WO2020195551A1 - Hygroscopic coating agent, hygienic material molded body having dry film formed thereon by coating agent, and method for manufacturing coating agent - Google Patents

Hygroscopic coating agent, hygienic material molded body having dry film formed thereon by coating agent, and method for manufacturing coating agent Download PDF

Info

Publication number
WO2020195551A1
WO2020195551A1 PCT/JP2020/008446 JP2020008446W WO2020195551A1 WO 2020195551 A1 WO2020195551 A1 WO 2020195551A1 JP 2020008446 W JP2020008446 W JP 2020008446W WO 2020195551 A1 WO2020195551 A1 WO 2020195551A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
coating agent
weight
containing copolymer
parts
Prior art date
Application number
PCT/JP2020/008446
Other languages
French (fr)
Japanese (ja)
Inventor
秀治 辻内
佐々木 寛人
友記 岡田
勉 古川
Original Assignee
大阪印刷インキ製造株式会社
大王製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪印刷インキ製造株式会社, 大王製紙株式会社 filed Critical 大阪印刷インキ製造株式会社
Publication of WO2020195551A1 publication Critical patent/WO2020195551A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/514Backsheet, i.e. the impermeable cover or layer furthest from the skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/02Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose in the form of fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/08Copolymers of styrene
    • C09D125/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular

Definitions

  • the present invention relates to a hygroscopic coating agent, a molded product for sanitary materials in which a hygroscopic dry film is formed by the coating agent, and a method for producing the coating agent.
  • Absorbent molded products are used for disposable diapers and the like, but the absorbent molded products are required to have excellent breathability and moisture permeability not only to absorb water but also to prevent stuffiness after urination. Has been done. In addition to preventing stuffiness, there are a number of diapers that improve the feel of the part that comes into contact with the skin, and sheets and the like that combine a breathable film and a non-woven fabric are used (Patent Documents). See 1 and 2).
  • Japanese Unexamined Patent Publication No. 2008-21382 Japanese Patent Application Laid-Open No. 178- Japanese Unexamined Patent Publication No. 2018-154699 Japanese Patent No. 6350569 Japanese Unexamined Patent Publication No. 2018-119073
  • the present invention provides hygroscopicity, which can impart hygroscopicity to a molded body for sanitary materials such as disposable diapers without impairing breathability and moisture permeability. It is an object of the present invention to provide a coating agent having a coating agent, a molded body for a sanitary material in which a dry film having hygroscopicity is formed by the coating agent, and a method for producing the coating agent.
  • the coating agent of the present invention is a coating agent that forms a dry film having a hygroscopic property, and contains a cellulose nanofiber, an acid-containing copolymer, and a solvent, and the cellulose nanofiber and the acid-containing copolymer are produced by the solvent.
  • the acid-containing copolymer is formed from at least one (meth) acrylate-based monomer and at least one vinyl-based monomer, and the acid-containing copolymer has an acid value of 50 to 150 mgKOH / g. It is characterized by being one kind of acid-containing copolymer having a glass transition point of 20 to 50 ° C.
  • the coating agent of the present invention a coating agent to form a dried coating having a hygroscopic, cellulose nanofibers, acid-containing copolymers, and includes a solvent, the cellulose nanofibers are dispersed by the solvent, containing said acid
  • the copolymer is dissolved or dispersed by the solvent, the acid-containing copolymer is formed from at least one (meth) acrylate-based monomer, and at least one vinyl-based monomer, and the acid-containing copolymer has an acid value. It is characterized in that it is at least two kinds of acid-containing copolymers having a glass transition point of 50 to 300 mgKOH / g and a glass transition point of ⁇ 10 to 150 ° C.
  • the coating agent contains the cellulose nanofibers in a proportion of 2 to 10% by weight and the acid-containing copolymer in a proportion of 95 to 70% by weight.
  • the thixotropic index value (TI value) of the coating agent is preferably 10 or less.
  • the molded article for sanitary material of the present invention is a molded article for sanitary material in which a dry film having hygroscopicity is formed on a part of one side of a moisture-permeable waterproof film, and the dry film is formed by the coating agent. It is characterized by being.
  • the dry film is formed at a ratio of 30 to 70% of the flat area on one side of the breathable waterproof film.
  • the molded article for sanitary materials can be used as a disposable diaper.
  • a dispersion of the cellulose nanofibers is prepared, the acid-containing copolymer is stirred at a speed of 50 to 1000 rpm, and the cellulose nanofibers are dispersed in the acid-containing copolymer in a stirred state. It is characterized in that the liquid is added while being beaten.
  • the dispersion of cellulose nanofibers can be added to the acid-containing copolymer in a stirred state.
  • the coating agent of the present invention is a coating agent that forms a dry film having a hygroscopic property, and contains a cellulose nanofiber, an acid-containing copolymer, and a solvent, and the cellulose nanofiber and the acid-containing copolymer are produced by the solvent.
  • the acid-containing copolymer is formed from at least one (meth) acrylate-based monomer and at least one vinyl-based monomer, and the acid-containing copolymer has an acid value of 50 to 150 mgKOH / g.
  • the coating agent of the present invention is a coating agent for forming a dry film having hygroscopicity, and contains cellulose nanofibers, an acid-containing copolymer, and a solvent, and the cellulose nanofibers are dispersed by the solvent and contains the acid.
  • the copolymer is dissolved or dispersed by the solvent, the acid-containing copolymer is formed from at least one (meth) acrylate-based monomer, and at least one vinyl-based monomer, and the acid-containing copolymer has an acid value.
  • TI value thixotropic index value
  • the molded body for sanitary materials of the present invention is a molded body for sanitary materials in which a dry film having hygroscopicity is formed on a part of one side of a moisture-permeable waterproof film, and the dry film is formed by the coating agent. This makes it possible to have a desired hygroscopicity without impairing the moisture permeability and waterproofness of the moisture-permeable waterproof film.
  • the moisture that has permeated the disposable diaper can be absorbed by the dry film, and the moisture is absorbed by the clothes or the like to prevent the clothes from feeling damp. It is possible to improve the usability of disposable diapers.
  • a dispersion of the cellulose nanofibers is prepared, the acid-containing copolymer is stirred at a speed of 50 to 1000 rpm, and the cellulose nanofibers are dispersed in the acid-containing copolymer in a stirred state.
  • the cellulose nanofibers can be appropriately dispersed and the coatability of the coating agent can be ensured.
  • the hygroscopic coating agent of the present invention the molded article for sanitary materials on which a hygroscopic dry film is formed, and the method for producing the coating agent will be described in detail below with reference to Examples.
  • the coating agent of the present invention is a coating agent that forms a film having hygroscopicity when a dry film is formed, and contains cellulose nanofibers, an acid-containing copolymer, and a solvent, and the cellulose nanofibers are said to be said. Dispersed by a solvent, the acid-containing copolymer is dissolved or dispersed by the solvent.
  • the acid-containing copolymer is formed from at least one (meth) acrylate-based monomer and at least one vinyl-based monomer.
  • an acid-containing copolymer having an acid value of 50 to 150 and a glass transition point of 20 to 50 ° C. is used.
  • an acid-containing copolymer having an acid value of 50 to 300 and a glass transition point of ⁇ 10 to 150 ° C. is used.
  • the (meth) acrylate-based monomer and vinyl-based monomer used in the acid-containing copolymer are not particularly limited, as long as the acid-containing copolymer satisfies the acid value and the glass transition point as described above. It is possible to use a general monomer.
  • the cellulose nanofibers are used to improve the hygroscopicity of the dry film formed by the coating agent, and by using cellulose nanofibers having a fiber average width of several nm to several hundred nm, the specific surface area is increased. Due to the influence of the hydroxyl groups present on the surface, it becomes possible to have high hygroscopicity when the dry film is formed.
  • the form of the cellulose nanofibers can be powdery, aqueous dispersion, slurry, paste, gel, etc., and is not particularly limited, but dispersibility when added to the coating agent. From the viewpoint of fluidity and the thixotropic index value (TI value) of the coating agent described later, it is preferable to use the form of an aqueous dispersion for the cellulose nanofibers.
  • TI value thixotropic index value
  • the type of the cellulose nanofibers is not particularly limited, and a cellulose nanofiber obtained by mechanically defibrating the raw material pulp, a chemical method before defibration, a pretreated cellulose nanofiber, or the like can be used. it can.
  • the cellulose nanofibers are hydrolyzed with an acid (acid treatment), hydrolyzed with an enzyme (enzyme treatment), swelled with an alkali (alkaline treatment), and oxidized with an oxidizing agent (oxidation). Treatment), reduction of polysaccharide with a reducing agent (reduction treatment), and the like can also be used.
  • the physical property value of the cellulose nanofibers is not particularly limited, but from the viewpoint of controlling the TI value (viscostropic index) of the coating agent, B of the dispersion liquid (concentration 1.5%) of the cellulose nanofibers.
  • the mold viscosity is preferably 20,000 cps or less, more preferably 5,000 cps or less. Limiting the B-type viscosity of the dispersion of cellulose nanofibers facilitates the adjustment of the TI value of the coating agent, and makes it easy to apply the coating agent to the base film to which the coating agent is applied, or to dry the coating agent at the time of coating. It has a good effect from a sexual point of view.
  • water or a water-alcohol-based mixed solvent can be used, and the weight ratio of the water: alcohol-based mixed solvent is preferably 100: 0 to 50:50.
  • the coating agent preferably contains the cellulose nanofibers in a proportion of 2 to 10% by weight and the acid-containing copolymer in a proportion of 95 to 70% by weight. If the proportion of cellulose nanofibers is large, the coatability of the coating agent may deteriorate and coating may not be possible. If the proportion of cellulose nanofibers is too small, the hygroscopicity will be insufficient when a dry film is formed. In some cases.
  • the coating agent preferably has a thixotropic index value (TI value) of 10 or less, and when the TI value becomes large, the coatability of the coating agent may deteriorate and coating may not be possible.
  • TI value thixotropic index value
  • the coating agent may be a filler, a pigment, a wax, a surface conditioner, a defoaming agent, a defoaming agent, a settling inhibitor, a thickener, a preservative, a lubricant, or a release agent, depending on the conditions of use.
  • a mold, a water resistant agent, a cross-linking agent, a hygroscopic material other than cellulose nanofibers (CNF) (glycerin, propylene glycol, sorbitol, a highly water-absorbent resin typified by polyacrylic acid), etc. may be added as appropriate. It is possible, and it is also possible to color the coating agent by adding a pigment to form a dry film of various colors.
  • the coating agent of the present invention can secure sufficient coatability as a coating agent and can form a dry film having sufficient hygroscopicity. It becomes.
  • a dispersion of cellulose nanofibers, an acid-containing copolymer, and a solvent are prepared.
  • the acid-containing copolymer is placed in a stainless steel container equipped with a stirrer and stirred at a speed of 50 to 1000 rpm.
  • a dispersion of cellulose nanofibers is placed in another stainless steel container and beaten with a high-pressure homogenizer while being added dropwise to the agitated acid-containing copolymer.
  • a predetermined amount of the dispersion liquid of cellulose nanofibers is dropped and stirring is completed, the coating agent is completed.
  • the method for producing a coating agent of the present invention makes it possible to ensure the coatability of the coating agent by appropriately dispersing the cellulose nanofibers.
  • a hygroscopic dry film 2 made of the coating agent is formed on a part of one side of the moisture permeable waterproof film 3, and the dry film 2 is formed. Is formed on a part of one side of the moisture permeable waterproof film 3.
  • the molded article 1 for sanitary materials of the present invention having such a structure can be used for disposable diapers and the like because the moisture that has passed through the moisture-permeable waterproof film 3 can be absorbed by the dry film 2.
  • the dry film 2 is formed by being coated on one side of the moisture-permeable waterproof film 3 and dried.
  • the method for forming the dry film 2 is not particularly limited, but for example, it can be applied to one side of the moisture-permeable waterproof film 3 using a flexographic printing machine.
  • the dry film 2 is preferably formed in a range of 30 to 70% of the flat area of one side of the moisture-permeable waterproof film 3.
  • the thickness of the dry coating 2 it is preferable to adjust the dry coating weight of the coating agent to 0.1 to 5 ⁇ m in consideration of hygroscopicity and the like, and further, 0.3 to 5 ⁇ m. It is more preferably 2 ⁇ m.
  • the thickness of the dry film 2 is 0.1 ⁇ m or less, the sanitary material molded product 1 cannot obtain sufficient hygroscopicity, and when the thickness is 5 ⁇ m or more, the cost for drying the coating agent ⁇ It is not practical considering the time.
  • FIG. 1A a method of forming a plurality of strips on one side of the moisture permeable waterproof film 3, FIG.
  • Various methods can be used, such as a method of forming a plurality of strips vertically and horizontally as shown in 1 (b), and a method of forming a plurality of figures at predetermined intervals as shown in FIGS. 1 (c) and 1 (d). it can. In addition, it can be formed as characters and patterns. Then, by adding a pigment to the coating agent, the dry film 2 can be colored in various colors. Therefore, the dry film 2 is colored with a coating agent containing a pigment, and molding for the sanitary material. It is also possible to improve the design of the body 1.
  • the moisture-permeable waterproof film 3 a conventional film can be used, and the film is not particularly limited, and a film having moisture permeability and waterproofness used as a molded body for sanitary materials such as disposable diapers should be used. Can be done.
  • a microporous plastic obtained by kneading an inorganic filler in an olefin resin such as polyethylene or polypropylene to form a sheet and then stretching it in a uniaxial or biaxial direction.
  • a film can be used.
  • moisture-permeable waterproof film 3 other methods such as strengthening leakage resistance by reducing the voids of fibers by applying heat or pressure, and coating with a highly water-absorbent resin or a hydrophobic resin or a water-repellent agent can be used. It is possible to use a liquid-impermeable non-woven fabric without using a plastic film, a laminated non-woven fabric in which a plastic film is provided on the surface of the non-woven fabric, a laminated sheet in which a non-woven fabric or the like is laminated on a plastic film and bonded.
  • the moisture permeable waterproof film 3 may be a film having a moisture permeability of 6000 to 12000 g / m2 / 24 hr measured according to JIS Z0208. It is preferable to use a film of 8000 to 10000 g / m2 / 24 hr.
  • the moisture permeability is less than 6000 g / m2 / 24 hr, and if it exceeds 12000 g / m2.24 hr, urine Exudation is a problem.
  • an inorganic filler is kneaded into an olefin resin such as polyethylene or polypropylene to form a sheet, and then uniaxial or biaxial.
  • an olefin resin such as polyethylene or polypropylene
  • uniaxial or biaxial When forming a microporous sheet by stretching in the direction, a method is used in which a large amount of an inorganic filler is mixed to form a large number of micropores.
  • the moisture that has permeated the disposable diaper can be absorbed by the dry film 2, and the moisture is absorbed by the clothes or the like to make the clothes feel moist. Can be prevented and the usability can be improved.
  • the coating agent and the molded article for sanitary materials of the present invention will be described with reference to Examples and Comparative Examples. First, the acid-containing copolymer used for the coating agent will be described.
  • Example 1 After that, 0.3 parts by weight of a silicon-based defoamer, 0.3 parts by weight of wax, and 0.4 parts by weight of a surface conditioner were added under stirring, and the cellulose nanofiber content in the total solid content was 5.2%, total.
  • the coating agent of Example 1 uses one kind of acid-containing copolymer.
  • TI value Viscosity under low speed rotation at 6 rpm / Viscosity under high speed rotation at 60 rpm
  • the coating agent of Example 1 is applied to a breathable film (15 g / m2) at a speed of 200 m / min by a flexographic printing machine having a 400-line / in ceramic anilox roll and a striped printing plate having a plate area of 50%. Then, it was dried and wound into a roll to obtain a molded article 1 for sanitary material of Example 1. During coating, printing defects such as variation in coating amount, blurring, poor drying, and ink skipping did not occur, and the printability was good.
  • the dry coating weight of the coating agent was 0.25 g / m2, and the dry coating thickness was 0.5 ⁇ m.
  • Example 2 Dropped into. After that, 0.3 parts by weight of a silicon-based defoamer, 0.3 parts by weight of wax, and 0.4 parts by weight of a surface conditioner were added under stirring, and the cellulose nanofiber content in the total solid content was 5.2%, total.
  • the coating agent of Example 2 uses one kind of acid-containing copolymer.
  • Example 2 When the coating agent of Example 2 was filtered using a 200 ⁇ m filter in order to evaluate the inking suitability, no agglomerates were confirmed. Regarding the ink foamability immediately after the adjustment, it was confirmed that bubbles were generated on the liquid surface, but it did not affect the mass productivity. Next, the thixotropic index value (TI value) of the coating agent was measured using a B-type viscometer and found to be 6.88.
  • TI value thixotropic index value
  • the coating agent of Example 2 is applied to a breathable film (15 g / m2) at a speed of 200 m / min by a flexographic printing machine having a 400-line / in ceramic anilox roll and a striped printing plate having a plate area of 50%. Then, it was dried and wound into a roll to obtain a molded product 2 for sanitary material of Example 2. During coating, printing defects such as variation in coating amount, blurring, poor drying, and ink skipping did not occur, and the printability was good.
  • the dry coating weight of the coating agent was 0.24 g / m2, and the dry coating thickness was 0.5 ⁇ m.
  • the mixture was added dropwise to the acid-containing copolymers B, C, and D mixed solution under a stirring speed of 700 rpm while performing a beating treatment using. After that, 0.3 parts by weight of a silicon-based defoamer, 0.3 parts by weight of wax, and 0.4 parts by weight of a surface conditioner were added under stirring, and the cellulose nanofiber content in the total solid content was 5.7%, total.
  • the coating agent of Example 3 having an acid-containing copolymer content of 89.1% in the solid content was prepared.
  • the coating agent of Example 3 uses three kinds of acid-containing copolymers.
  • Example 3 When the coating agent of Example 3 was filtered using a 200 ⁇ m filter in order to evaluate the inking suitability, some agglomerates were confirmed, but there was no problem in mass productivity. In addition, almost no bubbles were observed in the ink foamability immediately after the adjustment. Next, the thixotropic index value (TI value) of the coating agent was measured using a B-type viscometer and found to be 6.77.
  • TI value thixotropic index value
  • the coating agent of Example 3 is applied to a breathable film (15 g / m2) at a speed of 200 m / min by a flexographic printing machine having a 300-line / in ceramic anilox roll and a striped printing plate having a plate area of 50%. Then, it was dried and wound into a roll to obtain a molded product 3 for sanitary material of Example 3. During coating, printing defects such as variation in coating amount, blurring, poor drying, and ink skipping did not occur, and the printability was good.
  • the dry coating weight of the coating agent was 0.30 g / m2, and the dry coating thickness was 0.6 ⁇ m.
  • Example 4 When the coating agent of Example 4 was filtered using a 200 ⁇ m filter in order to evaluate the inking suitability, no agglomerates were confirmed. Regarding the ink foamability immediately after the adjustment, it was confirmed that bubbles were generated on the liquid surface, but it did not affect the mass productivity. Next, the thixotropic index value (TI value) of the coating agent was measured using a B-type viscometer and found to be 6.02.
  • TI value thixotropic index value
  • the coating agent 4 of Example 4 is applied to a breathable film (15 g / m2) at a speed of 200 m / min by a flexographic printing machine having a 300-line / in ceramic anilox roll and a striped printing plate having a plate area of 50%. It was processed, dried, and wound into a roll to obtain a molded product 4 for sanitary material of Example 4. During coating, printing defects such as variation in coating amount, blurring, poor drying, and ink skipping did not occur, and the printability was good.
  • the dry coating weight of the coating agent was 0.30 g / m2, and the dry coating thickness was 0.6 ⁇ m.
  • Example 5 having an acid-containing copolymer content of 92.3% in the solid content was prepared.
  • the coating agent of Example 5 uses one kind of acid-containing copolymer.
  • Example 5 When the coating agent of Example 5 was filtered using a 200 ⁇ m filter in order to evaluate the inking suitability, some agglomerates were confirmed, but there was no problem in mass productivity. Regarding the ink foamability, it was confirmed that bubbles were generated on the liquid surface, but it did not affect the mass productivity. Next, the thixotropic index value (TI value) of the coating agent was measured using a B-type viscometer and found to be 7.03.
  • TI value thixotropic index value
  • the coating agent of Example 5 is applied to a breathable film (15 g / m2) at a speed of 200 m / min by a flexographic printing machine having a 400-line / in ceramic anilox roll and a striped printing plate having a plate area of 50%. Then, it was dried and wound into a roll to obtain a molded product 5 for sanitary material of Example 5. Although some blurring and ink skipping were confirmed during coating, it did not affect mass productivity. In addition, no variation in the coating amount or poor drying was confirmed.
  • the dry coating weight of the coating agent was 0.27 g / m2, and the dry coating thickness was 0.5 ⁇ m.
  • Example 6 having an acid-containing copolymer content of 89.7% in the solid content was prepared.
  • the coating agent of Example 6 uses one kind of acid-containing copolymer.
  • Example 6 When the coating agent of Example 6 was filtered using a 200 ⁇ m filter in order to evaluate the inking suitability, some agglomerates were confirmed, but there was no problem in mass productivity. Regarding the ink foamability, it was confirmed that bubbles were generated on the liquid surface, but it did not affect the mass productivity. Next, the thixotropic index value (TI value) of the coating agent was measured using a B-type viscometer and found to be 6.54.
  • TI value thixotropic index value
  • the coating agent of Example 6 is applied to a breathable film (15 g / m2) at a speed of 200 m / min by a flexographic printing machine having a 400-line / in ceramic anilox roll and a striped printing plate having a plate area of 50%. Then, it was dried and wound into a roll to obtain a molded product 6 for sanitary material of Example 6. During coating, printing defects such as variation in coating amount, blurring, poor drying, and ink skipping did not occur, and the printability was good.
  • the dry coating weight of the coating agent was 0.25 g / m2, and the dry coating thickness was 0.5 ⁇ m.
  • Example 7 Dropped into. After that, 0.3 parts by weight of a silicone defoamer, 0.3 parts by weight of wax, 0.4 parts by weight of a surface conditioner, and 5.0 parts by weight of glycerin were added under stirring to contain cellulose nanofibers in the total solid content.
  • the coating agent of Example 7 having a rate of 4.2% and a content of the acid-containing copolymer in the total solid content of 72.7% was prepared.
  • the coating agent of Example 7 uses one kind of acid-containing copolymer.
  • Example 7 When the coating agent of Example 7 was filtered using a 200 ⁇ m filter in order to evaluate the inking suitability, some agglomerates were confirmed, but there was no problem in mass productivity. Regarding the ink foamability, it was confirmed that bubbles were generated on the liquid surface, but it did not affect the mass productivity. Next, the thixotropic index value (TI value) of the coating agent was measured using a B-type viscometer and found to be 6.22.
  • TI value thixotropic index value
  • the coating agent of Example 7 is applied to a breathable film (15 g / m2) at a speed of 200 m / min by a flexographic printing machine having a 500-line / in ceramic anilox roll and a striped printing plate having a plate area of 50%. Then, it was dried and wound into a roll to obtain a molded product 7 for sanitary material of Example 7. During coating, printing defects such as variation in coating amount, blurring, poor drying, and ink skipping did not occur, and the printability was good.
  • the dry coating weight of the coating agent was 0.24 g / m2, and the dry coating thickness was 0.5 ⁇ m.
  • Example 8 having an acid-containing copolymer content of 88.3% in the solid content was prepared.
  • the coating agent of Example 8 uses two kinds of acid-containing copolymers.
  • Example 8 When the coating agent of Example 8 was filtered using a 200 ⁇ m filter in order to evaluate the inking suitability, some agglomerates were confirmed, but there was no problem in mass productivity. Regarding the ink foamability, it was confirmed that bubbles were generated on the liquid surface, but it did not affect the mass productivity. Next, the thixotropic index value (TI value) of the coating agent was measured using a B-type viscometer and found to be 7.22.
  • TI value thixotropic index value
  • the coating agent of Example 8 is applied to a breathable film (15 g / m2) at a speed of 200 m / min by a flexographic printing machine having a 250-line / in ceramic anilox roll and a striped printing plate having a plate area of 50%. Then, it was dried and wound into a roll to obtain a molded product 8 for sanitary material of Example 8. Although some blurring and ink skipping were confirmed during coating, it did not affect mass productivity.
  • the dry coating weight of the coating agent was 0.31 g / m2, and the dry coating thickness was 0.6 ⁇ m.
  • Example 9 having an acid-containing copolymer content of 89.5% in the solid content was prepared.
  • the coating agent of Example 9 uses two kinds of acid-containing copolymers.
  • Example 9 When the coating agent of Example 9 was filtered using a 200 ⁇ m filter in order to evaluate the inking suitability, some agglomerates were confirmed, but there was no problem in mass productivity. In addition, almost no bubbles were observed in the ink foamability immediately after the adjustment. Next, the thixotropic index value (TI value) of the coating agent was measured using a B-type viscometer and found to be 6.95.
  • TI value thixotropic index value
  • the coating agent of Example 9 is applied to a breathable film (15 g / m2) at a speed of 200 m / min by a flexographic printing machine having a 400-line / in ceramic anilox roll and a striped printing plate having a plate area of 50%. Then, it was dried and wound into a roll to obtain a molded product 9 for sanitary material of Example 9. During coating, printing defects such as variation in coating amount, blurring, poor drying, and ink skipping did not occur, and the printability was good.
  • the dry coating weight of the coating agent was 0.24 g / m2, and the dry coating thickness was 0.5 ⁇ m.
  • the molded article 10 for sanitary material of Example 10 is obtained by using the coating agent of Example 1 to increase the coating weight, and the coating agent of Example 1 is 150 wires / in ceramic anilox roll, and the plate area is 50%.
  • a breathable film (15 g / m2) is coated at a speed of 200 m / min with a flexographic printing machine having a striped printing plate, dried, and wound into a roll for the sanitary material of Example 10. Mold 10 was obtained.
  • the dry coating weight of the coating agent was 0.60 g / m2, and the dry coating thickness was 1.2 ⁇ m. During coating, printing defects such as variation in coating amount, blurring, poor drying, and ink skipping did not occur, and the printability was good.
  • Comparative example 1 The molded product of Comparative Example 1 was coated on a breathable film (15 g / m2) by a flexographic printing machine using the coating agent of Example 2 so as to have a printing area of 75%, dried, and rolled. It is wound into a shape.
  • the dry coating weight of the coating agent was 0.38 g / m2, and the dry coating thickness was 0.4 ⁇ m.
  • Comparative example 2 The molded product of Comparative Example 2 was coated with a flexographic printing machine on a breathable film (15 g / m2) using the coating agent of Example 2 so as to have a printing area of 20%, dried, and rolled. It is wound into a shape.
  • the dry coating weight of the coating agent was 0.12 g / m2, and the dry coating thickness was 0.5 ⁇ m.
  • the coating agent of Comparative Example 3 having an acid-containing copolymer content of 90.1% in the solid content was prepared.
  • the coating agent of Comparative Example 3 was prepared by changing the stirring speed of the acid-containing copolymer A dispersion to 3500 rpm when preparing the coating agent of Example 1, and the other conditions were implemented. Same as Example 1.
  • Comparative example 4 25 parts by weight of the acid-containing copolymer A aqueous dispersion was weighed in a stainless steel container equipped with a stirrer, and the mixture was brought into a stirring state at a speed of 700 rpm. In another stainless steel container, 55 parts by weight of a cellulose nanofiber dispersion (manufactured by Daio Paper Corporation) and 19 parts by weight of water that were mechanically disintegrated after enzymatically treating wood pulp were mixed, and a high-pressure homogenizer was used. The mixture was added dropwise to the acid-containing copolymer A aqueous dispersion at a stirring speed of 700 rpm while performing a beating treatment using the above.
  • a cellulose nanofiber dispersion manufactured by Daio Paper Corporation
  • Comparative example 5 80 parts by weight of the acid-containing copolymer A aqueous dispersion was weighed in a stainless steel container equipped with a stirrer, and the mixture was brought into a stirring state at a speed of 700 rpm. In another stainless steel container, 15 parts by weight of a cellulose nanofiber dispersion (manufactured by Daio Paper Corporation) and 4 parts by weight of water, which were mechanically disintegrated after enzymatically treating wood pulp, were mixed and a high-pressure homogenizer. The mixture was added dropwise to the acid-containing copolymer A aqueous dispersion at a stirring speed of 700 rpm while performing a beating treatment using the above.
  • a cellulose nanofiber dispersion manufactured by Daio Paper Corporation
  • the coating agent of Comparative Example 5 When the coating agent of Comparative Example 5 was filtered using a 200 ⁇ m filter in order to evaluate the inking suitability, no agglomerates were confirmed. In addition, almost no bubbles were observed in the ink foamability immediately after the adjustment. Next, the thixotropic index value (TI value) of the coating agent of Comparative Example 5 was measured using a B-type viscometer and found to be 2.04.
  • TI value thixotropic index value
  • the coating agent of Comparative Example 5 was applied to a breathable film (15 g / m2) at a speed of 200 m / min by a flexographic printing machine having a 700-line / in ceramic anilox roll and a striped printing plate having a plate area of 50%. Then, it was dried and wound into a roll to obtain a molded product of Comparative Example 5. During coating, printing defects such as variation in coating amount, blurring, poor drying, and ink skipping did not occur, and the printability was good. In the molded product of Comparative Example 5, the dry coating weight of the coating agent was 0.23 g / m2, and the dry coating thickness was 0.4 ⁇ m.
  • the coating agent of Comparative Example 6 having an acid-containing copolymer content of 89.7% in the solid content was prepared.
  • the coating agent of Comparative Example 6 is obtained by changing the acid-containing copolymer A aqueous dispersion of the coating agent of Example 2 to an acid-containing copolymer B aqueous solution, and other conditions are the same as those of Example 2.
  • -Comparative example 7 48 parts by weight of the acid-containing copolymer C aqueous dispersion was weighed in a stainless steel container having a stirrer, and the mixture was brought into a stirring state at a speed of 700 rpm. In another stainless steel container, 37 parts by weight of a cellulose nanofiber dispersion (manufactured by Daio Paper Corporation) having a solid content of 3% by weight and 14.0 parts by weight of water, which were mechanically disintegrated after enzymatic treatment of wood pulp, were mixed. While beating with a high-pressure homogenizer, the mixture was added dropwise to the acid-containing copolymer C aqueous dispersion at a stirring speed of 700 rpm.
  • a cellulose nanofiber dispersion manufactured by Daio Paper Corporation
  • the coating agent of Comparative Example 7 having an acid-containing copolymer content of 90.1% in the solid content was prepared.
  • the coating agent of Comparative Example 7 is obtained by changing the acid-containing copolymer A aqueous dispersion of the coating agent of Example 1 to the acid-containing copolymer C aqueous dispersion, and other conditions are the same as those of Example 1.
  • the coating agent of Comparative Example 7 was filtered using a 200 ⁇ m filter in order to evaluate the inking suitability, some agglomerates were confirmed, but there was no problem in mass productivity. In addition, almost no bubbles were observed in the ink foamability immediately after the adjustment.
  • the thixotropic index value (TI value) of the coating agent of Comparative Example 7 was measured using a B-type viscometer and found to be 7.2.
  • the coating agent of Comparative Example 7 was applied to a breathable film (15 g / m2) at a speed of 200 m / min by a flexographic printing machine having a 400-line / in ceramic anilox roll and a striped printing plate having a plate area of 50%. Then, it was dried and wound into a roll to obtain a molded product of Comparative Example 7. During coating, printing defects such as variation in coating amount, blurring, poor drying, and ink skipping did not occur, and the printability was good.
  • the dry coating weight of the coating agent of Comparative Example 7 was 0.24 g / m2, and the dry coating thickness was 0.5 ⁇ m.
  • the coating agent of Comparative Example 8 having an acid-containing copolymer content of 90.1% in the solid content was prepared.
  • the coating agent of Comparative Example 8 is obtained by changing the acid-containing copolymer A aqueous dispersion of the coating agent of Example 1 to an acid-containing copolymer D aqueous dispersion, and other conditions are the same as those of Example 1.
  • the coating agent of Comparative Example 8 was applied to a breathable film (15 g / m2) at a speed of 200 m / min by a flexographic printing machine having a 400-line / in ceramic anilox roll and a striped printing plate having a plate area of 50%. Then, it was dried and wound into a roll to obtain a molded product of Comparative Example 8. During coating, printing defects such as variation in coating amount, blurring, poor drying, and ink skipping did not occur, and the printability was good. In the molded product of Comparative Example 8, the dry coating weight of the coating agent was 0.28 g / m2, and the dry coating thickness was 0.5 ⁇ m.
  • the coating agent of Comparative Example 9 having an acid-containing copolymer content of 90.1% in the solid content was prepared.
  • the coating agent of Comparative Example 9 is obtained by changing the acid-containing copolymer A aqueous dispersion of the coating agent of Example 1 to an acid-containing copolymer E aqueous dispersion, and other conditions are the same as those of Example 1.
  • the coating agent of Comparative Example 10 When the coating agent of Comparative Example 10 was filtered using a 200 ⁇ m filter in order to evaluate the inking suitability, no agglomerates were confirmed. In addition, almost no bubbles were observed in the ink foamability immediately after the adjustment. Next, the thixotropic index value (TI value) of the coating agent of Comparative Example 10 was measured using a B-type viscometer and found to be 1.04.
  • TI value thixotropic index value
  • the coating agent of Comparative Example 10 was applied to a breathable film (15 g / m2) at a speed of 200 m / min by a flexographic printing machine having a 600-line / in ceramic anilox roll and a striped printing plate having a plate area of 50%. Then, it was dried and wound into a roll to obtain a molded product of Comparative Example 10. During coating, printing defects such as variation in coating amount, blurring, poor drying, and ink skipping did not occur, and the printability was good. In the molded product of Comparative Example 10, the dry coating weight of the coating agent was 0.24 g / m2, and the dry coating thickness was 0.5 ⁇ m.
  • TI value thixotropic index value
  • the coating agent of Comparative Example 11 was applied to a breathable film (15 g / m2) at a speed of 200 m / min by a flexographic printing machine having a 900-line / in ceramic anilox roll and a striped printing plate having a plate area of 50%. Then, it was dried and wound into a roll to obtain a molded product of Comparative Example 11. During coating, printing defects such as variation in coating amount, blurring, poor drying, and ink skipping did not occur, and the printability was good. In the molded product of Comparative Example 11, the dry coating weight of the coating agent was 0.22 g / m2, and the dry coating thickness was 0.4 ⁇ m.
  • the molded product of Comparative Example 12 was obtained by using the coating agent of Example 1 to reduce the coating weight, and the coating agent of Example 1 was a striped product of 1000 wires / in ceramic anilox roll and a plate area of 50%.
  • a breathable film (15 g / m2) was coated at a speed of 200 m / min with a flexographic printing machine having a printing plate, dried, and wound into a roll to obtain a molded product 12 of Comparative Example 12. ..
  • the dry coating weight of the coating agent of Comparative Example 12 was 0.10 g / m2, and the dry coating thickness was 0.05 ⁇ m. During coating, printing defects such as variation in coating amount, blurring, poor drying, and ink skipping did not occur, and the printability was good.
  • Ink suitability Ink (coating agent) is filtered using a 200 ⁇ filter, and the amount of residue remaining on the filter surface is evaluated in the following four stages. ⁇ ⁇ ⁇ ⁇ No filtration residue at all ⁇ ⁇ ⁇ ⁇ There is some filtration residue, but it does not affect mass productivity ⁇ ⁇ ⁇ ⁇ There is a level of filtration residue that cannot be mass-produced. ⁇ : There is significant aggregation, and there is a large amount of filtration residue.
  • -Ink foamability The foamability immediately after inking is visually evaluated in the following four stages.
  • 70 cc is injected, and after the artificial urine disappears from the surface, a weight with a bottom area of 100 cm2 and a weight of 3 kg is placed on the surface of the injection part and held for 15 minutes, then the filter paper is taken out and the weight is measured before the artificial urine is injected.
  • the weight change of the filter paper obtained by subtracting the weight of the filter paper is measured four times, and the average value is taken as the wetness of the molded product, and the evaluation is made in four stages of ⁇ , ⁇ , ⁇ , and ⁇ .
  • the coating agent of the present invention sufficiently satisfies practicality and has no problem in coatability. It can also be seen that the dry film of the molded article for sanitary materials of the present invention also sufficiently satisfies the practicality. In addition, it was found that both hygroscopicity and moisture permeability are compatible.
  • the coating agent of the present invention has sufficient coatability in practical use and can form a dry film having hygroscopicity.
  • a coating agent it becomes possible to form a dry film having hygroscopicity on a molded product for sanitary materials such as disposable diapers, and it becomes possible to add hygroscopicity without impairing moisture permeability.
  • the molded article for sanitary material of the present invention as a disposable diaper, it is possible to solve the problem that clothes and the like are moistened by the moisture that has permeated the disposable diaper.

