JP2000002469A - Compressor and freezer provided therewith - Google Patents
Compressor and freezer provided therewithInfo
- Publication number
- JP2000002469A JP2000002469A JP16813898A JP16813898A JP2000002469A JP 2000002469 A JP2000002469 A JP 2000002469A JP 16813898 A JP16813898 A JP 16813898A JP 16813898 A JP16813898 A JP 16813898A JP 2000002469 A JP2000002469 A JP 2000002469A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- refrigerant gas
- bearing
- compressor
- refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0402—Bearings not otherwise provided for using magnetic or electric supporting means combined with other supporting means, e.g. hybrid bearings with both magnetic and fluid supporting means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2362/00—Apparatus for lighting or heating
- F16C2362/52—Compressors of refrigerators, e.g. air-conditioners
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は圧縮機及びこれを有
する冷凍機に関し、特にターボ冷凍機及びスクリュー圧
縮機等のガス圧縮機に適用して有用なものである。
【0002】
【従来の技術】図6はターボ冷凍機の構成の一例を示す
系統図である。同図に示すように、圧縮機1は蒸発器2
にて蒸発した冷媒(例えばフルオロカーボン類等の有機
冷媒)ガスを吸入し、この駆動電動機3を駆動源として
高速回転する圧縮部4の羽根車4aにより2段圧縮して
凝縮器5に吐出するようにしてある。蒸発器2はその内
部に充填した冷媒液とその内部に取り込む冷水(ブライ
ン)との間で熱交換を行うことにより冷媒液を蒸発させ
るように構成した満液式と呼称される方式のものであ
る。凝縮器5は圧縮機1より吐出された高温高圧の冷媒
ガスをチューブ内を流れる冷却水により冷却して凝縮液
化させるものである。中間冷却器6は凝縮器5と蒸発器
2との間に一定の圧力差を保持するとともに、冷媒の一
部を蒸発させて蒸発器2の潜熱の増大を図るものであ
る。なお、図中の実線が冷媒液の配管、点線が冷媒ガス
の配管である。
【0003】かかるターボ冷凍機において、蒸発器2の
チューブ内を流れる冷水は、チューブの周囲の冷媒より
温度が高いため、熱は冷水より冷媒に移行する。この結
果冷媒は、蒸発器2の内部の圧力に相当する温度で蒸発
し、圧縮機1に吸い込まれて高速回転する一段目の羽根
車4aによって圧縮され、中間冷却器6から冷媒ガスに
より冷却された後、二段目の羽根車4aによってさらに
圧縮されて凝縮器5に送られる。凝縮器5内の高圧ガス
は、チューブ内を流れる冷却水により冷却され、凝縮器
5内の圧力に相当する温度で凝縮する。
【0004】凝縮器5で凝縮した冷媒液は凝縮器5に配
管接続された中間冷却器6に入り、一段目オリフィスで
中間圧力まで減圧されて膨張し、一部はガスとなる。こ
のガスは配管を介して二段目の羽根車4aに吸い込まれ
る。一方、冷媒液の蒸発により冷却された残りの液は二
段目オリフィスでさらに減圧されて蒸発器2に入り蒸発
する。
【0005】かかるターボ冷凍機は回転駆動部である圧
縮機1を有するため、潤滑系が必要になる。この潤滑系
の配管を図中に一点鎖線で示す。この場合の主潤滑点
は、駆動電動機3の回転軸を支承する回転軸の軸受7
a,7b、圧縮部4の羽根車4aの回転軸を支承する軸
受8a,8b及び増速歯車9等である。これらの各部に
は、圧縮機1のケーシング1a内の油タンク1bに内蔵
された油ポンプ10の駆動により油冷却器11を介して
潤滑油が供給される。この場合の軸受7a,7b,8
a,8bには、通常図7に示すような静圧軸受12が用
いられる。この静圧軸受12は、図中に矢印で示すよう
に、中央の孔12aを介して潤滑油を径方向に圧入し、
支承する回転軸13の外周面に噴射するとともにこの回
転軸13の軸方向の両側に沿ってそれぞれ流し、出口1
2bからそれぞれ流出させることにより回転軸13との
間に油膜を形成するように構成したもので、この油膜を
介して回転軸13を支承する。また、この場合の潤滑油
には、通常冷媒に溶け込ませることができるものが使用
されている。潤滑油が蒸発器2の液面近傍以外の特定の
場所に溜まるのを防止し、冷媒とともに循環可能にする
ためである。潤滑油は冷媒とケーシング1a内で接触す
るようになっており、したがって冷媒中には潤滑油が、
また潤滑油中には冷媒が混入する。
【0006】
【発明が解決しようとする課題】上述の如く従来技術に
係る冷凍機においては、冷媒中に漏れ出た潤滑油が回収
不能な場所に貯溜するのを防止するため、この潤滑油は
冷媒に対してある程度の相溶性を有するものを用いてい
る。この場合、冷媒は潤滑油に較べて粘性が小さいた
め、潤滑油に溶け込む冷媒が多くなると、この潤滑油の
負荷能力が低下するという問題を生起する。また、潤滑
油が冷媒中に漏れ出るため、定期的なその回収、補充、
入替え等のメンテナンスに多大の時間を要する。
【0007】上述の如き潤滑油を用いることに伴う問題
点は、潤滑油の代わりに冷媒液を用いることができれば
解消するが、冷媒液を用いた場合には、負荷能力が低く
軸受の大形化を招くばかりでなく、静圧軸受12内に供
給された冷媒液がその内部の回転軸13部分の発熱によ
り出口12bに至る迄の間に蒸発することがあり、この
ように蒸発した場合には、極端に負荷能力が低下する。
【0008】本願発明は、上記従来技術に鑑み、液軸受
を用いることなく、小形で良好な軸受性能を確保するこ
とができる圧縮機及びこれを有する冷凍機を提供するこ
とを目的とする。
【0009】
【課題を解決するための手段】上記目的を達成する本発
明の構成は次の点を特徴とする。
【0010】1) 駆動電動機の回転により圧縮部で冷
媒ガスを圧縮する圧縮機において、冷媒ガスを利用して
回転軸を支承するガス軸受と電磁石が発生する磁力を利
用して回転軸を支承する磁気軸受とを有し、始動時の回
転軸の浮上力は冷媒ガスのガス圧により得、回転中の負
荷変動は磁気軸受で受け持つように構成したこと。
【0011】本発明においては、磁気軸受と回転軸間の
ギャップが大きい当該圧縮機の始動時には冷媒ガスのガ
ス圧を利用して回転軸を浮上させ、始動後の変動負荷は
磁気軸受が受け持つ。
【0012】2) 圧縮機で圧縮した高温高圧の冷媒ガ
スを凝縮器で冷却液と熱交換することにより凝縮させる
とともに、このようにして凝縮した高圧の冷媒液を蒸発
