるナノカーボン分散液を容易に調製することができる。ナノカーボン分散剤が、形態Mである場合、使用の形態としては、例えば、ナノカーボンとナノカーボン分散剤とを分散媒に同時に添加すること、又はナノカーボンを分散媒に分散させた液中にナノカーボン分散剤を添加することがある。ここにおいて、分散媒が水ならば、ナノカーボンの疎水性の観点から、ナノカーボンとナノカーボン分散剤とを分散媒に同時に添加することが好ましい。ナノカーボン分散剤が、形態Nである場合、ナノカーボンを形態Nの分散液に添加することによって、分散媒が水以外の分散媒であるナノカーボン分散液を容易に調製することができる。
(Nanocarbon dispersant)
The nanocarbon dispersant is an agent for dispersing nanocarbon. The nanocarbon dispersant according to the present embodiment contains cellulose nanocrystals. Examples of the form of the nanocarbon dispersant include a slurry product in which cellulose nanocrystals are dispersed in water (hereinafter referred to as Form L), and a spray-dried product of cellulose nanocrystals obtained by drying the slurry product (hereinafter referred to as Form L). Hereinafter, there is a dispersion liquid (hereinafter, referred to as Form N) in which the dispersion medium of the slurry product is replaced with a dispersion medium other than water. When the nanocarbon dispersant is in the form L, the nanocarbon dispersion liquid in which the dispersion medium is water can be easily prepared by adding the nanocarbon to the slurry product in the form L. When the nanocarbon dispersant is in the form M, the form of use is, for example, adding nanocarbon and the nanocarbon dispersant to the dispersion medium at the same time, or in a liquid in which the nanocarbon is dispersed in the dispersion medium. Nanocarbon dispersants may be added. Here, if the dispersion medium is water, it is preferable to add the nanocarbon and the nanocarbon dispersant to the dispersion medium at the same time from the viewpoint of the hydrophobicity of the nanocarbon. When the nanocarbon dispersant is of form N, by adding nanocarbon to the dispersion of form N, a nanocarbon dispersion in which the dispersion medium is a dispersion medium other than water can be easily prepared.
(基材と塗工層とを有する電磁波遮蔽材)
 本実施形態に係る電磁波遮蔽材は、基材と該基材の表面に設けられた塗工層とを有し、該塗工層がナノカーボンとセルロースナノクリスタルとを相互に混合状態で含有する。
(Electromagnetic wave shielding material having a base material and a coating layer)
The electromagnetic wave shielding material according to the present embodiment has a base material and a coating layer provided on the surface of the base material, and the coating layer contains nanocarbon and cellulose nanocrystals in a mutually mixed state. ..
 基材は、例えば、紙、ゴム、樹脂からなる板又は不織布である。電磁波遮蔽材の形態に応じて、基材の材質を変更することができる。 The base material is, for example, a plate or non-woven fabric made of paper, rubber, or resin. The material of the base material can be changed according to the form of the electromagnetic wave shielding material.
 基材は、単一層又は複数層を有する。複数層の形態としては、例えば、支持体である上質紙に顔料塗工層が設けられた紙、又は抄き合わせた積層紙がある。 The base material has a single layer or a plurality of layers. As a form of the plurality of layers, for example, there is a paper in which a pigment coating layer is provided on a high-quality paper which is a support, or a laminated paper which is made by laminating.
 塗工層の厚さは、0.1μm~15.0μmであることが好ましく、より好ましくは2.0μm~10.0μmであり、さらに好ましくは3.5μm~5.0μmである。0.1μm未満であると、電磁波遮蔽材の電磁波シールド性が十分に得られない場合がある。15.0μmより大きいと、電磁波遮蔽材の作製が困難になる場合がある。 The thickness of the coating layer is preferably 0.1 μm to 15.0 μm, more preferably 2.0 μm to 10.0 μm, and further preferably 3.5 μm to 5.0 μm. If it is less than 0.1 μm, the electromagnetic wave shielding property of the electromagnetic wave shielding material may not be sufficiently obtained. If it is larger than 15.0 μm, it may be difficult to prepare an electromagnetic wave shielding material.
 分散液が浸透しやすい濾紙や不織布などを基材として選択した場合は、分散液は基材に含浸することとなる。そして、分散液の分散媒が蒸発すれば、基材の内部の壁に塗工層が形成されることとなる。この場合は、塗工層の厚さが小さくとも、基材が分散液で十分に含浸されていれば電磁波シールド性を付与できる可能性がある。例えば基材の厚み方向に分散液が略均一に浸透しており、基材への浸透深さが10.0μmを超えるような場合には塗工層の厚みが小さくとも電磁波シールド性を付与できる可能性がある。塗工層が存在する深さは、1.0μm~15.0μmであることが好ましく、より好ましくは2.0μm~10.0μmである。 If a filter paper or non-woven fabric that the dispersion liquid easily permeates is selected as the base material, the dispersion liquid will be impregnated into the base material. Then, when the dispersion medium of the dispersion liquid evaporates, a coating layer is formed on the inner wall of the base material. In this case, even if the thickness of the coating layer is small, there is a possibility that the electromagnetic wave shielding property can be imparted if the base material is sufficiently impregnated with the dispersion liquid. For example, when the dispersion liquid permeates substantially uniformly in the thickness direction of the base material and the permeation depth into the base material exceeds 10.0 μm, electromagnetic wave shielding property can be imparted even if the thickness of the coating layer is small. there is a possibility. The depth at which the coating layer is present is preferably 1.0 μm to 15.0 μm, more preferably 2.0 μm to 10.0 μm.
 混合状態は、例えば、塗工層中のナノカーボンが偏在して分布し、かつセルロースナノクリスタルが偏在して分布する状態、ナノカーボンが均一に分布し、かつセルロースナノクリスタルが偏在して分布する状態、ナノカーボンが偏在して分布し、かつセルロースナノクリスタルが均一に分布する状態、又はナノカーボンが均一に分布し、かつセルロースナノクリスタルが均一に分布する状態である。好ましくは、塗工層中のナノカーボンが均一に分布し、かつセルロースナノクリスタルが均一に分布する状態である。 In the mixed state, for example, the nanocarbons in the coating layer are unevenly distributed and the cellulose nanocrystals are unevenly distributed, the nanocarbons are uniformly distributed, and the cellulose nanocrystals are unevenly distributed. A state, a state in which nanocarbons are unevenly distributed and cellulose nanocrystals are uniformly distributed, or a state in which nanocarbons are uniformly distributed and cellulose nanocrystals are uniformly distributed. Preferably, the nanocarbons in the coating layer are uniformly distributed and the cellulose nanocrystals are uniformly distributed.
 塗工層に含有されるナノカーボンとセルロースナノクリスタルとの質量基準の含有比率は、ナノカーボン:セルロースナノクリスタル=1:0.1~1:10が好ましく、より好ましくは1:0.1~1:5であり、さらに好ましくは1:1である。電磁波シールド性が高い電磁波遮蔽材を得ることができる。 The mass-based content ratio of nanocarbon and cellulose nanocrystals contained in the coating layer is preferably nanocarbon: cellulose nanocrystals = 1: 0.1 to 1:10, and more preferably 1: 0.1 to 1. It is 1: 5, and more preferably 1: 1. An electromagnetic wave shielding material having a high electromagnetic wave shielding property can be obtained.
 電磁波遮蔽材は、基材にナノカーボン分散液を塗工し、当該ナノカーボン分散液に含有される分散媒を蒸発させて、塗工層を設けることによって製造できる。ここで、塗工層に含有されるナノカーボンとセルロースナノクリスタルとの質量基準の含有比率は、ナノカーボン分散液に含有されるナノカーボンとセルロースナノクリスタルとの質量基準の含有比率と同じである。 The electromagnetic wave shielding material can be produced by applying a nanocarbon dispersion liquid to a base material, evaporating the dispersion medium contained in the nanocarbon dispersion liquid, and providing a coating layer. Here, the mass-based content ratio of the nanocarbon and the cellulose nanocrystal contained in the coating layer is the same as the mass-based content ratio of the nanocarbon and the cellulose nanocrystal contained in the nanocarbon dispersion. ..