Abstract

[Problem] An objective of the present invention is to provide: a coating agent that can form a hygroscopic dry film by being coated on a moisture-permeable waterproof film; a hygienic material molded body on which the coating agent is formed; and a method for manufacturing the coating agent. [Solution] A coating agent according to the present invention forms a hygroscopic dry film, the coating agent comprising cellulose nanofibers, an acid-containing copolymer and a solvent, the cellulose nanofibers and the acid-containing copolymer being dispersed by the solvent, the acid-containing copolymer being formed from at least one (meth) acrylate monomer and at least one vinyl monomer, and the acid-containing copolymer being one acid-containing copolymer having an acid value of 50-150mgKOH/g and a glass translation point of 20-50°C.

Description

吸湿性を有するコーティング剤、コーティング剤によって乾燥被膜が形成された衛生材料用成形体、および、コーティング剤の製造方法A coating agent having hygroscopicity, a molded product for sanitary materials in which a dry film is formed by the coating agent, and a method for producing the coating agent.
 本発明は、吸湿性を有するコーティング剤、コーティング剤によって吸湿性を有する乾燥被膜が形成された衛生材料用成形体、および、コーティング剤の製造方法に関する。 The present invention relates to a hygroscopic coating agent, a molded product for sanitary materials in which a hygroscopic dry film is formed by the coating agent, and a method for producing the coating agent.
 紙おむつ等には吸収性成形体が用いられているが、前記吸収性成形体は水分を吸収するだけではなく、排尿後の蒸れを防止するために優れた通気性、透湿性を有することが求められている。そして、蒸れを防止するだけでなく、紙おむつが肌に触れる部分の肌触り等を向上させたものがいくつも存在しており、通気性フィルムと不織布を組み合わせたシート等が用いられている(特許文献1,2参照)。 Absorbent molded products are used for disposable diapers and the like, but the absorbent molded products are required to have excellent breathability and moisture permeability not only to absorb water but also to prevent stuffiness after urination. Has been done. In addition to preventing stuffiness, there are a number of diapers that improve the feel of the part that comes into contact with the skin, and sheets and the like that combine a breathable film and a non-woven fabric are used (Patent Documents). See 1 and 2).
 しかしながら、排尿後の蒸れを防止するために紙おむつの通気性および透湿性を高くすると、紙おむつから外部へと透過した湿気は、衣服等に吸収され、衣服が湿るという問題が生じている。 However, if the air permeability and moisture permeability of the disposable diaper are increased in order to prevent stuffiness after urination, the moisture permeated from the disposable diaper to the outside is absorbed by the clothes and the like, causing a problem that the clothes become moist.
特開2008-213282号公報Japanese Unexamined Patent Publication No. 2008-21382 特開2009-   178号公報Japanese Patent Application Laid-Open No. 178- 特開2018-154699号公報Japanese Unexamined Patent Publication No. 2018-154699 特許第6350569号公報Japanese Patent No. 6350569 特開2018-119073号公報Japanese Unexamined Patent Publication No. 2018-119073
 本発明は、このような従来の紙おむつ等における問題を解消するために、紙おむつ等の衛生材料用成形体において通気性および透湿性を阻害することなく吸湿性を付与することができる、吸湿性を有するコーティング剤、コーティング剤によって吸湿性を有する乾燥被膜が形成された衛生材料用成形体、および、コーティング剤の製造方法を提供することを目的とする。 In order to solve such problems in conventional disposable diapers and the like, the present invention provides hygroscopicity, which can impart hygroscopicity to a molded body for sanitary materials such as disposable diapers without impairing breathability and moisture permeability. It is an object of the present invention to provide a coating agent having a coating agent, a molded body for a sanitary material in which a dry film having hygroscopicity is formed by the coating agent, and a method for producing the coating agent.
 本発明のコーティング剤は、吸湿性を有する乾燥被膜を形成するコーティング剤であって、セルロースナノファイバー、酸含有コポリマー、および、溶媒を含み、前記セルロースナノファイバーおよび前記酸含有コポリマーが、前記溶媒によって分散されており、前記酸含有コポリマーが、少なくとも1つの(メタ)アクリレート系モノマー、および、少なくとも1つのビニル系モノマーから形成されており、前記酸含有コポリマーは、酸価が50~150mgKOH/g、ガラス転移点が20~50℃である1種類の酸含有コポリマーであることを特徴とする。 The coating agent of the present invention is a coating agent that forms a dry film having a hygroscopic property, and contains a cellulose nanofiber, an acid-containing copolymer, and a solvent, and the cellulose nanofiber and the acid-containing copolymer are produced by the solvent. Dispersed, the acid-containing copolymer is formed from at least one (meth) acrylate-based monomer and at least one vinyl-based monomer, and the acid-containing copolymer has an acid value of 50 to 150 mgKOH / g. It is characterized by being one kind of acid-containing copolymer having a glass transition point of 20 to 50 ° C.
 本発明のコーティング剤は、吸湿性を有する乾燥被膜を形成するコーティング剤であって、セルロースナノファイバー、酸含有コポリマー、および、溶媒を含み、前記セルロースナノファイバーが前記溶媒によって分散され前記酸含有コポリマーが前記溶媒によって溶解または分散されており、前記酸含有コポリマーが、少なくとも1つの(メタ)アクリレート系モノマー、および、少なくとも1つのビニル系モノマーから形成されており、前記酸含有コポリマーは、酸価が50~300mgKOH/g、ガラス転移点が-10~150℃である少なくとも2種類の酸含有コポリマーであることを特徴とする。 The coating agent of the present invention, a coating agent to form a dried coating having a hygroscopic, cellulose nanofibers, acid-containing copolymers, and includes a solvent, the cellulose nanofibers are dispersed by the solvent, containing said acid The copolymer is dissolved or dispersed by the solvent, the acid-containing copolymer is formed from at least one (meth) acrylate-based monomer, and at least one vinyl-based monomer, and the acid-containing copolymer has an acid value. It is characterized in that it is at least two kinds of acid-containing copolymers having a glass transition point of 50 to 300 mgKOH / g and a glass transition point of −10 to 150 ° C.
 前記コーティング剤は、前記セルロースナノファイバーが2~10重量%、前記酸含有コポリマーが95~70重量%の割合で含有されている。 The coating agent contains the cellulose nanofibers in a proportion of 2 to 10% by weight and the acid-containing copolymer in a proportion of 95 to 70% by weight.
 前記コーティング剤のチキソトロピックインデックス値(TI値)が10以下であることが好ましい。 The thixotropic index value (TI value) of the coating agent is preferably 10 or less.
 本発明の衛生材料用成形体は、透湿性防水フィルムの片面の一部分に吸湿性を有する乾燥被膜が形成されている衛生材料用成形体であって、前記乾燥被膜が、前記コーティング剤によって形成されていることを特徴とする。 The molded article for sanitary material of the present invention is a molded article for sanitary material in which a dry film having hygroscopicity is formed on a part of one side of a moisture-permeable waterproof film, and the dry film is formed by the coating agent. It is characterized by being.
 前記乾燥被膜が、前記透湿性防水フィルムの片面の平面積の30~70%の割合で形成されている。 The dry film is formed at a ratio of 30 to 70% of the flat area on one side of the breathable waterproof film.
 前記衛生材料用成形体は紙おむつとして使用することが可能である。 The molded article for sanitary materials can be used as a disposable diaper.
 本発明のコーティング剤の製造方法は、前記セルロースナノファイバーの分散液を用意し、前記酸含有コポリマーを50~1000rpmの速度で攪拌し、攪拌状態の前記酸含有コポリマーに、前記セルロースナノファイバーの分散液を、叩解処理を行ないながら添加することを特徴とする。 In the method for producing a coating agent of the present invention, a dispersion of the cellulose nanofibers is prepared, the acid-containing copolymer is stirred at a speed of 50 to 1000 rpm, and the cellulose nanofibers are dispersed in the acid-containing copolymer in a stirred state. It is characterized in that the liquid is added while being beaten.
 前記セルロースナノファイバーの分散液に、アミノ酸型両性界面活性剤またはポリビニルアセトアミド系化合物を添加した後、前記セルロースナノファイバーの分散液を攪拌状態の前記酸含有コポリマーに添加することが可能である。 After adding an amino acid-type amphoteric surfactant or a polyvinyl acetamide-based compound to the dispersion of cellulose nanofibers, the dispersion of cellulose nanofibers can be added to the acid-containing copolymer in a stirred state.
 本発明のコーティング剤は、吸湿性を有する乾燥被膜を形成するコーティング剤であって、セルロースナノファイバー、酸含有コポリマー、および、溶媒を含み、前記セルロースナノファイバーおよび前記酸含有コポリマーが、前記溶媒によって分散されており、前記酸含有コポリマーが、少なくとも1つの(メタ)アクリレート系モノマー、および、少なくとも1つのビニル系モノマーから形成されており、前記酸含有コポリマーは、酸価が50~150mgKOH/g、ガラス転移点が20~50℃である1種類の酸含有コポリマーであることにより、吸湿性を有する乾燥被膜を形成することが可能となる。 The coating agent of the present invention is a coating agent that forms a dry film having a hygroscopic property, and contains a cellulose nanofiber, an acid-containing copolymer, and a solvent, and the cellulose nanofiber and the acid-containing copolymer are produced by the solvent. Dispersed, the acid-containing copolymer is formed from at least one (meth) acrylate-based monomer and at least one vinyl-based monomer, and the acid-containing copolymer has an acid value of 50 to 150 mgKOH / g. By using one kind of acid-containing copolymer having a glass transition point of 20 to 50 ° C., it is possible to form a dry film having hygroscopicity.
 本発明のコーティング剤は、吸湿性を有する乾燥被膜を形成するコーティング剤であって、セルロースナノファイバー、酸含有コポリマー、および、溶媒を含み、前記セルロースナノファイバーが前記溶媒によって分散され、前記酸含有コポリマーが前記溶媒によって溶解または分散されており、前記酸含有コポリマーが、少なくとも1つの(メタ)アクリレート系モノマー、および、少なくとも1つのビニル系モノマーから形成されており、前記酸含有コポリマーは、酸価が50~300mgKOH/g、ガラス転移点が-10~150℃である少なくとも2種類の酸含有コポリマーであることにより、吸湿性を有する乾燥被膜を形成することが可能となる。 The coating agent of the present invention is a coating agent for forming a dry film having hygroscopicity, and contains cellulose nanofibers, an acid-containing copolymer, and a solvent, and the cellulose nanofibers are dispersed by the solvent and contains the acid. The copolymer is dissolved or dispersed by the solvent, the acid-containing copolymer is formed from at least one (meth) acrylate-based monomer, and at least one vinyl-based monomer, and the acid-containing copolymer has an acid value. By using at least two kinds of acid-containing copolymers having a temperature of 50 to 300 mgKOH / g and a glass transition point of −10 to 150 ° C., it is possible to form a dry film having hygroscopicity.
 前記セルロースナノファイバーが2~10重量%、前記酸含有コポリマーが95~70重量%の割合で含有されていることにより、十分な塗工性を確保し、適切な吸湿性を有する乾燥被膜を形成することが可能となる。 By containing the cellulose nanofibers in a proportion of 2 to 10% by weight and the acid-containing copolymer in a proportion of 95 to 70% by weight, sufficient coatability is ensured and a dry film having appropriate hygroscopicity is formed. It becomes possible to do.
 前記コーティング剤のチキソトロピックインデックス値(TI値)を10以下とすることにより、塗工性に優れたコーティング剤とすることができる。 By setting the thixotropic index value (TI value) of the coating agent to 10 or less, a coating agent having excellent coatability can be obtained.
 本発明の衛生材料用成形体は、透湿性防水フィルムの片面の一部分に吸湿性を有する乾燥被膜が形成されている衛生材料用成形体であって、前記乾燥被膜が、前記コーティング剤によって形成されていることにより、透湿性防水フィルムの透湿性および防水性を阻害することなく、所望の吸湿性を有することが可能となる。 The molded body for sanitary materials of the present invention is a molded body for sanitary materials in which a dry film having hygroscopicity is formed on a part of one side of a moisture-permeable waterproof film, and the dry film is formed by the coating agent. This makes it possible to have a desired hygroscopicity without impairing the moisture permeability and waterproofness of the moisture-permeable waterproof film.
 前記衛生材料用成形体は紙おむつとして使用することによって、紙おむつを透過した湿気を前記乾燥被膜で吸収することが可能となり、湿気が衣服等に吸収されて衣服が湿った感じとなることを防止することができ、紙おむつの使用感を向上させることができる。 By using the molded product for sanitary materials as a disposable diaper, the moisture that has permeated the disposable diaper can be absorbed by the dry film, and the moisture is absorbed by the clothes or the like to prevent the clothes from feeling damp. It is possible to improve the usability of disposable diapers.
 本発明のコーティング剤の製造方法は、前記セルロースナノファイバーの分散液を用意し、前記酸含有コポリマーを50~1000rpmの速度で攪拌し、攪拌状態の前記酸含有コポリマーに、前記セルロースナノファイバーの分散液を、叩解処理を行ないながら添加することにより、セルロースナノファイバーを適切に分散させて、前記コーティング剤の塗工性を確保することが可能となる。 In the method for producing a coating agent of the present invention, a dispersion of the cellulose nanofibers is prepared, the acid-containing copolymer is stirred at a speed of 50 to 1000 rpm, and the cellulose nanofibers are dispersed in the acid-containing copolymer in a stirred state. By adding the liquid while performing the beating treatment, the cellulose nanofibers can be appropriately dispersed and the coatability of the coating agent can be ensured.
本発明の衛生材料用成形体の平面図である。It is a top view of the molded article for sanitary material of this invention.
 本発明の吸湿性を有するコーティング剤、吸湿性を有する乾燥被膜が形成された衛生材料用成形体、および、コーティング剤の製造方法について、以下に実施例を用いて詳細に説明する。 The hygroscopic coating agent of the present invention, the molded article for sanitary materials on which a hygroscopic dry film is formed, and the method for producing the coating agent will be described in detail below with reference to Examples.
 まず初めに、本発明のコーティング剤について説明する。本発明のコーティング剤は、乾燥被膜を形成した際に吸湿性を有する被膜を形成するコーティング剤であって、セルロースナノファイバー、酸含有コポリマー、および、溶媒を含んでおり、前記セルロースナノファイバーが前記溶媒によって分散され、前記酸含有コポリマーが前記溶媒によって溶解または分散されている。前記酸含有コポリマーは、少なくとも1つの(メタ)アクリレート系モノマー、および、少なくとも1つのビニル系モノマーから形成されている。 First, the coating agent of the present invention will be described. The coating agent of the present invention is a coating agent that forms a film having hygroscopicity when a dry film is formed, and contains cellulose nanofibers, an acid-containing copolymer, and a solvent, and the cellulose nanofibers are said to be said. Dispersed by a solvent, the acid-containing copolymer is dissolved or dispersed by the solvent. The acid-containing copolymer is formed from at least one (meth) acrylate-based monomer and at least one vinyl-based monomer.
 前記酸含有コポリマーを前記コーティング剤に1種類だけ用いる場合、酸価50~150、ガラス転移点が20~50℃の酸含有コポリマーを用いる。そして、前記酸含有コポリマーを前記コーティング剤に2種類以上用いる場合は、酸価50~300、ガラス転移点が-10~150℃の酸含有コポリマーを用いる。このような酸含有コポリマーを用いることにより、前記コーティング剤の塗工性を確保することが出来る。酸価が低い酸含有コポリマーを用いると、コーティング剤に凝集が発生し、コーティング剤として使用することができなくなる。前記酸含有コポリマーに使用する(メタ)アクリレート系モノマー、および、ビニル系モノマーは、特に限定するものではなく、前記酸含有コポリマーが上述のような酸価およびガラス転移点を満たすものであれば、一般的なモノマーを用いることが可能である。 When only one type of the acid-containing copolymer is used as the coating agent, an acid-containing copolymer having an acid value of 50 to 150 and a glass transition point of 20 to 50 ° C. is used. When two or more kinds of the acid-containing copolymers are used as the coating agent, an acid-containing copolymer having an acid value of 50 to 300 and a glass transition point of −10 to 150 ° C. is used. By using such an acid-containing copolymer, the coatability of the coating agent can be ensured. When an acid-containing copolymer having a low acid value is used, the coating agent agglomerates and cannot be used as a coating agent. The (meth) acrylate-based monomer and vinyl-based monomer used in the acid-containing copolymer are not particularly limited, as long as the acid-containing copolymer satisfies the acid value and the glass transition point as described above. It is possible to use a general monomer.
 前記セルロースナノファイバーは、前記コーティング剤によって形成した乾燥被膜の吸湿性を向上させるために使用しており、繊維平均幅が数nm~数百nmのサイズのセルロースナノファイバーを用いることによって、比表面積が大きくなり、表面に存在する水酸基の影響により、乾燥被膜を形成した際に高い吸湿性を有することができるようになる。 The cellulose nanofibers are used to improve the hygroscopicity of the dry film formed by the coating agent, and by using cellulose nanofibers having a fiber average width of several nm to several hundred nm, the specific surface area is increased. Due to the influence of the hydroxyl groups present on the surface, it becomes possible to have high hygroscopicity when the dry film is formed.
 前記セルロースナノファイバーの形態としては、粉末状や水分散体であるスラリー状、ペースト状、ゲル状等が可能であり、特に限定するものではないが、前記コーティング剤に添加した時の分散性、流動性、また後述するコーティング剤のチキソトロピックインデックス値(TI値)の観点からすると、セルロースナノファイバーは水分散体の形態を使用することが好ましい。 The form of the cellulose nanofibers can be powdery, aqueous dispersion, slurry, paste, gel, etc., and is not particularly limited, but dispersibility when added to the coating agent. From the viewpoint of fluidity and the thixotropic index value (TI value) of the coating agent described later, it is preferable to use the form of an aqueous dispersion for the cellulose nanofibers.
 前記セルロースナノファイバーの種類は、特に限定されるものではなく、原料パルプを機械的に解繊されたセルロースナノファイバー、解繊前に化学的手法、前処理されたセルロースナノファイバー等を用いることができる。前記セルロースナノファイバーは、前処理として、酸による多糖の加水分解(酸処理)、酵素による多糖の加水分解(酵素処理)、アルカリによる多糖の膨潤(アルカリ処理)、酸化剤による多糖の酸化(酸化処理)、還元剤による多糖の還元(還元処理)等が行われたものを使用することもできる。 The type of the cellulose nanofibers is not particularly limited, and a cellulose nanofiber obtained by mechanically defibrating the raw material pulp, a chemical method before defibration, a pretreated cellulose nanofiber, or the like can be used. it can. As pretreatment, the cellulose nanofibers are hydrolyzed with an acid (acid treatment), hydrolyzed with an enzyme (enzyme treatment), swelled with an alkali (alkaline treatment), and oxidized with an oxidizing agent (oxidation). Treatment), reduction of polysaccharide with a reducing agent (reduction treatment), and the like can also be used.
 前記セルロースナノファイバーの物性値としては、特に限定するものではないが、コーティング剤のTI値(チクソトロピックインデクス)の制御の観点からすると、セルロースナノファイバーの分散液(濃度1.5%)のB型粘度は、好ましくは20,000cps以下、より好ましくは5,000cps以下とする。セルロースナノファイバーの分散液のB型粘度を限定することは、コーティング剤のTI値の調整が容易になり、前記コーティング剤を塗布する基材となるフィルムへの塗工性、あるいはコーティング時の乾燥性の観点からすると良好な効果をもたらす。 The physical property value of the cellulose nanofibers is not particularly limited, but from the viewpoint of controlling the TI value (viscostropic index) of the coating agent, B of the dispersion liquid (concentration 1.5%) of the cellulose nanofibers. The mold viscosity is preferably 20,000 cps or less, more preferably 5,000 cps or less. Limiting the B-type viscosity of the dispersion of cellulose nanofibers facilitates the adjustment of the TI value of the coating agent, and makes it easy to apply the coating agent to the base film to which the coating agent is applied, or to dry the coating agent at the time of coating. It has a good effect from a sexual point of view.
 前記溶媒としては、水、あるいは、水とアルコール系混合溶媒を用いることが可能であり、水:アルコール系混合溶媒の重量比率を100:0~50:50とすることが好ましい。 As the solvent, water or a water-alcohol-based mixed solvent can be used, and the weight ratio of the water: alcohol-based mixed solvent is preferably 100: 0 to 50:50.
