WO2020195816A1 - Turbo refrigerator - Google Patents

Turbo refrigerator Download PDF

Info

Publication number
WO2020195816A1
WO2020195816A1 PCT/JP2020/010470 JP2020010470W WO2020195816A1 WO 2020195816 A1 WO2020195816 A1 WO 2020195816A1 JP 2020010470 W JP2020010470 W JP 2020010470W WO 2020195816 A1 WO2020195816 A1 WO 2020195816A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas refrigerant
magnetic bearing
refrigerant supply
turbo
cooling
Prior art date
Application number
PCT/JP2020/010470
Other languages
French (fr)
Japanese (ja)
Inventor
長谷川 泰士
八幡 直樹
毅 金子
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to CN202080022372.8A priority Critical patent/CN113597515A/en
Publication of WO2020195816A1 publication Critical patent/WO2020195816A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/048Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type

Definitions

  • the present invention relates to a turbo chiller including a turbo compressor having a rotating shaft supported by magnetic bearings.
  • Magnetic bearings are applied to reduce mechanical loss of centrifugal compressors and eliminate lubricating oil systems.
  • the turbo chiller is also applied to reduce the life cycle cost by reducing the periodic maintenance items (see Patent Document 1).
  • the magnetic bearing is equipped with a coil part through which an electric current flows, and the coil part generates heat when the electric current flows. Since the magnetic bearing supports the rotating shaft that rotates at high speed with a minute gap, wind loss occurs as a stirring loss in this minute gap. It is desirable to cool the coil portion to prevent overheating. The cooling efficiency is higher when a liquid refrigerant having a large heat capacity is used for cooling. However, when a liquid having a high density is supplied to the minute gaps, there are problems that wind damage increases, resulting in a decrease in the efficiency of the turbo chiller and hindering stable support of the magnetic bearing.
  • Patent Document 1 a liquid refrigerant is supplied to a ceramic bearing for cooling, but unlike a ceramic bearing, the magnetic bearing does not generate heat due to sliding friction, so that cooling of the magnetic bearing is disclosed. Absent. It is disclosed that the gas refrigerant is supplied to the ceramic bearing, but since the low-pressure gas refrigerant evaporated by the evaporator is used, there is a possibility that the gas refrigerant required for cooling cannot be supplied. There is.
  • the present invention has been made in view of such circumstances, and the amount of cooling required to suppress wind damage generated on the rotating shaft of the turbo compressor and to cool the magnetic bearing supporting the rotating shaft. It is an object of the present invention to provide a turbo chiller capable of obtaining.
  • the turbo refrigerator includes a turbo compressor that compresses the refrigerant, a condenser that condenses the refrigerant discharged from the turbo compressor, and an expansion that expands the liquid refrigerant derived from the condenser.
  • the turbo compressor includes a refrigeration cycle including a valve and an evaporator for evaporating the refrigerant derived from the expansion valve, and the turbo compressor supports an impeller, a rotating shaft for rotating the impeller, and the rotating shaft.
  • the magnetic bearing, the gas refrigerant supply path that supplies the gas refrigerant as a cooling medium from the high-pressure portion on the upstream side of the refrigeration cycle to the magnetic bearing, and the gas refrigerant after passing through the magnetic bearing. It is provided with a gas refrigerant return path leading to a low pressure portion on the downstream side of the refrigeration cycle with respect to the expansion valve.
  • the gas refrigerant is supplied to the magnetic bearing from the gas refrigerant supply path as a cooling medium without being heated by another heating element such as an electric motor, the magnetic bearing can be effectively cooled. Since a gas refrigerant is used as the cooling medium instead of a liquid refrigerant, wind damage generated on the rotating shaft can be suppressed.
  • the gas refrigerant return path the gas refrigerant as a cooling medium is guided from the high-pressure portion on the upstream side of the expansion valve to the magnetic bearing and returned to the low-pressure portion on the downstream side of the expansion valve.
  • the cooling refrigerant gas can be supplied by effectively utilizing the difference in high and low pressure of the refrigeration cycle, so that the gas refrigerant can be easily used as the cooling medium.
  • the gas refrigerant supplied from the gas refrigerant supply path passes between the magnetic bearing and the rotating shaft.
  • the gas refrigerant supply path is connected to an axial gas refrigerant supply hole formed in the axial direction of the rotating shaft and the axial gas refrigerant supply hole. It also includes a radial gas refrigerant supply hole formed on the outer side in the radial direction toward the magnetic bearing side.
  • the gas refrigerant would flow in the axial direction of the rotating shaft through the axial gas refrigerant supply hole, and the gas refrigerant would flow radially outward toward the magnetic bearing side through the radial gas refrigerant supply hole.
  • the gas refrigerant can be supplied from the radial gas refrigerant supply hole by utilizing the centrifugal force of the rotating shaft. As a result, the gas refrigerant can be reliably supplied even under the operating conditions where the height difference pressure of the turbo chiller is low.
  • a holding portion for holding the magnetic bearing an auxiliary bearing fixed to the holding portion and provided on the side of the magnetic bearing, and the holding portion.
  • the gas refrigerant is supplied from the gas refrigerant supply path to the space surrounded by the magnetic bearing and the auxiliary bearing.
  • the auxiliary bearing comes into contact with the rotating shaft and rotatably supports the rotating shaft when the magnetic bearing cannot be driven due to a trouble or the like.
  • a ball bearing can be used as the auxiliary bearing.
  • the turbo chiller includes a casing cooling unit in which a cooling medium is supplied to the casing accommodating the turbo compressor.
  • the casing of the turbo compressor is cooled by the casing cooling section to which the cooling medium is supplied.
  • the heat generated by the magnetic bearing is conducted to the casing and cooled by the casing cooling unit.
  • the cooling capacity of the magnetic bearing can be increased.
  • a liquid refrigerant derived from the refrigerant cycle or cooling water supplied from the outside can be used as the cooling medium supplied to the casing cooling unit.
  • the magnetic bearing is cooled by the gas refrigerant, it is possible to suppress wind damage generated on the rotating shaft of the turbo compressor and obtain the amount of cooling required to cool the magnetic bearing supporting the rotating shaft. ..
  • FIG. 1 shows a schematic configuration of the turbo chiller 1.
  • the turbo chiller 1 includes a turbo compressor 3 that compresses a refrigerant, a condenser 5 that condenses a high-temperature and high-pressure gas refrigerant compressed by the turbo compressor 3, and an expansion valve 7 that expands a liquid refrigerant from the condenser 5. And an evaporator 9 that evaporates the liquid refrigerant expanded by the expansion valve 7.
  • the turbo compressor 3 is a centrifugal two-stage compressor provided with two impellers 13a and 13b, and is driven by an electric motor 10 whose rotation speed is controlled by an inverter device (not shown).
  • the output of the inverter device is controlled by a control unit (not shown).
  • the number of impellers is not limited, and one impeller may be used as a one-stage compressor.
  • Inlet guide vanes (not shown) for controlling the flow rate of the intake refrigerant are provided at the refrigerant suction ports of the impellers 13a and 13b of the turbo compressor 3, and the capacity of the turbo chiller 1 can be controlled. ..
  • the turbo compressor 3 and the electric motor 10 are housed in a sealed casing 12.
  • the casing 12 is made of a metal having a high thermal conductivity, for example, a metal such as an aluminum alloy.
  • the electric motor 10 includes a rotor 20 that rotates around a central axis, and a substantially cylindrical stator 22 that is provided with a predetermined gap around the rotor 20.
  • the rotational output of the rotor 20 is transmitted to the impellers 13a and 13b via the rotary shaft (rotary shaft) 24.
  • the high-temperature and high-pressure refrigerant derived from the turbo compressor 3 is condensed.
  • a cooling heat transfer tube 26 through which cooling water for cooling the refrigerant flows is inserted in the condenser 5.
  • the cooling water is exhausted to the outside in a cooling tower (not shown), and then is guided to the condenser 5 again.
  • the refrigerant squeezed by the expansion valve 7 is guided to the evaporator 9 and evaporates internally.
  • cold water having a rated temperature for example, 7 ° C.
  • a chilled water heat transfer tube 28 for cooling the chilled water supplied to the external load is inserted in the evaporator 9.
  • a liquid refrigerant supply pipe 14 is provided between the lower portion (for example, the bottom portion) of the condenser 5 and the casing 12.
  • the liquid refrigerant stored in the lower part of the condenser 5 is guided to the casing 12 side via the liquid refrigerant supply pipe 14.
  • a flow rate adjusting valve for adjusting the flow rate of the liquid refrigerant may be provided in the liquid refrigerant supply pipe 14.
  • a gas refrigerant supply pipe (gas refrigerant supply path) 16 is provided between the upper portion of the condenser 5 and the casing 12.
  • the gas refrigerant existing in the upper part of the condenser 5 is guided to the casing 12 side through the gas refrigerant supply pipe 16.
  • a flow rate adjusting valve for adjusting the flow rate of the gas refrigerant may be provided in the gas refrigerant supply pipe 16.
  • the downstream end of the gas refrigerant supply pipe 16 is connected to the end portion (right end portion in FIG. 1) of the casing 12 on the side opposite to the impellers 13a and 13b.
  • a refrigerant return pipe (gas refrigerant return path) 18 is provided between the upper part of the evaporator 9 and the casing 12.
  • the refrigerant in the casing 12 is guided to the upper part of the evaporator 9 through the refrigerant return pipe 18.
  • FIG. 2 shows the specific configuration of the turbo compressor 3.
  • the rotary shaft 24 of the turbo compressor 3 is rotatably supported by a magnetic bearing 30.
  • the first radial magnetic bearing coil 30a of the magnetic bearing 30 is provided on the impellers 13a and 13b sides of the electric motor 10, and the second magnetic bearing 30 is provided on the side opposite to the impellers 13a and 13b of the electric motor 10.
  • a radial magnetic bearing coil 30b is provided.
  • the radial direction of the rotary shaft 24 is supported by the first radial magnetic bearing coil 30a and the second radial magnetic bearing coil 30b.
  • the first radial magnetic bearing coil 30a is fixed and held on the inner peripheral side of the first holding portion 44a fixed to the casing 12.
  • the first holding portion 44a is made of a metal having good thermal conductivity, for example, a metal such as an aluminum alloy.
  • the second radial magnetic bearing coil 30b is fixed and held on the inner peripheral side of the second holding portion 44b fixed to the casing 12.
  • the second holding portion 44b is made of a metal having good thermal conductivity, for example, a metal such as an aluminum alloy.
  • a first gap sensor G1 for measuring the distance (gap) between the rotating shaft 24 and the first radial magnetic bearing coil 30a is provided. The output of the first gap sensor G1 is sent to the control unit.
  • a second gap sensor G2 for measuring the distance (gap) between the rotating shaft 24 and the second radial magnetic bearing coil 30b is provided. The output of the second gap sensor G2 is sent to the control unit.
  • a first auxiliary bearing (auxiliary bearing) 32a is provided between the first radial magnetic bearing coil 30a and the impellers 13a and 13b.
  • a second auxiliary bearing 32b (auxiliary bearing) is provided on the side of the second radial magnetic bearing coil 30b opposite to the impellers 13a and 13b.
  • the first auxiliary bearing 32a and the second auxiliary bearing 32b are, for example, ball bearings, and when the magnetic bearing 30 is normally driven, a predetermined clearance is provided with respect to the rotating shaft 24.