(フィルムの形状を有する電磁波遮蔽材)
 本実施形態に係る電磁波遮蔽材は、フィルムの形状を有し、該フィルムがナノカーボンとセルロースナノクリスタルとを相互に混合状態で含有する。
(Electromagnetic wave shielding material with film shape)
The electromagnetic wave shielding material according to the present embodiment has the shape of a film, and the film contains nanocarbon and cellulose nanocrystals in a mutually mixed state.
 フィルムの厚さは、30μm~160μmであることが好ましく、より好ましくは、40μm~160μmである。30μm未満であると、十分な電磁波シールド性を得るために、フィルムに含有されるCNT濃度を増加しなければなられない場合がある。160μmより大きいと、電磁波遮蔽材の電磁波シールド性が飽和し、厚くした分の電磁波シールド性の向上が得られない場合がある。 The thickness of the film is preferably 30 μm to 160 μm, more preferably 40 μm to 160 μm. If it is less than 30 μm, it may be necessary to increase the CNT concentration contained in the film in order to obtain sufficient electromagnetic wave shielding property. If it is larger than 160 μm, the electromagnetic wave shielding property of the electromagnetic wave shielding material is saturated, and the thickened electromagnetic wave shielding property may not be improved.
 混合状態は、例えば、フィルム中のナノカーボンが偏在して分布し、かつセルロースナノクリスタルが偏在して分布する状態、ナノカーボンが均一に分布し、かつセルロースナノクリスタルが偏在して分布する状態、ナノカーボンが偏在して分布し、かつセルロースナノクリスタルが均一に分布する状態、又はナノカーボンが均一に分布し、かつセルロースナノクリスタルが均一に分布する状態である。好ましくは、フィルム中のナノカーボンが均一に分布し、かつセルロースナノクリスタルが均一に分布する状態である。 The mixed state is, for example, a state in which nanocarbons in the film are unevenly distributed and cellulose nanocrystals are unevenly distributed, a state in which nanocarbons are uniformly distributed and cellulose nanocrystals are unevenly distributed. It is a state in which nanocarbons are unevenly distributed and cellulose nanocrystals are uniformly distributed, or a state in which nanocarbons are uniformly distributed and cellulose nanocrystals are uniformly distributed. Preferably, the nanocarbons in the film are uniformly distributed and the cellulose nanocrystals are uniformly distributed.
 フィルムに含有されるナノカーボンとセルロースナノクリスタルとの質量基準の含有比率は、ナノカーボン:セルロースナノクリスタル=1:0.1~1:10が好ましく、より好ましくは1:1~1:10である。フィルム中のナノカーボンが均一に分布し、かつセルロースナノクリスタルが均一に分布する状態にすることができる。 The mass-based content ratio of nanocarbon and cellulose nanocrystals contained in the film is preferably nanocarbon: cellulose nanocrystals = 1: 0.1 to 1:10, more preferably 1: 1 to 1:10. is there. The nanocarbons in the film can be uniformly distributed, and the cellulose nanocrystals can be uniformly distributed.
 電磁波遮蔽材は、ナノカーボン分散液に含有される分散媒を蒸発させることによって製造できる。ここで、フィルムに含有されるナノカーボンとセルロースナノクリスタルとの質量基準の含有比率は、ナノカーボン分散液に含有されるナノカーボンとセルロースナノクリスタルとの質量基準の含有比率と同じである。 The electromagnetic wave shielding material can be produced by evaporating the dispersion medium contained in the nanocarbon dispersion liquid. Here, the mass-based content ratio of the nanocarbon and the cellulose nanocrystal contained in the film is the same as the mass-based content ratio of the nanocarbon and the cellulose nanocrystal contained in the nanocarbon dispersion.
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. In the following description, "%" and "part" representing the amount are based on mass unless otherwise specified.
(CNCの製造)
 針葉樹サルファイトパルプのシートを乾式で粗粉砕して綿状繊維とし、この綿状繊維の固形分濃度が3質量%となるように、64%硫酸水溶液に綿状繊維を添加して第1の懸濁液を調製し、懸濁液中にて45℃で60分間綿状繊維を加水分解させた。第1の懸濁液をイオン交換水により5倍に希釈し、懸濁物を沈降させて上澄み液を除く操作を、上澄み液のpHが5以上になるまで繰り返した。得られた懸濁物を遠心分離により濃縮し、その後イオン交換水を添加して固形分濃度を2質量%に調整し、第2の懸濁液を得た。第2の懸濁液を超音波ホモジナイザー(US300E、日本精機製作所製)により解繊処理し、次いでスプレードライ方式により水を除去しパウダー状のCNCを得た。
(Manufacturing of CNC)
A sheet of coniferous sulfite pulp is roughly crushed by a dry method to obtain cotton-like fibers, and cotton-like fibers are added to a 64% sulfuric acid aqueous solution so that the solid content concentration of the cotton-like fibers becomes 3% by mass. A suspension was prepared and the cotton fibers were hydrolyzed in the suspension at 45 ° C. for 60 minutes. The operation of diluting the first suspension with ion-exchanged water 5-fold, allowing the suspension to settle and removing the supernatant was repeated until the pH of the supernatant became 5 or higher. The obtained suspension was concentrated by centrifugation, and then ion-exchanged water was added to adjust the solid content concentration to 2% by mass to obtain a second suspension. The second suspension was defibrated by an ultrasonic homogenizer (US300E, manufactured by Nippon Seiki Seisakusho), and then water was removed by a spray dry method to obtain a powdery CNC.
(CNT)
 各実施例及び比較例で用いるカーボンナノチューブは下記のとおりである。尚、各カーボンナノチューブは市販品である。
 CNT(A):カーボンナノチューブ
(商品名:K-nanos100P、多層型CNT、Kumho Petrochemical社製、繊維長(Bundle Diameter)3μm、繊維径8~15nm、比表面積220m/g)
 CNT(B):カーボンナノチューブ
(商品名:nanocyl-7000、多層型CNT、nanocyl社製、数平均繊維長1.5μm、数平均繊維径9.5nm、比表面積250~300m/g)
(CNT)
The carbon nanotubes used in each Example and Comparative Example are as follows. Each carbon nanotube is a commercially available product.
CNT (A): Carbon nanotube (trade name: K-nanos100P, multi-walled CNT, manufactured by Kumho Petrochemical, fiber length (Bundle Diameter) 3 μm, fiber diameter 8 to 15 nm, specific surface area 220 m 2 / g)
CNT (B): Carbon nanotube (trade name: nanocil-7000, multi-walled CNT, manufactured by nanocil, number average fiber length 1.5 μm, number average fiber diameter 9.5 nm, specific surface area 250 to 300 m 2 / g)
(実施例1)
 得られたCNCを分散剤としてイオン交換水に添加して攪拌し、次いでCNT(A)をイオン交換水と共に徐々に添加し、混合液を得た。混合液中のCNCの濃度は2質量%であり、CNT(A)の濃度は2質量%であった。得られた混合液を、バイオミキサー(BM-2型、日本精機製作所)を用いて30分間分散処理し、60メッシュ篩で濾した後、高圧ホモジナイザー(商品名:アルティマイザー、スギノマシン社製)により200MPaの圧力にて10回パスさせカーボンナノチューブ分散液を得た。
(Example 1)
The obtained CNC was added to ion-exchanged water as a dispersant and stirred, and then CNT (A) was gradually added together with ion-exchanged water to obtain a mixed solution. The concentration of CNC in the mixed solution was 2% by mass, and the concentration of CNT (A) was 2% by mass. The obtained mixed solution was dispersed for 30 minutes using a biomixer (BM-2 type, Nissei Tokyo Office), filtered through a 60-mesh sieve, and then a high-pressure homogenizer (trade name: Ultimizer, manufactured by Sugino Machine Limited). A carbon nanotube dispersion was obtained by passing the mixture 10 times at a pressure of 200 MPa.
(実施例2)
 混合液中のCNCの濃度が0.2質量%になるようにCNCを添加した以外は実施例1と同様にしてカーボンナノチューブ分散液を得た。
(Example 2)
A carbon nanotube dispersion was obtained in the same manner as in Example 1 except that CNC was added so that the concentration of CNC in the mixed solution was 0.2% by mass.