 前記コーティング剤は、前記セルロースナノファイバーが2~10重量%、前記酸含有コポリマーが95~70重量%の割合で含有されていることが好ましい。セルロースナノファイバーの割合が多くなると、コーティング剤の塗工性が悪化して塗工不可となる場合があり、セルロースナノファイバーの割合が少なすぎると、乾燥被膜を形成した際に吸湿性が不足する場合がある。 The coating agent preferably contains the cellulose nanofibers in a proportion of 2 to 10% by weight and the acid-containing copolymer in a proportion of 95 to 70% by weight. If the proportion of cellulose nanofibers is large, the coatability of the coating agent may deteriorate and coating may not be possible. If the proportion of cellulose nanofibers is too small, the hygroscopicity will be insufficient when a dry film is formed. In some cases.
 前記コーティング剤は、チキソトロピックインデックス値(TI値)を10以下とすることが好ましく、TI値が大きくなるとコーティング剤の塗工性が悪化して塗工不可となる場合がある。 The coating agent preferably has a thixotropic index value (TI value) of 10 or less, and when the TI value becomes large, the coatability of the coating agent may deteriorate and coating may not be possible.
 前記コーティング剤は、その他の成分として、使用する条件等に応じて、フィラー、顔料、ワックス、表面調整剤、消泡剤、脱泡剤、沈降防止剤、増粘剤、防腐剤、滑剤、離型剤、耐水化剤、架橋剤、セルロースナノファイバー(CNF)以外の吸湿性を有する材料(グリセリン、プロピレングリコール、ソルビトール、ポリアクリル酸系を代表とする高吸水性樹脂)等を適宜加えることが可能であり、顔料を加えることによって前記コーティング剤を着色し、様々な色の乾燥被膜を形成することも可能である。 As other components, the coating agent may be a filler, a pigment, a wax, a surface conditioner, a defoaming agent, a defoaming agent, a settling inhibitor, a thickener, a preservative, a lubricant, or a release agent, depending on the conditions of use. A mold, a water resistant agent, a cross-linking agent, a hygroscopic material other than cellulose nanofibers (CNF) (glycerin, propylene glycol, sorbitol, a highly water-absorbent resin typified by polyacrylic acid), etc. may be added as appropriate. It is possible, and it is also possible to color the coating agent by adding a pigment to form a dry film of various colors.
 本発明のコーティング剤は、セルロースナノファイバーおよび酸含有コポリマーを含有することにより、コーティング剤としての十分な塗工性を確保し、そして、十分な吸湿性を有した乾燥被膜を形成することが可能となる。 By containing the cellulose nanofibers and the acid-containing copolymer, the coating agent of the present invention can secure sufficient coatability as a coating agent and can form a dry film having sufficient hygroscopicity. It becomes.
 次に、本発明のコーティング剤の製造方法について説明する。初めに、セルロースナノファイバーの分散液、酸含有コポリマー、溶媒を用意する。前記酸含有コポリマーを撹拌機を有したステンレス容器に入れて、50~1000rpmの速度で攪拌する。別のステンレス容器にセルロースナノファイバーの分散液を入れて高圧ホモジナイザーを用いて叩解処理を行ないながら、撹拌状態の酸含有コポリマーに滴下する。所定量のセルロースナノファイバーの分散液を滴下し、攪拌が完了すると、コーティング剤が完成する。 Next, the method for producing the coating agent of the present invention will be described. First, a dispersion of cellulose nanofibers, an acid-containing copolymer, and a solvent are prepared. The acid-containing copolymer is placed in a stainless steel container equipped with a stirrer and stirred at a speed of 50 to 1000 rpm. A dispersion of cellulose nanofibers is placed in another stainless steel container and beaten with a high-pressure homogenizer while being added dropwise to the agitated acid-containing copolymer. When a predetermined amount of the dispersion liquid of cellulose nanofibers is dropped and stirring is completed, the coating agent is completed.
 2種類以上の酸含有コポリマーを用いる場合は、ステンレス容器に全ての酸含有コポリマーを入れて攪拌し、その後、前記セルロースナノファイバーの分散液を滴下する。アミノ酸型両性界面活性剤またはポリビニルアセトアミド系化合物を添加する場合は、セルロースナノファイバーの分散液に添加し、その後、高圧ホモジナイザーを用いて叩解処理を行ないながら、撹拌状態の酸含有コポリマーに滴下する。 When using two or more types of acid-containing copolymers, put all the acid-containing copolymers in a stainless steel container and stir, and then drop the dispersion of the cellulose nanofibers. When an amino acid-type amphoteric surfactant or a polyvinyl acetamide-based compound is added, it is added to a dispersion of cellulose nanofibers, and then added dropwise to an acid-containing copolymer in a stirred state while beating with a high-pressure homogenizer.
 また、ワックス、表面調整剤、消泡剤等を添加する場合は、セルロースナノファイバーの分散液の滴下が完了した後に、攪拌状態の酸含有コポリマーに添加する。 When adding wax, surface conditioner, antifoaming agent, etc., add to the acid-containing copolymer in a stirred state after the dispersion liquid of cellulose nanofibers is completely added dropwise.
 このようにして、本発明のコーティング剤の製造方法は、セルロースナノファイバーを適切に分散することで、コーティング剤の塗工性を確保することが可能となる。 In this way, the method for producing a coating agent of the present invention makes it possible to ensure the coatability of the coating agent by appropriately dispersing the cellulose nanofibers.
 次に、本発明の衛生材料用成形体について説明する。本発明の衛生材料用成形体1は、図1に示すように、透湿性防水フィルム3の片面の一部分に前記コーティング剤からなる吸湿性を有する乾燥被膜2が形成されており、前記乾燥被膜2が前記透湿性防水フィルム3の片面の一部に形成されている。このような構造の本発明の衛生材料用成形体1は、透湿性防水フィルム3を通過した湿気を前記乾燥被膜2によって吸湿することができることから、紙おむつ等に使用することができる。 Next, the molded article for sanitary materials of the present invention will be described. As shown in FIG. 1, in the molded product 1 for sanitary materials of the present invention, a hygroscopic dry film 2 made of the coating agent is formed on a part of one side of the moisture permeable waterproof film 3, and the dry film 2 is formed. Is formed on a part of one side of the moisture permeable waterproof film 3. The molded article 1 for sanitary materials of the present invention having such a structure can be used for disposable diapers and the like because the moisture that has passed through the moisture-permeable waterproof film 3 can be absorbed by the dry film 2.
 前記乾燥被膜2は、前記透湿性防水フィルム3の片面に塗工され、乾燥されて形成されている。前記乾燥被膜2の形成方法は特に限定するものではないが、例えば、フレキソ印刷機を用いて前記透湿性防水フィルム3の片面に塗工することができる。そして、前記乾燥被膜2は、前記透湿性防水フィルム3の透湿性を確保する観点からすると、前記透湿性防水フィルム3の片面の平面積の30~70%の範囲に形成することが好ましい。また、前記乾燥被膜2の厚みについては、吸湿性等を考慮すると、前記コーティング剤の乾燥塗布重量等を調整して、厚みを0.1~5μmとすることが好ましく、さらに、0.3~2μmとすることがより好ましい。前記乾燥被膜2の厚みが0.1μm以下の場合、前記衛生材料成形体1は十分な吸湿性を得ることができなくなり、また、厚みが5μm以上の場合は前記コーティング剤を乾燥させるためのコスト・時間等を考えると実用的ではない。 The dry film 2 is formed by being coated on one side of the moisture-permeable waterproof film 3 and dried. The method for forming the dry film 2 is not particularly limited, but for example, it can be applied to one side of the moisture-permeable waterproof film 3 using a flexographic printing machine. From the viewpoint of ensuring the moisture permeability of the moisture-permeable waterproof film 3, the dry film 2 is preferably formed in a range of 30 to 70% of the flat area of one side of the moisture-permeable waterproof film 3. Further, regarding the thickness of the dry coating 2, it is preferable to adjust the dry coating weight of the coating agent to 0.1 to 5 μm in consideration of hygroscopicity and the like, and further, 0.3 to 5 μm. It is more preferably 2 μm. When the thickness of the dry film 2 is 0.1 μm or less, the sanitary material molded product 1 cannot obtain sufficient hygroscopicity, and when the thickness is 5 μm or more, the cost for drying the coating agent・ It is not practical considering the time.
 前記乾燥被膜2を前記透湿性防水フィルム3の一部分に形成する方法としては、例えば、図1(a)に示すように、前記透湿性防水フィルム3の片面に複数の帯状に形成する方法、図1(b)に示すように縦横に複数の帯状に形成する方法、図1(c)、(d)に示すように複数の図形を所定の間隔で形成する方法等様々な方法を用いることができる。その他にも文字、図柄として形成することも可能である。そして、前記コーティング剤に顔料を加えることにより、前記乾燥被膜2を様々な色に着色することができるので、顔料を含んだコーティング剤を用いて前記乾燥被膜2を着色し、前記衛生材料用成形体1のデザイン性を向上させることも可能である。 As a method of forming the dry film 2 on a part of the moisture permeable waterproof film 3, for example, as shown in FIG. 1A, a method of forming a plurality of strips on one side of the moisture permeable waterproof film 3, FIG. Various methods can be used, such as a method of forming a plurality of strips vertically and horizontally as shown in 1 (b), and a method of forming a plurality of figures at predetermined intervals as shown in FIGS. 1 (c) and 1 (d). it can. In addition, it can be formed as characters and patterns. Then, by adding a pigment to the coating agent, the dry film 2 can be colored in various colors. Therefore, the dry film 2 is colored with a coating agent containing a pigment, and molding for the sanitary material. It is also possible to improve the design of the body 1.
 前記透湿性防水フィルム3は、従来のフィルムを用いることが可能であり、特に限定するものではなく、紙おむつ等の衛生材料用成形体として使用されている透湿性および防水性を有するフィルムを用いることができる。前記透湿性防水フィルム3として、例えば、ポリエチレンやポリプロピレン等のオレフィン系樹脂中に無機充填剤を混練して、シートを成形した後、一軸又は二軸方向に延伸して得られた微多孔性プラスチックフィルムを用いることができる。前記透湿性防水フィルム3として、その他に、熱や圧力をかけることで繊維の空隙を小さくすることによる防漏性強化、高吸水性樹脂又は疎水性樹脂や撥水剤の塗工といった方法により、プラスチックフィルムを用いずに液不透過性とした不織布、不織布の表面にプラスチックフィルムを設けたラミネート不織布、プラスチックフィルムに不織布等を重ねて接合した積層シート等を用いることができる。 As the moisture-permeable waterproof film 3, a conventional film can be used, and the film is not particularly limited, and a film having moisture permeability and waterproofness used as a molded body for sanitary materials such as disposable diapers should be used. Can be done. As the moisture-permeable waterproof film 3, for example, a microporous plastic obtained by kneading an inorganic filler in an olefin resin such as polyethylene or polypropylene to form a sheet and then stretching it in a uniaxial or biaxial direction. A film can be used. As the moisture-permeable waterproof film 3, other methods such as strengthening leakage resistance by reducing the voids of fibers by applying heat or pressure, and coating with a highly water-absorbent resin or a hydrophobic resin or a water-repellent agent can be used. It is possible to use a liquid-impermeable non-woven fabric without using a plastic film, a laminated non-woven fabric in which a plastic film is provided on the surface of the non-woven fabric, a laminated sheet in which a non-woven fabric or the like is laminated on a plastic film and bonded.
 前記透湿性防水フィルム3は、前記衛生材料成形体1を紙おむつ等に使用することを想定すると、JIS Z0208に準じて測定された透湿度が6000~12000g/m2・24hrのフィルムを使用することが好ましく、8000~10000 g/m2・24hrのフィルムを使用することがより好ましい。前記衛生材料成形体1を紙おむつ等に使用する場合、透湿度が6000g/m2・24hr未満では乳幼児にとって蒸れに関する快適環境を作り出すことはできず、12000g/m2・24hrを超える場合には、尿の滲み出しが問題となる。紙おむつ等に適した透湿度を備えた透湿性防水フィルム3を作成するためには、例えばポリエチレンやポリプロピレン等のオレフィン系樹脂中に無機充填材を混練してシートを成形した後、一軸または二軸方向に延伸することにより微多孔性シートを形成する際に、無機充填材を多く混入し、微細孔を多く形成するようにする方法が用いられる。 Assuming that the sanitary material molded body 1 is used for a disposable diaper or the like, the moisture permeable waterproof film 3 may be a film having a moisture permeability of 6000 to 12000 g / m2 / 24 hr measured according to JIS Z0208. It is preferable to use a film of 8000 to 10000 g / m2 / 24 hr. When the sanitary material molded body 1 is used for a disposable diaper or the like, it is not possible to create a comfortable environment for stuffiness for infants if the moisture permeability is less than 6000 g / m2 / 24 hr, and if it exceeds 12000 g / m2.24 hr, urine Exudation is a problem. In order to produce a moisture-permeable waterproof film 3 having moisture permeability suitable for paper diapers and the like, an inorganic filler is kneaded into an olefin resin such as polyethylene or polypropylene to form a sheet, and then uniaxial or biaxial. When forming a microporous sheet by stretching in the direction, a method is used in which a large amount of an inorganic filler is mixed to form a large number of micropores.
 本発明の衛生材料用成形体1は、紙おむつに使用すると、紙おむつを透過した湿気を前記乾燥被膜2で吸湿することが可能となり、湿気が衣服等に吸収されて衣服が湿った感じとなることを防止することができ、使用感を向上させることができる。 When the molded body 1 for sanitary materials of the present invention is used for a disposable diaper, the moisture that has permeated the disposable diaper can be absorbed by the dry film 2, and the moisture is absorbed by the clothes or the like to make the clothes feel moist. Can be prevented and the usability can be improved.
 実施例および比較例を用いて、本発明のコーティング剤および衛生材料用成形体について説明する。初めに、コーティング剤に使用する酸含有コポリマーについて説明する。 The coating agent and the molded article for sanitary materials of the present invention will be described with reference to Examples and Comparative Examples. First, the acid-containing copolymer used for the coating agent will be described.
(酸含有コポリマーA水分散体の合成)
 攪拌機、温度計、滴下ロート、還流器を備えた反応容器にプロピレングリコールメチルエーテルアセテート150重量部を仕込み145℃まで加熱する。前記反応容器に、重合開始剤としてジ-t-ブチルパーオキサイド2重量部、モノマー成分としてスチレン75重量部、アクリル酸12.5重量部、メタクリル酸12.5重量部を2時間かけて滴下し、更に40時間反応させた後、溶剤を減圧蒸留して除去する事により、スチレン:アクリル酸:メタクリル酸=6:1:1(重量比)のコポリマー[1]を得た。
(Synthesis of acid-containing copolymer A aqueous dispersion)
150 parts by weight of propylene glycol methyl ether acetate is charged in a reaction vessel equipped with a stirrer, a thermometer, a dropping funnel, and a refluxer, and heated to 145 ° C. To the reaction vessel, 2 parts by weight of dit-butyl peroxide as a polymerization initiator, 75 parts by weight of styrene as a monomer component, 12.5 parts by weight of acrylic acid, and 12.5 parts by weight of methacrylic acid were added dropwise over 2 hours. After further reacting for 40 hours, the solvent was removed by distillation under reduced pressure to obtain a styrene: acrylic acid: methacrylic acid = 6: 1: 1 (weight ratio) copolymer [1].
 次に圧力計、温度計、攪拌機、窒素ガス導入管及び2つの滴下槽を備えた密閉型圧力反応装置に、水120重量部、N-(1,2-ジカルボキシエチル)-N-オクタデシルスルホサクシネートのテトラナトリウム塩0.02重量部、前記スチレン:アクリル酸:メタクリル酸=6:1:1(重量比)のコポリマー[1]40重量部、および25重量%アンモニア水2重量部を仕込み、85℃の条件下で攪拌溶解した。 Next, 120 parts by weight of water, N- (1,2-dicarboxyethyl) -N-octadecylsulfone was added to a closed pressure reactor equipped with a pressure gauge, a thermometer, a stirrer, a nitrogen gas introduction pipe and two dropping tanks. 0.02 parts by weight of the tetrasodium salt of succinate, 40 parts by weight of the styrene: acrylic acid: methacrylic acid = 6: 1: 1 (weight ratio) copolymer [1], and 2 parts by weight of 25% by weight aqueous ammonia were charged. , Stirred and dissolved under the conditions of 85 ° C.
 第1滴下槽にブチルアクリレート20重量部、2-エチルヘキシルアクリレート10重量部、スチレン30を仕込み、3時間かけて反応装置に滴下し、第2滴下槽に水30重量部、過硫酸アンモニウム0.3重量部の溶解物を仕込み、4時間かけて反応装置に滴下した。重合の間、反応槽は85℃の温度に調整した。このようにして、ガラス転移点Tg=30℃、酸価=72mgKOH/gの酸含有コポリマーA水分散体が得られた。酸含有コポリマーA水分散体の固形分は約40重量%であった。 20 parts by weight of butyl acrylate, 10 parts by weight of 2-ethylhexyl acrylate, and 30 parts of styrene were charged in the first dropping tank, dropped into the reactor over 3 hours, and 30 parts by weight of water and 0.3 weight of ammonium persulfate were added to the second dropping tank. The lysate of the part was charged and added dropwise to the reactor over 4 hours. During the polymerization, the reaction vessel was adjusted to a temperature of 85 ° C. In this way, an acid-containing copolymer A aqueous dispersion having a glass transition point Tg = 30 ° C. and an acid value = 72 mgKOH / g was obtained. The solid content of the acid-containing copolymer A aqueous dispersion was about 40% by weight.
(酸含有コポリマーB水溶液の合成)
 攪拌機、温度計、滴下ロート、還流器を備えた反応容器にプロピレングリコールメチルエーテルアセテート150部を仕込み145℃まで加熱した。前記反応容器に、重合開始剤としてジ-t-ブチルパーオキサイド2重量部、モノマー成分としてスチレン60重量部、アクリル酸20重量部、メタクリル酸20重量部を2時間かけて滴下し、更に40時間反応した後、溶剤を減圧蒸留して除去して得られたコポリマーに水150重量部、25重量%アンモニア水5重量部を添加し、85℃の条件下で攪拌溶解した。このようにして、Tg=115℃、酸価=286mgKOH/gの酸含有コポリマーBの水溶液が得られた。酸含有コポリマーBの固形分は約40重量%であった。
(Synthesis of acid-containing copolymer B aqueous solution)
150 parts of propylene glycol methyl ether acetate was charged in a reaction vessel equipped with a stirrer, a thermometer, a dropping funnel, and a refluxer, and heated to 145 ° C. To the reaction vessel, 2 parts by weight of dit-butyl peroxide as a polymerization initiator, 60 parts by weight of styrene as a monomer component, 20 parts by weight of acrylic acid, and 20 parts by weight of methacrylic acid were added dropwise over 2 hours, and further 40 hours. After the reaction, 150 parts by weight of water and 5 parts by weight of 25% by weight aqueous ammonia were added to the copolymer obtained by removing the solvent by vacuum distillation, and the mixture was stirred and dissolved under the condition of 85 ° C. In this way, an aqueous solution of the acid-containing copolymer B having Tg = 115 ° C. and an acid value = 286 mgKOH / g was obtained. The solid content of the acid-containing copolymer B was about 40% by weight.
 (酸含有コポリマーC水分散体の合成)
 圧力計、温度計、攪拌機、窒素ガス導入管及び2つの滴下槽を備えた密閉型圧力反応装置に、水120重量部、N-(1,2-ジカルボキシエチル)-N-オクタデシルスルホサクシネートのテトラナトリウム塩0.02重量部、前記酸含有コポリマーA作成時に合成したコポリマー[1](スチレン:アクリル酸:メタクリル酸=6:1:1(重量比))を40重量部、及び25重量%アンモニア水2重量部を仕込み、85℃の条件下で攪拌溶解した。
(Synthesis of acid-containing copolymer C aqueous dispersion)
120 parts by weight of water, N- (1,2-dicarboxyethyl) -N-octadecyl sulfosuccinate in a closed pressure reactor equipped with a pressure gauge, thermometer, stirrer, nitrogen gas introduction tube and two dropping tanks. 0.02 parts by weight of the tetrasodium salt of the above, 40 parts by weight and 25 parts by weight of the copolymer [1] (styrene: acrylic acid: methacrylic acid = 6: 1: 1 (weight ratio)) synthesized at the time of preparing the acid-containing copolymer A. 2 parts by weight of% aqueous ammonia was charged and dissolved by stirring under the condition of 85 ° C.
 第1滴下槽にブチルアクリレート30重量部、2-エチルヘキシルアクリレート20重量部、メチルメタクリレート10を仕込み、3時間かけて反応装置に滴下し、第2滴下槽に水30重量部、過硫酸アンモニウム0.3重量部の溶解物を仕込み、4時間かけて反応装置に滴下した。重合の間、反応槽は85℃の温度に調整した。このようにして、Tg=-6℃、酸価=72mgKOH/gの酸含有コポリマーC水分散体が得られた。酸含有コポリマーC水分散体の固形分は約40重量%であった。 30 parts by weight of butyl acrylate, 20 parts by weight of 2-ethylhexyl acrylate, and 10 parts of methyl methacrylate were charged in the first dropping tank, dropped into the reactor over 3 hours, and 30 parts by weight of water and 0.3 parts of ammonium persulfate were added to the second dropping tank. A heavy part of the lysate was charged and added dropwise to the reactor over 4 hours. During the polymerization, the reaction vessel was adjusted to a temperature of 85 ° C. In this way, an acid-containing copolymer C aqueous dispersion having Tg = -6 ° C. and an acid value of 72 mgKOH / g was obtained. The solid content of the acid-containing copolymer C aqueous dispersion was about 40% by weight.
(酸含有コポリマーDの合成)
