JP3672239B2 - Radar cross-sectional area measuring method, measuring apparatus therefor, and storage medium recording control program therefor - Google Patents

Radar cross-sectional area measuring method, measuring apparatus therefor, and storage medium recording control program therefor Download PDF

Info

Publication number
JP3672239B2
JP3672239B2 JP2000385157A JP2000385157A JP3672239B2 JP 3672239 B2 JP3672239 B2 JP 3672239B2 JP 2000385157 A JP2000385157 A JP 2000385157A JP 2000385157 A JP2000385157 A JP 2000385157A JP 3672239 B2 JP3672239 B2 JP 3672239B2
Authority
JP
Japan
Prior art keywords
electric field
measured
scattered electric
phase
equivalent scattering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000385157A
Other languages
Japanese (ja)
Other versions
JP2002181922A (en
Inventor
良夫 稲沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000385157A priority Critical patent/JP3672239B2/en
Publication of JP2002181922A publication Critical patent/JP2002181922A/en
Application granted granted Critical
Publication of JP3672239B2 publication Critical patent/JP3672239B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、レーダ断面積の測定方法に関するものである。
【0002】
【従来の技術】
レーダ断面積(RCS:Radar Cross Section)は無限遠方で測定したものとして規定されるため、被測定物から十分遠方で測定する必要がある。通常、被測定物の最大径をD、測定波長をλとすると、十分遠方で測定するためには測定距離Rは次の(1)式を満たさなければならない。
【0003】
【数1】

