WO2020195838A1 - エレクトロスラグ再溶解法に用いられるフラックス、そのフラックスの溶融物を用いる高純度鋼の製造方法、および、そのフラックスの製造方法 - Google Patents

エレクトロスラグ再溶解法に用いられるフラックス、そのフラックスの溶融物を用いる高純度鋼の製造方法、および、そのフラックスの製造方法 Download PDF

Info

Publication number
WO2020195838A1
WO2020195838A1 PCT/JP2020/010554 JP2020010554W WO2020195838A1 WO 2020195838 A1 WO2020195838 A1 WO 2020195838A1 JP 2020010554 W JP2020010554 W JP 2020010554W WO 2020195838 A1 WO2020195838 A1 WO 2020195838A1
Authority
WO
WIPO (PCT)
Prior art keywords
flux
mass
crystal phase
caf
cao
Prior art date
Application number
PCT/JP2020/010554
Other languages
English (en)
French (fr)
Inventor
慧 平田
厚徳 小山
田中 孝明
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2021509005A priority Critical patent/JPWO2020195838A1/ja
Priority to EP20779826.5A priority patent/EP3950173B1/en
Publication of WO2020195838A1 publication Critical patent/WO2020195838A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/108Feeding additives, powders, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/111Treating the molten metal by using protecting powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/116Refining the metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3603Halide salts
    • B23K35/3605Fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/361Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • C21C7/0645Agents used for dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/10General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/18Electroslag remelting

