WO2020194926A1 - Air suspension device - Google Patents

Air suspension device Download PDF

Info

Publication number
WO2020194926A1
WO2020194926A1 PCT/JP2019/049625 JP2019049625W WO2020194926A1 WO 2020194926 A1 WO2020194926 A1 WO 2020194926A1 JP 2019049625 W JP2019049625 W JP 2019049625W WO 2020194926 A1 WO2020194926 A1 WO 2020194926A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
valve
exhaust
compressor
vehicle height
Prior art date
Application number
PCT/JP2019/049625
Other languages
French (fr)
Japanese (ja)
Inventor
義則 河合
小林 寛
酒井 博史
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2020194926A1 publication Critical patent/WO2020194926A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/04Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics
    • B60G17/052Pneumatic spring characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/06Servomotor systems without provision for follow-up action; Circuits therefor involving features specific to the use of a compressible medium, e.g. air, steam

Definitions

  • the present disclosure relates to an air suspension device mounted on a vehicle represented by a four-wheeled vehicle, for example, so as to adjust the vehicle height.
  • the open system has the advantages that the system configuration is simple and the number of components can be reduced. However, since the air is compressed from the atmospheric pressure state, it takes time to boost the compressed air to a desired pressure.
  • the closed system air suspension device has an advantage that the compressed air can be boosted to a desired pressure in a short time because the pressure of the suction air can be made higher than the atmospheric pressure. ..
  • Patent Document 1 a temperature sensor and a humidity sensor are used to determine the regeneration time of the air dryer. For this reason, the regenerating process of the air dryer may be performed unexpectedly for the driver of the vehicle, and the driver feels uncomfortable or uncomfortable. Further, since the number of sensors is increased by the temperature sensor and the humidity sensor, there is a problem that the workability at the time of assembly is lowered and the manufacturing cost is increased.
  • An object of the embodiment of the present invention is to provide an air suspension device capable of efficiently regenerating an air dryer and improving reliability without increasing the number of sensors.
  • One embodiment of the present invention is an air suspension device provided in a vehicle, a compressor that compresses air, a tank configured to store air, and a suction side of the compressed air in the tank.
  • a first passage for supplying to the compressor a second passage connecting the discharge side of the compressor and the tank, an air suspension connected to the discharge side of the compressor via an air dryer, and a first passage provided in the first passage.
  • the first valve, the second valve, and the third valve are provided with a control means for controlling the opening and closing of the first valve, the second valve, and the third valve.
  • the air dryer can be efficiently regenerated without increasing the number of sensors, and the reliability of the device can be improved.
  • FIGS. 1 to 3 show the first embodiment.
  • a total of four air suspensions 1 are on the left front wheel (FL), right front wheel (FR), left rear wheel (RL), and right rear wheel (RR) side of the vehicle, and each axle side and vehicle body side of the vehicle. It is provided between (neither is shown).
  • These air suspensions 1 are pneumatic devices that adjust the vehicle height according to the expansion and contraction of the air chamber 1C by supplying and discharging compressed air into the air chamber 1C described later.
  • Each air suspension 1 includes, for example, a cylinder 1A attached to the axle side of the vehicle, and a piston rod 1B whose protruding end side is attached to the vehicle body side so as to expand and contract in the axial direction (upward and downward) from the inside of the cylinder 1A. It is composed of an air chamber 1C that is stretchably provided between the protruding end side of the piston rod 1B and the cylinder 1A and operates as an air spring.
  • the air chamber 1C of each air suspension 1 is expanded and contracted in the axial direction by supplying and discharging compressed air from the branch pipe 10A described later.
  • the piston rod 1B expands and contracts in the axial direction from the inside of the cylinder 1A, and the height (vehicle height) of the vehicle can be adjusted according to the supply / discharge amount of the compressed air.
  • the compressor device 2 is a device that compresses air and supplies compressed air to the air chamber 1C of the air suspension 1.
  • the compressor device 2 includes a compressor 3 as a compressor main body, an electric motor 4 for driving and stopping the compressor 3, and an intake pipe line connected to a suction side 3A (hereinafter, referred to as an intake side 3A) of the compressor 3. 5, the supply / exhaust pipe line 6 connected to the discharge side 3B of the compressor 3, the air dryer 7 and the slow return valve 8 provided in the supply / discharge pipe line 6, the intake valve 9 and the tank side suction pipe line described later. 13.
  • the intake solenoid valve 14, the tank pipe line 15, the return solenoid valve 16, the supply / discharge switching valve 17, the recirculation pipe line 18, the exhaust pipe line 19, the exhaust solenoid valve 20, and the like are included.
  • the compressor 3 generates compressed air while sucking air from its intake side 3A.
  • the compressor 3 is composed of, for example, a reciprocating compressor, a scroll compressor, or the like.
  • the compressed air generated from the compressor 3 is supplied to the air chamber 1C or the tank 12 of the air suspension 1 which is a pneumatic device.
  • the compressor 3 is rotationally driven by an electric motor 4 as a drive source.
  • the electric motor 4 is driven and stopped by a controller 22 (see FIG. 2) described later.
  • a drive source such as a linear motor may be used.
  • the intake pipe line 5 is connected to the intake side 3A of the compressor 3.
  • a supply / discharge pipe line 6 is connected to the discharge side 3B of the compressor 3.
  • One end side of the supply / discharge pipe line 6 is connected to the discharge side 3B of the compressor 3.
  • the other end side of the supply / discharge pipe line 6 is connected to the air conduit 10 via a supply / discharge switching valve 17, which will be described later.
  • An air dryer 7 and a slow return valve 8 are provided at an intermediate position of the supply / discharge pipe line 6.
  • the intake pipe line 5 of the compressor device 2 constitutes the intake passage of the compressor 3.
  • the tank-side suction pipe 13 and the reflux pipe 18, which will be described later, are connected to each other.
  • the tank-side suction pipe line 13 and the return pipe line 18 may be separately connected to the intake pipe line 5 before and after the connection point 5A.
  • One end side of the intake pipe line 5 is an intake port 5B that opens to the outside of the compressor device 2 (compressor 3).
  • the intake port 5B is provided with a filter for removing dust and the like in the air.
  • the intake port 5B is a port for sucking outside air into the intake side 3A when the compressor 3 is driven.
  • the other end side of the intake pipe line 5 is connected to the intake side 3A of the compressor 3.
  • An intake valve 9 is provided in the middle of the intake pipe line 5.
  • the intake valve 9 is provided between the connection point 5A and the intake port 5B in the middle of the intake pipe line 5.
  • the intake valve 9 is a check valve configured to take in air from the atmosphere through the intake port 5B. That is, the intake valve 9 including the check valve opens when the pressure on the intake side 3A of the compressor 3 becomes atmospheric pressure or less at the position of the connection point 5A, and air from the outside (atmosphere) via the intake port 5B. Is configured to inhale.
  • the intake valve 9 functions as a so-called suction valve.
  • the intake valve 9 is composed of a check valve.
  • the intake valve 9 allows air to flow from the intake port 5B toward the inside of the intake pipe 5 (that is, the connection point 5A side of the intake pipe 5), and blocks the reverse flow. Therefore, when the pressure in the intake pipe 5 (that is, the connection point 5A side of the intake pipe 5) becomes higher than the atmospheric pressure (positive pressure), the intake valve 9 is closed. At this time, compressed air from the air suspension 1 or the tank 12 is supplied (sucked) to the intake side 3A of the compressor 3 via the tank side suction pipe line 13, the intake solenoid valve 14, or the return pipe line 18.
  • the supply / discharge pipe line 6 constitutes a supply / discharge passage for supplying / discharging compressed air generated from the compressor 3 to the air chamber 1C of the air suspension 1.
  • the compressed air supplied to the air chamber 1C of the air suspension 1 flows back from the air chamber 1C through the air supply / exhaust pipe line 6 and the throttle 8A of the slow return valve 8, for example, when the vehicle height is lowered. It is discharged. Further, the compressed air in the air suspension 1 (air chamber 1C) can be discharged so as to accumulate pressure in the tank 12 via the tank pipe line 15 and the return solenoid valve 16 described later.
  • the supply / exhaust pipe line 6 is provided with the exhaust pipe line 19 branched from the connection point 6A located between the discharge side 3B of the compressor 3 and the air dryer 7.
  • a tank pipe line 15 is branched from the connection point 6B of the water supply / discharge pipe line 6 located between the slow return valve 8 and the supply / discharge switching valve 17.
  • the air dryer 7 and the slow return valve 8 are provided in the supply / discharge pipe line 6 at positions between the connection points 6A and 6B.
  • the air dryer 7 constitutes an air drying means provided in the middle of the supply / discharge pipe line 6.
  • the air dryer 7 contains, for example, a desiccant such as silica gel or a water adsorbent (not shown).
  • the air dryer 7 is arranged between the discharge side 3B of the compressor 3 and the slow return valve 8.
  • the slow return valve 8 is composed of a parallel circuit of the throttle 8A and the check valve 8B.
  • the check valve 8B does not open to throttle the flow rate of the compressed air with respect to the forward flow described later.
  • the check valve 8B closes against the flow in the reverse direction. Since the flow rate of the compressed air at this time is throttled by the throttle 8A, the compressed air slowly flows back in the air dryer 7 at a small flow rate.
  • the air dryer 7 brings the compressed air into contact with the moisture adsorbent inside when the high-pressure compressed air generated by the compressor 3 flows forward in the supply / discharge pipe line 6 toward the air suspension 1. Adsorbs water. As a result, dry compressed air is supplied from the air dryer 7 toward the air suspension 1 (air chamber 1C) or the tank 12. On the other hand, when the compressed air (exhaust) discharged from the air suspension 1 (air chamber 1C) or the tank 12 flows in the reverse direction in the air dryer 7 (supply / exhaust pipe line 6), the dry air flows back in the air dryer 7. To do. Therefore, the moisture adsorbent in the air dryer 7 is desorbed by the dry air. As a result, the water adsorbent of the air dryer 7 is regenerated and returned to a state in which water can be adsorbed again.
  • the air chamber 1C of the air suspension 1 is connected to the supply / discharge pipe line 6 of the compressor 3 via the air conduit 10 and the supply / discharge switching valve 17.
  • the air conduit 10 is provided with a plurality of (for example, four) branch pipes 10A branched from each other.
  • the tip end side of each branch pipe 10A is detachably connected to the air chamber 1C of the air suspension 1.
  • the fourth passage connecting the air dryer 7 and the air suspension 1 is composed of, for example, a part of the supply / exhaust pipe line 6 and the air conduit 10.
  • a fourth valve (supply / discharge switching valve 17 described later) is provided in the fourth passage.
  • the compressed air supply / exhaust valve 11 is provided in the middle of each branch pipe 10A in order to control the supply / exhaust of compressed air to the air chamber 1C of the air suspension 1.
  • the air supply / exhaust valve 11 is composed of, for example, an electromagnetic switching valve (solenoid valve) having two ports and two positions.
  • the air supply / exhaust valve 11 is normally placed at the valve closing position (a).
  • the air supply / exhaust valve 11 is excited by a control signal from the controller 22, which will be described later, the air supply / exhaust valve 11 is switched from the valve closing position (a) to the valve opening position (b).
  • each supply / exhaust valve 11 may be provided by being connected between the air chamber 1C of the air suspension 1 and the branch pipe 10A. Further, the air supply / exhaust valve 11 has a function as a relief valve (safety valve). Therefore, when the pressure in the air chamber 1C exceeds the relief set pressure, the air supply / exhaust valve 11 is temporarily switched from the valve closing position (a) to the valve opening position (b) as a relief valve even if the demagnetization remains. The excess pressure at this time can be released into the air conduit 10.
  • a relief valve safety valve
  • the tank 12 for storing compressed air has a connecting pipe 12A made of, for example, a flexible hose.
  • One end of the connecting pipe 12A is removably connected to the tank 12.
  • the other end of the connecting pipe 12A is connected to the tank-side suction pipe 13 and the tank pipe 15, which will be described later.
  • the connecting pipe 12A of the tank 12 is connected to the intake side 3A of the compressor 3 via the tank side suction pipe 13 as the first passage.
  • One end of the tank-side suction pipe 13 is connected to the tank 12 (connection pipe 12A).