器で液体と熱交換することにより蒸発させて低圧の冷媒
ガスとして上記圧縮機に戻すように構成した冷凍機にお
いて、駆動電動機の回転により圧縮部で冷媒ガスを圧縮
する圧縮機は、冷媒ガスを利用して回転軸を支承するガ
ス軸受と電磁石が発生する磁力を利用して回転軸を支承
する磁気軸受とを有し、始動時の回転軸の浮上力は冷媒
ガスのガス圧により得、回転中の負荷変動は磁気軸受で
受け持つように構成したこと。
【0013】本発明においては、磁気軸受と回転軸間の
ギャップが大きい当該圧縮機の始動時には、冷凍機の各
部の冷媒ガスのガス圧を利用して回転軸を浮上させ、始
動後の変動負荷は磁気軸受が受け持つ。
【0014】3) 上記2)に記載する冷凍機におい
て、ガス軸受の冷媒ガスは圧縮機が吐出する冷媒ガスを
そのまま利用するとともにガス軸受を出た冷媒ガスは蒸
発器へ戻すように構成したこと。
【0015】本発明においては、ガス軸受には、圧縮機
の圧縮部で圧縮した高温高圧の冷媒ガスが直接供給され
て当該圧縮機の始動時に回転軸を浮かせる。ガス軸受か
ら出た冷媒ガスは蒸発器に戻る。一方、回転中の変動負
荷は磁気軸受が負担する。
【0016】4) 上記2)に記載する冷凍機におい
て、ガス軸受の冷媒ガスは、凝縮器の飽和冷媒ガスを別
のガス圧縮機で圧縮して得るとともに、ガス軸受を出た
冷媒ガスは凝縮器へ戻すように構成したこと。
【0017】本形態においては、ガス軸受には、凝縮器
の飽和冷媒ガスをガス圧縮機で圧縮して得る高圧の冷媒
ガスが供給されて当該圧縮機の始動時に回転軸を浮かせ
る。ガス軸受から出た冷媒ガスは凝縮器に戻る。一方、
回転中の変動負荷は磁気軸受が負担する。
【0018】5) 上記2)に記載する冷凍機におい
て、ガス軸受の冷媒ガスは、蒸発器の冷媒ガスを別のガ
ス圧縮機で圧縮して得るとともに、ガス軸受を出た冷媒
ガスは蒸発器へ戻すように構成したこと。
【0019】本形態においては、ガス軸受には、蒸発器
の冷媒ガスをガス圧縮機で圧縮して得る高圧の冷媒ガス
が供給されて当該圧縮機の始動時に回転軸を浮かせる。
ガス軸受から出た冷媒ガスは蒸発器に戻る。一方、回転
中の変動負荷は磁気軸受が負担する。
【0020】6) 上記2)に記載する冷凍機におい
て、ガス軸受の冷媒ガスは、蒸発器の冷媒ガスを別のガ
ス圧縮機で圧縮して得るとともに、ガス軸受を出た冷媒
ガスは凝縮器へ戻すように構成したこと。
【0021】本形態においては、ガス軸受には、蒸発器
の冷媒ガスをガス圧縮機で圧縮して得る高圧の冷媒ガス
が供給されて当該圧縮機の始動時に回転軸を浮かせる。
ガス軸受から出た冷媒ガスは凝縮器に戻る。一方、回転
中の変動負荷は磁気軸受が負担する。
【0022】
【発明の実施の形態】本発明は圧縮機の軸受としてガス
軸受と磁気軸受とを併用するものである。ガス軸受は、
図7に示す静圧軸受12において潤滑油の代わりに冷媒
ガスを用いるものである。また、図1に示すように、磁
気軸受14は、支承する回転軸13の周囲に所定のギャ
ップを介して複数個(図では4個)の電磁石15a,1
5b,15c、15dを配設する一方、ギャップセンサ
16a,16bで回転軸13との間のギャップを検知し
てこのギャップが所定の一定値を保持するように制御部
17で各電磁石15a〜15dに供給する電流を制御す
るようにしたものである。このように、静圧軸受12と
磁気軸受14とを兼用した場合、圧縮機の停止時にはそ
の回転軸13は自重により下方に下降して静圧軸受12
及び磁気軸受14に当接している。したがって、圧縮機
の始動時には、回転軸13が静圧軸受12及び磁気軸受
14に当接している状態から回転軸13を浮かせる必要
がある。このときの浮上力を磁気軸受14の電磁力のみ
により得ようとすればギャップが大きいため、大きな電
磁力を必要とし、必然的に磁気軸受14の大形化及びコ
ストの高騰化を招来し、現実的でない。一方、一旦回転
軸13を浮上させて圧縮機を始動させた後は、磁気軸受
14は安定した負荷能力を発揮する。また、静圧軸受1
2をガス軸受として構成した場合、潤滑油による液軸受
として構成した場合に較べて負荷能力が低下するため、
回転時の変動荷重までもこのガス軸受に負担させようと
すると今度はこのガス軸受の大形化及びコストの高騰を
招来する。そこで、本発明では基本的に、ガス軸受には
回転軸13を浮上させるだけの最低限の負荷のみを負担
させ、定常回転中の変動負荷は磁気軸受14で負担させ
るようにした。
【0023】かかる軸受構造の圧縮機を有する冷凍機に
係る本発明の実施の形態を図面に基づき詳細に説明す
る。
【0024】図2は本発明の第1の実施の形態に係るタ
ーボ冷凍機を示す系統図である。同図に示すように、当
該冷凍機は、圧縮機21で圧縮した高温高圧の冷媒ガス
を凝縮器25で冷却液と熱交換することにより凝縮させ
るとともに、このようにして凝縮した高圧の冷媒液を膨
張弁26を介して蒸発器22で液体と熱交換することに
より蒸発させ、低圧の冷媒ガスとして上記圧縮機21に
戻すように構成したものであり、基本的には従来技術に
係る冷凍機と同構成のものである。なお、図中の実線が
冷媒液の配管、点線が冷媒ガスの配管である。
【0025】ここで圧縮機21は駆動電動機23で圧縮
部24の羽根車24aを回転させて冷媒ガスを圧縮する
ものであるが、両者の回転軸29を共用する直結形のも
のとして構成してある。回転軸29は駆動電動機23の
回転子23aの左右にそれぞれ配設したガス軸受27
a、磁気軸受28a及びガス軸受27b、磁気軸受28
bでそれぞれ支承するようになっている。磁気軸受28
a,28bは、図1に示す磁気軸受14と同構成のもの
であるが、ガス軸受27a,27bは、図7に示す静圧
軸受12において冷媒ガスを作動流体とするものであ
る。このときの冷媒ガスは圧縮機21が吐出する冷媒ガ
スをそのまま利用するとともにガス軸受27a,27b
を出た冷媒ガスは蒸発器22へ戻すように構成してあ
る。
【0026】本形態によれば、ガス軸受27a,27b
には、圧縮機21の圧縮部24で圧縮した高温高圧の冷
媒ガスが直接供給されて当該圧縮機21の始動時に回転
軸29を浮かせるとともにこの状態を保持するよう支承
する。ガス軸受27a,27bから出た冷媒ガスは蒸発
器22に戻る。一方、回転中の変動負荷は磁気軸受28
a,28bが負担する。
【0027】図3は本発明の第2の実施の形態に係るタ
ーボ冷凍機を示す系統図である。同図中図2と同一部分
には同一番号を付し重複する説明は省略する。同図に示
すように、当該冷凍機の圧縮機31において、ガス軸受
27a,27bの冷媒ガスは、凝縮器25の飽和冷媒ガ
スを別のガス圧縮機32で圧縮して得るとともに、ガス
軸受27a,27bを出た冷媒ガスは凝縮器25へ戻す
ように構成してある。
【0028】本形態によれば、ガス軸受27a,27b
には、凝縮器25の飽和冷媒ガスをガス圧縮機32で圧
縮して得る高圧の冷媒ガスが供給されて当該圧縮機31
の始動時に回転軸29を浮かせるとともにこの状態を保
持するよう支承する。ガス軸受27a,27bから出た
冷媒ガスは凝縮器25に戻る。一方、回転中の変動負荷
は磁気軸受28a,28bが負担する。
【0029】図4は本発明の第3の実施の形態に係るタ
ーボ冷凍機を示す系統図である。同図中図2と同一部分
には同一番号を付し重複する説明は省略する。同図に示
すように、当該冷凍機の圧縮機41において、ガス軸受
27a,27bの冷媒ガスは、蒸発器22の冷媒ガスを
別のガス圧縮機42で圧縮して得るとともに、ガス軸受