Definitions

  • the present invention relates to a flux used in the electroslag remelting method, a method for producing high-purity steel using a melt of the flux, and a method for producing the flux.
  • the electroslag remelting method is a type of special melting method in which a metal material (for example, steel) is melted and smelted again to produce a high-purity metal.
  • This method is also referred to as the "ESR method", which is an acronym for the English notation Elector-Slag Remelting process (hereinafter, this notation is also used hereinafter).
  • the electrode metal is melted by the heat resistance of the slag, and (2) impurities (sulfur, oxygen, etc.) are removed when the molten metal droplets pass through the slag pool. , (3) And the molten metal solidifies at the bottom of the furnace, so that the metal material is highly purified.
  • a slag containing CaF 2 or Al 2 O 3 as a main component is often used. That is, it is often the case that a solid flux containing CaF 2 or Al 2 O 3 as a main component is melted at a high temperature to form slag.
  • Patent Document 1 describes SiO 2 : 0.2 to 15% by weight, Al 2 O 3 : 12 to 40% by weight, alkaline earth metal oxide: 15 to 40% by weight, CaF 2 : 12 to 75% by weight. Slags for the electroslag remelting method are described having analytical compositions of% by weight, FeO: 0.5% by weight or less, MnO: 1% by weight or less, and TiO 2 : 10% by weight or less. It also describes how to make it.
  • the composition of the flux to be added in the electroslag remelting method is CaO: 20 to 60 mass%, Al 2 O 3 : 10 to 40 mass%, CaF 2 : 20 to 60 mass%, and so on. It is described that iron oxide: 1 to 10 mass% and CaO / Al 2 O 3 : 1.0 to 6.0.
  • the flux used melts at a relatively low melting point to form molten slag. Since the flux has a low melting point, there are merits such as reduction of energy cost and reduction of undissolved flux.
  • the present inventors considered that there is still room for improvement in lowering the melting point of the flux, more specifically, the flux containing CaF 2 and Al 2 O 3 as main components. That is, the present inventors have conducted various studies for the purpose of providing an ESR flux having a low melting point and being easy to melt.
  • a flux used in the electroslag redissolution method contains a CaF 2 crystal phase, an Al 2 O 3 crystal phase, and a CaO ⁇ 6 Al 2 O 3 crystal phase.
  • a flux in which the content of the CaO ⁇ 6Al 2 O 3 crystal phase in the entire crystal phase in the flux is 10% by mass or more and 30% by mass or less is provided.
  • a method for producing high-purity steel which comprises a step of refining the raw material steel into high-purity steel by remelting by the electroslag remelting method.
  • a method for producing high-purity steel is provided in which the above-mentioned flux is melted as the slag.
  • the above flux manufacturing method A method for producing a flux comprises a melt-mixing step of melt-mixing a compound containing CaF 2 and a compound containing Al 2 O 3 at 1600 ° C. or higher.
  • a flux for ESR having a low melting point and being easy to melt.
  • the term "slag” basically refers to a state in which a flux that is solid at room temperature (23 ° C.) is heated and melted at a high temperature.
  • a flux that is solid at room temperature seems to be expressed as "slag").
  • the flux of the present embodiment is used in the electroslag redissolving method.
  • the flux of the present embodiment includes a CaF 2 crystal phase, an Al 2 O 3 crystal phase, and a CaO ⁇ 6 Al 2 O 3 crystal phase.
  • the content of the CaO ⁇ 6Al 2 O 3 crystal phase in the entire crystal phase in the flux is 10% by mass or more and 30% by mass or less.
  • the melting point of Al 2 O 3 among Ca F 2 and Al 2 O 3 which are the main crystal phases of the premelt flux for the ESR method is 2072 ° C (literature value), which is very high. high.
  • the melting point of CaO ⁇ 6Al 2 O 3 is about 1850 ° C. (literature value), which is lower than the melting point of Al 2 O 3 .
  • CaO ⁇ 6Al 2 O 3 contains 6 mol of Al 2 O 3 with respect to 1 mol of CaO. From this, it is presumed that CaO ⁇ 6Al 2 O 3 has physical / chemical properties close to those of Al 2 O 3 .
  • the flux of the present embodiment is used in the ESR method by containing an appropriate amount of CaO ⁇ 6Al 2 O 3 which "is considered to have properties close to Al 2 O 3 but has a melting point lower than Al 2 O 3 ". It is presumed that the melting point of the flux as a whole is lowered while having the necessary properties as a flux.
  • the content of each crystal phase of CaF 2 , Al 2 O 3 , and CaO ⁇ 6 Al 2 O 3 can be quantitatively analyzed by, for example, analyzing a powder X-ray diffraction (XRD) pattern by the Rietveld method. More specifically, by comparing the diffraction intensity-incident angle chart obtained by XRD analysis with the XRD pattern simulated from the crystal structure model, and using the least squares method so that the residuals of the experimental and calculated XRD patterns are minimized. Each content can be determined through a method of optimizing the mass fraction.
  • XRD powder X-ray diffraction
  • the content of the CaO ⁇ 6Al 2 O 3 crystal phase in the entire crystal phase in the flux of the present embodiment may be 10% by mass or more and 30% by mass or less in the entire flux. This content is preferably 12% by mass or more and 25% by mass or less, and more preferably 14% by mass or more and 20% by mass or less.
  • the content of the CaF 2 crystal phase in the flux of the present embodiment is preferably 60% by mass or more and 80% by mass or less, and more preferably 65% by mass or more and 75% by mass or less in the entire crystal phase in the flux.
  • the content of the Al 2 O 3 crystal phase in the flux of the present embodiment is preferably 5% by mass or more and 15% by mass or less, and more preferably 7% by mass or more and 13% by mass or less in the entire crystal phase in the flux. ..
  • the flux of the present embodiment preferably further contains a component other than CaF 2 and Al 2 O 3 as a chemical component.
  • the flux of the present embodiment preferably contains one or more of CaO, MgO, SiO 2, and the like.
  • the content of the CaO component in the flux of the present embodiment is preferably 0.1% by mass or more and 7% by mass or less, and more preferably 0.1% by mass or more and 5% by mass or less in the entire flux.
  • the CaO component here includes both CaO in the above-mentioned CaO ⁇ 6Al 2 O 3 crystal phase and other CaO. It is considered that when the flux contains an appropriate amount of CaO component, the basicity of the slag obtained by melting the flux can be appropriately increased while keeping the melting point of the flux low. This is preferable in terms of the ability to remove sulfur components.
  • the content thereof is preferably 0.005% by mass or more and 0.5% by mass or less, and more preferably 0.01% by mass or more and 0.03% by mass in the entire flux. It is as follows. When the flux contains an appropriate amount of MgO, the same effect as that of the CaO component tends to be obtained.
  • the content of the flux is preferably 0.3% by mass or more and 1.5% by mass or less, and more preferably 0.5% by mass or more and 1.0% by mass in the entire flux. % Or less.
  • the flux contains an appropriate amount of SiO 2 , it becomes easy to design to increase the electric resistance of the slag obtained by melting the flux while maintaining the performance such as the removability of the sulfur component. This is preferable in that the electrode metal can be easily dissolved.
  • the flux contains an appropriate amount of SiO 2 , the ferrite phase of the steel tends to be strengthened and the strength of the smelted steel tends to increase.