 圧力計、温度計、攪拌機、窒素ガス導入管及び2つの滴下槽を備えた密閉型圧力反応装置に、水120重量部、N-(1,2-ジカルボキシエチル)-N-オクタデシルスルホサクシネートのテトラナトリウム塩0.02重量部、前記酸含有コポリマーA作成時に合成したコポリマー[1](スチレン:アクリル酸:メタクリル酸=6:1:1(重量比))を40重量部、及び25重量%アンモニア水2重量部を仕込み、85℃の条件下で攪拌溶解した。
(Synthesis of acid-containing copolymer D)
120 parts by weight of water, N- (1,2-dicarboxyethyl) -N-octadecyl sulfosuccinate in a closed pressure reactor equipped with a pressure gauge, thermometer, stirrer, nitrogen gas introduction tube and two dropping tanks. 0.02 parts by weight of the tetrasodium salt of the above, 40 parts by weight and 25 parts by weight of the copolymer [1] (styrene: acrylic acid: methacrylic acid = 6: 1: 1 (weight ratio)) synthesized at the time of preparing the acid-containing copolymer A. 2 parts by weight of% aqueous ammonia was charged and dissolved by stirring under the condition of 85 ° C.
 第1滴下槽にエチルアクリレート25重量部、スチレン10重量部、α-メチルスチレン20重量部、メチルメタクリレート5重量部を仕込み、3時間かけて反応装置に滴下し、第2滴下槽に水30重量部、過硫酸アンモニウム0.3重量部の溶解物を仕込み、4時間かけて反応装置に滴下した。重合の間、反応槽は85℃の温度に調整した。このようにして、Tg=72℃、酸価=72mgKOH/gの酸含有コポリマーDが得られた。酸含有コポリマーDの固形分は約40重量%であった。 25 parts by weight of ethyl acrylate, 10 parts by weight of styrene, 20 parts by weight of α-methylstyrene, and 5 parts by weight of methyl methacrylate were charged in the first dropping tank, dropped into the reactor over 3 hours, and 30 parts by weight of water was added to the second dropping tank. A lysate of 0.3 parts by weight of ammonium persulfate was charged and added dropwise to the reactor over 4 hours. During the polymerization, the reaction vessel was adjusted to a temperature of 85 ° C. In this way, an acid-containing copolymer D having Tg = 72 ° C. and an acid value = 72 mgKOH / g was obtained. The solid content of the acid-containing copolymer D was about 40% by weight.
(酸含有コポリマーEの合成)
 圧力計、温度計、攪拌機、窒素ガス導入管及び2つの滴下槽を備えた密閉型圧力反応装置に、水120重量部、N-(1,2-ジカルボキシエチル)-N-オクタデシルスルホサクシネートのテトラナトリウム塩0.02重量部、前記酸含有コポリマーA作成時に合成したコポリマー[1](スチレン:アクリル酸:メタクリル酸=6:1:1(重量比))を24重量部、及び25重量%アンモニア水2重量部を仕込み、85℃の条件下で攪拌溶解した。
(Synthesis of acid-containing copolymer E)
120 parts by weight of water, N- (1,2-dicarboxyethyl) -N-octadecyl sulfosuccinate in a closed pressure reactor equipped with a pressure gauge, thermometer, stirrer, nitrogen gas introduction tube and two dropping tanks. 0.02 parts by weight of the tetrasodium salt, 24 parts by weight, and 25 parts by weight of the copolymer [1] (styrene: acrylic acid: methacrylic acid = 6: 1: 1 (weight ratio)) synthesized at the time of preparing the acid-containing copolymer A. 2 parts by weight of% aqueous ammonia was charged and dissolved by stirring under the condition of 85 ° C.
 第1滴下槽にブチルアクリレート24重量部、スチレン42重量部、2-エチルヘキシルアクリレート10重量部を仕込み、3時間かけて反応装置に滴下し、第2滴下槽に水30重量部、過硫酸アンモニウム0.3重量部の溶解物を仕込み、4時間かけて反応装置に滴下した。重合の間、反応槽は85℃の温度に調整した。このようにしてTg=22.7℃、酸価=43mgKOH/gの酸含有コポリマーEが得られた。酸含有コポリマーの固形分は約40重量%であった。 24 parts by weight of butyl acrylate, 42 parts by weight of styrene, and 10 parts by weight of 2-ethylhexyl acrylate were charged in the first dropping tank, dropped into the reactor over 3 hours, and 30 parts by weight of water and ammonium persulfate were added to the second dropping tank. 3 parts by weight of the lysate was charged and added dropwise to the reactor over 4 hours. During the polymerization, the reaction vessel was adjusted to a temperature of 85 ° C. In this way, an acid-containing copolymer E having Tg = 22.7 ° C. and an acid value = 43 mgKOH / g was obtained. The solid content of the acid-containing copolymer E was about 40% by weight.
 次に、酸含有コポリマーA~Dを用いた実施例1~10のコーティング剤およびコーティング剤をフィルムに塗工して形成した衛生材料用成形体について説明する。 Next, the coating agents of Examples 1 to 10 using the acid-containing copolymers A to D and the molded article for sanitary materials formed by applying the coating agents to the film will be described.
 撹拌機を有したステンレス容器に、前記酸含有コポリマーA水分散体を48重量部計量し、700rpmの速度下で撹拌状態とした。別のステンレス容器に、木質パルプに酵素処理を行った後に機械解維した固形分3重量%のセルロースナノファイバー分散体(大王製紙社製)37重量部、水14重量部を混合し、高圧ホモジナイザーを用いて叩解処理を行ないながら、700rpmの撹拌速度下の酸含有コポリマーA水分散体に滴下した。その後シリコン系消泡剤0.3重量部、ワックス0.3重量部、表面調整剤0.4重量部を撹拌下で添加し、総固形分中のセルロースナノファイバー含有率5.2%、総固形分中の酸含有コポリマーの含有率90.1%の実施例1のコーティング剤を調整した。実施例1のコーティング剤は、1種類の酸含有コポリマーを用いたものである。 48 parts by weight of the acid-containing copolymer A aqueous dispersion was weighed in a stainless steel container equipped with a stirrer, and the mixture was put into a stirring state at a speed of 700 rpm. In another stainless steel container, 37 parts by weight of a cellulose nanofiber dispersion (manufactured by Daio Paper Corporation) and 14 parts by weight of water, which were mechanically disintegrated after enzymatically treating wood pulp, were mixed and a high-pressure homogenizer. The mixture was added dropwise to the acid-containing copolymer A aqueous dispersion at a stirring speed of 700 rpm while performing a beating treatment using the above. After that, 0.3 parts by weight of a silicon-based defoamer, 0.3 parts by weight of wax, and 0.4 parts by weight of a surface conditioner were added under stirring, and the cellulose nanofiber content in the total solid content was 5.2%, total. The coating agent of Example 1 having an acid-containing copolymer content of 90.1% in the solid content was prepared. The coating agent of Example 1 uses one kind of acid-containing copolymer.
 インキ化適性を評価する為に実施例1のコーティング剤を200μmのフィルターを用いて濾過を行なった所、若干の凝集物は確認されたが、量産性に問題は無い程度であった。また調整直後のインキ発泡性に関しては殆ど泡の発生が見られなかった。次にB型粘度計を用いてコーティング剤のチキソトロピックインデックス値(TI値)を測定した所、6.54であった。チキソトロピックインデックス値は下記の式にて算出した。
 TI値=6rpmでの低速回転下粘度/60rpmでの高速回転下での粘度
When the coating agent of Example 1 was filtered using a 200 μm filter in order to evaluate the inking suitability, some agglomerates were confirmed, but there was no problem in mass productivity. In addition, almost no bubbles were observed in the ink foamability immediately after the adjustment. Next, the thixotropic index value (TI value) of the coating agent was measured using a B-type viscometer and found to be 6.54. The thixotropic index value was calculated by the following formula.
TI value = Viscosity under low speed rotation at 6 rpm / Viscosity under high speed rotation at 60 rpm
 実施例1のコーティング剤を400線/inセラミックアニロックスロール、版面積50%のストライプ状の印刷版を有したフレキソ印刷機にて通気性フィルム(15g/m2)に200m/minの速度で塗工して、乾燥させて、ロール状に巻き取って実施例1の衛生材料用成形体1を得た。塗工時に塗布量のバラツキ、カスレ、乾燥不良、インキ飛び等の印刷不良は発生せず良好な印刷適性であった。コーティング剤の乾燥塗布重量は0.25g/m2、乾燥塗布厚みは0.5μmであった。 The coating agent of Example 1 is applied to a breathable film (15 g / m2) at a speed of 200 m / min by a flexographic printing machine having a 400-line / in ceramic anilox roll and a striped printing plate having a plate area of 50%. Then, it was dried and wound into a roll to obtain a molded article 1 for sanitary material of Example 1. During coating, printing defects such as variation in coating amount, blurring, poor drying, and ink skipping did not occur, and the printability was good. The dry coating weight of the coating agent was 0.25 g / m2, and the dry coating thickness was 0.5 μm.
 撹拌機を有したステンレス容器に、前記酸含有コポリマーA水分散体を48重量部計量し、700rpmの速度下で撹拌状態とした。別のステンレス容器に、木質パルプに酵素処理を行った後に機械解維した固形分3重量%のセルロースナノファイバー分散体(大王製紙社製)37重量部、アミド酸型両性界面活性剤としてN-ラウロイル-N-メチルグリシンのナトリウム塩を0.1重量部、水13.9重量部を混合し、高圧ホモジナイザーを用いて叩解処理を行ないながら、700rpmの撹拌速度下の酸含有コポリマーA水分散体に滴下した。その後シリコン系消泡剤0.3重量部、ワックス0.3重量部、表面調整剤0.4重量部を撹拌下で添加し、総固形分中のセルロースナノファイバー含有率5.2%、総固形分中の酸含有コポリマーの含有率89.7%の実施例2のコーティング剤を調整した。実施例2のコーティング剤は、1種類の酸含有コポリマーを用いたものである。 48 parts by weight of the acid-containing copolymer A aqueous dispersion was weighed in a stainless steel container equipped with a stirrer, and the mixture was put into a stirring state at a speed of 700 rpm. In another stainless steel container, 37 parts by weight of a cellulose nanofiber dispersion (manufactured by Daio Paper Co., Ltd.) having a solid content of 3% by weight, which was mechanically disintegrated after enzymatically treating wood pulp, as an amic acid-type amphoteric surfactant, N- 0.1 part by weight of sodium salt of lauroyl-N-methylglycine and 13.9 parts by weight of water are mixed, and the acid-containing copolymer A aqueous dispersion under a stirring speed of 700 rpm is subjected to beating treatment using a high-pressure homogenizer. Dropped into. After that, 0.3 parts by weight of a silicon-based defoamer, 0.3 parts by weight of wax, and 0.4 parts by weight of a surface conditioner were added under stirring, and the cellulose nanofiber content in the total solid content was 5.2%, total. The coating agent of Example 2 having an acid-containing copolymer content of 89.7% in the solid content was prepared. The coating agent of Example 2 uses one kind of acid-containing copolymer.
 インキ化適性を評価する為に実施例2のコーティング剤を200μmのフィルターを用いて濾過を行なった所、凝集物は確認されなかった。また調整直後のインキ発泡性に関しては、やや液面に泡の発生が確認されたが、量産性に影響を与える程度では無かった。次にB型粘度計を用いてコーティング剤のチキソトロピックインデックス値(TI値)を測定した所、6.88であった。 When the coating agent of Example 2 was filtered using a 200 μm filter in order to evaluate the inking suitability, no agglomerates were confirmed. Regarding the ink foamability immediately after the adjustment, it was confirmed that bubbles were generated on the liquid surface, but it did not affect the mass productivity. Next, the thixotropic index value (TI value) of the coating agent was measured using a B-type viscometer and found to be 6.88.
 実施例2のコーティング剤を400線/inセラミックアニロックスロール、版面積50%のストライプ状の印刷版を有したフレキソ印刷機にて通気性フィルム(15g/m2)に200m/minの速度で塗工し、乾燥させて、ロール状に巻き取って実施例2の衛生材料用成形体2を得た。塗工時に塗布量のバラツキ、カスレ、乾燥不良、インキ飛び等の印刷不良は発生せず良好な印刷適性であった。コーティング剤の乾燥塗布重量は0.24g/m2、乾燥塗布厚みは0.5μmであった。 The coating agent of Example 2 is applied to a breathable film (15 g / m2) at a speed of 200 m / min by a flexographic printing machine having a 400-line / in ceramic anilox roll and a striped printing plate having a plate area of 50%. Then, it was dried and wound into a roll to obtain a molded product 2 for sanitary material of Example 2. During coating, printing defects such as variation in coating amount, blurring, poor drying, and ink skipping did not occur, and the printability was good. The dry coating weight of the coating agent was 0.24 g / m2, and the dry coating thickness was 0.5 μm.
 撹拌機を有したステンレス容器に、前記酸含有コポリマーB水溶液を8重量部、前記酸含有コポリマーC水分散体を8重量部、酸含有コポリマーD水分散体を27重量部計量し、700rpmの速度下で撹拌状態とした。別のステンレス容器に、木質パルプに酵素処理を行った後に機械解維した固形分3重量%のセルロースナノファイバー分散体(大王製紙社製)37重量部、水19重量部を混合し、高圧ホモジナイザーを用いて叩解処理を行ないながら、700rpmの撹拌速度下の酸含有コポリマーB、C、D混合液に滴下した。その後シリコン系消泡剤0.3重量部、ワックス0.3重量部、表面調整剤0.4重量部を撹拌下で添加し、総固形分中のセルロースナノファイバー含有率5.7%、総固形分中の酸含有コポリマーの含有率89.1%の実施例3のコーティング剤を調整した。実施例3のコーティング剤は、3種類の酸含有コポリマーを用いたものである。 In a stainless steel container equipped with a stirrer, 8 parts by weight of the acid-containing copolymer B aqueous solution, 8 parts by weight of the acid-containing copolymer C aqueous dispersion, and 27 parts by weight of the acid-containing copolymer D aqueous dispersion are weighed, and the speed is 700 rpm. It was in a stirred state below. In another stainless steel container, 37 parts by weight of a cellulose nanofiber dispersion (manufactured by Daio Paper Corporation) and 19 parts by weight of water, which were mechanically disintegrated after enzymatically treating wood pulp, were mixed and a high-pressure homogenizer. The mixture was added dropwise to the acid-containing copolymers B, C, and D mixed solution under a stirring speed of 700 rpm while performing a beating treatment using. After that, 0.3 parts by weight of a silicon-based defoamer, 0.3 parts by weight of wax, and 0.4 parts by weight of a surface conditioner were added under stirring, and the cellulose nanofiber content in the total solid content was 5.7%, total. The coating agent of Example 3 having an acid-containing copolymer content of 89.1% in the solid content was prepared. The coating agent of Example 3 uses three kinds of acid-containing copolymers.
 インキ化適性を評価する為に実施例3のコーティング剤を200μmのフィルターを用いて濾過を行なった所、若干の凝集物は確認されたが、量産性に問題は無い程度であった。また調整直後のインキ発泡性に関しては殆ど泡の発生が見られなかった。次にB型粘度計を用いてコーティング剤のチキソトロピックインデックス値(TI値)を測定した所、6.77であった。 When the coating agent of Example 3 was filtered using a 200 μm filter in order to evaluate the inking suitability, some agglomerates were confirmed, but there was no problem in mass productivity. In addition, almost no bubbles were observed in the ink foamability immediately after the adjustment. Next, the thixotropic index value (TI value) of the coating agent was measured using a B-type viscometer and found to be 6.77.
 実施例3のコーティング剤を300線/inセラミックアニロックスロール、版面積50%のストライプ状の印刷版を有したフレキソ印刷機にて通気性フィルム(15g/m2)に200m/minの速度で塗工し、乾燥させて、ロール状に巻き取って実施例3の衛生材料用成形体3を得た。塗工時に塗布量のバラツキ、カスレ、乾燥不良、インキ飛び等の印刷不良は発生せず良好な印刷適性であった。コーティング剤の乾燥塗布重量は0.30g/m2、乾燥塗布厚みは0.6μmであった。 The coating agent of Example 3 is applied to a breathable film (15 g / m2) at a speed of 200 m / min by a flexographic printing machine having a 300-line / in ceramic anilox roll and a striped printing plate having a plate area of 50%. Then, it was dried and wound into a roll to obtain a molded product 3 for sanitary material of Example 3. During coating, printing defects such as variation in coating amount, blurring, poor drying, and ink skipping did not occur, and the printability was good. The dry coating weight of the coating agent was 0.30 g / m2, and the dry coating thickness was 0.6 μm.
 撹拌機を有したステンレス容器に、前記酸含有コポリマーB水溶液を8重量部、前記酸含有コポリマーC水分散体を8重量部、前記酸含有コポリマーD水分散体を27重量部計量し、700rpmの速度下で撹拌状態とした。別のステンレス容器に、木質パルプに酵素処理を行った後に機械解維した固形分3重量%のセルロースナノファイバー分散体(大王製紙社製)37重量部、ポリビニルアセトアミドとして昭和電工社製『GE191-103』(10%水溶液)1重量部、水18重量部を混合し、高圧ホモジナイザーを用いて叩解処理を行ないながら、700rpmの撹拌速度下の酸含有コポリマーB、C、D混合液に滴下した。その後シリコン系消泡剤0.3重量部、ワックス0.3重量部、表面調整剤0.4重量部を撹拌下で添加し、総固形分中のセルロースナノファイバー含有率5.7%、総固形分中の酸含有コポリマーの含有率88.6%の実施例4のコーティング剤を調整した。実施例4のコーティング剤は、3種類の酸含有コポリマーを用いたものである。 In a stainless steel container equipped with a stirrer, 8 parts by weight of the acid-containing copolymer B aqueous solution, 8 parts by weight of the acid-containing copolymer C aqueous dispersion, and 27 parts by weight of the acid-containing copolymer D aqueous dispersion were weighed at 700 rpm. It was put into a stirring state at a low speed. In another stainless steel container, 37 parts by weight of a cellulose nanofiber dispersion (manufactured by Daio Paper Co., Ltd.) with a solid content of 3% by weight, which was mechanically disintegrated after enzymatically treating wood pulp, was prepared as polyvinylacetamide by Showa Denko Co., Ltd. "GE191- 103 ”(10% aqueous solution) and 18 parts by weight of water were mixed and added dropwise to the acid-containing copolymers B, C, and D mixed solution under a stirring speed of 700 rpm while beating with a high-pressure homogenizer. After that, 0.3 parts by weight of a silicon-based defoamer, 0.3 parts by weight of wax, and 0.4 parts by weight of a surface conditioner were added under stirring, and the cellulose nanofiber content in the total solid content was 5.7%, total. The coating agent of Example 4 having an acid-containing copolymer content of 88.6% in the solid content was prepared. The coating agent of Example 4 uses three kinds of acid-containing copolymers.
 インキ化適性を評価する為に実施例4のコーティング剤を200μmのフィルターを用いて濾過を行なった所、凝集物は確認されなかった。また調整直後のインキ発泡性に関しては、やや液面に泡の発生が確認されたが、量産性に影響を与える程度では無かった。次にB型粘度計を用いてコーティング剤のチキソトロピックインデックス値(TI値)を測定した所、6.02であった。 When the coating agent of Example 4 was filtered using a 200 μm filter in order to evaluate the inking suitability, no agglomerates were confirmed. Regarding the ink foamability immediately after the adjustment, it was confirmed that bubbles were generated on the liquid surface, but it did not affect the mass productivity. Next, the thixotropic index value (TI value) of the coating agent was measured using a B-type viscometer and found to be 6.02.
 実施例4のコーティング剤4を300線/inセラミックアニロックスロール、版面積50%のストライプ状の印刷版を有したフレキソ印刷機にて通気性フィルム(15g/m2)に200m/minの速度で塗工し、乾燥させて、ロール状に巻き取って実施例4の衛生材料用成形体4を得た。塗工時に塗布量のバラツキ、カスレ、乾燥不良、インキ飛び等の印刷不良は発生せず良好な印刷適性であった。コーティング剤の乾燥塗布重量は0.30g/m2、乾燥塗布厚みは0.6μmであった。 The coating agent 4 of Example 4 is applied to a breathable film (15 g / m2) at a speed of 200 m / min by a flexographic printing machine having a 300-line / in ceramic anilox roll and a striped printing plate having a plate area of 50%. It was processed, dried, and wound into a roll to obtain a molded product 4 for sanitary material of Example 4. During coating, printing defects such as variation in coating amount, blurring, poor drying, and ink skipping did not occur, and the printability was good. The dry coating weight of the coating agent was 0.30 g / m2, and the dry coating thickness was 0.6 μm.
 撹拌機を有したステンレス容器に、上記で調整した酸含有コポリマーA水分散体を48重量部計量し、700rpmの速度下で撹拌状態とした。別のステンレス容器に、木質パルプを機械解維した固形分2重量%のセルロースナノファイバー分散体(大王製紙社製)30重量部、アミド酸型両性界面活性剤としてN-ラウロイル-N-メチルグリシンのナトリウム塩を0.1重量部、水20.9重量部を混合し、高圧ホモジナイザーを用いて叩解処理を行ないながら、700rpmの撹拌速度下の酸含有コポリマーA水分散体に滴下した。その後シリコン系消泡剤0.3重量部、ワックス0.3重量部、表面調整剤0.4重量部を撹拌下で添加し、総固形分中のセルロースナノファイバー含有率2.9%、総固形分中の酸含有コポリマーの含有率92.3%の実施例5のコーティング剤を調整した。実施例5のコーティング剤は、1種類の酸含有コポリマーを用いたものである。 48 parts by weight of the acid-containing copolymer A aqueous dispersion prepared above was weighed in a stainless steel container equipped with a stirrer, and the mixture was put into a stirring state at a speed of 700 rpm. In another stainless steel container, 30 parts by weight of a cellulose nanofiber dispersion (manufactured by Daio Paper Co., Ltd.) with a solid content of 2% by weight obtained by mechanically decomposing wood pulp, N-lauroyl-N-methylglycine as an amic acid type amphoteric surfactant 0.1 part by weight and 20.9 parts by weight of water were mixed and added dropwise to the acid-containing copolymer A aqueous dispersion at a stirring speed of 700 rpm while beating with a high-pressure homogenizer. After that, 0.3 parts by weight of a silicon-based defoamer, 0.3 parts by weight of wax, and 0.4 parts by weight of a surface conditioner were added under stirring, and the cellulose nanofiber content in the total solid content was 2.9%, total. The coating agent of Example 5 having an acid-containing copolymer content of 92.3% in the solid content was prepared. The coating agent of Example 5 uses one kind of acid-containing copolymer.