27a,27bを出た冷媒ガスは蒸発器22へ戻すよう
に構成してある。
【0030】本形態によれば、ガス軸受27a,27b
には、蒸発器22の冷媒ガスをガス圧縮機42で圧縮し
て得る高圧の冷媒ガスが供給されて当該圧縮機31の始
動時に回転軸29を浮かせるとともにこの状態を保持す
るよう支承する。ガス軸受27a,27bから出た冷媒
ガスは蒸発器22に戻る。一方、回転中の変動負荷は磁
気軸受28a,28bが負担する。
【0031】図5は本発明の第4の実施の形態に係るタ
ーボ冷凍機を示す系統図である。同図中図2と同一部分
には同一番号を付し重複する説明は省略する。同図に示
すように、当該冷凍機の圧縮機51において、ガス軸受
27a,27bの冷媒ガスは、蒸発器22の冷媒ガスを
別のガス圧縮機52で圧縮して得るとともに、ガス軸受
27a,27bを出た冷媒ガスは凝縮器25へ戻すよう
に構成してある。
【0032】本形態によれば、ガス軸受27a,27b
には、蒸発器22の冷媒ガスをガス圧縮機52で圧縮し
て得る高圧の冷媒ガスが供給されて当該圧縮機51の始
動時に回転軸29を浮かせるとともにこの状態を保持す
るよう支承する。ガス軸受27a,27bから出た冷媒
ガスは凝縮器25に戻る。一方、回転中の変動負荷は磁
気軸受28a,28bが負担する。
【0033】本発明は上述の如き実施の形態に限定され
るものではない。基本的に、冷媒ガスを利用した静圧軸
受と磁気軸受とを併用し、両者で圧縮機の回転部の負荷
分担を行うようにしたものであれば、他の変形例も本発
明に係る技術思想に含まれる。また、ターボ冷凍機に限
らず、スクリュー冷凍機等のガス圧縮機に好適に適用し
得る。
【0034】
【発明の効果】以上実施の形態とともに詳細に説明した
通り、〔請求項1〕に記載する発明は、駆動電動機の回
転により圧縮部で冷媒ガスを圧縮する圧縮機において、
冷媒ガスを利用して回転軸を支承するガス軸受と電磁石
が発生する磁力を利用して回転軸を支承する磁気軸受と
を有し、始動時の回転軸の浮上力は冷媒ガスのガス圧に
より得、回転中の負荷変動は磁気軸受で受け持つように
構成したので、磁気軸受と回転軸間のギャップが大きい
当該圧縮機の始動時には冷媒ガスのガス圧を利用して回
転軸を浮上させ、始動後の変動負荷は磁気軸受に受け持
たせることができる。
【0035】この結果、従来技術における欠点の根源と
なっていた液軸受を用いることなく、負荷能力が相対的
に小さいガス軸受の欠点を磁気軸受で変動負荷を受け持
つことにより補完し、同時に回転軸と磁気軸受間のギャ
ップが大きく大きな電磁力を必要とするため磁気軸受の
大形化の原因となるという磁気軸受の欠点を冷媒ガスの
ガス圧で回転軸を浮上させることにより補完して全体と
して良好な負荷能力を有する軸受構造を可及的に小形の
ものとして提供することができるという効果を奏する。
【0036】〔請求項2〕に記載する発明は、圧縮機で
圧縮した高温高圧の冷媒ガスを凝縮器で冷却液と熱交換
することにより凝縮させるとともに、このようにして凝
縮した高圧の冷媒液を蒸発器で液体と熱交換することに
より蒸発させて低圧の冷媒ガスとして上記圧縮機に戻す
ように構成した冷凍機において、駆動電動機の回転によ
り圧縮部で冷媒ガスを圧縮する圧縮機は、冷媒ガスを利
用して回転軸を支承するガス軸受と電磁石が発生する磁
力を利用して回転軸を支承する磁気軸受とを有し、始動
時の回転軸の浮上力は冷媒ガスのガス圧により得、回転
中の負荷変動は磁気軸受で受け持つように構成したの
で、磁気軸受と回転軸間のギャップが大きい当該圧縮機
の始動時には、冷凍機の各部の冷媒ガスのガス圧を利用
して回転軸を浮上させ、始動後の変動負荷は磁気軸受が
受け持つ。
【0037】この結果、冷凍機において〔請求項1〕に
記載する発明と同様の効果を奏する。
【0038】〔請求項3〕に記載する発明は、〔請求項
2〕に記載する冷凍機において、ガス軸受の冷媒ガスは
圧縮機が吐出する冷媒ガスをそのまま利用するとともに
ガス軸受を出た冷媒ガスは蒸発器へ戻すように構成した
ので、ガス軸受には、圧縮機の圧縮部で圧縮した高温高
圧の冷媒ガスが直接供給されて当該圧縮機の始動時に回
転軸を浮かせる。ガス軸受から出た冷媒ガスは蒸発器に
戻る。一方、回転中の変動負荷は磁気軸受が負担する。
【0039】この結果、〔請求項2〕に記載する発明と
同様の効果に加え、ガス軸受に供給する冷媒ガスを得る
のに別のガス圧縮機を用意する必要はなく、その分コス
トの低減に寄与する。
【0040】〔請求項4〕に記載する発明は、〔請求項
2〕に記載する冷凍機において、ガス軸受の冷媒ガス
は、凝縮器の飽和冷媒ガスを別のガス圧縮機で圧縮して
得るとともに、ガス軸受を出た冷媒ガスは凝縮器へ戻す
ように構成したので、ガス軸受には、凝縮器の飽和冷媒
ガスをガス圧縮機で圧縮して得る高圧の冷媒ガスが供給
されて当該圧縮機の始動時に回転軸を浮かせる。ガス軸
受から出た冷媒ガスは凝縮器に戻る。一方、回転中の変
動負荷は磁気軸受が負担する。
【0041】この結果、〔請求項2〕に記載する発明と
同様の効果に加え、ガス軸受用の冷媒ガスは凝縮器から
供給して凝縮器に戻しているので、この間のロスを最小
にすることができるばかりでなく、ガス圧縮機で圧縮す
る冷媒ガスは高圧であるので、このガス圧縮機は小形の
もので良く、コストの面でも有利なものとなる。
【0042】〔請求項5〕に記載する発明は、〔請求項
2〕に記載する冷凍機において、ガス軸受の冷媒ガス
は、蒸発器の冷媒ガスを別のガス圧縮機で圧縮して得る
とともに、ガス軸受を出た冷媒ガスは蒸発器へ戻すよう
に構成したので、ガス軸受には、蒸発器の冷媒ガスをガ
ス圧縮機で圧縮して得る高圧の冷媒ガスが供給されて当
該圧縮機の始動時に回転軸を浮かせる。ガス軸受から出
た冷媒ガスは蒸発器に戻る。一方、回転中の変動負荷は
磁気軸受が負担する。
【0043】この結果、〔請求項2〕に記載する発明と
同様の効果に加え、ガス軸受に供給する冷媒ガスの圧力
差を大きくすることができ、ガス軸受の小形化に寄与し
得るばかりでなく、ロスも小さくすることができる。
【0044】〔請求項6〕に記載する発明は、〔請求項
2〕に記載する冷凍機において、ガス軸受の冷媒ガス
は、蒸発器の冷媒ガスを別のガス圧縮機で圧縮して得る
とともに、ガス軸受を出た冷媒ガスは凝縮器へ戻すよう
に構成ので、ガス軸受には、蒸発器の冷媒ガスをガス圧
縮機で圧縮して得る高圧の冷媒ガスが供給されて当該圧
縮機の始動時に回転軸を浮かせる。ガス軸受から出た冷
媒ガスは凝縮器に戻る。一方、回転中の変動負荷は磁気
軸受が負担する。
【0045】この結果、〔請求項2〕に記載する発明と
同様の効果に加え、ロスを最も少なくすることができる
という効果を奏する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compressor and a refrigerator having the same, and more particularly to a compressor useful for a gas compressor such as a turbo refrigerator or a screw compressor. It is. 2. Description of the Related Art FIG. 6 is a system diagram showing an example of a configuration of a centrifugal chiller. As shown in FIG.