  • the other end of the tank-side suction line 13 is connected to the intake line 5 at the position of the connection point 5A. That is, the connection point 5A is a position between the intake side 3A of the compressor 3 and the intake valve 9, and the intake pipe 5 is the tank side suction pipe so that the tank side suction pipe 13 branches from the intake pipe 5. It is connected to the road 13.
  • the tank side suction pipe line 13 is provided with an intake solenoid valve 14 for supplying and stopping the compressed air in the tank 12 to the intake side 3A of the compressor 3.
  • the intake solenoid valve 14 is composed of, for example, an electromagnetic switching valve (solenoid valve) having two ports and two positions.
  • the intake solenoid valve 14 is normally placed in the valve closed position (c).
  • the intake solenoid valve 14 is switched from the valve closing position (c) to the valve opening position (d).
  • the intake solenoid valve 14 has a function as a relief valve (safety valve) like the above-mentioned supply / exhaust valve 11.
  • the intake solenoid valve 14 is an on / off type two-way solenoid valve composed of a valve closing position (c) and a valve opening position (d).
  • a highly versatile solenoid switching valve can be adopted, and an expensive valve such as a three-way solenoid valve can be eliminated.
  • a highly versatile two-way solenoid valve can be adopted as in the intake solenoid valve 14.
  • the connecting pipe 12A of the tank 12 is connected to the discharge side 3B of the compressor 3 via a tank pipe 15 as a second passage.
  • One end of the tank pipeline 15 is connected to the tank 12 (connecting pipe 12A).
  • the other end of the tank line 15 is connected so as to branch off from the supply / discharge line 6 at the position of the connection point 6B. That is, at the connection point 6B, the supply / discharge pipe 6 is a tank pipe so that the tank pipe 15 is branched from the supply / discharge pipe 6 at a position between the slow return valve 8 and the supply / discharge switching valve 17. It is connected to the road 15.
  • the tank pipeline 15 is provided with a return solenoid valve 16 as a return valve for supplying and stopping the compressed air in the tank 12 so as to return it to the supply / exhaust pipeline 6.
  • the return solenoid valve 16 is composed of, for example, a two-way solenoid valve (solenoid valve) having two ports and two positions.
  • the return solenoid valve 16 is normally placed at the valve closing position (e).
  • the return solenoid valve 16 is excited by a control signal from the controller 22, the return solenoid valve 16 is switched from the valve closing position (e) to the valve opening position (f).
  • the return solenoid valve 16 When the return solenoid valve 16 is opened, for example, the compressed air in the air suspension 1 can be accumulated so as to return to the tank 12 via the tank pipe line 15.
  • the return solenoid valve 16 has a function as a relief valve (safety valve) like the above-mentioned supply / exhaust valve 11.
  • the supply / discharge switching valve 17 constitutes a fourth valve provided in a fourth passage (for example, a part of the supply / discharge pipe line 6 and the air conduit 10) connecting the air dryer 7 and the air suspension 1.
  • the supply / discharge switching valve 17 is a valve that selectively connects the air conduit 10 on the air suspension 1 side to the supply / discharge pipe line 6 or the return pipe line 18.
  • the supply / discharge switching valve 17 is composed of, for example, an electromagnetic direction switching valve (that is, a three-way solenoid valve) having three ports and two positions. That is, the supply / discharge switching valve 17 supplies the compressed air generated by the compressor 3 to the air chamber 1C of the air suspension 1 and discharges the compressed air in the air chamber 1C through the supply / discharge pipe line 6. It is selectively switched between the exhaust position (g) and the recirculation position (h) in which the compressed air in the air chamber 1C is recirculated to the intake side 3A of the compressor 3 via the recirculation pipe line 18.
  • the return pipe line 18 is a bypass passage provided by bypassing the compressor 3, the supply / discharge pipe line 6, the air dryer 7, and the slow return valve 8.
  • One end of the return pipe 18 can be connected to the air conduit 10 on the air suspension 1 side via the supply / discharge switching valve 17.
  • the other end of the return line 18 is connected to the intake line 5 at the position of the connection point 5A. Therefore, when the supply / discharge switching valve 17 is switched to the return position (h), the return pipe 18 bypasses the supply / discharge pipe 6 for the compressed air discharged from the air chamber 1C of the air suspension 1. As described above, the compressor 3 is returned to the intake side 3A.
  • the exhaust pipe line 19 is a third passage for exhausting the compressed air in the supply / exhaust pipe line 6 to the outside.
  • An exhaust solenoid valve 20 is provided in the middle of the exhaust pipe line 19.
  • One end of the exhaust line 19 is connected to the supply / discharge line 6 at a position at the connection point 6A.
  • the other end of the exhaust pipeline 19 serves as an exhaust port 19A and extends to the outside of the compressor device 2.
  • the tip of the exhaust port 19A is open to the outside air.
  • the exhaust solenoid valve 20 as the exhaust valve (third valve) is provided in the exhaust pipeline 19 as the third passage.
  • the exhaust solenoid valve 20 is composed of, for example, a two-way solenoid valve (solenoid valve) having two ports and two positions.
  • the exhaust solenoid valve 20 is normally placed in the valve closed position (i).
  • the exhaust solenoid valve 20 is excited by the control signal from the controller 22, the exhaust solenoid valve 20 is switched from the valve closing position (i) to the valve opening position (j).
  • the exhaust solenoid valve 20 that is, the third valve
  • the exhaust pipeline 19 as the third passage is connected to the atmosphere.
  • the exhaust solenoid valve 20 When the exhaust solenoid valve 20 is opened, the compressed air in the air suspension 1 is exhausted to the outside from the exhaust port 19A via the supply / exhaust pipe line 6, the throttle 8A of the slow return valve 8, the air dryer 7, and the exhaust pipe line 19 ( Can be opened). Further, when the exhaust solenoid valve 20 is opened, the compressed air in the tank 12 is supplied to the tank pipe line 15, the return solenoid valve 16, the supply / exhaust pipe line 6, the throttle 8A of the slow return valve 8, the air dryer 7, and the exhaust pipe line. It is also possible to exhaust (open) to the outside from the exhaust port 19A via 19. Further, the exhaust solenoid valve 20 has a function as a relief valve (safety valve) like the above-mentioned supply / exhaust valve 11.
  • the air conduit 10 is provided with a pressure detector 21 at a position between each branch pipe 10A and the supply / discharge switching valve 17, for example.
  • the pressure detector 21 closes all the supply / exhaust valves 11, the intake solenoid valve 14, and the exhaust solenoid valve 20, and returns the supply / exhaust switching valve 17 to the supply / exhaust position (g).
  • the valve 16 is switched from the valve closing position (e) to the valve opening position (f)
  • the pressure in the tank 12 is detected via the tank pipeline 15.
  • the pressure in the air chamber 1C of the corresponding air suspension 1 is increased. Can be detected by the pressure detector 21.
  • the pressure detector 21 constitutes a detecting means for estimating or calculating the pressure in the air suspension 1.
  • the controller 22 as a control means is configured by, for example, a microcomputer or the like.
  • a pressure detector 21, a plurality of vehicle height sensors 23 (that is, FL side, FR side, RL side, RR side vehicle height sensors 23), a selection switch 24, and the like are connected to the input side of the controller 22.
  • the vehicle height sensors 23 on the FL side, FR side, RL side, and RR side are air suspensions 1 on the left front wheel (FL), right front wheel (FR), left rear wheel (RL), and right rear wheel (RR) side of the vehicle.
  • the vehicle height is detected individually.
  • the selection switch 24 is an operation switch for switching, for example, an automatic mode for adjusting the vehicle height, or a selection mode in which the driver arbitrarily changes the vehicle height according to his / her preference.
  • the controller 22 is the FL side, FR side, RL side, RR side vehicle height sensor 23. Based on the vehicle height detection signal output from, it is compared (determined) whether each air suspension 1 is higher or lower than the set height that is the target vehicle height. On this basis, the controller 22 has each air suspension on the left front wheel (FL), right front wheel (FR), left rear wheel (RL), and right rear wheel (RR) side of the vehicle based on the comparison (judgment) result. Adjust the vehicle height according to 1 individually.
  • the output side of the controller 22 includes the electric motor 4 of the compressor 3, the air supply / exhaust valves 11 on the FL side, FR side, RL side, and RR side, the intake solenoid valve 14, the return solenoid valve 16, the supply / exhaust switching valve 17, and the exhaust. It is connected to the solenoid valve 20 and the like. Further, the controller 22 is connected to another controller (not shown) via, for example, CAN (Controller Area Network) which is a line network required for data communication. As a result, the controller 22 can input and output various vehicle information including load information such as vehicle speed, steering angle, outside air temperature (ambient temperature), date and time information, and load weight with other controllers. it can.
  • load information such as vehicle speed, steering angle, outside air temperature (ambient temperature), date and time information, and load weight with other controllers. it can.
  • the controller 22 has a memory 22A as a storage unit including a ROM, a RAM, a non-volatile memory, and the like.
  • a program for performing a control process for adjusting the vehicle height shown in FIG. 3 is stored. That is, the water adsorbent (desiccant) of the air dryer 7 cannot achieve its original function because the adsorbed water reaches a saturated state unless it is periodically regenerated.
  • the controller 22 stores the time, the number of times, etc. of the compressor 3 sucking in the outside air in the memory 22A.
  • the controller 22 periodically regenerates the air dryer 7 based on the stored contents, if necessary. This regeneration process is preferably performed when the vehicle is stopped so as not to cause discomfort or discomfort to the driver of the vehicle, for example.
  • the compressed air in the air suspension 1 air chamber 1C
  • the air dryer 7 is regenerated. I am trying to process it.
  • the controller 22 has a descent command unit 22B (see, for example, step 3 in FIGS. 2 and 3) that outputs a descent command for the vehicle height according to the traveling conditions of the vehicle or the vehicle height state. Then, when the lowering command is issued from the lowering command unit 22B, the controller 22 regenerates the air dryer 7 using the compressed air in the air suspension 1 (air chamber 1C).
  • the controller 22 controls the drive of the electric motor 4 based on the signals from each vehicle height sensor 23, the selection switch 24, and the like.
  • the controller 22 outputs a control signal to each supply / exhaust valve 11, intake solenoid valve 14, return solenoid valve 16, supply / exhaust switching valve 17, exhaust solenoid valve 20, and the like, and these valves 11, 14, 16, 17, 20. (Specifically, each solenoid) is individually excited or demagnetized. As a result, the air supply / exhaust valve 11 is switched to either the valve closing position (a) or the valve opening position (b) shown in the figure.
  • the intake solenoid valve 14, the return solenoid valve 16, the supply / exhaust switching valve 17, and the exhaust solenoid valve 20 are also switched to any position.
  • the air suspension device according to the first embodiment has the above-described configuration. Next, the vehicle height adjustment and the dryer regeneration control process by the controller 22 will be described with reference to FIG.
  • step 2 it is determined whether or not a vehicle height adjustment instruction (command) has been issued so that the vehicle height adjustment (auto leveling) is performed in the automatic mode by operating the selection switch 24.
  • step 2 it is determined in the next step 3 whether or not the "vehicle height adjustment instruction by auto-leveling” is a descending instruction (command).
  • step 3 it is determined in the next step 4, "vehicle height adjustment by auto-leveling” is performed according to the descending instruction (command), so that vehicle height adjustment by exhaust to the atmosphere is executed. That is, the controller 22 switches the air supply / exhaust valve 11 of the air suspension 1 from the valve closing position (a) to the valve opening position (b) to open the valve, and holds the supply / exhaust switching valve 17 at the supply / exhaust position (g). At the same time, the exhaust solenoid valve 20 is switched from the valve closing position (i) to the valve opening position (j). At this time, the electric motor 4 of the compressor 3 is driven and stopped so as to interrupt the compression operation.
  • the compressed air in the air suspension 1 flows back from each branch pipe 10A (air conduit 10) through the supply / exhaust switching valve 17 into the supply / exhaust pipe passage 6 and the air dryer 7, and further. It is discharged (opened) directly from the exhaust port 19A to the outside air via the exhaust pipe line 19 and the exhaust solenoid valve 20.
  • the slow return valve 8 provided in the middle of the supply / discharge pipe line 6 is in a state in which the check valve 8B is closed. Since the flow rate of the compressed air flowing (backflowing) through the slow return valve 8 is throttled by the throttle 8A, it slowly flows back in the air dryer 7 at a small flow rate.
