WO2020195473A1 - Electromagnetic wave measurement point calculation program and radiation interference wave measurement device - Google Patents

Electromagnetic wave measurement point calculation program and radiation interference wave measurement device Download PDF

Info

Publication number
WO2020195473A1
WO2020195473A1 PCT/JP2020/007667 JP2020007667W WO2020195473A1 WO 2020195473 A1 WO2020195473 A1 WO 2020195473A1 JP 2020007667 W JP2020007667 W JP 2020007667W WO 2020195473 A1 WO2020195473 A1 WO 2020195473A1
Authority
WO
WIPO (PCT)
Prior art keywords
height
function
electric field
floor surface
antenna
Prior art date
Application number
PCT/JP2020/007667
Other languages
French (fr)
Japanese (ja)
Inventor
智宏 本谷
雅貴 緑
栗原 弘
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to US17/435,979 priority Critical patent/US11656260B2/en
Publication of WO2020195473A1 publication Critical patent/WO2020195473A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • G01R29/105Radiation diagrams of antennas using anechoic chambers; Chambers or open field sites used therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0807Measuring electromagnetic field characteristics characterised by the application
    • G01R29/0814Field measurements related to measuring influence on or from apparatus, components or humans, e.g. in ESD, EMI, EMC, EMP testing, measuring radiation leakage; detecting presence of micro- or radiowave emitters; dosimetry; testing shielding; measurements related to lightning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0892Details related to signal analysis or treatment; presenting results, e.g. displays; measuring specific signal features other than field strength, e.g. polarisation, field modes, phase, envelope, maximum value