(実施例3)
 混合液中のCNCの濃度が10質量%になるようにCNCを添加した以外は実施例1と同様にしてカーボンナノチューブ分散液を得た。
(Example 3)
A carbon nanotube dispersion was obtained in the same manner as in Example 1 except that CNC was added so that the concentration of CNC in the mixed solution was 10% by mass.
(実施例4)
 混合液中のCNT(A)の濃度が1質量%になるようにCNT(A)を添加し、CNCの濃度が1質量%になるようにCNCを添加した以外は実施例1と同様にしてカーボンナノチューブ分散液を得た。
(Example 4)
Same as in Example 1 except that CNT (A) was added so that the concentration of CNT (A) in the mixed solution was 1% by mass, and CNC was added so that the concentration of CNC was 1% by mass. A carbon nanotube dispersion was obtained.
(実施例5)
 混合液中のCNT(A)の濃度が1質量%になるようにCNT(A)を添加し、CNCの濃度が0.1質量%になるようにCNCを添加した以外は実施例1と同様にしてカーボンナノチューブ分散液を得た。
(Example 5)
Same as in Example 1 except that CNT (A) was added so that the concentration of CNT (A) in the mixed solution was 1% by mass, and CNC was added so that the concentration of CNC was 0.1% by mass. A carbon nanotube dispersion was obtained.
(実施例6)
 混合液中のCNT(A)の濃度が1質量%になるようにCNT(A)を添加し、CNCの濃度が10質量%になるようにCNCを添加した以外は実施例1と同様にしてカーボンナノチューブ分散液を得た。
(Example 6)
Same as in Example 1 except that CNT (A) was added so that the concentration of CNT (A) in the mixed solution was 1% by mass, and CNC was added so that the concentration of CNC was 10% by mass. A carbon nanotube dispersion was obtained.
(実施例7)
 CNT(A)をCNT(B)に変更し、混合液中のCNT(B)の濃度が1.5質量%になるようにCNT(A)を添加し、CNCの濃度が1.5質量%になるようにCNCを添加した以外は実施例1と同様にしてカーボンナノチューブ分散液を得た。
(Example 7)
Change CNT (A) to CNT (B), add CNT (A) so that the concentration of CNT (B) in the mixed solution is 1.5% by mass, and the concentration of CNC is 1.5% by mass. A carbon nanotube dispersion was obtained in the same manner as in Example 1 except that CNC was added so as to become.
(比較例1)
 CNCを、広葉樹クラフトパルプを機械的に解繊処理(処理機:スーパーマスコロイダー、増幸産業社製)することにより得られたセルロースナノファイバーに変更した以外は実施例1と同様にして、カーボンナノチューブ分散液を得た。
(Comparative Example 1)
Carbon nanotubes in the same manner as in Example 1 except that the CNC was changed to cellulose nanofibers obtained by mechanically defibrating hardwood kraft pulp (processing machine: Super Mascoroider, manufactured by Masuko Sangyo Co., Ltd.). A dispersion was obtained.
(比較例2)
 CNCをカルボキシメチルセルロース(CMC、セロゲンPR、第一工業製薬製)に変更した以外は実施例1と同様にして処理したが、高圧ホモジナイザー処理中に粘度が上昇し、高圧ホモジナイザー内が閉塞して目的とするカーボンナノチューブ分散液を得ることができなかった。
(Comparative Example 2)
The treatment was carried out in the same manner as in Example 1 except that the CNC was changed to carboxymethyl cellulose (CMC, cellogen PR, manufactured by Dai-ichi Kogyo Seiyaku), but the viscosity increased during the high-pressure homogenizer treatment, and the inside of the high-pressure homogenizer was blocked for the purpose. It was not possible to obtain the carbon nanotube dispersion liquid.
(比較例3)
 CNCをカルボキシメチルセルロース(CMC、セロゲンWS-C、第一工業製薬製)に変更し、混合液中のCNT(A)の濃度が1.5質量%になるようにCNT(A)を添加し、カルボキシメチルセルロースの濃度が1.5質量%になるようにカルボキシメチルセルロースを添加した以外は実施例1と同様にして処理したが、高圧ホモジナイザー処理中に粘度が上昇し、高圧ホモジナイザー内が閉塞して目的とするカーボンナノチューブ分散液を得ることができなかった。
(Comparative Example 3)
CNC was changed to carboxymethyl cellulose (CMC, cellogen WS-C, manufactured by Dai-ichi Kogyo Seiyaku), and CNT (A) was added so that the concentration of CNT (A) in the mixed solution was 1.5% by mass. The treatment was carried out in the same manner as in Example 1 except that carboxymethyl cellulose was added so that the concentration of carboxymethyl cellulose became 1.5% by mass, but the viscosity increased during the high-pressure homogenizer treatment, and the inside of the high-pressure homogenizer was blocked for the purpose. It was not possible to obtain the carbon nanotube dispersion liquid.
(比較例4)
 混合液にCNCを添加しなかった以外は実施例1と同様にして、カーボンナノチューブ分散液を得た。
(Comparative Example 4)
A carbon nanotube dispersion was obtained in the same manner as in Example 1 except that CNC was not added to the mixed solution.
(比較例5)
 CNCを、分散効果を有する界面活性剤(ドデシル硫酸ナトリウム、東京化成工業社製)に変更した以外は実施例1と同様としたが、バイオミキサーでの分散処理の段階で多量の泡が発生し、高圧ホモジナイザーでの処理を行うことができなかった。
(Comparative Example 5)
The same as in Example 1 except that the CNC was changed to a surfactant having a dispersing effect (sodium dodecyl sulfate, manufactured by Tokyo Chemical Industry Co., Ltd.), but a large amount of bubbles were generated at the stage of the dispersion treatment with the biomixer. , The treatment with the high pressure homogenizer could not be performed.
 各実施例及び比較例で得たナノカーボン分散液の組成及び評価を表1に記載した。尚、ナノカーボン分散液の評価は、それぞれ以下の方法を用いた。 Table 1 shows the composition and evaluation of the nanocarbon dispersions obtained in each Example and Comparative Example. The following methods were used for the evaluation of the nanocarbon dispersion.
(分散性)
 分散処理して得られたナノカーボン分散液をCNT濃度が0.05質量%となるようイオン交換水で希釈し、ガラス製バイアル瓶で1時間放置した後に目視観察にて以下の基準で評価した。
 A:凝集物の沈降及びCNTと水との分離が無く良好である。
 B:凝集物の沈降は無く、CNTと水との分離が僅かであり良好である。
 C:細かい凝集物があり、CNTと水との小さな分離も確認できる(実用下限)。
 D:凝集物の殆どが大きく、水との分離も大きい(実用不可)。
(Dispersiveness)
The nanocarbon dispersion obtained by the dispersion treatment was diluted with ion-exchanged water so that the CNT concentration was 0.05% by mass, left in a glass vial for 1 hour, and then evaluated by visual observation according to the following criteria. ..
A: It is good because there is no sedimentation of aggregates and separation of CNT and water.
B: There is no sedimentation of aggregates, and the separation between CNT and water is slight and good.
C: There are fine aggregates, and a small separation between CNT and water can be confirmed (lower limit of practical use).
D: Most of the agglomerates are large, and the separation from water is also large (not practical).
(流動性)
 分散処理して得られたナノカーボン分散液の粘度をB型粘度計(No.1~4ローター)(商品名:B型粘度計、型式:BM、東京計器製作所製)を用い、20℃にて回転数60rpmで1分間回転させて粘度を測定し、その数値から下記A~Dの基準で評価した。
 A:B型粘度は100mPa・s以下であり、流動性が非常に良好である。
 B:B型粘度は1000mPa・s以下であり、流動性が良好である。
 C:B型粘度は2000mPa・s以下であり、流動性が確認できる(実用下限)。
 D:B型粘度は5000mPa・sを超え、流動性に欠ける(実用不可)。
(Liquidity)
The viscosity of the nanocarbon dispersion obtained by the dispersion treatment was adjusted to 20 ° C. using a B-type viscometer (No. 1 to 4 rotor) (trade name: B-type viscometer, model: BM, manufactured by Tokyo Keiki Seisakusho). The viscosity was measured by rotating at a rotation speed of 60 rpm for 1 minute, and the value was evaluated according to the following criteria A to D.
A: B type viscosity is 100 mPa · s or less, and the fluidity is very good.
B: B-type viscosity is 1000 mPa · s or less, and the fluidity is good.
C: B-type viscosity is 2000 mPa · s or less, and fluidity can be confirmed (practical lower limit).
D: B-type viscosity exceeds 5000 mPa · s and lacks fluidity (not practical).