  • These auxiliary bearings 32a and 32b come into contact with the rotary shaft 24 and rotatably support the magnetic bearing 30 when the magnetic bearing 30 cannot be driven due to a trouble or the like.
  • the first auxiliary bearing 32a is fixed and held on the inner peripheral side of the first holding portion 44a.
  • the first auxiliary bearing 32a and the first radial magnetic bearing coil 30a are separated from each other, and a first space S1 is formed on the inner peripheral side of the first holding portion 44a.
  • the second auxiliary bearing 32b is fixed and held by the second holding portion 44b.
  • the second auxiliary bearing 32b and the second radial magnetic bearing coil 30b are separated from each other, and a second space S2 is formed on the inner peripheral side of the second holding portion 44b.
  • a disk 24a is fixed to the end (right end in FIG. 2) of the rotating shaft 24 opposite to the impellers 13a and 13b.
  • a plurality of pairs of thrust magnetic bearing coils 30c are provided on both sides of the disk 24a. Positioning in the thrust direction is performed with the disk 24a floating by the plurality of pairs of thrust magnetic bearing coils 30c. As a result, the positions of the rotating shaft 24 and the impellers 13a and 13b in the thrust direction can be accurately determined.
  • the gas refrigerant supplied from the gas refrigerant supply pipe 16 is guided to the axial gas refrigerant supply hole 17a formed in the central axis direction of the rotating shaft 24.
  • the axial gas refrigerant supply hole 17a is formed from the rear end (right end in FIG. 2) of the rotary shaft 24 to the front of the impellers 13a and 13b (more specifically, the first radial magnetic bearing coil 30a and the first auxiliary bearing 32a). It is formed over the position corresponding to the space.
  • Radial gas refrigerant supply holes 17b1 and 17b2 formed toward the outer side in the radial direction of the rotary shaft 24 are connected to the axial gas refrigerant supply hole 17a.
  • the first radial gas refrigerant supply hole 17b1 formed on the impellers 13a and 13b side of the electric motor 10 is provided at a position corresponding to the first radial magnetic bearing coil 30a. Specifically, the outlet of the first radial gas refrigerant supply hole 17b1 opens in the first space S1 surrounded by the first radial magnetic bearing coil 30a, the first holding portion 44a, and the first auxiliary bearing holding portion 45a. are doing. As a result, the gas refrigerant is supplied into the first space S1 from the first radial gas refrigerant supply hole 17b1 to cool the side surface of the first radial magnetic bearing coil 30a, and the first radial magnetic bearing coil 30a and the rotary shaft 24.
  • the first radial magnetic bearing coil 30a is cooled while the gas refrigerant passes between the two.
  • the cooled gas refrigerant is discharged from the first refrigerant return pipe (gas refrigerant return path) 18a to the outside of the casing 12.
  • the second radial gas refrigerant supply hole 17b2 formed on the side opposite to the impellers 13a and 13b of the electric motor 10 is provided at a position corresponding to the second radial magnetic bearing coil 30b. Specifically, the outlet of the second radial gas refrigerant supply hole 17b2 is opened in the second space S2 surrounded by the second radial magnetic bearing coil 30b, the second holding portion 44b, and the second auxiliary bearing 32b. There is. As a result, the gas refrigerant is supplied into the second space S2 from the second radial gas refrigerant supply hole 17b2 to cool the side surface of the second radial magnetic bearing coil 30b, and the second radial magnetic bearing coil 30b and the rotary shaft 24. The second radial magnetic bearing coil 30b is cooled while the gas refrigerant passes between the two. The cooled gas refrigerant is discharged from the first refrigerant return pipe 18a to the outside of the casing 12.
  • the downstream end of the liquid refrigerant supply pipe 14 is connected to a cooling jacket (casing cooling portion) 15 provided on the casing 12.
  • the cooling jacket 15 is provided around the stator 22 and has a space through which the liquid refrigerant flows.
  • the cooling jacket 15 is provided along the axial direction of the stator 22.
  • the cooling jacket 15 cools not only the stator 22 but also the casing 12 in the vicinity of the cooling jacket 15 by heat conduction.
  • the refrigerant that has flowed through the cooling jacket 15 and cooled the stator 22 is discharged from the second refrigerant return pipe 18b to the outside of the casing 12.
  • the control unit is composed of, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a computer-readable storage medium, and the like.
  • a series of processes for realizing various functions are stored in a storage medium or the like in the form of a program, and the CPU reads this program into a RAM or the like to execute information processing / arithmetic processing.
  • the program may be pre-installed in a ROM or other storage medium, provided in a state of being stored in a computer-readable storage medium, or distributed via a wired or wireless communication means. May be applied.
  • Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.
  • turbo chiller 1 ⁇ Operation of turbo chiller 1> Next, the operation of the turbo chiller 1 having the above configuration will be described.
  • the turbo compressor 3 sucks in the gas refrigerant from the evaporator 9 and compresses it with the impellers 13a and 13b.
  • the compressed gas refrigerant is sent to the condenser 5, and is condensed by removing the heat of condensation by the cooling heat transfer tube 26.
  • the liquid refrigerant after condensation flows to the expansion valve 7.
  • the liquid refrigerant that has flowed to the expansion valve 7 is expanded by the expansion valve 7 and then sent to the evaporator 9.
  • the liquid refrigerant evaporates and vaporizes by removing the latent heat of vaporization from the cold water flowing in the cold water heat transfer tube 28.
  • the cold water cooled in this way is sent to an external load (not shown).
  • the gas refrigerant vaporized in the evaporator 9 is sent to the turbo compressor 3 again.
  • Cooling by the gas refrigerant led from the gas refrigerant supply pipe 16 to the turbo compressor 3 is performed as follows.
  • High-pressure gas refrigerant is sent from the condenser 5 to the axial gas refrigerant supply hole 17a formed in the rotating shaft 24 via the gas refrigerant supply pipe 16.
  • the gas refrigerant that has flowed through the axial gas refrigerant supply hole 17a is guided to the first space S1 via the first radial gas refrigerant supply hole 17b1, and is guided to the first space S1 through the second radial gas refrigerant supply hole 17b2. It is led to S2.
  • the gas refrigerant passes through the first space S1 and passes between the first radial magnetic bearing coil 30a and the rotating shaft 24 to cool the first radial magnetic bearing coil 30a.
  • the gas refrigerant passes through the second space S2 and passes between the second radial magnetic bearing coil 30b and the rotating shaft 24 to cool the second radial magnetic bearing coil 30b.
  • the gas refrigerant having cooled the magnetic bearing coils 30a and 30b is returned to the evaporator 9 having a low pressure via the first refrigerant return pipe 18a.
  • Cooling by the liquid refrigerant led from the liquid refrigerant supply pipe 14 to the turbo compressor 3 is performed as follows.
  • High-pressure liquid refrigerant is sent from the condenser 5 to the cooling jacket 15 provided in the casing 12 via the liquid refrigerant supply pipe 14.
  • the liquid refrigerant that has flowed into the cooling jacket 15 takes heat from the stator 22 and cools the electric motor 10.
  • the casing 12 is also cooled by the refrigerant, the first radial magnetic bearing coil 30a held by the first holding portion 44a and the second radial magnetic bearing coil 30b held by the second holding portion 44b are also cooled. ..
  • the refrigerant that has been cooled by the cooling jacket 15 is returned to the evaporator 9 having a low pressure via the second refrigerant return pipe 18b.
  • the gas refrigerant is supplied from the gas refrigerant supply pipe 16 to the magnetic bearing coils 30a and 30b as a cooling medium, the magnetic bearing coils 30a and 30b can be effectively cooled. Since a gas refrigerant is used as the cooling medium instead of a liquid refrigerant, wind damage caused by the rotating shaft 24 can be suppressed.
  • the first refrigerant return pipe 18a guides the gas refrigerant as a cooling medium from the condenser 5 which is a high pressure portion on the upstream side of the expansion valve 7 to the magnetic bearing coils 30a and 30b, and lower pressure on the downstream side of the expansion valve 7. It was decided to return it to the evaporator 9 which is a part. As a result, the difference between high and low pressure in the refrigeration cycle can be effectively used, so that the gas refrigerant can be easily used as a cooling medium.
  • the axial gas refrigerant supply hole 17a allows the gas refrigerant to flow in the axial direction of the rotating shaft 24, and the radial gas refrigerant supply holes 17b1 and 17b2 allow the gas refrigerant to flow radially outward toward the magnetic bearing coils 30a and 30b. And said.
  • the configuration can be simplified.
  • Gas refrigerant can be supplied from the radial gas refrigerant supply holes 17b1 and 17b2 by utilizing the centrifugal force of the rotary shaft 24. As a result, the gas refrigerant can be reliably supplied even under the operating conditions where the height difference pressure of the turbo chiller is low.
  • the casing 12 of the turbo compressor 3 is cooled by the cooling jacket 15 to which the cooling medium is supplied.
  • the heat generated by the magnetic bearing coils 30a and 30b is thermally conducted to the casing 12 and cooled by the cooling jacket 15.
  • the casing 12 By using the casing 12 as a heat sink in this way, the cooling capacity of the magnetic bearing coils 30a and 30b can be increased.
  • the present embodiment can be modified as follows. As shown in FIG. 3, instead of the configuration shown in FIG. 1, a two-stage expansion refrigerant circuit having an intercooler 40 may be used. A first expansion valve 7a is provided between the intercooler 40 and the condenser 5, and a second expansion valve 7b is provided between the intercooler 40 and the evaporator 9. An intermediate pressure gas refrigerant pipe 42 that connects the intercooler 40 and the suction side of the second stage impeller 13b is provided. In this modification, the liquid refrigerant supply pipe 14'and the gas refrigerant supply pipe 16' are guided from the intercooler 40 to the casing 12.
  • the gas refrigerant supply pipe 16 branches into a first gas refrigerant supply pipe 16a and a second gas refrigerant supply pipe 16b.
  • the first gas refrigerant supply pipe 16a is connected to the first gas refrigerant supply hole 46a formed in the first holding portion 44a.
  • the outlet of the first gas refrigerant supply hole 46a is open to the first space S1.
  • the second gas refrigerant supply pipe 16b is connected to the second gas refrigerant supply hole 46b formed in the second holding portion 44b.
  • the outlet of the second gas refrigerant supply hole 46b is open to the second space S2.
  • the gas refrigerant supply holes 46a and 46b need only be formed in the holding portions 44a and 44b without forming holes in the rotary shaft 24 as in the first embodiment, so that the processing is easy. Is.
  • a liquid refrigerant is used as the cooling medium supplied to the cooling jacket 15, but the present invention is not limited to this, and for example, cooling water supplied from the outside of the turbo compressor 3 is used. You may.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Provided is a turbo refrigerator capable of suppressing air loss generated in a rotary shaft of a turbo compressor and acquiring a cooling amount necessary for cooling magnetic a bearing which supports the rotary shaft. A turbo compressor (3) is provided with: an impeller; a rotary shaft (24) that rotates the impeller; a magnetic bearing (30) that supports the rotary shaft (24); a gas refrigerant supply pipe (14) through which a gas refrigerant is supplied as a cooling medium to magnetic bearing coils (30a), (30b) from a condenser which is a high-pressure part and which is on the upstream side of an expansion valve in a refrigeration cycle; and a refrigerant return pipe through which the gas refrigerant having passed through the magnetic bearing coils (30a), (30b) is guided to an evaporator which is a low-pressure part on the downstream side of the expansion valve in the refrigeration cycle.