Definitions

  • the present invention relates to an electromagnetic wave measurement point calculation program and a radiated interfering wave measuring device.
  • the present application claims priority based on Japanese Patent Application No. 2019-060380 filed in Japan on March 27, 2019, the contents of which are incorporated herein by reference.
  • Electronic devices may emit radiant interference waves, which are electromagnetic waves that affect surrounding electronic devices and communication devices. For this reason, it is now necessary to conduct a radiated jamming test to confirm that the electric field strength of the radiated jamming wave is below the permissible value of the internationally established standard before the electronic device is shipped to the market. ..
  • the electric field strength is measured by the antenna while changing the height of the antenna based on the radiation source of the radiated interference wave and the orientation of the antenna based on the radiation source, and the position where the electric field strength is maximized is determined.
  • Explore. the electric field strength of the radiated interfering wave is measured for a certain period of time, and it is confirmed whether or not the measured value of the electric field strength is equal to or less than the permissible value of the internationally established standard. ..
  • Examples of the device for performing such a radiated interference wave test include the radiated interference wave measuring device described in Patent Document 1.
  • the radiated interference wave test it is necessary to measure the electric field strength at each of a huge number of measurement points. For example, taking radiated interfering wave measurement in which the frequency band of information and communication equipment, 30 MHz to 40 GHz, is the frequency range to be measured, the height of the antenna is changed from 1 m to 4 m, and the specimen is placed. It is necessary to change the angle of the turntable from 0 degrees to 360 degrees. In this case, when the radiation jamming test is performed with the antenna height at 1 cm intervals and the turntable angle at 1 degree intervals, the number of measurement points becomes enormous, about 140,000, which is necessary for conducting the radiation jamming test. Time will be very long.
  • a spectrum analyzer capable of measuring a spectrum in a wide frequency band.
  • Examples of such a spectrum analyzer include a superheterodyne type spectrum analyzer and an FFT (Fast Fourier Transform) type spectrum analyzer.
  • measuring the spectrum in a wide frequency band further increases the time required to carry out the radiated jamming test.
  • the radiation interference wave measuring device disclosed in Patent Document 1 measures the electric field intensity distribution of the radiation interference wave at the measurement points set at the measurement interval of 1/2 or less of the wavelength of the radiation interference wave. By interpolating the electric field strength between the measurement points, the number of measurement points is reduced and the time required to carry out the radiated interference wave test is shortened.
  • the radiation interference wave measuring device disclosed in Patent Document 1 does not optimize the interval between measurement points, it may not be possible to sufficiently shorten the time required to carry out the radiation interference wave test.
  • the frequency of the radiated interference wave is high, the wavelength of the radiated interference wave becomes short. Therefore, for example, the frequency of the radiated interfering wave is 10 GHz, the horizontal distance between the antenna and the specimen is 3 m, the height of the antenna is changed from 1 m to 4 m, and the turn on which the specimen is placed.
  • the radiated jamming test is performed by changing the table angle from 0 degrees to 360 degrees, the number of measurement points becomes enormous, about 250,000, and the time required to carry out the radiated jamming test is very long. turn into.
  • One aspect of the present invention includes a relative positional relationship between a specimen including a radiation source that emits a radiating interfering wave and an antenna that performs measurement of at least one of an electric field and a magnetic field of the radiating interfering wave, and the specimen.
  • This is an electromagnetic wave measurement point calculation program that causes a computer to execute a measurement height calculation function that sequentially calculates the height of the antenna when the above is executed.
  • the correction coefficient calculation function includes the shortest horizontal distance between the specimen and the antenna, the longest horizontal distance between the specimen and the antenna, and the specimen is placed. With the function of calculating the correction coefficient using at least two of the shortest distance from the floor surface to the specimen and the longest distance from the floor surface on which the specimen is placed to the specimen. is there.
  • the correction coefficient calculation function calculates the correction coefficient using the following equation (1) or equation (2) and equation (3), and calculates the measurement height.
  • the function sequentially calculates the height of the antenna when the measurement is performed using the following equation (4).
  • d min Shortest horizontal distance between the specimen and the antenna
  • d max Longest horizontal distance between the specimen and the antenna h min : The specimen is placed The shortest distance from the floor surface to the specimen h max : The longest distance from the floor surface on which the specimen is placed to the specimen
  • ⁇ h rx The amount of change in the height of the antenna
  • the electromagnetic wave measurement point calculation program causes the computer to further execute a determination function for determining whether or not it is necessary to consider the radiation interference wave reflected on the floor surface, and the correction is performed.
  • the coefficient calculation function calculates the correction coefficient using the equation (1).
  • the electromagnetic wave measurement point calculation program causes the computer to further execute a determination function for determining whether or not it is necessary to consider the radiation interference wave reflected on the floor surface, and the correction is performed.
  • the coefficient calculation function determines that it is necessary to consider the radiated electromagnetic wave reflected on the floor surface
  • the coefficient calculation function calculates the correction coefficient using the equation (2), or calculates the correction coefficient. To cancel.
  • the correction coefficient calculation function is corrected by using the equation (2) regardless of whether or not it is necessary to consider the radiated interfering wave reflected on the floor surface. Calculate the coefficient.
  • the electromagnetic wave measurement point calculation program is the distribution of at least one of the electric field and the magnetic field of the radiated interfering wave, and the first electromagnetic field that acquires the first electromagnetic field distribution obtained by simulation or actual measurement.
  • the electric field or electromagnetic field at the height of the antenna calculated by the field distribution acquisition function and the measurement height calculation function is acquired by simulation or actual measurement, and is calculated by the measurement height calculation function using a low-pass filter.
  • the second electromagnetic field distribution acquisition function for acquiring the second electromagnetic field distribution obtained by interpolating the electric field or the magnetic field at the height of the antenna different from the height of the antenna is further executed by the computer, and the determination function is performed.
  • the deviation between the maximum value of the electric field or the magnetic field in the first electromagnetic field distribution and the maximum value of the electric field or the magnetic field in the second electromagnetic field distribution is calculated, and when the deviation is equal to or less than a predetermined allowable value, the floor. This is a function for determining that it is not necessary to consider the electromagnetic interference wave reflected by the surface.
  • the electromagnetic wave measurement point calculation program is the distribution of at least one of the electric field and the magnetic field of the radiated interfering wave, and the first electromagnetic field that acquires the first electromagnetic field distribution obtained by simulation or actual measurement.
  • the electric field or electromagnetic field at the height of the antenna calculated by the field distribution acquisition function and the measurement height calculation function is acquired by simulation or actual measurement, and is calculated by the measurement height calculation function using a low-pass filter.
  • the second electromagnetic field distribution acquisition function for acquiring the second electromagnetic field distribution obtained by interpolating the electric field or the magnetic field at the height of the antenna different from the height of the antenna is further executed by the computer, and the determination function is performed.
  • the deviation between the maximum value of the electric field or the magnetic field in the first electromagnetic field distribution and the maximum value of the electric field or the magnetic field in the second electromagnetic field distribution is calculated, and when the deviation exceeds a predetermined allowable value, the said This is a function for determining that it is necessary to consider the electromagnetic interference wave reflected on the floor surface.
  • the electromagnetic wave measurement point calculation program is the distribution of at least one of the electric field and the magnetic field of the radiated interfering wave, and the first electromagnetic field that acquires the first electromagnetic field distribution obtained by simulation or actual measurement.
  • the electric field or electromagnetic field at the height of the antenna calculated by the field distribution acquisition function and the measurement height calculation function is acquired by simulation or actual measurement, and is calculated by the measurement height calculation function using a low-pass filter.
  • the second electromagnetic field distribution acquisition function for acquiring the second electromagnetic field distribution obtained by interpolating the electric field or the magnetic field at the height of the antenna different from the height of the antenna is further executed by the computer, and the determination function is performed.
  • the deviation between the maximum value of the electric field or the magnetic field in the first electromagnetic field distribution and the maximum value of the electric field or the magnetic field in the second electromagnetic field distribution is calculated, and the deviation corresponds to the reflection coefficient which is equal to or less than a predetermined threshold value. If this is the case, it is a function of determining that it is not necessary to consider the electromagnetic interference wave reflected on the floor surface.
  • the electromagnetic wave measurement point calculation program is the distribution of at least one of the electric field and the magnetic field of the radiated interfering wave, and the first electromagnetic field that acquires the first electromagnetic field distribution obtained by simulation or actual measurement.
  • the electric field or electromagnetic field at the height of the antenna calculated by the field distribution acquisition function and the measurement height calculation function is acquired by simulation or actual measurement, and is calculated by the measurement height calculation function using a low-pass filter.
  • the second electromagnetic field distribution acquisition function for acquiring the second electromagnetic field distribution obtained by interpolating the electric field or the magnetic field at the height of the antenna different from the height of the antenna is further executed by the computer, and the determination function is performed.
  • the deviation between the maximum value of the electric field or the magnetic field in the first electromagnetic field distribution and the maximum value of the electric field or the magnetic field in the second electromagnetic field distribution is calculated, and the deviation corresponds to the reflection coefficient exceeding a predetermined threshold value. If this is the case, it is a function of determining that it is necessary to consider the electromagnetic interference wave reflected on the floor surface.
  • the determination function is performed when the sampling frequency calculated from the reflection coefficient, the frequency of the radiating interfering wave and the maximum frequency of the radiating interfering wave satisfies the following equation (5). This is a function for determining that it is not necessary to consider the radiated interfering wave reflected on the floor surface.
  • the determination function when the sampling frequency calculated from the reflection coefficient, the frequency of the radiating interfering wave and the maximum frequency of the radiating interfering wave does not satisfy the following equation (6). , It is a function of determining that it is necessary to consider the radiated interfering wave reflected on the floor surface.
  • the determination function is performed when the absorption characteristic of the floor surface with respect to the frequency of the radiated interfering wave at which at least one of the electric field and the magnetic field is measured satisfies the following equation (7). This is a function for determining that it is not necessary to consider the radiated interfering wave reflected on the floor surface.
  • the determination function is when the absorption characteristic of the floor surface with respect to the frequency of the radiated interfering wave at which at least one of the electric field and the magnetic field is measured does not satisfy the following equation (8). This is a function for determining that it is necessary to consider the radiated interfering wave reflected on the floor surface.
  • the determination function includes a radio wave absorber having a height of 0.45 ⁇ min or 2.8 ⁇ max with respect to the floor surface, whichever is larger than the larger value. When it is laid on the floor surface, it is a function of determining that it is not necessary to consider the radiation interference wave reflected on the floor surface.
  • a radio wave absorber having a height of 0.45 ⁇ min and 2.8 ⁇ max , which is less than the larger value with respect to the floor surface is laid on the floor surface. This is a function for determining that it is necessary to consider the radiated interfering wave reflected on the floor surface when the radio wave absorber is installed or the radio wave absorber is not laid.
  • the radiation interference wave measuring device includes a computer that executes any one of the above-mentioned electromagnetic wave measuring point calculation programs.
  • the time required to carry out the radiated interfering wave test can be shortened.
  • the height dimension of the specimen according to the embodiment is 100 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 6 GHz, the reflection coefficient of the floor surface when the radiated interfering wave is horizontally polarized, and the first electric field. It is a figure which shows the example of the relationship between the maximum value of a distribution, and the deviation of the maximum value of a second electric field distribution.
  • the height dimension of the specimen according to the embodiment is 100 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 6 GHz, the reflection coefficient of the floor surface when the radiated interfering wave is vertically polarized, and the first electric field.
  • the height dimension of the specimen according to the embodiment is 20 cm
  • the frequency of the radiated interfering wave for measuring the electric field strength is 6 GHz
  • the reflection coefficient of the floor surface when the radiated interfering wave is horizontally polarized is 6 GHz
  • the reflection coefficient of the floor surface when the radiated interfering wave is horizontally polarized and the first electric field.
  • the height dimension of the specimen according to the embodiment is 20 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 6 GHz, the reflection coefficient of the floor surface when the radiated interfering wave is vertically polarized, and the first electric field. It is a figure which shows the example of the relationship between the maximum value of a distribution, and the deviation of the maximum value of a second electric field distribution.
  • the height dimension of the specimen according to the embodiment is 100 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 1 GHz, the reflection coefficient of the floor surface when the radiated interfering wave is horizontally polarized, and the first electric field.
  • the height dimension of the specimen according to the embodiment is 20 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 1 GHz, the reflection coefficient of the floor surface when the radiated interfering wave is horizontally polarized, and the first electric field. It is a figure which shows the example of the relationship between the maximum value of a distribution, and the deviation of the maximum value of a second electric field distribution.
  • the height dimension of the specimen according to the embodiment is 20 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 1 GHz, the reflection coefficient of the floor surface when the radiated interfering wave is vertically polarized, and the first electric field.
  • the height dimension of the specimen according to the embodiment is 100 cm
  • the frequency of the radiated interfering wave for measuring the electric field strength is 3.5 GHz
  • the reflection coefficient of the floor surface when the radiated interfering wave is horizontally polarized
  • the height dimension of the specimen according to the embodiment is 100 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 3.5 GHz, the reflection coefficient of the floor surface when the radiated interfering wave is vertically polarized, and the first It is a figure which shows the example of the relationship between the maximum value of one electric field distribution and the maximum value of a second electric field distribution.
  • the height dimension of the specimen according to the embodiment is 20 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 3.5 GHz, the reflection coefficient of the floor surface when the radiated interfering wave is horizontally polarized, and the first It is a figure which shows the example of the relationship between the maximum value of one electric field distribution and the maximum value of a second electric field distribution.
  • the height dimension of the specimen according to the embodiment is 20 cm
  • the frequency of the radiated interfering wave for measuring the electric field strength is 3.5 GHz
  • the reflection coefficient of the floor surface when the radiated interfering wave is vertically polarized is a figure which shows the example of the relationship between the maximum value of one electric field distribution and the maximum value of a second electric field distribution.
  • FIG. 1 is a diagram showing an example of a configuration of a radiation interference wave measuring device according to an embodiment.
  • the radiation jamming wave measuring device 1 shown in FIG. 1 is, for example, a device used for a radiation jamming wave test for measuring a radiation jamming wave emitted from a specimen 100, which is a specimen, in accordance with an EMC standard.
  • the test conditions and test methods for this radiated disturbance test are internationally defined.
  • the radiation interference wave measuring device 1 is arranged in an anechoic chamber provided with a metal floor surface forming a ground plane.
  • a radio wave absorber is attached to the inner wall of the anechoic chamber excluding the metal floor.
  • the specimen 100 is, for example, an electronic device, and includes a radiation source that emits a radiating interfering wave.
  • the radiation interference wave measuring device 1 includes an antenna 11, an antenna mast 12, a turntable 13, a radio wave absorber 14, a controller 15, a control unit 20, and a receiving unit 30. ..
  • FIG. 2 is a diagram showing an example of measurement points located on a surface surrounding the specimen according to the embodiment.
  • This surface is, for example, the side surface of a cylinder whose central axis is perpendicular to the ground plane and which contains the specimen 100 and the base 200 inside.
  • each measurement point is formed by a first axis along the circumferential direction of the circle on the bottom surface of the cylinder and a second axis parallel to the central axis of the cylinder. It is arranged on the specified two-dimensional Cartesian coordinates.
  • the first axis shows the height of each measurement point with respect to the specimen 100.
  • the second axis shows the angle of each measurement point with respect to the specimen 100.
  • the measurement points shown in FIG. 2 are arranged at equal intervals in a direction parallel to the first axis and a direction parallel to the second axis.
  • the measurement points shown in FIG. 2 may be arranged at arbitrary intervals in at least one of the direction parallel to the first axis and the direction parallel to the second axis.
  • the antenna mast 12 supports the antenna 11 in a form that allows it to be raised and lowered, and is arranged at a predetermined distance from the specimen 100.
  • the turntable 13 is a disk-shaped turntable provided on the ground plane, and can rotate about an axis perpendicular to the ground plane.
  • the specimen 100 is placed on a table 200 placed on the turntable 13.
  • the radio wave absorber 14 is a pyramidal structure laid on the ground plane, and is made of a material that absorbs radiated interfering waves, for example, a foam material.
  • the controller 15 includes a height changing unit 151 and an azimuth changing unit 152.
  • the height changing unit 151 executes a height changing process for changing the height of the antenna 11 that receives the radiation interference wave radiated by the specimen 100 with respect to the specimen 100. Specifically, the height changing unit 151 drives the antenna mast 12 to raise and lower the antenna 11 to fix the antenna 11 at a predetermined height.
  • the azimuth changing unit 152 executes an azimuth changing process for changing the azimuth of the antenna 11 with reference to the specimen 100. Specifically, the orientation changing unit 152 drives the turntable 13 to rotate the specimen 100 and the table 200 by 360 degrees after the antenna 11 is fixed to a predetermined height by the height changing unit 151.
  • the control unit 20 includes a determination function 201, a correction coefficient calculation function 202, a measurement height calculation function 203, a first electromagnetic field distribution acquisition function 204, and a second electromagnetic field distribution acquisition function 205.
  • the determination function 201 is a function for determining whether or not it is necessary to consider the radiated interference wave reflected on the floor surface. About a specific example when the determination function 201 determines that it is not necessary to consider the radiated interference wave reflected on the floor surface and a specific example when it is determined that it is necessary to consider the radiated interference wave reflected on the floor surface. Will be described later.
  • the correction coefficient calculation function 202 the relative positional relationship between the specimen 100 including the radiation source that emits the radiated interfering wave and the antenna 11 that executes the measurement of the electric field strength of the radiated interfering wave and the specimen 100 are placed. This is a function of calculating a correction coefficient in which the height interval of the antenna 11 satisfies the sampling theorem based on the reflection coefficient of the radiated interfering wave on the floor surface. Specifically, the correction coefficient calculation function 202 sets the relative positional relationship between the specimen 100 and the antenna 11, the shortest distance in the horizontal direction between the specimen 100 and the antenna 11, and the horizontal between the specimen 100 and the antenna 11.
  • the correction coefficient calculation function 202 calculates the correction coefficient based on the principle described below.
  • Equation 10 The square of the electric field strength is expressed by the following equation (10) in consideration of the equation (9). Equation (10), the distance r n argument n indicating the radiation source, m, and the antenna 11 and the radiation source, r m, coefficients a n, a m, b n , b m, wavenumber k, the number of specimen 100 Contains N. Further, Equation (10) shows that the electric field strength is the sum of a sine wave that oscillates with respect to r n -r m.
  • the wave number k is 2 ⁇ divided by the measurement frequency. Therefore, the radiation interference wave measuring device 1 can completely reproduce the electric field intensity distribution by measuring the electric field intensity of the radiation interference wave at intervals satisfying the condition of the following equation (11) based on the sampling theorem. it can.
  • is the wavelength of the radiation interference wave for which the radiation interference wave measuring device 1 measures the electric field strength.
  • Equation (12) the height of the horizontal distance d n, the vertical position of the radiation source n h n and the antenna 11 of the antenna 11 and the distance r n is the antenna 11 of the source n and source n It is shown that it is represented by h rx .
  • equation (13) horizontal distance d m between the distance r m is the antenna 11 of the antenna 11 and the radiation source m radiation source m, the height direction of the radiation source m position h m and antenna 11 It is shown that the height of is represented by h rx .
  • the height direction position h m of the position in the height direction h n and radiation sources m of the radiation source n if there is radiation interference wave is reflected by the floor, take positive and negative values by the mirror image principle, floor If there are no radiated jamming waves reflected by the surface, only positive values are taken.
  • the position h n in the height direction of the radiation source n is lower than the position h m in the height direction of the radiation source m.
  • ⁇ h rx is the amount of change in the height h rx of the antenna.
  • K h is a correction coefficient.
  • Equation (22) describing the characteristics regarding the direction in which the radiation source included in the specimen 100 emits the radiating interfering wave is established.
  • Equation (22) the wave number k is zero, an equation coefficients a n included in expression (9) described above, a m, b n and b m are consideration of the case is a triangular function.
  • h rx_min is the minimum value of the height of the antenna 11.
  • the correction coefficient K hmax can be calculated under the conditions of the equations (16), (17), (18) and (19). Considering this condition, the following equation (23) is established in which h min included in the above equation (20) is replaced with ⁇ h max .
  • the correction coefficient calculation function 202 calculates the correction coefficient K hmax using the above equation (20) when there is no radiation interference wave reflected on the floor surface, and the radiation interference wave reflected on the floor surface is generated. In some cases, it is preferable to calculate the correction coefficient K hmax using the above equation (20). In other words, the correction coefficient calculation function 202 may calculate the correction coefficient using the equation (20) when it is determined by the determination function 201 that it is not necessary to consider the radiated interference wave reflected on the floor surface. preferable. Similarly, when it is determined by the determination function 201 that it is necessary to consider the radiation interference wave reflected on the floor surface, the correction coefficient calculation function 202 may calculate the correction coefficient using the equation (23). preferable.
  • the measurement height calculation function 203 sequentially calculates the height of the antenna 11 when the measurement is executed using the correction coefficient K hmax calculated by the correction coefficient calculation function 202. Specifically, the measurement height calculation function 203 sequentially calculates the height of the antenna 11 when the measurement is executed using the following equation (24).
  • the measurement height calculation function 203 uses the above-mentioned equations (20), (21) and (22), or the above-mentioned equations (23), (21) and (22). By using it, the height interval ⁇ h rx (h rx ) of the antenna 11 when the measurement is performed so that K hmax ⁇ h rx (h rx ) becomes constant is calculated. Then, the measurement height calculation function 203 calculates the height of each measurement point using the equation (24).
  • the determination function 201 determines that it is not necessary to consider the radiation interference wave reflected on the floor surface and a case in which it is determined that it is necessary to consider the radiation interference wave reflected on the floor surface. A specific example will be described.
  • the first electromagnetic field distribution acquisition function 204 is an electric field intensity distribution from a radiation source set assuming a radiation interference wave or a radiation interference wave, and acquires the first electric field distribution obtained by simulation or actual measurement.
  • the second electromagnetic field distribution acquisition function 205 acquires the electric field strength at the height of the antenna 11 calculated by the measurement height calculation function 203 from the first electric field strength distribution, and uses a low-pass filter to calculate the measurement height.
  • the second electric field distribution obtained by interpolating the electric field strength at the height of the antenna 11 different from the height of the antenna 11 calculated by 203 is acquired.
  • FIG. 3 shows the first electric field distribution and the first electric field reproduced by simulation or actual measurement when the height dimension of the specimen according to the embodiment is 100 cm and the shortest distance from the floor surface to the specimen is 10 cm. It is a figure which shows the example of the 2nd electric field distribution obtained by applying the low-pass filter to the intensity distribution and interpolating.
  • This first electric field distribution is arranged one by one at the highest height position and the lowest height position of the height dimension of the specimen 100 among the specimens 100, and the amplitude and phase of the radiated interfering waves radiated. Is a distribution obtained by simulation or measurement performed under the assumption that there are equal sources of radiation.
  • the dotted line in FIG. 3 shows the first electric field distribution.
  • the solid line in FIG. 3 shows the second electric field distribution.
  • the electric field strength is plotted with the height interval of the antenna 11 as 1 cm.
  • the second electric field strength distribution is interpolated by using the result of simulation or actual measurement of the first electric field distribution only at 43 points and applying a low-pass filter at other measurement points.
  • the null point means the height of the antenna 11 at which the electric field strength is minimized.
  • the second electric field distribution is considered to be sufficiently reliable. Comparing the two, there are some places where the magnitude of the electric field strength at the null point is not sufficiently reproduced, but there is no particular problem because the magnitude of the electric field strength at the null point is not used in the radiation interference test.
  • FIG. 4 shows the reflection coefficient of the floor surface when the height dimension of the specimen according to the embodiment is 100 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 6 GHz, and the radiated interfering wave is horizontally polarized.
  • FIG. 5 shows the reflection coefficient of the floor surface when the height dimension of the specimen according to the embodiment is 100 cm, the frequency of the radiation interference wave for measuring the electric field strength is 6 GHz, and the radiation interference wave is vertically polarized.
  • FIG. 6 shows the reflection coefficient of the floor surface when the height dimension of the specimen according to the embodiment is 20 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 6 GHz, and the radiated interfering wave is horizontally polarized.
  • FIG. 7 shows the reflection coefficient of the floor surface when the height dimension of the specimen according to the embodiment is 20 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 6 GHz, and the radiated interfering wave is vertically polarized.
  • FIGS. 4 to 7 show the horizontal axis shows the reflection coefficient of the floor surface, and the vertical axis shows the deviation between the maximum value of the first electric field distribution and the maximum value of the second electric field distribution. Further, FIGS. 4 to 7 show four or five data in which the shortest distance from the floor surface to the specimen 100 is different. Further, FIGS. 4 to 7 are views in the case where the frequency of the radiated interfering wave whose electric field strength is measured and the sampling frequency are equal to each other.
  • the frequency of the radiated interfering wave for measuring the electric field strength was examined at 6 GHz, but the same can be said for other frequencies as long as the sampling frequency and the measurement frequency are the same frequency. it is conceivable that.
  • the determination function 201 calculates the deviation between the maximum value of the electric field in the first electric field distribution and the maximum value of the electric field in the second electric field distribution, and when the deviation is equal to or less than a predetermined allowable value, it is reflected on the floor surface. It is determined that it is not necessary to consider the radiation interference wave to be generated. Alternatively, the determination function 201 calculates the deviation between the maximum value of the electric field in the first electric field distribution and the maximum value of the electric field in the second electric field distribution, and if the deviation exceeds a predetermined allowable value, on the floor surface. Judge that it is necessary to consider the reflected radiated interference wave.
  • FIG. 8 shows the reflection coefficient of the floor surface when the height dimension of the specimen according to the embodiment is 100 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 1 GHz, and the radiated interfering wave is horizontally polarized.
  • FIG. 9 shows the reflection coefficient of the floor surface when the height dimension of the specimen according to the embodiment is 100 cm, the frequency of the radiation interference wave for measuring the electric field strength is 1 GHz, and the radiation interference wave is vertically polarized.
  • FIG. 10 shows the reflection coefficient of the floor surface when the height dimension of the specimen according to the embodiment is 20 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 1 GHz, and the radiated interfering wave is horizontally polarized.
  • FIG. 11 shows the reflection coefficient of the floor surface when the height dimension of the specimen according to the embodiment is 20 cm, the frequency of the radiation interference wave for measuring the electric field strength is 1 GHz, and the radiation interference wave is vertically polarized.
  • the determination function 201 calculates the deviation between the maximum value of the electric field in the first electric field distribution and the maximum value of the electric field in the second electromagnetic field distribution, and the deviation corresponds to a reflection coefficient equal to or less than a predetermined threshold value. , Judge that it is not necessary to consider the radiated interference wave reflected on the floor surface.
  • the determination function 201 calculates the deviation between the maximum value of the electric field in the first electric field distribution and the maximum value of the electric field in the second electric field distribution, and when the deviation corresponds to a reflection coefficient exceeding a predetermined threshold value, Judge that it is necessary to consider the radiated interference wave reflected on the floor surface. For example, the determination function 201 determines whether or not the reflection coefficient input by the user using the mouse, keyboard, or the like is equal to or less than the predetermined threshold value using the graph of FIG. 4 or the like obtained by simulation. To do.
  • FIG. 12 is a diagram showing an example of the relationship between the reflection coefficient of the floor surface according to the embodiment and the amount obtained by standardizing the frequency of the radiated interfering wave for measuring the electric field strength with the sampling frequency.
  • the horizontal axis shows the amount of the frequency f of the radiated interfering wave whose electric field strength is measured, which is normalized by the sampling frequency f max
  • the vertical axis shows ⁇ 20 * log 10 ⁇ .
  • FIG. 13 shows the reflection of the floor surface when the height dimension of the specimen according to the embodiment is 100 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 3.5 GHz, and the radiated interfering wave is horizontally polarized. It is a figure which shows the example of the relationship between the coefficient and the deviation between the maximum value of the first electric field distribution and the maximum value of the second electric field distribution.
  • FIG. 14 shows the reflection of the floor surface when the height dimension of the specimen according to the embodiment is 100 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 3.5 GHz, and the radiated interfering wave is vertically polarized. It is a figure which shows the example of the relationship between the coefficient and the deviation between the maximum value of the first electric field distribution and the maximum value of the second electric field distribution.
  • FIG. 15 shows reflection on the floor surface when the height dimension of the specimen according to the embodiment is 20 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 3.5 GHz, and the radiated interfering wave is horizontally polarized.
  • FIG. 16 shows the reflection of the floor surface when the height dimension of the specimen according to the embodiment is 20 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 3.5 GHz, and the radiated interfering wave is vertically polarized. It is a figure which shows the example of the relationship between the coefficient and the deviation between the maximum value of the first electric field distribution and the maximum value of the second electric field distribution.
  • the reflectance coefficient of the floor surface calculated from the above equation (25) is 0.0316 or less.
  • the reflectance coefficient of the floor surface is about 0.06 or less, the deviation converges to 0.2 dB or less regardless of the shortest distance from the floor surface to the specimen 100.
  • the reflectance coefficient of the floor surface is about 0.06 or less, the deviation converges to 0.6 dB or less regardless of the shortest distance from the floor surface to the specimen 100. Therefore, it can be said that the above-mentioned equation (25) is sufficiently reliable.
  • the determination function 201 is reflected on the floor surface when the sampling frequency calculated from the reflection coefficient of the floor surface, the frequency of the radiation interference wave and the maximum frequency of the radiation interference wave satisfies the above-mentioned equation (25). Judge that it is not necessary to consider the radiated interference wave.
  • the determination function 201 is reflected on the floor surface when the sampling frequency calculated from the reflection coefficient of the floor surface, the frequency of the radiated interfering wave and the maximum frequency of the radiated interfering wave does not satisfy the above-mentioned equation (25). Judge that it is necessary to consider the radiated interference wave.
  • the reflectance coefficient of the floor surface is sufficiently small, it is not necessary to consider the radiation interference wave reflected on the floor surface. Further, as described above, when the frequency of the radiated interfering wave reflected on the floor surface is equal to the sampling frequency, the reflection coefficient of the floor surface is preferably 0.01 or less. Further, the following equation (26) obtained by converting the above equation (25) into the absorption characteristics of the radiated interfering waves on the floor surface may be used.
  • the absorption characteristic of the radiated interference wave on the floor surface must be 40 dB or more. It turns out that there is.
  • the absorption characteristic of the radiated interference wave on the floor surface is calculated by substituting the frequency and the sampling frequency into the above equation (25). It turns out that more than the value is required.
  • the radio wave absorber satisfying such conditions include the radio wave absorber 14 described above. By laying these on the floor surface, the above-mentioned equation (26) is satisfied.
  • the determination function 201 needs to consider the radiated interfering wave reflected on the floor surface. Judge that there is no. Alternatively, the determination function needs to consider the radiated interfering wave reflected by the floor surface when the absorption characteristic of the floor surface with respect to the frequency of the radiated interfering wave at which the measurement of the electric field is performed does not satisfy the above equation (26). Judge that there is.
  • ⁇ min is a wavelength corresponding to the minimum value of the frequency of the radiated interfering wave for measuring the electric field strength.
  • ⁇ max is a wavelength corresponding to the sampling frequency, which is the maximum value of the frequency of the radiated interfering wave for measuring the electric field strength.
  • the determination function 201 reflects on the floor surface when a radio wave absorber having a height of 0.45 ⁇ min or 2.8 ⁇ max with respect to the floor surface, whichever is larger than the larger value, is laid on the floor surface. It is determined that it is not necessary to consider the radiation interference wave to be generated.
  • the determination function 201 when a radio wave absorber whose height with respect to the floor surface is less than the larger value of 0.45 ⁇ min and 2.8 ⁇ max is laid on the floor surface, or the radio wave absorber is installed. If it is not laid, it is judged that it is necessary to consider the radio wave interference reflected on the floor surface.
  • FIG. 17 is a diagram showing a part of an example of the electric field strength distribution before interpolation according to the embodiment.
  • the radiation interference wave measuring device 1 measures the electric field strength of the radiation interference wave at the height of the antenna 11 sequentially calculated based on the correction coefficient K hmax calculated by using the above equation (20) or equation (23). Then, for example, the electric field strength before interpolation shown in FIG. 17 is acquired.
  • the white circles in FIG. 17 indicate the electric field strength measured at this interval.
  • the black circle in FIG. 17 indicates the interpolated zero.
  • FIG. 18 is a diagram showing a part of an example of the electric field strength distribution after interpolation according to the embodiment.
  • the radiated interfering wave measuring device 1 applies the low-pass filter having a cutoff frequency equal to the frequency of the radiated interfering wave on which the measurement of the electric field is performed to the pre-interpolation electric field strength shown in FIG. Generates after-field strength.
  • the white circles in FIG. 18 show the same electric field strength as the white circles in FIG.
  • the black circles in FIG. 18 indicate the electric field strength reproduced by applying the low-pass filter and interpolating.
  • the receiving unit 30 is, for example, a superheterodyne type spectrum analyzer and an FFT type spectrum analyzer.
  • the receiving unit 30 executes a measurement process for measuring the electric field strength in a predetermined frequency band at a measurement point located on a surface surrounding the specimen 100. Then, the receiving unit 30 measures the electric field strength for a certain period of time at the measurement point where the maximum electric field strength is measured.
  • FIG. 19 is a diagram showing an example of the hardware configuration of the control unit according to the embodiment.
  • the control unit 20 includes a main control unit 210, an input device 220, an output device 230, a storage device 240, and a bus 250.
  • the main control unit 210 includes a CPU (Central Processing Unit) and a RAM (Random Access Memory), controls data transmission / reception between the input device 220, the output device 230, and the storage device 240, and controls the transmission / reception of data between the output device 230 and the output device 230. Controls the operation of the storage device 240.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • the input device 220 is a device used for inputting data necessary for operating the radiation interference wave measuring device 1, for example, a keyboard, a mouse, and a touch panel.
  • the output device 230 is a device used for outputting information related to the operation of the radiated interference wave measuring device 1, for example, a display.
  • the storage device 240 is a device used for storing data, for example, a hard disk device or an optical disk device. Further, the storage device 240 includes a storage medium 245, stores data in the storage medium 245, and reads data from the storage medium 245.
  • the storage medium 245 is a storage medium used for storing data, for example, a hard disk or an optical disk. Further, the storage medium 245 stores programs that realize each of the determination function 201, the correction coefficient calculation function 202, the measurement height calculation function 203, the first electromagnetic field distribution acquisition function 204, and the second electromagnetic field distribution acquisition function 205. There is. In this case, the main control unit 210 realizes the functions of the determination function 201, the correction coefficient calculation function 202, and the measurement height calculation function 203 by reading and executing these programs.
  • the bus 250 connects the main control unit 210, the input device 220, the output device 230, and the storage device 240 so as to be able to communicate with each other.
  • FIG. 20 is a flowchart showing an example of processing executed by the radiation interference wave measuring device according to the embodiment.
  • the radiation interference wave measuring device 1 accepts the input of the measurement conditions.
  • the measurement conditions referred to here are, for example, the frequency band of the radiation interference wave for measuring the electric field strength, the measurement range in the height direction with respect to the ground plane, the distance between the measurement points in the height direction, the measurement range in the angular direction, and the angle.
  • step S20 the correction coefficient calculation function 202 selects the formula used for calculating the correction coefficient. Details of step S20 will be described later.
  • step S30 the measurement height calculation function 203 calculates the height of the antenna for measuring the electric field using the correction coefficient calculated using the formula selected in step S20.
  • step S40 the controller 15 changes the height of the antenna 11 to a height at which the electric field strength of the measurement point arranged at the lowest height can be measured, and the measurement point arranged at the position having the smallest angle.
  • the turntable 13 is rotated to an angle at which the electric field strength of the above can be measured.
  • step S50 the radiation interference wave measuring device 1 measures the electric field strength in a predetermined frequency band at each measurement point while rotating the turntable 13 while maintaining the height of the antenna 11 with respect to the specimen 100. Execute.
  • step S60 the radiated jamming wave measuring device 1 determines whether or not the current turntable angle is the upper limit.
  • the process proceeds to step S70, and when it is determined that the current turntable angle is not the upper limit (step S60: YES).
  • Step S60: NO the process is returned to step S50.
  • step S70 the controller 15 raises the height of the antenna 11.
  • step S80 the radiation interference wave measuring device 1 determines whether or not the current height of the antenna is the upper limit.
  • step S80: YES the process proceeds to step S90, and when it is determined that the height of the current antenna is not the upper limit (step S80: YES).
  • step S80: NO the process is returned to step S50.
  • step S90 the radiation interference wave measuring device 1 interpolates zero in the electric field strength between the measuring points.
  • step S100 the radiation interference wave measuring device 1 applies a low-pass filter having a cutoff frequency calculated in step S90 to the pre-interference electric field intensity distribution with zeros inserted in step S90 to generate a post-interference electric field intensity distribution.
  • step S110 the radiation interference wave measuring device 1 acquires data indicating the height of the antenna and the angle of the turntable, which are the maximum electric field strengths in the post-interpolated electric field strength distribution generated in step S100.
  • FIG. 21 is a flowchart showing an example of a process in which the radiation interference wave measuring device according to the embodiment selects an expression for calculating a correction coefficient.
  • step S210 the correction coefficient calculation function 202 determines whether or not the radiation interference wave measuring device determines the formula used for calculating the correction coefficient.
  • step S210: YES the process proceeds to step S220, and the formula used for calculating the correction coefficient is used. If it is determined that the radiation interference wave measuring device does not determine (step S210: NO), the process proceeds to step S240.
  • step S220 the correction coefficient calculation function 202 determines whether or not it is necessary to consider the radiated interference wave reflected on the floor surface.
  • step S220: YES the process proceeds to step S240, and the radiation interference wave reflected on the floor surface is removed.
  • step S230 the correction coefficient calculation function 202 executes the determination based on the determination of any of the above.
  • step S230 the correction coefficient calculation function 202 selects the above-mentioned equation (20).
  • step S240 the correction coefficient calculation function 202 selects the above-mentioned equation (23).
  • the radiation interference wave measuring device 1 has been described above.
  • the radiation interference wave measuring device 1 is based on the relative positional relationship between the specimen 100 including the radiation source that emits the radiation interference wave and the antenna 11 that performs the measurement of the electric field of the radiation interference wave, and the height of the antenna 11 is increased. It is provided with a correction coefficient calculation function 202 that calculates a correction coefficient whose interval satisfies the sampling theorem, and a measurement height calculation function 203 that sequentially calculates the height of the antenna when the measurement is performed using the correction coefficient. .. Therefore, the radiated interference wave measuring device 1 can narrow down the height of the antenna 11 that needs to measure the electric field, and can shorten the time required to carry out the radiated interference wave test.
  • the radiation interference wave measuring device 1 includes a computer that executes a determination function 201 that determines whether or not it is necessary to consider the radiation interference wave reflected on the floor surface. Therefore, the radiation interference wave measuring device 1 selects an appropriate formula according to whether or not it is necessary to measure the electric field in consideration of the radiation interference wave reflected on the floor surface, and calculates an accurate correction coefficient. , The above-mentioned effects can be achieved.
  • the radiated interference wave measuring device 1 may measure the magnetic field strength at the measurement point and apply the low-pass filter described above to the magnetic field strength distribution before interpolation to generate the magnetic field strength distribution after interpolation.
  • the radiation interference wave measuring device 1 measures not the electric field strength but the value corresponding to the content of the absolute value symbol of the equation on the right side of the first equal sign of the above equation (2), and measures the distribution of the value. Then, the above-mentioned low-pass filter may be applied to the distribution of the values for interpolation.
  • the correction coefficient calculation function 202 determines that it is necessary to consider the radiated interference wave reflected on the floor surface, instead of calculating the correction coefficient K hmax using the above equation (23), the correction coefficient calculation function 202 The calculation of the correction coefficient K hmax may be stopped. Further, in this case, the correction coefficient calculation function 202 may control the radiation interference wave measuring device 1 to notify that it is necessary to consider the radiation interference wave reflected on the floor surface.
  • correction coefficient calculation function 202 may calculate the correction coefficient using the equation (23) regardless of whether or not it is necessary to consider the radiated interference wave reflected on the floor surface.
  • the above-mentioned radiation interference wave may be emitted not from the specimen 100 but from a radiation source set assuming the radiation interference wave.
  • a program for realizing each function of the controller 15, the control unit 20, and the receiving unit 30 according to the above-described embodiment is recorded on a computer-readable recording medium, and the program recorded on the recording medium is recorded in the computer system. Processing may be performed by reading and executing. Further, in particular, this recording medium is for causing a computer to execute the determination function 201, the correction coefficient calculation function 202, the measurement height calculation function 203, the first electromagnetic field distribution acquisition function 204, and the second electromagnetic field distribution acquisition function 205.
  • the electromagnetic field distribution generation program may be stored.
  • the computer system referred to here may include hardware such as an operating system (OS) or peripheral devices.
  • the computer-readable recording medium includes, for example, a floppy disk, a photomagnetic disk, a ROM (Read Only Memory), a writable non-volatile memory such as a flash memory, and a portable medium such as a DVD (Digital Versatile Disc).
  • the above-mentioned program may be transmitted from a computer system in which this program is stored in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium.
  • the transmission medium for transmitting a program means a medium having a function of transmitting information, such as a network such as the Internet or a communication line such as a telephone line.
  • the above-mentioned program may be for realizing a part of the above-mentioned functions, and is a so-called difference program which can realize the above-mentioned functions in combination with a program already recorded in the computer system. There may be.
  • the above-mentioned program is read and executed by a processor such as a CPU (Central Processing Unit) provided in the computer, for example.
  • a processor such as a CPU (Central Processing Unit) provided in the computer, for example.
  • Electromagnetic field measuring device 11 ... Antenna, 12 ... Antenna mast, 13 ... Turntable, 14 ... Radio absorber, 15 ... Controller, 151 ... Height changing unit, 152 ... Direction changing unit, 20 ... Control unit, 201 ... Judgment function, 202 ... Correction coefficient calculation function, 203 ... Measurement height calculation function, 204 ... First electromagnetic field distribution acquisition function, 205 ... Second electromagnetic field distribution acquisition function, 210 ... Main controller, 220 ... Input device , 230 ... Output device, 240 ... Storage device, 245 ... Storage medium, 250 ... Bus, 30 ... Receiver, 100 ... Specimen, 200 ... Unit

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

This electromagnetic wave measurement point calculation program causes a computer to execute a correction coefficient calculation function for using the positional relationship between an object under test including a radiation source that emits radiation interference waves and an antenna for measuring at least one from among the electric field and magnetic field of the radiation interference waves to calculate a correction coefficient for making the height interval of the antenna satisfy the sampling theorem and a measurement height calculation function for using the correction coefficient to sequentially calculate the height of the antenna during the measurement.