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果より、実施例1~7では、安定的に分散し、流動性の良好なカーボンナノ材料分散液が得られた。比較例1はCNCの代わりにCNFを用いたが分散性、流動性ともに悪いものとなった。比較例2及び比較例3では、分散剤としてCNCの代わりにCMCを用いたため、粘度が高くかつ粘調質となり分散機器を閉塞させ分散液を得ることができなかった。比較例4ではCNCを使用しなかったため、疎水性の高いCNT単独では分散できず、大きな凝集体となり沈降を生じた。比較例5では分散剤としてCNCの代わりに界面活性剤を用いたため、分散処理の際、泡立ちが生じ処理を進めることができなかった。 From the results in Table 1, in Examples 1 to 7, carbon nanomaterial dispersions that were stably dispersed and had good fluidity were obtained. In Comparative Example 1, CNF was used instead of CNC, but both dispersibility and fluidity were poor. In Comparative Example 2 and Comparative Example 3, since CMC was used as the dispersant instead of CNC, the viscosity was high and the viscosity became viscous, and the dispersion equipment was clogged and the dispersion liquid could not be obtained. Since CNC was not used in Comparative Example 4, CNTs having high hydrophobicity alone could not be dispersed, resulting in large aggregates and sedimentation. In Comparative Example 5, since a surfactant was used instead of CNC as the dispersant, foaming occurred during the dispersion treatment and the treatment could not proceed.
(分散液1~分散液4の調製)
 実施例6の分散液に相当する分散液1、実施例3の分散液に相当する分散液2、実施例1の分散液に相当する分散液3、及び実施例5の分散液に相当する分散液4をそれぞれ調製した。分散液1~分散液4の調製で用いるカーボンナノチューブはCNT(A)であり、分散剤はCNCであった。
(Preparation of dispersion liquid 1 to dispersion liquid 4)
Dispersion 1 corresponding to the dispersion of Example 6, dispersion 2 corresponding to the dispersion of Example 3, dispersion 3 corresponding to the dispersion of Example 1, and dispersion corresponding to the dispersion of Example 5. Liquid 4 was prepared respectively. The carbon nanotubes used in the preparation of the dispersion liquids 1 to 4 were CNT (A), and the dispersant was CNC.
(塗工紙の作製)
 支持体である上質紙に顔料塗工層が設けられた紙(北越コーポレーション社製の「ミューコートネオス」(登録商標)、坪量157g/m)を「紙基材」として準備し、分散液1をバーコーターによって紙に塗工させた後、120℃で3分間乾燥させて水分を蒸発させ、塗工紙を作製した。すなわち、「塗工紙」は、紙基材に、CNTとCNCとを含有する塗工層が設けられたものである。分散液2、分散液3及び分散液4についても、それぞれ、分散液1の場合と同様の操作によって、塗工紙をそれぞれ作製した。塗工量については、各塗工紙の塗工層の理論的な厚さが一定になるように塗工量を調整した。
(Making coated paper)
Paper with a pigment coating layer on high-quality paper that is a support ("Mucoat Neos" (registered trademark) manufactured by Hokuetsu Corporation, basis weight 157 g / m 2 ) is prepared as a "paper base material" and dispersed. After the liquid 1 was coated on the paper with a bar coater, it was dried at 120 ° C. for 3 minutes to evaporate the water content, and a coated paper was prepared. That is, the "coated paper" is a paper base material provided with a coating layer containing CNT and CNC. For each of the dispersion liquid 2, the dispersion liquid 3, and the dispersion liquid 4, coated paper was prepared by the same operation as in the case of the dispersion liquid 1. Regarding the coating amount, the coating amount was adjusted so that the theoretical thickness of the coating layer of each coated paper was constant.
(乾燥フィルムの作製)
 分散液1、分散液2、分散液3及び分散液4を、それぞれ直径8.5cmのシャーレに入れて、50℃で一晩乾燥させて水分を蒸発させ、乾燥フィルムをそれぞれ作製した。すなわち、「乾燥フィルム」は、CNTとCNCとを含有するシートであり、紙などの基材に設けられていない状態のものである。作製後、得られた各乾燥フィルムの成膜性を観察した。具体的な評価基準は、以下のとおりである。
 A:シャーレ全面に、フィルムの形状及び柔軟性を有し、クラックがなく、かつナノカーボンとセルロースナノクリスタルとを相互に混合状態で含有する固形物が形成された。
 B:シャーレ全面に、フィルムの形状及び柔軟性を有し、かつナノカーボンとセルロースナノクリスタルとを相互に混合状態で含有する固形物が形成されたが、この固形物には、クラックが生じていた。
 C:シャーレの黒いスポットの部分のみに、フィルムの形状及び柔軟性を有し、クラックがなく、かつナノカーボンとセルロースナノクリスタルとを相互に混合状態で含有する固形物が形成された。
(Making a dry film)
The dispersion liquid 1, the dispersion liquid 2, the dispersion liquid 3 and the dispersion liquid 4 were each placed in a petri dish having a diameter of 8.5 cm and dried at 50 ° C. overnight to evaporate the water content, respectively, to prepare a dried film. That is, the "dry film" is a sheet containing CNT and CNC, and is not provided on a base material such as paper. After production, the film-forming property of each of the obtained dry films was observed. The specific evaluation criteria are as follows.
A: A solid substance having the shape and flexibility of a film, having no cracks, and containing nanocarbon and cellulose nanocrystals in a mutually mixed state was formed on the entire surface of the petri dish.
B: A solid substance having the shape and flexibility of a film and containing nanocarbon and cellulose nanocrystals in a mutually mixed state was formed on the entire surface of the petri dish, but cracks were generated in this solid substance. It was.
C: A solid substance having the shape and flexibility of the film, having no cracks, and containing nanocarbon and cellulose nanocrystals in a mutually mixed state was formed only in the black spot portion of the petri dish.
(成膜性の評価結果)
 図1a~図1dは、カーボンナノチューブ分散液をシャーレに入れて50℃で一晩乾燥させて得られた乾燥フィルムの外観の画像である。表2に、乾燥フィルムの製膜性の評価結果を示した。
(Evaluation result of film formation property)
1a to 1d are images of the appearance of a dried film obtained by putting a carbon nanotube dispersion in a petri dish and drying it at 50 ° C. overnight. Table 2 shows the evaluation results of the film-forming property of the dried film.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図1a~図1d及び表2に示すように、分散液1~分散液3は、分散液4に比べて、CNTの分散性が良いため成膜性が良好だった。 As shown in FIGS. 1a to 1d and Table 2, the dispersion liquids 1 to 3 have better CNT dispersibility than the dispersion liquid 4, and therefore have good film forming properties.