Description

ターボ冷凍機Centrifugal chiller
 本発明は、磁気軸受によって支持される回転軸を有するターボ圧縮機を備えたターボ冷凍機に関するものである。 The present invention relates to a turbo chiller including a turbo compressor having a rotating shaft supported by magnetic bearings.
 遠心圧縮機の機械損失低減や潤滑油系統を無くすために、磁気軸受が適用される。ターボ冷凍機においても、上述のメリットに加え、定期メンテナンス項目の削減によるライフサイクルコスト低減のために適用されている(特許文献1参照)。 Magnetic bearings are applied to reduce mechanical loss of centrifugal compressors and eliminate lubricating oil systems. In addition to the above-mentioned merits, the turbo chiller is also applied to reduce the life cycle cost by reducing the periodic maintenance items (see Patent Document 1).
特開2016-33348号公報Japanese Unexamined Patent Publication No. 2016-33348
 磁気軸受は電流を流すコイル部を備え、電流が流れることによってコイル部が発熱する。磁気軸受は、高速回転する回転軸を微小隙間で支持するため、この微小隙間部で攪拌損失として風損が発生する。コイル部の過熱防止のために冷却することが望まれる。冷却のために熱容量の大きい液冷媒を用いる方が冷却効率は高い。しかし、微小隙間に密度が大きい液体が供給されると、風損が増大して結果的にターボ冷凍機の効率低下を招いたり、磁気軸受の安定支持を妨げるといった問題がある。 The magnetic bearing is equipped with a coil part through which an electric current flows, and the coil part generates heat when the electric current flows. Since the magnetic bearing supports the rotating shaft that rotates at high speed with a minute gap, wind loss occurs as a stirring loss in this minute gap. It is desirable to cool the coil portion to prevent overheating. The cooling efficiency is higher when a liquid refrigerant having a large heat capacity is used for cooling. However, when a liquid having a high density is supplied to the minute gaps, there are problems that wind damage increases, resulting in a decrease in the efficiency of the turbo chiller and hindering stable support of the magnetic bearing.
 特許文献1では、セラミック材製軸受に液冷媒を供給して冷却を行っているが、磁気軸受はセラミック材製軸受のように摺動摩擦による発熱がないため、磁気軸受の冷却については開示されていない。ガス冷媒をセラミック材製軸受に供給することが開示されているが、蒸発器で蒸発した低圧ガス冷媒を用いることとしているので、冷却のために必要な量のガス冷媒を供給することができないおそれがある。 In Patent Document 1, a liquid refrigerant is supplied to a ceramic bearing for cooling, but unlike a ceramic bearing, the magnetic bearing does not generate heat due to sliding friction, so that cooling of the magnetic bearing is disclosed. Absent. It is disclosed that the gas refrigerant is supplied to the ceramic bearing, but since the low-pressure gas refrigerant evaporated by the evaporator is used, there is a possibility that the gas refrigerant required for cooling cannot be supplied. There is.
 本発明は、このような事情に鑑みてなされたものであって、ターボ圧縮機の回転軸に発生する風損を抑制するとともに、回転軸を支持する磁気軸受を冷却するために必要な冷却量を得ることができるターボ冷凍機を提供することを目的とする。 The present invention has been made in view of such circumstances, and the amount of cooling required to suppress wind damage generated on the rotating shaft of the turbo compressor and to cool the magnetic bearing supporting the rotating shaft. It is an object of the present invention to provide a turbo chiller capable of obtaining.
 本発明の一態様に係るターボ冷凍機は、冷媒を圧縮するターボ圧縮機と、前記ターボ圧縮機から吐出された冷媒を凝縮させる凝縮器と、前記凝縮器から導かれた液冷媒を膨張させる膨張弁と、前記膨張弁から導かれた冷媒を蒸発させる蒸発器と、を有する冷凍サイクルを備え、前記ターボ圧縮機は、羽根車と、該羽根車を回転させる回転軸と、該回転軸を支持する磁気軸受と、前記膨張弁よりも前記冷凍サイクルの上流側の高圧部からガス冷媒を冷却媒体として前記磁気軸受に供給するガス冷媒供給経路と、前記磁気軸受を通過した後のガス冷媒を前記膨張弁よりも前記冷凍サイクルの下流側の低圧部に導くガス冷媒返送経路と、を備えている。 The turbo refrigerator according to one aspect of the present invention includes a turbo compressor that compresses the refrigerant, a condenser that condenses the refrigerant discharged from the turbo compressor, and an expansion that expands the liquid refrigerant derived from the condenser. The turbo compressor includes a refrigeration cycle including a valve and an evaporator for evaporating the refrigerant derived from the expansion valve, and the turbo compressor supports an impeller, a rotating shaft for rotating the impeller, and the rotating shaft. The magnetic bearing, the gas refrigerant supply path that supplies the gas refrigerant as a cooling medium from the high-pressure portion on the upstream side of the refrigeration cycle to the magnetic bearing, and the gas refrigerant after passing through the magnetic bearing. It is provided with a gas refrigerant return path leading to a low pressure portion on the downstream side of the refrigeration cycle with respect to the expansion valve.
 ガス冷媒供給経路から冷却媒体として電動機等の他の発熱体部で加熱されない状態でガス冷媒を磁気軸受に供給するので、磁気軸受を効果的に冷却することができる。冷却媒体として液冷媒ではなくガス冷媒を用いるので、回転軸で生じる風損を抑制することができる。
 ガス冷媒返送経路によって、冷却媒体としてのガス冷媒を、膨張弁よりも上流側の高圧部から磁気軸受に導き、膨張弁よりも下流側の低圧部に返送することとした。これにより、冷凍サイクルの高低圧差を有効に利用して冷却冷媒ガスを供給することができるので、ガス冷媒を容易に冷却媒体として用いることができる。
Since the gas refrigerant is supplied to the magnetic bearing from the gas refrigerant supply path as a cooling medium without being heated by another heating element such as an electric motor, the magnetic bearing can be effectively cooled. Since a gas refrigerant is used as the cooling medium instead of a liquid refrigerant, wind damage generated on the rotating shaft can be suppressed.
Through the gas refrigerant return path, the gas refrigerant as a cooling medium is guided from the high-pressure portion on the upstream side of the expansion valve to the magnetic bearing and returned to the low-pressure portion on the downstream side of the expansion valve. As a result, the cooling refrigerant gas can be supplied by effectively utilizing the difference in high and low pressure of the refrigeration cycle, so that the gas refrigerant can be easily used as the cooling medium.
 さらに、本発明の一態様に係るターボ冷凍機では、前記ガス冷媒供給経路から供給されたガス冷媒は、前記磁気軸受と前記回転軸との間を通過する。 Further, in the turbo chiller according to one aspect of the present invention, the gas refrigerant supplied from the gas refrigerant supply path passes between the magnetic bearing and the rotating shaft.
 ガス冷媒供給経路から供給されたガス冷媒が磁気軸受と回転軸との間を通過するので、磁気軸受と回転軸との間の風損を抑制することができる。 Since the gas refrigerant supplied from the gas refrigerant supply path passes between the magnetic bearing and the rotating shaft, wind damage between the magnetic bearing and the rotating shaft can be suppressed.
 さらに、本発明の一態様に係るターボ冷凍機では、前記ガス冷媒供給経路は、前記回転軸の軸線方向に形成された軸線方向ガス冷媒供給穴と、該軸線方向ガス冷媒供給穴に接続されるとともに前記磁気軸受側に向かって半径方向外側に形成された半径方向ガス冷媒供給穴と、を備えている。 Further, in the turbo chiller according to one aspect of the present invention, the gas refrigerant supply path is connected to an axial gas refrigerant supply hole formed in the axial direction of the rotating shaft and the axial gas refrigerant supply hole. It also includes a radial gas refrigerant supply hole formed on the outer side in the radial direction toward the magnetic bearing side.
 軸線方向ガス冷媒供給穴によって回転軸の軸線方向にガス冷媒を流すとともに、半径方向ガス冷媒供給穴によって磁気軸受側に向かって半径方向外側にガス冷媒を流すこととした。このように、回転軸側からガス冷媒を供給することで、構成を簡素化することができる。半径方向ガス冷媒供給穴からは、回転軸の遠心力を利用してガス冷媒を供給することができる。これにより、ターボ冷凍機の高低差圧が低い運転条件であったとしても、確実にガス冷媒を供給することが出来る。 It was decided that the gas refrigerant would flow in the axial direction of the rotating shaft through the axial gas refrigerant supply hole, and the gas refrigerant would flow radially outward toward the magnetic bearing side through the radial gas refrigerant supply hole. By supplying the gas refrigerant from the rotating shaft side in this way, the configuration can be simplified. The gas refrigerant can be supplied from the radial gas refrigerant supply hole by utilizing the centrifugal force of the rotating shaft. As a result, the gas refrigerant can be reliably supplied even under the operating conditions where the height difference pressure of the turbo chiller is low.
 さらに、本発明の一態様に係るターボ冷凍機では、前記磁気軸受を保持する保持部と、前記保持部に固定されるとともに、前記磁気軸受の側方に設けられた補助軸受と、前記保持部、前記磁気軸受及び前記補助軸受に囲まれた空間に、前記ガス冷媒供給経路からガス冷媒が供給される。 Further, in the turbo chiller according to one aspect of the present invention, a holding portion for holding the magnetic bearing, an auxiliary bearing fixed to the holding portion and provided on the side of the magnetic bearing, and the holding portion. , The gas refrigerant is supplied from the gas refrigerant supply path to the space surrounded by the magnetic bearing and the auxiliary bearing.
 磁気軸受を保持する保持部、磁気軸受及び補助軸受に囲まれた空間に、ガス冷媒供給経路からガス冷媒を供給することとした。このように囲まれた空間にガス冷媒を供給することで、磁気軸受の側方に先ずガス冷媒を供給し、その後にガス冷媒を磁気軸受と回転軸との間に流すことができる。これにより、磁気軸受の周囲にガス冷媒を確実に供給することができ、冷却効率を向上させることができる。
 補助軸受は、トラブル等によって磁気軸受が駆動しなくなった場合に回転軸に接触して回転軸を回転自在に支持するものである。補助軸受としては、例えば玉軸受を用いることができる。
It was decided to supply the gas refrigerant from the gas refrigerant supply path to the space surrounded by the holding portion for holding the magnetic bearing, the magnetic bearing, and the auxiliary bearing. By supplying the gas refrigerant to the space surrounded in this way, the gas refrigerant can be first supplied to the side of the magnetic bearing, and then the gas refrigerant can flow between the magnetic bearing and the rotating shaft. As a result, the gas refrigerant can be reliably supplied around the magnetic bearing, and the cooling efficiency can be improved.
The auxiliary bearing comes into contact with the rotating shaft and rotatably supports the rotating shaft when the magnetic bearing cannot be driven due to a trouble or the like. As the auxiliary bearing, for example, a ball bearing can be used.
 さらに、本発明の一態様に係るターボ冷凍機では、前記ターボ圧縮機を収容するケーシングに対して冷却媒体が供給されるケーシング冷却部を備えている。 Further, the turbo chiller according to one aspect of the present invention includes a casing cooling unit in which a cooling medium is supplied to the casing accommodating the turbo compressor.
 ターボ圧縮機のケーシングは、冷却媒体が供給されるケーシング冷却部によって冷却される。磁気軸受の発熱は、ケーシングに熱伝導し、ケーシング冷却部によって冷却される。このようにケーシングをヒートシンクとして使用することで、磁気軸受の冷却能力を増大させることができる。
 ケーシング冷却部に供給される冷却媒体としては、例えば、冷媒サイクルから導かれる液冷媒や、外部から供給される冷却水を用いることができる。
The casing of the turbo compressor is cooled by the casing cooling section to which the cooling medium is supplied. The heat generated by the magnetic bearing is conducted to the casing and cooled by the casing cooling unit. By using the casing as a heat sink in this way, the cooling capacity of the magnetic bearing can be increased.
As the cooling medium supplied to the casing cooling unit, for example, a liquid refrigerant derived from the refrigerant cycle or cooling water supplied from the outside can be used.