Description

電磁波測定点算出プログラム及び放射妨害波測定装置Electromagnetic wave measurement point calculation program and radiation interference wave measurement device
 本発明は、電磁波測定点算出プログラム及び放射妨害波測定装置に関する。
 本願は、2019年03月27日に日本に出願された特願2019-060380号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an electromagnetic wave measurement point calculation program and a radiated interfering wave measuring device.
The present application claims priority based on Japanese Patent Application No. 2019-060380 filed in Japan on March 27, 2019, the contents of which are incorporated herein by reference.
 電子機器は、周囲の電子機器や通信機器に影響を及ぼす電磁波である放射妨害波を放射することがある。このため、現在では、電子機器が市場へ出荷される前に、放射妨害波の電界強度が国際的に定められた規格の許容値以下であることを確認する放射妨害波試験を行う必要がある。 Electronic devices may emit radiant interference waves, which are electromagnetic waves that affect surrounding electronic devices and communication devices. For this reason, it is now necessary to conduct a radiated jamming test to confirm that the electric field strength of the radiated jamming wave is below the permissible value of the internationally established standard before the electronic device is shipped to the market. ..
 放射妨害波試験では、放射妨害波の放射源を基準としたアンテナの高さ及び放射源を基準としたアンテナの方位を変化させながらアンテナにより電界強度を測定し、電界強度が最大となる位置を探索する。そして、電界強度が最大となる位置において、放射妨害波の電界強度が一定時間測定され、この電界強度の測定値が国際的に定められた規格の許容値以下であるか否かが確認される。 In the radiated interference wave test, the electric field strength is measured by the antenna while changing the height of the antenna based on the radiation source of the radiated interference wave and the orientation of the antenna based on the radiation source, and the position where the electric field strength is maximized is determined. Explore. Then, at the position where the electric field strength is maximum, the electric field strength of the radiated interfering wave is measured for a certain period of time, and it is confirmed whether or not the measured value of the electric field strength is equal to or less than the permissible value of the internationally established standard. ..
 このような放射妨害波試験を行うための装置として、例えば、特許文献1に記載された放射妨害波測定装置が挙げられる。 Examples of the device for performing such a radiated interference wave test include the radiated interference wave measuring device described in Patent Document 1.
特開2017-181104号公報JP-A-2017-181104
 電界強度が最大となる位置を探索するためには、アンテナの高さ及び供試体が載置されたターンテーブルの角度を逐一変更して電界分布を測定する必要がある。このため、放射妨害波試験では、膨大な数の測定点ごとに電界強度を測定する必要がある。例えば、情報通信機器の周波数帯域である30MHzから40GHzが測定対象の周波数の範囲である放射妨害波測定を一例として挙げると、アンテナの高さを1mから4mまで変化させ、供試体が載置されたターンテーブルの角度を0度から360度に変化させる必要がある。この場合、アンテナの高さを1cm間隔、ターンテーブルの角度を1度間隔として放射妨害波試験を実施する場合、測定点の数が約14万と膨大になり、放射妨害波試験の実施に必要な時間が非常に長くなってしまう。 In order to search for the position where the electric field strength is maximum, it is necessary to measure the electric field distribution by changing the height of the antenna and the angle of the turntable on which the specimen is placed one by one. Therefore, in the radiated interference wave test, it is necessary to measure the electric field strength at each of a huge number of measurement points. For example, taking radiated interfering wave measurement in which the frequency band of information and communication equipment, 30 MHz to 40 GHz, is the frequency range to be measured, the height of the antenna is changed from 1 m to 4 m, and the specimen is placed. It is necessary to change the angle of the turntable from 0 degrees to 360 degrees. In this case, when the radiation jamming test is performed with the antenna height at 1 cm intervals and the turntable angle at 1 degree intervals, the number of measurement points becomes enormous, about 140,000, which is necessary for conducting the radiation jamming test. Time will be very long.
 また、このような放射妨害波試験では、広い周波数帯域について最大電界強度位置を検出する必要があるため、広い周波数帯域のスペクトルを測定することができるスペクトルアナライザが使用される。このようなスペクトルアナライザとしては、例えば、スーパーヘテロダイン方式のスペクトルアナライザ、FFT(Fast Fourier Transform)方式のスペクトルアナライザが挙げられる。ところが、広い周波数帯域のスペクトルを測定することにより、放射妨害波試験の実施に必要な時間が更に長くなってしまう。 Further, in such a radiation interference test, since it is necessary to detect the maximum electric field strength position in a wide frequency band, a spectrum analyzer capable of measuring a spectrum in a wide frequency band is used. Examples of such a spectrum analyzer include a superheterodyne type spectrum analyzer and an FFT (Fast Fourier Transform) type spectrum analyzer. However, measuring the spectrum in a wide frequency band further increases the time required to carry out the radiated jamming test.
 このように、電界強度が最大となるアンテナの高さ及びターンテーブルの角度を探索する作業は、多大な時間を必要とする。このため、特許文献1に開示されている放射妨害波測定装置は、放射妨害波の波長の1/2以下の測定間隔で設定された測定点における放射妨害波の電界強度分布を測定し、これらの測定点の間における電界強度を補間することにより、測定点数を削減し、放射妨害波試験の実施に必要な時間を短縮している。 In this way, the work of searching for the height of the antenna and the angle of the turntable that maximizes the electric field strength requires a great deal of time. Therefore, the radiation interference wave measuring device disclosed in Patent Document 1 measures the electric field intensity distribution of the radiation interference wave at the measurement points set at the measurement interval of 1/2 or less of the wavelength of the radiation interference wave. By interpolating the electric field strength between the measurement points, the number of measurement points is reduced and the time required to carry out the radiated interference wave test is shortened.
 ところが、特許文献1に開示されている放射妨害波測定装置は、測定点の間隔の最適化を実行しないため、放射妨害波試験の実施に必要な時間を十分に短縮し得ないことがある。また、放射妨害波の周波数が高い場合、放射妨害波の波長が短くなる。このため、例えば、放射妨害波の周波数が10GHzであり、アンテナと供試体との水平方向の距離が3mであり、アンテナの高さを1mから4mまで変化させ、供試体が載置されたターンテーブルの角度を0度から360度に変化させて放射妨害波試験を実施する場合、測定点の数は、約25万と膨大になり、放射妨害波試験の実施に必要な時間が非常に長くなってしまう。 However, since the radiation interference wave measuring device disclosed in Patent Document 1 does not optimize the interval between measurement points, it may not be possible to sufficiently shorten the time required to carry out the radiation interference wave test. Further, when the frequency of the radiated interference wave is high, the wavelength of the radiated interference wave becomes short. Therefore, for example, the frequency of the radiated interfering wave is 10 GHz, the horizontal distance between the antenna and the specimen is 3 m, the height of the antenna is changed from 1 m to 4 m, and the turn on which the specimen is placed. When the radiated jamming test is performed by changing the table angle from 0 degrees to 360 degrees, the number of measurement points becomes enormous, about 250,000, and the time required to carry out the radiated jamming test is very long. turn into.
 そこで、本発明は、放射妨害波試験の実施に必要な時間を短縮することができる電磁波測定点算出プログラム及び放射妨害波測定装置を提供することを課題とする。 Therefore, it is an object of the present invention to provide an electromagnetic wave measurement point calculation program and a radiation interference wave measuring device capable of shortening the time required for carrying out the radiation interference wave test.
 本発明の一態様は、放射妨害波を放射する放射源を含む供試体と前記放射妨害波の電界及び磁界の少なくとも一方の測定を実行するアンテナとの相対的な位置関係及び前記供試体が載置されている床面における前記放射妨害波の反射係数に基づいて、前記アンテナの高さの間隔がサンプリング定理を満たす補正係数を算出する補正係数算出機能と、前記補正係数を使用して前記測定が実行される場合における前記アンテナの高さを順次算出する測定高さ算出機能と、をコンピュータに実行させる電磁波測定点算出プログラムである。 One aspect of the present invention includes a relative positional relationship between a specimen including a radiation source that emits a radiating interfering wave and an antenna that performs measurement of at least one of an electric field and a magnetic field of the radiating interfering wave, and the specimen. The measurement using the correction coefficient calculation function for calculating the correction coefficient in which the height interval of the antenna satisfies the sampling theorem based on the reflection coefficient of the radiated electromagnetic wave on the placed floor surface, and the correction coefficient. This is an electromagnetic wave measurement point calculation program that causes a computer to execute a measurement height calculation function that sequentially calculates the height of the antenna when the above is executed.
 また、本発明の一態様において、前記補正係数算出機能は、前記供試体と前記アンテナとの水平方向の最短距離、前記供試体と前記アンテナとの水平方向の最長距離、前記供試体が載置されている床面から前記供試体までの最短距離及び前記供試体が載置されている前記床面から前記供試体までの最長距離の少なくとも二つを使用して前記補正係数を算出する機能である。 Further, in one aspect of the present invention, the correction coefficient calculation function includes the shortest horizontal distance between the specimen and the antenna, the longest horizontal distance between the specimen and the antenna, and the specimen is placed. With the function of calculating the correction coefficient using at least two of the shortest distance from the floor surface to the specimen and the longest distance from the floor surface on which the specimen is placed to the specimen. is there.
 また、本発明の一態様において、前記補正係数算出機能は、次の式(1)又は式(2)と、式(3)とを使用して前記補正係数を算出し、前記測定高さ算出機能は、次の式(4)を使用して前記測定が実行される場合における前記アンテナの高さを順次算出する。 Further, in one aspect of the present invention, the correction coefficient calculation function calculates the correction coefficient using the following equation (1) or equation (2) and equation (3), and calculates the measurement height. The function sequentially calculates the height of the antenna when the measurement is performed using the following equation (4).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 Khmax:補正係数
 hrx  :アンテナの高さ
 dmin :供試体とアンテナとの水平方向の最短距離
 dmax :供試体とアンテナとの水平方向の最長距離
 hmin :供試体が載置されている床面から供試体までの最短距離
 hmax :供試体が載置されている床面から供試体までの最長距離
 Δhrx  :アンテナの高さの変化量
Figure JPOXMLDOC01-appb-M000011
K hmax : Correction coefficient h rx : Antenna height d min : Shortest horizontal distance between the specimen and the antenna d max : Longest horizontal distance between the specimen and the antenna h min : The specimen is placed The shortest distance from the floor surface to the specimen h max : The longest distance from the floor surface on which the specimen is placed to the specimen Δh rx : The amount of change in the height of the antenna
Figure JPOXMLDOC01-appb-M000012
 hrx_min:アンテナの高さの最小値
Figure JPOXMLDOC01-appb-M000012
h rx_min : Minimum value of antenna height
 また、本発明の一態様において、電磁波測定点算出プログラムは、前記床面で反射される前記放射妨害波を考慮する必要があるか否かを判定する判定機能をコンピュータに更に実行させ、前記補正係数算出機能は、前記床面で反射される前記放射妨害波を考慮する必要がないと判定された場合、前記式(1)を使用して前記補正係数を算出する。 Further, in one aspect of the present invention, the electromagnetic wave measurement point calculation program causes the computer to further execute a determination function for determining whether or not it is necessary to consider the radiation interference wave reflected on the floor surface, and the correction is performed. When it is determined that it is not necessary to consider the radiated electromagnetic wave reflected on the floor surface, the coefficient calculation function calculates the correction coefficient using the equation (1).
 また、本発明の一態様において、電磁波測定点算出プログラムは、前記床面で反射される前記放射妨害波を考慮する必要があるか否かを判定する判定機能をコンピュータに更に実行させ、前記補正係数算出機能は、前記床面で反射される前記放射妨害波を考慮する必要があると判定された場合、前記式(2)を使用して前記補正係数を算出し、又は前記補正係数の算出を中止する。 Further, in one aspect of the present invention, the electromagnetic wave measurement point calculation program causes the computer to further execute a determination function for determining whether or not it is necessary to consider the radiation interference wave reflected on the floor surface, and the correction is performed. When the coefficient calculation function determines that it is necessary to consider the radiated electromagnetic wave reflected on the floor surface, the coefficient calculation function calculates the correction coefficient using the equation (2), or calculates the correction coefficient. To cancel.
 また、本発明の一態様において、前記補正係数算出機能は、前記床面で反射される前記放射妨害波を考慮する必要があるか否かに関わらず、前記式(2)を使用して補正係数を算出する。 Further, in one aspect of the present invention, the correction coefficient calculation function is corrected by using the equation (2) regardless of whether or not it is necessary to consider the radiated interfering wave reflected on the floor surface. Calculate the coefficient.
 また、本発明の一態様において、電磁波測定点算出プログラムは、前記放射妨害波の電界及び磁界の少なくとも一方の分布であり、シミュレーション又は実測により得られた第一電磁界分布を取得する第一電磁界分布取得機能と、前記測定高さ算出機能により算出された前記アンテナの高さにおける電界又は磁界をシミュレーション又は実測により取得し、ローパスフィルタを使用して前記測定高さ算出機能により算出された前記アンテナの高さと異なる前記アンテナの高さにおける電界又は磁界を補間することにより得られた第二電磁界分布を取得する第二電磁界分布取得機能と、をコンピュータに更に実行させ、前記判定機能は、前記第一電磁界分布における電界又は磁界の最大値と、前記第二電磁界分布における電界又は磁界の最大値との偏差を算出し、前記偏差が所定の許容値以下である場合、前記床面で反射される前記放射妨害波を考慮する必要がないと判定する機能である。 Further, in one aspect of the present invention, the electromagnetic wave measurement point calculation program is the distribution of at least one of the electric field and the magnetic field of the radiated interfering wave, and the first electromagnetic field that acquires the first electromagnetic field distribution obtained by simulation or actual measurement. The electric field or electromagnetic field at the height of the antenna calculated by the field distribution acquisition function and the measurement height calculation function is acquired by simulation or actual measurement, and is calculated by the measurement height calculation function using a low-pass filter. The second electromagnetic field distribution acquisition function for acquiring the second electromagnetic field distribution obtained by interpolating the electric field or the magnetic field at the height of the antenna different from the height of the antenna is further executed by the computer, and the determination function is performed. , The deviation between the maximum value of the electric field or the magnetic field in the first electromagnetic field distribution and the maximum value of the electric field or the magnetic field in the second electromagnetic field distribution is calculated, and when the deviation is equal to or less than a predetermined allowable value, the floor. This is a function for determining that it is not necessary to consider the electromagnetic interference wave reflected by the surface.
 また、本発明の一態様において、電磁波測定点算出プログラムは、前記放射妨害波の電界及び磁界の少なくとも一方の分布であり、シミュレーション又は実測により得られた第一電磁界分布を取得する第一電磁界分布取得機能と、前記測定高さ算出機能により算出された前記アンテナの高さにおける電界又は磁界をシミュレーション又は実測により取得し、ローパスフィルタを使用して前記測定高さ算出機能により算出された前記アンテナの高さと異なる前記アンテナの高さにおける電界又は磁界を補間することにより得られた第二電磁界分布を取得する第二電磁界分布取得機能と、をコンピュータに更に実行させ、前記判定機能は、前記第一電磁界分布における電界又は磁界の最大値と、前記第二電磁界分布における電界又は磁界の最大値との偏差を算出し、前記偏差が所定の許容値を超えている場合、前記床面で反射される前記放射妨害波を考慮する必要があると判定する機能である。 Further, in one aspect of the present invention, the electromagnetic wave measurement point calculation program is the distribution of at least one of the electric field and the magnetic field of the radiated interfering wave, and the first electromagnetic field that acquires the first electromagnetic field distribution obtained by simulation or actual measurement. The electric field or electromagnetic field at the height of the antenna calculated by the field distribution acquisition function and the measurement height calculation function is acquired by simulation or actual measurement, and is calculated by the measurement height calculation function using a low-pass filter. The second electromagnetic field distribution acquisition function for acquiring the second electromagnetic field distribution obtained by interpolating the electric field or the magnetic field at the height of the antenna different from the height of the antenna is further executed by the computer, and the determination function is performed. , The deviation between the maximum value of the electric field or the magnetic field in the first electromagnetic field distribution and the maximum value of the electric field or the magnetic field in the second electromagnetic field distribution is calculated, and when the deviation exceeds a predetermined allowable value, the said This is a function for determining that it is necessary to consider the electromagnetic interference wave reflected on the floor surface.
 また、本発明の一態様において、電磁波測定点算出プログラムは、前記放射妨害波の電界及び磁界の少なくとも一方の分布であり、シミュレーション又は実測により得られた第一電磁界分布を取得する第一電磁界分布取得機能と、前記測定高さ算出機能により算出された前記アンテナの高さにおける電界又は磁界をシミュレーション又は実測により取得し、ローパスフィルタを使用して前記測定高さ算出機能により算出された前記アンテナの高さと異なる前記アンテナの高さにおける電界又は磁界を補間することにより得られた第二電磁界分布を取得する第二電磁界分布取得機能と、をコンピュータに更に実行させ、前記判定機能は、前記第一電磁界分布における電界又は磁界の最大値と、前記第二電磁界分布における電界又は磁界の最大値との偏差を算出し、前記偏差が所定の閾値以下の前記反射係数に対応している場合、前記床面で反射される前記放射妨害波を考慮する必要がないと判定する機能である。 Further, in one aspect of the present invention, the electromagnetic wave measurement point calculation program is the distribution of at least one of the electric field and the magnetic field of the radiated interfering wave, and the first electromagnetic field that acquires the first electromagnetic field distribution obtained by simulation or actual measurement. The electric field or electromagnetic field at the height of the antenna calculated by the field distribution acquisition function and the measurement height calculation function is acquired by simulation or actual measurement, and is calculated by the measurement height calculation function using a low-pass filter. The second electromagnetic field distribution acquisition function for acquiring the second electromagnetic field distribution obtained by interpolating the electric field or the magnetic field at the height of the antenna different from the height of the antenna is further executed by the computer, and the determination function is performed. , The deviation between the maximum value of the electric field or the magnetic field in the first electromagnetic field distribution and the maximum value of the electric field or the magnetic field in the second electromagnetic field distribution is calculated, and the deviation corresponds to the reflection coefficient which is equal to or less than a predetermined threshold value. If this is the case, it is a function of determining that it is not necessary to consider the electromagnetic interference wave reflected on the floor surface.
 また、本発明の一態様において、電磁波測定点算出プログラムは、前記放射妨害波の電界及び磁界の少なくとも一方の分布であり、シミュレーション又は実測により得られた第一電磁界分布を取得する第一電磁界分布取得機能と、前記測定高さ算出機能により算出された前記アンテナの高さにおける電界又は磁界をシミュレーション又は実測により取得し、ローパスフィルタを使用して前記測定高さ算出機能により算出された前記アンテナの高さと異なる前記アンテナの高さにおける電界又は磁界を補間することにより得られた第二電磁界分布を取得する第二電磁界分布取得機能と、をコンピュータに更に実行させ、前記判定機能は、前記第一電磁界分布における電界又は磁界の最大値と、前記第二電磁界分布における電界又は磁界の最大値との偏差を算出し、前記偏差が所定の閾値を超える前記反射係数に対応にしている場合、前記床面で反射される前記放射妨害波を考慮する必要があると判定する機能である。 Further, in one aspect of the present invention, the electromagnetic wave measurement point calculation program is the distribution of at least one of the electric field and the magnetic field of the radiated interfering wave, and the first electromagnetic field that acquires the first electromagnetic field distribution obtained by simulation or actual measurement. The electric field or electromagnetic field at the height of the antenna calculated by the field distribution acquisition function and the measurement height calculation function is acquired by simulation or actual measurement, and is calculated by the measurement height calculation function using a low-pass filter. The second electromagnetic field distribution acquisition function for acquiring the second electromagnetic field distribution obtained by interpolating the electric field or the magnetic field at the height of the antenna different from the height of the antenna is further executed by the computer, and the determination function is performed. , The deviation between the maximum value of the electric field or the magnetic field in the first electromagnetic field distribution and the maximum value of the electric field or the magnetic field in the second electromagnetic field distribution is calculated, and the deviation corresponds to the reflection coefficient exceeding a predetermined threshold value. If this is the case, it is a function of determining that it is necessary to consider the electromagnetic interference wave reflected on the floor surface.
 また、本発明の一態様において、前記判定機能は、前記反射係数、前記放射妨害波の周波数及び前記放射妨害波の最大の周波数から算出されるサンプリング周波数が次の式(5)を満たす場合、前記床面で反射される前記放射妨害波を考慮する必要がないと判定する機能である。 Further, in one aspect of the present invention, the determination function is performed when the sampling frequency calculated from the reflection coefficient, the frequency of the radiating interfering wave and the maximum frequency of the radiating interfering wave satisfies the following equation (5). This is a function for determining that it is not necessary to consider the radiated interfering wave reflected on the floor surface.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 また、本発明の一態様において、前記判定機能は、前記反射係数、前記放射妨害波の周波数及び前記放射妨害波の最大の周波数から算出されるサンプリング周波数が次の式(6)を満たさない場合、前記床面で反射される前記放射妨害波を考慮する必要があると判定する機能である。 Further, in one aspect of the present invention, in the determination function, when the sampling frequency calculated from the reflection coefficient, the frequency of the radiating interfering wave and the maximum frequency of the radiating interfering wave does not satisfy the following equation (6). , It is a function of determining that it is necessary to consider the radiated interfering wave reflected on the floor surface.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 また、本発明の一態様において、前記判定機能は、電界及び磁界の少なくとも一方の測定が実行される前記放射妨害波の周波数に対する前記床面の吸収特性が次の式(7)を満たす場合、前記前記床面で反射される前記放射妨害波を考慮する必要がないと判定する機能である。 Further, in one aspect of the present invention, the determination function is performed when the absorption characteristic of the floor surface with respect to the frequency of the radiated interfering wave at which at least one of the electric field and the magnetic field is measured satisfies the following equation (7). This is a function for determining that it is not necessary to consider the radiated interfering wave reflected on the floor surface.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 また、本発明の一態様において、前記判定機能は、電界及び磁界の少なくとも一方の測定が実行される前記放射妨害波の周波数に対する前記床面の吸収特性が次の式(8)を満たさない場合、前記前記床面で反射される前記放射妨害波を考慮する必要があると判定する機能である。 Further, in one aspect of the present invention, the determination function is when the absorption characteristic of the floor surface with respect to the frequency of the radiated interfering wave at which at least one of the electric field and the magnetic field is measured does not satisfy the following equation (8). This is a function for determining that it is necessary to consider the radiated interfering wave reflected on the floor surface.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 また、本発明の一態様において、前記判定機能は、前記判定機能は、前記床面を基準とした高さが0.45λmin及び2.8λmaxのうち大きい方の値以上の電波吸収体が前記床面に敷設されている場合、前記前記床面で反射される前記放射妨害波を考慮する必要がないと判定する機能である。 Further, in one aspect of the present invention, the determination function includes a radio wave absorber having a height of 0.45λ min or 2.8λ max with respect to the floor surface, whichever is larger than the larger value. When it is laid on the floor surface, it is a function of determining that it is not necessary to consider the radiation interference wave reflected on the floor surface.
 また、本発明の一態様において、前記判定機能は、前記床面を基準とした高さが0.45λmin及び2.8λmaxのうち大きい方の値未満の電波吸収体が前記床面に敷設されている場合又は電波吸収体が敷設されていない場合、前記前記床面で反射される前記放射妨害波を考慮する必要があるいと判定する機能である。 Further, in one aspect of the present invention, in the determination function, a radio wave absorber having a height of 0.45 λ min and 2.8 λ max , which is less than the larger value with respect to the floor surface, is laid on the floor surface. This is a function for determining that it is necessary to consider the radiated interfering wave reflected on the floor surface when the radio wave absorber is installed or the radio wave absorber is not laid.
 また、本発明の一態様において、放射妨害波測定装置は、上述した電磁波測定点算出プログラムのいずれか一つを実行するコンピュータを備える。 Further, in one aspect of the present invention, the radiation interference wave measuring device includes a computer that executes any one of the above-mentioned electromagnetic wave measuring point calculation programs.
 本発明によれば、放射妨害波試験の実施に必要な時間を短縮することができる。 According to the present invention, the time required to carry out the radiated interfering wave test can be shortened.