  • the compressed air discharged from the air suspension 1 (air chamber 1C) at this time flows back in the air dryer 7 via the supply / exhaust pipe line 6. Therefore, the moisture adsorbent of the air dryer 7 is regenerated by passing the dry air of the air suspension 1, and the air dryer 7 can be efficiently regenerated. As a result, the vehicle height lowering speed when the air chamber 1C of the air suspension 1 is reduced to lower the vehicle height can be appropriately increased, and efficient regeneration processing of the air dryer 7 can be realized.
  • next step 5 it is determined whether or not the vehicle height has been lowered to the target vehicle height by the process of step 4. Specifically, by reading the detection signal (vehicle height value) from the vehicle height sensor 23, it is determined whether or not the detected vehicle height at this time has reached the set height (target vehicle height) in the automatic mode. To do. While the determination is "NO” in step 5, the process returns to step 4 and the subsequent processing is continued. Then, when it is determined as "YES” in step 5, the process of completing the vehicle height adjustment is performed in the next step 6.
  • step 6 the controller 22 returns the air supply / exhaust valve 11 of the air suspension 1 to the valve closing position (a) to close the valve, and the exhaust solenoid valve 20 is also closed at the valve closing position (i). And stop the discharge (exhaust) of compressed air from the exhaust port 19A.
  • step 2 when it is determined as "NO” in step 2, the case of the selection mode in which the driver arbitrarily changes the vehicle height according to his / her preference, for example, by operating the selection switch 24 instead of the "vehicle height adjustment instruction by auto-leveling". Is. Further, when "NO" is determined in step 3, the "vehicle height adjustment instruction by auto-leveling" is not a descending instruction (command) but, for example, an ascending command to raise the vehicle height.
  • step 7 "quick adjustment of the height of the compressor driven by the closed system” is executed. Specifically, when raising the vehicle height, the controller 22 switches the intake solenoid valve 14 from the valve closing position (c) to the valve opening position (d) to open the valve, and drives the compressor 3 by the electric motor 4.
  • the supply / exhaust switching valve 17 is held at the supply / exhaust position (g), and the supply / exhaust valve 11 of the air suspension 1 is switched from the valve closing position (a) to the valve opening position (b) to open the valve.
  • the compressed air in the tank 12 flows out to the tank side suction pipe line 13, and the pressure of the compressed air is boosted while being sucked from the intake side 3A as the compressor 3 operates. Then, the compressed air discharged from the discharge side 3B of the compressor 3 and boosted is supplied to the air chamber 1C of the air suspension 1 via the air dryer 7, the check valve 8B of the slow return valve 8, and the supply / discharge switching valve 17. As a result, the air suspension 1 can drive the vehicle height in the ascending direction. As described above, when the vehicle height rises, the air compressed by the compressor 3 is dried by passing through the air dryer 7, and the compressed air in the dried state is supplied into the air chamber 1C of the air suspension 1.
  • the controller 22 switches the air supply / exhaust valve 11 of the air suspension 1 from the valve closing position (a) to the valve opening position (b) to open the valve, and supplies / exhausts the supply / exhaust switching valve 17.
  • the position (g) is switched to the reflux position (h)
  • the compressor 3 is driven by the electric motor 4, and the return solenoid valve 16 is switched from the valve closing position (e) to the valve opening position (f).
  • the compressed air in the air suspension 1 (air chamber 1C) flows out from each branch pipe 10A (air conduit 10) to the recirculation pipe line 18 via the supply / discharge switching valve 17, and is accompanied by the operation of the compressor 3. While being sucked from the intake side 3A, the compressed air boosted from the discharge side 3B is discharged.
  • the compressed air discharged from the discharge side 3B of the compressor 3 is stored in the tank 12 via the air dryer 7, the check valve 8B of the slow return valve 8, the tank pipe line 15, and the return solenoid valve 16. Is filled with. That is, by forcibly supplying (filling) the compressed air in the air suspension 1 (air chamber 1C) toward the inside of the tank 12, the air chamber 1C of the air suspension 1 can be reduced and the vehicle height can be lowered. ..
  • step 8 it is determined whether or not the vehicle height has reached the target vehicle height by the process of step 7. Specifically, by reading the detection signal (vehicle height) from the vehicle height sensor 23, whether or not the detected vehicle height at this time reaches the set height (target vehicle height) in the selection mode or the automatic mode. Is determined. While the determination is "NO” in step 8, the process returns to step 7 and the subsequent processing is continued. Then, when it is determined as "YES” in step 8, the process proceeds to step 6 to complete the vehicle height adjustment.
  • the controller 22 returns the air supply / exhaust valve 11 of the air suspension 1 to the valve closing position (a) to close the valve, and the electric motor 4 stops the compressor 3 and stops the compressor 3.
  • the intake solenoid valve 14 is held in the closed position (c), and the supply / exhaust switching valve 17 is held in the supply / discharge position (g).
  • the control means (controller 22) for operating or opening / closing the 16 (second valve), the supply / exhaust switching valve 17, the exhaust solenoid valve 20 (third valve), etc. is a vehicle according to the traveling condition or the vehicle height state of the vehicle. It has a descent command unit 22B (for example, see step 3 in FIGS. 2 and 3) that outputs a high descent command, and when a descent command is output from the descent command unit 22B, it is inside the air suspension 1 (air chamber 1C).
  • the air dryer 7 is regenerated using the compressed air of the above.
  • the air dryer 7 when the vehicle height adjustment command by auto-leveling is a descending command, the air dryer 7 is regenerated to generate exhaust noise (exhaust noise emitted from the exhaust port 19A) and valves (for example, exhaust port 19A).
  • the air supply / exhaust valve 11 and the exhaust solenoid valve 20) can reduce discomfort and discomfort to the passenger (driver) due to noise during operation. Since the temperature sensor, humidity sensor, etc. used in the prior art can be eliminated, the air dryer 7 can be efficiently regenerated without increasing the number of sensors, and the reliability of the device can be improved. it can.
  • step 7 when it is determined as "NO" in step 2 of FIG. 3 and "the vehicle height is adjusted quickly by the compressor drive by the closed system” in the next step 7, the vehicle height is adjusted by the so-called manual operation by the selection switch 24. It can be done quickly and in a short time.
  • step 4 when adjusting the vehicle height (lowering) by auto-leveling in step 4, the compressed air in the air suspension 1 (air chamber 1C) is exhausted via the slow return valve 8 (aperture 8A) and the air dryer 7. As a result, a relaxed and natural vehicle height adjustment can be realized.
  • the treatment of steps 3 to 5 in FIG. 3 can create an opportunity to regenerate the air dryer 7, prevent deterioration of the dryer function due to moisture saturation of the water adsorbent, and efficiently carry out the regeneration treatment of the air dryer 7.
  • the reliability of the air suspension system can be improved.
  • the pressure of the compressed air filled in the air suspension 1 (air chamber 1C) is lower than the pressure of the compressed air filled (stored) in the tank 12, and is substantially constant. Therefore, it is effective to regenerate the air dryer 7 by using the compressed air exhausted from the air suspension 1 in order to improve the regeneration efficiency of the air dryer 7.
  • the air dryer 7 can be efficiently regenerated without increasing the number of sensors, and the reliability of the device can be improved. Further, by performing the regeneration process of the air dryer 7 based on the vehicle height (descent) adjustment command by auto-leveling, for example, based on the descent command when the vehicle is stopped, boarding due to the exhaust noise generated during the dryer regeneration and the noise during valve operation. It is possible to reduce discomfort and discomfort to the person.
  • the air suspension device supplies the compressor 3 for compressing air, the tank 12 configured to store air, and the compressed air in the tank 12 to the intake side 3A of the compressor 3.
  • the tank-side suction pipe line 13 first passage
  • the tank pipe line 15 second passage connecting the discharge side 3B of the compressor 3 and the tank 12, and the discharge side 3B of the compressor 3 via the air dryer 7.
  • the air suspension 1 to be connected, the first valve (intake solenoid valve 14) provided in the first passage (tank side suction pipeline 13), and the second valve provided in the second passage (tank pipeline 15).
  • An exhaust pipe that is branched from the valve (return solenoid valve 16) and the discharge side 3B of the compressor 3 and the air dryer 7, and is connected to the atmosphere by opening the exhaust solenoid valve 20 (third valve).
  • a road 19 (third passage) is provided, the first valve and the second valve are closed, and the third valve is opened to regenerate the air dryer 7 through the compressed air in the air suspension 1. It is possible.
  • the compressed air is aired by opening the exhaust solenoid valve 20 (third valve) with the intake solenoid valve 14 (first valve) and the return solenoid valve 16 (second valve) closed.
  • the air dryer 7 can be regenerated by exhausting air from the suspension 1 to the atmosphere. Then, when the pressure in the air suspension 1 is lower than the pressure in the tank 12, the air dryer 7 can be efficiently regenerated and the regeneration frequency can be reduced. This makes it possible to shorten the driving time of the compressor 3 in the dryer regeneration process.
  • the intake solenoid valve 14 (first valve), the return solenoid valve 16 (second valve), and the exhaust solenoid valve 20 (third valve) provided between the compressor 3 and the tank 12 are, for example, an on / off type general-purpose valve. It can be configured by using a highly efficient and inexpensive solenoid type switching valve (two-way solenoid valve). Therefore, for example, the system can be made at a lower cost than the conventional technique of Patent Document 1. That is, in the prior art, a three-way solenoid valve is used to connect the intake side and discharge side of the compressor to the tank.
  • the intake solenoid valve 14 and the return solenoid valve 16 including, for example, an on / off type two-way solenoid valve are interposed between the intake side 3A and the discharge side 3B of the compressor 3 and the tank 12. Is connected.
  • the intake solenoid valve 14 and the return solenoid valve 16 are closed (demagnetized state of the solenoid)
  • the tank 12 is shut off from the compressor 3 and the air suspension 1, so that the compression stored (accumulated) in the tank 12 is performed.
  • the risk of air leakage can be reliably reduced.
  • the number of times the outside air is compressed by the compressor 3 can be reduced, and as a result, the regeneration frequency of the air dryer 7 can be reduced.
  • the compressed air can be directly supplied to the air suspension 1 by sucking the outside air with the compressor 3, and the vehicle height can be adjusted. Therefore, when the tank pressure is higher than the atmospheric pressure, the air suspension 1 can be filled with extra compressed air by the outside air, and the air suspension 1 to the air dryer 7 can be immediately regenerated. This gives an opportunity to regenerate the air dryer 7. Can be created.
  • the compressed compressed air can be stored in the tank 12, and the compressed air stored in the tank 12 is further compressed by the compressor 3 while being further compressed by the compressor 3. It is possible to realize a closed circuit (closed system) that can be supplied to 1. Further, the compressed air discharged from the air chamber 1C of the air suspension 1 can be returned and stored in the tank 12 by using the return solenoid valve 16 without being released to the atmosphere, and the compressed air is wastedly exhausted. It can be used effectively without any problems.
  • the compressor 3 sucks and compresses the compressed air in the tank 12, the frequency of sucking air from the outside atmosphere (that is, the frequency of opening the intake valve 9) is significantly increased. It is possible to reduce the frequency of problems caused by inhaling dust and moisture in the air. Further, as compared with the conventional closed system type, it is not essential to perform pressure control or the like by using a pressure sensor or the like, and it is not necessary to perform complicated control, and the entire configuration can be simplified. ..
  • the air dryer 7 appropriately adsorbs and regenerates the water, so that the saturation of the water adsorbent can be prevented.
  • the controller 22 can provide a closed type system that does not require complicated control.
  • the vehicle height rise time at the time of high frequency use can be shortened. Then, only when the vehicle height adjustment range becomes larger than the normal use range, the atmosphere is taken in (the intake valve 9 is opened) or the compressed air is released into the atmosphere (exhaust solenoid valve 20) as needed. It can be opened).
  • the pressure in the air chamber 1C or the tank 12 is detected by using the pressure detector 21 as shown in FIG. 1 has been described as an example.
  • the present invention is not limited to this, and for example, the pressure in the air chamber 1C or the tank 12 may be estimated from the change in the vehicle height by using the detection signal of the vehicle height sensor 23.
  • the vehicle height sensor 23 serves as a detection means, and the pressure detector 21 can be eliminated.
  • FIG. 4 shows a second embodiment.