  • the amount of each of the above components can be quantified by a fluorescent X-ray elemental analysis method (X-ray Fluorescence Analysis, XRF), an ion electrode method, a combination of these methods, and the like.
  • XRF X-ray Fluorescence Analysis
  • ion electrode method a combination of these methods, and the like.
  • the flux of the present embodiment preferably contains as little components as possible other than the above. That is, it is preferable that the amount of impurities contained in the flux of the present embodiment is as small as possible. Since the amount of components other than the above is small, fluctuations in the characteristics of the slag obtained by dissolving the flux can be suppressed.
  • the content of impurities is preferably 5% by mass or less, more preferably 3% by mass or less, and further preferably 1% by mass or less in the entire flux.
  • the properties of the flux of this embodiment can vary. From the viewpoint of ease of handling, the flux of the present embodiment is usually granular at room temperature (23 ° C.).
  • the flux of the present embodiment can be produced by mixing the particles of each of the above-mentioned components. For example, (1) first, the raw materials of the main minerals CaF 2 , Al 2 O 3 , and CaO ⁇ 6 Al 2 O 3 are prepared, and (2) each raw material is separately melted, cooled, and crushed to be necessary. It can be obtained by sieving according to the above (3) and blending the obtained pulverized product in an appropriate ratio.
  • the flux of the present embodiment may contain at least a melt mixture of a compound containing CaF 2 and a compound containing Al 2 O 3 .
  • the flux of the present embodiment rather than as described above CaF 2 and Al 2 O 3 is present as a "separate particles", melted and CaF 2 and Al 2 O 3 together It is preferable that a molten mixture of CaF 2 and Al 2 O 3 is contained as a mixture.
  • the compound containing CaF 2 can be a compound containing a CaF 2 crystal phase.
  • the compound containing Al 2 O 3 can be a compound containing an Al 2 O 3 crystal phase.
  • the flux containing at least a melt mixture of a compound containing CaF 2 and a compound containing Al 2 O 3 is (1) a compound containing CaF 2 as a raw material and a compound containing Al 2 O 3 (in some cases, further trace components). ) Are mixed together while being melted to form a melt, and (2) the melt can be produced by cooling, pulverizing, and sieving if necessary.
  • the temperature at the time of the above-mentioned melt mixing is preferably 1600 ° C. or higher.
  • FIG. 1 and 2 are schematic views for explaining an example of a method of refining raw material steel by the ESR method to produce high-purity steel.
  • FIG. 1 is a diagram schematically showing a state at the start of production of high-purity steel by the ESR method
  • FIG. 2 is a state after a while has passed from the start of FIG. Is a diagram schematically showing.
  • the raw material steel (electrode 10) is electrically connected to one end of the power supply 2.
  • the composition of the raw material steel (electrode 10) is not particularly limited. The composition can be determined to correspond to the high-purity steel to be obtained.
  • the raw material steel (electrode 10) is installed in the ESR furnace 1 so as to be movable up and down. At the start of production, a solid (granular at room temperature) flux 11A is spread on the lateral portion and the lower portion of the raw material steel (electrode 10).
  • the flux 11A has the above-mentioned composition.
  • the other end of the power supply 2 is electrically connected to the conductive hearth of the ESR furnace 1.
  • a cooling means such as a water cooling means may be provided on the furnace wall of the ESR furnace 1 (not shown in FIG. 1). Although the ESR furnace 1 is shown in an open form in FIG. 1, the smelting of the raw material steel may be performed in a closed ESR furnace in which the atmosphere is adjusted.
  • Example 1 Flux production> First, the following CaF 2 and Al 2 O 3 were prepared. The "particle size" was measured using a sieve for JIS test. -CaF 2 : compounding ratio 70% by mass, purity 98% by mass or more, particle size 3 mm or less-Al 2 O 3 : compounding ratio 30% by mass, purity 99% by mass or more, particle size: 1 mm or less
  • CaF 2 is a small amount of MgO , SiO 2 and the like were included.
  • the above raw materials were mixed with a gravity mixer to obtain a substantially uniform mixture. Then, the mixture was put into a three-phase arc furnace and heated to 1600 ° C. or higher under the conditions of a current value of 3.0 to 3.5 kA and a voltage value of 150 to 200 V to melt the mixture to obtain a molten mixture. The melting time at this time was 3 hours.
  • the obtained molten mixture was pulverized with a hammer mill and appropriately sieved to obtain a granular flux.
  • the obtained flux was XRD-analyzed using an apparatus "D8 ADVANCE" manufactured by BRUKER, and then analyzed using the analysis software "TOPAS" of the same company.
  • TOPAS analysis software
  • the content of each crystal phase of CaF 2 , Al 2 O 3 , CaO ⁇ 6 Al 2 O 3 and CaO in the entire crystal phase in the flux was determined.
  • literature values were used as reference values for 2 ⁇ of each crystal phase.
  • an XRD chart of the flux of Example 1 is shown in FIG.
  • the content of the CaO component in the flux, the content of the MgO component in the flux, and the content of the SiO 2 component in the flux were determined by fluorescent X-ray analysis (XRF). Specifically, first, peaks of Ca, Mg and Si were obtained using a scanning fluorescent X-ray analyzer (ZSX Primus II) manufactured by Rigaku Corporation as an analyzer. Next, for Mg and Si, the intensities of the obtained peaks were applied to a calibration curve prepared in advance by chemical analysis to determine the amounts of MgO and SiO 2 . At this time, it was assumed that all of Mg and Si detected by XRF existed in the form of MgO and SiO 2 , respectively.
  • XRF fluorescent X-ray analysis
  • Ca all Ca is detected as CaO bonded to oxygen atoms by the fluorescent X-ray analysis method, and Ca in CaF 2 is also regarded as CaO. Therefore, measurement by the ion electrode method is also performed.
  • the content of CaO component was determined. Specifically, first, HF was generated from CaF 2 in water vapor and flux, and the HF was taken into water to obtain an HF aqueous solution. The amount of fluorine in this aqueous solution was measured by the ion electrode method, and the measured value was converted into the CaF 2 content in the flux. Then, the content of the CaF 2 component in the flux obtained above was cut from the CaO component content detected by the fluorescent X-ray analysis method to obtain the content of the CaO component in the flux.
  • Examples 2 and 3 The flux was produced by the same raw materials and production method as in Example 1. In addition, various analyzes were performed.
  • a flux "ESR-2029ELH” manufactured by Wacker was prepared. This flux is a mixture of particles of fused fluorite (CaF 2 ) and particles of fused alumina (Al 2 O 3 ), and substantially does not contain CaO ⁇ 6Al 2 O 3 .
  • Table 1 shows the composition (analysis result) of the flux of Examples 1 to 3 and Comparative Example 1 and the evaluation result of the melting point.
  • Table 1 shows the ratio of each crystal phase in the entire crystal phase and the ratio of each chemical component in the entire flux (crystal phase + amorphous portion). As a reminder, the total ratio is not always exactly 100 mass% because each ratio is calculated based on the calibration curve.
  • the fluxes of Examples 1 to 3 that is, the CaF 2 crystal phase, the Al 2 O 3 crystal phase, and the CaO ⁇ 6 Al 2 O 3 crystal phase are contained, and the CaO ⁇ 6 Al 2 O 3 crystal
  • the melting point of the flux having a phase ratio of 10% by mass or more and 30% by mass or less was lower than the melting point of the flux of Comparative Example 1.