実施形態に係る放射妨害波測定装置の構成の例を示す図である。It is a figure which shows the example of the structure of the radiated interference wave measuring apparatus which concerns on embodiment. 実施形態に係る供試体を囲む面上に位置する測定点の例を示す図である。It is a figure which shows the example of the measurement point located on the surface which surrounds the specimen which concerns on embodiment. 実施形態に係る供試体の高さ方向の寸法が100cm、床面から供試体までの最短距離が10cmである場合におけるシミュレーションにより再現された第一電界分布及び当該第一電界強度分布にローパスフィルタを適用して補間することにより取得された第二電界分布の例を示す図である。A low-pass filter is applied to the first electric field distribution and the first electric field strength distribution reproduced by simulation when the height dimension of the specimen according to the embodiment is 100 cm and the shortest distance from the floor surface to the specimen is 10 cm. It is a figure which shows the example of the 2nd electric field distribution obtained by applying and interpolating. 実施形態に係る供試体の高さ方向の寸法が100cm、電界強度を測定する放射妨害波の周波数が6GHz、当該放射妨害波が水平偏波である場合における床面の反射係数と、第一電界分布の最大値と第二電界分布の最大値との偏差との関係の例を示す図である。The height dimension of the specimen according to the embodiment is 100 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 6 GHz, the reflection coefficient of the floor surface when the radiated interfering wave is horizontally polarized, and the first electric field. It is a figure which shows the example of the relationship between the maximum value of a distribution, and the deviation of the maximum value of a second electric field distribution. 実施形態に係る供試体の高さ方向の寸法が100cm、電界強度を測定する放射妨害波の周波数が6GHz、当該放射妨害波が垂直偏波である場合における床面の反射係数と、第一電界分布の最大値と第二電界分布の最大値との偏差との関係の例を示す図である。The height dimension of the specimen according to the embodiment is 100 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 6 GHz, the reflection coefficient of the floor surface when the radiated interfering wave is vertically polarized, and the first electric field. It is a figure which shows the example of the relationship between the maximum value of a distribution, and the deviation of the maximum value of a second electric field distribution. 実施形態に係る供試体の高さ方向の寸法が20cm、電界強度を測定する放射妨害波の周波数が6GHz、当該放射妨害波が水平偏波である場合における床面の反射係数と、第一電界分布の最大値と第二電界分布の最大値との偏差との関係の例を示す図である。The height dimension of the specimen according to the embodiment is 20 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 6 GHz, the reflection coefficient of the floor surface when the radiated interfering wave is horizontally polarized, and the first electric field. It is a figure which shows the example of the relationship between the maximum value of a distribution, and the deviation of the maximum value of a second electric field distribution. 実施形態に係る供試体の高さ方向の寸法が20cm、電界強度を測定する放射妨害波の周波数が6GHz、当該放射妨害波が垂直偏波である場合における床面の反射係数と、第一電界分布の最大値と第二電界分布の最大値との偏差との関係の例を示す図である。The height dimension of the specimen according to the embodiment is 20 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 6 GHz, the reflection coefficient of the floor surface when the radiated interfering wave is vertically polarized, and the first electric field. It is a figure which shows the example of the relationship between the maximum value of a distribution, and the deviation of the maximum value of a second electric field distribution. 実施形態に係る供試体の高さ方向の寸法が100cm、電界強度を測定する放射妨害波の周波数が1GHz、当該放射妨害波が水平偏波である場合における床面の反射係数と、第一電界分布の最大値と第二電界分布の最大値との偏差との関係の例を示す図である。The height dimension of the specimen according to the embodiment is 100 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 1 GHz, the reflection coefficient of the floor surface when the radiated interfering wave is horizontally polarized, and the first electric field. It is a figure which shows the example of the relationship between the maximum value of a distribution, and the deviation of the maximum value of a second electric field distribution. 実施形態に係る供試体の高さ方向の寸法が100cm、電界強度を測定する放射妨害波の周波数が1GHz、当該放射妨害波が垂直偏波である場合における床面の反射係数と、第一電界分布の最大値と第二電界分布の最大値との偏差との関係の例を示す図である。The height dimension of the specimen according to the embodiment is 100 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 1 GHz, the reflection coefficient of the floor surface when the radiated interfering wave is vertically polarized, and the first electric field. It is a figure which shows the example of the relationship between the maximum value of a distribution, and the deviation of the maximum value of a second electric field distribution. 実施形態に係る供試体の高さ方向の寸法が20cm、電界強度を測定する放射妨害波の周波数が1GHz、当該放射妨害波が水平偏波である場合における床面の反射係数と、第一電界分布の最大値と第二電界分布の最大値との偏差との関係の例を示す図である。The height dimension of the specimen according to the embodiment is 20 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 1 GHz, the reflection coefficient of the floor surface when the radiated interfering wave is horizontally polarized, and the first electric field. It is a figure which shows the example of the relationship between the maximum value of a distribution, and the deviation of the maximum value of a second electric field distribution. 実施形態に係る供試体の高さ方向の寸法が20cm、電界強度を測定する放射妨害波の周波数が1GHz、当該放射妨害波が垂直偏波である場合における床面の反射係数と、第一電界分布の最大値と第二電界分布の最大値との偏差との関係の例を示す図である。The height dimension of the specimen according to the embodiment is 20 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 1 GHz, the reflection coefficient of the floor surface when the radiated interfering wave is vertically polarized, and the first electric field. It is a figure which shows the example of the relationship between the maximum value of a distribution, and the deviation of the maximum value of a second electric field distribution. 実施形態に係る床面の反射係数と、電界強度を測定する放射妨害波の周波数をサンプリング周波数で規格化して得られる量との関係の例を示す図である。It is a figure which shows the example of the relationship between the reflection coefficient of the floor surface which concerns on embodiment, and the quantity obtained by standardizing the frequency of the radiation interference wave for measuring the electric field strength with a sampling frequency. 実施形態に係る供試体の高さ方向の寸法が100cm、電界強度を測定する放射妨害波の周波数が3.5GHz、当該放射妨害波が水平偏波である場合における床面の反射係数と、第一電界分布の最大値と第二電界分布の最大値との偏差との関係の例を示す図である。The height dimension of the specimen according to the embodiment is 100 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 3.5 GHz, the reflection coefficient of the floor surface when the radiated interfering wave is horizontally polarized, and the first It is a figure which shows the example of the relationship between the maximum value of one electric field distribution and the maximum value of a second electric field distribution. 実施形態に係る供試体の高さ方向の寸法が100cm、電界強度を測定する放射妨害波の周波数が3.5GHz、当該放射妨害波が垂直偏波である場合における床面の反射係数と、第一電界分布の最大値と第二電界分布の最大値との偏差との関係の例を示す図である。The height dimension of the specimen according to the embodiment is 100 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 3.5 GHz, the reflection coefficient of the floor surface when the radiated interfering wave is vertically polarized, and the first It is a figure which shows the example of the relationship between the maximum value of one electric field distribution and the maximum value of a second electric field distribution. 実施形態に係る供試体の高さ方向の寸法が20cm、電界強度を測定する放射妨害波の周波数が3.5GHz、当該放射妨害波が水平偏波である場合における床面の反射係数と、第一電界分布の最大値と第二電界分布の最大値との偏差との関係の例を示す図である。The height dimension of the specimen according to the embodiment is 20 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 3.5 GHz, the reflection coefficient of the floor surface when the radiated interfering wave is horizontally polarized, and the first It is a figure which shows the example of the relationship between the maximum value of one electric field distribution and the maximum value of a second electric field distribution. 実施形態に係る供試体の高さ方向の寸法が20cm、電界強度を測定する放射妨害波の周波数が3.5GHz、当該放射妨害波が垂直偏波である場合における床面の反射係数と、第一電界分布の最大値と第二電界分布の最大値との偏差との関係の例を示す図である。The height dimension of the specimen according to the embodiment is 20 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 3.5 GHz, the reflection coefficient of the floor surface when the radiated interfering wave is vertically polarized, and the first It is a figure which shows the example of the relationship between the maximum value of one electric field distribution and the maximum value of a second electric field distribution. 実施形態に係る補間前電界強度分布の一部の例を示す図である。It is a figure which shows a part example of the electric field strength distribution before interpolation which concerns on embodiment. 実施形態に係る補間後電界強度分布の一部の例を示す図である。It is a figure which shows a part example of the electric field strength distribution after interpolation which concerns on embodiment. 実施形態に係る制御部のハードウエア構成の例を示す図である。It is a figure which shows the example of the hardware composition of the control part which concerns on embodiment. 実施形態に係る放射妨害波測定装置が実行する処理の例を示すフローチャートである。It is a flowchart which shows the example of the process executed by the radiation interference wave measuring apparatus which concerns on embodiment. 実施形態に係る放射妨害波測定装置が補正係数を算出する式を選択する処理の例を示すフローチャートである。It is a flowchart which shows the example of the process which selects the formula which calculates the correction coefficient by the radiation interference wave measuring apparatus which concerns on embodiment.
 [実施形態]
 図1から図21を参照しながら、実施形態に係る放射妨害波測定装置について説明する。図1は、実施形態に係る放射妨害波測定装置の構成の例を示す図である。
[Embodiment]
The radiation interference wave measuring device according to the embodiment will be described with reference to FIGS. 1 to 21. FIG. 1 is a diagram showing an example of a configuration of a radiation interference wave measuring device according to an embodiment.
 図1に示した放射妨害波測定装置1は、例えば、EMC規格に従って、供試体である供試体100から放射される放射妨害波を測定する放射妨害波試験に利用される装置である。この放射妨害波試験は、試験条件及び試験方法が国際的に定められている。放射妨害波測定装置1は、グランドプレーンを形成している金属床面を備える電波暗室内に配置される。電波暗室の内壁のうち金属床面を除いた壁面には、電波吸収体が貼り付けられている。また、供試体100は、例えば、電子機器であり、放射妨害波を放射する放射源を含んでいる。 The radiation jamming wave measuring device 1 shown in FIG. 1 is, for example, a device used for a radiation jamming wave test for measuring a radiation jamming wave emitted from a specimen 100, which is a specimen, in accordance with an EMC standard. The test conditions and test methods for this radiated disturbance test are internationally defined. The radiation interference wave measuring device 1 is arranged in an anechoic chamber provided with a metal floor surface forming a ground plane. A radio wave absorber is attached to the inner wall of the anechoic chamber excluding the metal floor. Further, the specimen 100 is, for example, an electronic device, and includes a radiation source that emits a radiating interfering wave.
 図1に示すように、放射妨害波測定装置1は、アンテナ11と、アンテナマスト12と、ターンテーブル13と、電波吸収体14と、コントローラ15と、制御部20と、受信部30とを備える。 As shown in FIG. 1, the radiation interference wave measuring device 1 includes an antenna 11, an antenna mast 12, a turntable 13, a radio wave absorber 14, a controller 15, a control unit 20, and a receiving unit 30. ..
 アンテナ11は、供試体100を囲む面上に位置する測定点における所定の周波数帯域の放射妨害波を受信する。図2は、実施形態に係る供試体を囲む面上に位置する測定点の例を示す図である。この面は、例えば、中心軸がグランドプレーンに垂直であり、内部に供試体100及び台200を含む円筒の側面である。図2に白丸で示されているように、各測定点は、当該円筒の底面の円の円周方向に沿っている第一軸及び当該円筒の中心軸に平行な軸である第二軸により規定される二次元直交座標上に配置されている。第一軸は、供試体100を基準とした各測定点の高さを示している。第二軸は、供試体100を基準とした各測定点の角度を示している。また、図2に示した測定点は、第一軸に平行な方向及び第二軸に平行な方向において等間隔に配置されている。ただし、図2に示した測定点は、第一軸に平行な方向及び第二軸に平行な方向の少なくとも一方において任意の間隔で配置されていてもよい。 The antenna 11 receives the radiated interfering wave in a predetermined frequency band at the measurement point located on the surface surrounding the specimen 100. FIG. 2 is a diagram showing an example of measurement points located on a surface surrounding the specimen according to the embodiment. This surface is, for example, the side surface of a cylinder whose central axis is perpendicular to the ground plane and which contains the specimen 100 and the base 200 inside. As shown by white circles in FIG. 2, each measurement point is formed by a first axis along the circumferential direction of the circle on the bottom surface of the cylinder and a second axis parallel to the central axis of the cylinder. It is arranged on the specified two-dimensional Cartesian coordinates. The first axis shows the height of each measurement point with respect to the specimen 100. The second axis shows the angle of each measurement point with respect to the specimen 100. Further, the measurement points shown in FIG. 2 are arranged at equal intervals in a direction parallel to the first axis and a direction parallel to the second axis. However, the measurement points shown in FIG. 2 may be arranged at arbitrary intervals in at least one of the direction parallel to the first axis and the direction parallel to the second axis.
 アンテナマスト12は、アンテナ11を昇降可能な形態で支持しており、供試体100から所定の間隔をおいて配置される。ターンテーブル13は、グランドプレーンに設けられた円盤状の回転台であり、グランドプレーンに垂直な軸を中心として回転することができる。供試体100は、ターンテーブル13に載置された台200の上に載置される。電波吸収体14は、グランドプレーンに敷設された角錐状の構造物であり、放射妨害波を吸収する材料、例えば、発泡材により作製されている。 The antenna mast 12 supports the antenna 11 in a form that allows it to be raised and lowered, and is arranged at a predetermined distance from the specimen 100. The turntable 13 is a disk-shaped turntable provided on the ground plane, and can rotate about an axis perpendicular to the ground plane. The specimen 100 is placed on a table 200 placed on the turntable 13. The radio wave absorber 14 is a pyramidal structure laid on the ground plane, and is made of a material that absorbs radiated interfering waves, for example, a foam material.
 コントローラ15は、高さ変更部151と、方位変更部152とを備える。高さ変更部151は、供試体100が放射する放射妨害波を受信するアンテナ11の供試体100を基準とした高さを変更する高さ変更処理を実行する。具体的には、高さ変更部151は、アンテナマスト12を駆動してアンテナ11を昇降させ、アンテナ11を所定の高さに固定する。方位変更部152は、供試体100を基準としたアンテナ11の方位を変更する方位変更処理を実行する。具体的には、方位変更部152は、高さ変更部151によりアンテナ11が所定の高さに固定された後、ターンテーブル13を駆動して供試体100及び台200を360度回転させる。 The controller 15 includes a height changing unit 151 and an azimuth changing unit 152. The height changing unit 151 executes a height changing process for changing the height of the antenna 11 that receives the radiation interference wave radiated by the specimen 100 with respect to the specimen 100. Specifically, the height changing unit 151 drives the antenna mast 12 to raise and lower the antenna 11 to fix the antenna 11 at a predetermined height. The azimuth changing unit 152 executes an azimuth changing process for changing the azimuth of the antenna 11 with reference to the specimen 100. Specifically, the orientation changing unit 152 drives the turntable 13 to rotate the specimen 100 and the table 200 by 360 degrees after the antenna 11 is fixed to a predetermined height by the height changing unit 151.
 制御部20は、判定機能201と、補正係数算出機能202と、測定高さ算出機能203と、第一電磁界分布取得機能204と、第二電磁界分布取得機能205とを備える。 The control unit 20 includes a determination function 201, a correction coefficient calculation function 202, a measurement height calculation function 203, a first electromagnetic field distribution acquisition function 204, and a second electromagnetic field distribution acquisition function 205.
 判定機能201は、床面で反射される放射妨害波を考慮する必要があるか否かを判定する機能である。判定機能201が床面で反射される放射妨害波を考慮する必要がないと判定する場合の具体例及び床面で反射される放射妨害波を考慮する必要があると判定する場合の具体例については後述する。 The determination function 201 is a function for determining whether or not it is necessary to consider the radiated interference wave reflected on the floor surface. About a specific example when the determination function 201 determines that it is not necessary to consider the radiated interference wave reflected on the floor surface and a specific example when it is determined that it is necessary to consider the radiated interference wave reflected on the floor surface. Will be described later.
 補正係数算出機能202は、放射妨害波を放射する放射源を含む供試体100と放射妨害波の電界強度の測定を実行するアンテナ11との相対的な位置関係及び供試体100が載置されている床面における放射妨害波の反射係数に基づいて、アンテナ11の高さの間隔がサンプリング定理を満たす補正係数を算出する機能である。具体的には、補正係数算出機能202は、供試体100とアンテナ11との相対的な位置関係として、供試体100とアンテナ11との水平方向の最短距離、供試体100とアンテナ11との水平方向の最長距離、供試体100が載置されている床面から供試体100までの最短距離及び供試体100が載置されている床面から供試体100までの最長距離の少なくとも二つを使用する。例えば、補正係数算出機能202は、以下に説明する原理に基づいて補正係数を算出する。 In the correction coefficient calculation function 202, the relative positional relationship between the specimen 100 including the radiation source that emits the radiated interfering wave and the antenna 11 that executes the measurement of the electric field strength of the radiated interfering wave and the specimen 100 are placed. This is a function of calculating a correction coefficient in which the height interval of the antenna 11 satisfies the sampling theorem based on the reflection coefficient of the radiated interfering wave on the floor surface. Specifically, the correction coefficient calculation function 202 sets the relative positional relationship between the specimen 100 and the antenna 11, the shortest distance in the horizontal direction between the specimen 100 and the antenna 11, and the horizontal between the specimen 100 and the antenna 11. Use at least two of the longest distance in the direction, the shortest distance from the floor on which the specimen 100 is placed to the specimen 100, and the longest distance from the floor on which the specimen 100 is placed to the specimen 100. To do. For example, the correction coefficient calculation function 202 calculates the correction coefficient based on the principle described below.
 任意の点における電界Eは、次の式(9)で表される。 The electric field E at an arbitrary point is expressed by the following equation (9).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 電界強度の二乗は、式(9)を考慮すると次の式(10)で表される。式(10)は、放射源を示す引数n、m、アンテナ11と放射源との距離r、r、係数a、a、b、b、波数k、供試体100の個数Nを含んでいる。また、式(10)は、電界強度がr-rに対して振動する正弦波の和となることを示している。 The square of the electric field strength is expressed by the following equation (10) in consideration of the equation (9). Equation (10), the distance r n argument n indicating the radiation source, m, and the antenna 11 and the radiation source, r m, coefficients a n, a m, b n , b m, wavenumber k, the number of specimen 100 Contains N. Further, Equation (10) shows that the electric field strength is the sum of a sine wave that oscillates with respect to r n -r m.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 また、波数kは、2πを測定周波数で除算したものである。このため、放射妨害波測定装置1は、サンプリング定理に基づいた次の式(11)の条件を満たす間隔で放射妨害波の電界強度を測定することにより、電界強度分布を完全に再現することができる。ここで、λは、放射妨害波測定装置1が電界強度を測定する放射妨害波の波長である。 The wave number k is 2π divided by the measurement frequency. Therefore, the radiation interference wave measuring device 1 can completely reproduce the electric field intensity distribution by measuring the electric field intensity of the radiation interference wave at intervals satisfying the condition of the following equation (11) based on the sampling theorem. it can. Here, λ is the wavelength of the radiation interference wave for which the radiation interference wave measuring device 1 measures the electric field strength.
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 また、アンテナ11と放射源との距離r、rをアンテナ11の高さhrxの関数として表すと次の式(12)及び式(13)のようになる。式(12)は、アンテナ11と放射源nとの距離rがアンテナ11と放射源nとの水平方向の距離d、放射源nの高さ方向の位置h及びアンテナ11の高さhrxで表されることを示している。同様に、式(13)は、アンテナ11と放射源mとの距離rがアンテナ11と放射源mとの水平方向の距離d、放射源mの高さ方向の位置h及びアンテナ11の高さhrxで表されることを示している。 The distance r n between the antenna 11 and the radiation source, to represent the r m as a function of the height h rx antenna 11 becomes as the following equation (12) and (13). Equation (12), the height of the horizontal distance d n, the vertical position of the radiation source n h n and the antenna 11 of the antenna 11 and the distance r n is the antenna 11 of the source n and source n It is shown that it is represented by h rx . Similarly, equation (13), horizontal distance d m between the distance r m is the antenna 11 of the antenna 11 and the radiation source m radiation source m, the height direction of the radiation source m position h m and antenna 11 It is shown that the height of is represented by h rx .
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 また、放射源nの高さ方向の位置h及び放射源mの高さ方向の位置hは、床面で反射される放射妨害波がある場合、鏡像原理により正負の値をとり、床面で反射される放射妨害波がない場合、正の値のみをとる。なお、以下の説明では、放射源nの高さ方向の位置hが放射源mの高さ方向の位置hよりも低いものとする。 Further, the height direction position h m of the position in the height direction h n and radiation sources m of the radiation source n, if there is radiation interference wave is reflected by the floor, take positive and negative values by the mirror image principle, floor If there are no radiated jamming waves reflected by the surface, only positive values are taken. In the following description, it is assumed that the position h n in the height direction of the radiation source n is lower than the position h m in the height direction of the radiation source m.
 一方、r-rの変化量Δ(r-r)とアンテナの高さhrxとの関係は、次の式(14)及び式(15)で表される。ここで、Δhrxは、アンテナの高さhrxの変化量である。また、Kは、補正係数である。 On the other hand, the relationship between r n of change -r m delta (r n -r m) and antenna height h rx is expressed by the following equation (14) and (15). Here, Δh rx is the amount of change in the height h rx of the antenna. Further, K h is a correction coefficient.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 また、次の式(16)、式(17)、式(18)及び式(19)が成立する。 Further, the following equations (16), (17), (18) and (19) are established.
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
 式(16)、式(17)、式(18)及び式(19)と、供試体100の寸法とを考慮すると次の式(20)が成立する。 Considering the equations (16), (17), (18) and (19) and the dimensions of the specimen 100, the following equation (20) is established.
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
 また、供試体100に含まれる放射源から放射される放射妨害波の電界強度の測定を実行するアンテナ11の高さの間隔が次の式(21)を満たす場合、サンプリング定理が満たされる。 Further, when the height interval of the antenna 11 that executes the measurement of the electric field strength of the radiated interfering wave emitted from the radiation source included in the specimen 100 satisfies the following equation (21), the sampling theorem is satisfied.
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000029
 さらに、供試体100に含まれる放射源が放射妨害波を放射する方向に関する特徴を記述する次の式(22)が成立する必要がある。式(22)は、波数kがゼロであり、上述した式(9)に含まれる係数a、a、b及びbが三角関数である場合を考慮している式である。ここで、hrx_minは、アンテナ11の高さの最小値である。 Further, it is necessary that the following equation (22) describing the characteristics regarding the direction in which the radiation source included in the specimen 100 emits the radiating interfering wave is established. Equation (22), the wave number k is zero, an equation coefficients a n included in expression (9) described above, a m, b n and b m are consideration of the case is a triangular function. Here, h rx_min is the minimum value of the height of the antenna 11.
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000030
 ここまで、床面で反射される放射妨害波がない場合について説明した。一方、床面で反射される放射妨害波がある場合、放射源nの高さ方向の位置h及び放射源mの高さ方向の位置hが正の値だけではなく、負の値もとり得ることを考慮することにより、式(16)、式(17)、式(18)及び式(19)の条件の下で補正係数Khmaxを算出することができる。当該条件を考慮すると、上述した式(20)に含まれるhminを-hmaxで置き換えた次の式(23)が成立する。 Up to this point, the case where there is no radiated interference wave reflected on the floor surface has been described. On the other hand, when there is a radiation interference wave reflected on the floor surface, the height position h n of the radiation source n and the height position h m of the radiation source m take not only positive values but also negative values. By considering the acquisition , the correction coefficient K hmax can be calculated under the conditions of the equations (16), (17), (18) and (19). Considering this condition, the following equation (23) is established in which h min included in the above equation (20) is replaced with −h max .
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000031
 つまり、補正係数算出機能202は、床面で反射される放射妨害波がない場合、上述した式(20)を使用して補正係数Khmaxを算出し、床面で反射される放射妨害波がある場合、上述した式(20)を使用して補正係数Khmaxを算出することが好ましい。言い換えると、補正係数算出機能202は、判定機能201により床面で反射される放射妨害波を考慮する必要がないと判定された場合、式(20)を使用して補正係数を算出することが好ましい。同様に、補正係数算出機能202は、判定機能201により床面で反射される放射妨害波を考慮する必要があると判定された場合、式(23)を使用して補正係数を算出することが好ましい。 That is, the correction coefficient calculation function 202 calculates the correction coefficient K hmax using the above equation (20) when there is no radiation interference wave reflected on the floor surface, and the radiation interference wave reflected on the floor surface is generated. In some cases, it is preferable to calculate the correction coefficient K hmax using the above equation (20). In other words, the correction coefficient calculation function 202 may calculate the correction coefficient using the equation (20) when it is determined by the determination function 201 that it is not necessary to consider the radiated interference wave reflected on the floor surface. preferable. Similarly, when it is determined by the determination function 201 that it is necessary to consider the radiation interference wave reflected on the floor surface, the correction coefficient calculation function 202 may calculate the correction coefficient using the equation (23). preferable.
 測定高さ算出機能203は、補正係数算出機能202により算出された補正係数Khmaxを使用して測定が実行される場合におけるアンテナ11の高さを順次算出する。具体的には、測定高さ算出機能203は、次の式(24)を使用して測定が実行される場合におけるアンテナ11の高さを順次算出する。 The measurement height calculation function 203 sequentially calculates the height of the antenna 11 when the measurement is executed using the correction coefficient K hmax calculated by the correction coefficient calculation function 202. Specifically, the measurement height calculation function 203 sequentially calculates the height of the antenna 11 when the measurement is executed using the following equation (24).