 インキ化適性を評価する為に実施例5のコーティング剤を200μmのフィルターを用いて濾過を行なった所、若干の凝集物は確認されたが、量産性に問題は無い程度であった。またインキ発泡性に関してはやや液面に泡の発生が確認されたが、量産性に影響を与える程度では無かった。次にB型粘度計を用いてコーティング剤のチキソトロピックインデックス値(TI値)を測定した所、7.03であった。 When the coating agent of Example 5 was filtered using a 200 μm filter in order to evaluate the inking suitability, some agglomerates were confirmed, but there was no problem in mass productivity. Regarding the ink foamability, it was confirmed that bubbles were generated on the liquid surface, but it did not affect the mass productivity. Next, the thixotropic index value (TI value) of the coating agent was measured using a B-type viscometer and found to be 7.03.
 実施例5のコーティング剤を400線/inセラミックアニロックスロール、版面積50%のストライプ状の印刷版を有したフレキソ印刷機にて通気性フィルム(15g/m2)に200m/minの速度で塗工し、乾燥させて、ロール状に巻き取って実施例5の衛生材料用成形体5を得た。塗工時に若干のカスレ、インキ飛びが確認されたものの量産性に影響を与える程度では無かった。また塗布量のバラツキ、乾燥不良等は確認されなかった。コーティング剤の乾燥塗布重量は0.27g/m2、乾燥塗布厚みは0.5μmであった。 The coating agent of Example 5 is applied to a breathable film (15 g / m2) at a speed of 200 m / min by a flexographic printing machine having a 400-line / in ceramic anilox roll and a striped printing plate having a plate area of 50%. Then, it was dried and wound into a roll to obtain a molded product 5 for sanitary material of Example 5. Although some blurring and ink skipping were confirmed during coating, it did not affect mass productivity. In addition, no variation in the coating amount or poor drying was confirmed. The dry coating weight of the coating agent was 0.27 g / m2, and the dry coating thickness was 0.5 μm.
 撹拌機を有したステンレス容器に、前記酸含有コポリマーA水分散体を48重量部計量し、700rpmの速度下で撹拌状態とした。別のステンレス容器に、木質パルプに酵素処理を行った後に機械解維した固形分3重量%のセルロースナノファイバー分散体(大王製紙社製)37重量部、アミド酸型両性界面活性剤としてN-ラウロイル-N-メチルグリシンのナトリウム塩を0.1重量部、水7.0重量部、エタノール6.9重量部を混合し、高圧ホモジナイザーを用いて叩解処理を行ないながら、700rpmの撹拌速度下の酸含有コポリマーA水分散体に滴下した。その後シリコン系消泡剤0.3重量部、ワックス0.3重量部、表面調整剤0.4重量部を撹拌下で添加し、総固形分中のセルロースナノファイバー含有率5.2%、総固形分中の酸含有コポリマーの含有率89.7%の実施例6のコーティング剤を調整した。実施例6のコーティング剤は、1種類の酸含有コポリマーを用いたものである。 48 parts by weight of the acid-containing copolymer A aqueous dispersion was weighed in a stainless steel container equipped with a stirrer, and the mixture was put into a stirring state at a speed of 700 rpm. In another stainless steel container, 37 parts by weight of a cellulose nanofiber dispersion (manufactured by Daio Paper Co., Ltd.) having a solid content of 3% by weight, which was mechanically disintegrated after enzymatically treating wood pulp, was N- as an amic acid type amphoteric surfactant. 0.1 part by weight of sodium salt of lauroyl-N-methylglycine, 7.0 parts by weight of water and 6.9 parts by weight of ethanol were mixed and beaten using a high-pressure homogenizer at a stirring speed of 700 rpm. It was added dropwise to the acid-containing copolymer A aqueous dispersion. After that, 0.3 parts by weight of a silicon-based defoamer, 0.3 parts by weight of wax, and 0.4 parts by weight of a surface conditioner were added under stirring, and the cellulose nanofiber content in the total solid content was 5.2%, total. The coating agent of Example 6 having an acid-containing copolymer content of 89.7% in the solid content was prepared. The coating agent of Example 6 uses one kind of acid-containing copolymer.
 インキ化適性を評価する為に実施例6のコーティング剤を200μmのフィルターを用いて濾過を行なった所、若干の凝集物は確認されたが、量産性に問題は無い程度であった。またインキ発泡性に関してはやや液面に泡の発生が確認されたが、量産性に影響を与える程度では無かった。次にB型粘度計を用いてコーティング剤のチキソトロピックインデックス値(TI値)を測定した所、6.54であった。 When the coating agent of Example 6 was filtered using a 200 μm filter in order to evaluate the inking suitability, some agglomerates were confirmed, but there was no problem in mass productivity. Regarding the ink foamability, it was confirmed that bubbles were generated on the liquid surface, but it did not affect the mass productivity. Next, the thixotropic index value (TI value) of the coating agent was measured using a B-type viscometer and found to be 6.54.
 実施例6のコーティング剤を400線/inセラミックアニロックスロール、版面積50%のストライプ状の印刷版を有したフレキソ印刷機にて通気性フィルム(15g/m2)に200m/minの速度で塗工し、乾燥させて、ロール状に巻き取って実施例6の衛生材料用成形体6を得た。塗工時に塗布量のバラツキ、カスレ、乾燥不良、インキ飛び等の印刷不良は発生せず良好な印刷適性であった。コーティング剤の乾燥塗布重量は0.25g/m2、乾燥塗布厚みは0.5μmであった。 The coating agent of Example 6 is applied to a breathable film (15 g / m2) at a speed of 200 m / min by a flexographic printing machine having a 400-line / in ceramic anilox roll and a striped printing plate having a plate area of 50%. Then, it was dried and wound into a roll to obtain a molded product 6 for sanitary material of Example 6. During coating, printing defects such as variation in coating amount, blurring, poor drying, and ink skipping did not occur, and the printability was good. The dry coating weight of the coating agent was 0.25 g / m2, and the dry coating thickness was 0.5 μm.
 撹拌機を有したステンレス容器に、前記酸含有コポリマーA水分散体を48重量部計量し、700rpmの速度下で撹拌状態とした。別のステンレス容器に、木質パルプに酵素処理を行った後に機械解維した固形分3重量%のセルロースナノファイバー分散体(大王製紙社製)37重量部、アミド酸型両性界面活性剤としてN-ラウロイル-N-メチルグリシンのナトリウム塩を0.1重量部、水8.9重量部を混合し、高圧ホモジナイザーを用いて叩解処理を行ないながら、700rpmの撹拌速度下の酸含有コポリマーA水分散体に滴下した。その後シリコン系消泡剤0.3重量部、ワックス0.3重量部、表面調整剤0.4重量部、グリセリン5.0重量部を撹拌下で添加し、総固形分中のセルロースナノファイバー含有率4.2%、総固形分中の酸含有コポリマーの含有率72.7%の実施例7のコーティング剤を調整した。実施例7のコーティング剤は、1種類の酸含有コポリマーを用いたものである。 48 parts by weight of the acid-containing copolymer A aqueous dispersion was weighed in a stainless steel container equipped with a stirrer, and the mixture was put into a stirring state at a speed of 700 rpm. In another stainless steel container, 37 parts by weight of a cellulose nanofiber dispersion (manufactured by Daio Paper Co., Ltd.) having a solid content of 3% by weight, which was mechanically disintegrated after enzymatically treating wood pulp, as an amic acid-type amphoteric surfactant, N- 0.1 part by weight of sodium salt of lauroyl-N-methylglycine and 8.9 parts by weight of water are mixed, and the acid-containing copolymer A aqueous dispersion under a stirring speed of 700 rpm is subjected to beating treatment using a high-pressure homogenizer. Dropped into. After that, 0.3 parts by weight of a silicone defoamer, 0.3 parts by weight of wax, 0.4 parts by weight of a surface conditioner, and 5.0 parts by weight of glycerin were added under stirring to contain cellulose nanofibers in the total solid content. The coating agent of Example 7 having a rate of 4.2% and a content of the acid-containing copolymer in the total solid content of 72.7% was prepared. The coating agent of Example 7 uses one kind of acid-containing copolymer.
 インキ化適性を評価する為に実施例7のコーティング剤を200μmのフィルターを用いて濾過を行なった所、若干の凝集物は確認されたが、量産性に問題は無い程度であった。またインキ発泡性に関してはやや液面に泡の発生が確認されたが、量産性に影響を与える程度では無かった。次にB型粘度計を用いてコーティング剤のチキソトロピックインデックス値(TI値)を測定した所、6.22であった。 When the coating agent of Example 7 was filtered using a 200 μm filter in order to evaluate the inking suitability, some agglomerates were confirmed, but there was no problem in mass productivity. Regarding the ink foamability, it was confirmed that bubbles were generated on the liquid surface, but it did not affect the mass productivity. Next, the thixotropic index value (TI value) of the coating agent was measured using a B-type viscometer and found to be 6.22.
 実施例7のコーティング剤を500線/inセラミックアニロックスロール、版面積50%のストライプ状の印刷版を有したフレキソ印刷機にて通気性フィルム(15g/m2)に200m/minの速度で塗工し、乾燥させて、ロール状に巻き取って実施例7の衛生材料用成形体7を得た。塗工時に塗布量のバラツキ、カスレ、乾燥不良、インキ飛び等の印刷不良は発生せず良好な印刷適性であった。コーティング剤の乾燥塗布重量は0.24g/m2、乾燥塗布厚みは0.5μmであった。 The coating agent of Example 7 is applied to a breathable film (15 g / m2) at a speed of 200 m / min by a flexographic printing machine having a 500-line / in ceramic anilox roll and a striped printing plate having a plate area of 50%. Then, it was dried and wound into a roll to obtain a molded product 7 for sanitary material of Example 7. During coating, printing defects such as variation in coating amount, blurring, poor drying, and ink skipping did not occur, and the printability was good. The dry coating weight of the coating agent was 0.24 g / m2, and the dry coating thickness was 0.5 μm.
 撹拌機を有したステンレス容器に、前記酸含有コポリマーB水溶液を20重量部、前記酸含有コポリマーC水分散体を20重量部計量し、700rpmの速度下で撹拌状態とした。別のステンレス容器に、木質パルプに酵素処理を行った後に機械解維した固形分3重量%のセルロースナノファイバー分散体(大王製紙社製)37重量部、水22重量部を混合し、高圧ホモジナイザーを用いて叩解処理を行ないながら、700rpmの撹拌速度下の酸含有コポリマーB、C混合液に滴下した。その後シリコン系消泡剤0.3重量部、ワックス0.3重量部、表面調整剤0.4重量部を撹拌下で添加し、総固形分中のセルロースナノファイバー含有率6.1%、総固形分中の酸含有コポリマーの含有率88.3%の実施例8のコーティング剤を調整した。実施例8のコーティング剤は、2種類の酸含有コポリマーを用いたものである。 20 parts by weight of the acid-containing copolymer B aqueous solution and 20 parts by weight of the acid-containing copolymer C aqueous dispersion were weighed in a stainless steel container having a stirrer, and the mixture was put into a stirring state at a speed of 700 rpm. In another stainless steel container, 37 parts by weight of a cellulose nanofiber dispersion (manufactured by Daio Paper Corporation) and 22 parts by weight of water, which were mechanically disintegrated after enzymatically treating wood pulp, were mixed and a high-pressure homogenizer. The mixture was added dropwise to the acid-containing copolymers B and C mixed solution at a stirring speed of 700 rpm while performing a beating treatment using the above. After that, 0.3 parts by weight of a silicon-based defoamer, 0.3 parts by weight of wax, and 0.4 parts by weight of a surface conditioner were added under stirring, and the cellulose nanofiber content in the total solid content was 6.1%, total. The coating agent of Example 8 having an acid-containing copolymer content of 88.3% in the solid content was prepared. The coating agent of Example 8 uses two kinds of acid-containing copolymers.
 インキ化適性を評価する為に実施例8のコーティング剤を200μmのフィルターを用いて濾過を行なった所、若干の凝集物は確認されたが、量産性に問題は無い程度であった。またインキ発泡性に関してはやや液面に泡の発生が確認されたが、量産性に影響を与える程度では無かった。次にB型粘度計を用いてコーティング剤のチキソトロピックインデックス値(TI値)を測定した所、7.22であった。 When the coating agent of Example 8 was filtered using a 200 μm filter in order to evaluate the inking suitability, some agglomerates were confirmed, but there was no problem in mass productivity. Regarding the ink foamability, it was confirmed that bubbles were generated on the liquid surface, but it did not affect the mass productivity. Next, the thixotropic index value (TI value) of the coating agent was measured using a B-type viscometer and found to be 7.22.
 実施例8のコーティング剤を250線/inセラミックアニロックスロール、版面積50%のストライプ状の印刷版を有したフレキソ印刷機にて通気性フィルム(15g/m2)に200m/minの速度で塗工し、乾燥させて、ロール状に巻き取って実施例8の衛生材料用成形体8を得た。塗工時に若干のカスレ、インキ飛びが確認されたものの量産性に影響を与える程度ではなかった。コーティング剤の乾燥塗布重量は0.31g/m2、乾燥塗布厚みは0.6μmであった。 The coating agent of Example 8 is applied to a breathable film (15 g / m2) at a speed of 200 m / min by a flexographic printing machine having a 250-line / in ceramic anilox roll and a striped printing plate having a plate area of 50%. Then, it was dried and wound into a roll to obtain a molded product 8 for sanitary material of Example 8. Although some blurring and ink skipping were confirmed during coating, it did not affect mass productivity. The dry coating weight of the coating agent was 0.31 g / m2, and the dry coating thickness was 0.6 μm.
 撹拌機を有したステンレス容器に、前記酸含有コポリマーC水分散体を10重量部、酸含有コポリマーD水分散体を35重量部計量し、700rpmの速度下で撹拌状態とした。別のステンレス容器に、木質パルプに酵素処理を行った後に機械解維した固形分3重量%のセルロースナノファイバー分散体(大王製紙社製)37重量部、水17重量部を混合し、高圧ホモジナイザーを用いて叩解処理を行ないながら、700rpmの撹拌速度下の酸含有コポリマーC、D混合液に滴下した。その後シリコン系消泡剤0.3重量部、ワックス0.3重量部、表面調整剤0.4重量部を撹拌下で添加し、総固形分中のセルロースナノファイバー含有率5.5%、総固形分中の酸含有コポリマーの含有率89.5%の実施例9のコーティング剤を調整した。実施例9のコーティング剤は、2種類の酸含有コポリマーを用いたものである。 In a stainless steel container equipped with a stirrer, 10 parts by weight of the acid-containing copolymer C aqueous dispersion and 35 parts by weight of the acid-containing copolymer D aqueous dispersion were weighed and stirred at a speed of 700 rpm. In another stainless steel container, 37 parts by weight of a cellulose nanofiber dispersion (manufactured by Daio Paper Corporation) and 17 parts by weight of water, which were mechanically disintegrated after enzymatically treating wood pulp, were mixed and a high-pressure homogenizer. Was added dropwise to the acid-containing copolymers C and D mixed solution under a stirring speed of 700 rpm while performing a beating treatment using the above. After that, 0.3 parts by weight of a silicon-based defoamer, 0.3 parts by weight of wax, and 0.4 parts by weight of a surface conditioner were added under stirring, and the cellulose nanofiber content in the total solid content was 5.5%, total. The coating agent of Example 9 having an acid-containing copolymer content of 89.5% in the solid content was prepared. The coating agent of Example 9 uses two kinds of acid-containing copolymers.
 インキ化適性を評価する為に実施例9のコーティング剤を200μmのフィルターを用いて濾過を行なった所、若干の凝集物は確認されたが、量産性に問題は無い程度であった。また調整直後のインキ発泡性に関しては殆ど泡の発生が見られなかった。次にB型粘度計を用いてコーティング剤のチキソトロピックインデックス値(TI値)を測定した所、6.95であった。 When the coating agent of Example 9 was filtered using a 200 μm filter in order to evaluate the inking suitability, some agglomerates were confirmed, but there was no problem in mass productivity. In addition, almost no bubbles were observed in the ink foamability immediately after the adjustment. Next, the thixotropic index value (TI value) of the coating agent was measured using a B-type viscometer and found to be 6.95.
 実施例9のコーティング剤を400線/inセラミックアニロックスロール、版面積50%のストライプ状の印刷版を有したフレキソ印刷機にて通気性フィルム(15g/m2)に200m/minの速度で塗工し、乾燥させて、ロール状に巻き取って実施例9の衛生材料用成形体9を得た。塗工時に塗布量のバラツキ、カスレ、乾燥不良、インキ飛び等の印刷不良は発生せず良好な印刷適性であった。コーティング剤の乾燥塗布重量は0.24g/m2、乾燥塗布厚みは0.5μmであった。 The coating agent of Example 9 is applied to a breathable film (15 g / m2) at a speed of 200 m / min by a flexographic printing machine having a 400-line / in ceramic anilox roll and a striped printing plate having a plate area of 50%. Then, it was dried and wound into a roll to obtain a molded product 9 for sanitary material of Example 9. During coating, printing defects such as variation in coating amount, blurring, poor drying, and ink skipping did not occur, and the printability was good. The dry coating weight of the coating agent was 0.24 g / m2, and the dry coating thickness was 0.5 μm.
 実施例10の衛生材料用成形体10は、実施例1のコーティング剤を用いて塗布重量を多くしたものであり、実施例1のコーティング剤を150線/inセラミックアニロックスロール、版面積50%のストライプ状の印刷版を有したフレキソ印刷機にて通気性フィルム(15g/m2)に200m/minの速度で塗工して、乾燥させて、ロール状に巻き取って実施例10の衛生材料用成形体10を得た。コーティング剤の乾燥塗布重量は0.60g/m2、乾燥塗布厚みは1.2μmであった。塗工時に塗布量のバラツキ、カスレ、乾燥不良、インキ飛び等の印刷不良は発生せず良好な印刷適性であった。 The molded article 10 for sanitary material of Example 10 is obtained by using the coating agent of Example 1 to increase the coating weight, and the coating agent of Example 1 is 150 wires / in ceramic anilox roll, and the plate area is 50%. A breathable film (15 g / m2) is coated at a speed of 200 m / min with a flexographic printing machine having a striped printing plate, dried, and wound into a roll for the sanitary material of Example 10. Mold 10 was obtained. The dry coating weight of the coating agent was 0.60 g / m2, and the dry coating thickness was 1.2 μm. During coating, printing defects such as variation in coating amount, blurring, poor drying, and ink skipping did not occur, and the printability was good.
 次に、酸含有コポリマーA~Eを用いた比較例1~12について説明する。 Next, Comparative Examples 1 to 12 using the acid-containing copolymers A to E will be described.
 ・比較例1
 比較例1の成形体は、実施例2のコーティング剤を用いて、フレキソ印刷機によって、通気性フィルム(15g/m2)に印刷面積が75%となるように塗工し、乾燥させて、ロール状に巻き取ったものである。比較例1の成形体は、コーティング剤の乾燥塗布重量が0.38g/m2、乾燥塗布厚みが0.4μmであった。
・ Comparative example 1
The molded product of Comparative Example 1 was coated on a breathable film (15 g / m2) by a flexographic printing machine using the coating agent of Example 2 so as to have a printing area of 75%, dried, and rolled. It is wound into a shape. In the molded product of Comparative Example 1, the dry coating weight of the coating agent was 0.38 g / m2, and the dry coating thickness was 0.4 μm.
 ・比較例2
 比較例2の成形体は、実施例2のコーティング剤を用いて、フレキソ印刷機によって、通気性フィルム(15g/m2)に印刷面積が20%となるように塗工し、乾燥させて、ロール状に巻き取ったものである。比較例2の成形体は、コーティング剤の乾燥塗布重量が0.12g/m2、乾燥塗布厚みが0.5μmであった。
・ Comparative example 2
The molded product of Comparative Example 2 was coated with a flexographic printing machine on a breathable film (15 g / m2) using the coating agent of Example 2 so as to have a printing area of 20%, dried, and rolled. It is wound into a shape. In the molded product of Comparative Example 2, the dry coating weight of the coating agent was 0.12 g / m2, and the dry coating thickness was 0.5 μm.
 ・比較例3
 撹拌機を有したステンレス容器に、前記酸含有コポリマーA水分散体を48重量部計量し、3500rpmの速度下で撹拌状態とした。別のステンレス容器に、木質パルプに酵素処理を行った後に機械解維した固形分3重量%のセルロースナノファイバー分散体(大王製紙社製)37重量部、水14重量部を混合し、高圧ホモジナイザーを用いて叩解処理を行ないながら、3500rpmの撹拌速度下の酸含有コポリマーA水分散体に滴下した。その後シリコン系消泡剤0.3重量部、ワックス0.3重量部、表面調整剤0.4重量部を撹拌下で添加し、総固形分中のセルロースナノファイバー含有率5.2%、総固形分中の酸含有コポリマーの含有率90.1%の比較例3のコーティング剤を調整した。比較例3のコーティング剤は、実施例1のコーティング剤を調整する際に酸含有コポリマーA分散体を攪拌する速度を3500rpmに変更して、コーティング剤を調整したものであり、その他の条件は実施例1と同じである。
・ Comparative example 3
