WO2020195302A1 - Linker molecule for producing cell membrane-permeable ring-shaped peptide and use thereof - Google Patents

Linker molecule for producing cell membrane-permeable ring-shaped peptide and use thereof Download PDF

Info

Publication number
WO2020195302A1
WO2020195302A1 PCT/JP2020/005760 JP2020005760W WO2020195302A1 WO 2020195302 A1 WO2020195302 A1 WO 2020195302A1 JP 2020005760 W JP2020005760 W JP 2020005760W WO 2020195302 A1 WO2020195302 A1 WO 2020195302A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
group
linker molecule
cell membrane
complex
Prior art date
Application number
PCT/JP2020/005760
Other languages
French (fr)
Japanese (ja)
Inventor
慶士 高津
敏裕 鹿倉
優佳 石場
達也 馬渡
博文 前田
寛士 北
北野 光昭
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2021508238A priority Critical patent/JPWO2020195302A1/ja
Publication of WO2020195302A1 publication Critical patent/WO2020195302A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/041,2,3-Triazoles; Hydrogenated 1,2,3-triazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2/00Peptides of undefined number of amino acids; Derivatives thereof

Definitions

  • the present invention presents a linker molecule for producing a cell-penetrating cyclic peptide, a peptide complex into which the linker molecule has been introduced and a method for producing the same, a peptide library containing the peptide complex, and screening of a functional peptide using the peptide library. Regarding the method.
  • therapeutic agents for specific diseases and molecules having a high affinity for target molecules have been selected from a peptide (polypeptide) library having various amino acid sequences.
  • a ribosome display method using a ribosome display complex containing a peptide chain, an mRNA molecule, and a ribosome is known (for example, a patent). Reference 1).
  • the RD method if they have in vitro translation system and mRNA, only mixing them, in which very good useful which can be produced 10 12 or more peptide library in a few minutes.
  • Techniques for incorporating the active ingredient into the cell include, for example, a method of fusing the amino acid sequences of a cell membrane penetrating peptide containing a large amount of basic amino acids, and a dendrimer which is a dendrimer polymer having a regularly branched structure from the center.
  • the method to be used see, for example, Patent Document 2 and the like are known.
  • a molecule that imparts cell membrane penetrating performance to a peptide having a cyclic structure can be a valuable drug discovery seed, and a peptide library containing such a peptide is a very useful means for the search.
  • RNA is bound to a peptide translated from the RNA by modifying it with a modifying reagent at a specific time. It is known that the adhesive function of ribosomes can be maintained without losing the original function (see, for example, Patent Document 3).
  • Non-Patent Document 1 As a technique for cyclizing a peptide and imparting cell membrane permeability, an example in which these are performed stepwise has been reported (see, for example, Non-Patent Document 1).
  • An object of the present invention is to solve the above-mentioned problems in the past and to achieve the following objects. That is, in the present invention, a linker molecule for producing a cell-penetrating cyclic peptide capable of simultaneously performing cyclization of the peptide and imparting cell membrane permeability to the peptide, a peptide complex into which the linker molecule has been introduced, and production thereof It is an object of the present invention to provide a method, a peptide library containing the peptide complex, and a method for screening a functional peptide using the peptide library.
  • the present inventors unexpectedly synthesize a molecule in which a cell membrane permeability-imparting group and a cyclic group that cyclizes a peptide coexist in the same molecule. It was found that the peptide can be cyclized and cell membrane permeability can be imparted to the peptide at the same time by using this molecule.
  • the present invention is based on the above-mentioned findings of the present inventors, and the means for solving the above-mentioned problems are as follows. That is, ⁇ 1> A linker molecule for producing a cell-penetrating cyclic peptide, which comprises a cell membrane-penetrating cyclic peptide-imparting group and a cyclic group that cyclizes a peptide. ⁇ 2> A peptide complex comprising a peptide and the linker molecule according to ⁇ 1> introduced into the peptide. ⁇ 3> A peptide library comprising the peptide complex according to ⁇ 2> above.
  • ⁇ 4> A method for producing a peptide complex, which comprises the step of introducing the linker molecule according to ⁇ 1> into the peptide.
  • ⁇ 5> A method for screening a functional peptide, which comprises a step of screening a functional peptide using the peptide library according to the above ⁇ 3>.
  • a cell-penetrating cyclic peptide capable of solving the above-mentioned problems in the past, achieving the above-mentioned object, and simultaneously performing cyclization of the peptide and impartation of cell membrane permeability to the peptide. It is possible to provide a linker molecule for production, a peptide complex into which the linker molecule has been introduced and a method for producing the same, a peptide library containing the peptide complex, and a method for screening a functional peptide using the peptide library.
  • FIG. 1 is a diagram showing the results of preparative HPLC of peptide P in Example 2.
  • FIG. 2 is a diagram showing the results of preparative HPLC of the cyclic peptide (peptide complex G3-DCX-P) in Example 2.
  • FIG. 3 is a schematic diagram of the structure of the template DNA used to prepare the ribosome display complex in Example 3.
  • FIG. 4 is a diagram showing the measurement results of MALDI-TOF MS in Example 4.
  • FIG. 5 is a diagram showing the measurement results of MALDI-TOF MS in Example 5.
  • FIG. 6 is a diagram showing the measurement results of MALDI-TOF MS in Example 6.
  • linker molecule for producing cell-penetrating cyclic peptide
  • the linker molecule for producing a cell-penetrating cyclic peptide of the present invention (hereinafter, may be referred to as “linker molecule”) has at least a cell membrane-penetrating cyclic peptide-imparting group and a cyclic group that cyclizes the peptide, and is necessary. It also has other configurations such as linking groups, depending on the situation.
  • the linker molecule can be represented by the following general formula (1).
  • ABC ⁇ ⁇ ⁇ General formula (1) In the general formula (1), "A” represents a cyclic group, “B” represents a linking group or a single bond, and “C” represents a cell membrane permeability-imparting group.
  • the cyclic group contributes to the cyclization of the peptide by reacting with a reactive amino acid residue in the peptide described later.
  • the reactive amino acid residue is an amino acid residue that reacts with the cyclic group, may be an amino acid residue that directly reacts with the cyclic group, or is modified so as to react with the cyclic group. It may be an amino acid residue.
  • the cyclic group is not particularly limited and may be appropriately selected depending on the intended purpose, but an electron-withdrawing group is preferable.
  • the electron-withdrawing group is not particularly limited and may be appropriately selected depending on the intended purpose, but it preferably has a halogen.
  • the type of halogen is not particularly limited and can be appropriately selected according to the purpose.
  • halogens are not particularly limited and may be appropriately selected depending on the purpose, but 2 or more is preferable.
  • the electron-withdrawing group preferably has two or more chlorine atoms, more preferably benzyl chloride, which may have a substituent, and particularly preferably a 3,5-bis (chloromethyl) benzyl group.
  • Cyclization of a peptide by the cyclic group may be carried out by reacting the cyclic group with at least one group selected from the group consisting of a thiol group, an amino group and a hydroxy group contained in the peptide. preferable.
  • the cell membrane permeability-imparting group is a group that imparts cell membrane permeability to the peptide.
  • the cell membrane permeability-imparting group preferably has a basic functional group.
  • the mode of the cell membrane permeability-imparting group is not particularly limited and may be appropriately selected depending on the intended purpose, but a mode having a dendritic structure is preferable.
  • the number of dendritic structural units in the cell membrane permeability-imparting group is not particularly limited and may be appropriately selected depending on the intended purpose, and may be one or two or more.
  • the number of branches per dendritic structural unit is not particularly limited and may be appropriately selected depending on the intended purpose, but 3 or more is preferable.
  • the structure of the branch of the dendritic structure is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the basic functional group is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a guanidino group, an amino group and an imidazole group. Among these, it is preferable to have a guanidino group.
  • the basic functional group may be used alone or in combination of two or more.
  • the number of the basic functional groups is not particularly limited and may be appropriately selected depending on the intended purpose, but 2 or more is preferable.
  • the basic functional group preferably has two or more guanidino groups.
  • the position of the basic functional group in the linker molecule is not particularly limited and may be appropriately selected depending on the intended purpose, but it is preferably located at the end of the branch of the dendritic structure.
  • the cell membrane permeability-imparting group having a dendritic structure include those represented by the following general formula (C).
  • the general formula (C) represents a cell membrane permeability-imparting group having a dendritic structure having three branches, and "Y" in the formula represents a basic functional group.
  • the basic functional group may be formed at the ends of all branches, or may be formed at the ends of some branches.
  • the cell membrane permeability-imparting group may have a plurality of dendritic structures represented by the general formula (C), and in that case, the number of branches may be, for example, 6 or 9.
  • the other constitution of the linker molecule is not particularly limited as long as the effect of the present invention is not impaired, and can be appropriately selected depending on the intended purpose. Examples thereof include a linking group.
  • the linking group is a group that links the cell membrane permeability-imparting group and the cyclic group.
  • the structure of the linking group is not particularly limited and may be appropriately selected depending on the intended purpose.
  • linker molecule examples include compounds represented by the following structural formulas.
  • the linker molecule represented by the following structural formula has a 3,5-bis (chloromethyl) benzyl group as a cyclic group and three guanidino groups at the end of the dendritic structure as a cell membrane permeability-imparting group. This is an example in which the cyclic group and the cell membrane permeability-imparting group are linked via a linking group.
  • the method for producing the linker molecule is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a cell membrane permeability-imparting group precursor forming step and a linking group are added to the cell membrane permeability-imparting group precursor.
  • Examples include a step of forming and a method including. Each of the above steps can be carried out by appropriately selecting a known chemical synthesis technique.
  • the cell membrane permeability-imparting group precursor forming step can be performed by the method described in US Pat. No. 7,862,807 and the like.
  • the method for confirming whether or not the obtained linker molecule has a desired structure is not particularly limited, and a known analysis method can be appropriately selected. For example, mass spectrometry and proton nuclear magnetic resonance spectroscopy can be selected. , Carbon 13 nuclear magnetic resonance spectroscopy, ultraviolet spectroscopy, infrared spectroscopy and other analytical methods.
  • linker molecule of the present invention cyclization of the peptide and impartation of cell membrane permeability to the peptide can be performed in one step, so that these can be easily achieved in a short time.
  • the peptide complex of the present invention comprises at least the peptide and the linker molecule of the present invention introduced into the peptide, and further comprises other configurations as required.
  • the peptide is not particularly limited as long as it is cyclized by introducing the linker molecule, and can be appropriately selected depending on the intended purpose.
  • the amino acid residue (hereinafter, may be referred to as “reactive amino acid residue”) used for introducing the linker molecule is not particularly limited and may be appropriately selected depending on the intended purpose.
  • cysteine Residues, lysine residues, serine residues, threonine residues and the like can be mentioned.
  • the reactive amino acid residue may be used alone or in combination of two or more.
  • the number of the reactive amino acid residues in the peptide is preferably 2 or more in terms of cyclizing the peptide.
  • the upper limit of the number of the reactive amino acid residues in the peptide is not particularly limited and may be appropriately selected depending on the intended purpose. However, as the number of reaction sites increases, the number and position of the linker molecules that bind to the peptide increase. It is preferably 10 or less because it may not be stable and it may be difficult to compare the characteristics of peptides derived from the amino acid sequence. In addition, for example, when the cysteine residue in the peptide is involved in the stabilization of the higher-order structure of the peptide by disulfide bond, the reactive amino acid residue may be separately introduced into the peptide. preferable.
  • the position of the reactive amino acid residue in the peptide is not particularly limited and can be appropriately selected depending on the intended purpose.
  • RNA chain an mRNA molecule, a peptide chain which is a translation thereof (hereinafter, may be referred to as “polypeptide chain”), and a ribosome display complex containing ribosome (hereinafter, referred to as “RD complex”).
  • RD complex a ribosome display complex containing ribosome
  • it is a portion protruding from the exit tunnel (exit tunnel) of the ribosome, and specifically, the position (N) from the second N-terminal to the 30th C-terminal. It is preferable to set it between (including the second position from the terminal and the 30th position from the C terminal) in that the modification reaction by the linker molecule can be less likely to be sterically inhibited by the ribosome.
  • the position from the C-terminal the 50th position from the C-terminal is preferable, and the 100th position is more preferable.
  • the position can be appropriately set according to the chain length of the peptide, and is, for example, the 2nd to 1,000th position from the N-terminal.
  • the 2nd to 100th positions from the N-terminal are preferable, and the 2nd to 50th positions from the N-terminal are more preferable.
  • the method for producing the RD complex is not particularly limited, and a known method can be appropriately selected. Examples thereof include the method described in International Publication No. 2017/213158. It can also be manufactured using a commercially available kit.
  • the amino acid sequence of the peptide is not particularly limited and may be appropriately selected depending on the intended purpose, but one containing a random sequence at a specific position is preferable so as to be useful as a peptide library. From such a random sequence, a useful amino acid sequence can be specified according to a predetermined purpose.
  • the position of the random sequence in the peptide is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the position is not particularly limited. It is preferably between the 2nd position from the N-terminal to the 30th position from the C-terminal (including the 2nd position from the N-terminal and the 30th position from the C-terminal). That is, the reactive amino acid residue is preferably contained in a random sequence. Therefore, the preferred position of the random sequence can be set from the same range as the preferred position of the reactive amino acid residue.
  • the number of the random sequences in the peptide may be one or two or more.
  • the upper limit of the number of the random sequences is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10 or less.
  • the number of amino acid residues per random sequence is not particularly limited and may be appropriately selected depending on the intended purpose, and may be, for example, 1 or more and 30 or less. The longer one random sequence and the larger the number of random sequences, the greater the diversity of the peptide library.
  • the peptide may further contain a sequence for purifying a polypeptide chain such as a FLAG® sequence or a polyHis sequence, a sequence selectively cleaved by a protease or the like, a spacer sequence, or the like.
  • a sequence for purifying a polypeptide chain such as a FLAG® sequence or a polyHis sequence, a sequence selectively cleaved by a protease or the like, a spacer sequence, or the like.
  • the number of amino acid residues of the peptide is not particularly limited and may be appropriately selected depending on the intended purpose, and may be, for example, 10 or more and 5,000 or less.
  • the lower limit of the number of amino acid residues of the peptide is preferably 150 or more, more preferably 200 or more.
  • the upper limit of the number of amino acid residues of the peptide is preferably 800 or less, more preferably 600 or less, and particularly preferably 500 or less.
  • the lower limit value and the upper limit value can be appropriately combined and selected.
  • the method for synthesizing the peptide is not particularly limited, and a known method can be appropriately selected.
  • the linker molecule is the above-mentioned linker molecule for producing a cell-penetrating cyclic peptide of the present invention.
  • the linker molecule is introduced into the peptide by reacting the cyclic group in the linker molecule with the reactive amino acid residue in the peptide. During the reaction, the structure of the cyclic group changes.
  • the other constitution of the peptide complex is not particularly limited as long as the effect of the present invention is not impaired, and can be appropriately selected depending on the intended purpose.
  • a luminescent substance such as a fluorescent substance, a dye, a radioactive substance, etc.
  • examples thereof include drugs, toxins, nucleic acids, amino acids, sugars, lipids, and various polymers. These may be used alone or in combination of two or more.
  • the fluorescent substance is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include fluorescent dyes such as fluorescein, rhodamine, coumarin, pyrene and cyanine.
  • the other constitution can be attached to the above-mentioned peptide, for example, directly or via a linking group or the like.
  • the method for producing a peptide complex of the present invention includes at least a linker molecule introduction step of introducing the linker molecule of the present invention into the peptide, and further includes other steps as necessary.
  • the linker molecule introduction step is a step of introducing the linker molecule of the present invention into a peptide (hereinafter, may be referred to as "binding", “inserting”, or “linking”).
  • binding By the linker molecule introduction step, the cyclization of the peptide and the impartation of cell membrane permeability to the peptide can be performed at the same time.
  • the linker molecule introduction step the linker molecule may be introduced into at least one peptide in the reaction product, but it is preferable that the linker molecule is introduced into all the peptides.
  • the peptide is the same as that described in the item ⁇ Peptide> of the above (peptide complex).
  • the peptide may be in the form of a peptide library.
  • the method of introduction is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a method of reacting the linker molecule with the peptide in the presence of a reducing agent.
  • the reducing agent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include tris (2-carboxyethyl) phosphine hydrochloride.
  • the conditions such as the temperature and time of the reaction are not particularly limited and may be appropriately selected depending on the intended purpose.
  • the method for confirming whether or not the obtained peptide complex has a desired structure is not particularly limited, and a known analysis method can be appropriately selected. For example, mass spectrometry and proton nuclear magnetic resonance spectroscopy can be selected. Analytical methods such as method, carbon-13 nuclear magnetic resonance spectroscopy, ultraviolet spectroscopy, and infrared spectroscopy can be mentioned.
  • the peptide library of the present invention contains at least the peptide complex of the present invention, and further contains other configurations as required.
  • the peptide library may consist only of the peptide complex of the present invention, or may contain a peptide that has not been cyclized.
  • the peptide library can be produced in the same manner as described above (method for producing a peptide complex).
  • the method for screening a functional peptide of the present invention includes at least a step of screening a functional peptide using the peptide library of the present invention, and further includes other steps as necessary.
  • the screening method is not particularly limited as long as the peptide library of the present invention is used, and a known method can be appropriately selected.
  • a desired target substance and the peptide library are mixed, a bound peptide complex (for example, RD complex) is selected, RNA is dissociated from the RD complex, and DNA is prepared from the RNA.
  • a bound peptide complex for example, RD complex
  • RNA is dissociated from the RD complex
  • DNA is prepared from the RNA. Examples thereof include a method of screening for a functional peptide having an affinity for the target substance by repeating the step of transcribing to mRNA and preparing an RD complex library again after amplification.
  • the resin on which the peptide was formed was used as trifluoroacetic acid (TFA) / water / triisopropylsilane / 3,6-dioxa-1,8-octanedithiol (92.5 / 2.5 / 2.5 / 2.5 (92.5 / 2.5 / 2.5 / 2.5).
  • the peptide was excised from the resin by immersing it in (volume ratio)) for 3 hours.
  • the obtained peptide was purified by reverse phase HPLC and freeze-dried to obtain a peptide having the above sequence (hereinafter, may be referred to as "P". See the structural formula below).
  • the identification data of the peptide P by electrospray ionization mass spectrometry (ESI-MS) were as follows. ESI-MS C 72 H 92 N 16 O 22 O 3 Calculated value (M + 2H +) 815.295, measured value 814.67
  • the compound C3 represented by the above structural formula was synthesized by the above reaction formula. Specifically, a methylene chloride solution (15 mL) of compound C1 (500 mg, 0.42 mmol) was cooled to 0 ° C., and compound C2 (manufactured by Tokyo Kasei Kogyo Co., Ltd., product number A2293) (117.5 mg, 0.504 mmol) was cooled. ), 1-Hydroxybenzotriazole (HOBT) (85.1 mg, 0.630 mmol) and 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (EDC / HCl) (120 mg, 0.630 mmol).
  • HOBT 1-Hydroxybenzotriazole
  • EDC / HCl 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride
  • the compound C4 represented by the above structural formula was synthesized by the above reaction formula. Specifically, nitrogen gas bubbling was performed on a solution consisting of compound C3 (533 mg, 0.379 mmol), compound DBXA (188 mg, 0.568 mmol) and THF (40 mL) to create a nitrogen atmosphere. An aqueous solution of copper sulfate (200 mM; 1.89 mL, 0.379 mmol) and an aqueous solution of sodium ascorbate (100 mM; 7.58 mL, 0.758 mmol) were added thereto, and the mixture was stirred at 25 ° C. for 3 hours.
  • the linker molecule G3-DCX for producing a cell-penetrating cyclic peptide represented by the above structural formula was synthesized by the above reaction formula. Specifically, compound C4 (497 mg, 0.286 mmol) and a 4N dioxane hydrochloride solution (30 mL) were mixed and stirred at 25 ° C. for 46 hours. After the reaction, a white solid was precipitated. The supernatant was removed to obtain a crude product of the linker molecule G3-DCX for producing a cell membrane penetrating cyclic peptide.
  • the peptide complex G3-DCX-P represented by the above structural formula was synthesized by the above reaction formula. Specifically, the peptide P (4.8 mg, 3.0 ⁇ mol) synthesized in Preparation Example 1 was dissolved in 50 mM ammonium bicarbonate buffer (1.0 mL), and tris (2-carboxyethyl) phosphine (TCEP) (TCEP). 0.94 mg (3.3 ⁇ mol) was added, and the mixture was stirred at 25 ° C. for 1 hour.
  • the peptide synthesized in Preparation Example 1 hardly permeated the membrane after 2 hours of culturing, whereas the peptide complex synthesized in Example 2 permeated the membrane. From this, it was demonstrated that the cell membrane permeability was acquired at the same time as the cyclization of the peptide by introducing the linker molecule G3-DCX for producing a cell membrane penetrating cyclic peptide into the peptide.
  • RNA library containing a peptide complex having a peptide cyclized with the linker molecule G3-DCX for producing a cell membrane penetrating cyclic peptide
  • NNK random base sequence
  • a template DNA (base sequence: SEQ ID NO: 1, amino acid sequence: SEQ ID NO: 2) was used to prepare this RNA library. Specifically, a reaction solution having the composition shown in Table 2-1 was used, and a 5'fragment was prepared using the plasmid as a template DNA in the PCR cycle of Table 2-2.
  • 5FragF_150409 is a forward primer (SEQ ID NO: 4)
  • Ma5frag_withoutHis_R150310 is a reverse primer (SEQ ID NO: 5).
  • A1MaNNK10_withoutHis_150531 is a forward primer (SEQ ID NO: 6) and 3FragR_150409 is a reverse primer (SEQ ID NO: 7).
  • RNA library containing 10 12 or more mRNA having the nucleotide sequence of SEQ ID NO: 3 Got As shown in FIG. 3, the mRNA contained in this library has FLAG® site, cysteine, random sequence, cysteine, TEV protease site, and spacer sequence in order from the 5'side, and has a stop codon. Absent.
  • RD complex library Preparation of ribosome display (RD) complex library>
  • the RD complex was prepared using the above RNA library using a reconstituted cell-free protein synthesis kit (“PURE flex®” manufactured by Gene Frontier).
  • This RD complex reaction solution was mixed with anti-FLAG (registered trademark) M2 antibody-bound agarose beads (manufactured by Sigma-Aldrich, 20 ⁇ L) and stirred at 4 ° C. for 60 minutes.
  • Anti-FLAG M2 antibody-bound agarose beads to which an RD complex having a FLAG sequence was selectively bound to the peptide moiety were collected.
  • the FLAG peptide was added to elute the RD complex from the agarose beads, and a ribosomal display complex library into which the linker molecule G3-DCX for producing a cell membrane penetrating cyclic peptide was introduced was obtained.
  • Example 4 Preparation of RD complex containing a peptide complex having a peptide cyclized with the linker molecule G3-DCX for producing a cell membrane penetrating cyclic peptide
  • RNA Preparation of RNA> Except that the random sequence in the mRNA prepared in Example 3 (in FIG. 3, the portion of "(NNK) 10 " located between the cysteine residues (C)) was used as the base sequence encoding the amino acid sequence "LYRSLPAWRYL". , MRNA was prepared in the same manner as in Example 3.
  • RD complex was prepared in the same manner as in Example 3 except that the mRNA prepared in ⁇ Preparation of RNA> was used.
  • the upper row shows the measurement results of the peptide fragment obtained when the linker molecule G3-DCX for producing a cell-penetrating cyclic peptide was not introduced, and the lower row shows the linker molecule G3- for producing a cell-penetrating cyclic peptide.
  • the measurement result of the peptide fragment obtained when DCX was introduced is shown.
  • FIG. 4 it was confirmed that a cyclic peptide (black arrow in FIG. 4) can be obtained by introducing the linker molecule G3-DCX for producing a cell membrane penetrating cyclic peptide.
  • the white arrows in FIG. 4 indicate peptides that are not cyclized.
  • Example 5 Preparation of RD complex containing a peptide complex having a peptide cyclized with the linker molecule G3-DCX for producing a cell membrane penetrating cyclic peptide
  • mRNA, RD complex, and linker molecule G3-DCX for producing a cell-penetrating cyclic peptide were introduced, except that the amino acid sequence “LYRSLPAWRYL” in Example 4 was changed to “PLFPWPSLWHR”.
  • a ribosome display complex was prepared. Further, in the same manner as in Example 4, a peptide fragment was obtained from the obtained RD complex, and its molecular weight was measured by MALDI-TOF MS. The results are shown in FIG.
  • the upper row shows the measurement results of the peptide fragment obtained when the linker molecule G3-DCX for producing a cell-penetrating cyclic peptide was not introduced
  • the lower row shows the linker molecule G3- for producing a cell-penetrating cyclic peptide.
  • the measurement result of the peptide fragment obtained when DCX was introduced is shown.
  • a cyclic peptide black arrow in FIG. 5
  • the white arrows in FIG. 5 indicate peptides that are not cyclized.
  • Example 6 Preparation of RD complex containing a peptide complex having a peptide cyclized with the linker molecule G3-DCX for producing a cell membrane penetrating cyclic peptide
  • the mRNA, RD complex, and linker molecule G3-DCX for producing a cell-penetrating cyclic peptide were introduced in the same manner as in Example 4, except that the amino acid sequence “LYRSLPAWRYL” in Example 4 was changed to “AGRWNVLWRTYMH”.
  • a ribosome display complex was prepared. Further, in the same manner as in Example 4, a peptide fragment was obtained from the obtained RD complex, and its molecular weight was measured by MALDI-TOF MS. The results are shown in FIG.
  • the upper row shows the measurement results of the peptide fragment obtained when the linker molecule G3-DCX for producing a cell-penetrating cyclic peptide was not introduced
  • the lower row shows the linker molecule G3- for producing a cell-penetrating cyclic peptide.
  • the measurement result of the peptide fragment obtained when DCX was introduced is shown.
  • a cyclic peptide black arrow in FIG. 6
  • the white arrows in FIG. 6 indicate peptides that are not cyclized.
  • Examples of aspects of the present invention include the following.
  • a linker molecule for producing a cell-penetrating cyclic peptide which comprises a cell membrane-penetrating cyclic peptide-imparting group and a cyclic group that cyclizes a peptide.
  • ⁇ 5> The above-mentioned ⁇ 2> to ⁇ 4>, wherein the cell membrane permeability-imparting group has a dendritic structure and the basic functional group is introduced into the end of a branch of the dendritic structure. It is a linker molecule.
  • the cyclic group is the linker molecule according to any one of ⁇ 1> to ⁇ 5>, which is an electron-withdrawing group.
  • ⁇ 7> The linker molecule according to ⁇ 6>, wherein the electron-withdrawing group has a halogen.
  • ⁇ 8> The linker molecule according to ⁇ 7>, wherein the electron-withdrawing group has two or more halogens.
  • the electron-withdrawing group is a benzyl chloride which may have a substituent.
  • the cyclization of the peptide by the cyclizing group is carried out by the reaction of the cyclizing group with at least one group selected from the group consisting of a thiol group, an amino group and a hydroxy group contained in the peptide.
  • linker molecule according to any one of ⁇ 1> to ⁇ 11>.
  • a linker molecule for producing a cell-penetrating cyclic peptide which is represented by the following structural formula.
  • ⁇ 14> A peptide complex comprising a peptide and the linker molecule according to any one of ⁇ 1> to ⁇ 13> introduced into the peptide.
  • ⁇ 15> A peptide library comprising the peptide complex according to ⁇ 14>.
  • a method for producing a peptide complex which comprises the step of introducing the linker molecule according to any one of ⁇ 1> to ⁇ 13> into the peptide.
  • ⁇ 17> The method for producing a peptide complex according to ⁇ 16>, wherein the peptide is a peptide contained in a peptide library.
  • a method for screening a functional peptide which comprises a step of screening a functional peptide using the peptide library according to ⁇ 15>.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Provided is a linker molecule for producing a cell membrane-permeable ring-shaped peptide, the linker molecule having a cell membrane permeability-imparting group; and a ring-forming group which forms a peptide into a ring shape.