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000032
 すなわち、測定高さ算出機能203は、上述した式(20)、式(21)及び式(22)を使用することにより、又は上述した式(23)、式(21)及び式(22)を使用することにより、KhmaxΔhrx(hrx)が一定になるように測定が実行される場合におけるアンテナ11の高さの間隔Δhrx(hrx)を算出する。そして、測定高さ算出機能203は、式(24)を使用して各測定点の高さを算出する。 That is, the measurement height calculation function 203 uses the above-mentioned equations (20), (21) and (22), or the above-mentioned equations (23), (21) and (22). By using it, the height interval Δh rx (h rx ) of the antenna 11 when the measurement is performed so that K hmax Δh rx (h rx ) becomes constant is calculated. Then, the measurement height calculation function 203 calculates the height of each measurement point using the equation (24).
 次に、判定機能201が床面で反射される放射妨害波を考慮する必要がないと判定する場合の具体例及び床面で反射される放射妨害波を考慮する必要があると判定する場合の具体例について説明する。 Next, a specific example in which the determination function 201 determines that it is not necessary to consider the radiation interference wave reflected on the floor surface and a case in which it is determined that it is necessary to consider the radiation interference wave reflected on the floor surface. A specific example will be described.
 第一電磁界分布取得機能204は、放射妨害波又は放射妨害波を想定して設定した放射源からの電界強度分布であり、シミュレーション又は実測により得られた第一電界分布を取得する。 The first electromagnetic field distribution acquisition function 204 is an electric field intensity distribution from a radiation source set assuming a radiation interference wave or a radiation interference wave, and acquires the first electric field distribution obtained by simulation or actual measurement.
 第二電磁界分布取得機能205は、測定高さ算出機能203により算出されたアンテナ11の高さにおける電界強度を第一の電界強度分布から取得し、ローパスフィルタを使用して測定高さ算出機能203により算出されたアンテナ11の高さと異なるアンテナ11の高さにおける電界強度を補間することにより得られた第二電界分布を取得する。 The second electromagnetic field distribution acquisition function 205 acquires the electric field strength at the height of the antenna 11 calculated by the measurement height calculation function 203 from the first electric field strength distribution, and uses a low-pass filter to calculate the measurement height. The second electric field distribution obtained by interpolating the electric field strength at the height of the antenna 11 different from the height of the antenna 11 calculated by 203 is acquired.
 図3は、実施形態に係る供試体の高さ方向の寸法が100cm、床面から供試体までの最短距離が10cmである場合におけるシミュレーション又は実測により再現された第一電界分布及び当該第一電界強度分布にローパスフィルタを適用して補間することにより取得された第二電界分布の例を示す図である。この第一電界分布は、供試体100のうち供試体100の高さ寸法の最高高さの位置及び最低高さの位置各々に一つずつ配置されており、放射する放射妨害波の振幅及び位相が互いに等しい放射源があるという仮定の下で行われたシミュレーション又は実測により得られた分布である。図3の点線は、第一電界分布を示している。図3の実線は、第二電界分布を示している。 FIG. 3 shows the first electric field distribution and the first electric field reproduced by simulation or actual measurement when the height dimension of the specimen according to the embodiment is 100 cm and the shortest distance from the floor surface to the specimen is 10 cm. It is a figure which shows the example of the 2nd electric field distribution obtained by applying the low-pass filter to the intensity distribution and interpolating. This first electric field distribution is arranged one by one at the highest height position and the lowest height position of the height dimension of the specimen 100 among the specimens 100, and the amplitude and phase of the radiated interfering waves radiated. Is a distribution obtained by simulation or measurement performed under the assumption that there are equal sources of radiation. The dotted line in FIG. 3 shows the first electric field distribution. The solid line in FIG. 3 shows the second electric field distribution.
 第一電界分布及び第二電界分布のいずれにおいてもアンテナ11の高さの間隔を1cmとして電界強度がプロットされている。ただし、第二電界強度分布は、43点についてのみ第一電界分布のシミュレーション又は実測の結果を使用し、それ以外の測定点ではローパスフィルタを適用することにより補間している。 In both the first electric field distribution and the second electric field distribution, the electric field strength is plotted with the height interval of the antenna 11 as 1 cm. However, the second electric field strength distribution is interpolated by using the result of simulation or actual measurement of the first electric field distribution only at 43 points and applying a low-pass filter at other measurement points.
 図3に点線で示された第一電界分布と、図3に実線で示された第二電界分布とを比較すると、ピークの高さとヌル点の高さが良好に再現されていることが分かる。ここで、ヌル点とは、電界強度が極小となるアンテナ11の高さをいう。また、両者を比較すると、ピークの高さの電界強度の大きさも良好に再現されていることが分かる。したがって、第二電界分布は、十分に信頼できると考えられる。なお、両者を比較すると、ヌル点における電界強度の大きさが十分に再現されていない箇所もあるが、放射妨害波試験ではヌル点における電界強度の大きさは使用されないため、特に問題無い。 Comparing the first electric field distribution shown by the dotted line in FIG. 3 with the second electric field distribution shown by the solid line in FIG. 3, it can be seen that the height of the peak and the height of the null point are well reproduced. .. Here, the null point means the height of the antenna 11 at which the electric field strength is minimized. Moreover, when comparing the two, it can be seen that the magnitude of the electric field strength at the peak height is also well reproduced. Therefore, the second electric field distribution is considered to be sufficiently reliable. Comparing the two, there are some places where the magnitude of the electric field strength at the null point is not sufficiently reproduced, but there is no particular problem because the magnitude of the electric field strength at the null point is not used in the radiation interference test.
 図4は、実施形態に係る供試体の高さ方向の寸法が100cm、電界強度を測定する放射妨害波の周波数が6GHz、当該放射妨害波が水平偏波である場合における床面の反射係数と、第一電界分布の最大値と第二電界分布の最大値との偏差との関係の例を示す図である。図5は、実施形態に係る供試体の高さ方向の寸法が100cm、電界強度を測定する放射妨害波の周波数が6GHz、当該放射妨害波が垂直偏波である場合における床面の反射係数と、第一電界分布の最大値と第二電界分布の最大値との偏差との関係の例を示す図である。図6は、実施形態に係る供試体の高さ方向の寸法が20cm、電界強度を測定する放射妨害波の周波数が6GHz、当該放射妨害波が水平偏波である場合における床面の反射係数と、第一電界分布の最大値と第二電界分布の最大値との偏差との関係の例を示す図である。図7は、実施形態に係る供試体の高さ方向の寸法が20cm、電界強度を測定する放射妨害波の周波数が6GHz、当該放射妨害波が垂直偏波である場合における床面の反射係数と、第一電界分布の最大値と第二電界分布の最大値との偏差との関係の例を示す図である。 FIG. 4 shows the reflection coefficient of the floor surface when the height dimension of the specimen according to the embodiment is 100 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 6 GHz, and the radiated interfering wave is horizontally polarized. , Is a diagram showing an example of the relationship between the maximum value of the first electric field distribution and the maximum value of the second electric field distribution. FIG. 5 shows the reflection coefficient of the floor surface when the height dimension of the specimen according to the embodiment is 100 cm, the frequency of the radiation interference wave for measuring the electric field strength is 6 GHz, and the radiation interference wave is vertically polarized. , It is a figure which shows the example of the relationship between the maximum value of the first electric field distribution and the maximum value of the second electric field distribution. FIG. 6 shows the reflection coefficient of the floor surface when the height dimension of the specimen according to the embodiment is 20 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 6 GHz, and the radiated interfering wave is horizontally polarized. , Is a diagram showing an example of the relationship between the maximum value of the first electric field distribution and the maximum value of the second electric field distribution. FIG. 7 shows the reflection coefficient of the floor surface when the height dimension of the specimen according to the embodiment is 20 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 6 GHz, and the radiated interfering wave is vertically polarized. , It is a figure which shows the example of the relationship between the maximum value of the first electric field distribution and the maximum value of the second electric field distribution.
 図4から図7は、いずれも横軸が床面の反射係数を示しており、縦軸が第一電界分布の最大値と第二電界分布の最大値との偏差を示している。また、図4から図7は、いずれも床面から供試体100までの最短距離が異なる四つ又は五つのデータを示している。さらに、図4から図7は、いずれも電界強度が測定される放射妨害波の周波数とサンプリング周波数とが等しい場合の図である。 In each of FIGS. 4 to 7, the horizontal axis shows the reflection coefficient of the floor surface, and the vertical axis shows the deviation between the maximum value of the first electric field distribution and the maximum value of the second electric field distribution. Further, FIGS. 4 to 7 show four or five data in which the shortest distance from the floor surface to the specimen 100 is different. Further, FIGS. 4 to 7 are views in the case where the frequency of the radiated interfering wave whose electric field strength is measured and the sampling frequency are equal to each other.
 図4の場合、床面の反射係数が約0.01以下になると、床面から供試体100までの最短距離に関わらず、偏差が0.3dB以下まで収束している。図5の場合、床面の反射係数が約0.01以下になると、床面から供試体100までの最短距離に関わらず、偏差が0.5dB以下まで収束している。図6の場合及び図7の場合も、床面の反射係数が約0.01以下になると、床面から供試体100までの最短距離に関わらず、偏差が0.3dB以下まで収束している。つまり、床面の反射係数が0.01以下である場合、床面の反射係数を考慮する必要がないと判定して問題無いといえる。また、ここでは電界強度を測定する放射妨害波の周波数が6GHzについて検討を行ったが、それ以外の周波数についても、サンプリング周波数と測定周波数が、同一周波数という条件であれば、同様のことがいえると考えられる。 In the case of FIG. 4, when the reflectance coefficient of the floor surface is about 0.01 or less, the deviation converges to 0.3 dB or less regardless of the shortest distance from the floor surface to the specimen 100. In the case of FIG. 5, when the reflectance coefficient of the floor surface is about 0.01 or less, the deviation converges to 0.5 dB or less regardless of the shortest distance from the floor surface to the specimen 100. In the case of FIG. 6 and FIG. 7, when the reflectance coefficient of the floor surface is about 0.01 or less, the deviation converges to 0.3 dB or less regardless of the shortest distance from the floor surface to the specimen 100. .. That is, when the reflection coefficient of the floor surface is 0.01 or less, it can be said that there is no problem in determining that it is not necessary to consider the reflection coefficient of the floor surface. Further, here, the frequency of the radiated interfering wave for measuring the electric field strength was examined at 6 GHz, but the same can be said for other frequencies as long as the sampling frequency and the measurement frequency are the same frequency. it is conceivable that.
 そこで、判定機能201は、第一電界分布における電界の最大値と、第二電界分布における電界の最大値との偏差を算出し、当該偏差が所定の許容値以下である場合、床面で反射される放射妨害波を考慮する必要がないと判定する。或いは、判定機能201は、第一電界分布における電界の最大値と、第二電界分布における電界の最大値との偏差を算出し、当該偏差が所定の許容値を超えている場合、床面で反射される放射妨害波を考慮する必要があると判定する。 Therefore, the determination function 201 calculates the deviation between the maximum value of the electric field in the first electric field distribution and the maximum value of the electric field in the second electric field distribution, and when the deviation is equal to or less than a predetermined allowable value, it is reflected on the floor surface. It is determined that it is not necessary to consider the radiation interference wave to be generated. Alternatively, the determination function 201 calculates the deviation between the maximum value of the electric field in the first electric field distribution and the maximum value of the electric field in the second electric field distribution, and if the deviation exceeds a predetermined allowable value, on the floor surface. Judge that it is necessary to consider the reflected radiated interference wave.
 次に、電界強度が測定される放射妨害波の周波数とサンプリング周波数とが異なっている場合について説明する。 Next, the case where the frequency of the radiated interfering wave whose electric field strength is measured and the sampling frequency are different will be described.
 図8は、実施形態に係る供試体の高さ方向の寸法が100cm、電界強度を測定する放射妨害波の周波数が1GHz、当該放射妨害波が水平偏波である場合における床面の反射係数と、第一電界分布の最大値と第二電界分布の最大値との偏差との関係の例を示す図である。図9は、実施形態に係る供試体の高さ方向の寸法が100cm、電界強度を測定する放射妨害波の周波数が1GHz、当該放射妨害波が垂直偏波である場合における床面の反射係数と、第一電界分布の最大値と第二電界分布の最大値との偏差との関係の例を示す図である。図10は、実施形態に係る供試体の高さ方向の寸法が20cm、電界強度を測定する放射妨害波の周波数が1GHz、当該放射妨害波が水平偏波である場合における床面の反射係数と、第一電界分布の最大値と第二電界分布の最大値との偏差との関係の例を示す図である。図11は、実施形態に係る供試体の高さ方向の寸法が20cm、電界強度を測定する放射妨害波の周波数が1GHz、当該放射妨害波が垂直偏波である場合における床面の反射係数と、第一電界分布の最大値と第二電界分布の最大値との偏差との関係の例を示す図である。 FIG. 8 shows the reflection coefficient of the floor surface when the height dimension of the specimen according to the embodiment is 100 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 1 GHz, and the radiated interfering wave is horizontally polarized. , Is a diagram showing an example of the relationship between the maximum value of the first electric field distribution and the maximum value of the second electric field distribution. FIG. 9 shows the reflection coefficient of the floor surface when the height dimension of the specimen according to the embodiment is 100 cm, the frequency of the radiation interference wave for measuring the electric field strength is 1 GHz, and the radiation interference wave is vertically polarized. , It is a figure which shows the example of the relationship between the maximum value of the first electric field distribution and the maximum value of the second electric field distribution. FIG. 10 shows the reflection coefficient of the floor surface when the height dimension of the specimen according to the embodiment is 20 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 1 GHz, and the radiated interfering wave is horizontally polarized. , Is a diagram showing an example of the relationship between the maximum value of the first electric field distribution and the maximum value of the second electric field distribution. FIG. 11 shows the reflection coefficient of the floor surface when the height dimension of the specimen according to the embodiment is 20 cm, the frequency of the radiation interference wave for measuring the electric field strength is 1 GHz, and the radiation interference wave is vertically polarized. , It is a figure which shows the example of the relationship between the maximum value of the first electric field distribution and the maximum value of the second electric field distribution.
 図8から図11のいずれの場合でも、床面の反射係数が約0.1以下になると、床面から供試体100までの最短距離に関わらず、偏差が0.1dB以下まで収束している。 In any of FIGS. 8 to 11, when the reflectance coefficient of the floor surface is about 0.1 or less, the deviation converges to 0.1 dB or less regardless of the shortest distance from the floor surface to the specimen 100. ..
 そこで、判定機能201は、第一電界分布における電界の最大値と、第二電磁界分布における電界の最大値との偏差を算出し、偏差が所定の閾値以下の反射係数に対応している場合、床面で反射される放射妨害波を考慮する必要がないと判定する。或いは、判定機能201は、第一電界分布における電界の最大値と、第二電界分布における電界の最大値との偏差を算出し、偏差が所定の閾値を超える反射係数に対応している場合、床面で反射される放射妨害波を考慮する必要があると判定する。例えば、判定機能201は、シミュレーションにより求められた図4等のグラフを使用してユーザがマウス、キーボード等を使用して入力した反射係数が当該所定の閾値以下であるか否かの判定を実行する。 Therefore, the determination function 201 calculates the deviation between the maximum value of the electric field in the first electric field distribution and the maximum value of the electric field in the second electromagnetic field distribution, and the deviation corresponds to a reflection coefficient equal to or less than a predetermined threshold value. , Judge that it is not necessary to consider the radiated interference wave reflected on the floor surface. Alternatively, the determination function 201 calculates the deviation between the maximum value of the electric field in the first electric field distribution and the maximum value of the electric field in the second electric field distribution, and when the deviation corresponds to a reflection coefficient exceeding a predetermined threshold value, Judge that it is necessary to consider the radiated interference wave reflected on the floor surface. For example, the determination function 201 determines whether or not the reflection coefficient input by the user using the mouse, keyboard, or the like is equal to or less than the predetermined threshold value using the graph of FIG. 4 or the like obtained by simulation. To do.
 次に、電界強度が測定される放射妨害波の周波数fをサンプリング周波数fmaxで規格化した量に対して偏差が収束するために必要な床面の反射係数Γについて説明する。図12は、実施形態に係る床面の反射係数と、電界強度を測定する放射妨害波の周波数をサンプリング周波数で規格化して得られる量との関係の例を示す図である。図12は、横軸が電界強度が測定される放射妨害波の周波数fをサンプリング周波数fmaxで規格化した量を示しており、縦軸が-20*log10Γを示している。図12の斜線部に該当する条件が満たされている場合、すなわち次の式(25)を満たす条件が成立している場合、上述した偏差が十分に小さな値に収束しているといえる。 Next, the reflectance coefficient Γ of the floor surface required for the deviation to converge with respect to the amount obtained by normalizing the frequency f of the radiated interfering wave whose electric field strength is measured by the sampling frequency f max will be described. FIG. 12 is a diagram showing an example of the relationship between the reflection coefficient of the floor surface according to the embodiment and the amount obtained by standardizing the frequency of the radiated interfering wave for measuring the electric field strength with the sampling frequency. In FIG. 12, the horizontal axis shows the amount of the frequency f of the radiated interfering wave whose electric field strength is measured, which is normalized by the sampling frequency f max , and the vertical axis shows −20 * log 10 Γ. When the condition corresponding to the shaded portion in FIG. 12 is satisfied, that is, when the condition satisfying the following equation (25) is satisfied, it can be said that the above-mentioned deviation has converged to a sufficiently small value.
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000033
 さらに、図13から図16を参照しながら、上述した式(25)の信頼性について考察する。図13は、実施形態に係る供試体の高さ方向の寸法が100cm、電界強度を測定する放射妨害波の周波数が3.5GHz、当該放射妨害波が水平偏波である場合における床面の反射係数と、第一電界分布の最大値と第二電界分布の最大値との偏差との関係の例を示す図である。図14は、実施形態に係る供試体の高さ方向の寸法が100cm、電界強度を測定する放射妨害波の周波数が3.5GHz、当該放射妨害波が垂直偏波である場合における床面の反射係数と、第一電界分布の最大値と第二電界分布の最大値との偏差との関係の例を示す図である。図15は、実施形態に係る供試体の高さ方向の寸法が20cm、電界強度を測定する放射妨害波の周波数が3.5GHz、当該放射妨害波が水平偏波である場合における床面の反射係数と、第一電界分布の最大値と第二電界分布の最大値との偏差との関係の例を示す図である。図16は、実施形態に係る供試体の高さ方向の寸法が20cm、電界強度を測定する放射妨害波の周波数が3.5GHz、当該放射妨害波が垂直偏波である場合における床面の反射係数と、第一電界分布の最大値と第二電界分布の最大値との偏差との関係の例を示す図である。 Further, the reliability of the above-mentioned equation (25) will be considered with reference to FIGS. 13 to 16. FIG. 13 shows the reflection of the floor surface when the height dimension of the specimen according to the embodiment is 100 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 3.5 GHz, and the radiated interfering wave is horizontally polarized. It is a figure which shows the example of the relationship between the coefficient and the deviation between the maximum value of the first electric field distribution and the maximum value of the second electric field distribution. FIG. 14 shows the reflection of the floor surface when the height dimension of the specimen according to the embodiment is 100 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 3.5 GHz, and the radiated interfering wave is vertically polarized. It is a figure which shows the example of the relationship between the coefficient and the deviation between the maximum value of the first electric field distribution and the maximum value of the second electric field distribution. FIG. 15 shows reflection on the floor surface when the height dimension of the specimen according to the embodiment is 20 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 3.5 GHz, and the radiated interfering wave is horizontally polarized. It is a figure which shows the example of the relationship between the coefficient and the deviation between the maximum value of the first electric field distribution and the maximum value of the second electric field distribution. FIG. 16 shows the reflection of the floor surface when the height dimension of the specimen according to the embodiment is 20 cm, the frequency of the radiated interfering wave for measuring the electric field strength is 3.5 GHz, and the radiated interfering wave is vertically polarized. It is a figure which shows the example of the relationship between the coefficient and the deviation between the maximum value of the first electric field distribution and the maximum value of the second electric field distribution.
 電界強度を測定する放射妨害波の周波数が3.5GHzである場合、上述した式(25)から算出される床面の反射係数は、0.0316以下となる。図13の場合及び図14の場合、床面の反射係数が約0.06以下になると、床面から供試体100までの最短距離に関わらず、偏差が0.2dB以下まで収束している。図15の場合及び図16の場合、床面の反射係数が約0.06以下になると、床面から供試体100までの最短距離に関わらず、偏差が0.6dB以下まで収束している。したがって、上述した式(25)は、十分に信頼できるといえる。 When the frequency of the radiated interfering wave for measuring the electric field strength is 3.5 GHz, the reflectance coefficient of the floor surface calculated from the above equation (25) is 0.0316 or less. In the case of FIG. 13 and FIG. 14, when the reflectance coefficient of the floor surface is about 0.06 or less, the deviation converges to 0.2 dB or less regardless of the shortest distance from the floor surface to the specimen 100. In the case of FIG. 15 and FIG. 16, when the reflectance coefficient of the floor surface is about 0.06 or less, the deviation converges to 0.6 dB or less regardless of the shortest distance from the floor surface to the specimen 100. Therefore, it can be said that the above-mentioned equation (25) is sufficiently reliable.
 ここで、判定機能201は、床面の反射係数、放射妨害波の周波数及び放射妨害波の最大の周波数から算出されるサンプリング周波数が上述した式(25)を満たす場合、床面で反射される放射妨害波を考慮する必要がないと判定する。或いは、判定機能201は、床面の反射係数、放射妨害波の周波数及び放射妨害波の最大の周波数から算出されるサンプリング周波数が上述した式(25)を満たさない場合、床面で反射される放射妨害波を考慮する必要があると判定する。 Here, the determination function 201 is reflected on the floor surface when the sampling frequency calculated from the reflection coefficient of the floor surface, the frequency of the radiation interference wave and the maximum frequency of the radiation interference wave satisfies the above-mentioned equation (25). Judge that it is not necessary to consider the radiated interference wave. Alternatively, the determination function 201 is reflected on the floor surface when the sampling frequency calculated from the reflection coefficient of the floor surface, the frequency of the radiated interfering wave and the maximum frequency of the radiated interfering wave does not satisfy the above-mentioned equation (25). Judge that it is necessary to consider the radiated interference wave.
 これまでの説明から床面の反射係数が十分に小さい場合、床面で反射される放射妨害波を考慮する必要がないと考えてよいことが分かる。また、上述した通り、床面で反射される放射妨害波の周波数と、サンプリング周波数とが等しい場合、床面の反射係数が0.01以下であることが好ましい。さらに、上述した式(25)を床面の放射妨害波の吸収特性に変換した次の式(26)が使用されてもよい。 From the explanation so far, it can be seen that if the reflectance coefficient of the floor surface is sufficiently small, it is not necessary to consider the radiation interference wave reflected on the floor surface. Further, as described above, when the frequency of the radiated interfering wave reflected on the floor surface is equal to the sampling frequency, the reflection coefficient of the floor surface is preferably 0.01 or less. Further, the following equation (26) obtained by converting the above equation (25) into the absorption characteristics of the radiated interfering waves on the floor surface may be used.
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000034
 上述した式(25)及び式(26)を使用すると、床面で反射される放射妨害波の周波数と、サンプリング周波数とが等しい場合、床面の放射妨害波の吸収特性は、40dB以上必要であることが分かる。また、床面で反射される放射妨害波の周波数がサンプリング周波数よりも低い場合、床面の放射妨害波の吸収特性は、当該周波数及びサンプリング周波数を上述した式(25)に代入して算出された値以上必要であることが分かる。このような条件を満たす電波吸収体としては、例えば、上述した電波吸収体14が挙げられる。これらを床面に敷き詰めることにより、上述した式(26)が満たされる。 Using the above equations (25) and (26), if the frequency of the radiated interference wave reflected on the floor surface is equal to the sampling frequency, the absorption characteristic of the radiated interference wave on the floor surface must be 40 dB or more. It turns out that there is. When the frequency of the radiated interference wave reflected on the floor surface is lower than the sampling frequency, the absorption characteristic of the radiated interference wave on the floor surface is calculated by substituting the frequency and the sampling frequency into the above equation (25). It turns out that more than the value is required. Examples of the radio wave absorber satisfying such conditions include the radio wave absorber 14 described above. By laying these on the floor surface, the above-mentioned equation (26) is satisfied.
 そこで、判定機能201は、電界の測定が実行される放射妨害波の周波数に対する床面の吸収特性が上述した式(26)を満たす場合、床面で反射される放射妨害波を考慮する必要がないと判定する。或いは、判定機能は、電界の測定が実行される放射妨害波の周波数に対する床面の吸収特性が上述した式(26)を満たさない場合、床面で反射される放射妨害波を考慮する必要があると判定する。 Therefore, when the absorption characteristic of the floor surface with respect to the frequency of the radiated interfering wave for which the electric field measurement is performed satisfies the above-mentioned equation (26), the determination function 201 needs to consider the radiated interfering wave reflected on the floor surface. Judge that there is no. Alternatively, the determination function needs to consider the radiated interfering wave reflected by the floor surface when the absorption characteristic of the floor surface with respect to the frequency of the radiated interfering wave at which the measurement of the electric field is performed does not satisfy the above equation (26). Judge that there is.