The acid-containing copolymer A aqueous dispersion was weighed in 48 parts by weight in a stainless steel container equipped with a stirrer, and the mixture was brought into a stirring state at a speed of 3500 rpm. In another stainless steel container, 37 parts by weight of a cellulose nanofiber dispersion (manufactured by Daio Paper Corporation) and 14 parts by weight of water, which were mechanically disintegrated after enzymatically treating wood pulp, were mixed and a high-pressure homogenizer. Was added dropwise to the acid-containing copolymer A aqueous dispersion at a stirring speed of 3500 rpm while performing a beating treatment using the above. After that, 0.3 parts by weight of a silicon-based defoamer, 0.3 parts by weight of wax, and 0.4 parts by weight of a surface conditioner were added under stirring, and the cellulose nanofiber content in the total solid content was 5.2%, total. The coating agent of Comparative Example 3 having an acid-containing copolymer content of 90.1% in the solid content was prepared. The coating agent of Comparative Example 3 was prepared by changing the stirring speed of the acid-containing copolymer A dispersion to 3500 rpm when preparing the coating agent of Example 1, and the other conditions were implemented. Same as Example 1.
 インキ化適性を評価する為に比較例3のコーティング剤を200μmのフィルターを用いて濾過を行なった所、凝集物は確認されなかった。しかしながら、調整直後のインキ発泡性に関しては著しい発泡があり、通気性フィルムに塗工することができなかった。そのために、比較例3のコーティング剤をフィルムに塗工した成形体を形成することができなかった。 When the coating agent of Comparative Example 3 was filtered using a 200 μm filter in order to evaluate the inking suitability, no agglomerates were confirmed. However, the ink foamability immediately after the adjustment was remarkable, and the breathable film could not be coated. Therefore, it was not possible to form a molded product in which the coating agent of Comparative Example 3 was applied to the film.
 ・比較例4
 撹拌機を有したステンレス容器に、前記酸含有コポリマーA水分散体を25重量部計量し、700rpmの速度下で撹拌状態とした。別のステンレス容器に、木質パルプに酵素処理を行った後に機械解維した固形分3重量%のセルロースナノファイバー分散体(大王製紙社製)55重量部、水19重量部を混合し、高圧ホモジナイザーを用いて叩解処理を行ないながら、700rpmの撹拌速度下の酸含有コポリマーA水分散体に滴下した。その後シリコン系消泡剤0.3重量部、ワックス0.3重量部、表面調整剤0.4重量部を撹拌下で添加し、総固形分中のセルロースナノファイバー含有率13.0%、総固形分中の酸含有コポリマーの含有率79.1%の比較例4のコーティング剤を調整した。
・ Comparative example 4
25 parts by weight of the acid-containing copolymer A aqueous dispersion was weighed in a stainless steel container equipped with a stirrer, and the mixture was brought into a stirring state at a speed of 700 rpm. In another stainless steel container, 55 parts by weight of a cellulose nanofiber dispersion (manufactured by Daio Paper Corporation) and 19 parts by weight of water that were mechanically disintegrated after enzymatically treating wood pulp were mixed, and a high-pressure homogenizer was used. The mixture was added dropwise to the acid-containing copolymer A aqueous dispersion at a stirring speed of 700 rpm while performing a beating treatment using the above. After that, 0.3 parts by weight of the silicone defoamer, 0.3 parts by weight of the wax, and 0.4 parts by weight of the surface conditioner were added under stirring, and the cellulose nanofiber content in the total solid content was 13.0%. The coating agent of Comparative Example 4 having an acid-containing copolymer content of 79.1% in the solid content was prepared.
 インキ化適性を評価する為に比較例4のコーティング剤を200μmのフィルターを用いて濾過を行なった所、量産が不可能なレベルの濾過残渣があった。さらに、調整直後のインキ発泡性に関しては著しい発泡があり、通気性フィルムに塗工することができなかった。そのために、比較例4のコーティング剤をフィルムに塗工した成形体を形成することができなかった。 When the coating agent of Comparative Example 4 was filtered using a 200 μm filter in order to evaluate the suitability for inking, there was a level of filtration residue that could not be mass-produced. Further, regarding the ink foamability immediately after the adjustment, there was remarkable foaming, and the breathable film could not be coated. Therefore, it was not possible to form a molded product in which the coating agent of Comparative Example 4 was applied to the film.
 ・比較例5
 撹拌機を有したステンレス容器に、前記酸含有コポリマーA水分散体を80重量部計量し、700rpmの速度下で撹拌状態とした。別のステンレス容器に、木質パルプに酵素処理を行った後に機械解維した固形分3重量%のセルロースナノファイバー分散体(大王製紙社製)15重量部、水4重量部を混合し、高圧ホモジナイザーを用いて叩解処理を行ないながら、700rpmの撹拌速度下の酸含有コポリマーA水分散体に滴下した。その後シリコン系消泡剤0.3重量部、ワックス0.3重量部、表面調整剤0.4重量部を撹拌下で添加し、総固形分中のセルロースナノファイバー含有率1.3%、総固形分中の酸含有コポリマーの含有率95.7%の比較例5のコーティング剤を調整した。
・ Comparative example 5
80 parts by weight of the acid-containing copolymer A aqueous dispersion was weighed in a stainless steel container equipped with a stirrer, and the mixture was brought into a stirring state at a speed of 700 rpm. In another stainless steel container, 15 parts by weight of a cellulose nanofiber dispersion (manufactured by Daio Paper Corporation) and 4 parts by weight of water, which were mechanically disintegrated after enzymatically treating wood pulp, were mixed and a high-pressure homogenizer. The mixture was added dropwise to the acid-containing copolymer A aqueous dispersion at a stirring speed of 700 rpm while performing a beating treatment using the above. After that, 0.3 part by weight of the silicone defoamer, 0.3 part by weight of the wax, and 0.4 part by weight of the surface conditioner were added under stirring, and the cellulose nanofiber content in the total solid content was 1.3%. The coating agent of Comparative Example 5 having an acid-containing copolymer content of 95.7% in the solid content was prepared.
 インキ化適性を評価する為に比較例5のコーティング剤を200μmのフィルターを用いて濾過を行なった所、凝集物は確認されなかった。また調整直後のインキ発泡性に関しては殆ど泡の発生が見られなかった。次にB型粘度計を用いて比較例5のコーティング剤のチキソトロピックインデックス値(TI値)を測定した所、2.04であった。 When the coating agent of Comparative Example 5 was filtered using a 200 μm filter in order to evaluate the inking suitability, no agglomerates were confirmed. In addition, almost no bubbles were observed in the ink foamability immediately after the adjustment. Next, the thixotropic index value (TI value) of the coating agent of Comparative Example 5 was measured using a B-type viscometer and found to be 2.04.
 比較例5のコーティング剤を700線/inセラミックアニロックスロール、版面積50%のストライプ状の印刷版を有したフレキソ印刷機にて通気性フィルム(15g/m2)に200m/minの速度で塗工して、乾燥させて、ロール状に巻き取って比較例5の成形体を得た。塗工時に塗布量のバラツキ、カスレ、乾燥不良、インキ飛び等の印刷不良は発生せず良好な印刷適性であった。比較例5の成形体は、コーティング剤の乾燥塗布重量が0.23g/m2、乾燥塗布厚みが0.4μmであった。 The coating agent of Comparative Example 5 was applied to a breathable film (15 g / m2) at a speed of 200 m / min by a flexographic printing machine having a 700-line / in ceramic anilox roll and a striped printing plate having a plate area of 50%. Then, it was dried and wound into a roll to obtain a molded product of Comparative Example 5. During coating, printing defects such as variation in coating amount, blurring, poor drying, and ink skipping did not occur, and the printability was good. In the molded product of Comparative Example 5, the dry coating weight of the coating agent was 0.23 g / m2, and the dry coating thickness was 0.4 μm.
 ・比較例6
 撹拌機を有したステンレス容器に、前記酸含有コポリマーB水溶液を48重量部計量し、700rpmの速度下で撹拌状態とした。別のステンレス容器に、木質パルプに酵素処理を行った後に機械解維した固形分3重量%のセルロースナノファイバー分散体(大王製紙社製)37重量部、アミド酸型両性界面活性剤としてN-ラウロイル-N-メチルグリシンのナトリウム塩を0.1重量部、水13.9重量部を混合し、高圧ホモジナイザーを用いて叩解処理を行ないながら、700rpmの撹拌速度下の酸含有コポリマーB水溶液に滴下した。その後シリコン系消泡剤0.3重量部、ワックス0.3重量部、表面調整剤0.4重量部を撹拌下で添加し、総固形分中のセルロースナノファイバー含有率5.2%、総固形分中の酸含有コポリマーの含有率89.7%の比較例6のコーティング剤を調整した。比較例6のコーティング剤は、実施例2のコーティング剤の酸含有コポリマーA水分散体を酸含有コポリマーB水溶液に変更したものであり、その他の条件は実施例2と同じである。
-Comparative example 6
48 parts by weight of the acid-containing copolymer B aqueous solution was weighed in a stainless steel container having a stirrer, and the mixture was put into a stirring state at a speed of 700 rpm. In another stainless steel container, 37 parts by weight of a cellulose nanofiber dispersion (manufactured by Daio Paper Co., Ltd.) with a solid content of 3% by weight, which was mechanically disintegrated after enzymatically treating wood pulp, was N- as an amic acid type amphoteric surfactant. 0.1 part by weight of sodium salt of lauroyl-N-methylglycine and 13.9 parts by weight of water are mixed and added dropwise to an aqueous acid-containing copolymer B solution under a stirring speed of 700 rpm while beating with a high-pressure homogenizer. did. After that, 0.3 parts by weight of a silicon-based defoamer, 0.3 parts by weight of wax, and 0.4 parts by weight of a surface conditioner were added under stirring, and the cellulose nanofiber content in the total solid content was 5.2%, total. The coating agent of Comparative Example 6 having an acid-containing copolymer content of 89.7% in the solid content was prepared. The coating agent of Comparative Example 6 is obtained by changing the acid-containing copolymer A aqueous dispersion of the coating agent of Example 2 to an acid-containing copolymer B aqueous solution, and other conditions are the same as those of Example 2.
 インキ化適性を評価する為に比較例6のコーティング剤を200μmのフィルターを用いて濾過を行なった所、著しい凝集があり、多量の濾過残渣が有るために、コーティング剤として使用できなかった。そのために、比較例6のコーティング剤をフィルムに塗工した成形体を形成することができなかった。 When the coating agent of Comparative Example 6 was filtered using a 200 μm filter in order to evaluate the inking suitability, it could not be used as a coating agent due to significant aggregation and a large amount of filtration residue. Therefore, it was not possible to form a molded product in which the coating agent of Comparative Example 6 was applied to the film.
 ・比較例7
 撹拌機を有したステンレス容器に、前記酸含有コポリマーC水分散体を48重量部計量し、700rpmの速度下で撹拌状態とした。別のステンレス容器に、木質パルプに酵素処理を行った後に機械解維した固形分3重量%のセルロースナノファイバー分散体(大王製紙社製)37重量部、水14.0重量部を混合し、高圧ホモジナイザーを用いて叩解処理を行ないながら、700rpmの撹拌速度下の酸含有コポリマーC水分散体に滴下した。その後シリコン系消泡剤0.3重量部、ワックス0.3重量部、表面調整剤0.4重量部を撹拌下で添加し、総固形分中のセルロースナノファイバー含有率5.2%、総固形分中の酸含有コポリマーの含有率90.1%の比較例7のコーティング剤を調整した。比較例7のコーティング剤は、実施例1のコーティング剤の酸含有コポリマーA水分散体を酸含有コポリマーC水分散体に変更したものであり、その他の条件は実施例1と同じである。
-Comparative example 7
48 parts by weight of the acid-containing copolymer C aqueous dispersion was weighed in a stainless steel container having a stirrer, and the mixture was brought into a stirring state at a speed of 700 rpm. In another stainless steel container, 37 parts by weight of a cellulose nanofiber dispersion (manufactured by Daio Paper Corporation) having a solid content of 3% by weight and 14.0 parts by weight of water, which were mechanically disintegrated after enzymatic treatment of wood pulp, were mixed. While beating with a high-pressure homogenizer, the mixture was added dropwise to the acid-containing copolymer C aqueous dispersion at a stirring speed of 700 rpm. After that, 0.3 parts by weight of a silicon-based defoamer, 0.3 parts by weight of wax, and 0.4 parts by weight of a surface conditioner were added under stirring, and the cellulose nanofiber content in the total solid content was 5.2%, total. The coating agent of Comparative Example 7 having an acid-containing copolymer content of 90.1% in the solid content was prepared. The coating agent of Comparative Example 7 is obtained by changing the acid-containing copolymer A aqueous dispersion of the coating agent of Example 1 to the acid-containing copolymer C aqueous dispersion, and other conditions are the same as those of Example 1.
 インキ化適性を評価する為に比較例7のコーティング剤を200μmのフィルターを用いて濾過を行なった所、若干の凝集物は確認されたが、量産性に問題は無い程度であった。また調整直後のインキ発泡性に関しては殆ど泡の発生が見られなかった。次にB型粘度計を用いて比較例7のコーティング剤のチキソトロピックインデックス値(TI値)を測定した所、7.2であった。 When the coating agent of Comparative Example 7 was filtered using a 200 μm filter in order to evaluate the inking suitability, some agglomerates were confirmed, but there was no problem in mass productivity. In addition, almost no bubbles were observed in the ink foamability immediately after the adjustment. Next, the thixotropic index value (TI value) of the coating agent of Comparative Example 7 was measured using a B-type viscometer and found to be 7.2.
 比較例7のコーティング剤を400線/inセラミックアニロックスロール、版面積50%のストライプ状の印刷版を有したフレキソ印刷機にて通気性フィルム(15g/m2)に200m/minの速度で塗工して、乾燥させて、ロール状に巻き取って比較例7の成形体を得た。塗工時に塗布量のバラツキ、カスレ、乾燥不良、インキ飛び等の印刷不良は発生せず良好な印刷適性であった。比較例7のコーティング剤の乾燥塗布重量は0.24g/m2であり、乾燥塗布厚みが0.5μmであった。 The coating agent of Comparative Example 7 was applied to a breathable film (15 g / m2) at a speed of 200 m / min by a flexographic printing machine having a 400-line / in ceramic anilox roll and a striped printing plate having a plate area of 50%. Then, it was dried and wound into a roll to obtain a molded product of Comparative Example 7. During coating, printing defects such as variation in coating amount, blurring, poor drying, and ink skipping did not occur, and the printability was good. The dry coating weight of the coating agent of Comparative Example 7 was 0.24 g / m2, and the dry coating thickness was 0.5 μm.
 ・比較例8
 撹拌機を有したステンレス容器に、前記酸含有コポリマーD水分散体を48重量部計量し、700rpmの速度下で撹拌状態とした。別のステンレス容器に、木質パルプに酵素処理を行った後に機械解維した固形分3重量%のセルロースナノファイバー分散体(大王製紙社製)37重量部、水14.0重量部を混合し、高圧ホモジナイザーを用いて叩解処理を行ないながら、700rpmの撹拌速度下の酸含有コポリマーD水分散体に滴下した。その後シリコン系消泡剤0.3重量部、ワックス0.3重量部、表面調整剤0.4重量部を撹拌下で添加し、総固形分中のセルロースナノファイバー含有率5.2%、総固形分中の酸含有コポリマーの含有率90.1%の比較例8のコーティング剤を調整した。比較例8のコーティング剤は、実施例1のコーティング剤の酸含有コポリマーA水分散体を酸含有コポリマーD水分散体に変更したものであり、その他の条件は実施例1と同じである。
-Comparative example 8
48 parts by weight of the acid-containing copolymer D aqueous dispersion was weighed in a stainless steel container equipped with a stirrer, and the mixture was brought into a stirring state at a speed of 700 rpm. In another stainless steel container, 37 parts by weight of a cellulose nanofiber dispersion (manufactured by Daio Paper Corporation) having a solid content of 3% by weight and 14.0 parts by weight of water, which were mechanically disintegrated after enzymatic treatment of wood pulp, were mixed. While beating with a high-pressure homogenizer, the mixture was added dropwise to the acid-containing copolymer D aqueous dispersion at a stirring speed of 700 rpm. After that, 0.3 parts by weight of a silicon-based defoamer, 0.3 parts by weight of wax, and 0.4 parts by weight of a surface conditioner were added under stirring, and the cellulose nanofiber content in the total solid content was 5.2%, total. The coating agent of Comparative Example 8 having an acid-containing copolymer content of 90.1% in the solid content was prepared. The coating agent of Comparative Example 8 is obtained by changing the acid-containing copolymer A aqueous dispersion of the coating agent of Example 1 to an acid-containing copolymer D aqueous dispersion, and other conditions are the same as those of Example 1.
 インキ化適性を評価する為に比較例8のコーティング剤を200μmのフィルターを用いて濾過を行なった所、若干の凝集物は確認されたが、量産性に問題は無い程度であった。またインキ発泡性に関してはやや液面に泡の発生が確認されたが、量産性に影響を与える程度では無かった。次にB型粘度計を用いて比較例8のコーティング剤のチキソトロピックインデックス値(TI値)を測定した所、6.42であった。 When the coating agent of Comparative Example 8 was filtered using a 200 μm filter in order to evaluate the inking suitability, some agglomerates were confirmed, but there was no problem in mass productivity. Regarding the ink foamability, it was confirmed that bubbles were generated on the liquid surface, but it did not affect the mass productivity. Next, when the thixotropic index value (TI value) of the coating agent of Comparative Example 8 was measured using a B-type viscometer, it was 6.42.
 比較例8のコーティング剤を400線/inセラミックアニロックスロール、版面積50%のストライプ状の印刷版を有したフレキソ印刷機にて通気性フィルム(15g/m2)に200m/minの速度で塗工して、乾燥させて、ロール状に巻き取って比較例8の成形体を得た。塗工時に塗布量のバラツキ、カスレ、乾燥不良、インキ飛び等の印刷不良は発生せず良好な印刷適性であった。比較例8の成形体は、コーティング剤の乾燥塗布重量が0.28g/m2、乾燥塗布厚みが0.5μmであった。 The coating agent of Comparative Example 8 was applied to a breathable film (15 g / m2) at a speed of 200 m / min by a flexographic printing machine having a 400-line / in ceramic anilox roll and a striped printing plate having a plate area of 50%. Then, it was dried and wound into a roll to obtain a molded product of Comparative Example 8. During coating, printing defects such as variation in coating amount, blurring, poor drying, and ink skipping did not occur, and the printability was good. In the molded product of Comparative Example 8, the dry coating weight of the coating agent was 0.28 g / m2, and the dry coating thickness was 0.5 μm.
 ・比較例9
 撹拌機を有したステンレス容器に、前記酸含有コポリマーE水分散体を48重量部計量し、700rpmの速度下で撹拌状態とした。別のステンレス容器に、木質パルプに酵素処理を行った後に機械解維した固形分3重量%のセルロースナノファイバー分散体(大王製紙社製)37重量部、水14.0重量部を混合し、高圧ホモジナイザーを用いて叩解処理を行ないながら、700rpmの撹拌速度下の酸含有コポリマーE水分散体に滴下した。その後シリコン系消泡剤0.3重量部、ワックス0.3重量部、表面調整剤0.4重量部を撹拌下で添加し、総固形分中のセルロースナノファイバー含有率5.2%、総固形分中の酸含有コポリマーの含有率90.1%の比較例9のコーティング剤を調整した。比較例9のコーティング剤は、実施例1のコーティング剤の酸含有コポリマーA水分散体を酸含有コポリマーE水分散体に変更したものであり、その他の条件は実施例1と同じである。
-Comparative example 9
48 parts by weight of the acid-containing copolymer E aqueous dispersion was weighed in a stainless steel container equipped with a stirrer, and the mixture was brought into a stirring state at a speed of 700 rpm. In another stainless steel container, 37 parts by weight of a cellulose nanofiber dispersion (manufactured by Daio Paper Corporation) having a solid content of 3% by weight and 14.0 parts by weight of water, which were mechanically disintegrated after enzymatic treatment of wood pulp, were mixed. While beating with a high-pressure homogenizer, the mixture was added dropwise to the acid-containing copolymer E aqueous dispersion at a stirring speed of 700 rpm. After that, 0.3 parts by weight of a silicon-based defoamer, 0.3 parts by weight of wax, and 0.4 parts by weight of a surface conditioner were added under stirring, and the cellulose nanofiber content in the total solid content was 5.2%, total. The coating agent of Comparative Example 9 having an acid-containing copolymer content of 90.1% in the solid content was prepared. The coating agent of Comparative Example 9 is obtained by changing the acid-containing copolymer A aqueous dispersion of the coating agent of Example 1 to an acid-containing copolymer E aqueous dispersion, and other conditions are the same as those of Example 1.