Abstract

エレクトロスラグ再溶解法に用いられるフラックスであって、CaF結晶相と、Al結晶相と、CaO・6Al結晶相とを含み、フラックス中の結晶相全体におけるCaO・6Al結晶相の含有率は10質量%以上30質量%以下であるフラックス。また、原料鋼を、エレクトロスラグ再溶解法による再溶解によって高純度鋼に精錬する工程を含む、高純度鋼の製造方法であって、スラグとして、上記のフラックスを溶融させたものを用いる、高純度鋼の製造方法。また、CaFを含む化合物とAlを含む化合物とを、1600℃以上で溶融混合する溶融混合工程を含む、上記フラックスの製造方法。

Description

エレクトロスラグ再溶解法に用いられるフラックス、そのフラックスの溶融物を用いる高純度鋼の製造方法、および、そのフラックスの製造方法
 本発明は、エレクトロスラグ再溶解法に用いられるフラックス、そのフラックスの溶融物を用いる高純度鋼の製造方法、および、そのフラックスの製造方法に関する。
 エレクトロスラグ再溶解法は、金属材料(例えば鋼材)を再度溶解製錬して高純度金属を製造する特殊溶解法の一種である。この方法は、英語表記のElectro-Slag Remelting processの頭文字をとって「ESR法」とも呼ばれる(本明細書では、以下、この表記も用いる)。
 ESR法においては、(1)まず、スラグの抵抗熱によって電極金属を溶解させ、(2)その溶解した金属の液滴がスラグプール内を通過する際に不純物(硫黄、酸素等)が除去され、(3)そして溶解した金属が炉の底で凝固する、という流れで、金属材料が高純度化される。
 ESR法におけるスラグとしては、CaFやAlを主成分とするものがしばしば用いられる。すなわち、CaFやAlを主成分とする固形状のフラックスを、高温で溶融させてスラグとすることがしばしば行われる。
 一例として、特許文献1には、SiO:0.2~15重量%、Al:12~40重量%、アルカリ土類金属酸化物:15~40重量%、CaF:12~75重量%、FeO:0.5重量%以下、MnO:1重量%以下、および、TiO:10重量%以下の分析組成である、エレクトロスラグ再溶解法用のスラグが記載されている。また、これの製造方法も記載されている。
 別の一例として、特許文献2には、エレクトロスラグ再溶解法において、添加するフラックスの組成を、CaO:20~60mass%、Al:10~40mass%、CaF:20~60mass%、酸化鉄:1~10mass%、CaO/Al:1.0~6.0とすることが記載されている。
特公昭57-060411号公報 特開2013-049908号公報
 ESR法を行うにあたっては、使用するフラックスは、比較的低融点で溶解して溶融スラグとなることが好ましい。フラックスが低融点であることにより、エネルギーコストの低減や、フラックスの溶け残りの低減などのメリットがある。
 本発明者らは、フラックス、より具体的にはCaFやAlを主成分とするフラックスの低融点化については、なお改良の余地があると考えた。すなわち、本発明者らは、低融点であり、溶融させることが容易であるESR用フラックスを提供することを目的に、様々な検討を行った。
 本発明者らは、鋭意検討の結果、以下に提供される発明を完成させ、上記課題を解決した。
 本発明によれば、
 エレクトロスラグ再溶解法に用いられるフラックスであって、
 CaF結晶相と、Al結晶相と、CaO・6Al結晶相とを含み、
 当該フラックス中の結晶相全体におけるCaO・6Al結晶相の含有率は10質量%以上30質量%以下であるフラックス
が提供される。
 また、本発明によれば、
 原料鋼を、エレクトロスラグ再溶解法による再溶解によって高純度鋼に精錬する工程を含む、高純度鋼の製造方法であって、
 スラグとして、上記のフラックスを溶融させたものを用いる、高純度鋼の製造方法
が提供される。
 また、本発明によれば、
 上記のフラックスの製造方法であって、 
 CaFを含む化合物とAlを含む化合物とを、1600℃以上で溶融混合する溶融混合工程を含む、フラックスの製造方法
が提供される。
 本発明によれば、低融点であり、溶融させることが容易であるESR用フラックスが提供される。
 このESR用フラックスを用いてESR法を行うことにより、エネルギーコストの低減や、フラックスの溶け残りの低減などのメリットを得ることができる。
エレクトロスラグ再溶解法による高純度鋼の製造方法を説明するための模式図である。 エレクトロスラグ再溶解法による高純度鋼の製造方法を説明するための模式図である。 実施例のフラックスをXRD測定して得られたチャートである。
 以下、本発明の実施形態について、図面を参照しつつ、詳細に説明する。
 図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 図面はあくまで説明用のものである。図面中の各部材の形状や寸法比などは、必ずしも現実の物品と対応しない。
 本明細書において「スラグ」の語は、基本的には、常温(23℃)で固形状であるフラックスを高温で加熱して溶解させた状態を表す。ただし、文脈によってはこの限りではない(例えば、特許文献1においては、常温で固形状であるフラックスが「スラグ」と表現されているようである)。
<フラックスおよびその製造方法>
 本実施形態のフラックスは、エレクトロスラグ再溶解法に用いられるものである。
 本実施形態のフラックスは、CaF結晶相と、Al結晶相と、CaO・6Al結晶相とを含む。そして、フラックス中の結晶相全体におけるCaO・6Al結晶相の含有率は、10質量%以上30質量%以下である。
 詳細なメカニズムは不明であるが、ESR法用プリメルトフラックスの主な結晶相であるCaFとAlのうち、Alの融点は2072℃(文献値)であり、非常に高い。
 一方、CaO・6Alの融点は、およそ1850℃(文献値)であり、Alの融点よりも低い。
 CaO・6Alは、その組成式からわかるとおり、1molのCaOに対して6molのAlを含む。このことから、CaO・6Alは、Alに近い物理的/化学的性質を有すると推測される。
 つまり、本実施形態のフラックスは、「Alに近い性質を有すると考えられるが、融点はAlより低い」CaO・6Alを適量含むことにより、ESR法に用いられるフラックスとして必要な性質を具備しつつ、フラックス全体として低融点化するものと推定される。