 ガス冷媒で磁気軸受を冷却することとしたので、ターボ圧縮機の回転軸に発生する風損を抑制するとともに、回転軸を支持する磁気軸受を冷却するために必要な冷却量を得ることができる。 Since the magnetic bearing is cooled by the gas refrigerant, it is possible to suppress wind damage generated on the rotating shaft of the turbo compressor and obtain the amount of cooling required to cool the magnetic bearing supporting the rotating shaft. ..
本発明の第1実施形態に係るターボ冷凍機の概略構成図である。It is a schematic block diagram of the turbo chiller which concerns on 1st Embodiment of this invention. 図1のターボ圧縮機の縦断面図である。It is a vertical sectional view of the turbo compressor of FIG. 図1の変形例を示した概略構成図である。It is a schematic block diagram which showed the modification of FIG. 本発明の第2実施形態に係るターボ冷凍機のターボ圧縮機を示した縦断面図である。It is a vertical sectional view which showed the turbo compressor of the turbo chiller which concerns on 2nd Embodiment of this invention.
 以下に、本発明に係る実施形態について、図面を参照して説明する。
[第1実施形態]
Hereinafter, embodiments according to the present invention will be described with reference to the drawings.
[First Embodiment]
 以下に、本発明に係る一実施形態について、図面を参照して説明する。
 図1には、ターボ冷凍機1の概略構成が示されている。
 ターボ冷凍機1は、冷媒を圧縮するターボ圧縮機3と、ターボ圧縮機3によって圧縮された高温高圧のガス冷媒を凝縮する凝縮器5と、凝縮器5からの液冷媒を膨張させる膨張弁7と、膨張弁7によって膨張させられた液冷媒を蒸発させる蒸発器9とを備えている。
Hereinafter, an embodiment according to the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic configuration of the turbo chiller 1.
The turbo chiller 1 includes a turbo compressor 3 that compresses a refrigerant, a condenser 5 that condenses a high-temperature and high-pressure gas refrigerant compressed by the turbo compressor 3, and an expansion valve 7 that expands a liquid refrigerant from the condenser 5. And an evaporator 9 that evaporates the liquid refrigerant expanded by the expansion valve 7.
 ターボ圧縮機3は、2つの羽根車13a,13bを備えた遠心式の2段圧縮機であり、図示しないインバータ装置によって回転数制御された電動モータ10によって駆動される。インバータ装置は、図示しない制御部によってその出力が制御されている。羽根車の数は限定されるものではなく、羽根車を1つとして1段圧縮機としても良い。 The turbo compressor 3 is a centrifugal two-stage compressor provided with two impellers 13a and 13b, and is driven by an electric motor 10 whose rotation speed is controlled by an inverter device (not shown). The output of the inverter device is controlled by a control unit (not shown). The number of impellers is not limited, and one impeller may be used as a one-stage compressor.
 ターボ圧縮機3の羽根車13a,13bの冷媒吸入口には、吸入冷媒流量を制御するインレットガイドベーン(図示せず)が設けられており、ターボ冷凍機1の容量制御が可能となっている。 Inlet guide vanes (not shown) for controlling the flow rate of the intake refrigerant are provided at the refrigerant suction ports of the impellers 13a and 13b of the turbo compressor 3, and the capacity of the turbo chiller 1 can be controlled. ..
 ターボ圧縮機3及び電動モータ10は、密閉状態とされたケーシング12内に収容されている。ケーシング12は、熱伝導率の高い金属製、例えばアルミ系合金等の金属製とされている。 The turbo compressor 3 and the electric motor 10 are housed in a sealed casing 12. The casing 12 is made of a metal having a high thermal conductivity, for example, a metal such as an aluminum alloy.
 電動モータ10は、中心軸周りに回転するロータ20と、このロータ20の周囲に所定のギャップを有して設けられた概略円筒形状のステータ22とを備えている。ロータ20の回転出力は、回転シャフト(回転軸)24を介して羽根車13a,13bへと伝達される。 The electric motor 10 includes a rotor 20 that rotates around a central axis, and a substantially cylindrical stator 22 that is provided with a predetermined gap around the rotor 20. The rotational output of the rotor 20 is transmitted to the impellers 13a and 13b via the rotary shaft (rotary shaft) 24.
 凝縮器5では、ターボ圧縮機3から導かれた高温高圧の冷媒が凝縮する。凝縮器5には、冷媒を冷却するための冷却水が流れる冷却伝熱管26が挿通されている。冷却水は、図示しない冷却塔において外部へと排熱された後に、再び凝縮器5へと導かれるようになっている。 In the condenser 5, the high-temperature and high-pressure refrigerant derived from the turbo compressor 3 is condensed. A cooling heat transfer tube 26 through which cooling water for cooling the refrigerant flows is inserted in the condenser 5. The cooling water is exhausted to the outside in a cooling tower (not shown), and then is guided to the condenser 5 again.
 蒸発器9には、膨張弁7で絞られた冷媒が導かれ、内部で蒸発する。蒸発器9において吸熱されることによって定格温度(例えば7℃)の冷水が得られる。蒸発器9には、外部負荷へ供給される冷水を冷却するための冷水伝熱管28が挿通されている。 The refrigerant squeezed by the expansion valve 7 is guided to the evaporator 9 and evaporates internally. By endothermic in the evaporator 9, cold water having a rated temperature (for example, 7 ° C.) is obtained. A chilled water heat transfer tube 28 for cooling the chilled water supplied to the external load is inserted in the evaporator 9.
 凝縮器5の下部(例えば底部)とケーシング12との間には、液冷媒供給配管14が設けられている。液冷媒供給配管14を介して、凝縮器5内の下部に貯留された液冷媒がケーシング12側に導かれる。図示していないが、液冷媒の流量を調整する流量調整弁を液冷媒供給配管14に設けても良い。 A liquid refrigerant supply pipe 14 is provided between the lower portion (for example, the bottom portion) of the condenser 5 and the casing 12. The liquid refrigerant stored in the lower part of the condenser 5 is guided to the casing 12 side via the liquid refrigerant supply pipe 14. Although not shown, a flow rate adjusting valve for adjusting the flow rate of the liquid refrigerant may be provided in the liquid refrigerant supply pipe 14.
 図1に示すように、凝縮器5の上部とケーシング12との間には、ガス冷媒供給配管(ガス冷媒供給経路)16が設けられている。ガス冷媒供給配管16を介して、凝縮器5内の上部に存在するガス冷媒がケーシング12側に導かれる。図示していないが、ガス冷媒の流量を調整する流量調整弁をガス冷媒供給配管16に設けても良い。ガス冷媒供給配管16の下流端は、羽根車13a,13bとは反対側のケーシング12の端部(図1において右端部)に接続されている。 As shown in FIG. 1, a gas refrigerant supply pipe (gas refrigerant supply path) 16 is provided between the upper portion of the condenser 5 and the casing 12. The gas refrigerant existing in the upper part of the condenser 5 is guided to the casing 12 side through the gas refrigerant supply pipe 16. Although not shown, a flow rate adjusting valve for adjusting the flow rate of the gas refrigerant may be provided in the gas refrigerant supply pipe 16. The downstream end of the gas refrigerant supply pipe 16 is connected to the end portion (right end portion in FIG. 1) of the casing 12 on the side opposite to the impellers 13a and 13b.
 蒸発器9の上部とケーシング12との間には、冷媒返送配管(ガス冷媒返送経路)18が設けられている。冷媒返送配管18を介して、ケーシング12内の冷媒が蒸発器9の上部へと導かれる。 A refrigerant return pipe (gas refrigerant return path) 18 is provided between the upper part of the evaporator 9 and the casing 12. The refrigerant in the casing 12 is guided to the upper part of the evaporator 9 through the refrigerant return pipe 18.
 図2には、ターボ圧縮機3の具体的構成が示されている。ターボ圧縮機3の回転シャフト24は、磁気軸受30によって回転自在に支持されている。 FIG. 2 shows the specific configuration of the turbo compressor 3. The rotary shaft 24 of the turbo compressor 3 is rotatably supported by a magnetic bearing 30.
 電動モータ10の羽根車13a,13b側には、磁気軸受30の第1ラジアル磁気軸受コイル30aが設けられ、電動モータ10の羽根車13a,13bとは反対側には、磁気軸受30の第2ラジアル磁気軸受コイル30bが設けられている。第1ラジアル磁気軸受コイル30a及び第2ラジアル磁気軸受コイル30bによって、回転シャフト24のラジアル方向が支持されている。 The first radial magnetic bearing coil 30a of the magnetic bearing 30 is provided on the impellers 13a and 13b sides of the electric motor 10, and the second magnetic bearing 30 is provided on the side opposite to the impellers 13a and 13b of the electric motor 10. A radial magnetic bearing coil 30b is provided. The radial direction of the rotary shaft 24 is supported by the first radial magnetic bearing coil 30a and the second radial magnetic bearing coil 30b.
 第1ラジアル磁気軸受コイル30aは、ケーシング12に固定された第1保持部44aの内周側に固定されて保持されている。第1保持部44aは、熱伝導率の良い金属製、例えばアルミ系合金等の金属製とされている。
 第2ラジアル磁気軸受コイル30bは、ケーシング12に固定された第2保持部44bの内周側に固定されて保持されている。第2保持部44bは、熱伝導率の良い金属製、例えばアルミ系合金等の金属製とされている。
The first radial magnetic bearing coil 30a is fixed and held on the inner peripheral side of the first holding portion 44a fixed to the casing 12. The first holding portion 44a is made of a metal having good thermal conductivity, for example, a metal such as an aluminum alloy.
The second radial magnetic bearing coil 30b is fixed and held on the inner peripheral side of the second holding portion 44b fixed to the casing 12. The second holding portion 44b is made of a metal having good thermal conductivity, for example, a metal such as an aluminum alloy.
 第1ラジアル磁気軸受コイル30aの電動モータ10側には、回転シャフト24と第1ラジアル磁気軸受コイル30aとの間の間隔(ギャップ)を計測する第1ギャップセンサG1が設けられている。第1ギャップセンサG1の出力は、制御部へと送られる。
 第2ラジアル磁気軸受コイル30bの電動モータ10側には、回転シャフト24と第2ラジアル磁気軸受コイル30bとの間の間隔(ギャップ)を計測する第2ギャップセンサG2が設けられている。第2ギャップセンサG2の出力は、制御部へと送られる。
On the electric motor 10 side of the first radial magnetic bearing coil 30a, a first gap sensor G1 for measuring the distance (gap) between the rotating shaft 24 and the first radial magnetic bearing coil 30a is provided. The output of the first gap sensor G1 is sent to the control unit.
On the electric motor 10 side of the second radial magnetic bearing coil 30b, a second gap sensor G2 for measuring the distance (gap) between the rotating shaft 24 and the second radial magnetic bearing coil 30b is provided. The output of the second gap sensor G2 is sent to the control unit.
 第1ラジアル磁気軸受コイル30aと羽根車13a,13bとの間には、第1補助ベアリング(補助軸受)32aが設けられている。第2ラジアル磁気軸受コイル30bの羽根車13a,13bとは反対側には、第2補助ベアリング32b(補助軸受)が設けられている。第1補助ベアリング32a及び第2補助ベアリング32bは、例えば玉軸受とされており、磁気軸受30が正常に駆動されている場合には回転シャフト24に対して所定のクリアランスが設けられている。これら補助ベアリング32a,32bは、トラブル等によって磁気軸受30が駆動しなくなった場合に回転シャフト24に接触して回転自在に支持するものである。 A first auxiliary bearing (auxiliary bearing) 32a is provided between the first radial magnetic bearing coil 30a and the impellers 13a and 13b. A second auxiliary bearing 32b (auxiliary bearing) is provided on the side of the second radial magnetic bearing coil 30b opposite to the impellers 13a and 13b. The first auxiliary bearing 32a and the second auxiliary bearing 32b are, for example, ball bearings, and when the magnetic bearing 30 is normally driven, a predetermined clearance is provided with respect to the rotating shaft 24. These auxiliary bearings 32a and 32b come into contact with the rotary shaft 24 and rotatably support the magnetic bearing 30 when the magnetic bearing 30 cannot be driven due to a trouble or the like.
 第1補助ベアリング32aは、第1保持部44aの内周側に固定されて保持されている。第1補助ベアリング32aと第1ラジアル磁気軸受コイル30aとの間は離間しており、第1保持部44aの内周側には第1空間S1が形成されている。
 第2補助ベアリング32bは、第2保持部44bに固定されて保持されている。第2補助ベアリング32bと第2ラジアル磁気軸受コイル30bとの間は離間しており、第2保持部44bの内周側には第2空間S2が形成されている。