The refrigerant gas (e.g., organic refrigerant such as fluorocarbons) vaporized is sucked, and is compressed into two stages by the impeller 4a of the compression unit 4 which rotates at high speed with the drive motor 3 as a drive source, and is discharged to the condenser 5. It is. The evaporator 2 is of a type called a full-fill type in which the refrigerant liquid is evaporated by performing heat exchange between the refrigerant liquid filled therein and cold water (brine) taken therein. is there. The condenser 5 cools the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 with cooling water flowing in the tube to condense and liquefy. The intercooler 6 maintains a constant pressure difference between the condenser 5 and the evaporator 2 and evaporates a part of the refrigerant to increase the latent heat of the evaporator 2. Note that the solid line in the drawing is the refrigerant liquid pipe, and the dotted line is the refrigerant gas pipe. In such a centrifugal chiller, since the temperature of the cold water flowing in the tube of the evaporator 2 is higher than the temperature of the refrigerant around the tube, heat is transferred from the cold water to the refrigerant. As a result, the refrigerant evaporates at a temperature corresponding to the pressure inside the evaporator 2, is sucked into the compressor 1, is compressed by the first-stage impeller 4 a rotating at high speed, and is cooled by the refrigerant gas from the intercooler 6. Then, it is further compressed by the second stage impeller 4 a and sent to the condenser 5. The high-pressure gas in the condenser 5 is cooled by the cooling water flowing in the tube, and condenses at a temperature corresponding to the pressure in the condenser 5. [0004] The refrigerant liquid condensed in the condenser 5 enters an intercooler 6 connected to the condenser 5 by a pipe, and is decompressed to an intermediate pressure by a first-stage orifice and expanded, and a part thereof becomes gas. This gas is sucked into the second-stage impeller 4a via a pipe. On the other hand, the remaining liquid cooled by the evaporation of the refrigerant liquid is further reduced in pressure in the second-stage orifice, enters the evaporator 2 and evaporates. [0005] Since such a centrifugal chiller has the compressor 1 as a rotary drive unit, a lubrication system is required. This lubrication system piping is shown by a dashed line in the figure. The main lubrication point in this case is the bearing 7 of the rotating shaft that supports the rotating shaft of the drive motor 3.
a, 7b, bearings 8a, 8b for supporting the rotating shaft of the impeller 4a of the compression unit 4, the speed-increasing gear 9, and the like. These components are supplied with lubricating oil via an oil cooler 11 by driving an oil pump 10 built in an oil tank 1b in a casing 1a of the compressor 1. Bearings 7a, 7b, 8 in this case
A static pressure bearing 12 as shown in FIG. 7 is usually used for a and 8b. This hydrostatic bearing 12 radially press-fits lubricating oil through a central hole 12a, as indicated by an arrow in the drawing.
Injection is carried out on the outer peripheral surface of the rotating shaft 13 to be supported, and flows along both sides of the rotating shaft 13 in the axial direction.
An oil film is formed between the rotary shaft 13 and the rotary shaft 13 by flowing out from each of the rotary shafts 2b, and the rotary shaft 13 is supported through the oil film. Further, as the lubricating oil in this case, a lubricating oil that can be generally dissolved in a refrigerant is used. This is to prevent the lubricating oil from accumulating in a specific place other than near the liquid surface of the evaporator 2 and to enable circulation with the refrigerant. The lubricating oil comes into contact with the refrigerant in the casing 1a.
A refrigerant is mixed in the lubricating oil. [0006] As described above, in the refrigerator according to the prior art, in order to prevent the lubricating oil leaking into the refrigerant from being stored in a place where it cannot be collected, this lubricating oil is used. A material having a certain degree of compatibility with the refrigerant is used. In this case, since the refrigerant has a smaller viscosity than the lubricating oil, a problem arises that when the amount of the refrigerant dissolved in the lubricating oil increases, the load capacity of the lubricating oil decreases. In addition, since the lubricating oil leaks into the refrigerant, the collection, replenishment,
A great deal of time is required for maintenance such as replacement. [0007] The problems associated with the use of lubricating oil as described above can be solved if a refrigerant liquid can be used instead of the lubricating oil. Not only that, the refrigerant liquid supplied into the hydrostatic bearing 12 may evaporate before reaching the outlet 12b due to heat generation of the rotating shaft 13 therein. The load capacity is extremely reduced. In view of the above prior art, an object of the present invention is to provide a compact compressor capable of ensuring good bearing performance without using a liquid bearing, and a refrigerator having the same. [0009] The structure of the present invention that achieves the above object has the following features. 1) In a compressor that compresses a refrigerant gas in a compression section by rotation of a drive motor, a gas bearing that supports a rotating shaft by using the refrigerant gas and a rotating shaft that is supported by a magnetic force generated by an electromagnet are used. It has a magnetic bearing, and the levitation force of the rotating shaft at the start is obtained by the gas pressure of the refrigerant gas, and the load fluctuation during rotation is covered by the magnetic bearing. In the present invention, when the compressor having a large gap between the magnetic bearing and the rotating shaft is started, the rotating shaft is levitated by utilizing the gas pressure of the refrigerant gas, and the magnetic bearing bears a variable load after the starting. 2) The high-temperature and high-pressure refrigerant gas compressed by the compressor is condensed by exchanging heat with the cooling liquid in the condenser, and the high-pressure refrigerant liquid thus condensed is exchanged with the liquid by the evaporator. In the refrigerator configured to evaporate and return the refrigerant to the compressor as a low-pressure refrigerant gas, the compressor that compresses the refrigerant gas in the compression unit by the rotation of the drive motor supports the rotating shaft using the refrigerant gas. And a magnetic bearing that supports the rotating shaft using the magnetic force generated by the electromagnet. The floating force of the rotating shaft at startup is obtained by the gas pressure of the refrigerant gas, and the load fluctuation during rotation is reduced by the magnetic bearing. That it was configured to take charge. In the present invention, when the compressor having a large gap between the magnetic bearing and the rotating shaft is started, the rotating shaft is levitated by using the gas pressure of the refrigerant gas in each part of the refrigerator, and the variable load after the start is started. Is the magnetic bearing. 3) In the refrigerator described in 2) above, the refrigerant gas of the gas bearing uses the refrigerant gas discharged from the compressor as it is, and the refrigerant gas discharged from the gas bearing is returned to the evaporator. . In the present invention, the high-temperature and high-pressure refrigerant gas compressed in the compression section of the compressor is directly supplied to the gas bearing so that the rotating shaft is lifted when the compressor is started. The refrigerant gas discharged from the gas bearing returns to the evaporator. On the other hand, the fluctuation load during rotation is borne by the magnetic bearing. 4) In the refrigerator described in 2) above, the refrigerant gas in the gas bearing is obtained by compressing the saturated refrigerant gas in the condenser by another gas compressor, and the refrigerant gas leaving the gas bearing is condensed. That it was configured to return to the vessel. In this embodiment, a high-pressure refrigerant gas obtained by compressing a saturated refrigerant gas of a condenser by a gas compressor is supplied to the gas bearing, and the rotating shaft is floated when the compressor is started. The refrigerant gas exiting the gas bearing returns to the condenser. on the other hand,
The fluctuation load during rotation is borne by the magnetic bearing. 5) In the refrigerator described in 2) above, the refrigerant gas of the gas bearing is obtained by compressing the refrigerant gas of the evaporator by another gas compressor, and the refrigerant gas leaving the gas bearing is obtained by the evaporator. That it is configured to return to In this embodiment, a high-pressure refrigerant gas obtained by compressing the refrigerant gas of the evaporator by the gas compressor is supplied to the gas bearing, and the rotating shaft is floated when the compressor is started.