 CaF、Al、CaO・6Al、それぞれの結晶相の含有率は、例えば、粉末X線回折(XRD)パターンをリートベルト法により解析することで定量分析することができる。
 より具体的には、XRD分析により得られる回折強度-入射角のチャートと結晶構造モデルからシミュレートするXRDパターンと比較し、実験と計算XRDパターンの残差が最小となるように最小二乗法で質量分率を最適化する方法を通じて、各含有率を求めることができる。
 本実施形態のフラックス中の結晶相全体におけるCaO・6Al結晶相の含有率は、上述のように、フラックス全体中、10質量%以上30質量%以下であればよい。この含有率は、好ましくは12質量%以上25質量%以下、より好ましくは14質量%以上20質量%以下である。
 本実施形態のフラックス中のCaF結晶相の含有率は、フラックス中の結晶相全体において、好ましくは60質量%以上80質量%以下、より好ましくは65質量%以上75質量%以下である。
 本実施形態のフラックス中のAl結晶相の含有率は、フラックス中の結晶相全体において、好ましくは5質量%以上15質量%以下、より好ましくは7質量%以上13質量%以下である。
 CaF結晶相、Al結晶相、CaO・6Al結晶相それぞれの含有率、および/または、化学成分としてのCaFやAlの含有量を適切に調整することで、フラックスの融点をより低く設計しやすい。また、このような組成のフラックスを用いてESR法を行うことにより、粘度や電気抵抗などが適度な値となり、ひいては金属材料をより高純度に製錬しやすくなる。
 本実施形態のフラックスは、さらに、化学成分としてCaF、Al以外の成分を含むことが好ましい。具体的には、本実施形態のフラックスは、CaO、MgO、SiOなどのうちの1つまたは複数を含むことが好ましい。
 本実施形態のフラックス中のCaO成分の含有率は、フラックス全体中、好ましくは0.1質量%以上7質量%以下、より好ましくは0.1質量%以上5質量%以下である。なお、ここでのCaO成分は、前述のCaO・6Al結晶相中のCaOと、それ以外のCaOとの両方を含む。
 フラックスが適量のCaO成分を含むことにより、フラックスの融点を低く維持しつつ、フラックスを溶融させて得たスラグの塩基度を適度に高くすることができると考えられる。このことは、硫黄成分の除去性能の点で好ましい。
 本実施形態のフラックスがさらにMgOを含む場合、その含有率は、フラックス全体中、好ましくは0.005質量%以上0.5質量%以下、より好ましくは0.01質量%以上0.03質量%以下である。
 フラックスが適量のMgOを含むことにより、上記CaO成分と同様の効果が得られる傾向にある。
 本実施形態のフラックスがさらにSiOを含む場合、その含有率は、フラックス全体中、好ましくは0.3質量%以上1.5質量%以下、より好ましくは0.5質量%以上1.0質量%以下である。
 フラックスが適量のSiOを含むことにより、硫黄成分の除去性等の性能を維持しつつ、フラックスを溶融させて得たスラグの電気抵抗を高める設計を行いやすくなる。これは電極金属を溶解させやすくなる点で好ましい。また、フラックスが適量のSiOを含むことにより、鋼のフェライト相を強化し、精錬後の鋼の強度が高まる傾向がある。
 上記各成分の量は、蛍光X線元素分析法(X-ray Fluorescence Analysis、XRF)、イオン電極法、これら方法の組合せ、等により定量することができる。
 本実施形態のフラックスは、基本的には上記以外の成分をできるだけ含まないことが好ましい。すなわち、本実施形態のフラックスが含む不純物の量はできるだけ少ないことが好ましい。上記以外の成分が少ないことで、フラックスを溶解させて得たスラグの特性の変動を抑えることができる。
 具体的には、不純物の含有率は、フラックス全体中、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは1質量%以下である。
 本実施形態のフラックスの性状は、様々でありうる。
 扱いやすさなどの点から、本実施形態のフラックスは、通常、常温(23℃)で粒状である。
 一態様として、本実施形態のフラックスは、上述の各成分の粒を混合することで製造することができる。例えば、(1)まず、主鉱物であるCaF、Al、CaO・6Alそれぞれの原料を準備し、(2)それぞれの原料を別々に溶融、冷却、粉砕し、必要に応じて篩分けし、(3)得られた粉砕物を適当な比率でブレンドすることで得ることができる。
 一方、別の態様として、本実施形態のフラックスは、少なくともCaFを含む化合物とAlを含む化合物との溶融混合物を含んでもよい。具体的には、本実施形態のフラックスは、上記のようにCaFとAlが「別々の粒」として存在しているのではなく、CaFとAlとを一緒に溶融させて混合物とした、CaFとAlとの溶融混合物を含んでいることが好ましい。
 CaFを含む化合物は、CaF結晶相を含む化合物であることができる。
 Alを含む化合物は、Al結晶相を含む化合物であることができる。
 少なくともCaFを含む化合物とAlを含む化合物との溶融混合物を含むフラックスは、(1)原料のCaFを含む化合物およびAlを含む化合物(場合によってはさらに他の微量成分)を一緒に溶融しながら混合して溶融物とし、(2)その溶融物を冷却、粉砕、必要に応じて篩分けすることで製造することができる。
 ここで、上記の溶融混合の際の温度は、1600℃以上であることが好ましい。
 本発明者らの知見として、上記(1)の際の条件を適切に設定すること、特に、温度を1600℃以上とすることで、大気中の水蒸気とCaFとAlの一部が反応し、CaO・6Alになる。
 溶融物を得るより具体的な方法、条件等は後述の実施例で改めて説明する。
<高純度鋼の製造方法>
 図1および図2は、原料鋼を、ESR法により精錬し、高純度鋼を製造する方法の一例を説明するための模式図である。具体的には、図1は、ESR法による高純度鋼の製造のスタート時の状態を模式的に表した図であり、図2は、図1のスタート時からしばらく時間が経った後の状態を模式的に表した図である。
 図1において、原料鋼(電極10)は、電源2の一端に電気的に接続されている。原料鋼(電極10)の組成は特に限定されない。得ようとする高純度鋼に対応するように組成を定めることができる。