  • the feature of this embodiment is provided with a detecting means for estimating or calculating the pressure in the air suspension, and when the pressure detected by the detecting means exceeds a predetermined pressure, the compressed air in the air suspension is supplied to the tank to supply the compressed air in the predetermined pressure. When the pressure is lower than the pressure, the air dryer is regenerated by using the compressed air exhausted from the air suspension.
  • the same components as those in the first embodiment described above are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 4 shows the vehicle height adjustment and dryer regeneration control processing according to the second embodiment, and this program is stored in the memory 22A of the controller 22 shown in FIG. 2, for example.
  • determination processing is performed in the same manner as in steps 1 to 3 of FIG. 3 according to the first embodiment described above.
  • the air suspension pressure is lower than the predetermined pressure.
  • the pressure of the compressed air supplied to fill the air suspension 1 (air chamber 1C) can be detected by using the detection means (that is, the pressure detector 21).
  • the pressure in the air suspension 1 (air chamber 1C) is higher than the atmospheric pressure and lower than the predetermined pressure (pressure threshold value)
  • the compressed air exhausted from the air suspension 1 is used to regenerate the air dryer 7. It can be done efficiently.
  • the pressure in the air suspension 1 (air chamber 1C) is higher than the predetermined pressure (pressure threshold value)
  • the regeneration efficiency of the air dryer 7 is lowered.
  • the predetermined pressure is determined as a pressure threshold value (pressure higher than atmospheric pressure) for determining the quality of such dryer regeneration efficiency.
  • step 14 when it is determined as "YES” in step 14, the pressure in the air suspension 1 (air suspension pressure) is lower than the predetermined pressure, and the regeneration process of the air dryer 7 can be efficiently performed. Therefore, the next step 15 is performed. Then, in order to perform the process according to the descending instruction (command) of the "vehicle height adjustment by auto-leveling", the vehicle height adjustment by exhausting to the atmosphere is performed in the same manner as in step 4 of FIG. 3 according to the first embodiment. Further, the processes of steps 16 and 17 are also performed in the same manner as in steps 5 and 6 of FIG. As a result, the regeneration process of the air dryer 7 can be efficiently performed, and the deterioration of the dryer function due to the water saturation of the water adsorbent can be prevented.
  • step 12 or step 13 when it is determined as "NO" in step 12 or step 13, the same processing as in steps 7 and 8 of FIG. 3 according to the first embodiment is performed in the next steps 18 and 19. This makes it possible to quickly and quickly adjust the vehicle height by using a closed system to drive the compressor quickly. After that, the vehicle height adjustment completion process of step 17 is performed.
  • step 14 when "NO" is determined in step 14, the pressure in the air suspension 1 (air chamber 1C) is higher than the predetermined pressure, and the exhaust solenoid valve 20 is temporarily switched to the valve opening position (j). It can be judged that it is difficult to efficiently regenerate the air dryer 7 even if the air dryer 7 is exhausted. Therefore, moving to the next step 20, the controller 22 drives the compressor 3 by the electric motor 4 and executes the lowering adjustment of the vehicle height while accumulating the compressed air in the tank 12.
  • step 20 in order to adjust the lowering of the vehicle height, the controller 22 switches the air supply / exhaust valve 11 of the air suspension 1 from the valve closing position (a) to the valve opening position (b) to open the valve.
  • the supply / exhaust switching valve 17 is switched from the supply / discharge position (g) to the reflux position (h), the compressor 3 is driven by the electric motor 4, and the return solenoid valve 16 is moved from the valve closing position (e) to the valve opening position (f). Switch to.
  • the exhaust solenoid valve 20 is returned to the closed position (i).
  • the compressed air in the air suspension 1 flows out from each branch pipe 10A (air conduit 10) to the recirculation pipe line 18 via the supply / discharge switching valve 17, and is accompanied by the operation of the compressor 3. It is sucked from the intake side 3A, and compressed air is discharged from the discharge side 3B of the compressor 3. Then, this compressed air is filled into the tank 12 via the air dryer 7, the check valve 8B of the slow return valve 8, the tank pipe line 15, and the return solenoid valve 16. That is, by forcibly releasing the compressed air in the air suspension 1 (air chamber 1C) toward the tank 12, the air chamber 1C of the air suspension 1 can be reduced and the vehicle height can be lowered.
  • step 21 it is determined whether or not the vehicle height has been lowered to the target vehicle height by the process of the step 20. Specifically, it is determined whether or not the vehicle height detected by the vehicle height sensor 23 has reached the set height (target vehicle height). While the determination is "NO" in step 21, the process returns to step 14 and the subsequent processing is continued. That is, since the air suspension 1 exhausts compressed air from the air chamber 1C in the process of the step 20, it is determined in the step 14 whether or not the pressure in the air suspension 1 (air chamber 1C) is lower than the predetermined pressure. To do. Then, when it is determined as "YES" in step 14, the regenerating process of the air dryer 7 can be efficiently performed by the process of step 15.
  • step 14 when it is determined as "NO” in step 14, the processes of steps 20 and 21 are performed, and the compressed air in the air suspension 1 (air chamber 1C) is accumulated in the tank 12.
  • step 21 it is determined whether or not the vehicle height has been lowered to the target vehicle height by reducing the air chamber 1C of the air suspension 1. Then, when it is determined as "YES” in step 21, the process proceeds to step 17 to complete the vehicle height adjustment. That is, in step 17, the controller 22 returns the air supply / exhaust valve 11 of the air suspension 1 to the valve closing position (a) to close the valve, stops the drive of the compressor 3 by the electric motor 4, and the supply / exhaust switching valve 17. Is returned to the supply / discharge position (g), and the return solenoid valve 16 is returned to the valve closing position (e), thereby completing the vehicle height adjustment.
  • the air dryer 7 is regenerated, so that the exhaust noise generated during the dryer regeneration and the valve operation are performed. It is possible to reduce the discomfort and discomfort to the passengers due to the noise. Further, the air dryer 7 can be efficiently regenerated without increasing the number of sensors, and the reliability of the device can be improved.
  • the compressed air in the air suspension 1 when the compressed air in the air suspension 1 is exhausted in order to lower the vehicle height, when the pressure detected by the pressure detector 21 exceeds the predetermined pressure, the compressed air in the air suspension 1 is exhausted. Can be filled (supplied) so as to accumulate pressure in the tank 12 via the tank pipeline 15 and the return solenoid valve 16.
  • the air dryer 7 when the detected pressure is lower than the predetermined pressure, the air dryer 7 can be regenerated while discharging the compressed air in the air suspension 1 to the atmosphere, and the pressure lower than the predetermined pressure in the air suspension 1 (air suspension pressure) is applied. By utilizing this, the regeneration process of the air dryer 7 can be efficiently performed.
  • FIG. 5 shows a third embodiment.
  • the feature of this embodiment is that the dryer is regenerated at predetermined intervals when a descending command is issued from the descending command unit.
  • the same components as those in the first embodiment described above are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 5 shows the vehicle height adjustment and dryer regeneration control processing according to the third embodiment, and this program is stored in the memory 22A of the controller 22 shown in FIG. 2, for example.
  • the determination processing is performed in the same manner as in steps 1 to 3 of FIG. 3 according to the first embodiment described above.
  • step 34 it is determined in the next step 34 whether or not "regeneration of the dryer” is necessary.
  • the air dryer 7 can appropriately adsorb and regenerate the moisture, so that the moisture adsorbent Saturation can be prevented.
  • the air dryer 7 is regenerated during the period from the time of the previous descent command to the predetermined number of times (for example, the number of the 100th descent commands) of the vehicle height adjustment command (descent command) by auto-leveling. By doing so, saturation of the water adsorbent can be prevented.
  • step 34 it is determined whether or not the number of vehicle height descent commands by auto-leveling has reached a predetermined number of times since the previous descent command, and it is determined whether or not "regeneration of the dryer” is necessary. .. Further, it may be configured to determine whether or not "regeneration of the dryer” is necessary depending on whether or not a predetermined time (for example, 24 hours) has elapsed from the previous regeneration process.
  • a predetermined time for example, 24 hours
  • step 34 When it is determined as "YES” in step 34, it is a case where the air dryer 7 should be regenerated at a predetermined interval when the descending command unit 22B issues a descending command. Therefore, when it is determined as "YES” in step 34, the vehicle height is adjusted by exhausting to the atmosphere in order to move to the next step 35 and perform processing according to the descending instruction (command) of "vehicle height adjustment by auto-leveling". , The same as step 4 of FIG. 3 according to the first embodiment. Further, the processes of steps 36 and 37 are also performed in the same manner as in steps 5 and 6 of FIG. As a result, the regeneration process of the air dryer 7 can be efficiently performed, and the deterioration of the dryer function due to the water saturation of the water adsorbent can be prevented.
  • step 33 or step 34 the same processing as in steps 7 and 8 of FIG. 3 according to the first embodiment is performed in the next steps 38 and 39. This makes it possible to quickly and quickly adjust the vehicle height by using a closed system to drive the compressor quickly. After that, the vehicle height adjustment completion process of step 37 is performed.
  • the regeneration process of the air dryer 7 can be efficiently performed by utilizing the compressed air exhausted from the air suspension 1 as in the first embodiment. it can.
  • the air dryer 7 is regenerated at predetermined intervals when a descending command is issued from the descending command unit 22B.
  • the air dryer 7 By performing the regeneration process of the air dryer 7 only once a day (until 24 hours have passed from the previous regeneration process), the air dryer 7 appropriately adsorbs and regenerates the moisture, so that the moisture is adsorbed.
  • the saturation of the agent can be prevented, and the regeneration process of the air dryer 7 can be performed the minimum number of times necessary.
  • the regeneration process of the air dryer 7 is performed 1 during the period from the time of the previous descent command to the predetermined number of times (for example, the number of the 100th descent commands) of the vehicle height adjustment command (descent command) by auto-leveling. By repeating this process, saturation of the water adsorbent can be prevented, and the air dryer 7 can be effectively regenerated.
  • the pressure in the air chamber 1C or the tank 12 is detected by using the pressure detector 21 as shown in FIG. 1 has been described as an example.
  • the present invention is not limited to this, and for example, the pressure in the air chamber 1C or the tank 12 may be estimated from the change in the vehicle height by using the detection signal of the vehicle height sensor 23.
  • the vehicle height sensor 23 is the detection means, and the pressure detector 21 can be unnecessary. This point is the same for the first and second embodiments.
  • the tip end side of the exhaust pipe line 19 is connected to the intake pipe line (for example, between the intake valve 9 and the intake port 5B), and the intake port also serves as the exhaust port. It may be an exhaust port.
  • the air suspension device provided in the vehicle, the compressor that compresses the air, the tank configured to store the air, and the compressed air in the tank are described.
  • the first passage that supplies the suction side of the compressor, the second passage that connects the discharge side of the compressor and the tank, the air suspension that is connected to the discharge side of the compressor via an air dryer, and the first passage.
  • a first valve provided, a second valve provided in the second passage, a branch provided from between the discharge side of the compressor and the air dryer, and connected to the atmosphere by opening the third valve.
  • the third passage and the control means for opening and closing the first valve, the second valve and the third valve are provided, and the control means gives a lower command according to the traveling condition or the vehicle height state of the vehicle. It is characterized in that the air dryer is regenerated by using the compressed air in the air suspension when a lowering command is issued from the lowering command unit.
  • the detection means for estimating or calculating the pressure in the air suspension is provided, and when the detection pressure by the detection means exceeds a predetermined pressure, the pressure in the air suspension is increased.
  • the compressed air is supplied to the tank, and when the pressure is lower than the predetermined pressure, the air dryer is regenerated.
  • the air dryer is regenerated at the time of the lowering command when the vehicle is stopped.
  • the air dryer is regenerated at predetermined intervals when a descending command is received from the descending command unit. ..