 インキ化適性を評価する為に比較例9のコーティング剤を200μmのフィルターを用いて濾過を行なった所、量産が不可能なレベルの濾過残渣があった。そのために、比較例9のコーティング剤をフィルムに塗工した成形体を形成することができなかった。 When the coating agent of Comparative Example 9 was filtered using a 200 μm filter in order to evaluate the suitability for inking, there was a level of filtration residue that could not be mass-produced. Therefore, it was not possible to form a molded product in which the coating agent of Comparative Example 9 was applied to the film.
 ・比較例10
 撹拌機を有したステンレス容器に、前記酸含有コポリマーA水分散体を72重量部および水27重量部を混合し、シリコン系消泡剤0.3重量部、ワックス0.3重量部、表面調整剤0.4重量部を添加して、セルロースナノファイバーを含有しない、総固形分中の酸含有コポリマーの含有率96.6%の比較例10のコーティング剤を調整した。
-Comparative example 10
72 parts by weight of the acid-containing copolymer A aqueous dispersion and 27 parts by weight of water are mixed in a stainless steel container equipped with a stirrer to prepare 0.3 parts by weight of a silicon-based defoamer, 0.3 parts by weight of wax, and surface adjustment. 0.4 parts by weight of the agent was added to prepare a coating agent of Comparative Example 10 containing 96.6% of the acid-containing copolymer in the total solid content, which did not contain cellulose nanofibers.
 インキ化適性を評価する為に比較例10のコーティング剤を200μmのフィルターを用いて濾過を行なった所、凝集物は確認されなかった。また調整直後のインキ発泡性に関しては殆ど泡の発生が見られなかった。次にB型粘度計を用いて比較例10のコーティング剤のチキソトロピックインデックス値(TI値)を測定した所、1.04であった。 When the coating agent of Comparative Example 10 was filtered using a 200 μm filter in order to evaluate the inking suitability, no agglomerates were confirmed. In addition, almost no bubbles were observed in the ink foamability immediately after the adjustment. Next, the thixotropic index value (TI value) of the coating agent of Comparative Example 10 was measured using a B-type viscometer and found to be 1.04.
 比較例10のコーティング剤を600線/inセラミックアニロックスロール、版面積50%のストライプ状の印刷版を有したフレキソ印刷機にて通気性フィルム(15g/m2)に200m/minの速度で塗工して、乾燥させて、ロール状に巻き取って比較例10の成形体を得た。塗工時に塗布量のバラツキ、カスレ、乾燥不良、インキ飛び等の印刷不良は発生せず良好な印刷適性であった。比較例10の成形体は、コーティング剤の乾燥塗布重量が0.24g/m2、乾燥塗布厚みが0.5μmであった。 The coating agent of Comparative Example 10 was applied to a breathable film (15 g / m2) at a speed of 200 m / min by a flexographic printing machine having a 600-line / in ceramic anilox roll and a striped printing plate having a plate area of 50%. Then, it was dried and wound into a roll to obtain a molded product of Comparative Example 10. During coating, printing defects such as variation in coating amount, blurring, poor drying, and ink skipping did not occur, and the printability was good. In the molded product of Comparative Example 10, the dry coating weight of the coating agent was 0.24 g / m2, and the dry coating thickness was 0.5 μm.
 ・比較例11
 撹拌機を有したステンレス容器に、前記酸含有コポリマーB水溶液を15重量部、前記酸含有コポリマーC水分散体を15重量部、酸含有コポリマーD水分散体を50重量部計量し、水9重量部を混合し、シリコン系消泡剤0.3重量部、ワックス0.3重量部、表面調整剤0.4重量部、グリセリン10重量部を添加し、総固形分中の酸含有コポリマーの含有率74.4%の比較例11のコーティング剤を調整した。
-Comparative example 11
In a stainless steel container equipped with a stirrer, 15 parts by weight of the acid-containing copolymer B aqueous solution, 15 parts by weight of the acid-containing copolymer C aqueous dispersion, and 50 parts by weight of the acid-containing copolymer D aqueous dispersion are weighed, and 9 parts by weight of water is used. Parts were mixed, 0.3 parts by weight of silicon-based defoamer, 0.3 parts by weight of wax, 0.4 parts by weight of surface conditioner, and 10 parts by weight of glycerin were added, and the acid-containing copolymer was contained in the total solid content. The coating agent of Comparative Example 11 having a rate of 74.4% was prepared.
 インキ化適性を評価する為に比較例11のコーティング剤を200μmのフィルターを用いて濾過を行なった所、凝集物は確認されなかった。また調整直後のインキ発泡性に関しては殆ど泡の発生が見られなかった。次にB型粘度計を用いてコーティング剤のチキソトロピックインデックス値(TI値)を測定した所、1.05であった。 When the coating agent of Comparative Example 11 was filtered using a 200 μm filter in order to evaluate the inking suitability, no agglomerates were confirmed. In addition, almost no bubbles were observed in the ink foamability immediately after the adjustment. Next, the thixotropic index value (TI value) of the coating agent was measured using a B-type viscometer and found to be 1.05.
 比較例11のコーティング剤を900線/inセラミックアニロックスロール、版面積50%のストライプ状の印刷版を有したフレキソ印刷機にて通気性フィルム(15g/m2)に200m/minの速度で塗工し、乾燥させて、ロール状に巻き取って比較例11の成形体を得た。塗工時に塗布量のバラツキ、カスレ、乾燥不良、インキ飛び等の印刷不良は発生せず良好な印刷適性であった。比較例11の成形体は、コーティング剤の乾燥塗布重量が0.22g/m2、乾燥塗布厚みが0.4μmであった。 The coating agent of Comparative Example 11 was applied to a breathable film (15 g / m2) at a speed of 200 m / min by a flexographic printing machine having a 900-line / in ceramic anilox roll and a striped printing plate having a plate area of 50%. Then, it was dried and wound into a roll to obtain a molded product of Comparative Example 11. During coating, printing defects such as variation in coating amount, blurring, poor drying, and ink skipping did not occur, and the printability was good. In the molded product of Comparative Example 11, the dry coating weight of the coating agent was 0.22 g / m2, and the dry coating thickness was 0.4 μm.
 ・比較例12
 比較例12の成形体は、実施例1のコーティング剤を用いて、塗布重量を少なくしたものであり、実施例1のコーティング剤を1000線/inセラミックアニロックスロール、版面積50%のストライプ状の印刷版を有したフレキソ印刷機にて通気性フィルム(15g/m2)に200m/minの速度で塗工して、乾燥させて、ロール状に巻き取って比較例12の成形体12を得た。比較例12のコーティング剤の乾燥塗布重量は0.10g/m2、乾燥塗布厚みは0.05μmであった。塗工時に塗布量のバラツキ、カスレ、乾燥不良、インキ飛び等の印刷不良は発生せず良好な印刷適性であった。
-Comparative example 12
The molded product of Comparative Example 12 was obtained by using the coating agent of Example 1 to reduce the coating weight, and the coating agent of Example 1 was a striped product of 1000 wires / in ceramic anilox roll and a plate area of 50%. A breathable film (15 g / m2) was coated at a speed of 200 m / min with a flexographic printing machine having a printing plate, dried, and wound into a roll to obtain a molded product 12 of Comparative Example 12. .. The dry coating weight of the coating agent of Comparative Example 12 was 0.10 g / m2, and the dry coating thickness was 0.05 μm. During coating, printing defects such as variation in coating amount, blurring, poor drying, and ink skipping did not occur, and the printability was good.
 実施例1~10、比較例1~12について、以下のような試験及び評価を行った。
(1)コーティング剤に関する試験及び評価
・インキ化適性:200μフィルターを用いてインキ(コーティング剤)を濾過し、フィルター表面に残った残渣量を以下のような4段階で評価する。
 ◎・・・全く濾過残渣が無い
 ○・・・若干濾過残渣があるが、量産性に影響を与える程度ではない
 △・・・量産が不可能なレベルの濾過残渣がある。
 ×・・・著しい凝集があり、多量の濾過残渣が有る。
・インキ発泡性:インキ化直後の発泡性を目視にて以下のような4段階で評価する。
 ◎・・・インキ表面に泡が無い
 ○・・・インキ表面に若干泡残りがあるが、量産性に影響を与える程度では無い
 △・・・量産が不可能なレベルの発泡がある
 ×・・・著しい発泡がある
・塗工適性:印刷時に塗布量のバラツキ、カスレ、乾燥不良、インキ飛び等の印刷不良の発生度合いを以下のような4段階で評価する。
 ◎・・・印刷不良は発生しない
 ○・・・軽微な印刷不良が発生するが、量産性に影響を与える程度では無い
 △・・・量産が不可能なレベルの印刷不良が発生する
 ×・・・印刷が不可能である。
The following tests and evaluations were carried out for Examples 1 to 10 and Comparative Examples 1 to 12.
(1) Test and evaluation of coating agent ・ Ink suitability: Ink (coating agent) is filtered using a 200 μ filter, and the amount of residue remaining on the filter surface is evaluated in the following four stages.
◎ ・ ・ ・ No filtration residue at all ○ ・ ・ ・ There is some filtration residue, but it does not affect mass productivity △ ・ ・ ・ There is a level of filtration residue that cannot be mass-produced.
×: There is significant aggregation, and there is a large amount of filtration residue.
-Ink foamability: The foamability immediately after inking is visually evaluated in the following four stages.
◎ ・ ・ ・ No bubbles on the ink surface ○ ・ ・ ・ Some bubbles remain on the ink surface, but it does not affect mass productivity △ ・ ・ ・ There is a level of foaming that cannot be mass-produced × ・ ・-Remarkable foaming-Coating suitability: The degree of occurrence of printing defects such as variation in coating amount, blurring, drying defects, and ink skipping during printing is evaluated in the following four stages.
◎ ・ ・ ・ No printing defects occur ○ ・ ・ ・ Minor printing defects occur, but they do not affect mass productivity △ ・ ・ ・ Printing defects occur at a level that cannot be mass-produced × ・ ・-Printing is not possible.
(2)成形体表面に形成された乾燥被膜に関する試験及び評価
・耐水性:成形体を30分間水に浸漬した後に、10回モミ試験を実施し、インキの脱落度合いを目視判定し、以下のような4段階で評価する。
 ◎・・・インキの脱落無し
 ○・・・若干インキの脱落はあるが、実用的に問題無いレベルである
 △・・・実用的に問題となるレベルのインキの脱落がある
 ×・・・著しいインキの脱落がある
・ブロッキング性:ロール状に巻き取られた印刷物を剥離する時の剥離抵抗、及びフィルム背面に対するインキの付着度合いを以下のような4段階で評価する。
 ◎・・・全く付着が無い。
 ○・・・フィルムを剥離する時に若干抵抗があるが、実用的に問題無いレベルである
 △・・・フィルム背面へのインキの付着は無いが、剥離時に強い抵抗がある
 ×・・・フィルム背面へインキ付着がある
・モミ性:印刷物に10回モミ試験を実施し、インキの脱落度合いを目視判定し、以下のような4段階で評価する。
 ◎・・・インキの脱落無し
 ○・・・若干インキの脱落はあるが、実用的に問題無いレベルである
 △・・・実用的に問題となるレベルのインキの脱落
 ×・・・著しいインキの脱落がある
・吸湿性:水平な試験台上に100mm四方のろ紙を20枚重ね、その上に、乾燥被膜が形成された成形体を載せて固定し、前記成形体に尿素などからなる人工尿70ccを注入し、人工尿が表面から無くなってから注入部分の表面に底面積100cm2、重さ3kgの錘を載せて15分間保持した後、ろ紙を取出してその重量を測定し、人工尿注入前のろ紙の重さを差し引いて得られるろ紙の重量変化を4回測定し、平均値を前記成形体の湿り度とし、◎、○、△、×の4段階で評価する。
・透湿度:JIS Z 0208の「防湿包装材料の透過湿度試験方法(カップ法)」に基づいて、透湿度を試験し、◎、○、△、×の4段階で評価する。
 以上のような試験の評価は、◎、〇を合格とし、△、×を不合格とする。
(2) Test and evaluation of dry film formed on the surface of the molded product ・ Water resistance: After immersing the molded product in water for 30 minutes, a fir test was conducted 10 times to visually determine the degree of ink dropout, and the following Evaluate on a 4-point scale.
◎ ・ ・ ・ No ink dropout ○ ・ ・ ・ Slight ink dropout, but practically no problem level △ ・ ・ ・ Practical problematic level of ink dropout × ・ ・ ・ Significant Ink may fall off ・ Blocking property: The peeling resistance when peeling the printed matter wound in a roll shape and the degree of ink adhesion to the back surface of the film are evaluated in the following four stages.
◎ ・ ・ ・ No adhesion at all.
○ ・ ・ ・ There is some resistance when peeling the film, but there is no problem in practical use △ ・ ・ ・ There is no ink adhesion to the back surface of the film, but there is strong resistance when peeling × ・ ・ ・ Back side of the film There is ink adhesion to the ink. ・ Fir property: A fir test is carried out 10 times on the printed matter, the degree of ink dropout is visually judged, and the evaluation is made in the following four stages.
◎ ・ ・ ・ No ink drop ○ ・ ・ ・ Slight ink drop, but practically no problem level △ ・ ・ ・ Practically problematic level of ink drop × ・ ・ ・ Significant ink drop There is shedding ・ Moisture absorption: 20 sheets of 100 mm square filter paper are stacked on a horizontal test table, and a molded body with a dry film formed is placed and fixed on the molded body, and artificial urine composed of urea or the like is placed on the molded body. 70 cc is injected, and after the artificial urine disappears from the surface, a weight with a bottom area of 100 cm2 and a weight of 3 kg is placed on the surface of the injection part and held for 15 minutes, then the filter paper is taken out and the weight is measured before the artificial urine is injected. The weight change of the filter paper obtained by subtracting the weight of the filter paper is measured four times, and the average value is taken as the wetness of the molded product, and the evaluation is made in four stages of ⊚, ◯, Δ, and ×.
-Humidity permeability: Based on JIS Z 0208 "Permeability test method for moisture-proof packaging material (cup method)", moisture permeability is tested and evaluated on a scale of ◎, ○, Δ, and ×.
In the evaluation of the above tests, ◎ and 〇 are passed, and △ and × are rejected.
 実施例1~10の試験及び評価の結果を表1に記載し、比較例1~12の試験及び評価の結果を表2に記載した。 The results of the tests and evaluations of Examples 1 to 10 are shown in Table 1, and the results of the tests and evaluations of Comparative Examples 1 to 12 are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~10を参照すると、本発明のコーティング剤は、実用性を十分に満たしており、塗工性にも問題が無いことがわかる。そして、本発明の衛生材料用成形体の乾燥被膜についても、実用性を十分に満たしていることがわかる。その他に、吸湿性および透湿性についても両立していることがわかった。 With reference to Examples 1 to 10, it can be seen that the coating agent of the present invention sufficiently satisfies practicality and has no problem in coatability. It can also be seen that the dry film of the molded article for sanitary materials of the present invention also sufficiently satisfies the practicality. In addition, it was found that both hygroscopicity and moisture permeability are compatible.
 比較例1,2の結果を参照すると、コーティング剤およびコーティング剤を塗工した成形体の試験および評価には問題が無いが、備考1に記載しているように、塗工面積が多すぎると透湿性が不足する(比較例1)、塗工面積が少なすぎると吸湿性が不足する(比較例2)という問題が生じ、本発明の衛生材料用成形体としては適さないことがわかる。 With reference to the results of Comparative Examples 1 and 2, there is no problem in the test and evaluation of the coating agent and the molded product coated with the coating agent, but as described in Remark 1, if the coated area is too large. It can be seen that the moisture permeability is insufficient (Comparative Example 1), and if the coating area is too small, the hygroscopicity is insufficient (Comparative Example 2), and the molded product for sanitary materials of the present invention is not suitable.
 比較例3,4,6,9の結果を参照すると、攪拌速度が速く(3500rpm)、TI値が高い場合(20.4)(比較例3)、セルロースナノファイバーの割合が高く(55重量部)、TI値が高い場合(12.3)(比較例4)、酸含有コポリマーの酸価が高い場合(286mgKOH/g)(比較例6)、酸含有コポリマーの酸価が低い場合(43mgKOH/g)(比較例9)は、コーティング剤としての実用性を満たさないことがわかる。 Referring to the results of Comparative Examples 3, 4, 6 and 9, when the stirring speed was high (3500 rpm) and the TI value was high (20.4) (Comparative Example 3), the proportion of cellulose nanofibers was high (55 parts by weight). ), When the TI value is high (12.3) (Comparative Example 4), when the acid value of the acid-containing copolymer is high (286 mgKOH / g) (Comparative Example 6), when the acid value of the acid-containing copolymer is low (43 mgKOH /). It can be seen that g) (Comparative Example 9) does not satisfy the practicality as a coating agent.
 比較例5の結果を参照すると、セルロースナノファイバーの割合が低い場合、コーティング剤およびコーティング剤を塗工した成形体の試験および評価には問題が無いが、備考1に記載しているように、吸湿性が不足するという問題が生じ、本発明の衛生材料用成形体としては適さないことがわかる。 With reference to the result of Comparative Example 5, when the proportion of the cellulose nanofibers is low, there is no problem in the test and evaluation of the coating agent and the molded product coated with the coating agent, but as described in Remark 1, It can be seen that the problem of insufficient hygroscopicity arises and the molded product for sanitary materials of the present invention is not suitable.
 比較例7,8の結果を参照すると、ガラス転移点が低い場合(Tg=-6℃)(比較例7)、ガラス転移点が高い場合(Tg=72℃)(比較例8)は、コーティング剤としての実用性は満たしているが、成形体表面の乾燥被膜に関しては、全ての条件を満たすことはできないことから、実用性には問題があることがわかる。 With reference to the results of Comparative Examples 7 and 8, when the glass transition point is low (Tg = -6 ° C) (Comparative Example 7) and the glass transition point is high (Tg = 72 ° C) (Comparative Example 8), the coating is applied. Although it satisfies the practicality as an agent, it can be seen that there is a problem in the practicality because all the conditions cannot be satisfied with respect to the dry film on the surface of the molded product.
 比較例10の結果を参照すると、セルロースナノファイバーを含まない場合は、コーティング剤およびコーティング剤を塗工した成形体の試験および評価には問題が無いが、備考1に記載しているように、吸湿性が不足するという問題が生じ、本発明の衛生材料用成形体としては適さないことがわかる。 With reference to the results of Comparative Example 10, when the cellulose nanofibers are not contained, there is no problem in the test and evaluation of the coating agent and the molded product coated with the coating agent, but as described in Remark 1, It can be seen that the problem of insufficient hygroscopicity arises and the molded product for sanitary materials of the present invention is not suitable.
 比較例11の結果を参照すると、セルロースナノファイバーを含まないで、グリセリンを多く含む場合は、コーティング剤としての実用性には問題は無いが、乾燥被膜としては、耐水性およびブロッキング性において問題があることがあり、本発明の衛生材料用成形体としては適さないことがわかる。 With reference to the results of Comparative Example 11, when the cellulose nanofibers are not contained and a large amount of glycerin is contained, there is no problem in practicality as a coating agent, but there are problems in water resistance and blocking property as a dry film. It can be seen that it is not suitable as a molded product for sanitary materials of the present invention.
 比較例12の結果を参照すると、コーティング剤の乾燥塗布重量が少ない場合は、乾燥被膜の厚みが薄くなり、吸湿性が不足して、本発明の衛生材料用成形体としては適さないことがわかる。 With reference to the results of Comparative Example 12, it can be seen that when the dry coating weight of the coating agent is small, the thickness of the dry coating becomes thin and the hygroscopicity is insufficient, which makes it unsuitable for the molded article for sanitary materials of the present invention. ..
 以上の試験結果より、本発明のコーティング剤は、実用上十分な塗工性を有しており、吸湿性を有する乾燥被膜を形成することができることがわかる。このようなコーティング剤によって、紙おむつ等の衛生材料用成形体に吸湿性を有する乾燥被膜を形成することが可能となり、透湿性を阻害することなく吸湿性を付加することができるようになる。そして、本発明の衛生材料用成形体を紙おむつとして使用することによって、紙おむつを透過した湿気によって衣服等が湿るという問題を解消することができる。 From the above test results, it can be seen that the coating agent of the present invention has sufficient coatability in practical use and can form a dry film having hygroscopicity. With such a coating agent, it becomes possible to form a dry film having hygroscopicity on a molded product for sanitary materials such as disposable diapers, and it becomes possible to add hygroscopicity without impairing moisture permeability. By using the molded article for sanitary material of the present invention as a disposable diaper, it is possible to solve the problem that clothes and the like are moistened by the moisture that has permeated the disposable diaper.
 1 衛生材料用成形体
 2 乾燥被膜
 3 透水性防水フィルム
 