Description

細胞膜透過性環状ペプチド作製用リンカー分子、及びその利用Linker molecule for producing cell-penetrating cyclic peptide and its use
 本発明は、細胞膜透過性環状ペプチド作製用リンカー分子、前記リンカー分子が導入されたペプチド複合体及びその製造方法、前記ペプチド複合体を含むペプチドライブラリ、及び前記ペプチドライブラリを用いた機能性ペプチドのスクリーニング方法に関する。 The present invention presents a linker molecule for producing a cell-penetrating cyclic peptide, a peptide complex into which the linker molecule has been introduced and a method for producing the same, a peptide library containing the peptide complex, and screening of a functional peptide using the peptide library. Regarding the method.
 近年、様々なアミノ酸配列のペプチド(ポリペプチド)ライブラリの中から、特定の疾患に対する治療薬や、標的分子に親和性の高い分子などを選択することが行われるようになっている。 In recent years, therapeutic agents for specific diseases and molecules having a high affinity for target molecules have been selected from a peptide (polypeptide) library having various amino acid sequences.
 前記ペプチドライブラリの作製方法として、例えば、in vitro翻訳系の方法として、ペプチド鎖、mRNA分子、及びリボソームを含むリボソームディスプレイ複合体を用いるリボソームディスプレイ法(RD法)が知られている(例えば、特許文献1参照)。前記RD法は、in vitro翻訳系とmRNAさえあれば、それらを混合するだけで、1012種類以上のペプチドライブラリを数分で作製することができる非常に優れた有用なものである。 As a method for producing the peptide library, for example, as an in vitro translation system method, a ribosome display method (RD method) using a ribosome display complex containing a peptide chain, an mRNA molecule, and a ribosome is known (for example, a patent). Reference 1). The RD method, if they have in vitro translation system and mRNA, only mixing them, in which very good useful which can be produced 10 12 or more peptide library in a few minutes.
 一方で、抗体などのポリペプチドを機能性分子で化学的に修飾してその機能を拡張した医薬品の開発にも注目が集まっている。例えば、ペプチドは、環状化することで生体内での安定性が向上したり、環状化により構造が安定化することで、標的化合物への親和性や選択性が向上したり、分解酵素に対する耐性や細胞膜透過性が発現したりすることもあることが知られている。 On the other hand, attention is also focused on the development of pharmaceuticals in which polypeptides such as antibodies are chemically modified with functional molecules to expand their functions. For example, cyclization of a peptide improves its stability in vivo, cyclization stabilizes its structure, which improves its affinity and selectivity for a target compound, and resistance to degrading enzymes. It is also known that cell membrane permeability may be expressed.
 また、医薬品の開発においては、タンパク質や核酸などの様々な有効成分を細胞内に効率良く取り込めるようにすることも重要である。 In the development of pharmaceuticals, it is also important to be able to efficiently take in various active ingredients such as proteins and nucleic acids into cells.
 有効成分を細胞内に取り込む技術としては、例えば、塩基性アミノ酸を多く含む細胞膜透過ペプチドのアミノ酸配列を融合する方法や、中心から規則的に分枝した構造を有する樹状高分子であるデンドリマーを用いる方法(例えば、特許文献2参照)などが知られている。 Techniques for incorporating the active ingredient into the cell include, for example, a method of fusing the amino acid sequences of a cell membrane penetrating peptide containing a large amount of basic amino acids, and a dendrimer which is a dendrimer polymer having a regularly branched structure from the center. The method to be used (see, for example, Patent Document 2) and the like are known.
 そのため、環状構造を有するペプチドに細胞膜透過性能を付与した分子は、貴重な創薬シーズとなり得ると考えられ、このようなペプチドを含むペプチドライブラリは、その探索に非常に有用な手段となる。 Therefore, it is considered that a molecule that imparts cell membrane penetrating performance to a peptide having a cyclic structure can be a valuable drug discovery seed, and a peptide library containing such a peptide is a very useful means for the search.
 これまでに、前記リボソーム複合体におけるペプチド鎖を簡便、容易に環状化(修飾)する技術として、修飾試薬による修飾を特定の時期に行うことで、RNAとそこから翻訳されたペプチドとを結合するリボソームの接着機能について、本来の機能を失うことなく維持することができることが知られている(例えば、特許文献3参照)。 So far, as a technique for easily and easily cyclizing (modifying) a peptide chain in the ribosome complex, RNA is bound to a peptide translated from the RNA by modifying it with a modifying reagent at a specific time. It is known that the adhesive function of ribosomes can be maintained without losing the original function (see, for example, Patent Document 3).
 また、ペプチドの環状化と、細胞膜透過性の付与とを行う技術として、これらを段階的に行った例が報告されている(例えば、非特許文献1参照)。 Further, as a technique for cyclizing a peptide and imparting cell membrane permeability, an example in which these are performed stepwise has been reported (see, for example, Non-Patent Document 1).
 しかしながら、ペプチドの環状化と、細胞膜透過性の付与とを同時に行うことができる技術は未だ開発されておらず、その速やかな開発が強く求められているのが現状である。 However, a technique capable of simultaneously cyclizing a peptide and imparting cell membrane permeability has not yet been developed, and the current situation is that rapid development thereof is strongly required.
特開2008-271903号公報Japanese Unexamined Patent Publication No. 2008-271903 米国特許第7,862,807号明細書U.S. Pat. No. 7,862,807 国際公開第2017/213158号International Publication No. 2017/213158
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、ペプチドの環状化と、ペプチドへの細胞膜透過性の付与とを同時に行うことができる細胞膜透過性環状ペプチド作製用リンカー分子、前記リンカー分子が導入されたペプチド複合体及びその製造方法、前記ペプチド複合体を含むペプチドライブラリ、及び前記ペプチドライブラリを用いた機能性ペプチドのスクリーニング方法を提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems in the past and to achieve the following objects. That is, in the present invention, a linker molecule for producing a cell-penetrating cyclic peptide capable of simultaneously performing cyclization of the peptide and imparting cell membrane permeability to the peptide, a peptide complex into which the linker molecule has been introduced, and production thereof It is an object of the present invention to provide a method, a peptide library containing the peptide complex, and a method for screening a functional peptide using the peptide library.
 前記課題を解決するため、本発明者らは鋭意検討した結果、予想外にも、細胞膜透過性付与基と、ペプチドを環状化させる環状化基とが同一分子内に共存する分子を合成することができることを見出し、この分子を用いることで、ペプチドの環状化と、ペプチドへの細胞膜透過性の付与とを同時に行うことができることを知見した。 As a result of diligent studies to solve the above problems, the present inventors unexpectedly synthesize a molecule in which a cell membrane permeability-imparting group and a cyclic group that cyclizes a peptide coexist in the same molecule. It was found that the peptide can be cyclized and cell membrane permeability can be imparted to the peptide at the same time by using this molecule.
 本発明は、本発明者らの前記知見に基づくものであり、前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 細胞膜透過性付与基と、ペプチドを環状化させる環状化基と、を有することを特徴とする細胞膜透過性環状ペプチド作製用リンカー分子である。
 <2> ペプチドと、前記ペプチドに導入された前記<1>に記載のリンカー分子とを含むことを特徴とするペプチド複合体である。
 <3> 前記<2>に記載のペプチド複合体を含むことを特徴とするペプチドライブラリである。
 <4> ペプチドに、前記<1>に記載のリンカー分子を導入する工程を含むことを特徴とするペプチド複合体の製造方法である。
 <5> 前記<3>に記載のペプチドライブラリを用いて機能性ペプチドをスクリーニングする工程を含むことを特徴とする機能性ペプチドのスクリーニング方法である。
The present invention is based on the above-mentioned findings of the present inventors, and the means for solving the above-mentioned problems are as follows. That is,
<1> A linker molecule for producing a cell-penetrating cyclic peptide, which comprises a cell membrane-penetrating cyclic peptide-imparting group and a cyclic group that cyclizes a peptide.
<2> A peptide complex comprising a peptide and the linker molecule according to <1> introduced into the peptide.
<3> A peptide library comprising the peptide complex according to <2> above.
<4> A method for producing a peptide complex, which comprises the step of introducing the linker molecule according to <1> into the peptide.
<5> A method for screening a functional peptide, which comprises a step of screening a functional peptide using the peptide library according to the above <3>.
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、ペプチドの環状化と、ペプチドへの細胞膜透過性の付与とを同時に行うことができる細胞膜透過性環状ペプチド作製用リンカー分子、前記リンカー分子が導入されたペプチド複合体及びその製造方法、前記ペプチド複合体を含むペプチドライブラリ、及び前記ペプチドライブラリを用いた機能性ペプチドのスクリーニング方法を提供することができる。 According to the present invention, a cell-penetrating cyclic peptide capable of solving the above-mentioned problems in the past, achieving the above-mentioned object, and simultaneously performing cyclization of the peptide and impartation of cell membrane permeability to the peptide. It is possible to provide a linker molecule for production, a peptide complex into which the linker molecule has been introduced and a method for producing the same, a peptide library containing the peptide complex, and a method for screening a functional peptide using the peptide library.
図1は、実施例2においてペプチドPの分取HPLCを行った結果を示す図である。FIG. 1 is a diagram showing the results of preparative HPLC of peptide P in Example 2. 図2は、実施例2において環状ペプチド(ペプチド複合体G3-DCX-P)の分取HPLCを行った結果を示す図である。FIG. 2 is a diagram showing the results of preparative HPLC of the cyclic peptide (peptide complex G3-DCX-P) in Example 2. 図3は、実施例3におけるリボソームディスプレイ複合体を作製するために用いた鋳型DNAの構造の模式図である。FIG. 3 is a schematic diagram of the structure of the template DNA used to prepare the ribosome display complex in Example 3. 図4は、実施例4におけるMALDI-TOF MSの測定結果を示す図である。FIG. 4 is a diagram showing the measurement results of MALDI-TOF MS in Example 4. 図5は、実施例5におけるMALDI-TOF MSの測定結果を示す図である。FIG. 5 is a diagram showing the measurement results of MALDI-TOF MS in Example 5. 図6は、実施例6におけるMALDI-TOF MSの測定結果を示す図である。FIG. 6 is a diagram showing the measurement results of MALDI-TOF MS in Example 6.
(細胞膜透過性環状ペプチド作製用リンカー分子)
 本発明の細胞膜透過性環状ペプチド作製用リンカー分子(以下、「リンカー分子」と称することがある。)は、細胞膜透過性付与基と、ペプチドを環状化させる環状化基とを少なくとも有し、必要に応じて更に連結基などのその他の構成を有する。
(Linker molecule for producing cell-penetrating cyclic peptide)
The linker molecule for producing a cell-penetrating cyclic peptide of the present invention (hereinafter, may be referred to as “linker molecule”) has at least a cell membrane-penetrating cyclic peptide-imparting group and a cyclic group that cyclizes the peptide, and is necessary. It also has other configurations such as linking groups, depending on the situation.
 前記リンカー分子は、下記一般式(1)で表すことができる。
 A-B-C ・・・ 一般式(1)
 前記一般式(1)中、「A」は環状化基、「B」は連結基又は単結合、「C」は細胞膜透過性付与基を表す。
The linker molecule can be represented by the following general formula (1).
ABC ・ ・ ・ General formula (1)
In the general formula (1), "A" represents a cyclic group, "B" represents a linking group or a single bond, and "C" represents a cell membrane permeability-imparting group.
<環状化基>
 前記環状化基は、後述するペプチドにおける反応性アミノ酸残基との反応により、前記ペプチドの環状化に寄与する。
 前記反応性アミノ酸残基は、前記環状化基と反応するアミノ酸残基であり、前記環状化基と直接反応するアミノ酸残基であってもよいし、前記環状化基と反応できるように修飾されたアミノ酸残基であってもよい。
 前記環状化基としては、特に制限はなく、目的に応じて適宜選択することができるが、電子吸引基が好ましい。
<Cyclic group>
The cyclic group contributes to the cyclization of the peptide by reacting with a reactive amino acid residue in the peptide described later.
The reactive amino acid residue is an amino acid residue that reacts with the cyclic group, may be an amino acid residue that directly reacts with the cyclic group, or is modified so as to react with the cyclic group. It may be an amino acid residue.
The cyclic group is not particularly limited and may be appropriately selected depending on the intended purpose, but an electron-withdrawing group is preferable.
-電子吸引基-
 前記電子吸引基としては、特に制限はなく、目的に応じて適宜選択することができるが、ハロゲンを有することが好ましい。
-Electronic suction group-
The electron-withdrawing group is not particularly limited and may be appropriately selected depending on the intended purpose, but it preferably has a halogen.
 前記ハロゲンの種類としては、特に制限はなく、目的に応じて適宜選択することができる。 The type of halogen is not particularly limited and can be appropriately selected according to the purpose.
 前記ハロゲンの数としては、特に制限はなく、目的に応じて適宜選択することができるが、2以上が好ましい。 The number of halogens is not particularly limited and may be appropriately selected depending on the purpose, but 2 or more is preferable.
 前記電子吸引基は、2以上の塩素原子を有することが好ましく、置換基を有していてもよいベンジルクロリドがより好ましく、3,5-ビス(クロロメチル)ベンジル基が特に好ましい。 The electron-withdrawing group preferably has two or more chlorine atoms, more preferably benzyl chloride, which may have a substituent, and particularly preferably a 3,5-bis (chloromethyl) benzyl group.
 前記環状化基によるペプチドの環状化は、前記環状化基と、ペプチドに含まれるチオール基、アミノ基、及びヒドロキシ基からなる群から選択される少なくとも1種の基との反応により行われることが好ましい。 Cyclization of a peptide by the cyclic group may be carried out by reacting the cyclic group with at least one group selected from the group consisting of a thiol group, an amino group and a hydroxy group contained in the peptide. preferable.
<細胞膜透過性付与基>
 前記細胞膜透過性付与基は、前記ペプチドに細胞膜透過能を付与する基である。
 前記細胞膜透過性付与基は、塩基性官能基を有することが好ましい。
<Cell membrane permeability-imparting group>
The cell membrane permeability-imparting group is a group that imparts cell membrane permeability to the peptide.
The cell membrane permeability-imparting group preferably has a basic functional group.
 前記細胞膜透過性付与基の態様としては、特に制限はなく、目的に応じて適宜選択することができるが、樹状構造を有する態様が好ましい。
 前記細胞膜透過性付与基における樹状構造単位の数としては、特に制限はなく、目的に応じて適宜選択することができ、1つであってもよいし、2以上であってもよい。
 前記樹状構造単位1つあたりの枝の数としては、特に制限はなく、目的に応じて適宜選択することができるが、3以上が好ましい。
 前記樹状構造の枝の構造としては、特に制限はなく、目的に応じて適宜選択することができる。
The mode of the cell membrane permeability-imparting group is not particularly limited and may be appropriately selected depending on the intended purpose, but a mode having a dendritic structure is preferable.
The number of dendritic structural units in the cell membrane permeability-imparting group is not particularly limited and may be appropriately selected depending on the intended purpose, and may be one or two or more.
The number of branches per dendritic structural unit is not particularly limited and may be appropriately selected depending on the intended purpose, but 3 or more is preferable.