  • Air suspension Compressor device 3 Compressor 4 Electric motor 5 Intake line 6 Supply / exhaust line 7 Air dryer 8 Slow return valve 9 Intake valve 10 Air conduit 11 Supply / exhaust valve 12 Tank 13 Tank side suction line (first passage) 14 Intake solenoid valve (first valve) 15 Tank pipeline (second passage) 16 Return solenoid valve (second valve) 17 Supply / exhaust switching valve 18 Reflux line 19 Exhaust line (third passage) 20 Exhaust solenoid valve (3rd valve) 21 Pressure detector (detection means) 22 Controller (control means) 22B Down command unit 23 Vehicle height sensor 24 Selection switch

Abstract

A controller (22) controls the operation or the opening and closing of, for example: an electric motor (4) of a compressor (3); supply/exhaust valves (11) on the FL, FR, RL, and RR sides; an inlet solenoid valve (14); a return solenoid valve (16); a supply/exhaust switching valve (17); and an exhaust solenoid valve (20). The controller (22) has a lowering instruction unit (22B) for outputting a vehicle height lowering instruction in accordance with a driving condition or a vehicle height state of a vehicle. When the lowering instruction has been output from the lowering instruction unit (22B), the controller (22) causes the exhaust solenoid valve (20) to open and thereby performs regeneration processing for an air dryer (7) using compressed air in air suspensions (1).

Description

エアサスペンション装置Air suspension device
 本開示は、例えば4輪自動車に代表される車両に搭載され、車高調整を行うようにしたエアサスペンション装置に関する。 The present disclosure relates to an air suspension device mounted on a vehicle represented by a four-wheeled vehicle, for example, so as to adjust the vehicle height.
 車両の車高調整を行うためのエアサスペンション装置には、オープンシステムとクローズドシステムとがある。オープンシステムのものは、システム構成が簡素であり、構成部品を少なくできるという利点がある。しかし、空気を大気圧状態から圧縮するために、圧縮空気を所望の圧力まで昇圧させるのに時間がかかってしまう。一方、クローズドシステムのエアサスペンション装置(例えば、特許文献1参照)は、吸込み空気の圧力を大気圧よりも高くすることができるため、圧縮空気を短時間で所望の圧力まで昇圧できるという利点がある。 There are two types of air suspension devices for adjusting the height of the vehicle: an open system and a closed system. The open system has the advantages that the system configuration is simple and the number of components can be reduced. However, since the air is compressed from the atmospheric pressure state, it takes time to boost the compressed air to a desired pressure. On the other hand, the closed system air suspension device (see, for example, Patent Document 1) has an advantage that the compressed air can be boosted to a desired pressure in a short time because the pressure of the suction air can be made higher than the atmospheric pressure. ..
特表2012-516256号公報Special Table 2012-516256
 ところで、特許文献1に開示された従来技術では、例えば温度センサ、湿度センサを用いてエアドライヤの再生時期を判別するようにしている。このため、車両の運転者にとってはエアドライヤの再生処理が不意に行われることがあるため、運転者は不快感や違和感を覚える。また、温度センサや湿度センサによりセンサ類の個数が増えるため、組立時の作業性が低下する上に、製造コストが増加するという問題がある。 By the way, in the prior art disclosed in Patent Document 1, for example, a temperature sensor and a humidity sensor are used to determine the regeneration time of the air dryer. For this reason, the regenerating process of the air dryer may be performed unexpectedly for the driver of the vehicle, and the driver feels uncomfortable or uncomfortable. Further, since the number of sensors is increased by the temperature sensor and the humidity sensor, there is a problem that the workability at the time of assembly is lowered and the manufacturing cost is increased.
 本発明の一実施形態の目的は、センサの個数を増やすことなく、エアドライヤの再生を効率的に行うことができ、信頼性を向上できるようにしたエアサスペンション装置を提供することにある。 An object of the embodiment of the present invention is to provide an air suspension device capable of efficiently regenerating an air dryer and improving reliability without increasing the number of sensors.
 本発明の一実施形態は、車両に設けられるエアサスペンション装置であって、空気を圧縮するコンプレッサと、空気を貯留するように構成されたタンクと、該タンク内の圧縮空気を前記コンプレッサの吸込み側に供給する第1通路と、前記コンプレッサの吐出側と前記タンクとを繋ぐ第2通路と、前記コンプレッサの吐出側にエアドライヤを介して接続されるエアサスペンションと、前記第1通路に設けられる第1弁と、前記第2通路に設けられる第2弁と、前記コンプレッサの吐出側と前記エアドライヤとの間から分岐して設けられ、第3弁を開弁することにより大気に接続される第3通路と、前記第1弁、第2弁および第3弁を開閉制御する制御手段と、を備え、前記制御手段は、車両の走行条件または車高状態に応じて下降指令する下降指令部を有し、前記下降指令部から下降指令が出たときに、前記エアサスペンション内の圧縮空気を用いて前記エアドライヤの再生を行うことを特徴としている。 One embodiment of the present invention is an air suspension device provided in a vehicle, a compressor that compresses air, a tank configured to store air, and a suction side of the compressed air in the tank. A first passage for supplying to the compressor, a second passage connecting the discharge side of the compressor and the tank, an air suspension connected to the discharge side of the compressor via an air dryer, and a first passage provided in the first passage. A third passage that is branched from the valve, the second valve provided in the second passage, and the discharge side of the compressor and the air dryer, and is connected to the atmosphere by opening the third valve. The first valve, the second valve, and the third valve are provided with a control means for controlling the opening and closing of the first valve, the second valve, and the third valve. When a lowering command is issued from the lowering command unit, the air dryer is regenerated using the compressed air in the air suspension.
 本発明の一実施形態によれば、センサの個数を増やすことなく、エアドライヤの再生を効率的に行うことができ、装置の信頼性を向上することができる。 According to one embodiment of the present invention, the air dryer can be efficiently regenerated without increasing the number of sensors, and the reliability of the device can be improved.
本発明の第1の実施形態によるエアサスペンション装置の全体構成を示す回路図である。It is a circuit diagram which shows the whole structure of the air suspension apparatus by 1st Embodiment of this invention. コントローラを含めたエアサスペンション装置の制御ブロック図である。It is a control block diagram of an air suspension device including a controller. コントローラによる車高調整およびドライヤ再生の制御処理を示す流れ図である。It is a flow chart which shows the control process of vehicle height adjustment and dryer regeneration by a controller. 第2の実施形態による車高調整およびドライヤ再生の制御処理を示す流れ図である。It is a flow chart which shows the control process of vehicle height adjustment and dryer regeneration by 2nd Embodiment. 第3の実施形態による車高調整およびドライヤ再生の制御処理を示す流れ図である。It is a flow chart which shows the control process of vehicle height adjustment and dryer regeneration by a 3rd Embodiment.
 以下、本発明の実施形態によるエアサスペンション装置を、4輪自動車に代表される車両に適用した場合を例に挙げ、添付図面の図1ないし図5を参照して詳細に説明する。 Hereinafter, the case where the air suspension device according to the embodiment of the present invention is applied to a vehicle typified by a four-wheeled vehicle will be described in detail with reference to FIGS. 1 to 5 of the attached drawings.
 ここで、図1ないし図3は第1の実施形態を示している。図において、合計4個のエアサスペンション1は、車両の左前輪(FL),右前輪(FR),左後輪(RL),右後輪(RR)側で、車両の各車軸側と車体側(いずれも図示せず)との間に設けられている。これらのエアサスペンション1は、後述のエア室1C内に圧縮空気が給排されることにより、エア室1Cの拡張,縮小に応じて車高調整を行う空気圧機器である。 Here, FIGS. 1 to 3 show the first embodiment. In the figure, a total of four air suspensions 1 are on the left front wheel (FL), right front wheel (FR), left rear wheel (RL), and right rear wheel (RR) side of the vehicle, and each axle side and vehicle body side of the vehicle. It is provided between (neither is shown). These air suspensions 1 are pneumatic devices that adjust the vehicle height according to the expansion and contraction of the air chamber 1C by supplying and discharging compressed air into the air chamber 1C described later.
 各エアサスペンション1は、例えば車両の車軸側に取付けられるシリンダ1Aと、該シリンダ1A内から軸方向(上,下方向)へと伸縮可能に突出し突出端側が前記車体側に取付けられるピストンロッド1Bと、該ピストンロッド1Bの突出端側とシリンダ1Aとの間に伸縮可能に設けられ空気ばねとして作動するエア室1Cとにより構成されている。各エアサスペンション1のエア室1Cは、後述の分岐管10Aから圧縮空気が給排されることにより軸方向に拡縮される。このとき、各エアサスペンション1は、ピストンロッド1Bがシリンダ1A内から軸方向に伸縮して車両の高さ(車高)を、前記圧縮空気の給排量に応じて調整することができる。 Each air suspension 1 includes, for example, a cylinder 1A attached to the axle side of the vehicle, and a piston rod 1B whose protruding end side is attached to the vehicle body side so as to expand and contract in the axial direction (upward and downward) from the inside of the cylinder 1A. It is composed of an air chamber 1C that is stretchably provided between the protruding end side of the piston rod 1B and the cylinder 1A and operates as an air spring. The air chamber 1C of each air suspension 1 is expanded and contracted in the axial direction by supplying and discharging compressed air from the branch pipe 10A described later. At this time, in each air suspension 1, the piston rod 1B expands and contracts in the axial direction from the inside of the cylinder 1A, and the height (vehicle height) of the vehicle can be adjusted according to the supply / discharge amount of the compressed air.
 コンプレッサ装置2は、空気を圧縮してエアサスペンション1のエア室1Cに圧縮空気を供給する装置である。ここで、コンプレッサ装置2は、コンプレッサ本体としてのコンプレッサ3と、該コンプレッサ3を駆動,停止する電動モータ4と、コンプレッサ3の吸込み側3A(以下、吸気側3Aという)に接続された吸気管路5と、コンプレッサ3の吐出側3Bに接続された給排管路6と、該給排管路6に設けられたエアドライヤ7およびスローリターンバルブ8と、後述の吸気バルブ9、タンク側吸込管路13、吸気電磁弁14、タンク用管路15、戻し電磁弁16、給排切換弁17、還流管路18、排気管路19および排気電磁弁20等と、を含んで構成されている。 The compressor device 2 is a device that compresses air and supplies compressed air to the air chamber 1C of the air suspension 1. Here, the compressor device 2 includes a compressor 3 as a compressor main body, an electric motor 4 for driving and stopping the compressor 3, and an intake pipe line connected to a suction side 3A (hereinafter, referred to as an intake side 3A) of the compressor 3. 5, the supply / exhaust pipe line 6 connected to the discharge side 3B of the compressor 3, the air dryer 7 and the slow return valve 8 provided in the supply / discharge pipe line 6, the intake valve 9 and the tank side suction pipe line described later. 13. The intake solenoid valve 14, the tank pipe line 15, the return solenoid valve 16, the supply / discharge switching valve 17, the recirculation pipe line 18, the exhaust pipe line 19, the exhaust solenoid valve 20, and the like are included.
 コンプレッサ3は、その吸気側3Aから空気を吸込みつつ、圧縮空気を生成する。コンプレッサ3は、例えば往復動式圧縮機またはスクロール式圧縮機等により構成されている。コンプレッサ3から発生した圧縮空気は、空気圧機器であるエアサスペンション1のエア室1Cまたはタンク12に供給される。コンプレッサ3は、駆動源としての電動モータ4により回転駆動される。電動モータ4は、後述のコントローラ22(図2参照)により駆動,停止が制御される。なお、電動モータ4としては、例えばリニアモータ等の駆動源を用いてもよい。 The compressor 3 generates compressed air while sucking air from its intake side 3A. The compressor 3 is composed of, for example, a reciprocating compressor, a scroll compressor, or the like. The compressed air generated from the compressor 3 is supplied to the air chamber 1C or the tank 12 of the air suspension 1 which is a pneumatic device. The compressor 3 is rotationally driven by an electric motor 4 as a drive source. The electric motor 4 is driven and stopped by a controller 22 (see FIG. 2) described later. As the electric motor 4, a drive source such as a linear motor may be used.
 コンプレッサ3の吸気側3Aには、吸気管路5が接続されている。コンプレッサ3の吐出側3Bには、給排管路6が接続されている。この給排管路6の一端側は、コンプレッサ3の吐出側3Bに接続されている。給排管路6の他端側は、後述の給排切換弁17を介して空気導管10に接続されている。給排管路6の途中位置には、エアドライヤ7とスローリターンバルブ8とが設けられている。 The intake pipe line 5 is connected to the intake side 3A of the compressor 3. A supply / discharge pipe line 6 is connected to the discharge side 3B of the compressor 3. One end side of the supply / discharge pipe line 6 is connected to the discharge side 3B of the compressor 3. The other end side of the supply / discharge pipe line 6 is connected to the air conduit 10 via a supply / discharge switching valve 17, which will be described later. An air dryer 7 and a slow return valve 8 are provided at an intermediate position of the supply / discharge pipe line 6.