Figure 0003672239
【0004】
しかし、十分な測定レンジがとれない場合、遠方領域のRCSを求める方法の一つとして、近傍領域での測定値から遠方領域のRCSを推定する方法が提案されている。この範疇に属する従来のRCS測定として、例えば「1999年電子情報通信学会総合大会、B−1−10」の論文において近傍領域で測定した散乱界から遠方領域のレーダ断面積を求める方法が提案されている。
【0005】
図7はこの従来のレーダ断面積の測定方法で定義されている遠方RCS推定用の座標系を示す。同図において推定するRCSの方向をX軸とし、被測定物のある原点から距離ρの位置に実際に測定する波源および観測点P(送信アンテナ及び受信アンテナ)を設置する。このとき被測定物のY軸方向およびZ軸方向の最大長をHw、Zw、測定波長をλとし、測定距離ρは次の(2)式を満たす近傍領域とする。
【0006】
【数2】
Figure 0003672239
【0007】
すなわち、被測定物のY軸方向の大きさに対しては近傍領域になるが、Z軸方向の大きさに対しては遠方領域になっているものとする。この測定距離において波源および観測点を固定し被測定物をXY面内で回転させ(走査角:φ)散乱電界Es(φ)を測定する。ここで散乱電界は電界強度のみでなく位相情報も測定する必要がある。測定範囲がφwの散乱電界から次の(3)式で散乱体固有の等価散乱係数Se(y)を求めることができる。
【0008】
【数3】
Figure 0003672239
【0009】
次に被測定物をY軸に投影した領域相当ywの等価散乱係数Se(y)から次の(4)式で遠方領域におけるRCS:σを求めることができる。
【0010】
【数4】
Figure 0003672239
【0011】
【発明が解決しようとする課題】
従来のRCS測定方法では等価散乱係数を求めるために、近傍領域の位相情報も含めた散乱電界を必要としていた。しかし、周波数が高くなると精度良く位相を求めることが困難になるという問題点がある。あるいは、位相を精度よく測定するための測定装置が必要になるため、測定系が複雑になるという問題点があった。
【0012】
この発明は上記の課題を解消するためになされたもので、散乱電界の位相の測定が困難な場合にも遠方でのレーダ断面積を得ることができるレーダ断面積の測定方法、測定装置およびその制御プログラムを記録した記憶媒体を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記の目的に鑑み、この発明は、レーダ断面積の遠方領域での測定条件から考えて水平方向には大きいが垂直方向には十分小さい被測定物のレーダ断面積の測定方法であって、被測定物からの近傍領域内の上記被測定物からの距離が異なる少なくとも2つの位置で、被測定物を回転走査又は直線移動走査して測定した散乱電界の振幅の測定値を変換して遠方領域におけるレーダ断面積を求めるものであり、上記被測定物からの距離が異なる位置を第1の位置、第2の位置とし、上記第1および第2のそれぞれの位置での散乱電界の強度を散乱電界の振幅として測定する工程と、第1の位置における位相の初期条件を0に設定する工程と、散乱電界が求められた上記振幅、位相を0として第1の位置での第1の等価散乱係数を求める工程と、この第1の等価散乱係数から第2の位置の散乱電界の振幅と位相を求める工程と、この求められた第2の位置の散乱電界における位相、最初に求められた第2の位置での散乱電界における振幅とする散乱電界から第2の等価散乱係数を求める工程と、上記第1と第2の等価散乱係数が差が十分小さい場合に上記第1又は第2の等価散乱係数から遠方領域におけるレーダ断面積を求める工程と、上記第1と第2の等価散乱係数が差が十分小さくない場合に上記第2の等価散乱係数から第1の位置における散乱電界を求め、これから求まる位相を第1の位置における位相に置き換えて再度、上記第1の等価散乱係数を求める工程から繰り返す工程と、を備えたことを特徴とするレーダ断面積の測定方法にある。
【0014】
また、レーダ断面積の遠方領域での測定条件から考えて水平方向には大きいが垂直方向には十分小さい被測定物のレーダ断面積を求めるレーダ断面積の測定装置であって、上記被測定物を回転走査又は直線移動走査させる走査機構と、上記被測定物に電波を送信する送信アンテナと、上記被測定物からの電波を受信する受信アンテナと、これらの送信および受信アンテナを上記被測定物からの近傍領域内の被測定物からの距離が異なる少なくとも2つの位置に移動させる移動機構と、上記送信および受信アンテナにより上記少なくとも2つの位置で測定した散乱電界の振幅の測定値を変換して遠方領域におけるレーダ断面積を求める制御ユニットと、を備え、上記制御ユニットが、上記被測定物からの距離が異なる位置を第1の位置、第2の位置とし、上記送信および受信アンテナにより上記第1および第2のそれぞれの位置での散乱電界の強度を散乱電界の振幅として測定する手段と、第1の位置における位相の初期条件を0に設定する手段と、散乱電界が求められた上記振幅、位相を0として第1の位置での第1の等価散乱係数を求める手段と、この第1の等価散乱係数から第2の位置の散乱電界の振幅と位相を求める手段と、この求められた第2の位置の散乱電界における位相、最初に求められた第2の位置での散乱電界における振幅とする散乱電界から第2の等価散乱係数を求める手段と、上記第1と第2の等価散乱係数が差が十分小さい場合に上記第1又は第2の等価散乱係数から遠方領域におけるレーダ断面積を求める手段と、上記第1と第2の等価散乱係数が差が十分小さくない場合に上記第2の等価散乱係数から第1の位置における散乱電界を求め、これから求まる位相を第1の位置における位相に置き換えて再度、上記第1の等価散乱係数を求める手段から繰り返す手段と、を備えたことを特徴とするレーダ断面積の測定装置にある。
【0015】
また、上記制御ユニットが、上記走査機構および移動機構を駆動させ走査および移動を制御する手段をさらに備えたことを特徴とする。
【0016】
また、レーダ断面積の遠方領域での測定条件から考えて水平方向には大きいが垂直方向には十分小さい被測定物の遠方領域におけるレーダ断面積を、被測定物からの近傍領域内の上記被測定物からの距離が異なる少なくとも2つの位置で、被測定物を回転走査又は直線移動走査して測定した散乱電界の振幅の測定値を変換して求める測定をコンピュータによって制御する制御プログラムを記録した記憶媒体であって、上記被測定物からの距離が異なる位置を第1の位置、第2の位置とし、上記被測定物に電波を送信する送信アンテナと被測定物からの電波を受信する受信アンテナに上記第1および第2のそれぞれの位置での散乱電界の強度を散乱電界の振幅として測定させる手順と、第1の位置における位相の初期条件を0に設定させる手順と、散乱電界が求められた上記振幅、位相を0として第1の位置での第1の等価散乱係数を求めさせる手順と、この第1の等価散乱係数から第2の位置の散乱電界の振幅と位相を求めさせる手順と、この求められた第2の位置の散乱電界における位相、最初に求められた第2の位置での散乱電界における振幅とする散乱電界から第2の等価散乱係数を求めさせる手順と、上記第1と第2の等価散乱係数が差が十分小さいことを判別させる手順と、上記差が十分小さい場合に上記第1又は第2の等価散乱係数から遠方領域におけるレーダ断面積を求めさせる手順と、上記差が十分小さくない場合に上記第2の等価散乱係数から第1の位置における散乱電界を求め、これから求まる位相を第1の位置における位相に置き換えて再度、上記第1の等価散乱係数を求める手順から繰り返させる手順と、を実行させるプログラムを記憶した記憶媒体にある。
【0017】
また、上記被測定物を回転走査又は直線移動走査させる走査機構を駆動させて、上記被測定物を回転走査又は直線移動走査させる手順と、上記送信および受信アンテナを移動させる移動機構を駆動させて、上記被測定物からの近傍領域内の被測定物からの距離が異なる少なくとも2つの位置に移動させる手順と、を実行させるプログラムをさらに記憶したことを特徴とする。
【0020】
【発明の実施の形態】
実施の形態1.
図1はこの発明の実施の形態1によるレーダ断面積の測定装置の構成を示す図である。1は被測定物、2は被測定物1を回転走査させる回転機構(走査機構を構成)、3は被測定物1および回転機構2を支持する支持機構である。
【0021】
4は被測定物1に電波を送信する送信アンテナ、5は被測定物1からの電波を受信する受信アンテナ、6は送受信アンテナ支持機構、7aは送受信アンテナ移動機構部、7bは送受信アンテナ移動用レールである(7aと7bで移動機構を構成)。
【0022】
被測定物1は回転機構2で任意の角度に回転することができる。また送受および受信アンテナ4、5は送受信アンテナ移動用レール7b上にあり、被測定物1から任意の距離に移動することができる。
【0023】
100はこれらの装置の制御を行う例えばコンピュータから構成される制御ユニットで、後述する方法に従って送信および受信アンテナ4、5を駆動して測定した散乱電界から被測定物1の遠方領域におけるレーダ断面積を求める。
【0024】
図2はこの実施の形態における測定方法を説明する座標系を示す。1は被測定物、4、5は送信および受信アンテナを示す。座標系および被測定物1を回転する走査方法は従来例に示した方法と同様とする。従って、上記(2)〜(4)式が成立する。さらに、等価散乱係数Se(y)から近傍領域の距離ρ、走査角φにおける散乱電界Es(φ)は次の(5)式で求めることができる。
【0025】
【数5】
Figure 0003672239
【0026】
ここで積分範囲ywは被測定物1のY軸への投影領域相当である。制御ユニット100はこの座標系において図2に示すように異なる距離ρ1、ρ2に送受信アンテナ4、5を設置してそれぞれにおいて散乱電界E1、E2を測定し、これらの測定値から図3に示すフローチャートの手順で遠方RCSを求める。次にこれらの各手順について説明する。
【0027】
必要とするデータは上述した距離ρ1、ρ2における散乱電界の測定値であるが、位相成分は不明で電界強度のみ測定する。またそれぞれの電界強度を振幅A1、A2とする(ステップS1)。
【0028】
距離ρ1での散乱電界の位相成分は不明であるが、初期条件として位相:P1が0であると仮定する(ステップS2)。
【0029】
距離ρ1における散乱電界が振幅A1、位相P1であると仮定し、(2)式に従い等価散乱係数Se’(y)を求める(ステップS3)。
【0030】
ステップS3で求めた等価散乱係数Se’(y)から、(2)式に従い距離ρ2における散乱電界を求め、その振幅をA2’、位相をP2’とする(ステップS4)。
【0031】
ステップS4で得られた位相P2’、最初の測定で得られた振幅A2を距離ρ2における散乱電界とし、(2)式に従い等価散乱係数Se’’(y)を求める(ステップS5)。
【0032】
ステップS3、ステップS5でそれぞれ得られた等価散乱係数Se’(y)、Se’’(y)の差が十分小さいか否か判定する。Se’(y)、Se’’(y)は位置yにより異なるため、例えば被測定物1のy軸投影領域相当内に等間隔にm点の参照点{yi | i=1、・・・、m}をとり、これらの参照点でのSe’(y)、Se’’(y)の誤差平均が微小量δ以下であるか否か判定すればよい。
【0033】
【数6】
Figure 0003672239
【0034】
上記(6)式を満たす場合には十分収束していると判定しステップS9に進み、これらの等価散乱係数から遠方RCSを計算する。上記(6)式を満たさない場合には次のステップ7に進む(ステップS6)。
【0035】
ステップS5で求めた等価散乱係数Se’’(y)から(5)式に従い距離ρ1における散乱電界を求め、その振幅をA1’’、位相をP1’’とする(ステップS7)。
【0036】
距離ρ1における位相P1をステップS7で得られたP1’’で置き換え、ステップS3から繰り返す(ステップS8)。
【0037】
ステップS6で収束条件が満たされている場合には等価散乱係数Se’(y)あるいはSe’’(y)で(4)式に従い遠方領域におけるRCSを求める(ステップS9)。
【0038】
上述したステップS4〜ステップS8を繰り返し行うことにより、初期値の散乱電界として位相情報がなくても、真の等価散乱係数に近いものを得ることができ、遠方でのRCSを求めることができる。また本実施の形態では2つの測定距離で測定した散乱電界の測定値を用いたが、3つ以上の位置で測定した散乱電界に対して同様の処理を行ってもよい。
【0039】
以上のように本実施の形態によれば、周波数が高いこと等で散乱電界の位相の測定が困難な場合にも遠方でのRCSを得ることができる。
また、位相測定機構のない簡易な測定系、装置を実現できるという効果がある。
また、直接遠方でのRCSを測定する測定系と比べてコンパクトな測定系、装置を実現することができる。
【0040】
なお、図4に示すように高精度に散乱電界強度を測定するため、被測定物1と送信および受信アンテナ4、5間に電波吸収体9を設置し高精度に散乱電界強度を測定できるようにしてもよい。電波吸収体9が設置されているため、地面反射などの不要波の影響を取り除くことができ高精度に散乱電界を測定できるため、高精度に遠方でのRCSを求めることができるという効果がある。
【0041】
実施の形態2.
図5はこの発明の実施の形態2によるレーダ断面積の測定装置の構成を示す図である。図5において上記実施の形態1と同一もしくは相当部分は同一符号で示す。8aは被測定物移動機構部、8bは被測定物移動用レールである(8aと8bで走査機構を構成)。上記実施の形態1では被測定物1を回転走査していたがこの実施の形態では直線移動走査させている。
【0042】
被測定物1は被測定物移動用レール8b上にあり、任意の位置に直線的に移動することができる。また送信および受信アンテナ4、5も送受信アンテナ移動用レール7上にあり、被測定物から任意の距離に移動することができる。
【0043】
図6はこの実施の形態における測定方法を説明する座標系を示す。1は被測定物、4、5は送信および受信アンテナを示す。本実施の形態においても図6に示すように被測定物から距離ρ1、ρ2の位置において散乱電界を測定するが、走査方法は直線走査とする。被測定物1をY軸方向に移動させ、その移動量をy’とする。この走査方法において距離ρで測定した散乱電界Es(y’)から等価散乱係数Se(y)を求める関係式は次の(7)式で与えられる。
【0044】
【数7】
Figure 0003672239
【0045】
また、等価散乱係数Se(y)から距離ρ、走査量y’で測定した散乱電界Es(y’)は次の(8)式で与えられる。
【0046】
【数8】
Figure 0003672239
【0047】
本実施の形態において距離ρ1、ρ2における散乱電界の振幅のみの測定値から遠方でのRCSを求める手順は、前実施の形態における数3、数5の関係式を数7、数8に置き換えて図2に示す方法で同様に行えばよい。
【0048】
本実施の形態においても、周波数が高いこと等で散乱電界の位相の測定が困難な場合にも遠方でのRCSを得ることができる。
また、位相測定機構のない簡易な測定系、装置を実現できるという効果がある。
また、直接遠方でのRCSを測定する測定系と比べてコンパクトな測定系、装置を実現することができる。
【0049】
なおこの実施の形態においても、図4に示したように高精度に散乱電界強度を測定するため、被測定物1と送信および受信アンテナ4、5間に電波吸収体9を設置し高精度に散乱電界強度を測定できるようにしてもよく、同様な効果がある。
【0050】
【発明の効果】
以上のようにこの発明によれば、レーダ断面積の遠方領域での測定条件から考えて水平方向には大きいが垂直方向には十分小さい被測定物のレーダ断面積の測定方法であって、被測定物からの近傍領域内の上記被測定物からの距離が異なる少なくとも2つの位置で、被測定物を回転走査又は直線移動走査して測定した散乱電界の振幅の測定値を変換して遠方領域におけるレーダ断面積を求めることを特徴とするレーダ断面積の測定方法としたので、周波数が高いこと等で散乱電界の位相の測定が困難な場合にも遠方でのRCSを得ることができる。
【0051】
また、上記被測定物からの距離が短いものから第1の位置、第2の位置とし、上記第1および第2のそれぞれの位置での散乱電界の強度を散乱電界の振幅として測定する工程と、第1の位置における位相の初期条件を0に設定する工程と、散乱電界が求められた上記振幅、位相を0として第1の位置での第1の等価散乱係数を求める工程と、この第1の等価散乱係数から第2の位置の散乱電界の振幅と位相を求める工程と、この求められた第2の位置の散乱電界における位相、最初に求められた第2の位置での散乱電界における振幅とする散乱電界から第2の等価散乱係数を求める工程と、上記第1と第2の等価散乱係数が差が十分小さい場合に上記第1又は第2の等価散乱係数から遠方領域におけるレーダ断面積を求める工程と、上記第1と第2の等価散乱係数が差が十分小さくない場合に上記第2の等価散乱係数から第1の位置における散乱電界を求め、これから求まる位相を第1の位置における位相に置き換えて再度、上記第1の等価散乱係数を求める工程から繰り返す工程と、を備えたので、周波数が高いこと等で散乱電界の位相の測定が困難な場合にも遠方でのRCSを得ることができ、また、位相測定機構のない簡易な測定系を実現でき、また、直接遠方でのRCSを測定する測定系と比べてコンパクトな測定系を実現することができる。
【0052】
また、レーダ断面積の遠方領域での測定条件から考えて水平方向には大きいが垂直方向には十分小さい被測定物のレーダ断面積を求めるレーダ断面積の測定装置であって、上記被測定物を回転走査又は直線移動走査させる走査機構と、上記被測定物に電波を送信する送信アンテナと、上記被測定物からの電波を受信する受信アンテナと、これらの送信および受信アンテナを上記被測定物からの近傍領域内の被測定物からの距離が異なる少なくとも2つの位置に移動させる移動機構と、上記送信および受信アンテナにより上記少なくとも2つの位置で測定した散乱電界の振幅の測定値を変換して遠方領域におけるレーダ断面積を求める制御ユニットと、を備えたことを特徴とするレーダ断面積の測定装置としたので、周波数が高いこと等で散乱電界の位相の測定が困難な場合にも遠方でのRCSを得ることができる。
【0053】
また、上記制御ユニットが、上記2つの位置を被測定物からの距離が短いものから第1の位置、第2の位置とし、上記送信および受信アンテナにより上記第1および第2のそれぞれの位置での散乱電界の強度を散乱電界の振幅として測定する手段と、第1の位置における位相の初期条件を0に設定する手段と、散乱電界が求められた上記振幅、位相を0として第1の位置での第1の等価散乱係数を求める手段と、この第1の等価散乱係数から第2の位置の散乱電界の振幅と位相を求める手段と、この求められた第2の位置の散乱電界における位相、最初に求められた第2の位置での散乱電界における振幅とする散乱電界から第2の等価散乱係数を求める手段と、上記第1と第2の等価散乱係数が差が十分小さい場合に上記第1又は第2の等価散乱係数から遠方領域におけるレーダ断面積を求める手段と、上記第1と第2の等価散乱係数が差が十分小さくない場合に上記第2の等価散乱係数から第1の位置における散乱電界を求め、これから求まる位相を第1の位置における位相に置き換えて再度、上記第1の等価散乱係数を求める手段から繰り返す手段と、を備えたので、周波数が高いこと等で散乱電界の位相の測定が困難な場合にも遠方でのRCSを得ることができ、また、位相測定機構のない簡易な装置にすることができ、さらに直接遠方でのRCSを測定する測定系と比べてコンパクトな装置とすることができる。