 また、床面を基準とした高さが0.45λmin及び2.8λmaxのうち大きい方の値以上の電波吸収体が床面に敷設されている場合、上述した条件の少なくとも一つが満たされていると考えられる。ここで、λminは、電界強度を測定する放射妨害波の周波数の最小値に相当する波長である。また、λmaxは、電界強度を測定する放射妨害波の周波数の最大値であるサンプリング周波数に相当する波長である。そこで、判定機能201は、床面を基準とした高さが0.45λmin及び2.8λmaxのうち大きい方の値以上の電波吸収体が床面に敷設されている場合、床面で反射される放射妨害波を考慮する必要がないと判定する。或いは、判定機能201は、床面を基準とした高さが0.45λmin及び2.8λmaxのうち大きい方の値未満の電波吸収体が床面に敷設されている場合又は電波吸収体が敷設されていない場合、床面で反射される放射妨害波を考慮する必要があると判定する。 Further, when a radio wave absorber having a height of 0.45 λ min or 2.8 λ max with respect to the floor surface, whichever is larger than the larger value, is laid on the floor surface, at least one of the above conditions is satisfied. It is thought that it is. Here, λ min is a wavelength corresponding to the minimum value of the frequency of the radiated interfering wave for measuring the electric field strength. Further, λ max is a wavelength corresponding to the sampling frequency, which is the maximum value of the frequency of the radiated interfering wave for measuring the electric field strength. Therefore, the determination function 201 reflects on the floor surface when a radio wave absorber having a height of 0.45λ min or 2.8λ max with respect to the floor surface, whichever is larger than the larger value, is laid on the floor surface. It is determined that it is not necessary to consider the radiation interference wave to be generated. Alternatively, in the determination function 201, when a radio wave absorber whose height with respect to the floor surface is less than the larger value of 0.45λ min and 2.8λ max is laid on the floor surface, or the radio wave absorber is installed. If it is not laid, it is judged that it is necessary to consider the radio wave interference reflected on the floor surface.
 図17は、実施形態に係る補間前電界強度分布の一部の例を示す図である。放射妨害波測定装置1は、上述した式(20)又は式(23)を使用して算出した補正係数Khmaxに基づいて順次算出されたアンテナ11の高さにおいて放射妨害波の電界強度を測定し、例えば、図17に示した補間前電界強度を取得する。図17の白丸は、この間隔で測定された電界強度を示している。図17の黒丸は、内挿されたゼロを示している。 FIG. 17 is a diagram showing a part of an example of the electric field strength distribution before interpolation according to the embodiment. The radiation interference wave measuring device 1 measures the electric field strength of the radiation interference wave at the height of the antenna 11 sequentially calculated based on the correction coefficient K hmax calculated by using the above equation (20) or equation (23). Then, for example, the electric field strength before interpolation shown in FIG. 17 is acquired. The white circles in FIG. 17 indicate the electric field strength measured at this interval. The black circle in FIG. 17 indicates the interpolated zero.
 図18は、実施形態に係る補間後電界強度分布の一部の例を示す図である。放射妨害波測定装置1は、電界の測定が実行される放射妨害波の周波数と等しい遮断周波数を有するローパスフィルタを図17に示した補間前電界強度に適用することにより、図18に示した補間後電界強度を生成する。図18の白丸は、図17の白丸と同様の電界強度を示している。図18の黒丸は、当該ローパスフィルタを適用して補間することにより再現された電界強度を示している。 FIG. 18 is a diagram showing a part of an example of the electric field strength distribution after interpolation according to the embodiment. The radiated interfering wave measuring device 1 applies the low-pass filter having a cutoff frequency equal to the frequency of the radiated interfering wave on which the measurement of the electric field is performed to the pre-interpolation electric field strength shown in FIG. Generates after-field strength. The white circles in FIG. 18 show the same electric field strength as the white circles in FIG. The black circles in FIG. 18 indicate the electric field strength reproduced by applying the low-pass filter and interpolating.
 受信部30は、例えば、スーパーヘテロダイン方式のスペクトルアナライザ、FFT方式のスペクトルアナライザである。受信部30は、供試体100を囲む面上に位置する測定点における所定の周波数帯域の電界強度を測定する測定処理を実行する。そして、受信部30は、最大の電界強度が測定された測定点において電界強度を一定時間測定する。 The receiving unit 30 is, for example, a superheterodyne type spectrum analyzer and an FFT type spectrum analyzer. The receiving unit 30 executes a measurement process for measuring the electric field strength in a predetermined frequency band at a measurement point located on a surface surrounding the specimen 100. Then, the receiving unit 30 measures the electric field strength for a certain period of time at the measurement point where the maximum electric field strength is measured.
 図19は、実施形態に係る制御部のハードウエア構成の例を示す図である。図19に示すように、制御部20は、主制御部210と、入力装置220と、出力装置230と、記憶装置240と、バス250とを備える。 FIG. 19 is a diagram showing an example of the hardware configuration of the control unit according to the embodiment. As shown in FIG. 19, the control unit 20 includes a main control unit 210, an input device 220, an output device 230, a storage device 240, and a bus 250.
 主制御部210は、CPU(Central Processing Unit)及びRAM(Random Access Memory)を備えており、入力装置220、出力装置230及び記憶装置240の間でのデータの送受信を制御し、出力装置230及び記憶装置240の動作を制御する。 The main control unit 210 includes a CPU (Central Processing Unit) and a RAM (Random Access Memory), controls data transmission / reception between the input device 220, the output device 230, and the storage device 240, and controls the transmission / reception of data between the output device 230 and the output device 230. Controls the operation of the storage device 240.
 入力装置220は、放射妨害波測定装置1の操作に必要なデータを入力するために使用される装置、例えば、キーボード、マウス、タッチパネルである。 The input device 220 is a device used for inputting data necessary for operating the radiation interference wave measuring device 1, for example, a keyboard, a mouse, and a touch panel.
 出力装置230は、放射妨害波測定装置1の動作に関連する情報を出力するために使用される装置、例えば、ディスプレイである。 The output device 230 is a device used for outputting information related to the operation of the radiated interference wave measuring device 1, for example, a display.
 記憶装置240は、データを記憶させるために使用される装置、例えば、ハードディスク装置、光ディスク装置である。また、記憶装置240は、記憶媒体245を備えており、記憶媒体245にデータを格納し、記憶媒体245からデータを読み出す。記憶媒体245は、データを記憶させるために使用される記憶媒体、例えば、ハードディスク、光ディスクである。また、記憶媒体245は、判定機能201、補正係数算出機能202、測定高さ算出機能203、第一電磁界分布取得機能204及び第二電磁界分布取得機能205それぞれを実現するプログラムを記憶している。この場合、主制御部210は、これらのプログラムを読み出して実行することにより、判定機能201、補正係数算出機能202及び測定高さ算出機能203それぞれの機能を実現させる。 The storage device 240 is a device used for storing data, for example, a hard disk device or an optical disk device. Further, the storage device 240 includes a storage medium 245, stores data in the storage medium 245, and reads data from the storage medium 245. The storage medium 245 is a storage medium used for storing data, for example, a hard disk or an optical disk. Further, the storage medium 245 stores programs that realize each of the determination function 201, the correction coefficient calculation function 202, the measurement height calculation function 203, the first electromagnetic field distribution acquisition function 204, and the second electromagnetic field distribution acquisition function 205. There is. In this case, the main control unit 210 realizes the functions of the determination function 201, the correction coefficient calculation function 202, and the measurement height calculation function 203 by reading and executing these programs.
 バス250は、主制御部210、入力装置220、出力装置230及び記憶装置240を相互に通信可能に接続している。 The bus 250 connects the main control unit 210, the input device 220, the output device 230, and the storage device 240 so as to be able to communicate with each other.
 次に、図20を参照しながら実施形態に係る放射妨害波測定装置の動作の一例を説明する。図20は、実施形態に係る放射妨害波測定装置が実行する処理の例を示すフローチャートである。 Next, an example of the operation of the radiation interference wave measuring device according to the embodiment will be described with reference to FIG. FIG. 20 is a flowchart showing an example of processing executed by the radiation interference wave measuring device according to the embodiment.
 ステップS10において、放射妨害波測定装置1は、測定条件の入力を受け付ける。ここで言う測定条件は、例えば、電界強度を測定する放射妨害波の周波数帯域、グランドプレーンを基準とする高さ方向の測定範囲、高さ方向における測定点の間隔、角度方向の測定範囲、角度方向における測定点の間隔、サンプリング時間、受信部30の検波方式及び周波数分解能帯域幅である。 In step S10, the radiation interference wave measuring device 1 accepts the input of the measurement conditions. The measurement conditions referred to here are, for example, the frequency band of the radiation interference wave for measuring the electric field strength, the measurement range in the height direction with respect to the ground plane, the distance between the measurement points in the height direction, the measurement range in the angular direction, and the angle. The interval between measurement points in the direction, the sampling time, the detection method of the receiving unit 30, and the frequency resolution bandwidth.
 ステップS20において、補正係数算出機能202は、補正係数の算出に使用する式を選択する。ステップS20の詳細は、後述する。 In step S20, the correction coefficient calculation function 202 selects the formula used for calculating the correction coefficient. Details of step S20 will be described later.
 ステップS30において、測定高さ算出機能203は、ステップS20で選択した式を使用して算出した補正係数を使用して電界を測定するアンテナの高さを算出する。 In step S30, the measurement height calculation function 203 calculates the height of the antenna for measuring the electric field using the correction coefficient calculated using the formula selected in step S20.
 ステップS40において、コントローラ15は、最も低い高さに配置されている測定点の電界強度を測定可能な高さにアンテナ11の高さを変更し、最も角度が小さな位置に配置されている測定点の電界強度を測定可能な角度までターンテーブル13を回転させる。 In step S40, the controller 15 changes the height of the antenna 11 to a height at which the electric field strength of the measurement point arranged at the lowest height can be measured, and the measurement point arranged at the position having the smallest angle. The turntable 13 is rotated to an angle at which the electric field strength of the above can be measured.
 ステップS50において、放射妨害波測定装置1は、供試体100を基準としたアンテナ11の高さを維持した状態でターンテーブル13を回転させながら各測定点において所定の周波数帯域で電界強度の測定を実行する。 In step S50, the radiation interference wave measuring device 1 measures the electric field strength in a predetermined frequency band at each measurement point while rotating the turntable 13 while maintaining the height of the antenna 11 with respect to the specimen 100. Execute.
 ステップS60において、放射妨害波測定装置1は、現在のターンテーブルの角度が上限であるか否かを判定する。放射妨害波測定装置1は、現在のターンテーブルの角度が上限であると判定した場合(ステップS60:YES)、処理をステップS70に進め、現在のターンテーブルの角度が上限でないと判定した場合(ステップS60:NO)、処理をステップS50戻す。 In step S60, the radiated jamming wave measuring device 1 determines whether or not the current turntable angle is the upper limit. When the radiation interference wave measuring device 1 determines that the current turntable angle is the upper limit (step S60: YES), the process proceeds to step S70, and when it is determined that the current turntable angle is not the upper limit (step S60: YES). Step S60: NO), the process is returned to step S50.
 ステップS70において、コントローラ15は、アンテナ11の高さを上昇させる。 In step S70, the controller 15 raises the height of the antenna 11.
 ステップS80において、放射妨害波測定装置1は、現在のアンテナの高さが上限であるか否かを判定する。放射妨害波測定装置1は、現在のアンテナの高さが上限であると判定した場合(ステップS80:YES)、処理をステップS90に進め、現在のアンテナの高さが上限でないと判定した場合(ステップS80:NO)、処理をステップS50戻す。 In step S80, the radiation interference wave measuring device 1 determines whether or not the current height of the antenna is the upper limit. When the radiation interference wave measuring device 1 determines that the height of the current antenna is the upper limit (step S80: YES), the process proceeds to step S90, and when it is determined that the height of the current antenna is not the upper limit (step S80: YES). Step S80: NO), the process is returned to step S50.
 ステップS90において、放射妨害波測定装置1は、測定点の間の電界強度にゼロを内挿する。 In step S90, the radiation interference wave measuring device 1 interpolates zero in the electric field strength between the measuring points.
 ステップS100において、放射妨害波測定装置1は、ステップS90でゼロを内挿した補間前電界強度分布にステップS90で算出した遮断周波数を有するローパスフィルタを適用して補間後電界強度分布を生成する。 In step S100, the radiation interference wave measuring device 1 applies a low-pass filter having a cutoff frequency calculated in step S90 to the pre-interference electric field intensity distribution with zeros inserted in step S90 to generate a post-interference electric field intensity distribution.
 ステップS110において、放射妨害波測定装置1は、ステップS100で生成された補間後電界強度分布において最大の電界強度となるアンテナの高さ及びターンテーブルの角度を示すデータを取得する。 In step S110, the radiation interference wave measuring device 1 acquires data indicating the height of the antenna and the angle of the turntable, which are the maximum electric field strengths in the post-interpolated electric field strength distribution generated in step S100.
 次に、図21を参照しながら、図20に示したステップS20の詳細、すなわち実施形態に係る放射妨害波測定装置が補正係数を算出する処理の例について説明する。図21は、実施形態に係る放射妨害波測定装置が補正係数を算出する式を選択する処理の例を示すフローチャートである。 Next, with reference to FIG. 21, the details of step S20 shown in FIG. 20, that is, an example of the process in which the radiation interference wave measuring device according to the embodiment calculates the correction coefficient will be described. FIG. 21 is a flowchart showing an example of a process in which the radiation interference wave measuring device according to the embodiment selects an expression for calculating a correction coefficient.
 ステップS210において、補正係数算出機能202は、補正係数の算出に使用する式を放射妨害波測定装置が判定するか否かを判定する。補正係数算出機能202は、補正係数の算出に使用する式を放射妨害波測定装置が判定すると判定した場合(ステップS210:YES)、処理をステップS220に進め、補正係数の算出に使用する式を放射妨害波測定装置が判定しないと判定した場合(ステップS210:NO)、処理をステップS240に進める。 In step S210, the correction coefficient calculation function 202 determines whether or not the radiation interference wave measuring device determines the formula used for calculating the correction coefficient. When the correction coefficient calculation function 202 determines that the radiation interference wave measuring device determines the formula used for calculating the correction coefficient (step S210: YES), the process proceeds to step S220, and the formula used for calculating the correction coefficient is used. If it is determined that the radiation interference wave measuring device does not determine (step S210: NO), the process proceeds to step S240.
 ステップS220において、補正係数算出機能202は、床面で反射される放射妨害波を考慮する必要があるか否かを判定する。補正係数算出機能202は、床面で反射される放射妨害波を考慮する必要があると判定した場合(ステップS220:YES)、処理をステップS240に進め、床面で反射される放射妨害波を考慮する必要がないと判定した場合(ステップS220:NO)、処理をステップS230に進める。具体的には、補正係数算出機能202は、上述したいすれかの判定に基づいて当該判定を実行する。 In step S220, the correction coefficient calculation function 202 determines whether or not it is necessary to consider the radiated interference wave reflected on the floor surface. When the correction coefficient calculation function 202 determines that it is necessary to consider the radiation interference wave reflected on the floor surface (step S220: YES), the process proceeds to step S240, and the radiation interference wave reflected on the floor surface is removed. When it is determined that it is not necessary to consider (step S220: NO), the process proceeds to step S230. Specifically, the correction coefficient calculation function 202 executes the determination based on the determination of any of the above.
 ステップS230において、補正係数算出機能202は、上述した式(20)を選択する。 In step S230, the correction coefficient calculation function 202 selects the above-mentioned equation (20).
 ステップS240において、補正係数算出機能202は、上述した式(23)を選択する。 In step S240, the correction coefficient calculation function 202 selects the above-mentioned equation (23).
 以上、実施形態に係る放射妨害波測定装置1について説明した。放射妨害波測定装置1は、放射妨害波を放射する放射源を含む供試体100と、放射妨害波の電界の測定を実行するアンテナ11との相対的な位置関係に基づいて、アンテナ11の高さの間隔がサンプリング定理を満たす補正係数を算出する補正係数算出機能202と、補正係数を使用して測定が実行される場合におけるアンテナの高さを順次算出する測定高さ算出機能203とを備える。したがって、放射妨害波測定装置1は、電界を測定する必要があるアンテナ11の高さを絞り込み、放射妨害波試験の実施に必要な時間を短縮することができる。 The radiation interference wave measuring device 1 according to the embodiment has been described above. The radiation interference wave measuring device 1 is based on the relative positional relationship between the specimen 100 including the radiation source that emits the radiation interference wave and the antenna 11 that performs the measurement of the electric field of the radiation interference wave, and the height of the antenna 11 is increased. It is provided with a correction coefficient calculation function 202 that calculates a correction coefficient whose interval satisfies the sampling theorem, and a measurement height calculation function 203 that sequentially calculates the height of the antenna when the measurement is performed using the correction coefficient. .. Therefore, the radiated interference wave measuring device 1 can narrow down the height of the antenna 11 that needs to measure the electric field, and can shorten the time required to carry out the radiated interference wave test.
 また、放射妨害波測定装置1は、床面で反射される放射妨害波を考慮する必要があるか否かを判定する判定機能201を実行するコンピュータを備える。したがって、放射妨害波測定装置1は、床面で反射される放射妨害波を考慮して電界を測定する必要があるか否かに応じて適切な式を選択し、正確な補正係数を算出し、上述した効果を奏することができる。 Further, the radiation interference wave measuring device 1 includes a computer that executes a determination function 201 that determines whether or not it is necessary to consider the radiation interference wave reflected on the floor surface. Therefore, the radiation interference wave measuring device 1 selects an appropriate formula according to whether or not it is necessary to measure the electric field in consideration of the radiation interference wave reflected on the floor surface, and calculates an accurate correction coefficient. , The above-mentioned effects can be achieved.
 なお、上述した実施形態では、放射妨害波測定装置1が測定点における電界強度を測定し、補間後電界強度分布を生成する場合を例に挙げて説明したが、これに限定されない。例えば、放射妨害波測定装置1が測定点における磁界強度を測定し、補間前磁界強度分布に上述したローパスフィルタを適用して補間後磁界強度分布を生成してもよい。或いは、放射妨害波測定装置1が電界強度ではなく上述した式(2)の一つ目の等号の右側の式の絶対値記号の中身に相当する値を測定し、当該値の分布を測定し、当該値の分布に上述したローパスフィルタを適用して補間してもよい。 In the above-described embodiment, the case where the radiation interference wave measuring device 1 measures the electric field strength at the measurement point and generates the electric field strength distribution after interpolation has been described as an example, but the present invention is not limited to this. For example, the radiated interference wave measuring device 1 may measure the magnetic field strength at the measurement point and apply the low-pass filter described above to the magnetic field strength distribution before interpolation to generate the magnetic field strength distribution after interpolation. Alternatively, the radiation interference wave measuring device 1 measures not the electric field strength but the value corresponding to the content of the absolute value symbol of the equation on the right side of the first equal sign of the above equation (2), and measures the distribution of the value. Then, the above-mentioned low-pass filter may be applied to the distribution of the values for interpolation.
 また、補正係数算出機能202は、床面で反射される放射妨害波を考慮する必要があると判定された場合、上述した式(23)を使用して補正係数Khmaxを算出する代わりに、補正係数Khmaxの算出を中止してもよい。さらに、この場合、補正係数算出機能202は、床面で反射される放射妨害波を考慮する必要がある旨を報知するよう放射妨害波測定装置1を制御してもよい。 Further, when the correction coefficient calculation function 202 determines that it is necessary to consider the radiated interference wave reflected on the floor surface, instead of calculating the correction coefficient K hmax using the above equation (23), the correction coefficient calculation function 202 The calculation of the correction coefficient K hmax may be stopped. Further, in this case, the correction coefficient calculation function 202 may control the radiation interference wave measuring device 1 to notify that it is necessary to consider the radiation interference wave reflected on the floor surface.
 また、補正係数算出機能202は、床面で反射される放射妨害波を考慮する必要があるか否かに関わらず、式(23)を使用して補正係数を算出してもよい。 Further, the correction coefficient calculation function 202 may calculate the correction coefficient using the equation (23) regardless of whether or not it is necessary to consider the radiated interference wave reflected on the floor surface.
 また、上述した放射妨害波は、供試体100からではなく、放射妨害波を想定して設定された放射源から放射されてもよい。 Further, the above-mentioned radiation interference wave may be emitted not from the specimen 100 but from a radiation source set assuming the radiation interference wave.
 また、上述した実施形態に係るコントローラ15、制御部20及び受信部30の各機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録させ、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませて実行することにより、処理を行ってもよい。また、特に、この記録媒体は、判定機能201、補正係数算出機能202、測定高さ算出機能203、第一電磁界分布取得機能204及び第二電磁界分布取得機能205をコンピュータに実行させるための電磁界分布生成プログラムを記憶していてもよい。 Further, a program for realizing each function of the controller 15, the control unit 20, and the receiving unit 30 according to the above-described embodiment is recorded on a computer-readable recording medium, and the program recorded on the recording medium is recorded in the computer system. Processing may be performed by reading and executing. Further, in particular, this recording medium is for causing a computer to execute the determination function 201, the correction coefficient calculation function 202, the measurement height calculation function 203, the first electromagnetic field distribution acquisition function 204, and the second electromagnetic field distribution acquisition function 205. The electromagnetic field distribution generation program may be stored.
 ここで言うコンピュータシステムとは、オペレーティング・システム(Operating System:OS)又は周辺機器等のハードウエアを含むものであってもよい。また、コンピュータ読み取り可能な記録媒体とは、例えば、フロッピーディスク、光磁気ディスク、ROM(Read Only Memory)、フラッシュメモリ等の書き込み可能な不揮発性メモリ、DVD(Digital Versatile Disc)等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置、ネットワーク又は通信回線を介してプログラムが送信される場合におけるサーバ又はクライアントとなるコンピュータシステム内部の揮発性メモリのように一定時間プログラムを保持しているものも含む。 The computer system referred to here may include hardware such as an operating system (OS) or peripheral devices. The computer-readable recording medium includes, for example, a floppy disk, a photomagnetic disk, a ROM (Read Only Memory), a writable non-volatile memory such as a flash memory, and a portable medium such as a DVD (Digital Versatile Disc). A computer system that holds a program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client when a program is transmitted via a storage device such as a hard disk built into the computer system, a network, or a communication line. Also includes.
 また、上述したプログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、又は、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する伝送媒体とは、インターネット等のネットワーク又は電話回線等の通信回線のように情報を伝送する機能を有する媒体のことをいう。 Further, the above-mentioned program may be transmitted from a computer system in which this program is stored in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium. Here, the transmission medium for transmitting a program means a medium having a function of transmitting information, such as a network such as the Internet or a communication line such as a telephone line.
 また、上述したプログラムは、上述した機能の一部を実現するためのものであってもよく、上述した機能をコンピュータシステムに既に記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分プログラムであってもよい。上述したプログラムは、例えば、コンピュータが備えるCPU(Central Processing Unit)等のプロセッサにより読み出されて実行される。 Further, the above-mentioned program may be for realizing a part of the above-mentioned functions, and is a so-called difference program which can realize the above-mentioned functions in combination with a program already recorded in the computer system. There may be. The above-mentioned program is read and executed by a processor such as a CPU (Central Processing Unit) provided in the computer, for example.
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形、置換又は設計変更を加えることができる。また、上述した実施形態に記載の構成を組み合わせてもよい。 Although the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and various modifications, substitutions or designs are made without departing from the gist of the present invention. You can make changes. Further, the configurations described in the above-described embodiments may be combined.
 1…放射妨害波測定装置、11…アンテナ、12…アンテナマスト、13…ターンテーブル、14…電波吸収体、15…コントローラ、151…高さ変更部、152…方位変更部、20…制御部、201…判定機能、202…補正係数算出機能、203…測定高さ算出機能、204…第一電磁界分布取得機能、205…第二電磁界分布取得機能、210…主制御部、220…入力装置、230…出力装置、240…記憶装置、245…記憶媒体、250…バス、30…受信部、100…供試体、200…台 1 ... Electromagnetic field measuring device, 11 ... Antenna, 12 ... Antenna mast, 13 ... Turntable, 14 ... Radio absorber, 15 ... Controller, 151 ... Height changing unit, 152 ... Direction changing unit, 20 ... Control unit, 201 ... Judgment function, 202 ... Correction coefficient calculation function, 203 ... Measurement height calculation function, 204 ... First electromagnetic field distribution acquisition function, 205 ... Second electromagnetic field distribution acquisition function, 210 ... Main controller, 220 ... Input device , 230 ... Output device, 240 ... Storage device, 245 ... Storage medium, 250 ... Bus, 30 ... Receiver, 100 ... Specimen, 200 ... Unit