The first auxiliary bearing 32a is fixed and held on the inner peripheral side of the first holding portion 44a. The first auxiliary bearing 32a and the first radial magnetic bearing coil 30a are separated from each other, and a first space S1 is formed on the inner peripheral side of the first holding portion 44a.
The second auxiliary bearing 32b is fixed and held by the second holding portion 44b. The second auxiliary bearing 32b and the second radial magnetic bearing coil 30b are separated from each other, and a second space S2 is formed on the inner peripheral side of the second holding portion 44b.
 回転シャフト24の羽根車13a,13bとは反対側の端部(図2において右端)には、円板24aが固定されている。円板24aの両側には、複数対のスラスト磁気軸受コイル30cが設けられている。複数対のスラスト磁気軸受コイル30cによって円板24aが浮上した状態でスラスト方向の位置決めがなされる。これにより、回転シャフト24及び羽根車13a,13bのスラスト方向の位置が正確に決められるようになっている。 A disk 24a is fixed to the end (right end in FIG. 2) of the rotating shaft 24 opposite to the impellers 13a and 13b. A plurality of pairs of thrust magnetic bearing coils 30c are provided on both sides of the disk 24a. Positioning in the thrust direction is performed with the disk 24a floating by the plurality of pairs of thrust magnetic bearing coils 30c. As a result, the positions of the rotating shaft 24 and the impellers 13a and 13b in the thrust direction can be accurately determined.
 図2に示すように、ガス冷媒供給配管16から供給されたガス冷媒は、回転シャフト24の中心軸線方向に形成された軸線方向ガス冷媒供給穴17aに導かれる。軸線方向ガス冷媒供給穴17aは、回転シャフト24の後端(図2において右端)から羽根車13a,13bの手前(より具体的には第1ラジアル磁気軸受コイル30aと第1補助ベアリング32aとの間に対応する位置)にかけて形成されている。 As shown in FIG. 2, the gas refrigerant supplied from the gas refrigerant supply pipe 16 is guided to the axial gas refrigerant supply hole 17a formed in the central axis direction of the rotating shaft 24. The axial gas refrigerant supply hole 17a is formed from the rear end (right end in FIG. 2) of the rotary shaft 24 to the front of the impellers 13a and 13b (more specifically, the first radial magnetic bearing coil 30a and the first auxiliary bearing 32a). It is formed over the position corresponding to the space.
 軸線方向ガス冷媒供給穴17aには、回転シャフト24の半径方向外側に向けて形成された半径方向ガス冷媒供給穴17b1,17b2が接続されている。 Radial gas refrigerant supply holes 17b1 and 17b2 formed toward the outer side in the radial direction of the rotary shaft 24 are connected to the axial gas refrigerant supply hole 17a.
 電動モータ10よりも羽根車13a,13b側に形成された第1半径方向ガス冷媒供給穴17b1は、第1ラジアル磁気軸受コイル30aに対応する位置に設けられている。具体的には、第1半径方向ガス冷媒供給穴17b1の出口は、第1ラジアル磁気軸受コイル30a、第1保持部44a及び第1補助ベアリング保持部45aによって囲まれた第1空間S1内に開口している。これにより、第1半径方向ガス冷媒供給穴17b1からガス冷媒が第1空間S1内に供給され、第1ラジアル磁気軸受コイル30aの側面を冷却するとともに、第1ラジアル磁気軸受コイル30aと回転シャフト24との間をガス冷媒が通過しながら第1ラジアル磁気軸受コイル30aを冷却するようになっている。冷却後のガス冷媒は、第1冷媒返送配管(ガス冷媒返送経路)18aからケーシング12の外部へと排出される。 The first radial gas refrigerant supply hole 17b1 formed on the impellers 13a and 13b side of the electric motor 10 is provided at a position corresponding to the first radial magnetic bearing coil 30a. Specifically, the outlet of the first radial gas refrigerant supply hole 17b1 opens in the first space S1 surrounded by the first radial magnetic bearing coil 30a, the first holding portion 44a, and the first auxiliary bearing holding portion 45a. are doing. As a result, the gas refrigerant is supplied into the first space S1 from the first radial gas refrigerant supply hole 17b1 to cool the side surface of the first radial magnetic bearing coil 30a, and the first radial magnetic bearing coil 30a and the rotary shaft 24. The first radial magnetic bearing coil 30a is cooled while the gas refrigerant passes between the two. The cooled gas refrigerant is discharged from the first refrigerant return pipe (gas refrigerant return path) 18a to the outside of the casing 12.
 電動モータ10よりも羽根車13a,13bとは反対側に形成された第2半径方向ガス冷媒供給穴17b2は、第2ラジアル磁気軸受コイル30bに対応する位置に設けられている。具体的には、第2半径方向ガス冷媒供給穴17b2の出口は、第2ラジアル磁気軸受コイル30b、第2保持部44b及び第2補助ベアリング32bによって囲まれた第2空間S2内に開口している。これにより、第2半径方向ガス冷媒供給穴17b2からガス冷媒が第2空間S2内に供給され、第2ラジアル磁気軸受コイル30bの側面を冷却するとともに、第2ラジアル磁気軸受コイル30bと回転シャフト24との間をガス冷媒が通過しながら第2ラジアル磁気軸受コイル30bを冷却するようになっている。冷却後のガス冷媒は、第1冷媒返送配管18aからケーシング12の外部へと排出される。 The second radial gas refrigerant supply hole 17b2 formed on the side opposite to the impellers 13a and 13b of the electric motor 10 is provided at a position corresponding to the second radial magnetic bearing coil 30b. Specifically, the outlet of the second radial gas refrigerant supply hole 17b2 is opened in the second space S2 surrounded by the second radial magnetic bearing coil 30b, the second holding portion 44b, and the second auxiliary bearing 32b. There is. As a result, the gas refrigerant is supplied into the second space S2 from the second radial gas refrigerant supply hole 17b2 to cool the side surface of the second radial magnetic bearing coil 30b, and the second radial magnetic bearing coil 30b and the rotary shaft 24. The second radial magnetic bearing coil 30b is cooled while the gas refrigerant passes between the two. The cooled gas refrigerant is discharged from the first refrigerant return pipe 18a to the outside of the casing 12.
 液冷媒供給配管14の下流端は、ケーシング12に設けられた冷却ジャケット(ケーシング冷却部)15に接続されている。冷却ジャケット15は、ステータ22の周囲に設けられ、液冷媒が流通する空間を有している。冷却ジャケット15は、ステータ22の軸線方向にわたって設けられている。冷却ジャケット15によって、ステータ22だけでなく、冷却ジャケット15近傍のケーシング12も熱伝導によって冷却される。
 冷却ジャケット15内を流れてステータ22を冷却した後の冷媒は、第2冷媒返送配管18bからケーシング12の外部へ排出される。
The downstream end of the liquid refrigerant supply pipe 14 is connected to a cooling jacket (casing cooling portion) 15 provided on the casing 12. The cooling jacket 15 is provided around the stator 22 and has a space through which the liquid refrigerant flows. The cooling jacket 15 is provided along the axial direction of the stator 22. The cooling jacket 15 cools not only the stator 22 but also the casing 12 in the vicinity of the cooling jacket 15 by heat conduction.
The refrigerant that has flowed through the cooling jacket 15 and cooled the stator 22 is discharged from the second refrigerant return pipe 18b to the outside of the casing 12.
 制御部は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。 The control unit is composed of, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a computer-readable storage medium, and the like. As an example, a series of processes for realizing various functions are stored in a storage medium or the like in the form of a program, and the CPU reads this program into a RAM or the like to execute information processing / arithmetic processing. As a result, various functions are realized. The program may be pre-installed in a ROM or other storage medium, provided in a state of being stored in a computer-readable storage medium, or distributed via a wired or wireless communication means. May be applied. Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.
<ターボ冷凍機1の動作>
 次に、上記構成のターボ冷凍機1の動作について説明する。
 ターボ圧縮機3は、蒸発器9からのガス冷媒を吸い込み、羽根車13a,13bにて圧縮を行う。圧縮されたガス冷媒は、凝縮器5へと送られ、冷却伝熱管26によって凝縮熱が除去されることによって凝縮する。凝縮後の液冷媒は、膨張弁7へと流れる。
 膨張弁7へと流れた液冷媒は、膨張弁7にて膨張した後、蒸発器9へと送られる。蒸発器9にて、液冷媒は、冷水伝熱管28内を流れる冷水から蒸発潜熱を奪うことによって蒸発気化する。このように冷却された冷水は、図示しない外部負荷へと送られる。蒸発器9にて気化したガス冷媒は、再びターボ圧縮機3へと送られる。
<Operation of turbo chiller 1>
Next, the operation of the turbo chiller 1 having the above configuration will be described.
The turbo compressor 3 sucks in the gas refrigerant from the evaporator 9 and compresses it with the impellers 13a and 13b. The compressed gas refrigerant is sent to the condenser 5, and is condensed by removing the heat of condensation by the cooling heat transfer tube 26. The liquid refrigerant after condensation flows to the expansion valve 7.
The liquid refrigerant that has flowed to the expansion valve 7 is expanded by the expansion valve 7 and then sent to the evaporator 9. In the evaporator 9, the liquid refrigerant evaporates and vaporizes by removing the latent heat of vaporization from the cold water flowing in the cold water heat transfer tube 28. The cold water cooled in this way is sent to an external load (not shown). The gas refrigerant vaporized in the evaporator 9 is sent to the turbo compressor 3 again.
<ガス冷媒冷却>
 ガス冷媒供給配管16からターボ圧縮機3に導かれたガス冷媒による冷却は、以下のように行われる。
 ガス冷媒供給配管16を介して、凝縮器5から高圧のガス冷媒が回転シャフト24に形成した軸線方向ガス冷媒供給穴17aへと送られる。軸線方向ガス冷媒供給穴17aを流れたガス冷媒は、第1半径方向ガス冷媒供給穴17b1を介して第1空間S1へと導かれ、第2半径方向ガス冷媒供給穴17b2を介して第2空間S2へと導かれる。ガス冷媒は、第1空間S1を通り第1ラジアル磁気軸受コイル30aと回転シャフト24との間を通過することによって、第1ラジアル磁気軸受コイル30aを冷却する。ガス冷媒は、第2空間S2を通り第2ラジアル磁気軸受コイル30bと回転シャフト24との間を通過することによって、第2ラジアル磁気軸受コイル30bを冷却する。
 磁気軸受コイル30a,30bの冷却を終えたガス冷媒は、第1冷媒返送配管18aを介して、低圧とされている蒸発器9へと返送される。
<Gas refrigerant cooling>
Cooling by the gas refrigerant led from the gas refrigerant supply pipe 16 to the turbo compressor 3 is performed as follows.
High-pressure gas refrigerant is sent from the condenser 5 to the axial gas refrigerant supply hole 17a formed in the rotating shaft 24 via the gas refrigerant supply pipe 16. The gas refrigerant that has flowed through the axial gas refrigerant supply hole 17a is guided to the first space S1 via the first radial gas refrigerant supply hole 17b1, and is guided to the first space S1 through the second radial gas refrigerant supply hole 17b2. It is led to S2. The gas refrigerant passes through the first space S1 and passes between the first radial magnetic bearing coil 30a and the rotating shaft 24 to cool the first radial magnetic bearing coil 30a. The gas refrigerant passes through the second space S2 and passes between the second radial magnetic bearing coil 30b and the rotating shaft 24 to cool the second radial magnetic bearing coil 30b.
The gas refrigerant having cooled the magnetic bearing coils 30a and 30b is returned to the evaporator 9 having a low pressure via the first refrigerant return pipe 18a.
<液冷媒冷却>
 液冷媒供給配管14からターボ圧縮機3に導かれた液冷媒による冷却は、以下のように行われる。
 液冷媒供給配管14を介して、凝縮器5から高圧の液冷媒がケーシング12に設けた冷却ジャケット15へと送られる。冷却ジャケット15内へと流れ込んだ液冷媒は、ステータ22の熱を奪い、電動モータ10の冷却を行う。これと同時にケーシング12も冷媒によって冷却されるので、第1保持部44aに保持された第1ラジアル磁気軸受コイル30a及び第2保持部44bに保持された第2ラジアル磁気軸受コイル30bも冷却される。