【0054】
また、上記制御ユニットが、上記走査機構および移動機構を駆動させ走査および移動を制御する手段をさらに備えることにより、測定全体の総合的な制御が行える。
【0055】
また、レーダ断面積の遠方領域での測定条件から考えて水平方向には大きいが垂直方向には十分小さい被測定物の遠方領域におけるレーダ断面積を、被測定物からの近傍領域内の上記被測定物からの距離が異なる少なくとも2つの位置で、被測定物を回転走査又は直線移動走査して測定した散乱電界の振幅の測定値を変換して求める測定をコンピュータによって制御する制御プログラムを記録した記憶媒体であって、上記被測定物からの距離が短いものから第1の位置、第2の位置とし、上記被測定物に電波を送信する送信アンテナと被測定物からの電波を受信する受信アンテナに上記第1および第2のそれぞれの位置での散乱電界の強度を散乱電界の振幅として測定させる手順と、第1の位置における位相の初期条件を0に設定させる手順と、散乱電界が求められた上記振幅、位相を0として第1の位置での第1の等価散乱係数を求めさせる手順と、この第1の等価散乱係数から第2の位置の散乱電界の振幅と位相を求めさせる手順と、この求められた第2の位置の散乱電界における位相、最初に求められた第2の位置での散乱電界における振幅とする散乱電界から第2の等価散乱係数を求めさせる手順と、上記第1と第2の等価散乱係数が差が十分小さいことを判別させる手順と、上記差が十分小さい場合に上記第1又は第2の等価散乱係数から遠方領域におけるレーダ断面積を求めさせる手順と、上記差が十分小さくない場合に上記第2の等価散乱係数から第1の位置における散乱電界を求め、これから求まる位相を第1の位置における位相に置き換えて再度、上記第1の等価散乱係数を求める手順から繰り返させる手順と、を実行させるプログラムを記憶した記憶媒体としたので、周波数が高いこと等で散乱電界の位相の測定が困難な場合にも遠方でのRCSを得ることができ、位相測定機構のない簡易な装置を実現でき、また直接遠方でのRCSを測定する測定系と比べてコンパクトな装置を実現することができる。
【0056】
また、上記被測定物を回転走査又は直線移動走査させる走査機構を駆動させて、上記被測定物を回転走査又は直線移動走査させる手順と、上記送信および受信アンテナを移動させる移動機構を駆動させて、上記被測定物からの近傍領域内の被測定物からの距離が異なる少なくとも2つの位置に移動させる手順と、を実行させるプログラムをさらに記憶したものとしたので、測定全体の総合的な制御が行える装置を実現できる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1によるレーダ断面積の測定装置の構成を示す図である。
【図2】 この発明の実施の形態1における測定方法を説明する座標系を示す。
【図3】 この発明の実施の形態1によるレーダ断面積の測定装置の測定動作を説明するためのフローチャートである。
【図4】 この発明の実施の形態1によるレーダ断面積の測定装置の変形例を示す図である。
【図5】 この発明の実施の形態2によるレーダ断面積の測定装置の構成を示す図である。
【図6】 この発明の実施の形態2における測定方法を説明する座標系を示す。
【図7】 従来のレーダ断面積の測定方法で定義されている遠方RCS推定用の座標系を示す図である。
【符号の説明】
1 被測定物、2 回転機構、3 支持機構、4 送信アンテナ、5 受信アンテナ、6 送受信アンテナ支持機構、7a 送受信アンテナ移動機構部、7b送受信アンテナ移動用レール、8a 被測定物移動機構部、8b 被測定物移動用レール、100 制御ユニット。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring a radar cross section.
[0002]
[Prior art]
Since the radar cross section (RCS) is defined as being measured at infinity, it must be measured sufficiently far from the object to be measured. Usually, when the maximum diameter of the object to be measured is D and the measurement wavelength is λ, the measurement distance R must satisfy the following equation (1) in order to measure sufficiently far away.
[0003]
[Expression 1]
Figure 0003672239
[0004]
However, when a sufficient measurement range cannot be taken, as a method for obtaining the RCS of the far region, a method of estimating the RCS of the far region from the measurement values in the near region has been proposed. As a conventional RCS measurement belonging to this category, for example, a method for obtaining a radar cross section in a far region from a scattered field measured in a near region is proposed in a paper of “1999 Annual Conference of the Institute of Electronics, Information and Communication Engineers, B-1-10”. ing.
[0005]
FIG. 7 shows a coordinate system for estimating a remote RCS defined by this conventional radar cross-sectional area measurement method. The direction of RCS estimated in the figure is the X axis, and a wave source and an observation point P (transmitting antenna and receiving antenna) that are actually measured are installed at a distance ρ from the origin of the object to be measured. At this time, the maximum length of the DUT in the Y-axis direction and the Z-axis direction is Hw, Zw, the measurement wavelength is λ, and the measurement distance ρ is a nearby region that satisfies the following equation (2).
[0006]
[Expression 2]
Figure 0003672239
[0007]
That is, it is assumed that the area to be measured is in the vicinity area with respect to the size in the Y-axis direction, but is in the distance area with respect to the size in the Z-axis direction. At this measurement distance, the wave source and the observation point are fixed, the object to be measured is rotated in the XY plane (scanning angle: φ), and the scattered electric field Es (φ) is measured. Here, it is necessary to measure not only the electric field strength but also phase information of the scattered electric field. The equivalent scattering coefficient Se (y) specific to the scatterer can be obtained from the scattered electric field having the measurement range φw by the following equation (3).
[0008]
[Equation 3]
Figure 0003672239
[0009]
Next, RCS: σ in the far region can be obtained from the equivalent scattering coefficient Se (y) of the region corresponding to yw obtained by projecting the object to be measured on the Y axis by the following equation (4).
[0010]
[Expression 4]
Figure 0003672239
[0011]
[Problems to be solved by the invention]
In the conventional RCS measurement method, a scattered electric field including phase information in the vicinity region is required to obtain an equivalent scattering coefficient. However, there is a problem that it becomes difficult to obtain the phase with high accuracy as the frequency increases. Alternatively, since a measuring device for measuring the phase with high accuracy is required, there is a problem that the measuring system becomes complicated.
[0012]
The present invention has been made in order to solve the above-described problems. A radar cross-sectional area measuring method, a measuring apparatus, and a measuring apparatus that can obtain a radar cross-sectional area at a distance even when measurement of the phase of the scattered electric field is difficult are provided. It is an object to provide a storage medium in which a control program is recorded.
[0013]
[Means for Solving the Problems]
In view of the above object, the present invention is a method for measuring a radar cross section of an object to be measured that is large in the horizontal direction but sufficiently small in the vertical direction in view of the measurement conditions in the far region of the radar cross section. Distant region by converting the measured value of the amplitude of the scattered electric field measured by rotating or linearly scanning the object to be measured at at least two positions in the vicinity area from the object to be measured at different distances from the object to be measured. The position where the distance from the object to be measured is different is defined as the first position and the second position, and the intensity of the scattered electric field at each of the first and second positions is scattered. A step of measuring the amplitude of the electric field, a step of setting the initial condition of the phase at the first position to 0, and the first equivalent scattering at the first position with the amplitude and phase at which the scattered electric field is obtained as 0 The process for obtaining the coefficient and this The step of obtaining the amplitude and phase of the scattered electric field at the second position from the first equivalent scattering coefficient, the phase in the obtained scattered electric field at the second position, and the scattered electric field at the second position obtained first. A step of obtaining the second equivalent scattering coefficient from the scattered electric field having the amplitude in FIG. 3 and a radar in a far region from the first or second equivalent scattering coefficient when the difference between the first and second equivalent scattering coefficients is sufficiently small. When the difference between the first and second equivalent scattering coefficients is not sufficiently small, a scattered electric field at the first position is obtained from the second equivalent scattering coefficient when the difference between the first and second equivalent scattering coefficients is not sufficiently small. A radar cross-sectional area measuring method comprising: a step of repeating from the step of obtaining the first equivalent scattering coefficient again by replacing with the phase at the position .
[0014]