The refrigerant gas discharged from the gas bearing returns to the evaporator. On the other hand, the fluctuation load during rotation is borne by the magnetic bearing. 6) In the refrigerator described in 2) above, the refrigerant gas of the gas bearing is obtained by compressing the refrigerant gas of the evaporator by another gas compressor, and the refrigerant gas leaving the gas bearing is obtained by the condenser. That it is configured to return to In this embodiment, the gas bearing is supplied with a high-pressure refrigerant gas obtained by compressing the refrigerant gas of the evaporator by the gas compressor, so that the rotating shaft floats when the compressor is started.
The refrigerant gas exiting the gas bearing returns to the condenser. On the other hand, the fluctuation load during rotation is borne by the magnetic bearing. DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention uses a gas bearing and a magnetic bearing together as a compressor bearing. Gas bearings
In the static pressure bearing 12 shown in FIG. 7, refrigerant gas is used instead of lubricating oil. As shown in FIG. 1, the magnetic bearing 14 includes a plurality (four in the figure) of electromagnets 15a, 1 around a rotating shaft 13 supported by a predetermined gap.
5b, 15c, and 15d are arranged, and the gap sensors 16a and 16b detect a gap between the rotary shaft 13 and the control unit 17 controls the electromagnets 15a to 15d so that the gap maintains a predetermined constant value. The current to be supplied to is controlled. As described above, when the hydrostatic bearing 12 and the magnetic bearing 14 are also used, when the compressor is stopped, the rotating shaft 13 is lowered downward by its own weight and the hydrostatic bearing 12
And the magnetic bearing 14. Therefore, when starting the compressor, it is necessary to lift the rotating shaft 13 from a state where the rotating shaft 13 is in contact with the hydrostatic bearing 12 and the magnetic bearing 14. If the levitation force at this time is to be obtained only by the electromagnetic force of the magnetic bearing 14, the gap is large, so a large electromagnetic force is required, which inevitably leads to an increase in the size of the magnetic bearing 14 and an increase in cost. Not realistic. On the other hand, once the rotating shaft 13 is levitated to start the compressor, the magnetic bearing 14 exhibits a stable load capability. In addition, hydrostatic bearing 1
2 is configured as a gas bearing, the load capacity is lower than when configured as a liquid bearing using lubricating oil.
If the gas bearing is to be subjected to a fluctuating load during rotation, the size of the gas bearing is increased and the cost is increased. Therefore, in the present invention, basically, only the minimum load for floating the rotating shaft 13 is applied to the gas bearing, and the variable load during the steady rotation is applied to the magnetic bearing 14. An embodiment of the present invention relating to a refrigerator having a compressor having such a bearing structure will be described in detail with reference to the drawings. FIG. 2 is a system diagram showing a centrifugal chiller according to a first embodiment of the present invention. As shown in the figure, the refrigerator condenses the high-temperature and high-pressure refrigerant gas compressed by the compressor 21 by exchanging heat with the cooling liquid in the condenser 25, and also condenses the high-pressure refrigerant liquid thus condensed. Is evaporated by exchanging heat with the liquid in the evaporator 22 through the expansion valve 26, and returned to the compressor 21 as a low-pressure refrigerant gas. It has the same configuration as. Note that the solid line in the drawing is the refrigerant liquid pipe, and the dotted line is the refrigerant gas pipe. Here, the compressor 21 compresses the refrigerant gas by rotating the impeller 24a of the compression section 24 by the drive motor 23, but is configured as a direct connection type that shares the rotation shafts 29 of both. is there. The rotating shaft 29 is provided with gas bearings 27 disposed on the left and right sides of a rotor 23a of the driving motor 23, respectively.
a, magnetic bearing 28a and gas bearing 27b, magnetic bearing 28
Each is supported by b. Magnetic bearing 28
Although a and 28b have the same configuration as the magnetic bearing 14 shown in FIG. 1, the gas bearings 27a and 27b use refrigerant gas as a working fluid in the static pressure bearing 12 shown in FIG. At this time, the refrigerant gas discharged from the compressor 21 is used as it is and the gas bearings 27a, 27b
The refrigerant gas that has exited is configured to return to the evaporator 22. According to this embodiment, the gas bearings 27a, 27b
Is supplied directly with the high-temperature and high-pressure refrigerant gas compressed by the compression section 24 of the compressor 21 to float the rotary shaft 29 when the compressor 21 is started and to support this state. The refrigerant gas flowing out of the gas bearings 27a, 27b returns to the evaporator 22. On the other hand, the variable load during rotation is
a, 28b. FIG. 3 is a system diagram showing a centrifugal chiller according to a second embodiment of the present invention. In the figure, the same parts as those in FIG. 2 are denoted by the same reference numerals, and duplicate description is omitted. As shown in the figure, in the compressor 31 of the refrigerator, the refrigerant gas in the gas bearings 27a and 27b is obtained by compressing the saturated refrigerant gas in the condenser 25 by another gas compressor 32, and the gas bearing 27a , 27b return to the condenser 25. According to this embodiment, the gas bearings 27a, 27b
Is supplied with a high-pressure refrigerant gas obtained by compressing the saturated refrigerant gas in the condenser 25 with the gas compressor 32.
At the time of starting, the rotary shaft 29 is floated and supported to maintain this state. The refrigerant gas flowing out of the gas bearings 27a, 27b returns to the condenser 25. On the other hand, the variable load during rotation is borne by the magnetic bearings 28a and 28b. FIG. 4 is a system diagram showing a centrifugal chiller according to a third embodiment of the present invention. In the figure, the same parts as those in FIG. 2 are denoted by the same reference numerals, and duplicate description is omitted. As shown in the figure, in the compressor 41 of the refrigerator, the refrigerant gas of the gas bearings 27a and 27b is obtained by compressing the refrigerant gas of the evaporator 22 by another gas compressor 42, and the gas bearings 27a and 27b. The refrigerant gas that has exited 27 b is configured to return to the evaporator 22. According to this embodiment, the gas bearings 27a, 27b
Is supplied with a high-pressure refrigerant gas obtained by compressing the refrigerant gas of the evaporator 22 by the gas compressor 42, and floats the rotating shaft 29 when the compressor 31 is started, and supports this state. The refrigerant gas flowing out of the gas bearings 27a, 27b returns to the evaporator 22. On the other hand, the variable load during rotation is borne by the magnetic bearings 28a and 28b. FIG. 5 is a system diagram showing a centrifugal chiller according to a fourth embodiment of the present invention. In the figure, the same parts as those in FIG. 2 are denoted by the same reference numerals, and duplicate description is omitted. As shown in the figure, in the compressor 51 of the refrigerator, the refrigerant gas of the gas bearings 27a and 27b is obtained by compressing the refrigerant gas of the evaporator 22 by another gas compressor 52, and the gas bearing 27a, 27b. The refrigerant gas that has exited 27 b is configured to return to the condenser 25. According to this embodiment, the gas bearings 27a, 27b
Is supplied with a high-pressure refrigerant gas obtained by compressing the refrigerant gas of the evaporator 22 by the gas compressor 52, and floats the rotating shaft 29 when the compressor 51 is started, and supports to keep this state. The refrigerant gas flowing out of the gas bearings 27a, 27b returns to the condenser 25. On the other hand, the variable load during rotation is borne by the magnetic bearings 28a and 28b. The present invention is not limited to the above embodiment. Basically, as long as the static pressure bearing and the magnetic bearing using the refrigerant gas are used in combination and the load sharing of the rotating part of the compressor is performed by both of them, the technology according to the present invention is also applicable to other modified examples. Included in thought. Further, the present invention can be suitably applied to a gas compressor such as a screw refrigerator, not limited to a turbo refrigerator. As described in detail with the above embodiments, the invention described in [Claim 1] is a compressor for compressing a refrigerant gas in a compression section by rotation of a drive motor.