The structure of the branch of the dendritic structure is not particularly limited and may be appropriately selected depending on the intended purpose.
-塩基性官能基-
 前記塩基性官能基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、グアニジノ基、アミノ基、イミダゾール基などが挙げられる。これらの中でも、グアニジノ基を有することが好ましい。前記塩基性官能基は、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記塩基性官能基の数としては、特に制限はなく、目的に応じて適宜選択することができるが、2以上が好ましい。
 前記塩基性官能基は、2以上のグアニジノ基を有する態様が好ましい。
 前記塩基性官能基の前記リンカー分子における位置としては、特に制限はなく、目的に応じて適宜選択することができるが、前記樹状構造の枝の末端に位置することが好ましい。
-Basic functional group-
The basic functional group is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a guanidino group, an amino group and an imidazole group. Among these, it is preferable to have a guanidino group. The basic functional group may be used alone or in combination of two or more.
The number of the basic functional groups is not particularly limited and may be appropriately selected depending on the intended purpose, but 2 or more is preferable.
The basic functional group preferably has two or more guanidino groups.
The position of the basic functional group in the linker molecule is not particularly limited and may be appropriately selected depending on the intended purpose, but it is preferably located at the end of the branch of the dendritic structure.
 前記樹状構造を有する細胞膜透過性付与基の具体例としては、例えば、下記一般式(C)で表されるものなどが挙げられる。
Figure JPOXMLDOC01-appb-C000001
 前記一般式(C)は、枝の数が3である樹状構造を有する細胞膜透過性付与基を表し、式中「Y」は塩基性官能基を表す。
 なお、前記塩基性官能基は、全ての枝の末端に形成されていてもよいし、一部の枝の末端に形成されていてもよい。
 また、前記細胞膜透過性付与基は、一般式(C)で表される樹状構造を複数有していてもよく、その場合、枝の数は、例えば、6、9などが挙げられる。
Specific examples of the cell membrane permeability-imparting group having a dendritic structure include those represented by the following general formula (C).
Figure JPOXMLDOC01-appb-C000001
The general formula (C) represents a cell membrane permeability-imparting group having a dendritic structure having three branches, and "Y" in the formula represents a basic functional group.
The basic functional group may be formed at the ends of all branches, or may be formed at the ends of some branches.
Further, the cell membrane permeability-imparting group may have a plurality of dendritic structures represented by the general formula (C), and in that case, the number of branches may be, for example, 6 or 9.
<その他の構成>
 前記リンカー分子におけるその他の構成としては、本発明の効果を損なわない限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、連結基などが挙げられる。
<Other configurations>
The other constitution of the linker molecule is not particularly limited as long as the effect of the present invention is not impaired, and can be appropriately selected depending on the intended purpose. Examples thereof include a linking group.
<<連結基>>
 前記連結基は、前記細胞膜透過性付与基と、前記環状化基とを連結する基である。
 前記連結基の構造としては、特に制限はなく、目的に応じて適宜選択することができる。
<< Linking group >>
The linking group is a group that links the cell membrane permeability-imparting group and the cyclic group.
The structure of the linking group is not particularly limited and may be appropriately selected depending on the intended purpose.
 前記リンカー分子の具体例としては、以下の構造式で表される化合物などが挙げられる。下記構造式で表されるリンカー分子は、環状化基として、3,5-ビス(クロロメチル)ベンジル基を有し、細胞膜透過性付与基として、樹状構造の末端にグアニジノ基を3つ有し、前記環状化基と前記細胞膜透過性付与基とが、連結基を介して連結している例である。
Figure JPOXMLDOC01-appb-C000002
Specific examples of the linker molecule include compounds represented by the following structural formulas. The linker molecule represented by the following structural formula has a 3,5-bis (chloromethyl) benzyl group as a cyclic group and three guanidino groups at the end of the dendritic structure as a cell membrane permeability-imparting group. This is an example in which the cyclic group and the cell membrane permeability-imparting group are linked via a linking group.
Figure JPOXMLDOC01-appb-C000002
<リンカー分子の製造方法>
 前記リンカー分子の製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、細胞膜透過性付与基前駆体形成工程と、前記細胞膜透過性付与基前駆体に連結基を導入する連結基導入工程と、前記連結基に環状化基前駆体を導入する工程と、前記細胞膜透過性付与基前駆体及び前記環状化基前駆体から細胞膜透過性付与基及び環状化基をそれぞれ形成する工程と、を含む方法などが挙げられる。
 前記各工程は、公知の化学合成の技術を適宜選択して行うことができる。
 例えば、前記細胞膜透過性付与基前駆体形成工程は、米国特許第7,862,807号明細書などに記載の方法により行うことができる。
<Manufacturing method of linker molecule>
The method for producing the linker molecule is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a cell membrane permeability-imparting group precursor forming step and a linking group are added to the cell membrane permeability-imparting group precursor. The step of introducing the linking group to be introduced, the step of introducing the cyclic group precursor into the linking group, and the cell membrane penetrating group and the cyclic group from the cell membrane penetrating group precursor and the cyclic group precursor, respectively. Examples include a step of forming and a method including.
Each of the above steps can be carried out by appropriately selecting a known chemical synthesis technique.
For example, the cell membrane permeability-imparting group precursor forming step can be performed by the method described in US Pat. No. 7,862,807 and the like.
 得られたリンカー分子が所望の構造を有するか否かを確認する方法としては、特に制限はなく、公知の分析方法を適宜選択することができ、例えば、質量分析法、プロトン核磁気共鳴分光法、炭素13核磁気共鳴分光法、紫外分光法、赤外分光法などの分析方法が挙げられる。 The method for confirming whether or not the obtained linker molecule has a desired structure is not particularly limited, and a known analysis method can be appropriately selected. For example, mass spectrometry and proton nuclear magnetic resonance spectroscopy can be selected. , Carbon 13 nuclear magnetic resonance spectroscopy, ultraviolet spectroscopy, infrared spectroscopy and other analytical methods.
 本発明のリンカー分子によれば、ペプチドの環状化と、ペプチドへの細胞膜透過性の付与とを1工程で行うことができるので、簡易に短時間でこれらを達成することができる。 According to the linker molecule of the present invention, cyclization of the peptide and impartation of cell membrane permeability to the peptide can be performed in one step, so that these can be easily achieved in a short time.
(ペプチド複合体)
 本発明のペプチド複合体は、ペプチドと、前記ペプチドに導入された本発明のリンカー分子とを少なくとも含み、必要に応じて更にその他の構成を含む。
(Peptide complex)
The peptide complex of the present invention comprises at least the peptide and the linker molecule of the present invention introduced into the peptide, and further comprises other configurations as required.
<ペプチド>
 前記ペプチドとしては、前記リンカー分子を導入することにより環状化される限り、特に制限はなく、目的に応じて適宜選択することができる。
 前記リンカー分子の導入に利用するアミノ酸残基(以下、「反応性アミノ酸残基」と称することがある。)としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、システイン残基、リジン残基、セリン残基、スレオニン残基などが挙げられる。前記反応性アミノ酸残基は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 前記反応性アミノ酸残基のペプチドにおける数としては、前記ペプチドを環状化する点で、2以上が好ましい。前記反応性アミノ酸残基のペプチドにおける数の上限値としては、特に制限はなく、目的に応じて適宜選択することができるが、反応点が多くなるとペプチドに結合する前記リンカー分子の数や位置が安定せず、アミノ酸配列に由来するペプチドの特性を比較し難くなる場合があるので、10以下が好ましい。
 なお、例えば、ペプチド中のシステイン残基がジスルフィド結合により前記ペプチドの高次構造の安定化に関与しているような場合には、別途、上記反応性アミノ酸残基を前記ペプチドに導入することが好ましい。
<Peptide>
The peptide is not particularly limited as long as it is cyclized by introducing the linker molecule, and can be appropriately selected depending on the intended purpose.
The amino acid residue (hereinafter, may be referred to as “reactive amino acid residue”) used for introducing the linker molecule is not particularly limited and may be appropriately selected depending on the intended purpose. For example, cysteine. Residues, lysine residues, serine residues, threonine residues and the like can be mentioned. The reactive amino acid residue may be used alone or in combination of two or more.
The number of the reactive amino acid residues in the peptide is preferably 2 or more in terms of cyclizing the peptide. The upper limit of the number of the reactive amino acid residues in the peptide is not particularly limited and may be appropriately selected depending on the intended purpose. However, as the number of reaction sites increases, the number and position of the linker molecules that bind to the peptide increase. It is preferably 10 or less because it may not be stable and it may be difficult to compare the characteristics of peptides derived from the amino acid sequence.
In addition, for example, when the cysteine residue in the peptide is involved in the stabilization of the higher-order structure of the peptide by disulfide bond, the reactive amino acid residue may be separately introduced into the peptide. preferable.
 前記反応性アミノ酸残基の前記ペプチドにおける位置としては、特に制限はなく、目的に応じて適宜選択することができる。 The position of the reactive amino acid residue in the peptide is not particularly limited and can be appropriately selected depending on the intended purpose.
 例えば、前記ペプチドとして、mRNA分子、その翻訳物であるペプチド鎖(以下、「ポリペプチド鎖」と称することもある。)、及びリボソームを含むリボソームディスプレイ複合体(以下、「RD複合体」と称することがある。)を用いる場合には、例えば、リボソームの出口トンネル(exit tunnel)から外に出ている部分であり、具体的にはN末端から2番目~C末端から30番目の位置(N末端から2番目の位置及びC末端から30番目の位置を含む)の間とすることが、前記リンカー分子による修飾反応がリボソームにより立体的に阻害され難くなり得る点で、好ましい。
 前記C末端からの位置としては、C末端から50番目が好ましく、100番目がより好ましい。
 また、前記反応性アミノ酸残基の位置をN末端側から数えた場合、その位置は、ペプチドの鎖長に応じて適宜設定できるが、例えば、N末端から2~1,000番目の位置であり、N末端から2~100番目の位置が好ましく、N末端から2~50番目の位置がより好ましい。
For example, as the peptide, an mRNA molecule, a peptide chain which is a translation thereof (hereinafter, may be referred to as “polypeptide chain”), and a ribosome display complex containing ribosome (hereinafter, referred to as “RD complex”). When (may be used) is used, for example, it is a portion protruding from the exit tunnel (exit tunnel) of the ribosome, and specifically, the position (N) from the second N-terminal to the 30th C-terminal. It is preferable to set it between (including the second position from the terminal and the 30th position from the C terminal) in that the modification reaction by the linker molecule can be less likely to be sterically inhibited by the ribosome.
As the position from the C-terminal, the 50th position from the C-terminal is preferable, and the 100th position is more preferable.
Further, when the position of the reactive amino acid residue is counted from the N-terminal side, the position can be appropriately set according to the chain length of the peptide, and is, for example, the 2nd to 1,000th position from the N-terminal. , The 2nd to 100th positions from the N-terminal are preferable, and the 2nd to 50th positions from the N-terminal are more preferable.
 前記RD複合体の製造方法としては、特に制限はなく、公知の方法を適宜選択することができ、例えば、国際公開第2017/213158号に記載の方法などが挙げられる。また、市販のキットを利用して製造することもできる。 The method for producing the RD complex is not particularly limited, and a known method can be appropriately selected. Examples thereof include the method described in International Publication No. 2017/213158. It can also be manufactured using a commercially available kit.
 前記ペプチドのアミノ酸配列としては、特に制限はなく、目的に応じて適宜選択することができるが、ペプチドライブラリとして有用であるように、特定の位置にランダム配列を含むものが好ましい。かかるランダム配列の中から、所定の目的に応じて有用なアミノ酸配列を特定し得る。 The amino acid sequence of the peptide is not particularly limited and may be appropriately selected depending on the intended purpose, but one containing a random sequence at a specific position is preferable so as to be useful as a peptide library. From such a random sequence, a useful amino acid sequence can be specified according to a predetermined purpose.
 前記ランダム配列の前記ペプチドにおける位置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記反応性アミノ酸残基の位置と同様に、RD複合体を用いる場合には、N末端から2番目~C末端から30番目の位置(N末端から2番目の位置及びC末端から30番目の位置を含む)の間とすることが好ましい。即ち、反応性アミノ酸残基は、ランダム配列内に含まれることが好ましい。従ってランダム配列の好ましい位置は、反応性アミノ酸残基の好ましい位置と同じ範囲から設定できる。 The position of the random sequence in the peptide is not particularly limited and may be appropriately selected depending on the intended purpose. For example, when the RD complex is used as in the position of the reactive amino acid residue, the position is not particularly limited. It is preferably between the 2nd position from the N-terminal to the 30th position from the C-terminal (including the 2nd position from the N-terminal and the 30th position from the C-terminal). That is, the reactive amino acid residue is preferably contained in a random sequence. Therefore, the preferred position of the random sequence can be set from the same range as the preferred position of the reactive amino acid residue.
 前記ランダム配列の前記ペプチドにおける数は、1つであってもよく、2つ以上であってもよい。前記ランダム配列の数の上限としては、特に制限はなく、目的に応じて適宜選択することができるが、10以下が好ましい。
 前記ランダム配列1つあたりのアミノ酸残基数としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、1以上、30以下とすることができる。
 1つのランダム配列が長くなるほど、またランダム配列の数が多くなるほど、ペプチドライブラリの多様性を高めることができる。
The number of the random sequences in the peptide may be one or two or more. The upper limit of the number of the random sequences is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10 or less.
The number of amino acid residues per random sequence is not particularly limited and may be appropriately selected depending on the intended purpose, and may be, for example, 1 or more and 30 or less.
The longer one random sequence and the larger the number of random sequences, the greater the diversity of the peptide library.