A radar cross-sectional area measuring device for obtaining a radar cross-sectional area of an object to be measured that is large in the horizontal direction but sufficiently small in the vertical direction in consideration of the measurement conditions in the far region of the radar cross-sectional area, A scanning mechanism that rotates or linearly scans, a transmission antenna that transmits radio waves to the object to be measured, a reception antenna that receives radio waves from the object to be measured, and the transmission and reception antennas for the object to be measured A moving mechanism for moving to at least two positions having different distances from the object to be measured in the vicinity region from the distance, and converting the measured value of the scattered electric field amplitude measured at the at least two positions by the transmitting and receiving antennas. A control unit for obtaining a radar cross-sectional area in a far region, wherein the control unit defines a position at a different distance from the object to be measured as a first position, a second position And means for measuring the intensity of the scattered electric field at the first and second positions as the amplitude of the scattered electric field by the transmitting and receiving antennas, and setting the initial phase condition at the first position to zero. Means for obtaining the first equivalent scattering coefficient at the first position by setting the amplitude and phase at which the scattered electric field is obtained to zero, and the amplitude of the scattered electric field at the second position from the first equivalent scattering coefficient. And a means for obtaining a second equivalent scattering coefficient from a phase of the obtained scattered electric field at the second position and an amplitude of the scattered electric field at the second position obtained first. And means for obtaining a radar cross section in a distant region from the first or second equivalent scattering coefficient when the difference between the first and second equivalent scattering coefficients is sufficiently small, and the first and second equivalent scattering coefficients The difference in coefficient is ten If not, the means for obtaining the scattered electric field at the first position from the second equivalent scattering coefficient, replacing the phase obtained therefrom with the phase at the first position, and repeating the means from the means for obtaining the first equivalent scattering coefficient again. And a radar cross section measuring device characterized by comprising:
[0015]
The control unit may further include means for driving the scanning mechanism and the moving mechanism to control scanning and movement.
[0016]
In addition, considering the measurement conditions in the far area of the radar cross section, the radar cross section in the far area of the measured object that is large in the horizontal direction but small enough in the vertical direction is the above-mentioned area in the vicinity area from the measured object. A control program for controlling the measurement obtained by converting the measured value of the amplitude of the scattered electric field measured by rotating or linearly scanning the object to be measured at at least two positions at different distances from the object to be measured was recorded. A storage medium, wherein a position at a different distance from the object to be measured is a first position and a second position, and a transmission antenna that transmits electric waves to the object to be measured and reception that receives electric waves from the object to be measured A procedure for causing the antenna to measure the intensity of the scattered electric field at each of the first and second positions as the amplitude of the scattered electric field, and a procedure for setting the initial phase condition at the first position to zero The procedure for obtaining the first equivalent scattering coefficient at the first position by setting the amplitude and phase at which the scattered electric field is obtained to 0, and the amplitude of the scattered electric field at the second position from the first equivalent scattering coefficient, The second equivalent scattering coefficient is obtained from the procedure for obtaining the phase, the phase in the scattered electric field at the obtained second position, and the scattered electric field as the amplitude in the scattered electric field at the first obtained second position. A procedure for determining that the difference between the first and second equivalent scattering coefficients is sufficiently small, and a radar cross-sectional area in a far region from the first or second equivalent scattering coefficient when the difference is sufficiently small. When the difference is not sufficiently small, the scattered electric field at the first position is obtained from the second equivalent scattering coefficient, and the phase obtained from the phase is replaced with the phase at the first position. etc And instructions to repeat steps for obtaining the scattering coefficient, the storage medium storing a program for executing the certain.
[0017]
In addition, by driving a scanning mechanism for rotating or linearly scanning the object to be measured, a procedure for rotating or linearly scanning the object to be measured and a moving mechanism for moving the transmitting and receiving antennas are driven. And a program for executing a procedure for moving to at least two positions having different distances from the object to be measured in a vicinity region from the object to be measured.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
1 is a diagram showing a configuration of a radar cross-sectional area measuring apparatus according to Embodiment 1 of the present invention. Reference numeral 1 denotes an object to be measured, 2 denotes a rotation mechanism (a scanning mechanism) that rotates and scans the object 1 to be measured, and 3 denotes a support mechanism that supports the object 1 and the rotation mechanism 2.
[0021]
4 is a transmitting antenna that transmits radio waves to the DUT 1, 5 is a receiving antenna that receives radio waves from the DUT 1, 6 is a transmission / reception antenna support mechanism, 7a is a transmission / reception antenna moving mechanism, and 7b is a transmission / reception antenna moving mechanism. Rail (7a and 7b constitute the moving mechanism).
[0022]
The DUT 1 can be rotated at an arbitrary angle by the rotation mechanism 2. The transmission / reception and reception antennas 4 and 5 are on the transmission / reception antenna moving rail 7b, and can be moved to any distance from the DUT 1.
[0023]
Reference numeral 100 denotes a control unit configured by, for example, a computer for controlling these devices, and a radar cross section in a far region of the DUT 1 from a scattered electric field measured by driving the transmitting and receiving antennas 4 and 5 according to a method described later. Ask for.
[0024]
FIG. 2 shows a coordinate system for explaining the measurement method in this embodiment. Reference numeral 1 denotes a device under test, and 4 and 5 denote transmission and reception antennas. A scanning method for rotating the coordinate system and the DUT 1 is the same as the method shown in the conventional example. Therefore, the above equations (2) to (4) are established. Furthermore, from the equivalent scattering coefficient Se (y), the distance ρ in the vicinity region and the scattered electric field Es (φ) at the scanning angle φ can be obtained by the following equation (5).
[0025]
[Equation 5]
Figure 0003672239
[0026]
Here, the integration range yw corresponds to the projection area of the DUT 1 on the Y axis. As shown in FIG. 2, the control unit 100 installs transmission / reception antennas 4 and 5 at different distances ρ1 and ρ2 in this coordinate system and measures the scattered electric fields E1 and E2 respectively. The remote RCS is obtained by the following procedure. Next, each of these procedures will be described.
[0027]
The necessary data are the measured values of the scattered electric field at the distances ρ1 and ρ2 described above, but the phase component is unknown and only the electric field strength is measured. Further, the electric field strengths are set as amplitudes A1 and A2 (step S1).
[0028]
The phase component of the scattered electric field at the distance ρ1 is unknown, but it is assumed that the phase: P1 is 0 as an initial condition (step S2).
[0029]
Assuming that the scattered electric field at the distance ρ1 has the amplitude A1 and the phase P1, the equivalent scattering coefficient Se ′ (y) is obtained according to the equation (2) (step S3).
[0030]
From the equivalent scattering coefficient Se ′ (y) obtained in step S3, the scattered electric field at the distance ρ2 is obtained according to the equation (2), the amplitude is A2 ′, and the phase is P2 ′ (step S4).
[0031]
The phase P2 ′ obtained in step S4 and the amplitude A2 obtained in the first measurement are used as the scattered electric field at the distance ρ2, and the equivalent scattering coefficient Se ″ (y) is obtained according to the equation (2) (step S5).