It has a gas bearing that supports the rotating shaft using the refrigerant gas and a magnetic bearing that supports the rotating shaft using the magnetic force generated by the electromagnet, and the levitation force of the rotating shaft at start-up depends on the gas pressure of the refrigerant gas. Since the load fluctuation during rotation is taken care of by the magnetic bearing, when the compressor having a large gap between the magnetic bearing and the rotating shaft is started, the rotating shaft is floated using the gas pressure of the refrigerant gas to start the compressor. The subsequent fluctuating load can be assigned to the magnetic bearing. As a result, the disadvantage of the gas bearing having a relatively small load capacity can be complemented by using the magnetic bearing to handle the variable load without using the liquid bearing which has been the source of the disadvantage in the prior art. The gap between the magnetic bearing and the large magnetic force requires a large electromagnetic force, which causes the size of the magnetic bearing to increase, and complements the drawback of the magnetic bearing by floating the rotating shaft with the gas pressure of the refrigerant gas as a whole. It is possible to provide a bearing structure having a good load capacity as small as possible. According to a second aspect of the present invention, a high-temperature high-pressure refrigerant gas compressed by a compressor is condensed by exchanging heat with a cooling liquid in a condenser, and the high-pressure refrigerant liquid thus condensed is condensed. Is cooled by heat exchange with the liquid in the evaporator and returned to the compressor as a low-pressure refrigerant gas.In the refrigerator, the compressor that compresses the refrigerant gas in the compression section by the rotation of the drive motor is a refrigerant. It has a gas bearing that supports the rotating shaft using gas and a magnetic bearing that uses the magnetic force generated by the electromagnet to support the rotating shaft. The levitation force of the rotating shaft at startup is obtained by the gas pressure of the refrigerant gas. Since the load fluctuation during rotation is configured to be handled by the magnetic bearings, the gap between the magnetic bearings and the rotating shaft is large. When the compressor is started, the rotating shaft is rotated by utilizing the gas pressure of the refrigerant gas in each part of the refrigerator. Emerged , Variable load after starting the magnetic bearing takes charge. As a result, the refrigerator has the same effect as the invention described in claim 1. According to a third aspect of the present invention, in the refrigerating machine according to the second aspect, the refrigerant gas of the gas bearing uses the refrigerant gas discharged from the compressor as it is and the refrigerant flowing out of the gas bearing. Since the gas is configured to be returned to the evaporator, the gas bearing is directly supplied with the high-temperature and high-pressure refrigerant gas compressed in the compression section of the compressor, so that the rotating shaft floats when the compressor is started. The refrigerant gas discharged from the gas bearing returns to the evaporator. On the other hand, the fluctuation load during rotation is borne by the magnetic bearing. As a result, in addition to the same effect as the invention described in [Claim 2], it is not necessary to prepare another gas compressor to obtain the refrigerant gas to be supplied to the gas bearing, and the cost is reduced accordingly. To contribute. According to a fourth aspect of the present invention, in the refrigerator described in the second aspect, the refrigerant gas in the gas bearing is obtained by compressing the saturated refrigerant gas in the condenser by another gas compressor. At the same time, the refrigerant gas exiting the gas bearing is configured to be returned to the condenser, so that the gas bearing is supplied with high-pressure refrigerant gas obtained by compressing the saturated refrigerant gas of the condenser with a gas compressor, and Raise the rotating shaft when the machine starts. The refrigerant gas exiting the gas bearing returns to the condenser. On the other hand, the fluctuation load during rotation is borne by the magnetic bearing. As a result, in addition to the same effect as the invention described in [Claim 2], since the refrigerant gas for the gas bearing is supplied from the condenser and returned to the condenser, the loss during this period is minimized. In addition to the fact that the refrigerant gas compressed by the gas compressor has a high pressure, the gas compressor can be small and advantageous in terms of cost. According to a fifth aspect of the present invention, in the refrigerator described in the second aspect, the refrigerant gas of the gas bearing is obtained by compressing the refrigerant gas of the evaporator by another gas compressor. Since the refrigerant gas exiting the gas bearing is configured to return to the evaporator, the gas bearing is supplied with a high-pressure refrigerant gas obtained by compressing the refrigerant gas of the evaporator by a gas compressor, and Raise the rotating shaft at startup. The refrigerant gas discharged from the gas bearing returns to the evaporator. On the other hand, the fluctuation load during rotation is borne by the magnetic bearing. As a result, in addition to the same effect as the invention described in [Claim 2], the pressure difference of the refrigerant gas supplied to the gas bearing can be increased, which can contribute to downsizing of the gas bearing. And loss can be reduced. According to a sixth aspect of the present invention, in the refrigerator described in the second aspect, the refrigerant gas of the gas bearing is obtained by compressing the refrigerant gas of the evaporator by another gas compressor. Since the refrigerant gas exiting the gas bearing is configured to return to the condenser, the gas bearing is supplied with a high-pressure refrigerant gas obtained by compressing the refrigerant gas of the evaporator by the gas compressor, and starting the compressor. Sometimes lift the axis of rotation. The refrigerant gas exiting the gas bearing returns to the condenser. On the other hand, the fluctuation load during rotation is borne by the magnetic bearing. As a result, in addition to the same effect as the invention described in [Claim 2], there is an effect that the loss can be minimized.