 前記ペプチドは、更に、FLAG(登録商標)配列やポリHis配列等のポリペプチド鎖の精製のための配列、プロテアーゼなどにより選択的に切断される配列、スペーサー配列などを含んでいてもよい。 The peptide may further contain a sequence for purifying a polypeptide chain such as a FLAG® sequence or a polyHis sequence, a sequence selectively cleaved by a protease or the like, a spacer sequence, or the like.
 前記ペプチドのアミノ酸残基数としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、10以上、5,000以下とすることができる。
 前記ペプチドのアミノ酸残基数の下限値としては、150以上が好ましく、200以上がより好ましい。また、ペプチドのアミノ酸残基数の上限値としては、800以下が好ましく、600以下がより好ましく、500以下が特に好ましい。前記下限値と上限値とは、適宜組み合わせて選択することができる。
The number of amino acid residues of the peptide is not particularly limited and may be appropriately selected depending on the intended purpose, and may be, for example, 10 or more and 5,000 or less.
The lower limit of the number of amino acid residues of the peptide is preferably 150 or more, more preferably 200 or more. The upper limit of the number of amino acid residues of the peptide is preferably 800 or less, more preferably 600 or less, and particularly preferably 500 or less. The lower limit value and the upper limit value can be appropriately combined and selected.
 前記ペプチドの合成方法としては、特に制限はなく、公知の方法を適宜選択することができる。 The method for synthesizing the peptide is not particularly limited, and a known method can be appropriately selected.
<リンカー分子>
 前記リンカー分子は、上記した本発明の細胞膜透過性環状ペプチド作製用リンカー分子である。
 前記リンカー分子は、前記リンカー分子における環状化基と、前記ペプチドにおける反応性アミノ酸残基とが反応することにより前記ペプチドに導入される。前記反応の際に、前記環状化基の構造は変化する。
<Linker molecule>
The linker molecule is the above-mentioned linker molecule for producing a cell-penetrating cyclic peptide of the present invention.
The linker molecule is introduced into the peptide by reacting the cyclic group in the linker molecule with the reactive amino acid residue in the peptide. During the reaction, the structure of the cyclic group changes.
<その他の構成>
 前記ペプチド複合体におけるその他の構成としては、本発明の効果を損なわない限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、蛍光物質などの発光物質、色素、放射性物質、薬剤、毒素、核酸、アミノ酸、糖類、脂質、各種ポリマーなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記蛍光物質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フルオレセイン類、ローダミン類、クマリン類、ピレン類、シアニン類などの蛍光色素が挙げられる。
 前記その他の構成は、例えば、上記したペプチドに、直接又は連結基などを介して結合させることができる。
<Other configurations>
The other constitution of the peptide complex is not particularly limited as long as the effect of the present invention is not impaired, and can be appropriately selected depending on the intended purpose. For example, a luminescent substance such as a fluorescent substance, a dye, a radioactive substance, etc. Examples thereof include drugs, toxins, nucleic acids, amino acids, sugars, lipids, and various polymers. These may be used alone or in combination of two or more.
The fluorescent substance is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include fluorescent dyes such as fluorescein, rhodamine, coumarin, pyrene and cyanine.
The other constitution can be attached to the above-mentioned peptide, for example, directly or via a linking group or the like.
(ペプチド複合体の製造方法)
 本発明のペプチド複合体の製造方法は、ペプチドに、本発明のリンカー分子を導入するリンカー分子導入工程を少なくとも含み、必要に応じて更にその他の工程を含む。
(Method for producing peptide complex)
The method for producing a peptide complex of the present invention includes at least a linker molecule introduction step of introducing the linker molecule of the present invention into the peptide, and further includes other steps as necessary.
<リンカー分子導入工程>
 前記リンカー分子導入工程は、ペプチドに、本発明のリンカー分子を導入する(以下、「結合させる」、「挿入する」、「連結する」と称することもある。)工程である。
 前記リンカー分子導入工程により、ペプチドの環状化と、ペプチドへの細胞膜透過性の付与とを同時に行うことができる。
 前記リンカー分子導入工程では、反応物中における少なくとも1つのペプチドにリンカー分子が導入されればよいが、全てのペプチドにリンカー分子が導入されることが好ましい。
<Linker molecule introduction process>
The linker molecule introduction step is a step of introducing the linker molecule of the present invention into a peptide (hereinafter, may be referred to as "binding", "inserting", or "linking").
By the linker molecule introduction step, the cyclization of the peptide and the impartation of cell membrane permeability to the peptide can be performed at the same time.
In the linker molecule introduction step, the linker molecule may be introduced into at least one peptide in the reaction product, but it is preferable that the linker molecule is introduced into all the peptides.
-ペプチド-
 前記ペプチドは、上記した(ペプチド複合体)の<ペプチド>の項目に記載したものと同様である。なお、前記ペプチドは、ペプチドライブラリの態様であってもよい。
-peptide-
The peptide is the same as that described in the item <Peptide> of the above (peptide complex). The peptide may be in the form of a peptide library.
-導入-
 前記導入の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、還元剤の存在下で、前記リンカー分子と、前記ペプチドとを反応させる方法などが挙げられる。
 前記還元剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トリス(2-カルボキシエチル)ホスフィン塩酸塩などが挙げられる。
 前記反応の温度、時間等の条件としては、特に制限はなく、目的に応じて適宜選択することができる。
-Introduction-
The method of introduction is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a method of reacting the linker molecule with the peptide in the presence of a reducing agent.
The reducing agent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include tris (2-carboxyethyl) phosphine hydrochloride.
The conditions such as the temperature and time of the reaction are not particularly limited and may be appropriately selected depending on the intended purpose.
<その他の工程>
 前記その他の工程としては、本発明の効果を損なわない限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、分取HPLCを用いたペプチド複合体精製工程などが挙げられる。
<Other processes>
The other steps are not particularly limited as long as the effects of the present invention are not impaired, and can be appropriately selected depending on the intended purpose. Examples thereof include a peptide complex purification step using preparative HPLC.
 得られたペプチド複合体が所望の構造を有するか否かを確認する方法としては、特に制限はなく、公知の分析方法を適宜選択することができ、例えば、質量分析法、プロトン核磁気共鳴分光法、炭素13核磁気共鳴分光法、紫外分光法、赤外分光法などの分析方法が挙げられる。 The method for confirming whether or not the obtained peptide complex has a desired structure is not particularly limited, and a known analysis method can be appropriately selected. For example, mass spectrometry and proton nuclear magnetic resonance spectroscopy can be selected. Analytical methods such as method, carbon-13 nuclear magnetic resonance spectroscopy, ultraviolet spectroscopy, and infrared spectroscopy can be mentioned.
(ペプチドライブラリ)
 本発明のペプチドライブラリは、本発明のペプチド複合体を少なくとも含み、必要に応じて更にその他の構成を含む。
 前記ペプチドライブラリは、本発明のペプチド複合体のみからなるものであってもよいし、環状化されていないペプチドが含まれていてもよい。
(Peptide library)
The peptide library of the present invention contains at least the peptide complex of the present invention, and further contains other configurations as required.
The peptide library may consist only of the peptide complex of the present invention, or may contain a peptide that has not been cyclized.
 前記ペプチドライブラリは、上記した(ペプチド複合体の製造方法)と同様にして、製造することができる。 The peptide library can be produced in the same manner as described above (method for producing a peptide complex).
(機能性ペプチドのスクリーニング方法)
 本発明の機能性ペプチドのスクリーニング方法は、本発明のペプチドライブラリを用いて機能性ペプチドをスクリーニングする工程を少なくとも含み、必要に応じて更にその他の工程を含む。
 前記スクリーニングの方法としては、本発明のペプチドライブラリを用いる限り、特に制限はなく、公知の方法を適宜選択することができる。例えば、所望の対象物質と、前記ペプチドライブラリとを混合し、結合したペプチド複合体(例えば、RD複合体)を選択し、前記RD複合体からRNAを解離させ、前記RNAからDNAを調製し、増幅した後、mRNAに転写し、再度RD複合体ライブラリを作製するという工程を繰り返し、前記対象物質に対する親和性を有する機能性ペプチドをスクリーニングする方法などが挙げられる。
(Screening method for functional peptides)
The method for screening a functional peptide of the present invention includes at least a step of screening a functional peptide using the peptide library of the present invention, and further includes other steps as necessary.
The screening method is not particularly limited as long as the peptide library of the present invention is used, and a known method can be appropriately selected. For example, a desired target substance and the peptide library are mixed, a bound peptide complex (for example, RD complex) is selected, RNA is dissociated from the RD complex, and DNA is prepared from the RNA. Examples thereof include a method of screening for a functional peptide having an affinity for the target substance by repeating the step of transcribing to mRNA and preparing an RD complex library again after amplification.
 以下に実施例等を挙げて本発明をより具体的に説明するが、本発明はこれらの実施例等に何ら限定されるものではない。 The present invention will be described in more detail with reference to Examples and the like, but the present invention is not limited to these Examples and the like.
(調製例1:ペプチドの合成)
 マイクロウェーブを用いた固相合成法により、リンクアミド(Rink Amide)樹脂(0.2mmol/g)上で、以下の配列を有するペプチドを合成した。
 FITC-Ahx-Cys-Gly-Ser-Gly-Leu-Ala-Ser-Pro-Asn-Gly-Tyr-Cys-NH
 [上記配列中、「FITC」はフルオレセインイソチオシアネートを表し、「Ahx」は6-アミノヘキサン酸を表す。]
(Preparation Example 1: Peptide Synthesis)
A peptide having the following sequence was synthesized on a link amide resin (0.2 mmol / g) by a solid-phase synthesis method using microwaves.
FITC-Ahx-Cys-Gly-Ser-Gly-Leu-Ala-Ser-Pro-Asn-Gly-Tyr-Cys-NH 2
[In the above sequence, "FITC" represents fluorescein isothiocyanate and "Ahx" represents 6-aminohexanoic acid. ]
 前記ペプチドを形成した樹脂を、トリフルオロ酢酸(TFA)/水/トリイソプロピルシラン/3,6-ジオキサ-1,8-オクタンジチオール(92.5/2.5/2.5/2.5(容量比))に3時間浸漬し、前記ペプチドを樹脂から切り出した。
 得られたペプチドを逆相HPLCで精製し凍結乾燥することにより、上記配列を有するペプチド(以下、「P」と表すことがある。下記構造式参照。)を取得した。
 前記ペプチドPのエレクトロスプレーイオン化質量分析(ESI-MS)による同定データは、以下のとおりであった。
 ESI-MS C72921622 計算値(M+2H+)815.295、測定値814.67
Figure JPOXMLDOC01-appb-C000003
The resin on which the peptide was formed was used as trifluoroacetic acid (TFA) / water / triisopropylsilane / 3,6-dioxa-1,8-octanedithiol (92.5 / 2.5 / 2.5 / 2.5 (92.5 / 2.5 / 2.5 / 2.5). The peptide was excised from the resin by immersing it in (volume ratio)) for 3 hours.
The obtained peptide was purified by reverse phase HPLC and freeze-dried to obtain a peptide having the above sequence (hereinafter, may be referred to as "P". See the structural formula below).
The identification data of the peptide P by electrospray ionization mass spectrometry (ESI-MS) were as follows.
ESI-MS C 72 H 92 N 16 O 22 O 3 Calculated value (M + 2H +) 815.295, measured value 814.67
Figure JPOXMLDOC01-appb-C000003
(実施例1:細胞膜透過性環状ペプチド作製用リンカー分子G3-DCXの合成)
<化合物C1の合成>
 米国特許第7,862,807号明細書に記載の方法と同様の方法により、下記構造式で表される化合物C1を合成した。
 なお、構造式中の「Boc」は、「tert-ブトキシカルボニル基」を表す。
Figure JPOXMLDOC01-appb-C000004
(Example 1: Synthesis of linker molecule G3-DCX for producing cell membrane penetrating cyclic peptide)
<Synthesis of compound C1>
Compound C1 represented by the following structural formula was synthesized by the same method as described in US Pat. No. 7,862,807.
In addition, "Boc" in the structural formula represents "tert-butoxycarbonyl group".
Figure JPOXMLDOC01-appb-C000004
<化合物C3の合成>
Figure JPOXMLDOC01-appb-C000005
<Synthesis of compound C3>
Figure JPOXMLDOC01-appb-C000005
 上記反応式のようにして、上記構造式で表される化合物C3を合成した。
 具体的には、化合物C1(500mg,0.42mmol)の塩化メチレン溶液(15mL)を0℃に冷却し、化合物C2(東京化成工業株式会社製、製品番号A2293)(117.5mg,0.504mmol)と1-ヒドロキシベンゾトリアゾール(HOBT)(85.1mg,0.630mmol)と1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(EDC/HCl)(120mg,0.630mmol)を加えて25℃で17時間撹拌した。ここにHO(20mL)を加え、塩化メチレンで抽出を行い(30mLで3回)、有機層は1N塩酸(20mLで2回)と飽和重曹水(20mLで2回)と水(20mLで2回)で洗浄した。NaSOで乾燥しろ過と濃縮を行い、得られた残渣をシリカゲルクロマトグラフィー精製(メタノール(MeOH)/CHCl=1/10)することにより、化合物C3を白色固体として取得した(533mg,0.379mmol,収率90%)。
 前記化合物C3の1H NMRによる同定データは、以下のとおりであった。
 1H NMR(CDCl): δ 11.4(s, 3H), 8.58(t, HH=6.0Hz, 3H), 7.69(t, HH=5.0Hz, 3H), 6.84(s, 1H), 3.89(s, 2H), 3.71-3.65(m, 22H), 3.56-3.53(m, 6H), 3.42-3.38(m, 8H), 2.43(t, HH=6.0Hz, 6H), 1.49(s, 27H), 1.48(s, 27H)
The compound C3 represented by the above structural formula was synthesized by the above reaction formula.
Specifically, a methylene chloride solution (15 mL) of compound C1 (500 mg, 0.42 mmol) was cooled to 0 ° C., and compound C2 (manufactured by Tokyo Kasei Kogyo Co., Ltd., product number A2293) (117.5 mg, 0.504 mmol) was cooled. ), 1-Hydroxybenzotriazole (HOBT) (85.1 mg, 0.630 mmol) and 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (EDC / HCl) (120 mg, 0.630 mmol). The mixture was stirred at 25 ° C. for 17 hours. H 2 O (20 mL) is added to this, and extraction is performed with methylene chloride (30 mL 3 times), and the organic layer is 1N hydrochloric acid (20 mL twice), saturated sodium bicarbonate water (20 mL twice) and water (20 mL). Washed twice). The compound C3 was obtained as a white solid by drying with Na 2 SO 4 , filtering and concentrating, and purifying the obtained residue by silica gel chromatography (methanol (MeOH) / CH 2 Cl 2 = 1/10) (methanol (MeOH) / CH 2 Cl 2 = 1/10). 533 mg, 0.379 mmol, 90% yield).
The identification data of the compound C3 by 1H NMR was as follows.
1H NMR (CDCl 3 ): δ 11.4 (s, 3H), 8.58 (t, 3 J HH = 6.0 Hz, 3 H), 7.69 (t, 3 J HH = 5.0 Hz, 3 H) , 6.84 (s, 1H), 3.89 (s, 2H), 3.71-3.65 (m, 22H), 3.56-3.53 (m, 6H), 3.42-3 .38 (m, 8H), 2.43 (t, 3 J HH = 6.0 Hz, 6H), 1.49 (s, 27H), 1.48 (s, 27H)
<化合物DBXAの合成>
 水素化ナトリウム(132mg,3.02mmol)をテトラヒドロフラン(THF)(6mL)に懸濁させ0℃に冷却した。ここに2-プロピン-1-オール(0.165mL,2.80mmol)を加え0℃で30分間撹拌した。1,3,5-トリス(ブロモメチル)ベンゼン(1.00g,2.80mmol)を加え25℃で20時間撹拌した。酢酸エチル(100mL)を加えてから水(100mL)と飽和食塩水(100mL)で洗浄し、有機層を硫酸マグネシウムで洗浄した。ろ過と濃縮を行い得られた残渣を分取薄層クロマトグラフィー(PTLC)で精製し(塩化メチレン/ヘキサン=1/2)、下記構造式で表される化合物DBXA(416.6mg,1.25mmol,収率45%)を淡黄色油状物として取得した。
 前記化合物DBXAの1H NMRによる同定データは、以下のとおりであった。