 コンプレッサ装置2の吸気管路5は、コンプレッサ3の吸気通路を構成している。吸気管路5の接続点5Aの位置には、後述のタンク側吸込管路13と還流管路18とが接続されている。なお、タンク側吸込管路13と還流管路18とは、接続点5Aの前,後で吸気管路5に対し別々に接続してもよいことは勿論である。 The intake pipe line 5 of the compressor device 2 constitutes the intake passage of the compressor 3. At the position of the connection point 5A of the intake pipe 5, the tank-side suction pipe 13 and the reflux pipe 18, which will be described later, are connected to each other. Needless to say, the tank-side suction pipe line 13 and the return pipe line 18 may be separately connected to the intake pipe line 5 before and after the connection point 5A.
 吸気管路5の一端側は、コンプレッサ装置2(コンプレッサ3)の外部に開口する吸気ポート5Bとなっている。この吸気ポート5Bには、空気中の塵埃等を除去するフィルタが設けられている。吸気ポート5Bは、コンプレッサ3の駆動時に外気を吸気側3Aに吸込ませるためのポートである。吸気管路5の他端側は、コンプレッサ3の吸気側3Aに接続されている。吸気管路5の途中には、吸気バルブ9が設けられている。 One end side of the intake pipe line 5 is an intake port 5B that opens to the outside of the compressor device 2 (compressor 3). The intake port 5B is provided with a filter for removing dust and the like in the air. The intake port 5B is a port for sucking outside air into the intake side 3A when the compressor 3 is driven. The other end side of the intake pipe line 5 is connected to the intake side 3A of the compressor 3. An intake valve 9 is provided in the middle of the intake pipe line 5.
 吸気バルブ9は、吸気管路5の途中で、接続点5Aと吸気ポート5Bとの間に設けられている。この吸気バルブ9は、吸気ポート5Bを介して大気から空気を吸気するように構成されたチェック弁である。即ち、チェック弁からなる吸気バルブ9は、接続点5Aの位置でコンプレッサ3の吸気側3Aの圧力が大気圧以下となったときに開弁し、吸気ポート5Bを介して外部(大気)から空気を吸気するように構成されている。 The intake valve 9 is provided between the connection point 5A and the intake port 5B in the middle of the intake pipe line 5. The intake valve 9 is a check valve configured to take in air from the atmosphere through the intake port 5B. That is, the intake valve 9 including the check valve opens when the pressure on the intake side 3A of the compressor 3 becomes atmospheric pressure or less at the position of the connection point 5A, and air from the outside (atmosphere) via the intake port 5B. Is configured to inhale.
 吸気バルブ9は、所謂吸込弁として機能する。吸気バルブ9は、逆止弁により構成されている。吸気バルブ9は、吸気ポート5Bから吸気管路5内(即ち、吸気管路5の接続点5A側)に向けて空気が流通するのを許し、逆向きの流れを阻止する。このため、吸気管路5内(即ち、吸気管路5の接続点5A側)の圧力が大気圧よりも高い圧力(正圧)となったときには、吸気バルブ9が閉弁状態となる。このとき、コンプレッサ3の吸気側3Aには、エアサスペンション1またはタンク12からの圧縮空気がタンク側吸込管路13、吸気電磁弁14または還流管路18を介して供給(吸入)される。 The intake valve 9 functions as a so-called suction valve. The intake valve 9 is composed of a check valve. The intake valve 9 allows air to flow from the intake port 5B toward the inside of the intake pipe 5 (that is, the connection point 5A side of the intake pipe 5), and blocks the reverse flow. Therefore, when the pressure in the intake pipe 5 (that is, the connection point 5A side of the intake pipe 5) becomes higher than the atmospheric pressure (positive pressure), the intake valve 9 is closed. At this time, compressed air from the air suspension 1 or the tank 12 is supplied (sucked) to the intake side 3A of the compressor 3 via the tank side suction pipe line 13, the intake solenoid valve 14, or the return pipe line 18.
 給排管路6は、コンプレッサ3から発生した圧縮空気をエアサスペンション1のエア室1Cに給排する給排通路を構成している。エアサスペンション1のエア室1Cに供給された圧縮空気は、車高を下げるときにエア室1Cから給排管路6、スローリターンバルブ8の絞り8Aを介して、例えばエアドライヤ7を逆流するように排出される。また、エアサスペンション1(エア室1C)内の圧縮空気は、後述のタンク用管路15および戻し電磁弁16を介してタンク12内に蓄圧するように排出することも可能である。 The supply / discharge pipe line 6 constitutes a supply / discharge passage for supplying / discharging compressed air generated from the compressor 3 to the air chamber 1C of the air suspension 1. The compressed air supplied to the air chamber 1C of the air suspension 1 flows back from the air chamber 1C through the air supply / exhaust pipe line 6 and the throttle 8A of the slow return valve 8, for example, when the vehicle height is lowered. It is discharged. Further, the compressed air in the air suspension 1 (air chamber 1C) can be discharged so as to accumulate pressure in the tank 12 via the tank pipe line 15 and the return solenoid valve 16 described later.
 また、給排管路6には、コンプレッサ3の吐出側3Bとエアドライヤ7との間に位置する接続点6Aから排気管路19が分岐して設けられている。スローリターンバルブ8と給排切換弁17との間に位置する給排管路6の接続点6Bからは、タンク用管路15が分岐して設けられている。換言すると、エアドライヤ7およびスローリターンバルブ8は、接続点6A,6Bの間となる位置で給排管路6に設けられている。 Further, the supply / exhaust pipe line 6 is provided with the exhaust pipe line 19 branched from the connection point 6A located between the discharge side 3B of the compressor 3 and the air dryer 7. A tank pipe line 15 is branched from the connection point 6B of the water supply / discharge pipe line 6 located between the slow return valve 8 and the supply / discharge switching valve 17. In other words, the air dryer 7 and the slow return valve 8 are provided in the supply / discharge pipe line 6 at positions between the connection points 6A and 6B.
 エアドライヤ7は、給排管路6の途中に介装して設けられた空気乾燥手段を構成している。このエアドライヤ7は、例えばシリカゲル等の乾燥剤または水分吸着剤(図示せず)等を内蔵している。エアドライヤ7は、コンプレッサ3の吐出側3Bとスローリターンバルブ8との間に配設されている。スローリターンバルブ8は、絞り8Aとチェック弁8Bとの並列回路により構成されている。スローリターンバルブ8は、後述の順方向流れに対しては、チェック弁8Bが開弁して圧縮空気の流量を絞ることはない。しかし、スローリターンバルブ8は、逆方向の流れに対してはチェック弁8Bが閉弁する。このときの圧縮空気は絞り8Aにより流量が絞られるため、圧縮空気は、エアドライヤ7内をゆっくりと小流量で逆流するものである。 The air dryer 7 constitutes an air drying means provided in the middle of the supply / discharge pipe line 6. The air dryer 7 contains, for example, a desiccant such as silica gel or a water adsorbent (not shown). The air dryer 7 is arranged between the discharge side 3B of the compressor 3 and the slow return valve 8. The slow return valve 8 is composed of a parallel circuit of the throttle 8A and the check valve 8B. In the slow return valve 8, the check valve 8B does not open to throttle the flow rate of the compressed air with respect to the forward flow described later. However, in the slow return valve 8, the check valve 8B closes against the flow in the reverse direction. Since the flow rate of the compressed air at this time is throttled by the throttle 8A, the compressed air slowly flows back in the air dryer 7 at a small flow rate.
 エアドライヤ7は、コンプレッサ3で発生した高圧の圧縮空気がエアサスペンション1側に向けて給排管路6内を順方向に流通するときに、この圧縮空気を内部の水分吸着剤に接触させることにより水分を吸着する。これにより、エアドライヤ7からは、エアサスペンション1(エア室1C)またはタンク12に向けて乾燥した圧縮空気が供給される。一方、エアサスペンション1(エア室1C)またはタンク12から排出された圧縮空気(排気)がエアドライヤ7(給排管路6)内を逆方向に流通するときには、乾燥したエアがエアドライヤ7内を逆流する。このため、エアドライヤ7内の水分吸着剤は、この乾燥エアにより水分が脱着される。これにより、エアドライヤ7の水分吸着剤は再生され、再び水分を吸着可能な状態に戻される。 The air dryer 7 brings the compressed air into contact with the moisture adsorbent inside when the high-pressure compressed air generated by the compressor 3 flows forward in the supply / discharge pipe line 6 toward the air suspension 1. Adsorbs water. As a result, dry compressed air is supplied from the air dryer 7 toward the air suspension 1 (air chamber 1C) or the tank 12. On the other hand, when the compressed air (exhaust) discharged from the air suspension 1 (air chamber 1C) or the tank 12 flows in the reverse direction in the air dryer 7 (supply / exhaust pipe line 6), the dry air flows back in the air dryer 7. To do. Therefore, the moisture adsorbent in the air dryer 7 is desorbed by the dry air. As a result, the water adsorbent of the air dryer 7 is regenerated and returned to a state in which water can be adsorbed again.
 エアサスペンション1のエア室1Cは、空気導管10および給排切換弁17を介してコンプレッサ3の給排管路6に接続されている。ここで、空気導管10には、複数本(例えば、4本)の分岐管10Aが互いに分岐して設けられている。各分岐管10Aの先端側は、それぞれがエアサスペンション1のエア室1Cに着脱可能に接続されている。エアドライヤ7とエアサスペンション1とを繋ぐ第4通路は、例えば給排管路6の一部と空気導管10とにより構成されている。この第4通路には、第4弁(後述の給排切換弁17)が設けられている。 The air chamber 1C of the air suspension 1 is connected to the supply / discharge pipe line 6 of the compressor 3 via the air conduit 10 and the supply / discharge switching valve 17. Here, the air conduit 10 is provided with a plurality of (for example, four) branch pipes 10A branched from each other. The tip end side of each branch pipe 10A is detachably connected to the air chamber 1C of the air suspension 1. The fourth passage connecting the air dryer 7 and the air suspension 1 is composed of, for example, a part of the supply / exhaust pipe line 6 and the air conduit 10. A fourth valve (supply / discharge switching valve 17 described later) is provided in the fourth passage.
 圧縮空気の給排気弁11は、エアサスペンション1のエア室1Cに対する圧縮空気の給排を制御するため、各分岐管10Aの途中に設けられている。給排気弁11は、例えば2ポート2位置の電磁式切換弁(ソレノイドバルブ)により構成されている。給排気弁11は、通常時は閉弁位置(a)におかれている。給排気弁11は、後述するコントローラ22からの制御信号により励磁されると、閉弁位置(a)から開弁位置(b)に切換えられる。 The compressed air supply / exhaust valve 11 is provided in the middle of each branch pipe 10A in order to control the supply / exhaust of compressed air to the air chamber 1C of the air suspension 1. The air supply / exhaust valve 11 is composed of, for example, an electromagnetic switching valve (solenoid valve) having two ports and two positions. The air supply / exhaust valve 11 is normally placed at the valve closing position (a). When the air supply / exhaust valve 11 is excited by a control signal from the controller 22, which will be described later, the air supply / exhaust valve 11 is switched from the valve closing position (a) to the valve opening position (b).
 なお、各給排気弁11は、エアサスペンション1のエア室1Cと分岐管10Aとの間に接続して設ける構成でもよい。また、給排気弁11は、リリーフ弁(安全弁)としての機能を有している。このため、エア室1C内の圧力がリリーフ設定圧を越えると、給排気弁11は消磁したままでも、閉弁位置(a)から開弁位置(b)にリリーフ弁として一時的に切換わり、このときの過剰圧を空気導管10内に逃がすことができる。 Note that each supply / exhaust valve 11 may be provided by being connected between the air chamber 1C of the air suspension 1 and the branch pipe 10A. Further, the air supply / exhaust valve 11 has a function as a relief valve (safety valve). Therefore, when the pressure in the air chamber 1C exceeds the relief set pressure, the air supply / exhaust valve 11 is temporarily switched from the valve closing position (a) to the valve opening position (b) as a relief valve even if the demagnetization remains. The excess pressure at this time can be released into the air conduit 10.