Claims (17)

  1.  放射妨害波を放射する放射源を含む供試体と前記放射妨害波の電界及び磁界の少なくとも一方の測定を実行するアンテナとの相対的な位置関係及び前記供試体が載置されている床面における前記放射妨害波の反射係数に基づいて、前記アンテナの高さの間隔がサンプリング定理を満たす補正係数を算出する補正係数算出機能と、
     前記補正係数を使用して前記測定が実行される場合における前記アンテナの高さを順次算出する測定高さ算出機能と、
     をコンピュータに実行させる電磁波測定点算出プログラム。
    The relative positional relationship between the specimen containing the radiation source that emits the radiating interfering wave and the antenna that performs measurement of at least one of the electric and magnetic fields of the radiating interfering wave and on the floor surface on which the specimen is placed. A correction coefficient calculation function that calculates a correction coefficient in which the height interval of the antenna satisfies the sampling theorem based on the reflection coefficient of the radiated interfering wave.
    A measurement height calculation function that sequentially calculates the height of the antenna when the measurement is performed using the correction coefficient, and a measurement height calculation function.
    An electromagnetic wave measurement point calculation program that causes a computer to execute.
  2.  前記補正係数算出機能は、前記供試体と前記アンテナとの水平方向の最短距離、前記供試体と前記アンテナとの水平方向の最長距離、前記供試体が載置されている床面から前記供試体までの最短距離及び前記供試体が載置されている前記床面から前記供試体までの最長距離の少なくとも二つを使用して前記補正係数を算出する機能である、
     請求項1に記載の電磁波測定点算出プログラム。
    The correction coefficient calculation function includes the shortest horizontal distance between the test piece and the antenna, the longest horizontal distance between the test piece and the antenna, and the test piece from the floor on which the test piece is placed. It is a function to calculate the correction coefficient using at least two of the shortest distance to the test piece and the longest distance from the floor surface on which the test piece is placed to the test piece.
    The electromagnetic wave measurement point calculation program according to claim 1.
  3.  前記補正係数算出機能は、次の式(1)又は式(2)と、式(3)とを使用して前記補正係数を算出し、
     前記測定高さ算出機能は、次の式(4)を使用して前記測定が実行される場合における前記アンテナの高さを順次算出する、
     請求項2に記載の電磁波測定点算出プログラム。
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
     Khmax:補正係数
     hrx  :アンテナの高さ
     dmin :供試体とアンテナとの水平方向の最短距離
     dmax :供試体とアンテナとの水平方向の最長距離
     hmin :供試体が載置されている床面から供試体までの最短距離
     hmax :供試体が載置されている床面から供試体までの最長距離
     Δhrx  :アンテナの高さの変化量
    Figure JPOXMLDOC01-appb-M000004
     hrx_min:アンテナの高さの最小値
    The correction coefficient calculation function calculates the correction coefficient using the following equation (1) or equation (2) and equation (3).
    The measurement height calculation function sequentially calculates the height of the antenna when the measurement is performed using the following equation (4).
    The electromagnetic wave measurement point calculation program according to claim 2.
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    K hmax : Correction coefficient h rx : Antenna height d min : Shortest horizontal distance between the specimen and the antenna d max : Longest horizontal distance between the specimen and the antenna h min : The specimen is placed The shortest distance from the floor surface to the specimen h max : The longest distance from the floor surface on which the specimen is placed to the specimen Δh rx : The amount of change in the height of the antenna
    Figure JPOXMLDOC01-appb-M000004
    h rx_min : Minimum value of antenna height
  4.  前記床面で反射される前記放射妨害波を考慮する必要があるか否かを判定する判定機能をコンピュータに更に実行させ、
     前記補正係数算出機能は、前記床面で反射される前記放射妨害波を考慮する必要がないと判定された場合、前記式(1)を使用して前記補正係数を算出する、
     請求項3に記載の電磁波測定点算出プログラム。
    Further, the computer is made to execute a determination function for determining whether or not it is necessary to consider the radiation interference wave reflected on the floor surface.
    When it is determined that it is not necessary to consider the radiation interference wave reflected on the floor surface, the correction coefficient calculation function calculates the correction coefficient using the equation (1).
    The electromagnetic wave measurement point calculation program according to claim 3.
  5.  前記床面で反射される前記放射妨害波を考慮する必要があるか否かを判定する判定機能をコンピュータに更に実行させ、
     前記補正係数算出機能は、前記床面で反射される前記放射妨害波を考慮する必要があると判定された場合、前記式(2)を使用して前記補正係数を算出し、又は前記補正係数の算出を中止する、
     請求項3に記載の電磁波測定点算出プログラム。
    Further, the computer is made to execute a determination function for determining whether or not it is necessary to consider the radiation interference wave reflected on the floor surface.
    When the correction coefficient calculation function determines that it is necessary to consider the radiation interference wave reflected on the floor surface, the correction coefficient is calculated by using the equation (2), or the correction coefficient is calculated. Stop the calculation of
    The electromagnetic wave measurement point calculation program according to claim 3.
  6.  前記補正係数算出機能は、前記床面で反射される前記放射妨害波を考慮する必要があるか否かに関わらず、前記式(2)を使用して補正係数を算出する、
     請求項3に記載の電磁波測定点算出プログラム。
    The correction coefficient calculation function calculates the correction coefficient using the equation (2) regardless of whether or not it is necessary to consider the radiation interference wave reflected on the floor surface.
    The electromagnetic wave measurement point calculation program according to claim 3.
  7.  前記放射妨害波の電界及び磁界の少なくとも一方の分布であり、シミュレーション又は実測により得られた第一電磁界分布を取得する第一電磁界分布取得機能と、
     前記測定高さ算出機能により算出された前記アンテナの高さにおける電界又は磁界をシミュレーション又は実測により取得し、ローパスフィルタを使用して前記測定高さ算出機能により算出された前記アンテナの高さと異なる前記アンテナの高さにおける電界又は磁界を補間することにより得られた第二電磁界分布を取得する第二電磁界分布取得機能と、
     をコンピュータに更に実行させ、
     前記判定機能は、前記第一電磁界分布における電界又は磁界の最大値と、前記第二電磁界分布における電界又は磁界の最大値との偏差を算出し、前記偏差が所定の許容値以下である場合、前記床面で反射される前記放射妨害波を考慮する必要がないと判定する機能である、
     請求項4に記載の電磁波測定点算出プログラム。
    The first electromagnetic field distribution acquisition function that acquires the first electromagnetic field distribution obtained by simulation or actual measurement, which is the distribution of at least one of the electric and magnetic fields of the radiated interfering wave.
    The electric field or magnetic field at the height of the antenna calculated by the measurement height calculation function is acquired by simulation or actual measurement, and is different from the height of the antenna calculated by the measurement height calculation function using a low-pass filter. The second electromagnetic field distribution acquisition function that acquires the second electromagnetic field distribution obtained by interpolating the electric field or magnetic field at the height of the antenna, and
    Let the computer do more
    The determination function calculates a deviation between the maximum value of the electric field or magnetic field in the first electromagnetic field distribution and the maximum value of the electric field or magnetic field in the second electromagnetic field distribution, and the deviation is equal to or less than a predetermined allowable value. In this case, it is a function of determining that it is not necessary to consider the radiated interfering wave reflected on the floor surface.
    The electromagnetic wave measurement point calculation program according to claim 4.
  8.  前記放射妨害波の電界及び磁界の少なくとも一方の分布であり、シミュレーション又は実測により得られた第一電磁界分布を取得する第一電磁界分布取得機能と、
     前記測定高さ算出機能により算出された前記アンテナの高さにおける電界又は磁界をシミュレーション又は実測により取得し、ローパスフィルタを使用して前記測定高さ算出機能により算出された前記アンテナの高さと異なる前記アンテナの高さにおける電界又は磁界を補間することにより得られた第二電磁界分布を取得する第二電磁界分布取得機能と、
     をコンピュータに更に実行させ、
     前記判定機能は、前記第一電磁界分布における電界又は磁界の最大値と、前記第二電磁界分布における電界又は磁界の最大値との偏差を算出し、前記偏差が所定の許容値を超えている場合、前記床面で反射される前記放射妨害波を考慮する必要があると判定する機能である、
     請求項5に記載の電磁波測定点算出プログラム。
    The first electromagnetic field distribution acquisition function that acquires the first electromagnetic field distribution obtained by simulation or actual measurement, which is the distribution of at least one of the electric and magnetic fields of the radiated interfering wave.
    The electric field or magnetic field at the height of the antenna calculated by the measurement height calculation function is acquired by simulation or actual measurement, and is different from the height of the antenna calculated by the measurement height calculation function using a low-pass filter. The second electromagnetic field distribution acquisition function that acquires the second electromagnetic field distribution obtained by interpolating the electric field or magnetic field at the height of the antenna, and
    Let the computer do more
    The determination function calculates a deviation between the maximum value of the electric field or magnetic field in the first electromagnetic field distribution and the maximum value of the electric field or magnetic field in the second electromagnetic field distribution, and the deviation exceeds a predetermined allowable value. If so, it is a function to determine that it is necessary to consider the radiated interfering wave reflected on the floor surface.
    The electromagnetic wave measurement point calculation program according to claim 5.
  9.  前記放射妨害波の電界及び磁界の少なくとも一方の分布であり、シミュレーション又は実測により得られた第一電磁界分布を取得する第一電磁界分布取得機能と、
     前記測定高さ算出機能により算出された前記アンテナの高さにおける電界又は磁界をシミュレーション又は実測により取得し、ローパスフィルタを使用して前記測定高さ算出機能により算出された前記アンテナの高さと異なる前記アンテナの高さにおける電界又は磁界を補間することにより得られた第二電磁界分布を取得する第二電磁界分布取得機能と、
     をコンピュータに更に実行させ、
     前記判定機能は、前記第一電磁界分布における電界又は磁界の最大値と、前記第二電磁界分布における電界又は磁界の最大値との偏差を算出し、前記偏差が所定の閾値以下の前記反射係数に対応している場合、前記床面で反射される前記放射妨害波を考慮する必要がないと判定する機能である、
     請求項4に記載の電磁波測定点算出プログラム。
    The first electromagnetic field distribution acquisition function that acquires the first electromagnetic field distribution obtained by simulation or actual measurement, which is the distribution of at least one of the electric and magnetic fields of the radiated interfering wave.
    The electric field or magnetic field at the height of the antenna calculated by the measurement height calculation function is acquired by simulation or actual measurement, and is different from the height of the antenna calculated by the measurement height calculation function using a low-pass filter. The second electromagnetic field distribution acquisition function that acquires the second electromagnetic field distribution obtained by interpolating the electric field or magnetic field at the height of the antenna, and
    Let the computer do more
    The determination function calculates the deviation between the maximum value of the electric field or magnetic field in the first electromagnetic field distribution and the maximum value of the electric field or magnetic field in the second electromagnetic field distribution, and the reflection whose deviation is equal to or less than a predetermined threshold value. When it corresponds to the coefficient, it is a function to determine that it is not necessary to consider the radiated interfering wave reflected on the floor surface.
    The electromagnetic wave measurement point calculation program according to claim 4.
  10.  前記放射妨害波の電界及び磁界の少なくとも一方の分布であり、シミュレーション又は実測により得られた第一電磁界分布を取得する第一電磁界分布取得機能と、
     前記測定高さ算出機能により算出された前記アンテナの高さにおける電界又は磁界をシミュレーション又は実測により取得し、ローパスフィルタを使用して前記測定高さ算出機能により算出された前記アンテナの高さと異なる前記アンテナの高さにおける電界又は磁界を補間することにより得られた第二電磁界分布を取得する第二電磁界分布取得機能と、
     をコンピュータに更に実行させ、
     前記判定機能は、前記第一電磁界分布における電界又は磁界の最大値と、前記第二電磁界分布における電界又は磁界の最大値との偏差を算出し、前記偏差が所定の閾値を超える前記反射係数に対応にしている場合、前記床面で反射される前記放射妨害波を考慮する必要があると判定する機能である、
     請求項5に記載の電磁波測定点算出プログラム。
    The first electromagnetic field distribution acquisition function that acquires the first electromagnetic field distribution obtained by simulation or actual measurement, which is the distribution of at least one of the electric and magnetic fields of the radiated interfering wave.
    The electric field or magnetic field at the height of the antenna calculated by the measurement height calculation function is acquired by simulation or actual measurement, and is different from the height of the antenna calculated by the measurement height calculation function using a low-pass filter. The second electromagnetic field distribution acquisition function that acquires the second electromagnetic field distribution obtained by interpolating the electric field or magnetic field at the height of the antenna, and
    Let the computer do more
    The determination function calculates the deviation between the maximum value of the electric field or magnetic field in the first electromagnetic field distribution and the maximum value of the electric field or magnetic field in the second electromagnetic field distribution, and the reflection in which the deviation exceeds a predetermined threshold value. When it corresponds to the coefficient, it is a function to determine that it is necessary to consider the radiated interfering wave reflected on the floor surface.
    The electromagnetic wave measurement point calculation program according to claim 5.
  11.  前記判定機能は、前記反射係数、前記放射妨害波の周波数及び前記放射妨害波の最大の周波数から算出されるサンプリング周波数が次の式(5)を満たす場合、前記床面で反射される前記放射妨害波を考慮する必要がないと判定する機能である、
     請求項4に記載の電磁波測定点算出プログラム。
    Figure JPOXMLDOC01-appb-M000005
    In the determination function, when the sampling frequency calculated from the reflection coefficient, the frequency of the radiated interfering wave and the maximum frequency of the radiating interfering wave satisfies the following equation (5), the radiation reflected on the floor surface. It is a function to judge that it is not necessary to consider the interference wave,
    The electromagnetic wave measurement point calculation program according to claim 4.
    Figure JPOXMLDOC01-appb-M000005
  12.  前記判定機能は、前記反射係数、前記放射妨害波の周波数及び前記放射妨害波の最大の周波数から算出されるサンプリング周波数が次の式(6)を満たさない場合、前記床面で反射される前記放射妨害波を考慮する必要があると判定する機能である、
     請求項5に記載の電磁波測定点算出プログラム。
    Figure JPOXMLDOC01-appb-M000006
    The determination function is reflected on the floor surface when the sampling frequency calculated from the reflection coefficient, the frequency of the radiating interfering wave and the maximum frequency of the radiating interfering wave does not satisfy the following equation (6). It is a function to judge that it is necessary to consider the radiated interference wave,
    The electromagnetic wave measurement point calculation program according to claim 5.
    Figure JPOXMLDOC01-appb-M000006
  13.  前記判定機能は、電界及び磁界の少なくとも一方の測定が実行される前記放射妨害波の周波数に対する前記床面の吸収特性が次の式(7)を満たす場合、前記前記床面で反射される前記放射妨害波を考慮する必要がないと判定する機能である、
     請求項4に記載の電磁波測定点算出プログラム。
    Figure JPOXMLDOC01-appb-M000007
    The determination function is reflected by the floor surface when the absorption characteristic of the floor surface with respect to the frequency of the radiated interfering wave at which at least one of the electric field and the magnetic field is measured satisfies the following equation (7). It is a function to judge that it is not necessary to consider radiated interference waves.
    The electromagnetic wave measurement point calculation program according to claim 4.
    Figure JPOXMLDOC01-appb-M000007
  14.  前記判定機能は、電界及び磁界の少なくとも一方の測定が実行される前記放射妨害波の周波数に対する前記床面の吸収特性が次の式(8)を満たさない場合、前記前記床面で反射される前記放射妨害波を考慮する必要があると判定する機能である、
     請求項5に記載の電磁波測定点算出プログラム。
    Figure JPOXMLDOC01-appb-M000008
    The determination function is reflected by the floor surface when the absorption characteristic of the floor surface with respect to the frequency of the radiated interfering wave at which at least one of the electric field and the magnetic field is measured does not satisfy the following equation (8). This is a function for determining that it is necessary to consider the radiated interference wave.
    The electromagnetic wave measurement point calculation program according to claim 5.
    Figure JPOXMLDOC01-appb-M000008
  15.  前記判定機能は、前記床面を基準とした高さが0.45λmin及び2.8λmaxのうち大きい方の値以上の電波吸収体が前記床面に敷設されている場合、前記前記床面で反射される前記放射妨害波を考慮する必要がないと判定する機能である、
     請求項4に記載の電磁波測定点算出プログラム。
    The determination function is performed when a radio wave absorber having a height of 0.45 λ min or 2.8 λ max with respect to the floor surface, whichever is larger than the larger value, is laid on the floor surface. It is a function to judge that it is not necessary to consider the radiation interference wave reflected by.
    The electromagnetic wave measurement point calculation program according to claim 4.
  16.  前記判定機能は、前記床面を基準とした高さが0.45λmin及び2.8λmaxのうち大きい方の値未満の電波吸収体が前記床面に敷設されている場合又は電波吸収体が敷設されていない場合、前記前記床面で反射される前記放射妨害波を考慮する必要があるいと判定する機能である、
     請求項5に記載の電磁波測定点算出プログラム。
    The determination function is performed when a radio wave absorber whose height with respect to the floor surface is less than the larger value of 0.45λ min and 2.8λ max is laid on the floor surface or when the radio wave absorber is installed. When it is not laid, it is a function to determine that it is necessary to consider the radiation interference wave reflected on the floor surface.
    The electromagnetic wave measurement point calculation program according to claim 5.
  17.  請求項1から請求項16のいずれか一つに記載の電磁波測定点算出プログラムを実行するコンピュータを備える放射妨害波測定装置。 A radiated interference wave measuring device including a computer that executes the electromagnetic wave measuring point calculation program according to any one of claims 1 to 16.
PCT/JP2020/007667 2019-03-27 2020-02-26 Electromagnetic wave measurement point calculation program and radiation interference wave measurement device WO2020195473A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/435,979 US11656260B2 (en) 2019-03-27 2020-02-26 Electromagnetic wave measurement point calculation program and radiation interference wave measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-060380 2019-03-27
JP2019060380A JP7183907B2 (en) 2019-03-27 2019-03-27 Electromagnetic wave measurement point calculation program and radiated interference wave measurement device