 1H NMR(CDCl): δ 7.29(s, 1H), 7.26(s, 2H), 4.53(s, 2H), 4.40(s, 4H), 4.15(HH=2.5Hz, 2H), 2.43(HH=2.0Hz, 1H)
Figure JPOXMLDOC01-appb-C000006
<Synthesis of compound DBXA>
Sodium hydride (132 mg, 3.02 mmol) was suspended in tetrahydrofuran (THF) (6 mL) and cooled to 0 ° C. 2-Propyne-1-ol (0.165 mL, 2.80 mmol) was added thereto, and the mixture was stirred at 0 ° C. for 30 minutes. 1,3,5-Tris (bromomethyl) benzene (1.00 g, 2.80 mmol) was added, and the mixture was stirred at 25 ° C. for 20 hours. Ethyl acetate (100 mL) was added and then washed with water (100 mL) and saturated brine (100 mL), and the organic layer was washed with magnesium sulfate. The residue obtained by filtration and concentration was purified by preparative thin layer chromatography (PTLC) (methylene chloride / hexane = 1/2), and the compound DBXA (416.6 mg, 1.25 mmol) represented by the following structural formula was obtained. , Yield 45%) was obtained as a pale yellow oil.
The identification data of the compound DBXA by 1H NMR were as follows.
1H NMR (CDCl 3 ): δ 7.29 (s, 1H), 7.26 (s, 2H), 4.53 (s, 2H), 4.40 (s, 4H), 4.15 ( 4 J) HH = 2.5Hz, 2H), 2.43 ( 4 J HH = 2.0Hz, 1H)
Figure JPOXMLDOC01-appb-C000006
<化合物C4の合成>
Figure JPOXMLDOC01-appb-C000007
<Synthesis of compound C4>
Figure JPOXMLDOC01-appb-C000007
 上記反応式のようにして、上記構造式で表される化合物C4を合成した。
 具体的には、化合物C3(533mg, 0.379mmol)と化合物DBXA(188mg, 0.568mmol)とTHF(40mL)からなる溶液に窒素ガスバブリングを行い、窒素雰囲気下とした。ここに、硫酸銅水溶液(200mM; 1.89mL,0.379mmol)とアスコルビン酸ナトリウム水溶液(100mM; 7.58mL,0.758mmol)を加え、25℃で3時間撹拌した。反応液に水を加え塩化メチレンで抽出を行い(20mLで3回)、有機層をNaSOで乾燥しろ過と濃縮を行い、得られた残渣をシリカゲルクロマトグラフィー精製(MeOH/CHCl=1/20)することにより、化合物C4を白色固体として取得した(497mg,0.286mmol,収率76%)。
 前記化合物C4の1H NMRによる同定データは、以下のとおりであった。
 1H NMR(CDCl): δ 8.58(t, HH=5.5Hz, 3H), 7.77(s, 1H), 7.74(t, HH=5.0Hz, 3H), 7.34(s, 1H), 7.32(s, 2H), 6.82(s, 1H), 4.69(s, 2H), 4.58(s, 2H), 4.56(t, HH=5.0Hz, 2H), 4.47(s, 4H), 3.89(t, HH=5.0Hz, 2H), 3.87(s, 2H), 3.69(t, HH=6.0Hz, 6H), 3.66(s, 6H), 3.61(s, 8H), 3.56-3.52(m, 6H), 3.41-3.38(m, 6H), 2.42(t, HH=6.0Hz, 6H), 1.49(s, 27H), 1.48(s, 27H)
The compound C4 represented by the above structural formula was synthesized by the above reaction formula.
Specifically, nitrogen gas bubbling was performed on a solution consisting of compound C3 (533 mg, 0.379 mmol), compound DBXA (188 mg, 0.568 mmol) and THF (40 mL) to create a nitrogen atmosphere. An aqueous solution of copper sulfate (200 mM; 1.89 mL, 0.379 mmol) and an aqueous solution of sodium ascorbate (100 mM; 7.58 mL, 0.758 mmol) were added thereto, and the mixture was stirred at 25 ° C. for 3 hours. Water is added to the reaction solution, extraction is performed with methylene chloride (20 mL, 3 times), the organic layer is dried with Na 2 SO 4 , filtered and concentrated, and the obtained residue is purified by silica gel chromatography (MeOH / CH 2 Cl). By 2 = 1/20), compound C4 was obtained as a white solid (497 mg, 0.286 mmol, yield 76%).
The identification data of the compound C4 by 1H NMR was as follows.
1H NMR (CDCl 3 ): δ 8.58 (t, 3 J HH = 5.5 Hz, 3 H), 7.77 (s, 1 H), 7.74 (t, 3 J HH = 5.0 Hz, 3 H) , 7.34 (s, 1H), 7.32 (s, 2H), 6.82 (s, 1H), 4.69 (s, 2H), 4.58 (s, 2H), 4.56 ( t, 3 J HH = 5.0 Hz, 2H), 4.47 (s, 4H), 3.89 (t, 3 J HH = 5.0 Hz, 2H), 3.87 (s, 2H), 3. 69 (t, 3 J HH = 6.0 Hz, 6H), 3.66 (s, 6H), 3.61 (s, 8H), 3.56-3.52 (m, 6H), 3.41- 3.38 (m, 6H), 2.42 (t, 3 J HH = 6.0 Hz, 6H), 1.49 (s, 27H), 1.48 (s, 27H)
<細胞膜透過性環状ペプチド作製用リンカー分子G3-DCXの合成>
Figure JPOXMLDOC01-appb-C000008
<Synthesis of linker molecule G3-DCX for producing cell-penetrating cyclic peptide>
Figure JPOXMLDOC01-appb-C000008
 上記反応式のようにして、上記構造式で表される細胞膜透過性環状ペプチド作製用リンカー分子G3-DCXを合成した。
 具体的には、化合物C4(497mg,0.286mmol)と4N塩酸ジオキサン溶液(30mL)を混合し、25℃で46時間撹拌した。反応後、白色固体が析出した。上清を除去し、細胞膜透過性環状ペプチド作製用リンカー分子G3-DCX粗生成物を取得した。分取HPLC(high performance liquid chromatography)で精製し、細胞膜透過性環状ペプチド作製用リンカー分子G3-DCXを白色固体として取得した(116mg, 0.110mmol, 収率54%)。
 前記化合物G3-DCXのマトリックス支援レーザー脱離イオン化飛行時間質量分析(MALDI-TOF MS)による同定データは、以下のとおりであった。
 MALDI-TOF MS C245114 計算値(M+H+)1047.502、測定値1047.953
The linker molecule G3-DCX for producing a cell-penetrating cyclic peptide represented by the above structural formula was synthesized by the above reaction formula.
Specifically, compound C4 (497 mg, 0.286 mmol) and a 4N dioxane hydrochloride solution (30 mL) were mixed and stirred at 25 ° C. for 46 hours. After the reaction, a white solid was precipitated. The supernatant was removed to obtain a crude product of the linker molecule G3-DCX for producing a cell membrane penetrating cyclic peptide. Purification by preparative HPLC (high performance liquid chromatography) was obtained to obtain the linker molecule G3-DCX for producing a cell-penetrating cyclic peptide as a white solid (116 mg, 0.110 mmol, yield 54%).
The identification data of the compound G3-DCX by matrix-assisted laser desorption / ionization time-of-flight mass spectrometry (MALDI-TOF MS) were as follows.
MALDI-TOF MS C 24 H 51 N 14 O 8 Calculated value (M + H +) 1047.502, measured value 1047.953
(実施例2:ペプチド複合体G3-DCX-Pの合成)
Figure JPOXMLDOC01-appb-C000009
(Example 2: Synthesis of peptide complex G3-DCX-P)
Figure JPOXMLDOC01-appb-C000009
 上記反応式のようにして、上記構造式で表されるペプチド複合体G3-DCX-Pを合成した。
 具体的には、調製例1で合成したペプチドP(4.8mg,3.0μmol)を50mM重炭酸アンモニウム緩衝液(1.0mL)に溶解し、トリス(2-カルボキシエチル)ホスフィン(TCEP)(0.94mg,3.3μmol)を加えて25℃で1時間撹拌した。ここに、実施例1で合成した細胞膜透過性環状ペプチド作製用リンカー分子G3-DCX(4.7mg,4.5μmol)と水(500μL)からなる溶液を加え、25℃で20時間撹拌した。反応液を分取HPLCで精製することにより、環状ペプチド(ペプチド複合体G3-DCX-P)を取得した(1.01mg,0.388μmol,収率13%)。
 前記分取HPLCの分析条件は下記の通りである。前記調製例1で合成したペプチドPの分析チャートを図1に、前記環状ペプチド(ペプチド複合体G3-DCX-P)の分析チャートを図2に示す。
[分析条件]
 ・ カラム : SUPELCO C18 4.7mm×250mm
 ・ 検出波長 : 220nm
 ・ 流速 : 1.0mL/分間
 ・ 溶媒 : A=0.1%TFA含有水溶液、B=0.1%TFA含有アセトニトリル溶液
 ・ グラジエント : 溶媒Bの濃度(%)=0%→100%(0分→20分)
 また、前記ペプチド複合体G3-DCX-PのMALDI-TOF MSによる同定データは、以下のとおりであった。
 MALDI-TOF MS C1141633233 計算値(M+H+)2604.12、測定値2603.575
The peptide complex G3-DCX-P represented by the above structural formula was synthesized by the above reaction formula.
Specifically, the peptide P (4.8 mg, 3.0 μmol) synthesized in Preparation Example 1 was dissolved in 50 mM ammonium bicarbonate buffer (1.0 mL), and tris (2-carboxyethyl) phosphine (TCEP) (TCEP). 0.94 mg (3.3 μmol) was added, and the mixture was stirred at 25 ° C. for 1 hour. A solution consisting of the linker molecule G3-DCX (4.7 mg, 4.5 μmol) for producing a cell-penetrating cyclic peptide synthesized in Example 1 and water (500 μL) was added thereto, and the mixture was stirred at 25 ° C. for 20 hours. The reaction solution was purified by preparative HPLC to obtain a cyclic peptide (peptide complex G3-DCX-P) (1.01 mg, 0.388 μmol, yield 13%).
The analysis conditions of the preparative HPLC are as follows. The analysis chart of the peptide P synthesized in Preparation Example 1 is shown in FIG. 1, and the analysis chart of the cyclic peptide (peptide complex G3-DCX-P) is shown in FIG.
[Analysis conditions]
-Column: SUPELCO C18 4.7 mm x 250 mm
・ Detection wavelength: 220 nm
-Flow flow rate: 1.0 mL / min-Solvent: A = 0.1% TFA-containing aqueous solution, B = 0.1% TFA-containing acetonitrile solution-Gradient: Solvent B concentration (%) = 0% → 100% (0 minutes) → 20 minutes)
The identification data of the peptide complex G3-DCX-P by MALDI-TOF MS was as follows.
MALDI-TOF MS C 114 H 163 N 32 O 33 O 3 Calculated value (M + H +) 2604.12., Measured value 2603.575
(試験例1:細胞膜透過能評価)
 HeLa細胞(Human cervix adenocarcinoma cell)を、調製例1で合成したペプチド又は実施例2で合成したペプチド複合体2μMを含む細胞培養液中、5%(v/v)CO、37℃の条件下で2時間培養した。HeLa細胞の培養には、FluoroBrite D-MEM(ThermoFisher社製)(10%(v/v)FCS(ウシ胎児血清)、10%(v/v)GlutaMax(ThermoFisher社製)添加)を用いた。
 次いで、D-PBS(-)(ヘパリン(20units/mL)添加)で細胞表面を洗浄後、細胞を回収し、D-PBS(-)(0.5%(v/v)BSA(ウシ血清アルブミン)、200mM EDTA(エチレンジアミン四酢酸)、0.2%(v/v)ヨウ化プロピジウム(Sigma-Aldrich社製)添加)に懸濁させ、フローサイトメーター(BD FACS AriaIII)を用いて蛍光強度を測定した。フローサイトメトリー解析時には、ヨウ化プロピジウム陽性の死細胞を除いた生細胞集団に対し、蛍光強度最頻値を算出した。結果を表1に示す。
(Test Example 1: Evaluation of cell membrane permeability)
HeLa cells (Human cervix adenocarcinoma cell) in a cell culture medium containing 2 μM of the peptide synthesized in Preparation Example 1 or the peptide complex synthesized in Example 2 under the conditions of 5% (v / v) CO 2 , 37 ° C. Was cultured for 2 hours. For culturing HeLa cells, FluroBrite D-MEM (manufactured by Thermo Fisher) (10% (v / v) FCS (fetal bovine serum) added), 10% (v / v) GlutaMax (manufactured by Thermo Fisher) was added).
Then, after washing the cell surface with D-PBS (-) (addition of heparin (20 units / mL)), the cells were collected, and D-PBS (-) (0.5% (v / v) BSA (bovine serum albumin)) was collected. ), 200 mM EDTA (ethylenediaminetetraacetic acid), 0.2% (v / v) propidium iodide (manufactured by Sigma-Aldrich) was suspended), and the fluorescence intensity was determined using a flow cytometer (BD FACS Maria III). It was measured. At the time of flow cytometry analysis, the mode of fluorescence intensity was calculated for the living cell population excluding the dead cells positive for propidium iodide. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表1に示されるとおり、培養2時間後において、調製例1で合成したペプチドはほぼ膜透過しないのに対し、実施例2で合成したペプチド複合体は膜透過していた。このことから、細胞膜透過性環状ペプチド作製用リンカー分子G3-DCXをペプチドに導入することにより、ペプチドの環化と同時に細胞膜透過性を獲得したことが実証された。 As shown in Table 1, the peptide synthesized in Preparation Example 1 hardly permeated the membrane after 2 hours of culturing, whereas the peptide complex synthesized in Example 2 permeated the membrane. From this, it was demonstrated that the cell membrane permeability was acquired at the same time as the cyclization of the peptide by introducing the linker molecule G3-DCX for producing a cell membrane penetrating cyclic peptide into the peptide.
(実施例3:細胞膜透過性環状ペプチド作製用リンカー分子G3-DCXで環化されたペプチドを有するペプチド複合体を含むペプチドライブラリの作製)
<(1)RNAライブラリの作製>
 本(1)項では、NNK法によるランダムな塩基配列(NNK)10[式中、NはA、U、G又はCを示し、KはG又はUを示し、NNKはすべてのコドンに対応する]を含むRNAで構成される1012以上の多様性を有するRNAライブラリの作製法について説明する。
(Example 3: Preparation of a peptide library containing a peptide complex having a peptide cyclized with the linker molecule G3-DCX for producing a cell membrane penetrating cyclic peptide)
<(1) Preparation of RNA library>
In this section (1), a random base sequence (NNK) by the NNK method 10 [In the formula, N indicates A, U, G or C, K indicates G or U, and NNK corresponds to all codons. ], A method for producing an RNA library having a diversity of 10 12 or more composed of RNA containing [] will be described.
 このRNAライブラリ作製の為に、鋳型DNA(塩基配列:配列番号1、アミノ酸配列:配列番号2)を用いた。具体的には、表2-1に示す組成を有する反応液を用い、表2-2のPCRサイクルでプラスミドを鋳型DNAとして5’フラグメントを調製した。表2-1中、5FragF_150409はフォワードプライマー(配列番号4)であり、Ma5frag_withoutHis_R150310はリバースプライマー(配列番号5)である。 A template DNA (base sequence: SEQ ID NO: 1, amino acid sequence: SEQ ID NO: 2) was used to prepare this RNA library. Specifically, a reaction solution having the composition shown in Table 2-1 was used, and a 5'fragment was prepared using the plasmid as a template DNA in the PCR cycle of Table 2-2. In Table 2-1, 5FragF_150409 is a forward primer (SEQ ID NO: 4) and Ma5frag_withoutHis_R150310 is a reverse primer (SEQ ID NO: 5).
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 次に、表2-3に示す組成を有する反応液を用い、表2-4のPCRサイクルで鋳型DNAの3’フラグメントを調製した。表2-3中、A1MaNNK10_withoutHis_150531はフォワードプライマー(配列番号6)であり、3FragR_150409はリバースプライマー(配列番号7)である。 Next, using the reaction solution having the composition shown in Table 2-3, a 3'fragment of the template DNA was prepared by the PCR cycle in Table 2-4. In Table 2-3, A1MaNNK10_withoutHis_150531 is a forward primer (SEQ ID NO: 6) and 3FragR_150409 is a reverse primer (SEQ ID NO: 7).
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 次に、表2-5に示す組成を有する反応液を用い、表2-6のPCRサイクルでオーバーラップエクステンション(Overlap Extension)PCRを行い、上記5’フラグメントと3’フラグメントを連結し、全長を増幅して鋳型DNAを得た。なお、表2-5中、X~Zは、1×1012の5’フラグメントと3’フラグメントを用い、反応液にHOを加えて総量を60μLに調整したことを示す。また、5FFnew_150409はフォワードプライマー(配列番号8)であり、3F-Rnew_150409はリバースプライマー(配列番号9)である。 Next, using the reaction solution having the composition shown in Table 2-5, overlap extension PCR was performed in the PCR cycle of Table 2-6, and the above 5'fragment and 3'fragment were ligated to obtain the total length. Amplification was performed to obtain template DNA. In Table 2-5, X ~ Z indicates adjusted by adding of H 2 O to total volume 60μL in using 5 'fragment and 3' fragment of 1 × 10 12, the reaction solution. Further, 5FFnew_150409 is a forward primer (SEQ ID NO: 8), and 3F-Rnew_150409 is a reverse primer (SEQ ID NO: 9).
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 得られた上記DNAを鋳型とし、表2-7に示す組成を有する反応液を用い、37℃で2時間反応させることにより、配列番号3の塩基配列を有する1012以上のmRNAを含むRNAライブラリを得た。このライブラリに含まれるmRNAは、図3に示す様に5’側から順にFLAG(登録商標)サイト、システイン、ランダム配列、システイン、TEVプロテアーゼサイト、スペーサー配列を有しており、終止コドンを有さない。 The obtained the DNA as a template, using a reaction solution having the composition shown in Table 2-7, by reacting for 2 hours at 37 ° C., RNA library containing 10 12 or more mRNA having the nucleotide sequence of SEQ ID NO: 3 Got As shown in FIG. 3, the mRNA contained in this library has FLAG® site, cysteine, random sequence, cysteine, TEV protease site, and spacer sequence in order from the 5'side, and has a stop codon. Absent.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