 分散液1~3では、成膜性に有意差は、確認されず、シャーレ全面に、フィルムの形状及び柔軟性を有し、クラックがなく、かつナノカーボンとセルロースナノクリスタルとを相互に混合状態で含有する固形物が形成された。分散液4は、CNTに対するCMCの含有量が少なすぎたため、シャーレの黒いスポットの部分のみに、フィルムの形状及び柔軟性を有し、クラックがなく、かつナノカーボンとセルロースナノクリスタルとを相互に混合状態で含有する固形物が形成された。 No significant difference in film formation was confirmed between the dispersions 1 to 3, the shape and flexibility of the film were observed on the entire surface of the petri dish, there were no cracks, and nanocarbon and cellulose nanocrystals were mixed with each other. The solid matter contained in was formed. Since the content of CMC with respect to CNT was too low in the dispersion liquid 4, the shape and flexibility of the film were obtained only in the black spots of the petri dish, there were no cracks, and the nanocarbon and the cellulose nanocrystals were mutually exchanged. A solid containing in a mixed state was formed.
(同軸管法による電磁波シールド性の評価方法)
 同軸管法において、「S21」を測定することにより、電磁波シールド性を評価した。「S21」は透過損失に相当し、「S21」の絶対値が大きいほど、電磁波シールド性が高い。試験機としては、ROHDE&SCHWARZ社製のネットワークアナライザー「ZVA67」、及びKEYCOM社製のシールド効果測定キット「S-39D」と「GPC7」を用いた。測定周波数を、45MHz~3GHzと、500MHz~18GHzと、で分けて測定を行った。
(Evaluation method of electromagnetic wave shielding property by coaxial tube method)
In the coaxial tube method, the electromagnetic wave shielding property was evaluated by measuring "S 21 ". “S 21 ” corresponds to transmission loss, and the larger the absolute value of “S 21 ”, the higher the electromagnetic wave shielding property. As the testing machine, a network analyzer "ZVA67" manufactured by ROHDE & SCHWARZ and shield effect measurement kits "S-39D" and "GPC7" manufactured by KEYCOM were used. The measurement frequency was divided into 45 MHz to 3 GHz and 500 MHz to 18 GHz for measurement.
(同軸管法による電磁波シールド性の評価結果)
 (1)CNTとCNCとの比率を変えたときの評価結果
 上記のように作製した塗工紙および乾燥フィルムの電磁波シールド性を評価した。表2に、塗工紙の電磁波シールド性の評価結果を示した。図2及び図3は、測定周波数に対する塗工紙の「S21」の変化を示すグラフであって、図2における測定周波数は45MHz~3GHzであり、図3における測定周波数は500MHz~18GHzである。表2に示す@300MHzと表記した「S21」は、図2から周波数が300MHzのときの値を抜き出したものである。表2に示す@7GHzと表記した「S21」は、図3から周波数が7GHzのときの値を抜き出したものである。図4は、表2に示す「CNTとCNCとの合計質量に対するCNTの質量割合」に対して「S21」をプロットしたグラフである。「CNTとCNCとの合計質量に対するCNTの質量割合」は、CNTの質量とCNCの質量との合計を100質量%としたときのCNTが占める割合(質量%)である。
(Evaluation result of electromagnetic wave shielding property by coaxial tube method)
(1) Evaluation result when the ratio of CNT and CNC was changed The electromagnetic wave shielding property of the coated paper and the dried film produced as described above was evaluated. Table 2 shows the evaluation results of the electromagnetic wave shielding property of the coated paper. 2 and 3 are graphs showing the change of "S 21 " of the coated paper with respect to the measurement frequency. The measurement frequency in FIG. 2 is 45 MHz to 3 GHz, and the measurement frequency in FIG. 3 is 500 MHz to 18 GHz. .. “S 21 ” indicated as @ 300 MHz shown in Table 2 is obtained by extracting the value when the frequency is 300 MHz from FIG. “S 21 ” shown in Table 2 as @ 7 GHz is obtained by extracting the value when the frequency is 7 GHz from FIG. FIG. 4 is a graph in which "S 21 " is plotted against "mass ratio of CNT to total mass of CNT and CNC" shown in Table 2. The "mass ratio of CNT to the total mass of CNT and CNC" is the ratio (mass%) occupied by CNT when the total of the mass of CNT and the mass of CNC is 100% by mass.
 また、表2に分散液の塗工層の厚さを示した。ここで、分散液の塗工層の厚さとは、分散液を乾燥させることによって得られた塗工層の厚さをいう。分散液の塗工層の厚さは、SEMの解析にて測定した。具体的には、塗工紙全体の厚さから、紙基材の厚さ(上質紙の厚さ及び顔料塗工層の厚さ)を差し引いた厚さとした。 Table 2 shows the thickness of the coating layer of the dispersion liquid. Here, the thickness of the coating layer of the dispersion liquid means the thickness of the coating layer obtained by drying the dispersion liquid. The thickness of the coating layer of the dispersion was measured by SEM analysis. Specifically, the thickness was obtained by subtracting the thickness of the paper base material (thickness of the woodfree paper and the thickness of the pigment coating layer) from the thickness of the entire coated paper.
 表2及び図2~図4に示すように、分散液1~分散液3から作製された塗工紙は、CNTとCNCとの合計質量に対するCNTの質量割合が多くなるほど、周波数300MHz及び7GHz共に、「S21」の絶対値は大きくなった。分散液4を用いて作製された塗工紙は、分散液3を用いて作製された塗工紙に比べて、周波数300MHz及び7GHz共に、「S21」の絶対値は小さかった。分散液3を用いて作製された塗工紙の「S21」の絶対値と比べて、分散液4を用いて作製された塗工紙の「S21」の絶対値が小さいのは、上記のように、分散液3の分散性と比べて、分散液4の分散性が悪いので、電磁波シールド性が低くなったためと考えられる。 As shown in Table 2 and FIGS. 2 to 4, the coated paper prepared from the dispersion liquids 1 to 3 has a frequency of both 300 MHz and 7 GHz as the mass ratio of CNT to the total mass of CNT and CNC increases. , The absolute value of "S 21 " has increased. The coated paper prepared using the dispersion liquid 4 had a smaller absolute value of "S 21 " at both frequencies of 300 MHz and 7 GHz than the coated paper prepared using the dispersion liquid 3. The absolute value of "S 21 " of the coated paper produced using the dispersion liquid 4 is smaller than the absolute value of "S 21 " of the coated paper produced using the dispersion liquid 3 as described above. As described above, the dispersibility of the dispersion liquid 4 is poorer than that of the dispersion liquid 3, and it is considered that the electromagnetic wave shielding property is lowered.
 分散液1~分散液4を用いて作製された塗工紙の評価結果から、分散液中のCNTとCNCとの質量基準の含有比率をCNT:CNC=1:0.1~1:5、好ましくは1:1とすることにより、電磁波シールド性を高くすることができることがわかった。 From the evaluation results of the coated paper prepared by using the dispersion liquids 1 to 4, the mass-based content ratio of CNT and CNC in the dispersion liquid was determined to be CNT: CNC = 1: 0.1 to 1: 5. It was found that the electromagnetic wave shielding property can be improved by preferably setting the ratio to 1: 1.
 (2)厚さを変えたときの評価結果
 上述した分散液3(分散液中のCNTと分散剤との質量基準の含有比率1:1)を用い、分散液3の塗工量を変えることによって分散液の塗工層の厚さをそれぞれ変えた以外は、上述した塗工紙の作製と同様に、塗工紙をそれぞれ作製した。また、上述した分散液3を用い、分散液3をシャーレに入れる量を変えることによって乾燥フィルムの厚さを変えた以外は、上述した乾燥フィルムの作製と同様に、乾燥フィルムを作製した。乾燥フィルムの厚さは、分散液の塗工層の厚さの測定と同様に、SEMの解析にて測定した。そして、塗工紙及び乾燥フィルムの電磁波シールド性を評価した。