1 Molded body for sanitary materials 2 Dry film 3 Water permeable waterproof film

Claims (9)

  1.  吸湿性を有する乾燥被膜を形成するコーティング剤であって、
     セルロースナノファイバー、酸含有コポリマー、および、溶媒を含み、
     前記セルロースナノファイバーおよび前記酸含有コポリマーが、前記溶媒によって分散されており、
     前記酸含有コポリマーが、少なくとも1つの(メタ)アクリレート系モノマー、および、少なくとも1つのビニル系モノマーから形成されており、
     前記酸含有コポリマーは、酸価が50~150mgKOH/g、ガラス転移点が20~50℃である1種類の酸含有コポリマーであることを特徴とするコーティング剤。
    A coating agent that forms a hygroscopic dry film.
    Contains cellulose nanofibers, acid-containing copolymers, and solvents
    The cellulose nanofibers and the acid-containing copolymer are dispersed by the solvent.
    The acid-containing copolymer is formed from at least one (meth) acrylate-based monomer and at least one vinyl-based monomer.
    The acid-containing copolymer is a coating agent having an acid value of 50 to 150 mgKOH / g and a glass transition point of 20 to 50 ° C., which is one kind of acid-containing copolymer.
  2.  吸湿性を有する乾燥被膜を形成するコーティング剤であって、
     セルロースナノファイバー、酸含有コポリマー、および、溶媒を含み、
     前記セルロースナノファイバーが前記溶媒によって分散され、前記酸含有コポリマーが前記溶媒によって溶解または分散されており、
     前記酸含有コポリマーが、少なくとも1つの(メタ)アクリレート系モノマー、および、少なくとも1つのビニル系モノマーから形成されており、
     前記酸含有コポリマーは、酸価が50~300mgKOH/g、ガラス転移点が-10~150℃である少なくとも2種類の酸含有コポリマーであることを特徴とするコーティング剤。
    A coating agent that forms a hygroscopic dry film.
    Contains cellulose nanofibers, acid-containing copolymers, and solvents
    The cellulose nanofibers are dispersed in the solvent and the acid-containing copolymer is dissolved or dispersed in the solvent.
    The acid-containing copolymer is formed from at least one (meth) acrylate-based monomer and at least one vinyl-based monomer.
    The acid-containing copolymer is a coating agent characterized by being at least two kinds of acid-containing copolymers having an acid value of 50 to 300 mgKOH / g and a glass transition point of −10 to 150 ° C.
  3.  前記セルロースナノファイバーが2~10重量%、前記酸含有コポリマーが95~70重量%の割合で含有されていることを特徴とする請求項1または2に記載のコーティング剤。 The coating agent according to claim 1 or 2, wherein the cellulose nanofibers are contained in a proportion of 2 to 10% by weight, and the acid-containing copolymer is contained in a proportion of 95 to 70% by weight.
  4.  チキソトロピックインデックス値(TI値)が10以下であることを特徴とする請求項1~3のいずれか1項に記載のコーティング剤。 The coating agent according to any one of claims 1 to 3, wherein the thixotropic index value (TI value) is 10 or less.
  5.  透湿性防水フィルムの片面の一部分に吸湿性を有する乾燥被膜が形成されている衛生材料用成形体であって、
     前記乾燥被膜が、請求項1~4のいずれか1項に記載のコーティング剤によって形成されていることを特徴とする衛生材料用成形体。
    A molded product for sanitary materials in which a dry film having hygroscopicity is formed on a part of one side of a moisture-permeable waterproof film.
    A molded article for a sanitary material, wherein the dry film is formed by the coating agent according to any one of claims 1 to 4.
  6.  前記乾燥被膜が、前記透湿性防水フィルムの片面の平面積の30~70%の割合で形成されていることを特徴とする請求項5に記載の衛生材料用成形体。 The molded article for sanitary materials according to claim 5, wherein the dry film is formed at a ratio of 30 to 70% of the flat area of one side of the moisture-permeable waterproof film.
  7.  紙おむつに使用することを特徴とする請求項5または6に記載の衛生材料用成形体。 The molded article for sanitary materials according to claim 5 or 6, which is characterized by being used for disposable diapers.
  8.  請求項1~4のいずれか1項に記載のコーティング剤の製造方法であって、
     前記セルロースナノファイバーの分散液を用意し、
     前記酸含有コポリマーを50~1000rpmの速度で攪拌し、
     攪拌状態の前記酸含有コポリマーに、前記セルロースナノファイバーの分散液を、叩解処理を行ないながら添加することを特徴とするコーティング剤の製造方法。
    The method for producing a coating agent according to any one of claims 1 to 4.
    Prepare a dispersion of the cellulose nanofibers and prepare
    The acid-containing copolymer is stirred at a rate of 50-1000 rpm and
    A method for producing a coating agent, which comprises adding a dispersion of cellulose nanofibers to the acid-containing copolymer in a stirred state while performing a beating treatment.
  9.  前記セルロースナノファイバーの分散液に、アミノ酸型両性界面活性剤またはポリビニルアセトアミド系化合物を添加した後、前記セルロースナノファイバーの分散液を攪拌状態の前記酸含有コポリマーに添加することを特徴とする請求項8に記載のコーティング剤の製造方法。
     
    The claim is characterized in that after adding an amino acid-type amphoteric surfactant or a polyvinylacetamide-based compound to the dispersion liquid of the cellulose nanofibers, the dispersion liquid of the cellulose nanofibers is added to the acid-containing copolymer in a stirred state. 8. The method for producing a coating agent according to 8.
PCT/JP2020/008446 2019-03-27 2020-02-28 Hygroscopic coating agent, hygienic material molded body having dry film formed thereon by coating agent, and method for manufacturing coating agent WO2020195551A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-060502 2019-03-27
JP2019060502A JP7329785B2 (en) 2019-03-27 2019-03-27 Coating agent having hygroscopicity, molding for sanitary material having a dry film formed by coating agent, and method for producing coating agent

Publications (1)

Publication Number Publication Date
WO2020195551A1 true WO2020195551A1 (en) 2020-10-01

Family

ID=72609315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008446 WO2020195551A1 (en) 2019-03-27 2020-02-28 Hygroscopic coating agent, hygienic material molded body having dry film formed thereon by coating agent, and method for manufacturing coating agent

Country Status (3)

Country Link
JP (1) JP7329785B2 (en)
TW (1) TWI816985B (en)
WO (1) WO2020195551A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114452807B (en) * 2021-12-29 2023-05-02 深圳华明环保科技有限公司 Dry denitration agent and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184603A (en) * 2007-01-31 2008-08-14 Soft99 Corporation Coating composition for leather
JP2013035600A (en) * 2011-07-14 2013-02-21 Osaka Insatsu Ink Seizo Kk Food packaging paper
WO2015166808A1 (en) * 2014-04-30 2015-11-05 Dic株式会社 Aqueous pigment dispersion and aqueous ink
JP2017025206A (en) * 2015-07-23 2017-02-02 第一工業製薬株式会社 Cellulose ester aqueous dispersed body
JP2017137497A (en) * 2011-09-22 2017-08-10 凸版印刷株式会社 Film formation composition, laminate, film, sheet base material, packaging material, and manufacturing method of film formation composition
JP2018119073A (en) * 2017-01-26 2018-08-02 石原ケミカル株式会社 Hydrophilic coating composition
JP2018154699A (en) * 2017-03-16 2018-10-04 大王製紙株式会社 Method for producing cellulose nanofiber film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004027724A1 (en) * 2004-06-07 2005-12-22 Basf Ag Superabsorbent printable compositions
JP6253241B2 (en) * 2013-04-11 2017-12-27 株式会社リブドゥコーポレーション Absorbent articles
WO2018225251A1 (en) * 2017-06-09 2018-12-13 花王株式会社 Water-absorbent polymer composition and water-absorbent article containing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184603A (en) * 2007-01-31 2008-08-14 Soft99 Corporation Coating composition for leather
JP2013035600A (en) * 2011-07-14 2013-02-21 Osaka Insatsu Ink Seizo Kk Food packaging paper
JP2017137497A (en) * 2011-09-22 2017-08-10 凸版印刷株式会社 Film formation composition, laminate, film, sheet base material, packaging material, and manufacturing method of film formation composition
WO2015166808A1 (en) * 2014-04-30 2015-11-05 Dic株式会社 Aqueous pigment dispersion and aqueous ink
JP2017025206A (en) * 2015-07-23 2017-02-02 第一工業製薬株式会社 Cellulose ester aqueous dispersed body
JP2018119073A (en) * 2017-01-26 2018-08-02 石原ケミカル株式会社 Hydrophilic coating composition
JP2018154699A (en) * 2017-03-16 2018-10-04 大王製紙株式会社 Method for producing cellulose nanofiber film

Also Published As

Publication number Publication date
TWI816985B (en) 2023-10-01
JP2020158662A (en) 2020-10-01
JP7329785B2 (en) 2023-08-21
TW202034871A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
KR101764656B1 (en) An aqueous dye based printing ink and a printing method using the aqueous dye based printing ink
JP5364594B2 (en) Substrates with improved ink adhesion and oil friction fastness
US6822135B2 (en) Fluid storage material including particles secured with a crosslinkable binder composition and method of making same
CA2523265C (en) Superabsorbent cellulosic fiber and method of making same
JPS58501625A (en) Method for producing fibrous hydrophilic fluff and fluff produced by the method
WO2015088266A1 (en) Superabsorbent polymer composition
WO2020195551A1 (en) Hygroscopic coating agent, hygienic material molded body having dry film formed thereon by coating agent, and method for manufacturing coating agent
US20060142445A1 (en) Multi-purpose adhesive composition
RU2615704C2 (en) Substrates containing foamed useful substances for increased advantages of substrates
KR101366979B1 (en) Water-soluble adhesive
US6294265B1 (en) Hydrophobic biodegradable cellulose containing composite materials
DE60031560T2 (en) Aqueous Superabsorbent Polymers, and Methods of Use
EP4137110A1 (en) Superabsorbent polymer film and absorbent product comprising same
CN113423778B (en) Water-absorbing composition and method for producing same
CN105155351B (en) Plant fiber and PHA (polyhydroxyalkanoate) composite oil-absorbing sheet and preparation method thereof
RU2745643C1 (en) Printed coating on substrate
US3743536A (en) Nonwoven sponge fabric
JP2003520308A (en) Method for reducing sticky contaminants in wastepaper-containing stock systems and in coated broke
CN100526343C (en) Method for promoting michael addition reactions
EP1856222B1 (en) Gum adhesive based on a filled polymer dispersion
JPS5818381B2 (en) Inquiry
JP4059561B2 (en) Laminated body
JPH04139271A (en) Water-base printing ink composition
JPH06108002A (en) Coating composition
JP2001122348A (en) Sterilized bag paper

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20777242

Country of ref document: EP

Kind code of ref document: A1