 原料鋼(電極10)は、ESR炉1内に、上下に移動可能に設置されている。製造のスタート時点においては、原料鋼(電極10)の横部および下部に、固形状(常温で粒状)のフラックス11Aが敷き詰められている。フラックス11Aは上述の組成のものである。
 ESR炉1の導電性炉床には、電源2の他端が電気的に接続されている。
 ESR炉1の炉壁には、水冷手段などの冷却手段が設けられていてもよい(図1には図示せず)。
 図1で、ESR炉1は開放された形態で図示されているが、原料鋼の製錬は、密閉型で雰囲気調整を行うESR炉で行われてもよい。
 高純度鋼の製造に当たっては、電源2から電流を流し、電極10およびフラックス11Aに通電する。そうすると、抵抗熱によってフラックス11Aおよび電極10の先端部が溶融する。フラックス11Aは溶融してスラグ11となる。また、電極10の先端部から溶融した金属は、スラグ11中を降下する。このとき、スラグ11中に金属中の不純物(硫黄原子など)が取り込まれて、原料鋼は精製される。降下した金属は、スラグ11の下方に溶融プール12を形成する。そして、次第に冷却されて高純度鋼(インゴット13)が生成される(以上、図2参照)。
 図2においては、インゴット13および溶融プール12の生成に伴って、スラグ11の液面は次第に上方に移動する。よって、それに合わせて電極10を適切に移動させて、電極10の再溶解を連続的に行う。
 以上により、高純度鋼を得ることができる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 本発明の実施態様を、実施例および比較例に基づき詳細に説明する。なお、本発明は実施例に限定されるものではない。
<実施例1:フラックスの製造>
 まず、以下のCaFおよびAlを準備した。「粒度」は、JIS試験用の篩を用いて測定した。
 ・CaF:配合比70質量%、純度98質量%以上、粒度3mm以下
 ・Al:配合比30質量%、純度99質量%以上、粒度:1mm以下
 ここで、CaFは少量のMgO、SiOなどを含んでいた。
 上記原料を、重力式ミキサーで混合し、ほぼ均一な混合物とした。
 その後、その混合物を、三相アーク炉に投入し、電流値:3.0から3.5kA、電圧値:150から200Vの条件で1600℃以上に加熱して溶融させ、溶融混合物を得た。このときの溶融時間は3時間とした。
 冷却後、得られた溶融混合物をハンマーミルで粉砕し、適宜篩分けするなどして、粒状のフラックスを得た。
 得られたフラックスを、BRUKER社製の装置「D8 ADVANCE」を用いてXRD分析し、そして、同社の解析ソフト「TOPAS」を用いて解析した。これにより、フラックス中の結晶相全体における、CaF、Al、CaO・6AlおよびCaOそれぞれの結晶相の含有率を求めた。
 解析にあたっての、それぞれの結晶相の2θの参照値としては、文献値を用いた。
 参考までに、実施例1のフラックスのXRDチャートを図3に示す。
 また、蛍光X線分析法(XRF)により、フラックス中のCaO成分の含有率、フラックス中のMgO成分の含有率、および、フラックス中のSiO成分の含有率を求めた。
 具体的には、まず、分析装置としてリガク社の走査型蛍光X線分析装置(ZSX Primus II)を用いて、Ca、MgおよびSiのピークを得た。
 次に、MgおよびSiについては、得られたピークの強度を、予め化学分析にて作成しておいた検量線に当てはめて、MgOおよびSiOの量を求めた。このとき、XRFで検出されたMgおよびSiの全ては、それぞれ、MgOおよびSiOの形態で存在すると仮定した。
 一方、Caについては、蛍光X線分析法では全てのCaが酸素原子と結合したCaOとして検出されてしまい、CaF中のCaもCaOとみなされてしまうため、イオン電極法による測定も行ってCaO成分の含有率を求めた。
 具体的には、まず、水蒸気およびフラックス中のCaFからHFを発生させ、そのHFを水中に取り込んでHF水溶液を得た。この水溶液中のフッ素の量をイオン電極法により測定し、測定値をフラックス中のCaF含有率に換算した。
 そして、上記で得られたフラックス中のCaF成分の含有率を、蛍光X線分析法で検出されたCaO成分含有率からカットすることで、フラックス中のCaO成分の含有率を求めた。
<実施例2および3>
 実施例1とおおよそ同様の原材料および製法によりフラックスを製造した。また、各種分析を行った。
<比較例1>
 Wacker社製のフラックス「ESR-2029ELH」を準備した。
 このフラックスは、電融蛍石(CaF)の粒子と電融アルミナ(Al)の粒子との混合品であり、CaO・6Alを実質上含んでいない。
<評価:融点について>
 粉砕したフラックス5gを、圧縮成型機にてφ15mm×10mmの円柱状に成形した。これを白金製のシートの上に載せ、管状炉内にセットした。そして、熱電対を用いて温度を測定しながら炉内を昇温し、成形したフラックスが完全に溶融した温度を融点として記録した。
 実施例1~3および比較例1のフラックスの組成(分析結果)、および、融点の評価結果を表1に示す。
 表1には、結晶相全体における各結晶相の比率と、フラックス全体(結晶相+非晶質部分)中の各化学成分の比率とを、それぞれ示している。
 念のため述べておくと、各比率は検量線に基づき算出されていること等に起因して、比率の合計は必ずしもぴったり100mass%とはなっていない。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるとおり、実施例1~3のフラックス、すなわち、CaF結晶相と、Al結晶相と、CaO・6Al結晶相とを含み、CaO・6Al結晶相の割合が10質量%以上30質量%以下であるフラックスの融点は、比較例1のフラックスの融点より低かった。
<高純度鋼の製造>
 実施例1~3のフラックスを用い、図1、2の如きESR炉により、硫黄などの不純物を含む原料鋼を精錬してインゴットを得た。そして、得られたインゴット中の不純物量は、原料鋼中の不純物量よりも少なくなっていることを確認した。
 この出願は、2019年3月26日に出願された日本出願特願2019-058332号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1   ESR炉
2   電源
10  電極
11A フラックス
11  スラグ
12  溶融プール
13  インゴット