<(2)リボソームディスプレイ(RD)複合体ライブラリの作製>
 RD複合体は、再構成型無細胞タンパク質合成キット(ジーンフロンティア社製「PURE frex(登録商標)」)を用い、上記のRNAライブラリを使用して調製した。
 このRD複合体反応液と、抗FLAG(登録商標)M2抗体結合アガロースビーズ(Sigma-Aldrich社製,20μL)を混合し、4℃で60分間攪拌した。ペプチド部分にFLAG配列を有するRD複合体が選択的に結合した抗FLAG M2抗体結合アガロースビーズを回収した。
<(2) Preparation of ribosome display (RD) complex library>
The RD complex was prepared using the above RNA library using a reconstituted cell-free protein synthesis kit (“PURE flex®” manufactured by Gene Frontier).
This RD complex reaction solution was mixed with anti-FLAG (registered trademark) M2 antibody-bound agarose beads (manufactured by Sigma-Aldrich, 20 μL) and stirred at 4 ° C. for 60 minutes. Anti-FLAG M2 antibody-bound agarose beads to which an RD complex having a FLAG sequence was selectively bound to the peptide moiety were collected.
<(3)細胞膜透過性環状ペプチド作製用リンカー分子G3-DCXを導入したリボソームディスプレイ複合体ライブラリの作製>
 上記(2)で回収したアガロースビーズを80μLに希釈した後、還元剤として10mMトリス(2-カルボキシエチル)ホスフィン塩酸塩(4μL)(終濃度0.5mM)と、200mM G3-DCX(実施例1で合成した細胞膜透過性環状ペプチド作製用リンカー分子)(0.8μL)(終濃度2mM)を添加し、4℃で終夜環化反応させた。環化反応後、FLAGペプチドを添加することにより、RD複合体をアガロースビーズから溶出させ、細胞膜透過性環状ペプチド作製用リンカー分子G3-DCXを導入したリボソームディスプレイ複合体ライブラリを得た。
<(3) Preparation of ribosome display complex library into which the linker molecule G3-DCX for producing cell membrane penetrating cyclic peptide is introduced>
After diluting the agarose beads recovered in (2) above to 80 μL, 10 mM tris (2-carboxyethyl) phosphine hydrochloride (4 μL) (final concentration 0.5 mM) and 200 mM G3-DCX (Example 1) were used as reducing agents. A linker molecule for producing a cell membrane-permeable cyclic peptide synthesized in (0.8 μL) (final concentration 2 mM) was added, and the reaction was carried out overnight at 4 ° C. After the cyclization reaction, the FLAG peptide was added to elute the RD complex from the agarose beads, and a ribosomal display complex library into which the linker molecule G3-DCX for producing a cell membrane penetrating cyclic peptide was introduced was obtained.
(実施例4:細胞膜透過性環状ペプチド作製用リンカー分子G3-DCXで環化されたペプチドを有するペプチド複合体を含むRD複合体の作製)
<RNAの作製>
 実施例3で作製したmRNAにおけるランダム配列(図3において、システイン残基(C)の間に位置する「(NNK)10」の部分)をアミノ酸配列「LYRSLPAWRYL」をコードする塩基配列とした以外は、実施例3と同様にして、mRNAを作製した。
(Example 4: Preparation of RD complex containing a peptide complex having a peptide cyclized with the linker molecule G3-DCX for producing a cell membrane penetrating cyclic peptide)
<Preparation of RNA>
Except that the random sequence in the mRNA prepared in Example 3 (in FIG. 3, the portion of "(NNK) 10 " located between the cysteine residues (C)) was used as the base sequence encoding the amino acid sequence "LYRSLPAWRYL". , MRNA was prepared in the same manner as in Example 3.
<RD複合体の作製>
 前記<RNAの作製>で作製したmRNAを用いた以外は、実施例3と同様にして、RD複合体を作製した。
<Preparation of RD complex>
An RD complex was prepared in the same manner as in Example 3 except that the mRNA prepared in <Preparation of RNA> was used.
<細胞膜透過性環状ペプチド作製用リンカー分子G3-DCXを導入したリボソームディスプレイ複合体の作製>
 前記<RD複合体の作製>で作製したRD複合体を用いた以外は、実施例3と同様にして、細胞膜透過性環状ペプチド作製用リンカー分子G3-DCXを導入したRD複合体を得た。
<Preparation of ribosome display complex introduced with linker molecule G3-DCX for cell membrane penetrating cyclic peptide production>
An RD complex into which the linker molecule G3-DCX for producing a cell membrane penetrating cyclic peptide was introduced was obtained in the same manner as in Example 3 except that the RD complex prepared in <Preparation of RD complex> was used.
 前記RD複合体を含む反応液からアガロースビーズを分離除去し、Mg2+を含まないリン酸緩衝生理食塩水(pH7.5、100μL)を加えてRD複合体を解離させ、得られたペプチドをTEVプロテアーゼで切断し、ペプチド断片を得た。
 また、細胞膜透過性環状ペプチド作製用リンカー分子G3-DCXの導入を行わなかったRD複合体についても同様にして、ペプチド断片を得た。
 得られたペプチドの分子量をMALDI-TOF MSで測定した結果を図4に示す。図4中、上段は細胞膜透過性環状ペプチド作製用リンカー分子G3-DCXの導入を行わなかった場合に得られたペプチド断片の測定結果を示し、下段は細胞膜透過性環状ペプチド作製用リンカー分子G3-DCXの導入を行った場合に得られたペプチド断片の測定結果を示す。図4に示されるように、細胞膜透過性環状ペプチド作製用リンカー分子G3-DCXの導入を行うことで、環状化されたペプチド(図4中の黒の矢印)が得られることが確認された。なお、図4中の白抜きの矢印は環状化されていないペプチドを示す。
Agarose beads are separated and removed from the reaction solution containing the RD complex, and a phosphate buffered saline (pH 7.5, 100 μL) containing no Mg 2+ is added to dissociate the RD complex, and the obtained peptide is TEV. It was cleaved with protease to give a peptide fragment.
Further, a peptide fragment was obtained in the same manner for the RD complex in which the linker molecule G3-DCX for producing a cell membrane penetrating cyclic peptide was not introduced.
The results of measuring the molecular weight of the obtained peptide by MALDI-TOF MS are shown in FIG. In FIG. 4, the upper row shows the measurement results of the peptide fragment obtained when the linker molecule G3-DCX for producing a cell-penetrating cyclic peptide was not introduced, and the lower row shows the linker molecule G3- for producing a cell-penetrating cyclic peptide. The measurement result of the peptide fragment obtained when DCX was introduced is shown. As shown in FIG. 4, it was confirmed that a cyclic peptide (black arrow in FIG. 4) can be obtained by introducing the linker molecule G3-DCX for producing a cell membrane penetrating cyclic peptide. The white arrows in FIG. 4 indicate peptides that are not cyclized.
(実施例5:細胞膜透過性環状ペプチド作製用リンカー分子G3-DCXで環化されたペプチドを有するペプチド複合体を含むRD複合体の作製)
 実施例4におけるアミノ酸配列の「LYRSLPAWRYL」を「PLFPWPSLWHR」に変えた以外は、実施例4と同様にして、mRNA、RD複合体、及び細胞膜透過性環状ペプチド作製用リンカー分子G3-DCXを導入したリボソームディスプレイ複合体を作製した。
 また、実施例4と同様にして、得られたRD複合体からペプチド断片を取得し、その分子量をMALDI-TOF MSで測定した。結果を図5に示す。
 図5中、上段は細胞膜透過性環状ペプチド作製用リンカー分子G3-DCXの導入を行わなかった場合に得られたペプチド断片の測定結果を示し、下段は細胞膜透過性環状ペプチド作製用リンカー分子G3-DCXの導入を行った場合に得られたペプチド断片の測定結果を示す。図5に示されるように、細胞膜透過性環状ペプチド作製用リンカー分子G3-DCXの導入を行うことで、環状化されたペプチド(図5中の黒の矢印)が得られることが確認された。なお、図5中の白抜きの矢印は環状化されていないペプチドを示す。
(Example 5: Preparation of RD complex containing a peptide complex having a peptide cyclized with the linker molecule G3-DCX for producing a cell membrane penetrating cyclic peptide)
In the same manner as in Example 4, mRNA, RD complex, and linker molecule G3-DCX for producing a cell-penetrating cyclic peptide were introduced, except that the amino acid sequence “LYRSLPAWRYL” in Example 4 was changed to “PLFPWPSLWHR”. A ribosome display complex was prepared.
Further, in the same manner as in Example 4, a peptide fragment was obtained from the obtained RD complex, and its molecular weight was measured by MALDI-TOF MS. The results are shown in FIG.
In FIG. 5, the upper row shows the measurement results of the peptide fragment obtained when the linker molecule G3-DCX for producing a cell-penetrating cyclic peptide was not introduced, and the lower row shows the linker molecule G3- for producing a cell-penetrating cyclic peptide. The measurement result of the peptide fragment obtained when DCX was introduced is shown. As shown in FIG. 5, it was confirmed that a cyclic peptide (black arrow in FIG. 5) can be obtained by introducing the linker molecule G3-DCX for producing a cell membrane penetrating cyclic peptide. The white arrows in FIG. 5 indicate peptides that are not cyclized.
(実施例6:細胞膜透過性環状ペプチド作製用リンカー分子G3-DCXで環化されたペプチドを有するペプチド複合体を含むRD複合体の作製)
 実施例4におけるアミノ酸配列の「LYRSLPAWRYL」を「AGRWNVLWRTYTYMH」に変えた以外は、実施例4と同様にして、mRNA、RD複合体、及び細胞膜透過性環状ペプチド作製用リンカー分子G3-DCXを導入したリボソームディスプレイ複合体を作製した。
 また、実施例4と同様にして、得られたRD複合体からペプチド断片を取得し、その分子量をMALDI-TOF MSで測定した。結果を図6に示す。
 図6中、上段は細胞膜透過性環状ペプチド作製用リンカー分子G3-DCXの導入を行わなかった場合に得られたペプチド断片の測定結果を示し、下段は細胞膜透過性環状ペプチド作製用リンカー分子G3-DCXの導入を行った場合に得られたペプチド断片の測定結果を示す。図6に示されるように、細胞膜透過性環状ペプチド作製用リンカー分子G3-DCXの導入を行うことで、環状化されたペプチド(図6中の黒の矢印)が得られることが確認された。なお、図6中の白抜きの矢印は環状化されていないペプチドを示す。
(Example 6: Preparation of RD complex containing a peptide complex having a peptide cyclized with the linker molecule G3-DCX for producing a cell membrane penetrating cyclic peptide)
The mRNA, RD complex, and linker molecule G3-DCX for producing a cell-penetrating cyclic peptide were introduced in the same manner as in Example 4, except that the amino acid sequence “LYRSLPAWRYL” in Example 4 was changed to “AGRWNVLWRTYMH”. A ribosome display complex was prepared.
Further, in the same manner as in Example 4, a peptide fragment was obtained from the obtained RD complex, and its molecular weight was measured by MALDI-TOF MS. The results are shown in FIG.
In FIG. 6, the upper row shows the measurement results of the peptide fragment obtained when the linker molecule G3-DCX for producing a cell-penetrating cyclic peptide was not introduced, and the lower row shows the linker molecule G3- for producing a cell-penetrating cyclic peptide. The measurement result of the peptide fragment obtained when DCX was introduced is shown. As shown in FIG. 6, it was confirmed that a cyclic peptide (black arrow in FIG. 6) can be obtained by introducing the linker molecule G3-DCX for producing a cell membrane penetrating cyclic peptide. The white arrows in FIG. 6 indicate peptides that are not cyclized.
 実施例4~6に示したように、ペプチドの長さやペプチドを構成するアミノ酸が異なる場合でも、環状化反応が進行することを確認した。 As shown in Examples 4 to 6, it was confirmed that the cyclization reaction proceeds even when the length of the peptide and the amino acids constituting the peptide are different.
 本発明の態様としては、例えば、以下のものなどが挙げられる。
 <1> 細胞膜透過性付与基と、ペプチドを環状化させる環状化基と、を有することを特徴とする細胞膜透過性環状ペプチド作製用リンカー分子である。
 <2> 前記細胞膜透過性付与基が、塩基性官能基を有する前記<1>に記載のリンカー分子である。
 <3> 前記塩基性官能基が、グアニジノ基を有する前記<2>に記載のリンカー分子である。
 <4> 前記塩基性官能基が、2以上のグアニジノ基を有する前記<3>に記載のリンカー分子である。
 <5> 前記細胞膜透過性付与基が樹状構造を有し、前記塩基性官能基が前記樹状構造の枝の末端に導入されている前記<2>から<4>のいずれかに記載のリンカー分子である。
 <6> 前記環状化基が、電子吸引基である前記<1>から<5>のいずれかに記載のリンカー分子である。
 <7> 前記電子吸引基が、ハロゲンを有する前記<6>に記載のリンカー分子である。
 <8> 前記電子吸引基が、2以上のハロゲンを有する前記<7>に記載のリンカー分子である。
 <9> 前記電子吸引基が、2以上の塩素原子を有する前記<8>に記載のリンカー分子である。
 <10> 前記電子吸引基が、置換基を有していてもよいベンジルクロリドである前記<9>に記載のリンカー分子である。
 <11> 前記電子吸引基が、3,5-ビス(クロロメチル)ベンジル基である前記<10>に記載のリンカー分子である。
 <12> 前記環状化基によるペプチドの環状化が、前記環状化基と、ペプチドに含まれるチオール基、アミノ基、及びヒドロキシ基からなる群から選択される少なくとも1種の基との反応により行われる前記<1>から<11>のいずれかに記載のリンカー分子である。
 <13> 下記構造式で表されることを特徴とする細胞膜透過性環状ペプチド作製用リンカー分子である。
Figure JPOXMLDOC01-appb-C000018
 <14> ペプチドと、前記ペプチドに導入された前記<1>から<13>のいずれかに記載のリンカー分子とを含むことを特徴とするペプチド複合体である。
 <15> 前記<14>に記載のペプチド複合体を含むことを特徴とするペプチドライブラリである。
 <16> ペプチドに、前記<1>から<13>のいずれかに記載のリンカー分子を導入する工程を含むことを特徴とするペプチド複合体の製造方法である。
 <17> 前記ペプチドが、ペプチドライブラリに含まれるペプチドである前記<16>に記載のペプチド複合体の製造方法である。
 <18> 前記<15>に記載のペプチドライブラリを用いて機能性ペプチドをスクリーニングする工程を含むことを特徴とする機能性ペプチドのスクリーニング方法である。
Examples of aspects of the present invention include the following.
<1> A linker molecule for producing a cell-penetrating cyclic peptide, which comprises a cell membrane-penetrating cyclic peptide-imparting group and a cyclic group that cyclizes a peptide.
<2> The linker molecule according to <1>, wherein the cell membrane permeability-imparting group has a basic functional group.
<3> The linker molecule according to <2>, wherein the basic functional group has a guanidino group.
<4> The linker molecule according to <3>, wherein the basic functional group has two or more guanidino groups.
<5> The above-mentioned <2> to <4>, wherein the cell membrane permeability-imparting group has a dendritic structure and the basic functional group is introduced into the end of a branch of the dendritic structure. It is a linker molecule.
<6> The cyclic group is the linker molecule according to any one of <1> to <5>, which is an electron-withdrawing group.
<7> The linker molecule according to <6>, wherein the electron-withdrawing group has a halogen.
<8> The linker molecule according to <7>, wherein the electron-withdrawing group has two or more halogens.
<9> The linker molecule according to <8>, wherein the electron-withdrawing group has two or more chlorine atoms.
<10> The linker molecule according to <9>, wherein the electron-withdrawing group is a benzyl chloride which may have a substituent.
<11> The linker molecule according to <10>, wherein the electron-withdrawing group is a 3,5-bis (chloromethyl) benzyl group.
<12> The cyclization of the peptide by the cyclizing group is carried out by the reaction of the cyclizing group with at least one group selected from the group consisting of a thiol group, an amino group and a hydroxy group contained in the peptide. The linker molecule according to any one of <1> to <11>.
<13> A linker molecule for producing a cell-penetrating cyclic peptide, which is represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000018
<14> A peptide complex comprising a peptide and the linker molecule according to any one of <1> to <13> introduced into the peptide.
<15> A peptide library comprising the peptide complex according to <14>.
<16> A method for producing a peptide complex, which comprises the step of introducing the linker molecule according to any one of <1> to <13> into the peptide.
<17> The method for producing a peptide complex according to <16>, wherein the peptide is a peptide contained in a peptide library.
<18> A method for screening a functional peptide, which comprises a step of screening a functional peptide using the peptide library according to <15>.