【図面の簡単な説明】
【図1】本発明の実施の形態に用いる磁気軸受を概念的
に示す説明図である。
【図2】本発明の第1の実施の形態に係る冷凍機を示す
系統図である。
【図3】本発明の第2の実施の形態に係る冷凍機を示す
系統図である。
【図4】本発明の第3の実施の形態に係る冷凍機を示す
系統図である。
【図5】本発明の第4の実施の形態に係る冷凍機を示す
系統図である。
【図6】従来技術に係る冷凍機を示す系統図である。
【図7】静圧軸受を概念的に示す説明図である。
【符号の説明】
21、31、41、51 圧縮機
22 蒸発器
23 駆動電動機
24 圧縮部
24a 羽根車
25 凝縮器
27a、27b ガス軸受
28a、28b 磁気軸受
29 回転軸
32、42、52 ガス圧縮機BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view conceptually showing a magnetic bearing used in an embodiment of the present invention. FIG. 2 is a system diagram showing a refrigerator according to the first embodiment of the present invention. FIG. 3 is a system diagram showing a refrigerator according to a second embodiment of the present invention. FIG. 4 is a system diagram showing a refrigerator according to a third embodiment of the present invention. FIG. 5 is a system diagram showing a refrigerator according to a fourth embodiment of the present invention. FIG. 6 is a system diagram showing a refrigerator according to the related art. FIG. 7 is an explanatory view conceptually showing a hydrostatic bearing. [Description of Signs] 21, 31, 41, 51 Compressor 22 Evaporator 23 Drive motor 24 Compressor 24a Impeller 25 Condenser 27a, 27b Gas bearing 28a, 28b Magnetic bearing 29 Rotary shaft 32, 42, 52 Gas compressor
Claims (1)
スを圧縮する圧縮機において、 冷媒ガスを利用して回転軸を支承するガス軸受と電磁石
が発生する磁力を利用して回転軸を支承する磁気軸受と
を有し、始動時の回転軸の浮上力は冷媒ガスのガス圧に
より得、回転中の負荷変動は磁気軸受で受け持つように
構成したことを特徴とする圧縮機。 【請求項2】 圧縮機で圧縮した高温高圧の冷媒ガスを
凝縮器で冷却液と熱交換することにより凝縮させるとと
もに、このようにして凝縮した高圧の冷媒液を蒸発器で
液体と熱交換することにより蒸発させて低圧の冷媒ガス
として上記圧縮機に戻すように構成した冷凍機におい
て、 駆動電動機の回転により圧縮部で冷媒ガスを圧縮する圧
縮機は、冷媒ガスを利用して回転軸を支承するガス軸受
と電磁石が発生する磁力を利用して回転軸を支承する磁
気軸受とを有し、始動時の回転軸の浮上力は冷媒ガスの
ガス圧により得、回転中の負荷変動は磁気軸受で受け持
つように構成したことを特徴とする冷凍機。 【請求項3】 〔請求項2〕に記載する冷凍機におい
て、 ガス軸受の冷媒ガスは圧縮機が吐出する冷媒ガスをその
まま利用するとともにガス軸受を出た冷媒ガスは蒸発器
へ戻すように構成したことを特徴とする冷凍機。 【請求項4】 〔請求項2〕に記載する冷凍機におい
て、 ガス軸受の冷媒ガスは、凝縮器の飽和冷媒ガスを別のガ
ス圧縮機で圧縮して得るとともに、ガス軸受を出た冷媒
ガスは凝縮器へ戻すように構成したことを特徴とする冷
凍機。 【請求項5】 〔請求項2〕に記載する冷凍機におい
て、 ガス軸受の冷媒ガスは、蒸発器の冷媒ガスを別のガス圧
縮機で圧縮して得るとともに、ガス軸受を出た冷媒ガス
は蒸発器へ戻すように構成したことを特徴とする冷凍
機。 【請求項6】 〔請求項2〕に記載する冷凍機におい
て、 ガス軸受の冷媒ガスは、蒸発器の冷媒ガスを別のガス圧
縮機で圧縮して得るとともに、ガス軸受を出た冷媒ガス
は凝縮器へ戻すように構成したことを特徴とする冷凍
機。Claims: 1. A compressor for compressing a refrigerant gas in a compression section by rotation of a drive motor, wherein a gas bearing that supports a rotating shaft using the refrigerant gas and a magnetic force generated by an electromagnet are used. And a magnetic bearing that supports the rotating shaft by compression. Machine. 2. A high-temperature high-pressure refrigerant gas compressed by a compressor is condensed by exchanging heat with a cooling liquid in a condenser, and the high-pressure refrigerant liquid condensed in this way is heat-exchanged with a liquid by an evaporator. In the refrigerator configured to evaporate and return to the compressor as a low-pressure refrigerant gas, the compressor that compresses the refrigerant gas in the compression section by rotation of the drive motor supports the rotating shaft using the refrigerant gas. And a magnetic bearing that supports the rotating shaft using the magnetic force generated by the electromagnet. The floating force of the rotating shaft at startup is obtained by the gas pressure of the refrigerant gas, and the load fluctuation during rotation is reduced by the magnetic bearing. A refrigerator characterized by being configured to take charge of the refrigerating machine. 3. The refrigerator according to claim 2, wherein the refrigerant gas of the gas bearing uses the refrigerant gas discharged from the compressor as it is, and the refrigerant gas exiting the gas bearing is returned to the evaporator. A refrigerator comprising: 4. The refrigerator according to claim 2, wherein the refrigerant gas of the gas bearing is obtained by compressing the saturated refrigerant gas of the condenser by another gas compressor, and the refrigerant gas exiting the gas bearing. Is a refrigerator configured to return to the condenser. 5. The refrigerator according to claim 2, wherein the refrigerant gas of the gas bearing is obtained by compressing the refrigerant gas of the evaporator by another gas compressor, and the refrigerant gas exiting the gas bearing is obtained by compression. A refrigerator configured to return to an evaporator. 6. The refrigerator according to claim 2, wherein the refrigerant gas of the gas bearing is obtained by compressing the refrigerant gas of the evaporator by another gas compressor, and the refrigerant gas exiting the gas bearing is A refrigerator configured to return to a condenser.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16813898A JP2000002469A (en) | 1998-06-16 | 1998-06-16 | Compressor and freezer provided therewith |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16813898A JP2000002469A (en) | 1998-06-16 | 1998-06-16 | Compressor and freezer provided therewith |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000002469A true JP2000002469A (en) | 2000-01-07 |
Family
ID=15862551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16813898A Pending JP2000002469A (en) | 1998-06-16 | 1998-06-16 | Compressor and freezer provided therewith |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000002469A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003328985A (en) * | 2002-05-14 | 2003-11-19 | Mitsubishi Heavy Ind Ltd | Turbo compressor and refrigerator |
JP2007218258A (en) * | 2006-02-17 | 2007-08-30 | Nuovo Pignone Spa | Motor compressor |
WO2013152061A3 (en) * | 2012-04-04 | 2014-05-01 | Carrier Corporation | Multiple-axis magnetic bearing and control of the magnetic bearing with a topology including active switches |
CN105351221A (en) * | 2015-12-15 | 2016-02-24 | 中国科学院合肥物质科学研究院 | Leak-free centrifugal compressor resistant to high temperature and high pressure |
WO2018022343A1 (en) * | 2016-07-25 | 2018-02-01 | Daikin Applied Americas Inc. | Centrifugal compressor and magnetic bearing backup system for centrifugal compressor |
KR20190008340A (en) * | 2016-05-17 | 2019-01-23 | 알리 엘-샤페이 | Integrated journal bearing |
CN111637086A (en) * | 2020-06-04 | 2020-09-08 | 青岛科技大学 | Centrifugal compressor air supply system for gas bearing support |
JP2020159263A (en) * | 2019-03-26 | 2020-10-01 | 三菱重工サーマルシステムズ株式会社 | Turborefrigerator |
CN111879023A (en) * | 2020-08-26 | 2020-11-03 | 珠海格力电器股份有限公司 | Refrigerant circulation system, control method thereof and air conditioner |
CN111928507A (en) * | 2020-09-09 | 2020-11-13 | 珠海格力电器股份有限公司 | Refrigerant circulating system, control method and air conditioning unit |
CN113898604A (en) * | 2021-10-09 | 2022-01-07 | 广东美的暖通设备有限公司 | Bearing system, refrigeration equipment, centrifugal compressor and control method and device of centrifugal compressor |