 圧縮空気を貯留するタンク12は、例えば可撓性ホース等からなる接続管12Aを有している。この接続管12Aの一方の端部は、タンク12に取外し可能に接続されている。接続管12Aの他方の端部は、後述のタンク側吸込管路13とタンク用管路15とに接続されている。タンク12の接続管12Aは、コンプレッサ3の吸気側3Aに第1通路としてのタンク側吸込管路13を介して接続されている。このタンク側吸込管路13の一方の端部は、タンク12(接続管12A)に接続されている。タンク側吸込管路13の他方の端部は、接続点5Aの位置で吸気管路5に接続されている。即ち、接続点5Aは、コンプレッサ3の吸気側3Aと吸気バルブ9との間となる位置で、タンク側吸込管路13が吸気管路5から分岐するように吸気管路5をタンク側吸込管路13に接続している。 The tank 12 for storing compressed air has a connecting pipe 12A made of, for example, a flexible hose. One end of the connecting pipe 12A is removably connected to the tank 12. The other end of the connecting pipe 12A is connected to the tank-side suction pipe 13 and the tank pipe 15, which will be described later. The connecting pipe 12A of the tank 12 is connected to the intake side 3A of the compressor 3 via the tank side suction pipe 13 as the first passage. One end of the tank-side suction pipe 13 is connected to the tank 12 (connection pipe 12A). The other end of the tank-side suction line 13 is connected to the intake line 5 at the position of the connection point 5A. That is, the connection point 5A is a position between the intake side 3A of the compressor 3 and the intake valve 9, and the intake pipe 5 is the tank side suction pipe so that the tank side suction pipe 13 branches from the intake pipe 5. It is connected to the road 13.
 タンク側吸込管路13には、タンク12内の圧縮空気をコンプレッサ3の吸気側3Aに供給,停止するための吸気電磁弁14が設けられている。この吸気電磁弁14は、例えば2ポート2位置の電磁式切換弁(ソレノイドバルブ)により構成されている。吸気電磁弁14は、通常時は閉弁位置(c)におかれている。吸気電磁弁14は、コントローラ22からの制御信号により励磁されると、閉弁位置(c)から開弁位置(d)に切換えられる。また、吸気電磁弁14は、前述した給排気弁11と同様に、リリーフ弁(安全弁)としての機能を有している。 The tank side suction pipe line 13 is provided with an intake solenoid valve 14 for supplying and stopping the compressed air in the tank 12 to the intake side 3A of the compressor 3. The intake solenoid valve 14 is composed of, for example, an electromagnetic switching valve (solenoid valve) having two ports and two positions. The intake solenoid valve 14 is normally placed in the valve closed position (c). When the intake solenoid valve 14 is excited by the control signal from the controller 22, the intake solenoid valve 14 is switched from the valve closing position (c) to the valve opening position (d). Further, the intake solenoid valve 14 has a function as a relief valve (safety valve) like the above-mentioned supply / exhaust valve 11.
 吸気電磁弁14は、閉弁位置(c)と開弁位置(d)とからなるオン・オフ式の二方電磁弁である。吸気電磁弁14は、汎用性の高い電磁式切換弁を採用することができ、例えば三方電磁弁のような高価な弁を不要にすることができる。なお、後述の戻し電磁弁16および排気電磁弁20についても、吸気電磁弁14と同様に、汎用性の高い二方電磁弁を採用することができる。 The intake solenoid valve 14 is an on / off type two-way solenoid valve composed of a valve closing position (c) and a valve opening position (d). As the intake solenoid valve 14, a highly versatile solenoid switching valve can be adopted, and an expensive valve such as a three-way solenoid valve can be eliminated. As for the return solenoid valve 16 and the exhaust solenoid valve 20, which will be described later, a highly versatile two-way solenoid valve can be adopted as in the intake solenoid valve 14.
 また、タンク12の接続管12Aは、コンプレッサ3の吐出側3Bに第2通路としてのタンク用管路15を介して接続されている。このタンク用管路15の一方の端部は、タンク12(接続管12A)に接続されている。タンク用管路15の他方の端部は、接続点6Bの位置で給排管路6から分岐されるように接続されている。即ち、接続点6Bは、スローリターンバルブ8と給排切換弁17との間となる位置でタンク用管路15を給排管路6から分岐させるように、給排管路6をタンク用管路15に接続している。 Further, the connecting pipe 12A of the tank 12 is connected to the discharge side 3B of the compressor 3 via a tank pipe 15 as a second passage. One end of the tank pipeline 15 is connected to the tank 12 (connecting pipe 12A). The other end of the tank line 15 is connected so as to branch off from the supply / discharge line 6 at the position of the connection point 6B. That is, at the connection point 6B, the supply / discharge pipe 6 is a tank pipe so that the tank pipe 15 is branched from the supply / discharge pipe 6 at a position between the slow return valve 8 and the supply / discharge switching valve 17. It is connected to the road 15.
 タンク用管路15には、タンク12内の圧縮空気を給排管路6内へと戻すように供給,停止するための戻し弁としての戻し電磁弁16が設けられている。この戻し電磁弁16は、例えば2ポート2位置の二方電磁弁(ソレノイドバルブ)により構成されている。戻し電磁弁16は、通常時は閉弁位置(e)におかれている。戻し電磁弁16は、コントローラ22からの制御信号により励磁されると、閉弁位置(e)から開弁位置(f)に切換えられる。戻し電磁弁16の開弁時には、例えばエアサスペンション1内の圧縮空気を、タンク用管路15を介してタンク12内へと戻すように蓄圧することができる。また、戻し電磁弁16は、前述した給排気弁11と同様に、リリーフ弁(安全弁)としての機能を有している。 The tank pipeline 15 is provided with a return solenoid valve 16 as a return valve for supplying and stopping the compressed air in the tank 12 so as to return it to the supply / exhaust pipeline 6. The return solenoid valve 16 is composed of, for example, a two-way solenoid valve (solenoid valve) having two ports and two positions. The return solenoid valve 16 is normally placed at the valve closing position (e). When the return solenoid valve 16 is excited by a control signal from the controller 22, the return solenoid valve 16 is switched from the valve closing position (e) to the valve opening position (f). When the return solenoid valve 16 is opened, for example, the compressed air in the air suspension 1 can be accumulated so as to return to the tank 12 via the tank pipe line 15. Further, the return solenoid valve 16 has a function as a relief valve (safety valve) like the above-mentioned supply / exhaust valve 11.
 給排切換弁17は、エアドライヤ7とエアサスペンション1とを繋ぐ第4通路(例えば、給排管路6の一部と空気導管10)に設けられる第4弁を構成している。ここで、給排切換弁17は、エアサスペンション1側の空気導管10を給排管路6または還流管路18に対して選択的に接続する弁である。給排切換弁17は、例えば3ポート2位置の電磁式方向切換弁(即ち、三方電磁弁)によって構成されている。即ち、給排切換弁17は、コンプレッサ3で発生した圧縮空気をエアサスペンション1のエア室1Cに供給したり、エア室1C内の圧縮空気を給排管路6を介して排出したりする給排位置(g)と、エア室1C内の圧縮空気を還流管路18を介してコンプレッサ3の吸気側3Aに還流させる還流位置(h)と、に選択的に切換えられる。 The supply / discharge switching valve 17 constitutes a fourth valve provided in a fourth passage (for example, a part of the supply / discharge pipe line 6 and the air conduit 10) connecting the air dryer 7 and the air suspension 1. Here, the supply / discharge switching valve 17 is a valve that selectively connects the air conduit 10 on the air suspension 1 side to the supply / discharge pipe line 6 or the return pipe line 18. The supply / discharge switching valve 17 is composed of, for example, an electromagnetic direction switching valve (that is, a three-way solenoid valve) having three ports and two positions. That is, the supply / discharge switching valve 17 supplies the compressed air generated by the compressor 3 to the air chamber 1C of the air suspension 1 and discharges the compressed air in the air chamber 1C through the supply / discharge pipe line 6. It is selectively switched between the exhaust position (g) and the recirculation position (h) in which the compressed air in the air chamber 1C is recirculated to the intake side 3A of the compressor 3 via the recirculation pipe line 18.
 還流管路18は、コンプレッサ3、給排管路6、エアドライヤ7およびスローリターンバルブ8を迂回して設けられたバイパス通路である。還流管路18の一方の端部は、給排切換弁17を介してエアサスペンション1側の空気導管10に接続可能となっている。還流管路18の他方の端部は、接続点5Aの位置で吸気管路5に接続されている。このため、給排切換弁17が還流位置(h)に切換えられたときに、還流管路18は、エアサスペンション1のエア室1Cから排出される圧縮空気を、給排管路6を迂回させるようにコンプレッサ3の吸気側3Aに還流させる。 The return pipe line 18 is a bypass passage provided by bypassing the compressor 3, the supply / discharge pipe line 6, the air dryer 7, and the slow return valve 8. One end of the return pipe 18 can be connected to the air conduit 10 on the air suspension 1 side via the supply / discharge switching valve 17. The other end of the return line 18 is connected to the intake line 5 at the position of the connection point 5A. Therefore, when the supply / discharge switching valve 17 is switched to the return position (h), the return pipe 18 bypasses the supply / discharge pipe 6 for the compressed air discharged from the air chamber 1C of the air suspension 1. As described above, the compressor 3 is returned to the intake side 3A.
 排気管路19は、給排管路6内の圧縮空気を外部に排気するための第3通路である。排気管路19の途中には、排気電磁弁20が設けられている。排気管路19の一方の端部は、接続点6Aに位置で給排管路6に接続されている。排気管路19の他方の端部は、排気ポート19Aとなってコンプレッサ装置2の外部へと延びている。排気ポート19Aの先端は、外気に開放されている。 The exhaust pipe line 19 is a third passage for exhausting the compressed air in the supply / exhaust pipe line 6 to the outside. An exhaust solenoid valve 20 is provided in the middle of the exhaust pipe line 19. One end of the exhaust line 19 is connected to the supply / discharge line 6 at a position at the connection point 6A. The other end of the exhaust pipeline 19 serves as an exhaust port 19A and extends to the outside of the compressor device 2. The tip of the exhaust port 19A is open to the outside air.
 排気弁(第3弁)としての排気電磁弁20は、第3通路としての排気管路19に設けられている。この排気電磁弁20は、例えば2ポート2位置の二方電磁弁(ソレノイドバルブ)により構成されている。排気電磁弁20は、通常時は閉弁位置(i)におかれている。排気電磁弁20は、コントローラ22からの制御信号により励磁されると、閉弁位置(i)から開弁位置(j)に切換えられる。排気電磁弁20(即ち、第3弁)の開弁時には、第3通路としての排気管路19が大気に接続される。 The exhaust solenoid valve 20 as the exhaust valve (third valve) is provided in the exhaust pipeline 19 as the third passage. The exhaust solenoid valve 20 is composed of, for example, a two-way solenoid valve (solenoid valve) having two ports and two positions. The exhaust solenoid valve 20 is normally placed in the valve closed position (i). When the exhaust solenoid valve 20 is excited by the control signal from the controller 22, the exhaust solenoid valve 20 is switched from the valve closing position (i) to the valve opening position (j). When the exhaust solenoid valve 20 (that is, the third valve) is opened, the exhaust pipeline 19 as the third passage is connected to the atmosphere.
 排気電磁弁20の開弁時には、エアサスペンション1内の圧縮空気を、給排管路6、スローリターンバルブ8の絞り8A、エアドライヤ7、排気管路19を介して排気ポート19Aから外部に排気(開放)することができる。また、排気電磁弁20の開弁時には、タンク12内の圧縮空気を、タンク用管路15、戻し電磁弁16、給排管路6、スローリターンバルブ8の絞り8A、エアドライヤ7、排気管路19を介して排気ポート19Aから外部に排気(開放)したりすることもできる。また、排気電磁弁20は、前述した給排気弁11と同様にリリーフ弁(安全弁)としての機能を有している。 When the exhaust solenoid valve 20 is opened, the compressed air in the air suspension 1 is exhausted to the outside from the exhaust port 19A via the supply / exhaust pipe line 6, the throttle 8A of the slow return valve 8, the air dryer 7, and the exhaust pipe line 19 ( Can be opened). Further, when the exhaust solenoid valve 20 is opened, the compressed air in the tank 12 is supplied to the tank pipe line 15, the return solenoid valve 16, the supply / exhaust pipe line 6, the throttle 8A of the slow return valve 8, the air dryer 7, and the exhaust pipe line. It is also possible to exhaust (open) to the outside from the exhaust port 19A via 19. Further, the exhaust solenoid valve 20 has a function as a relief valve (safety valve) like the above-mentioned supply / exhaust valve 11.