Publications (1)

Publication Number Publication Date
WO2020195473A1 true WO2020195473A1 (en) 2020-10-01

Family

ID=72609232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007667 WO2020195473A1 (en) 2019-03-27 2020-02-26 Electromagnetic wave measurement point calculation program and radiation interference wave measurement device

Country Status (3)

Country Link
US (1) US11656260B2 (en)
JP (1) JP7183907B2 (en)
WO (1) WO2020195473A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112798875A (en) * 2020-12-30 2021-05-14 清远市天之衡传感科技有限公司 Millimeter wave and terahertz wave electric field measuring method, device and system
CN114035697A (en) * 2021-11-26 2022-02-11 中国电子技术标准化研究院 Low-radiation anti-electromagnetic-interference keyboard and mouse simulation device and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015034785A (en) * 2013-08-09 2015-02-19 Tdk株式会社 Method and instrument for estimating far electromagnetic field and instrument for measuring near electromagnetic field
JP2016142609A (en) * 2015-02-02 2016-08-08 Tdk株式会社 Far electromagnetic field estimation device
US20170248642A1 (en) * 2016-02-26 2017-08-31 National Chung Cheng University Near-field antenna measurement method and measurement system using the same
JP2019164102A (en) * 2018-03-20 2019-09-26 Tdk株式会社 Electromagnetic wave measurement point calculation device and radiation disturbing wave measurement device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304790A (en) * 1999-04-23 2000-11-02 Hitachi Ltd Device and method for investigating electromagnetic wave generating source and method for analyzing the source
DE102009018925A1 (en) * 2009-04-28 2010-11-04 Astrium Gmbh Method and arrangement for measuring the directional characteristic of an antenna to be tested
JP6686617B2 (en) 2016-03-28 2020-04-22 Tdk株式会社 Radiated emission measuring device
US11035949B2 (en) * 2017-04-10 2021-06-15 The Government of the United States of America, as represented by the Secretary of Homeland Security Methods of obtaining error correction for reflection coefficient measurement systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015034785A (en) * 2013-08-09 2015-02-19 Tdk株式会社 Method and instrument for estimating far electromagnetic field and instrument for measuring near electromagnetic field
JP2016142609A (en) * 2015-02-02 2016-08-08 Tdk株式会社 Far electromagnetic field estimation device
US20170248642A1 (en) * 2016-02-26 2017-08-31 National Chung Cheng University Near-field antenna measurement method and measurement system using the same
JP2019164102A (en) * 2018-03-20 2019-09-26 Tdk株式会社 Electromagnetic wave measurement point calculation device and radiation disturbing wave measurement device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112798875A (en) * 2020-12-30 2021-05-14 清远市天之衡传感科技有限公司 Millimeter wave and terahertz wave electric field measuring method, device and system
CN112798875B (en) * 2020-12-30 2023-08-08 清远市天之衡传感科技有限公司 Millimeter wave and terahertz wave electric field measurement method, device and system
CN114035697A (en) * 2021-11-26 2022-02-11 中国电子技术标准化研究院 Low-radiation anti-electromagnetic-interference keyboard and mouse simulation device and method
CN114035697B (en) * 2021-11-26 2023-10-03 中国电子技术标准化研究院 Low-radiation anti-electromagnetic-interference keyboard and mouse simulation device and method

Also Published As

Publication number Publication date
US20220155358A1 (en) 2022-05-19
US11656260B2 (en) 2023-05-23
JP2020159905A (en) 2020-10-01
JP7183907B2 (en) 2022-12-06

Similar Documents

Publication Publication Date Title
WO2020195473A1 (en) Electromagnetic wave measurement point calculation program and radiation interference wave measurement device
US10317446B2 (en) Radiated emission measuring device
US11486917B2 (en) Electromagnetic wave measurement point calculation device and radiation interference wave measurement device
JP2007271317A (en) Emi measuring instrument, and emi measuring method
JP7016303B2 (en) Radiation power estimation method
US20120154122A1 (en) Method and apparatus of radio frequency testing
CN113253000A (en) Antenna field calibration system and method
KR102242905B1 (en) Direction finding correction and accuracy measurement device and method of two-dimensional direction detection finder
CN112327061A (en) Horn antenna directional pattern calibration system and method
WO2016031451A1 (en) Electric field strength calculation program, electric field strength calculation device, and electric field strength calculation method
CN115236100A (en) Method, device and equipment for determining performance of material transmission microwave and storage medium
JP2011102708A (en) Method of antenna measurement and method of antenna calibration
US20070233405A1 (en) Computer program, apparatus, and method for analyzing electromagnetic waves
WO2020189198A1 (en) Electromagnetic field distribution generation program, file generation program, and electromagnetic field distribution generation device
JP2010019727A (en) Apparatus and method for measuring radar cross section and program for measuring radar cross section
CN108254729B (en) Double-fitting phase unwrapping method and double-fitting phase unwrapping device
US20240110962A1 (en) Computer-readable medium, information processing method, and information processing device
JP2021139715A (en) Program and radiation disturbing wave measurement device
JP7115301B2 (en) Radiated Emission Measurement Equipment
JP2022142574A (en) Program and radiation interference wave measurement device
US20220299602A1 (en) Object detection apparatus, object detection method,and non-transitory computer readable medium
US8203494B2 (en) Testing method of multiband antenna
JP3672239B2 (en) Radar cross-sectional area measuring method, measuring apparatus therefor, and storage medium recording control program therefor
JP2020051919A (en) Radiated emissions measuring device
Alexander et al. CISPR standard for calibration of EMC antennas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779287

Country of ref document: EP

Kind code of ref document: A1