Claims (17)

  1.  細胞膜透過性付与基と、ペプチドを環状化させる環状化基と、を有することを特徴とする細胞膜透過性環状ペプチド作製用リンカー分子。 A linker molecule for producing a cell-penetrating cyclic peptide, which comprises a cell membrane-permeable cyclic peptide-imparting group and a cyclic group that cyclizes the peptide.
  2.  前記細胞膜透過性付与基が、塩基性官能基を有する請求項1に記載のリンカー分子。 The linker molecule according to claim 1, wherein the cell membrane permeability-imparting group has a basic functional group.
  3.  前記塩基性官能基が、グアニジノ基を有する請求項2に記載のリンカー分子。 The linker molecule according to claim 2, wherein the basic functional group has a guanidino group.
  4.  前記塩基性官能基が、2以上のグアニジノ基を有する請求項3に記載のリンカー分子。 The linker molecule according to claim 3, wherein the basic functional group has two or more guanidino groups.
  5.  前記細胞膜透過性付与基が樹状構造を有し、前記塩基性官能基が前記樹状構造の枝の末端に導入されている請求項2から4のいずれかに記載のリンカー分子。 The linker molecule according to any one of claims 2 to 4, wherein the cell membrane permeability-imparting group has a dendritic structure, and the basic functional group is introduced at the end of a branch of the dendritic structure.
  6.  前記環状化基が、電子吸引基である請求項1から5のいずれかに記載のリンカー分子。 The linker molecule according to any one of claims 1 to 5, wherein the cyclic group is an electron-withdrawing group.
  7.  前記電子吸引基が、ハロゲンを有する請求項6に記載のリンカー分子。 The linker molecule according to claim 6, wherein the electron-withdrawing group has a halogen.
  8.  前記電子吸引基が、2以上のハロゲンを有する請求項7に記載のリンカー分子。 The linker molecule according to claim 7, wherein the electron-withdrawing group has two or more halogens.
  9.  前記電子吸引基が、2以上の塩素原子を有する請求項8に記載のリンカー分子。 The linker molecule according to claim 8, wherein the electron-withdrawing group has two or more chlorine atoms.
  10.  前記電子吸引基が、置換基を有していてもよいベンジルクロリドである請求項9に記載のリンカー分子。 The linker molecule according to claim 9, wherein the electron-withdrawing group is a benzyl chloride which may have a substituent.
  11.  前記電子吸引基が、3,5-ビス(クロロメチル)ベンジル基である請求項10に記載のリンカー分子。 The linker molecule according to claim 10, wherein the electron-withdrawing group is a 3,5-bis (chloromethyl) benzyl group.
  12.  前記環状化基によるペプチドの環状化が、前記環状化基と、ペプチドに含まれるチオール基、アミノ基、及びヒドロキシ基からなる群から選択される少なくとも1種の基との反応により行われる請求項1から11のいずれかに記載のリンカー分子。 Claim that the cyclization of a peptide by the cyclizing group is carried out by the reaction of the cyclizing group with at least one group selected from the group consisting of a thiol group, an amino group and a hydroxy group contained in the peptide. The linker molecule according to any one of 1 to 11.
  13.  ペプチドと、前記ペプチドに導入された請求項1から12のいずれかに記載のリンカー分子とを含むことを特徴とするペプチド複合体。 A peptide complex comprising a peptide and the linker molecule according to any one of claims 1 to 12 introduced into the peptide.
  14.  請求項13に記載のペプチド複合体を含むことを特徴とするペプチドライブラリ。 A peptide library comprising the peptide complex according to claim 13.
  15.  ペプチドに、請求項1から12のいずれかに記載のリンカー分子を導入する工程を含むことを特徴とするペプチド複合体の製造方法。 A method for producing a peptide complex, which comprises the step of introducing the linker molecule according to any one of claims 1 to 12 into a peptide.
  16.  前記ペプチドが、ペプチドライブラリに含まれるペプチドである請求項15に記載のペプチド複合体の製造方法。 The method for producing a peptide complex according to claim 15, wherein the peptide is a peptide contained in a peptide library.
  17.  請求項14に記載のペプチドライブラリを用いて機能性ペプチドをスクリーニングする工程を含むことを特徴とする機能性ペプチドのスクリーニング方法。 A method for screening a functional peptide, which comprises a step of screening a functional peptide using the peptide library according to claim 14.
PCT/JP2020/005760 2019-03-28 2020-02-14 Linker molecule for producing cell membrane-permeable ring-shaped peptide and use thereof WO2020195302A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021508238A JPWO2020195302A1 (en) 2019-03-28 2020-02-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019064519 2019-03-28
JP2019-064519 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020195302A1 true WO2020195302A1 (en) 2020-10-01