[0032]
It is determined whether or not the difference between the equivalent scattering coefficients Se ′ (y) and Se ″ (y) obtained in steps S3 and S5 is sufficiently small. Since Se ′ (y) and Se ″ (y) differ depending on the position y, for example, m reference points {yi | i = 1,... , M} to determine whether the average error of Se ′ (y) and Se ″ (y) at these reference points is less than or equal to the minute amount δ.
[0033]
[Formula 6]
Figure 0003672239
[0034]
If the above equation (6) is satisfied, it is determined that the convergence is sufficient, and the process proceeds to step S9 to calculate the far RCS from these equivalent scattering coefficients. If the above equation (6) is not satisfied, the process proceeds to the next step 7 (step S6).
[0035]
From the equivalent scattering coefficient Se ″ (y) obtained in step S5, a scattered electric field at a distance ρ1 is obtained according to the equation (5), the amplitude is A1 ″, and the phase is P1 ″ (step S7).
[0036]
The phase P1 at the distance ρ1 is replaced with P1 ″ obtained at step S7, and the process is repeated from step S3 (step S8).
[0037]
If the convergence condition is satisfied in step S6, the RCS in the far region is obtained from the equivalent scattering coefficient Se ′ (y) or Se ″ (y) according to the equation (4) (step S9).
[0038]
By repeating Steps S4 to S8 described above, even if there is no phase information as the initial value of the scattered electric field, a value close to the true equivalent scattering coefficient can be obtained, and the RCS at a distance can be obtained. In the present embodiment, the measurement value of the scattered electric field measured at two measurement distances is used, but the same processing may be performed on the scattered electric field measured at three or more positions.
[0039]
As described above, according to the present embodiment, a remote RCS can be obtained even when it is difficult to measure the phase of the scattered electric field due to a high frequency or the like.
In addition, there is an effect that a simple measurement system and apparatus without a phase measurement mechanism can be realized.
In addition, a compact measurement system and apparatus can be realized as compared with a measurement system that directly measures RCS at a distance.
[0040]
In order to measure the scattered electric field strength with high accuracy as shown in FIG. 4, a radio wave absorber 9 is installed between the DUT 1 and the transmitting and receiving antennas 4 and 5 so that the scattered electric field strength can be measured with high accuracy. It may be. Since the radio wave absorber 9 is installed, the influence of unnecessary waves such as ground reflection can be removed, and the scattered electric field can be measured with high accuracy, so that it is possible to obtain RCS at a long distance with high accuracy. .
[0041]
Embodiment 2. FIG.
FIG. 5 is a diagram showing the configuration of a radar cross-sectional area measuring apparatus according to Embodiment 2 of the present invention. In FIG. 5, the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals. 8a is a measured object moving mechanism section, and 8b is a measured object moving rail (the scanning mechanism is composed of 8a and 8b). In the first embodiment, the DUT 1 is rotationally scanned, but in this embodiment, linear movement scanning is performed.
[0042]
The DUT 1 is on the DUT moving rail 8b and can move linearly to an arbitrary position. The transmitting and receiving antennas 4 and 5 are also on the transmission / reception antenna moving rail 7 and can be moved to an arbitrary distance from the object to be measured.
[0043]
FIG. 6 shows a coordinate system for explaining the measurement method in this embodiment. Reference numeral 1 denotes a device under test, and 4 and 5 denote transmission and reception antennas. In this embodiment, as shown in FIG. 6, the scattered electric field is measured at positions ρ1 and ρ2 from the object to be measured, and the scanning method is linear scanning. The DUT 1 is moved in the Y-axis direction, and the amount of movement is y ′. In this scanning method, the relational expression for obtaining the equivalent scattering coefficient Se (y) from the scattered electric field Es (y ′) measured at the distance ρ is given by the following expression (7).
[0044]
[Expression 7]
Figure 0003672239
[0045]
Further, the scattered electric field Es (y ′) measured from the equivalent scattering coefficient Se (y) at the distance ρ and the scanning amount y ′ is given by the following equation (8).
[0046]
[Equation 8]
Figure 0003672239
[0047]
In the present embodiment, the procedure for obtaining the RCS in the distance from the measured values of only the amplitudes of the scattered electric fields at the distances ρ1 and ρ2 is obtained by replacing the relational expressions of Equations 3 and 5 with Equations 7 and 8 in the previous embodiment. The same process may be performed by the method shown in FIG.
[0048]
In the present embodiment as well, a remote RCS can be obtained even when it is difficult to measure the phase of the scattered electric field due to a high frequency or the like.
In addition, there is an effect that a simple measurement system and apparatus without a phase measurement mechanism can be realized.
In addition, a compact measurement system and apparatus can be realized as compared with a measurement system that directly measures RCS at a distance.
[0049]
Also in this embodiment, as shown in FIG. 4, in order to measure the scattered electric field strength with high accuracy, a radio wave absorber 9 is installed between the DUT 1 and the transmitting and receiving antennas 4 and 5 with high accuracy. It may be possible to measure the scattered electric field intensity, which has the same effect.
[0050]
【The invention's effect】
As described above, according to the present invention, there is provided a method for measuring a radar cross section of an object to be measured that is large in the horizontal direction but sufficiently small in the vertical direction in view of the measurement conditions in the far region of the radar cross section. Distant region by converting the measured value of the amplitude of the scattered electric field measured by rotating or linearly scanning the object to be measured at at least two positions in the vicinity area from the object to be measured at different distances from the object to be measured. Since the radar cross-sectional area measurement method is characterized in that the radar cross-section area is obtained at Rf, even when it is difficult to measure the phase of the scattered electric field due to the high frequency, it is possible to obtain the RCS at a distance.
[0051]
A step of measuring the intensity of the scattered electric field at each of the first and second positions as the amplitude of the scattered electric field from the shortest distance from the object to be measured to the first position and the second position; A step of setting the initial phase condition at the first position to 0, a step of obtaining the first equivalent scattering coefficient at the first position by setting the amplitude and phase at which the scattered electric field is obtained to 0, A step of obtaining the amplitude and phase of the scattered electric field at the second position from the equivalent scattering coefficient of 1, the phase of the obtained scattered electric field at the second position, and the scattered electric field at the second position obtained first. The step of obtaining the second equivalent scattering coefficient from the scattering electric field having the amplitude and the radar disconnection in the far region from the first or second equivalent scattering coefficient when the difference between the first and second equivalent scattering coefficients is sufficiently small. A step of obtaining an area; When the difference in the second equivalent scattering coefficient is not sufficiently small, the scattered electric field at the first position is obtained from the second equivalent scattering coefficient, and the phase obtained therefrom is replaced with the phase at the first position, and the first equivalent scattering coefficient is obtained again. From the step of obtaining the equivalent scattering coefficient of the RCS, it is possible to obtain a remote RCS even when it is difficult to measure the phase of the scattered electric field due to the high frequency, etc. It is possible to realize a simple measurement system without any noise, and it is possible to realize a compact measurement system as compared with a measurement system that directly measures RCS at a distance.