 冷却ジャケット15にて冷却を終えた冷媒は、第2冷媒返送配管18bを介して、低圧とされている蒸発器9へと返送される。
<Liquid refrigerant cooling>
Cooling by the liquid refrigerant led from the liquid refrigerant supply pipe 14 to the turbo compressor 3 is performed as follows.
High-pressure liquid refrigerant is sent from the condenser 5 to the cooling jacket 15 provided in the casing 12 via the liquid refrigerant supply pipe 14. The liquid refrigerant that has flowed into the cooling jacket 15 takes heat from the stator 22 and cools the electric motor 10. At the same time, since the casing 12 is also cooled by the refrigerant, the first radial magnetic bearing coil 30a held by the first holding portion 44a and the second radial magnetic bearing coil 30b held by the second holding portion 44b are also cooled. ..
The refrigerant that has been cooled by the cooling jacket 15 is returned to the evaporator 9 having a low pressure via the second refrigerant return pipe 18b.
 本実施形態によれば、以下の作用効果を奏する。
 ガス冷媒供給配管16から冷却媒体としてガス冷媒を磁気軸受コイル30a,30bに供給するので、磁気軸受コイル30a,30bを効果的に冷却することができる。冷却媒体として液冷媒ではなくガス冷媒を用いるので、回転シャフト24で生じる風損を抑制することができる。
 第1冷媒返送配管18aによって、冷却媒体としてのガス冷媒を、膨張弁7よりも上流側の高圧部である凝縮器5から磁気軸受コイル30a,30bに導き、膨張弁7よりも下流側の低圧部である蒸発器9に返送することとした。これにより、冷凍サイクルの高低圧差を有効に利用することができるので、ガス冷媒を容易に冷却媒体として用いることができる。
According to this embodiment, the following actions and effects are exhibited.
Since the gas refrigerant is supplied from the gas refrigerant supply pipe 16 to the magnetic bearing coils 30a and 30b as a cooling medium, the magnetic bearing coils 30a and 30b can be effectively cooled. Since a gas refrigerant is used as the cooling medium instead of a liquid refrigerant, wind damage caused by the rotating shaft 24 can be suppressed.
The first refrigerant return pipe 18a guides the gas refrigerant as a cooling medium from the condenser 5 which is a high pressure portion on the upstream side of the expansion valve 7 to the magnetic bearing coils 30a and 30b, and lower pressure on the downstream side of the expansion valve 7. It was decided to return it to the evaporator 9 which is a part. As a result, the difference between high and low pressure in the refrigeration cycle can be effectively used, so that the gas refrigerant can be easily used as a cooling medium.
 ガス冷媒供給配管16から供給されたガス冷媒が磁気軸受コイル30a,30bと回転シャフト24との間を通過するので、磁気軸受コイル30a,30bと回転シャフト24との間の風損を抑制することができる。 Since the gas refrigerant supplied from the gas refrigerant supply pipe 16 passes between the magnetic bearing coils 30a and 30b and the rotary shaft 24, wind damage between the magnetic bearing coils 30a and 30b and the rotary shaft 24 can be suppressed. Can be done.
 軸線方向ガス冷媒供給穴17aによって回転シャフト24の軸線方向にガス冷媒を流すとともに、半径方向ガス冷媒供給穴17b1,17b2によって磁気軸受コイル30a,30b側に向かって半径方向外側にガス冷媒を流すこととした。このように、回転シャフト24側からガス冷媒を供給することで、構成を簡素化することができる。半径方向ガス冷媒供給穴17b1,17b2からは、回転シャフト24の遠心力を利用してガス冷媒を供給することができる。これにより、ターボ冷凍機の高低差圧が低い運転条件であったとしても、確実にガス冷媒を供給することが出来る。 The axial gas refrigerant supply hole 17a allows the gas refrigerant to flow in the axial direction of the rotating shaft 24, and the radial gas refrigerant supply holes 17b1 and 17b2 allow the gas refrigerant to flow radially outward toward the magnetic bearing coils 30a and 30b. And said. In this way, by supplying the gas refrigerant from the rotary shaft 24 side, the configuration can be simplified. Gas refrigerant can be supplied from the radial gas refrigerant supply holes 17b1 and 17b2 by utilizing the centrifugal force of the rotary shaft 24. As a result, the gas refrigerant can be reliably supplied even under the operating conditions where the height difference pressure of the turbo chiller is low.
 磁気軸受コイル30a,30bを保持する保持部44a,44b、磁気軸受コイル30a,30b及び補助ベアリング32a,32bに囲まれた空間S1,S2に、冷却用のガス冷媒を供給することとした。このように囲まれた空間S1,S2にガス冷媒を供給することで、磁気軸受コイル30a,30bの側方に先ずガス冷媒を供給し、その後にガス冷媒を磁気軸受コイル30a,30bと回転シャフト24との間に流すことができる。これにより、磁気軸受コイル30a,30bの周囲にガス冷媒を確実に供給することができ、冷却効率を向上させることができる。 It was decided to supply the gas refrigerant for cooling to the spaces S1 and S2 surrounded by the holding portions 44a and 44b for holding the magnetic bearing coils 30a and 30b, the magnetic bearing coils 30a and 30b and the auxiliary bearings 32a and 32b. By supplying the gas refrigerant to the spaces S1 and S2 surrounded in this way, the gas refrigerant is first supplied to the sides of the magnetic bearing coils 30a and 30b, and then the gas refrigerant is supplied to the magnetic bearing coils 30a and 30b and the rotating shaft. It can be flowed between 24 and 24. As a result, the gas refrigerant can be reliably supplied around the magnetic bearing coils 30a and 30b, and the cooling efficiency can be improved.
 ターボ圧縮機3のケーシング12は、冷却媒体が供給される冷却ジャケット15によって冷却される。磁気軸受コイル30a,30bの発熱は、ケーシング12に熱伝導し、冷却ジャケット15によって冷却される。このようにケーシング12をヒートシンクとして使用することで、磁気軸受コイル30a,30bの冷却能力を増大させることができる。 The casing 12 of the turbo compressor 3 is cooled by the cooling jacket 15 to which the cooling medium is supplied. The heat generated by the magnetic bearing coils 30a and 30b is thermally conducted to the casing 12 and cooled by the cooling jacket 15. By using the casing 12 as a heat sink in this way, the cooling capacity of the magnetic bearing coils 30a and 30b can be increased.
<変形例>
 本実施形態は、以下のように変形することができる。
 図3に示すように、図1に示した構成に代えて、中間冷却器40を有する二段膨張の冷媒回路としても良い。中間冷却器40と凝縮器5との間には第1膨張弁7aが設けられ、中間冷却器40と蒸発器9との間には第2膨張弁7bが設けられている。中間冷却器40と2段目の羽根車13bの吸入側とを接続する中間圧ガス冷媒配管42が設けられている。本変形例では、液冷媒供給配管14’及びガス冷媒供給配管16’は、中間冷却器40からケーシング12へ導くようになっている。
<Modification example>
The present embodiment can be modified as follows.
As shown in FIG. 3, instead of the configuration shown in FIG. 1, a two-stage expansion refrigerant circuit having an intercooler 40 may be used. A first expansion valve 7a is provided between the intercooler 40 and the condenser 5, and a second expansion valve 7b is provided between the intercooler 40 and the evaporator 9. An intermediate pressure gas refrigerant pipe 42 that connects the intercooler 40 and the suction side of the second stage impeller 13b is provided. In this modification, the liquid refrigerant supply pipe 14'and the gas refrigerant supply pipe 16' are guided from the intercooler 40 to the casing 12.
<第2実施形態>
 本発明の第2実施形態について説明する。本実施形態は、第1実施形態で説明した磁気軸受コイル30a,30bを冷却するガス冷媒の経路が異なる。したがって、以下の説明では、第1実施形態に対して異なる部分を主として説明し、その他については第1実施形態と同様である。
<Second Embodiment>
A second embodiment of the present invention will be described. In this embodiment, the paths of the gas refrigerant for cooling the magnetic bearing coils 30a and 30b described in the first embodiment are different. Therefore, in the following description, the parts different from the first embodiment will be mainly described, and the other parts are the same as those of the first embodiment.
 図4に示されているように、ガス冷媒供給配管16(図1参照)は、第1ガス冷媒供給配管16aと第2ガス冷媒供給配管16bに分岐する。第1ガス冷媒供給配管16aは、第1保持部44aに形成された第1ガス冷媒供給穴46aに接続されている。第1ガス冷媒供給穴46aの出口は、第1空間S1に開口している。第2ガス冷媒供給配管16bは、第2保持部44bに形成された第2ガス冷媒供給穴46bに接続されている。第2ガス冷媒供給穴46bの出口は、第2空間S2に開口している。 As shown in FIG. 4, the gas refrigerant supply pipe 16 (see FIG. 1) branches into a first gas refrigerant supply pipe 16a and a second gas refrigerant supply pipe 16b. The first gas refrigerant supply pipe 16a is connected to the first gas refrigerant supply hole 46a formed in the first holding portion 44a. The outlet of the first gas refrigerant supply hole 46a is open to the first space S1. The second gas refrigerant supply pipe 16b is connected to the second gas refrigerant supply hole 46b formed in the second holding portion 44b. The outlet of the second gas refrigerant supply hole 46b is open to the second space S2.
 本実施形態によれば、第1実施形態のように回転シャフト24に対して穴を形成せずに、保持部44a,44bにガス冷媒供給穴46a,46bを形成するだけで良いので加工が容易である。 According to the present embodiment, the gas refrigerant supply holes 46a and 46b need only be formed in the holding portions 44a and 44b without forming holes in the rotary shaft 24 as in the first embodiment, so that the processing is easy. Is.
 上述した各実施形態では、冷却ジャケット15に供給される冷却媒体として液冷媒を用いることしたが、本発明はこれに限定されず、例えば、ターボ圧縮機3の外部から供給される冷却水を用いても良い。 In each of the above-described embodiments, a liquid refrigerant is used as the cooling medium supplied to the cooling jacket 15, but the present invention is not limited to this, and for example, cooling water supplied from the outside of the turbo compressor 3 is used. You may.
1 ターボ冷凍機
3 ターボ圧縮機
5 凝縮器
7 膨張弁
7a 第1膨張弁
7b 第2膨張弁
9 蒸発器
10 電動モータ
12 ケーシング
13a,13b 羽根車
14,14’ 液冷媒供給配管
15 冷却ジャケット(ケーシング冷却部)
16,16’ ガス冷媒供給配管(ガス冷媒供給経路)
16a 第1ガス冷媒供給配管
16b 第2ガス冷媒供給配管
17a 軸線方向ガス冷媒供給穴
17b1 第1半径方向ガス冷媒供給穴
17b2 第1半径方向ガス冷媒供給穴
18a 第1冷媒返送配管(ガス冷媒返送経路)
18b 第2冷媒返送配管
20 ロータ
22 ステータ
24 回転シャフト(回転軸)
24a 円板
26 冷却伝熱管
28 冷水伝熱管
30 磁気軸受
30a 第1ラジアル磁気軸受コイル
30b 第2ラジアル磁気軸受コイル
30c スラスト磁気軸受コイル
32a 第1補助ベアリング(補助軸受)
32b 第2補助ベアリング(補助軸受)
40 中間冷却器
42 中間圧ガス冷媒配管
44a 第1保持部
44b 第2保持部
G1 第1ギャップセンサ
G2 第2ギャップセンサ
S1 第1空間
S2 第2空間
1 Turbo chiller 3 Turbo compressor 5 Condenser 7 Expansion valve 7a 1st expansion valve 7b 2nd expansion valve 9 Evaporator 10 Electric motor 12 Casing 13a, 13b Impeller 14, 14'Liquid refrigerant supply pipe 15 Cooling jacket (casing) Cooling part)
16, 16'Gas refrigerant supply pipe (gas refrigerant supply path)
16a 1st gas refrigerant supply pipe 16b 2nd gas refrigerant supply pipe 17a Axial direction gas refrigerant supply hole 17b1 1st radial gas refrigerant supply hole 17b2 1st radial gas refrigerant supply hole 18a 1st refrigerant return pipe )
18b Second refrigerant return pipe 20 Rotor 22 Stator 24 Rotating shaft (rotating shaft)
24a Disc 26 Cooling heat transfer tube 28 Cold water heat transfer tube 30 Magnetic bearing 30a 1st radial magnetic bearing coil 30b 2nd radial magnetic bearing coil 30c Thrust magnetic bearing coil 32a 1st auxiliary bearing (auxiliary bearing)
32b 2nd auxiliary bearing (auxiliary bearing)
40 Intercooler 42 Intermediate pressure gas refrigerant piping 44a 1st holding part 44b 2nd holding part G1 1st gap sensor G2 2nd gap sensor S1 1st space S2 2nd space