Claims (10)

  1.  エレクトロスラグ再溶解法に用いられるフラックスであって、
     CaF結晶相と、Al結晶相と、CaO・6Al結晶相とを含み、
     当該フラックス中の結晶相全体におけるCaO・6Al結晶相の含有率は10質量%以上30質量%以下であるフラックス。
  2.  請求項1に記載のフラックスであって、
     当該フラックス中の結晶相全体におけるCaF結晶相の含有率は60質量%以上80質量%以下であるフラックス。
  3.  請求項1または2に記載のフラックスであって、
     当該フラックス中の結晶相全体におけるAl結晶相の含有率は5質量%以上15質量%以下であるフラックス。
  4.  請求項1から3のいずれか1項に記載のフラックスであって、
     当該フラックス全体中のCaO成分の含有率は0.1質量%以上7質量%以下であるフラックス。
  5.  請求項1から4のいずれか1項に記載のフラックスであって、
     さらにMgO成分を含み、当該フラックス全体中の当該MgO成分の含有率は0.005質量%以上0.5質量%以下であるフラックス。
  6.  請求項1から5のいずれか1項に記載のフラックスであって、
     さらにSiO成分を含み、当該フラックス全体中の当該SiO成分の含有率は0.3質量%以上1.5質量%以下であるフラックス。
  7.  請求項1から6のいずれか1項に記載のフラックスであって、
     CaFを含む化合物とAlを含む化合物との溶融混合物を含むフラックス。
  8.  請求項1から7のいずれか1項に記載のフラックスであって、
     常温で粒状であるフラックス。
  9.  原料鋼を、エレクトロスラグ再溶解法による再溶解によって高純度鋼に精錬する工程を含む、高純度鋼の製造方法であって、
     スラグとして、請求項1~8のいずれか1項に記載のフラックスを溶融させたものを用いる、高純度鋼の製造方法。
  10.  請求項1~8のいずれか1項に記載のフラックスの製造方法であって、 
     CaFを含む化合物とAlを含む化合物とを、1600℃以上で溶融混合する溶融混合工程を含む、フラックスの製造方法。
PCT/JP2020/010554 2019-03-26 2020-03-11 エレクトロスラグ再溶解法に用いられるフラックス、そのフラックスの溶融物を用いる高純度鋼の製造方法、および、そのフラックスの製造方法 WO2020195838A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021509005A JPWO2020195838A1 (ja) 2019-03-26 2020-03-11
EP20779826.5A EP3950173B1 (en) 2019-03-26 2020-03-11 Flux configured to be used in electroslag remelting method, and flux production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-058332 2019-03-26
JP2019058332 2019-03-26

Publications (1)

Publication Number Publication Date
WO2020195838A1 true WO2020195838A1 (ja) 2020-10-01

Family

ID=72610569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010554 WO2020195838A1 (ja) 2019-03-26 2020-03-11 エレクトロスラグ再溶解法に用いられるフラックス、そのフラックスの溶融物を用いる高純度鋼の製造方法、および、そのフラックスの製造方法

Country Status (3)