[0052]
A radar cross-sectional area measuring device for obtaining a radar cross-sectional area of an object to be measured that is large in the horizontal direction but sufficiently small in the vertical direction in consideration of the measurement conditions in the far region of the radar cross-sectional area, A scanning mechanism that rotates or linearly scans, a transmission antenna that transmits radio waves to the object to be measured, a reception antenna that receives radio waves from the object to be measured, and the transmission and reception antennas for the object to be measured A moving mechanism for moving to at least two positions having different distances from the object to be measured in the vicinity region from the distance, and converting the measured value of the scattered electric field amplitude measured at the at least two positions by the transmitting and receiving antennas. A radar cross-sectional area measuring device characterized by comprising a control unit for obtaining a radar cross-sectional area in a distant region. Can also when the measurement of the field phase difficult to obtain the RCS in the distance.
[0053]
Further, the control unit changes the two positions from the one having a short distance from the object to be measured to the first position and the second position, and the transmission and reception antennas at the first and second positions, respectively. Means for measuring the intensity of the scattered electric field as the amplitude of the scattered electric field, means for setting the initial condition of the phase at the first position to zero, and the amplitude and phase at which the scattered electric field was obtained as zero. Means for determining the first equivalent scattering coefficient at the first position, means for determining the amplitude and phase of the scattered electric field at the second position from the first equivalent scattering coefficient, and the phase of the determined scattered electric field at the second position. Means for obtaining the second equivalent scattering coefficient from the scattered electric field having the amplitude in the scattered electric field at the second position obtained first, and when the difference between the first and second equivalent scattering coefficients is sufficiently small, First or second equivalent A means for obtaining a radar cross-sectional area in a distant region from a disturbance coefficient, and a scattered electric field at a first position from the second equivalent scattering coefficient when the difference between the first and second equivalent scattering coefficients is not sufficiently small; Means for replacing the phase obtained from this with the phase at the first position and repeating from the means for obtaining the first equivalent scattering coefficient again, so that it is difficult to measure the phase of the scattered electric field due to the high frequency, etc. Even in this case, it is possible to obtain an RCS at a distant location, a simple device without a phase measurement mechanism, and a compact device as compared with a measurement system that directly measures an RCS at a distant location. it can.
[0054]
Further, the control unit further includes means for controlling the scanning and movement by driving the scanning mechanism and the moving mechanism, whereby comprehensive control of the entire measurement can be performed.
[0055]
In addition, considering the measurement conditions in the far area of the radar cross section, the radar cross section in the far area of the measured object that is large in the horizontal direction but small enough in the vertical direction is the above-mentioned area in the vicinity area from the measured object. A control program for controlling the measurement obtained by converting the measured value of the amplitude of the scattered electric field measured by rotating or linearly scanning the object to be measured at at least two positions at different distances from the object to be measured was recorded. A storage medium that has a short distance from the object to be measured, the first position and the second position, a transmission antenna that transmits electric waves to the object to be measured, and reception that receives electric waves from the object to be measured A procedure for causing the antenna to measure the intensity of the scattered electric field at each of the first and second positions as the amplitude of the scattered electric field, and a procedure for setting the initial phase condition at the first position to zero The procedure for obtaining the first equivalent scattering coefficient at the first position by setting the amplitude and phase at which the scattered electric field is obtained to 0, and the amplitude of the scattered electric field at the second position from the first equivalent scattering coefficient, The second equivalent scattering coefficient is obtained from the procedure for obtaining the phase, the phase in the scattered electric field at the obtained second position, and the scattered electric field as the amplitude in the scattered electric field at the first obtained second position. A procedure for determining that the difference between the first and second equivalent scattering coefficients is sufficiently small, and a radar cross-sectional area in a far region from the first or second equivalent scattering coefficient when the difference is sufficiently small. When the difference is not sufficiently small, the scattered electric field at the first position is obtained from the second equivalent scattering coefficient, and the phase obtained from the phase is replaced with the phase at the first position. etc Since the storage medium stores the program for executing the procedure for repeating the procedure for obtaining the scattering coefficient, the RCS can be obtained at a distance even when the phase of the scattered electric field is difficult due to the high frequency. Therefore, a simple apparatus without a phase measurement mechanism can be realized, and a more compact apparatus can be realized as compared with a measurement system that directly measures RCS at a remote location.
[0056]
In addition, by driving a scanning mechanism for rotating or linearly scanning the object to be measured, a procedure for rotating or linearly scanning the object to be measured and a moving mechanism for moving the transmitting and receiving antennas are driven. In addition, a program for executing a procedure for moving to at least two positions having different distances from the object to be measured in the vicinity region from the object to be measured is further stored. A device that can be implemented is realized.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a radar cross-sectional area measuring apparatus according to Embodiment 1 of the present invention.
FIG. 2 shows a coordinate system for explaining a measurement method according to Embodiment 1 of the present invention.
FIG. 3 is a flowchart for explaining a measurement operation of the radar cross-section measuring apparatus according to the first embodiment of the present invention.
FIG. 4 is a diagram showing a modification of the radar cross-sectional area measuring apparatus according to Embodiment 1 of the present invention.
FIG. 5 is a diagram showing a configuration of a radar cross-section measuring apparatus according to Embodiment 2 of the present invention.
FIG. 6 shows a coordinate system for explaining a measurement method according to Embodiment 2 of the present invention.
FIG. 7 is a diagram showing a coordinate system for remote RCS estimation defined by a conventional radar cross-sectional area measurement method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Measured object, 2 Rotating mechanism, 3 Support mechanism, 4 Transmitting antenna, 5 Receiving antenna, 6 Transmitting / receiving antenna supporting mechanism, 7a Transmitting / receiving antenna moving mechanism part, 7b Rail for transmitting / receiving antenna moving, 8a Measured object moving mechanism part, 8b Measuring object moving rail, 100 control unit.