CN114198924A (en) * | 2021-11-22 | 2022-03-18 | 青岛海尔空调电子有限公司 | Air supply system and refrigerant circulating system for air suspension compressor |
CN114198926A (en) * | 2021-11-22 | 2022-03-18 | 青岛海尔空调电子有限公司 | Air supply system of compressor and control method for the same |
CN114198925A (en) * | 2021-11-22 | 2022-03-18 | 青岛海尔空调电子有限公司 | Gas-liquid supply system of compressor |
WO2023035655A1 (en) * | 2021-09-08 | 2023-03-16 | 青岛海尔空调电子有限公司 | Air supply system for suspension bearing and refrigeration system |
-
1998
- 1998-06-16 JP JP16813898A patent/JP2000002469A/en active Pending
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003328985A (en) * | 2002-05-14 | 2003-11-19 | Mitsubishi Heavy Ind Ltd | Turbo compressor and refrigerator |
JP2007218258A (en) * | 2006-02-17 | 2007-08-30 | Nuovo Pignone Spa | Motor compressor |
US8430653B2 (en) | 2006-02-17 | 2013-04-30 | Nuovo Pignone, S.P.A. | Motor compressor |
US9890811B2 (en) | 2012-04-04 | 2018-02-13 | Carrier Corporation | Multiple-axis magnetic bearing and control of the magnetic bearing with active switch topologies |
WO2013152061A3 (en) * | 2012-04-04 | 2014-05-01 | Carrier Corporation | Multiple-axis magnetic bearing and control of the magnetic bearing with a topology including active switches |
CN104204569A (en) * | 2012-04-04 | 2014-12-10 | 开利公司 | Multiple-axis magnetic bearing and control of the magnetic bearing with active switch topologies |
CN105351221B (en) * | 2015-12-15 | 2018-06-05 | 中国科学院合肥物质科学研究院 | A kind of high temperature high voltage resistant No leakage centrifugal compressor |
CN105351221A (en) * | 2015-12-15 | 2016-02-24 | 中国科学院合肥物质科学研究院 | Leak-free centrifugal compressor resistant to high temperature and high pressure |
AU2017268318B2 (en) * | 2016-05-17 | 2021-03-11 | Aly El-Shafei | Integrated journal bearing |
KR20190008340A (en) * | 2016-05-17 | 2019-01-23 | 알리 엘-샤페이 | Integrated journal bearing |
EP3458733A4 (en) * | 2016-05-17 | 2019-11-20 | Aly El-Shafei | Integrated journal bearing |
AU2021203888B2 (en) * | 2016-05-17 | 2023-02-23 | Aly El-Shafei | Integrated journal bearing |
KR102377184B1 (en) * | 2016-05-17 | 2022-03-22 | 알리 엘-샤페이 | Integral Journal Bearing |
WO2018022343A1 (en) * | 2016-07-25 | 2018-02-01 | Daikin Applied Americas Inc. | Centrifugal compressor and magnetic bearing backup system for centrifugal compressor |
CN109477487A (en) * | 2016-07-25 | 2019-03-15 | 大金应用美国股份有限公司 | Centrifugal compressor and magnetic bearing back-up system for centrifugal compressor |
JP2019525058A (en) * | 2016-07-25 | 2019-09-05 | ダイキン アプライド アメリカズ インコーポレィティッド | Centrifugal compressor and magnetic bearing backup system for centrifugal compressor |
US10634154B2 (en) | 2016-07-25 | 2020-04-28 | Daikin Applied Americas Inc. | Centrifugal compressor and magnetic bearing backup system for centrifugal compressor |
WO2020195816A1 (en) * | 2019-03-26 | 2020-10-01 | 三菱重工サーマルシステムズ株式会社 | Turbo refrigerator |
CN113597515A (en) * | 2019-03-26 | 2021-11-02 | 三菱重工制冷空调系统株式会社 | Turbo refrigerator |
JP7271254B2 (en) | 2019-03-26 | 2023-05-11 | 三菱重工サーマルシステムズ株式会社 | turbo chiller |
JP2020159263A (en) * | 2019-03-26 | 2020-10-01 | 三菱重工サーマルシステムズ株式会社 | Turborefrigerator |
CN111637086A (en) * | 2020-06-04 | 2020-09-08 | 青岛科技大学 | Centrifugal compressor air supply system for gas bearing support |
CN111879023A (en) * | 2020-08-26 | 2020-11-03 | 珠海格力电器股份有限公司 | Refrigerant circulation system, control method thereof and air conditioner |
CN111928507A (en) * | 2020-09-09 | 2020-11-13 | 珠海格力电器股份有限公司 | Refrigerant circulating system, control method and air conditioning unit |
CN111928507B (en) * | 2020-09-09 | 2024-05-24 | 珠海格力电器股份有限公司 | Refrigerant circulation system, control method and air conditioning unit |
WO2023035655A1 (en) * | 2021-09-08 | 2023-03-16 | 青岛海尔空调电子有限公司 | Air supply system for suspension bearing and refrigeration system |
CN113898604A (en) * | 2021-10-09 | 2022-01-07 | 广东美的暖通设备有限公司 | Bearing system, refrigeration equipment, centrifugal compressor and control method and device of centrifugal compressor |
CN114198925A (en) * | 2021-11-22 | 2022-03-18 | 青岛海尔空调电子有限公司 | Gas-liquid supply system of compressor |
CN114198926A (en) * | 2021-11-22 | 2022-03-18 | 青岛海尔空调电子有限公司 | Air supply system of compressor and control method for the same |
CN114198926B (en) * | 2021-11-22 | 2023-09-26 | 青岛海尔空调电子有限公司 | Air supply system of compressor and control method for the same |
CN114198925B (en) * | 2021-11-22 | 2024-02-23 | 青岛海尔空调电子有限公司 | Gas-liquid supply system of compressor |
CN114198924A (en) * | 2021-11-22 | 2022-03-18 | 青岛海尔空调电子有限公司 | Air supply system and refrigerant circulating system for air suspension compressor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4279989B2 (en) | Oil-free liquid chiller | |
JP6672056B2 (en) | Turbo compressor, turbo refrigeration device provided with the same | |
US20180128520A1 (en) | Rolling element bearings for an oil-free liquid chiller | |
US6568198B1 (en) | Multi-stage compression refrigerating device | |
JP2000002469A (en) | Compressor and freezer provided therewith | |
US5884498A (en) | Turborefrigerator | |
EP3112691B1 (en) | Compressor and refrigerating cycle apparatus | |
JPH10131889A (en) | Compressor for perforator | |
JPH05223090A (en) | Turbo-compressor | |
JP3728399B2 (en) | Oil / refrigerant pump for centrifugal chillers | |
JP2004044954A (en) | Turbo refrigerating machine comprising compressor with gas bearing and its operating method | |
JP2000230760A (en) | Refrigerating machine | |
WO2001011294A1 (en) | Thermosiphonic oil cooler for refrigeration chiller | |
JP6004004B2 (en) | Turbo refrigerator | |
JPH10148408A (en) | Refrigerating system | |
JP2002303298A (en) | Turbo compressor | |
CA2610421C (en) | Oil-free liquid chiller | |
JP2000329095A (en) | Compressor | |
JP2001200791A (en) | Hermetically sealed compressor and cooling method for hermetically sealed compressor | |
JP2001201195A (en) | Turbo refrigerating machine and method for lubricating compressor for turbo refrigerating machine | |
KR100483713B1 (en) | rotordynamic system in Gas Heat Pump using refrigerant vapor turbine | |
WO2003095908A1 (en) | A method in connection with a refrigeration apparatus and a refrigeration apparatus | |
JPS6116203A (en) | Expansion turbine | |
JPH0592496U (en) | Low temperature cooling device | |
JP2003328985A (en) | Turbo compressor and refrigerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070416 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080129 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080527 |