Country Link
EP (1) EP3950173B1 (ja)
JP (1) JPWO2020195838A1 (ja)
WO (1) WO2020195838A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023084898A1 (ja) * 2021-11-09 2023-05-19 デンカ株式会社 エレクトロスラグ再溶解法に用いられるフラックス、そのフラックスの製造方法および高純度鋼の製造方法
WO2023084897A1 (ja) * 2021-11-09 2023-05-19 デンカ株式会社 エレクトロスラグ再溶解法に用いられるフラックス、そのフラックスの製造方法および高純度鋼の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760411B2 (ja) 1980-09-26 1982-12-20 Wacker Chemie Gmbh
JP2012241230A (ja) * 2011-05-19 2012-12-10 Hitachi Metals Ltd インゴットの製造方法
JP2013049908A (ja) 2011-08-31 2013-03-14 Jfe Steel Corp エレクトロスラグ再溶解法による高純度鋼の溶製方法
CN106756078A (zh) * 2016-11-17 2017-05-31 河南工程学院 一种耐热奥氏体不锈钢的电渣重熔渣系及其制备方法
JP2019058332A (ja) 2017-09-26 2019-04-18 テルモ株式会社 バルーンカテーテル

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4450007A (en) * 1982-12-13 1984-05-22 Cabot Corporation Process for electroslag remelting of manganese-base alloys
CN107312937B (zh) * 2017-06-26 2019-12-06 洛阳双瑞特种装备有限公司 一种耐高温浓硫酸用高硅不锈钢制造方法及其设备
CN107488788B (zh) * 2017-07-31 2019-02-26 辽宁科技大学 一种用于生产17-4ph钢锭的专用渣系及其制备和使用方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760411B2 (ja) 1980-09-26 1982-12-20 Wacker Chemie Gmbh
JP2012241230A (ja) * 2011-05-19 2012-12-10 Hitachi Metals Ltd インゴットの製造方法
JP2013049908A (ja) 2011-08-31 2013-03-14 Jfe Steel Corp エレクトロスラグ再溶解法による高純度鋼の溶製方法
CN106756078A (zh) * 2016-11-17 2017-05-31 河南工程学院 一种耐热奥氏体不锈钢的电渣重熔渣系及其制备方法
JP2019058332A (ja) 2017-09-26 2019-04-18 テルモ株式会社 バルーンカテーテル

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DONG, YANWU ET AL.: "Dissolution Behavior of Alumina-Based Inclusions in CaF2-A1203-Ca0-Mg0=Si02 Slag Used for the Electroslag Metallurgy Process", METALS, vol. 6, no. 11, 9 November 2016 (2016-11-09), pages 273, XP55742944 *
See also references of EP3950173A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023084898A1 (ja) * 2021-11-09 2023-05-19 デンカ株式会社 エレクトロスラグ再溶解法に用いられるフラックス、そのフラックスの製造方法および高純度鋼の製造方法
WO2023084897A1 (ja) * 2021-11-09 2023-05-19 デンカ株式会社 エレクトロスラグ再溶解法に用いられるフラックス、そのフラックスの製造方法および高純度鋼の製造方法

Also Published As

Publication number Publication date
EP3950173A4 (en) 2022-02-09
EP3950173B1 (en) 2023-04-05
EP3950173A1 (en) 2022-02-09
JPWO2020195838A1 (ja) 2020-10-01

Similar Documents

Publication Publication Date Title
Kaußen et al. Reductive smelting of red mud for iron recovery
CN105081615B (zh) 一种海洋工程用高韧性低氢型烧结焊剂及其制备方法
WO2020195840A1 (ja) エレクトロスラグ再溶解法に用いられるフラックス、そのフラックスの製造方法および高純度鋼の製造方法
WO2020195838A1 (ja) エレクトロスラグ再溶解法に用いられるフラックス、そのフラックスの溶融物を用いる高純度鋼の製造方法、および、そのフラックスの製造方法
JP2019502826A (ja) リチウムリッチな冶金スラグ
KR101029368B1 (ko) 휘수연광으로부터 페로몰리브덴의 제조방법
JP6230531B2 (ja) 金属クロムの製造方法
CA2907991C (en) Method for processing steel slag and hydraulic mineral binder
CN105039732B (zh) 电渣重熔用低硅预熔渣的制备方法
Samal et al. Carboaluminothermic production of ferrotitanium from ilmenite through thermal plasma
WO2018182025A1 (ja) サブマージアーク溶接用フラックス
KR100732539B1 (ko) 알루미늄 및 형석을 함유하는 제강용 플럭스 조성물
Park et al. Novel design of ferronickel smelting slag by utilizing red mud as a fluxing agent: Thermochemical computations and experimental confirmation
CN103555974A (zh) 铝镁法生产高钛铁合金
WO2011027334A1 (en) Processing of metallurgical slag
JP2023503632A (ja) ニッケル、マンガン、及びコバルトを回収するための高温冶金法
WO2023084898A1 (ja) エレクトロスラグ再溶解法に用いられるフラックス、そのフラックスの製造方法および高純度鋼の製造方法
Mehrabi et al. The effect of slag types and melting rate on electro-slag remelting (ESR) processing
JP4599612B2 (ja) 廃レンガからの貴金属の回収方法
WO2023084897A1 (ja) エレクトロスラグ再溶解法に用いられるフラックス、そのフラックスの製造方法および高純度鋼の製造方法
CN106834880A (zh) 一种钛铁合金的制备方法
RU2487173C1 (ru) Флюс для электрошлакового переплава
Xakalashe et al. Towards red mud valorisation: EAF smelting process for iron recovery and slag design for use as precursor in the construction industry
CN112400028A (zh) 钙、铝及硅合金以及其生产方法
Botha et al. Effect of silica concentration on degree of sintering of chromite-silica ladle well filler sand based on South African raw materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779826

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509005

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020779826

Country of ref document: EP

Effective date: 20211026