Claims (5)

レーダ断面積の遠方領域での測定条件から考えて水平方向には大きいが垂直方向には十分小さい被測定物のレーダ断面積の測定方法であって、被測定物からの近傍領域内の上記被測定物からの距離が異なる少なくとも2つの位置で、被測定物を回転走査又は直線移動走査して測定した散乱電界の振幅の測定値を変換して遠方領域におけるレーダ断面積を求めるものであり、
上記被測定物からの距離が異なる位置を第1の位置、第2の位置とし、
上記第1および第2のそれぞれの位置での散乱電界の強度を散乱電界の振幅として測定する工程と、
第1の位置における位相の初期条件を0に設定する工程と、
散乱電界が求められた上記振幅、位相を0として第1の位置での第1の等価散乱係数を求める工程と、
この第1の等価散乱係数から第2の位置の散乱電界の振幅と位相を求める工程と、
この求められた第2の位置の散乱電界における位相、最初に求められた第2の位置での散乱電界における振幅とする散乱電界から第2の等価散乱係数を求める工程と、
上記第1と第2の等価散乱係数が差が十分小さい場合に上記第1又は第2の等価散乱係数から遠方領域におけるレーダ断面積を求める工程と、
上記第1と第2の等価散乱係数が差が十分小さくない場合に上記第2の等価散乱係数から第1の位置における散乱電界を求め、これから求まる位相を第1の位置における位相に置き換えて再度、上記第1の等価散乱係数を求める工程から繰り返す工程と、
を備えたことを特徴とするレーダ断面積の測定方法。
A method for measuring the radar cross section of an object to be measured that is large in the horizontal direction but sufficiently small in the vertical direction in consideration of the measurement conditions in the far area of the radar cross section, and in the vicinity of the object to be measured. The radar cross-sectional area in the far region is obtained by converting the measured value of the amplitude of the scattered electric field measured by rotating or linearly scanning the object to be measured at at least two positions at different distances from the object to be measured .
The position where the distance from the measurement object is different is the first position, the second position,
Measuring the intensity of the scattered electric field at each of the first and second positions as the amplitude of the scattered electric field;
Setting the initial condition of the phase at the first position to 0;
Obtaining the first equivalent scattering coefficient at the first position by setting the amplitude and phase from which the scattered electric field is obtained to 0;
Obtaining the amplitude and phase of the scattered electric field at the second position from the first equivalent scattering coefficient;
Obtaining a second equivalent scattering coefficient from the phase of the obtained scattered electric field at the second position and the scattered electric field as the amplitude of the scattered electric field at the first obtained second position;
Obtaining a radar cross section in a distant region from the first or second equivalent scattering coefficient when the difference between the first and second equivalent scattering coefficients is sufficiently small;
When the difference between the first and second equivalent scattering coefficients is not sufficiently small, the scattered electric field at the first position is obtained from the second equivalent scattering coefficient, and the phase obtained from this is replaced with the phase at the first position again. Repeating from the step of obtaining the first equivalent scattering coefficient;
Measurement method of radar cross-sectional area, comprising the.
レーダ断面積の遠方領域での測定条件から考えて水平方向には大きいが垂直方向には十分小さい被測定物のレーダ断面積を求めるレーダ断面積の測定装置であって、
上記被測定物を回転走査又は直線移動走査させる走査機構と、
上記被測定物に電波を送信する送信アンテナと、
上記被測定物からの電波を受信する受信アンテナと、
これらの送信および受信アンテナを上記被測定物からの近傍領域内の被測定物からの距離が異なる少なくとも2つの位置に移動させる移動機構と、
上記送信および受信アンテナにより上記少なくとも2つの位置で測定した散乱電界の振幅の測定値を変換して遠方領域におけるレーダ断面積を求める制御ユニットと、
を備え
上記制御ユニットが、上記被測定物からの距離が異なる位置を第1の位置、第2の位置とし、
上記送信および受信アンテナにより上記第1および第2のそれぞれの位置での散乱電界の強度を散乱電界の振幅として測定する手段と、
第1の位置における位相の初期条件を0に設定する手段と、
散乱電界が求められた上記振幅、位相を0として第1の位置での第1の等価散乱係数を求める手段と、
この第1の等価散乱係数から第2の位置の散乱電界の振幅と位相を求める手段と、
この求められた第2の位置の散乱電界における位相、最初に求められた第2の位置での散乱電界における振幅とする散乱電界から第2の等価散乱係数を求める手段と、
上記第1と第2の等価散乱係数が差が十分小さい場合に上記第1又は第2の等価散乱係数から遠方領域におけるレーダ断面積を求める手段と、
上記第1と第2の等価散乱係数が差が十分小さくない場合に上記第2の等価散乱係数から第1の位置における散乱電界を求め、これから求まる位相を第1の位置における位相に置き換えて再度、上記第1の等価散乱係数を求める手段から繰り返す手段と、
を備えたことを特徴とするレーダ断面積の測定装置。
A radar cross-section measuring device that obtains a radar cross-section of an object to be measured that is large in the horizontal direction but sufficiently small in the vertical direction in consideration of the measurement conditions in the far region of the radar cross-section,
A scanning mechanism for rotating or linearly scanning the object to be measured;
A transmitting antenna for transmitting radio waves to the object to be measured;
A receiving antenna for receiving radio waves from the object to be measured;
A moving mechanism for moving these transmitting and receiving antennas to at least two positions having different distances from the object to be measured in the vicinity region from the object to be measured;
A control unit for converting a measured value of the amplitude of the scattered electric field measured at the at least two positions by the transmitting and receiving antennas to obtain a radar cross section in a distant region;
Equipped with a,
The control unit has a position at which the distance from the object to be measured is different as a first position and a second position,
Means for measuring the intensity of the scattered electric field at the first and second positions by the transmitting and receiving antennas as the amplitude of the scattered electric field;
Means for setting the initial condition of the phase at the first position to zero;
Means for determining the first equivalent scattering coefficient at the first position by setting the amplitude and phase from which the scattered electric field is determined to 0;
Means for determining the amplitude and phase of the scattered electric field at the second position from the first equivalent scattering coefficient;
Means for obtaining a second equivalent scattering coefficient from the phase of the obtained scattered electric field at the second position and the scattered electric field as the amplitude of the scattered electric field at the first obtained second position;
Means for obtaining a radar cross-sectional area in a far region from the first or second equivalent scattering coefficient when the difference between the first and second equivalent scattering coefficients is sufficiently small;
When the difference between the first and second equivalent scattering coefficients is not sufficiently small, the scattered electric field at the first position is obtained from the second equivalent scattering coefficient, and the phase obtained from this is replaced with the phase at the first position again. Repeating from the means for obtaining the first equivalent scattering coefficient;
Measuring device of the radar cross-sectional area, comprising the.
上記制御ユニットが、上記走査機構および移動機構を駆動させ走査および移動を制御する手段をさらに備えたことを特徴とする請求項2に記載のレーダ断面積の測定装置。The radar cross-sectional area measuring apparatus according to claim 2 , wherein the control unit further includes means for driving the scanning mechanism and the moving mechanism to control scanning and movement. レーダ断面積の遠方領域での測定条件から考えて水平方向には大きいが垂直方向には十分小さい被測定物の遠方領域におけるレーダ断面積を、被測定物からの近傍領域内の上記被測定物からの距離が異なる少なくとも2つの位置で、被測定物を回転走査又は直線移動走査して測定した散乱電界の振幅の測定値を変換して求める測定をコンピュータによって制御する制御プログラムを記録した記憶媒体であって、
上記被測定物からの距離が異なる位置を第1の位置、第2の位置とし、上記被測定物に電波を送信する送信アンテナと被測定物からの電波を受信する受信アンテナに上記第1および第2のそれぞれの位置での散乱電界の強度を散乱電界の振幅として測定させる手順と、
第1の位置における位相の初期条件を0に設定させる手順と、
散乱電界が求められた上記振幅、位相を0として第1の位置での第1の等価散乱係数を求めさせる手順と、
この第1の等価散乱係数から第2の位置の散乱電界の振幅と位相を求めさせる手順と、
この求められた第2の位置の散乱電界における位相、最初に求められた第2の位置での散乱電界における振幅とする散乱電界から第2の等価散乱係数を求めさせる手順と、
上記第1と第2の等価散乱係数が差が十分小さいことを判別させる手順と、
上記差が十分小さい場合に上記第1又は第2の等価散乱係数から遠方領域におけるレーダ断面積を求めさせる手順と、
上記差が十分小さくない場合に上記第2の等価散乱係数から第1の位置における散乱電界を求め、これから求まる位相を第1の位置における位相に置き換えて再度、上記第1の等価散乱係数を求める手順から繰り返させる手順と、
を実行させるプログラムを記憶した記憶媒体。
Considering the measurement conditions of the radar cross-sectional area in the far area, the radar cross section in the far area of the object to be measured is large in the horizontal direction but sufficiently small in the vertical direction. Storage medium storing a control program for controlling a measurement obtained by converting the measured value of the amplitude of the scattered electric field measured by rotating or linearly scanning the object to be measured at at least two positions different from each other Because
The first position and the second position are positions at different distances from the object to be measured, and the first and second antennas are used as a transmitting antenna that transmits radio waves to the object to be measured and a receiving antenna that receives radio waves from the object to be measured. A procedure for measuring the intensity of the scattered electric field at each second position as the amplitude of the scattered electric field;
A procedure for setting the initial phase condition at the first position to 0;
A procedure for obtaining the first equivalent scattering coefficient at the first position by setting the amplitude and phase from which the scattered electric field is obtained to 0;
A procedure for determining the amplitude and phase of the scattered electric field at the second position from the first equivalent scattering coefficient;
A procedure for obtaining a second equivalent scattering coefficient from the phase of the obtained scattered electric field at the second position and the scattered electric field as the amplitude of the scattered electric field at the first obtained second position;
A procedure for determining that the difference between the first and second equivalent scattering coefficients is sufficiently small;
A procedure for obtaining a radar cross section in a far region from the first or second equivalent scattering coefficient when the difference is sufficiently small;
When the difference is not sufficiently small, the scattered electric field at the first position is obtained from the second equivalent scattering coefficient, and the phase obtained from the first position is replaced with the phase at the first position to obtain the first equivalent scattering coefficient again. A procedure to be repeated from the procedure,
A storage medium storing a program for executing the program.
上記被測定物を回転走査又は直線移動走査させる走査機構を駆動させて、上記被測定物を回転走査又は直線移動走査させる手順と、
上記送信および受信アンテナを移動させる移動機構を駆動させて、上記被測定物からの近傍領域内の被測定物からの距離が異なる少なくとも2つの位置に移動させる手順と、
を実行させるプログラムをさらに記憶したことを特徴とする請求項4に記載の記憶媒体。
A procedure of driving a scanning mechanism for rotating or linearly scanning the object to be measured, and rotating or linearly scanning the object to be measured;
A procedure for driving the moving mechanism for moving the transmitting and receiving antennas to move the moving mechanism to at least two positions having different distances from the object to be measured in the vicinity region from the object to be measured;
The storage medium according to claim 4 , further storing a program for executing.
JP2000385157A 2000-12-19 2000-12-19 Radar cross-sectional area measuring method, measuring apparatus therefor, and storage medium recording control program therefor Expired - Lifetime JP3672239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000385157A JP3672239B2 (en) 2000-12-19 2000-12-19 Radar cross-sectional area measuring method, measuring apparatus therefor, and storage medium recording control program therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000385157A JP3672239B2 (en) 2000-12-19 2000-12-19 Radar cross-sectional area measuring method, measuring apparatus therefor, and storage medium recording control program therefor