(2) Evaluation result when the thickness is changed Using the above-mentioned dispersion liquid 3 (mass-based content ratio of CNT and dispersant in the dispersion liquid 1: 1), the coating amount of the dispersion liquid 3 is changed. Each of the coated papers was prepared in the same manner as the above-mentioned preparation of the coated papers, except that the thickness of the coated layer of the dispersion liquid was changed. Further, a dry film was produced in the same manner as in the production of the dry film described above, except that the thickness of the dry film was changed by using the dispersion liquid 3 described above and changing the amount of the dispersion liquid 3 put into the petri dish. The thickness of the dry film was measured by SEM analysis in the same manner as the measurement of the thickness of the coating layer of the dispersion liquid. Then, the electromagnetic wave shielding property of the coated paper and the dried film was evaluated.
 図5及び図6は、周波数に対する「S21」を示すグラフである。図7及び図8は、厚さに対する「S21」を示すグラフあり、図7に示す「S21」は、図5から周波数が300MHzのときの値を抜き出したものである。図8に示す「S21」は、図6から周波数が7GHzの値を抜き出したものである。なお、図5及び図6において、0.3μm~4.5μmの数値で示した各プロファイルは、その厚さで分散液の塗工層を有する塗工紙のプロファイルであり、158μmの数値で示したプロファイルは、厚さ158μmの乾燥フィルムのプロファイルである。 5 and 6 are graphs showing "S 21 " for frequency. 7 and 8, there graph showing the "S 21" relative to the thickness, shown in FIG. 7, "S 21" is one in which the frequency is extracted the value at 300MHz from FIG. “S 21 ” shown in FIG. 8 is obtained by extracting a value having a frequency of 7 GHz from FIG. In addition, in FIG. 5 and FIG. 6, each profile shown by the numerical value of 0.3 μm to 4.5 μm is the profile of the coated paper which has the coating layer of the dispersion liquid by the thickness, and is shown by the numerical value of 158 μm. The profile is a profile of a dry film having a thickness of 158 μm.
 図7及び図8に示すように、厚さが大きくなるほど、電磁波シールド性が高くなることがわかった。図7及び図8に示すように、特に測定周波数300MHz及び7GHzにおいて、厚さ40μmから158μmにかけて、電磁波シールド性の向上が緩やかになることから、厚さ160μm以上では、電磁波シールド性が飽和する傾向にあることが予測できた。本評価により、厚さを40μm以上160μm以下とすることにより、透過損失を-30dB以下に保ちつつ、CNTの量を減らせることが予測できた。 As shown in FIGS. 7 and 8, it was found that the larger the thickness, the higher the electromagnetic wave shielding property. As shown in FIGS. 7 and 8, especially at the measurement frequencies of 300 MHz and 7 GHz, the improvement of the electromagnetic wave shielding property becomes gradual from the thickness of 40 μm to 158 μm, so that the electromagnetic wave shielding property tends to be saturated at the thickness of 160 μm or more. I was able to predict that it was in. From this evaluation, it was predicted that the amount of CNTs could be reduced while keeping the transmission loss at -30 dB or less by setting the thickness to 40 μm or more and 160 μm or less.
(マイクロストリップライン法による電磁波吸収性の評価方法)
 以上の電磁波シールド性の評価は同軸管法で行ったが、本評価ではIEC 62333に準拠した近傍界用電磁波評価システムを用いて、マイクロストリップライン法によって電磁波吸収性の評価を行った。上述した「(2)厚さを変えたときの評価」での塗工紙の作製と同様に、塗工量を変えて分散液3を塗工して、分散液の塗工層の厚さが異なる(分散液の塗工層の厚さ0.4μm、2.4μm、4.5μm)塗工紙を作製した。そして、塗工紙の電磁波吸収性を評価した。さらに、参考例として、紙基材(北越コーポレーション社製の「ミューコートネオス」、坪量157g/m)、及びアルミ箔(厚さ6.5μm)の電磁波吸収性を評価した。
(Evaluation method of electromagnetic wave absorption by microstrip line method)
The above evaluation of electromagnetic wave shielding property was performed by the coaxial tube method, but in this evaluation, the electromagnetic wave absorption property was evaluated by the microstrip line method using a near-field electromagnetic wave evaluation system compliant with IEC 62333. Similar to the preparation of the coated paper in "(2) Evaluation when the thickness is changed" described above, the dispersion liquid 3 is coated by changing the coating amount, and the thickness of the coating layer of the dispersion liquid is applied. (Thickness of the coating layer of the dispersion liquid 0.4 μm, 2.4 μm, 4.5 μm) were produced. Then, the electromagnetic wave absorption of the coated paper was evaluated. Further, as a reference example, the electromagnetic wave absorption of a paper base material (“Mucoat Neos” manufactured by Hokuetsu Corporation, basis weight 157 g / m 2 ) and aluminum foil (thickness 6.5 μm) was evaluated.
 試験機としては、ROHDE&SCHWARZ社製のネットワークアナライザー「ZVA67」、及びKEYCOM社製のテストフイクスチャ「TF-18C」を用いた。測定周波数は、500MHz~18GHzとした。 As the testing machine, a network analyzer "ZVA67" manufactured by ROHDE & SCHWARZ and a test fixture "TF-18C" manufactured by KEYCOM were used. The measurement frequency was 500 MHz to 18 GHz.
(マイクロストリップライン法による電磁波吸収性の評価結果)
 図9は、マイクロストリップライン法による電磁波吸収性の評価結果を示すグラフである。なお、図9の縦軸の「Rtp」は、伝送減衰率を示す。伝送減衰率の絶対値が大きいほど、電磁波吸収性が高い。
(Evaluation result of electromagnetic wave absorption by microstrip line method)
FIG. 9 is a graph showing the evaluation results of electromagnetic wave absorption by the microstrip line method. The vertical axis “Rtp” in FIG. 9 indicates the transmission attenuation factor. The larger the absolute value of the transmission attenuation factor, the higher the electromagnetic wave absorption.
 図9に示すように、CNTとCNCとを含有する塗工層が設けられた塗工紙は、紙基材及びアルミ箔よりも、電磁波吸収性が高いことがわかった。本評価により、CNTを含む塗工紙の電磁波吸収性を確認することができた。 As shown in FIG. 9, it was found that the coated paper provided with the coating layer containing CNT and CNC has higher electromagnetic wave absorption than the paper base material and the aluminum foil. By this evaluation, it was possible to confirm the electromagnetic wave absorption of the coated paper containing CNT.