Claims (5)

  1.  冷媒を圧縮するターボ圧縮機と、前記ターボ圧縮機から吐出された冷媒を凝縮させる凝縮器と、前記凝縮器から導かれた液冷媒を膨張させる膨張弁と、前記膨張弁から導かれた冷媒を蒸発させる蒸発器と、を有する冷凍サイクルを備え、
     前記ターボ圧縮機は、
     羽根車と、
     該羽根車を回転させる回転軸と、
     該回転軸を支持する磁気軸受と、
     前記膨張弁よりも前記冷凍サイクルの上流側の高圧部からガス冷媒を冷却媒体として前記磁気軸受に供給するガス冷媒供給経路と、
     前記磁気軸受を通過した後のガス冷媒を前記膨張弁よりも前記冷凍サイクルの下流側の低圧部に導くガス冷媒返送経路と、
    を備えているターボ冷凍機。
    A turbo compressor that compresses the refrigerant, a condenser that condenses the refrigerant discharged from the turbo compressor, an expansion valve that expands the liquid refrigerant derived from the condenser, and a refrigerant derived from the expansion valve. With a refrigeration cycle, with an evaporator to evaporate,
    The turbo compressor
    With an impeller
    A rotating shaft that rotates the impeller,
    A magnetic bearing that supports the rotating shaft and
    A gas refrigerant supply path that supplies a gas refrigerant as a cooling medium to the magnetic bearing from a high-pressure portion on the upstream side of the refrigeration cycle with respect to the expansion valve.
    A gas refrigerant return path that guides the gas refrigerant that has passed through the magnetic bearing to a low-pressure portion downstream of the expansion valve on the downstream side of the refrigeration cycle.
    A turbo chiller equipped with.
  2.  前記ガス冷媒供給経路から供給されたガス冷媒は、前記磁気軸受と前記回転軸との間を通過する請求項1に記載のターボ冷凍機。 The turbo chiller according to claim 1, wherein the gas refrigerant supplied from the gas refrigerant supply path passes between the magnetic bearing and the rotating shaft.
  3.  前記ガス冷媒供給経路は、前記回転軸の軸線方向に形成された軸線方向ガス冷媒供給穴と、該軸線方向ガス冷媒供給穴に接続されるとともに前記磁気軸受側に向かって半径方向外側に形成された半径方向ガス冷媒供給穴と、を備えている請求項1又は2に記載のターボ冷凍機。 The gas refrigerant supply path is connected to the axial gas refrigerant supply hole formed in the axial direction of the rotary shaft and the axial gas refrigerant supply hole, and is formed radially outward toward the magnetic bearing side. The turbo chiller according to claim 1 or 2, further comprising a radial gas refrigerant supply hole.
  4.  前記磁気軸受を保持する保持部と、
     前記保持部に固定されるとともに、前記磁気軸受の側方に設けられた補助軸受と、
     前記保持部、前記磁気軸受及び前記補助軸受に囲まれた空間に、前記ガス冷媒供給経路からガス冷媒が供給される請求項1から3のいずれかに記載のターボ冷凍機。
    A holding portion that holds the magnetic bearing and
    Auxiliary bearings fixed to the holding portion and provided on the side of the magnetic bearing,
    The turbo chiller according to any one of claims 1 to 3, wherein the gas refrigerant is supplied from the gas refrigerant supply path to the space surrounded by the holding portion, the magnetic bearing, and the auxiliary bearing.
  5.  前記ターボ圧縮機を収容するケーシングに対して冷却媒体が供給されるケーシング冷却部を備えている請求項1から4のいずれかに記載のターボ冷凍機。 The turbo chiller according to any one of claims 1 to 4, further comprising a casing cooling unit in which a cooling medium is supplied to a casing accommodating the turbo compressor.
PCT/JP2020/010470 2019-03-26 2020-03-11 Turbo refrigerator WO2020195816A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080022372.8A CN113597515A (en) 2019-03-26 2020-03-11 Turbo refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-058633 2019-03-26
JP2019058633A JP7271254B2 (en) 2019-03-26 2019-03-26 turbo chiller