Publications (2)

Publication Number Publication Date
JP2002181922A JP2002181922A (en) 2002-06-26
JP3672239B2 true JP3672239B2 (en) 2005-07-20

Family

ID=18852473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000385157A Expired - Lifetime JP3672239B2 (en) 2000-12-19 2000-12-19 Radar cross-sectional area measuring method, measuring apparatus therefor, and storage medium recording control program therefor

Country Status (1)

Country Link
JP (1) JP3672239B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102944872A (en) * 2012-11-23 2013-02-27 北京航空航天大学 Near field-to-near field transformation method of radar scattering cross section

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276187A (en) * 2008-05-14 2009-11-26 Mitsubishi Electric Corp Radar cross section measuring method and measuring apparatus
JP5424588B2 (en) * 2008-07-11 2014-02-26 三菱電機株式会社 Radar cross section measuring apparatus and method, and radar cross section measuring program
CN103852758B (en) * 2014-02-26 2016-03-30 北京航空航天大学 The on-the-spot method for rapidly judging of invisbile plane scattering properties and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102944872A (en) * 2012-11-23 2013-02-27 北京航空航天大学 Near field-to-near field transformation method of radar scattering cross section
CN102944872B (en) * 2012-11-23 2014-07-23 北京航空航天大学 Near field-to-near field transformation method of radar scattering cross section

Also Published As

Publication number Publication date
JP2002181922A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
JP5554463B2 (en) Specific absorption rate measuring device
CN106990300B (en) A kind of synchronous device and method for realizing antenna radiation pattern and scattering picture test
JP4130365B2 (en) Method and apparatus for measuring electromagnetic field strength, method for measuring electromagnetic field intensity distribution, and method and apparatus for measuring current-voltage distribution of the apparatus
JP2007271317A (en) Emi measuring instrument, and emi measuring method
KR20090029978A (en) Apparatus and method for measuring antenna radiation patterns
JP2001343409A (en) Electromagnetic radiation measuring apparatus and method
JP2004264143A (en) Electromagnetic wave measuring instrument and its method
CN108562801A (en) A kind of array antenna test system and its test method
JP5424588B2 (en) Radar cross section measuring apparatus and method, and radar cross section measuring program
US20120154122A1 (en) Method and apparatus of radio frequency testing
JP7016303B2 (en) Radiation power estimation method
Cerro et al. An accurate localization system for nondestructive testing based on magnetic measurements in quasi-planar domain
JP3672239B2 (en) Radar cross-sectional area measuring method, measuring apparatus therefor, and storage medium recording control program therefor
JP7183907B2 (en) Electromagnetic wave measurement point calculation program and radiated interference wave measurement device
Cerro et al. Probe localization by magnetic measurements in eddy-current nondestructive testing environment
CN118311512A (en) Electromagnetic radiation, scattering and space perception integrated test system and method
JP5371233B2 (en) Radar cross section measuring method and radar cross section measuring apparatus
Spang et al. Application of probes with multiple outputs on probe-compensated EMC near-field measurements
JP3708772B2 (en) Radar cross section measuring method and radar cross section measuring device
JP3491038B2 (en) Apparatus and method for measuring antenna characteristics using near-field measurement
JP3658226B2 (en) Radar cross section measuring method and radar cross section measuring apparatus
CN112557768A (en) On-chip antenna test system and test method
JP2009002757A (en) Electromagnetic wave measuring device and electromagnetic wave measuring method
US9335384B2 (en) Adjustable magnetic probe for efficient near field scanning
JP2020153690A (en) Electromagnetic field distribution generation program, filter generation program, and electromagnetic field distribution generation device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050415

R150 Certificate of patent or registration of utility model

Ref document number: 3672239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term