Claims (13)

  1.  ナノカーボンとセルロースナノクリスタルと分散媒とを含有することを特徴とするナノカーボン分散液。 A nanocarbon dispersion characterized by containing nanocarbon, cellulose nanocrystals, and a dispersion medium.
  2.  前記ナノカーボンの濃度が1質量%以上であることを特徴とする請求項1に記載のナノカーボン分散液。 The nanocarbon dispersion according to claim 1, wherein the concentration of the nanocarbon is 1% by mass or more.
  3.  前記ナノカーボンと前記セルロースナノクリスタルとの質量基準の含有比率(ナノカーボン:セルロースナノクリスタル)が1:0.1~1:10であることを特徴とする請求項1又は2に記載のナノカーボン分散液。 The nanocarbon according to claim 1 or 2, wherein the content ratio (nanocarbon: cellulose nanocrystal) based on the mass of the nanocarbon and the cellulose nanocrystal is 1: 0.1 to 1:10. Dispersion solution.
  4.  前記ナノカーボンの濃度が1質量%以上4質量%以下であり、かつ前記ナノカーボンと前記セルロースナノクリスタルとの合計濃度が1質量%を超えて15質量%以下であることを特徴とする請求項1~3のいずれか1つに記載のナノカーボン分散液。 The claim is characterized in that the concentration of the nanocarbon is 1% by mass or more and 4% by mass or less, and the total concentration of the nanocarbon and the cellulose nanocrystal is more than 1% by mass and 15% by mass or less. The nanocarbon dispersion according to any one of 1 to 3.
  5.  前記分散媒が極性溶媒であることを特徴とする請求項1~4のいずれか1つに記載のナノカーボン分散液。 The nanocarbon dispersion liquid according to any one of claims 1 to 4, wherein the dispersion medium is a polar solvent.
  6.  前記極性溶媒が、アルコール類、ケトン類、アミド類若しくは水又はこれらの混合物であることを特徴とする請求項5に記載のナノカーボン分散液。 The nanocarbon dispersion according to claim 5, wherein the polar solvent is an alcohol, a ketone, an amide, water, or a mixture thereof.
  7.  ナノカーボンとセルロースナノクリスタルと分散媒とを含有する混合液を分散機で分散処理することを特徴とするナノカーボン分散液の製造方法。 A method for producing a nanocarbon dispersion, which comprises dispersing a mixture containing nanocarbon, cellulose nanocrystals, and a dispersion medium with a disperser.
  8.  前記混合液が、前記分散媒に前記セルロースナノクリスタルを添加して攪拌した後に前記ナノカーボンを添加して調製した混合液であることを特徴とする請求項7に記載のナノカーボン分散液の製造方法。 The production of the nanocarbon dispersion according to claim 7, wherein the mixture is a mixture prepared by adding the cellulose nanocrystals to the dispersion medium, stirring the mixture, and then adding the nanocarbons. Method.
  9.  前記セルロースナノクリスタルがスプレードライ品であることを特徴とする請求項7又は8に記載のナノカーボン分散液の製造方法。 The method for producing a nanocarbon dispersion according to claim 7 or 8, wherein the cellulose nanocrystal is a spray-dried product.
  10.  前記分散機がホモジナイザーであることを特徴とする請求項7~9のいずれか1つに記載のナノカーボン分散液の製造方法。 The method for producing a nanocarbon dispersion liquid according to any one of claims 7 to 9, wherein the disperser is a homogenizer.
  11.  セルロースナノクリスタルを含有することを特徴とするナノカーボン分散剤。 A nanocarbon dispersant characterized by containing cellulose nanocrystals.
  12.  基材と該基材の表面に設けられた塗工層とを有し、該塗工層がナノカーボンとセルロースナノクリスタルとを相互に混合状態で含有することを特徴とする電磁波遮蔽材。 An electromagnetic wave shielding material having a base material and a coating layer provided on the surface of the base material, and the coating layer contains nanocarbon and cellulose nanocrystals in a mutually mixed state.
  13.  フィルムの形状を有し、該フィルムがナノカーボンとセルロースナノクリスタルとを相互に混合状態で含有することを特徴とする電磁波遮蔽材。 An electromagnetic wave shielding material having the shape of a film and characterized in that the film contains nanocarbon and cellulose nanocrystals in a mutually mixed state.
PCT/JP2020/011197 2019-03-22 2020-03-13 Nanocarbon dispersion liquid, method for producing same, nanocarbon dispersing agent, and electromagnetic wave-shielding material WO2020195974A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021509058A JP7177912B2 (en) 2019-03-22 2020-03-13 Method for producing nanocarbon dispersion, nanocarbon dispersant and electromagnetic wave shielding material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2019/012112 2019-03-22
PCT/JP2019/012112 WO2020194380A1 (en) 2019-03-22 2019-03-22 Nanocarbon dispersion liquid, method for producing same, and nanocarbon dispersing agent