Publications (1)

Publication Number Publication Date
WO2020195816A1 true WO2020195816A1 (en) 2020-10-01

Family

ID=72610102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010470 WO2020195816A1 (en) 2019-03-26 2020-03-11 Turbo refrigerator

Country Status (3)

Country Link
JP (1) JP7271254B2 (en)
CN (1) CN113597515A (en)
WO (1) WO2020195816A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023201220A1 (en) * 2022-04-12 2023-10-19 Chart Energy & Chemicals, Inc. Cryogenic expansion turbine with magnetic bearings

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6978703B2 (en) * 2020-03-31 2021-12-08 ダイキン工業株式会社 Centrifugal compressor
JP7460923B2 (en) 2022-03-28 2024-04-03 ダイキン工業株式会社 Rotary Fluid Machinery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0179520U (en) * 1987-11-13 1989-05-29
JP2000002469A (en) * 1998-06-16 2000-01-07 Mitsubishi Heavy Ind Ltd Compressor and freezer provided therewith
JP2010506087A (en) * 2006-10-06 2010-02-25 エーエーエフ−マックウェイ インク. Large capacity refrigeration compressor
WO2018022343A1 (en) * 2016-07-25 2018-02-01 Daikin Applied Americas Inc. Centrifugal compressor and magnetic bearing backup system for centrifugal compressor
WO2019188616A1 (en) * 2018-03-30 2019-10-03 三菱重工サーマルシステムズ株式会社 Turbo compressor and turbo refrigerator comprising same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319498U (en) * 1989-07-07 1991-02-26
JP2004044954A (en) * 2002-07-12 2004-02-12 Mitsubishi Heavy Ind Ltd Turbo refrigerating machine comprising compressor with gas bearing and its operating method
JP2006105346A (en) * 2004-10-08 2006-04-20 Mitsubishi Heavy Ind Ltd System and method for preventing shaft vibration of rotating machine
JP2010043780A (en) * 2008-08-12 2010-02-25 Ntn Corp Air cycle refrigeration unit
JP2014119083A (en) * 2012-12-19 2014-06-30 Daikin Ind Ltd Magnetic bearing device and compressor
JP6090926B2 (en) * 2013-05-30 2017-03-08 三菱重工業株式会社 Turbo compressor and turbo refrigerator using the same
CN105004083A (en) * 2014-04-18 2015-10-28 松下知识产权经营株式会社 Turbo machine and refrigeration cycle apparatus
JP6469036B2 (en) * 2016-02-29 2019-02-13 ファナック株式会社 Motor with refrigerant supply path inside

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0179520U (en) * 1987-11-13 1989-05-29
JP2000002469A (en) * 1998-06-16 2000-01-07 Mitsubishi Heavy Ind Ltd Compressor and freezer provided therewith
JP2010506087A (en) * 2006-10-06 2010-02-25 エーエーエフ−マックウェイ インク. Large capacity refrigeration compressor
WO2018022343A1 (en) * 2016-07-25 2018-02-01 Daikin Applied Americas Inc. Centrifugal compressor and magnetic bearing backup system for centrifugal compressor
WO2019188616A1 (en) * 2018-03-30 2019-10-03 三菱重工サーマルシステムズ株式会社 Turbo compressor and turbo refrigerator comprising same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023201220A1 (en) * 2022-04-12 2023-10-19 Chart Energy & Chemicals, Inc. Cryogenic expansion turbine with magnetic bearings

Also Published As

Publication number Publication date
JP2020159263A (en) 2020-10-01
JP7271254B2 (en) 2023-05-11
CN113597515A (en) 2021-11-02

Similar Documents

Publication Publication Date Title
WO2020195816A1 (en) Turbo refrigerator
JP3653005B2 (en) Centrifugal compressor and refrigerator
US20080199326A1 (en) Two-stage vapor cycle compressor
JP6607376B2 (en) Refrigeration cycle equipment
JP4981557B2 (en) Turbo compressor and turbo refrigerator
TW200819692A (en) System and method for reducing windage losses in compressor motors
WO2019188616A1 (en) Turbo compressor and turbo refrigerator comprising same
KR20130091445A (en) Gas foil journal bearing and chiller system including the same
WO2017122719A1 (en) Turbo compressor and turbo refrigeration device equipped with same
JP2014190614A (en) Turbo refrigerator
JP2007162493A (en) Compression expansion turbine system
JP2010043780A (en) Air cycle refrigeration unit
JP2010060202A (en) Cooling structure in motor for refrigerator
JP6004004B2 (en) Turbo refrigerator
JP2018066308A (en) Turbomachine
JP2021156220A (en) Turbo compressor and turbo refrigerating machine including the same
JP2007162492A (en) Compression expansion turbine system
JP2020159294A (en) Turbo compressor and refrigeration cycle device
US20240068382A1 (en) Rotary machine and refrigeration device using same
JP2018068021A (en) Turbomachine and refrigeration cycle device using the same
JP2007218507A (en) Heat pump device and control method thereof
JP6370593B2 (en) Oil-cooled multistage screw compressor and oil draining method thereof
JP2009162464A (en) Air cycle refrigeration system
JP2001349628A (en) Freezer machine
JP7460705B2 (en) Turbo compressor and turbo chiller equipped with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20778916

Country of ref document: EP

Kind code of ref document: A1