Family

ID=72610871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005760 WO2020195302A1 (en) 2019-03-28 2020-02-14 Linker molecule for producing cell membrane-permeable ring-shaped peptide and use thereof

Country Status (2)

Country Link
JP (1) JPWO2020195302A1 (en)
WO (1) WO2020195302A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065172A1 (en) * 2020-09-23 2022-03-31 株式会社カネカ Cell membrane-permeable molecule and use thereof, and method of improving cell membrane permeability of cell membrane-permeable molecule
WO2022065173A1 (en) * 2020-09-23 2022-03-31 株式会社カネカ Membrane-permeable molecule and use therefor, and method for improving membrane permeability of membrane-permeable molecule

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011018227A2 (en) * 2009-08-12 2011-02-17 Medical Research Council Peptide libraries
WO2018089648A2 (en) * 2016-11-09 2018-05-17 Ohio State Innovation Foundation Di-sulfide containing cell penetrating peptides and methods of making and using thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011018227A2 (en) * 2009-08-12 2011-02-17 Medical Research Council Peptide libraries
WO2018089648A2 (en) * 2016-11-09 2018-05-17 Ohio State Innovation Foundation Di-sulfide containing cell penetrating peptides and methods of making and using thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MOHAMMAD R JAFARI, YU HONGTAO, WICKWARE JESSICA M., LIN YU-SHAN, DERDA RATMIR: "Light-responsive bicyclic peptides", ORGANIC & BIOMOLECULAR CHEMISTRY, vol. 16, no. 41, 1 August 2018 (2018-08-01), pages 7588 - 7594, XP055743578, ISSN: 1477-0520, DOI: 10.1039/C7OB03178E *
NAILA ASSEM, DAVID J FERREIRA ,DENNIS W WOLAN ,PHILIP E DAWSON: "Acetone-linked peptides: A convergent approach for peptide macrocyclization and labeling", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 54, no. 30, 11 June 2015 (2015-06-11), pages 8665 - 8668, XP055361706, ISSN: 1433-7851, DOI: 10.1002/anie.201502607 *
PAUL R WERKHOVEN; HELMUS VAN DE LANGEMHEEN; STEFFEN VAN DER WAL; JOHN A W KRUIJTZER; ROB M J LISKAMP: "Versatile convergent synthesis of a three peptide loop containing protein mimic of whooping cough pertactin by successive Cu(I)-catalyzed azide alkyne cycloaddition on an orthogonal alkyne functionalized TAC-scaffold", JOURNAL OF PEPTIDE SCIENCE, vol. 20, no. 4, 6 April 2014 (2014-04-06), pages 235 - 239, XP055356355, ISSN: 1075-2617, DOI: 10.1002/psc.2624 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065172A1 (en) * 2020-09-23 2022-03-31 株式会社カネカ Cell membrane-permeable molecule and use thereof, and method of improving cell membrane permeability of cell membrane-permeable molecule
WO2022065173A1 (en) * 2020-09-23 2022-03-31 株式会社カネカ Membrane-permeable molecule and use therefor, and method for improving membrane permeability of membrane-permeable molecule

Also Published As

Publication number Publication date
JPWO2020195302A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
CN110577564B (en) Polypeptides and methods
JP6876002B2 (en) Cell-permeable, cell-compatible, and cleaveable linker for covalently anchoring functional elements
WO2020195302A1 (en) Linker molecule for producing cell membrane-permeable ring-shaped peptide and use thereof
KR20010085743A (en) Lipid matrix-assisted chemical ligation and synthesis of membrane polypeptides
CN112047996A (en) Method for selectively modifying cysteine through propargyl sulfonium salt
EP3733687A1 (en) Means and methods for site-specific functionalization of polypeptides
GB2614128A (en) Solid-phase N-terminal peptide capture and release
WO2020195303A1 (en) Peptide complex and production method therefor, and use of said peptide complex
EP3024823B1 (en) Intercalating amino acids
CN111690039B (en) Self-assembly polypeptide probe for identifying 6xHis tag protein, preparation method and application
EP3981772A1 (en) Tetra-functional chemical probe and method for identifying target membrane protein from living cell or living tissue by using said probe
CN109312324A (en) Ribosomal display complex and its manufacturing method
JP2023165042A (en) Method for improving cell membrane permeability of cell membrane-permeable molecule
JP2023162461A (en) Method of improving cell membrane permeability of cell membrane-permeable molecule
CN106928093B (en) The preparation of cyano unnatural amino acid and its application in bio-orthogonal Raman detection
KR100911267B1 (en) Acridine-alpha helix peptide conjugate for target RNA specific binding
JP2023162460A (en) Cell membrane-permeable molecule and use thereof
JP2023165041A (en) Cell membrane-permeable molecule and use therefor
CN114560846B (en) Multifunctional chemical cross-linking agent and preparation method and application thereof
CN109651336A (en) A kind of detection hydrogen sulfide fluorescence probe and preparation method thereof based on drug molecule
Ferrer‐Gago et al. Synthesis of C‐terminal glycine‐rich o‐aminoanilide peptides without overacylation for use in benzotriazole‐mediated native chemical ligation
WO2024043251A1 (en) Method for predicting cell membrane permeability of cyclic peptide
WO2022065173A1 (en) Membrane-permeable molecule and use therefor, and method for improving membrane permeability of membrane-permeable molecule
WO2024131790A1 (en) A bioorthogonal cycloaddition reaction and use thereof
WO2022065172A1 (en) Cell membrane-permeable molecule and use thereof, and method of improving cell membrane permeability of cell membrane-permeable molecule

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779808

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508238

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779808

Country of ref document: EP

Kind code of ref document: A1