Publications (1)

Publication Number Publication Date
WO2020195974A1 true WO2020195974A1 (en) 2020-10-01

Family

ID=72609311

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/012112 WO2020194380A1 (en) 2019-03-22 2019-03-22 Nanocarbon dispersion liquid, method for producing same, and nanocarbon dispersing agent
PCT/JP2020/011197 WO2020195974A1 (en) 2019-03-22 2020-03-13 Nanocarbon dispersion liquid, method for producing same, nanocarbon dispersing agent, and electromagnetic wave-shielding material

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012112 WO2020194380A1 (en) 2019-03-22 2019-03-22 Nanocarbon dispersion liquid, method for producing same, and nanocarbon dispersing agent

Country Status (2)

Country Link
JP (1) JP7177912B2 (en)
WO (2) WO2020194380A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021065432A1 (en) * 2019-10-02 2021-04-08

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116751388B (en) * 2023-07-02 2024-05-24 南昌大学附属口腔医院(江西省口腔医院) High-strength conductive cellulose nanocrystalline/carbon nanotube/aramid nanofiber composite membrane and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115560A1 (en) * 2013-01-24 2014-07-31 日本ゼオン株式会社 Carbon nanotube dispersion, method for manufacturing same, carbon nanotube composition, and method for manufacturing same
CN108117068A (en) * 2018-01-02 2018-06-05 浙江理工大学 A kind of preparation method of graphene/nanometer microcrystalline cellulose aqueous dispersion liquid
CN108359307A (en) * 2018-03-23 2018-08-03 南京林业大学 High dispersive graphene heat conduction water paint and preparation method thereof
JP2018532815A (en) * 2015-06-30 2018-11-08 エッセンチウム・マテリアルズ,エルエルシー Synthetically modified thermoplastic polymer composites with cellulose nanomaterials

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110651335B (en) * 2017-03-17 2021-12-10 夸祖鲁-纳塔尔大学 Conductive composite material
CN108584934B (en) * 2018-04-26 2020-04-14 湖南大学 Sulfonic group functionalized graphene dispersion system and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115560A1 (en) * 2013-01-24 2014-07-31 日本ゼオン株式会社 Carbon nanotube dispersion, method for manufacturing same, carbon nanotube composition, and method for manufacturing same
JP2018532815A (en) * 2015-06-30 2018-11-08 エッセンチウム・マテリアルズ,エルエルシー Synthetically modified thermoplastic polymer composites with cellulose nanomaterials
CN108117068A (en) * 2018-01-02 2018-06-05 浙江理工大学 A kind of preparation method of graphene/nanometer microcrystalline cellulose aqueous dispersion liquid
CN108359307A (en) * 2018-03-23 2018-08-03 南京林业大学 High dispersive graphene heat conduction water paint and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021065432A1 (en) * 2019-10-02 2021-04-08
WO2021065432A1 (en) * 2019-10-02 2021-04-08 北越コーポレーション株式会社 Method for manufacturing carbon nanotube aqueous dispersion
JP7265028B2 (en) 2019-10-02 2023-04-25 北越コーポレーション株式会社 Method for producing carbon nanotube aqueous dispersion

Also Published As

Publication number Publication date
JP7177912B2 (en) 2022-11-24
WO2020194380A1 (en) 2020-10-01
JPWO2020195974A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
CN104452436B (en) A kind of nano-cellulose dispersant and its preparation method and application
WO2020195974A1 (en) Nanocarbon dispersion liquid, method for producing same, nanocarbon dispersing agent, and electromagnetic wave-shielding material
JP6345925B2 (en) Nanocomposite and method for producing nanocomposite
JP6418212B2 (en) Fine fibrous cellulose content
JP5910786B1 (en) Fine fibrous cellulose content
JP6601088B2 (en) Fine fibrous cellulose content
JP7134862B2 (en) Redispersible composition containing cellulose fibers and non-cellulose granules
Farahbakhsh et al. Mechanical and thermal investigation of thermoplastic nanocomposite films fabricated using micro-and nano-sized fillers from recycled cotton T-shirts
JP2017057391A (en) Fine fibrous cellulose-containing material
Erfanian et al. Electrochemically synthesized graphene/TEMPO-oxidized cellulose nanofibrils hydrogels: Highly conductive green inks for 3D printing of robust structured EMI shielding aerogels
JP2014189932A (en) Nonwoven fabric
WO2013183007A1 (en) High solids content microfibrillated cellulose and manufacturing thereof
Mohamed et al. Preparation of conductive cellulose paper through electrochemical exfoliation of graphite: The role of anionic surfactant ionic liquids as exfoliating and stabilizing agents
Johnson et al. Dispersion and film properties of carbon nanofiber pigmented conductive coatings
Tian et al. A facile approach for preparing nanofibrillated cellulose from bleached corn stalk with tailored surface functions
WO2019198429A1 (en) Redispersible composition containing cellulose fibers and non-cellulose powder granules
WO2021153590A1 (en) Method for producing microfibrous cellulose/nanocarbon-containing material, and microfibrous cellulose/nanocarbon-containing material
JP7402651B2 (en) Electromagnetic shield sheet
Lee et al. Functionalized carbon nanotube–cellulose nanocrystal (CNT–CNC) composite buckypaper via various methods for improved hydrophilicity performance and behavior
WO2021199649A1 (en) Electromagnetic wave shield sheet manufacturing method and electromagnetic wave shield sheet
JP2023062024A (en) Carboxymethylated cellulose nanofibers and production method therefor
JP2023000622A (en) Carbon nanotube aqueous dispersion and method for producing the same
JP7277338B2 (en) Electromagnetic wave shield sheet manufacturing method and electromagnetic wave shield sheet
Lee et al. Preparation and characterization of carbon material with cellulose types as an additive in aqueous media
EP4311386A1 (en) Electromagnetic wave noise suppressing sheet and production method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776888

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509058

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20776888

Country of ref document: EP

Kind code of ref document: A1