 さらに、空気導管10には、例えば各分岐管10Aと給排切換弁17との間となる位置に圧力検出器21が設けられている。この圧力検出器21は、全ての給排気弁11、吸気電磁弁14および排気電磁弁20を閉弁すると共に、給排切換弁17を給排位置(g)に戻した状態で、例えば戻し電磁弁16を閉弁位置(e)から開弁位置(f)に切換えたときに、タンク12内の圧力を、タンク用管路15を介して検出する。また、吸気電磁弁14、戻し電磁弁16および排気電磁弁20を閉弁した状態で、例えば給排気弁11の少なくともいずれかを開弁したときには、該当するエアサスペンション1のエア室1C内の圧力を、圧力検出器21により検出することができる。圧力検出器21は、エアサスペンション1内の圧力を推定もしくは算出する検出手段を構成している。 Further, the air conduit 10 is provided with a pressure detector 21 at a position between each branch pipe 10A and the supply / discharge switching valve 17, for example. The pressure detector 21 closes all the supply / exhaust valves 11, the intake solenoid valve 14, and the exhaust solenoid valve 20, and returns the supply / exhaust switching valve 17 to the supply / exhaust position (g). When the valve 16 is switched from the valve closing position (e) to the valve opening position (f), the pressure in the tank 12 is detected via the tank pipeline 15. Further, when at least one of the supply / exhaust valves 11 is opened with the intake solenoid valve 14, the return solenoid valve 16 and the exhaust solenoid valve 20 closed, the pressure in the air chamber 1C of the corresponding air suspension 1 is increased. Can be detected by the pressure detector 21. The pressure detector 21 constitutes a detecting means for estimating or calculating the pressure in the air suspension 1.
 制御手段としてのコントローラ22は、例えばマイクロコンピュータ等により構成されている。コントローラ22の入力側には、圧力検出器21、複数の車高センサ23(即ち、FL側,FR側,RL側,RR側車高センサ23)および選択スイッチ24等が接続されている。FL側,FR側,RL側,RR側車高センサ23は、車両の左前輪(FL),右前輪(FR),左後輪(RL),右後輪(RR)側で各エアサスペンション1による車高を個別に検出する。選択スイッチ24は、例えば車高調整を行う上での自動モード、または運転者が好みに応じて任意に車高を変える選択モード等の切換えを行う操作スイッチである。 The controller 22 as a control means is configured by, for example, a microcomputer or the like. A pressure detector 21, a plurality of vehicle height sensors 23 (that is, FL side, FR side, RL side, RR side vehicle height sensors 23), a selection switch 24, and the like are connected to the input side of the controller 22. The vehicle height sensors 23 on the FL side, FR side, RL side, and RR side are air suspensions 1 on the left front wheel (FL), right front wheel (FR), left rear wheel (RL), and right rear wheel (RR) side of the vehicle. The vehicle height is detected individually. The selection switch 24 is an operation switch for switching, for example, an automatic mode for adjusting the vehicle height, or a selection mode in which the driver arbitrarily changes the vehicle height according to his / her preference.
 ここで、選択スイッチ24を操作して車高調整を自動モードで行うように選択した場合(即ち、オートレベリング時に)、コントローラ22は、FL側,FR側,RL側,RR側車高センサ23から出力される車高検出信号に基づき、それぞれのエアサスペンション1が目標車高となる設定高さに比較して高いか、低いかを比較(判定)する。この上で、コントローラ22は、その比較(判定)結果に基づいて、車両の左前輪(FL),右前輪(FR),左後輪(RL),右後輪(RR)側で各エアサスペンション1による車高調整を個別に行う。 Here, when the selection switch 24 is operated to select the vehicle height adjustment to be performed in the automatic mode (that is, during auto-leveling), the controller 22 is the FL side, FR side, RL side, RR side vehicle height sensor 23. Based on the vehicle height detection signal output from, it is compared (determined) whether each air suspension 1 is higher or lower than the set height that is the target vehicle height. On this basis, the controller 22 has each air suspension on the left front wheel (FL), right front wheel (FR), left rear wheel (RL), and right rear wheel (RR) side of the vehicle based on the comparison (judgment) result. Adjust the vehicle height according to 1 individually.
 コントローラ22の出力側は、コンプレッサ3の電動モータ4と、FL側,FR側,RL側,RR側の給排気弁11と、吸気電磁弁14、戻し電磁弁16、給排切換弁17および排気電磁弁20等とに接続されている。また、コントローラ22は、例えばデータ通信に必要な回線網であるCAN(Controller Area Network)等を介して他のコントローラ(図示せず)に接続されている。これにより、コントローラ22は他のコントローラとの間で、例えば車速、操舵角、外気温(周囲温度)、日時情報、積載重量等の荷重情報を含めた種々の車両情報を入,出力することができる。 The output side of the controller 22 includes the electric motor 4 of the compressor 3, the air supply / exhaust valves 11 on the FL side, FR side, RL side, and RR side, the intake solenoid valve 14, the return solenoid valve 16, the supply / exhaust switching valve 17, and the exhaust. It is connected to the solenoid valve 20 and the like. Further, the controller 22 is connected to another controller (not shown) via, for example, CAN (Controller Area Network) which is a line network required for data communication. As a result, the controller 22 can input and output various vehicle information including load information such as vehicle speed, steering angle, outside air temperature (ambient temperature), date and time information, and load weight with other controllers. it can.
 また、コントローラ22は、ROM,RAM,不揮発性メモリ等からなる記憶部としてのメモリ22Aを有している。このメモリ22Aには、例えば図3に示す車高調整用の制御処理(エアドライヤ7の再生処理を含む)を行うためのプログラム等が格納されている。即ち、エアドライヤ7の水分吸着剤(乾燥剤)は、定期的に再生処理を行わないと、吸着した水分が飽和状態に達して本来の機能を達成できなくなる。 Further, the controller 22 has a memory 22A as a storage unit including a ROM, a RAM, a non-volatile memory, and the like. In the memory 22A, for example, a program for performing a control process (including a regeneration process of the air dryer 7) for adjusting the vehicle height shown in FIG. 3 is stored. That is, the water adsorbent (desiccant) of the air dryer 7 cannot achieve its original function because the adsorbed water reaches a saturated state unless it is periodically regenerated.
 このため、コントローラ22は、コンプレッサ3が外気を吸込む時間、回数等をメモリ22Aに記憶している。コントローラ22は、この記憶内容に基づいてエアドライヤ7の再生処理を必要に応じて定期的に行う。この再生処理は、例えば車両の運転者に不快感や違和感を与えないように、停車時に行われるのが好ましい。図3に示す制御処理では、オートレベリングによる車高調整が下降指示(指令)の場合に、エアサスペンション1(エア室1C)内の圧縮空気を大気中に排気し、このときにエアドライヤ7の再生処理を行うようにしている。 Therefore, the controller 22 stores the time, the number of times, etc. of the compressor 3 sucking in the outside air in the memory 22A. The controller 22 periodically regenerates the air dryer 7 based on the stored contents, if necessary. This regeneration process is preferably performed when the vehicle is stopped so as not to cause discomfort or discomfort to the driver of the vehicle, for example. In the control process shown in FIG. 3, when the vehicle height adjustment by auto-leveling is a downward instruction (command), the compressed air in the air suspension 1 (air chamber 1C) is exhausted to the atmosphere, and at this time, the air dryer 7 is regenerated. I am trying to process it.
 コントローラ22は、車両の走行条件または車高状態に応じて車高の下降指令を出力する下降指令部22B(例えば、図2、図3のステップ3参照)を有している。そして、コントローラ22は、下降指令部22Bから下降指令が出たときに、エアサスペンション1(エア室1C)内の圧縮空気を用いてエアドライヤ7の再生処理を行う。 The controller 22 has a descent command unit 22B (see, for example, step 3 in FIGS. 2 and 3) that outputs a descent command for the vehicle height according to the traveling conditions of the vehicle or the vehicle height state. Then, when the lowering command is issued from the lowering command unit 22B, the controller 22 regenerates the air dryer 7 using the compressed air in the air suspension 1 (air chamber 1C).
 コントローラ22は、各車高センサ23および選択スイッチ24等からの信号に基づいて、電動モータ4の駆動制御を行う。コントローラ22は、各給排気弁11、吸気電磁弁14、戻し電磁弁16、給排切換弁17および排気電磁弁20等に制御信号を出力し、これらの弁11,14,16,17,20(具体的には、各ソレノイド)を個別に励磁したり、消磁したりする。これにより、給排気弁11は、図示の閉弁位置(a)と開弁位置(b)との何れかに切換えられる。吸気電磁弁14、戻し電磁弁16、給排切換弁17および排気電磁弁20も、それぞれ何れかの位置に切換えられるものである。 The controller 22 controls the drive of the electric motor 4 based on the signals from each vehicle height sensor 23, the selection switch 24, and the like. The controller 22 outputs a control signal to each supply / exhaust valve 11, intake solenoid valve 14, return solenoid valve 16, supply / exhaust switching valve 17, exhaust solenoid valve 20, and the like, and these valves 11, 14, 16, 17, 20. (Specifically, each solenoid) is individually excited or demagnetized. As a result, the air supply / exhaust valve 11 is switched to either the valve closing position (a) or the valve opening position (b) shown in the figure. The intake solenoid valve 14, the return solenoid valve 16, the supply / exhaust switching valve 17, and the exhaust solenoid valve 20 are also switched to any position.
 第1の実施形態によるエアサスペンション装置は、上述の如き構成を有する。次に、コントローラ22による車高調整およびドライヤ再生の制御処理について、図3を参照して説明する。 The air suspension device according to the first embodiment has the above-described configuration. Next, the vehicle height adjustment and the dryer regeneration control process by the controller 22 will be described with reference to FIG.
 図3に示す車高調整の制御処理が開始されると、ステップ1で車高調整を行う指令(車高調整指示)があったか否かを判定する。ステップ1で「NO」と判定したときには、当該制御処理を終了させる。ステップ1で「YES」と判定したときには、次のステップ2で「オートレベリングによる車高調整指示」か否かを判定する。即ち、ステップ2では、選択スイッチ24の操作によって自動モードで車高調整(オートレベリング)を行うように、車高調整指示(指令)が出されているか否かを判定する。 When the vehicle height adjustment control process shown in FIG. 3 is started, it is determined whether or not there is a command (vehicle height adjustment instruction) for adjusting the vehicle height in step 1. When it is determined as "NO" in step 1, the control process is terminated. When it is determined as "YES" in step 1, it is determined in the next step 2 whether or not it is a "vehicle height adjustment instruction by auto-leveling". That is, in step 2, it is determined whether or not a vehicle height adjustment instruction (command) has been issued so that the vehicle height adjustment (auto leveling) is performed in the automatic mode by operating the selection switch 24.
 ステップ2で「YES」と判定したときには、次のステップ3で「オートレベリングによる車高調整指示」が下降指示(指令)であるか否かを判定する。ステップ3で「YES」と判定したときには、次のステップ4で「オートレベリングによる車高調整」を下降指示(指令)に従って行うため、大気への排気による車高調整を実行する。即ち、コントローラ22は、エアサスペンション1の給排気弁11を閉弁位置(a)から開弁位置(b)に切換えて開弁状態とし、給排切換弁17を給排位置(g)に保持すると共に、排気電磁弁20を閉弁位置(i)から開弁位置(j)に切換える。このとき、コンプレッサ3の電動モータ4は、圧縮運転を中断させるように駆動停止されている。 When it is determined as "YES" in step 2, it is determined in the next step 3 whether or not the "vehicle height adjustment instruction by auto-leveling" is a descending instruction (command). When it is determined as "YES" in step 3, in the next step 4, "vehicle height adjustment by auto-leveling" is performed according to the descending instruction (command), so that vehicle height adjustment by exhaust to the atmosphere is executed. That is, the controller 22 switches the air supply / exhaust valve 11 of the air suspension 1 from the valve closing position (a) to the valve opening position (b) to open the valve, and holds the supply / exhaust switching valve 17 at the supply / exhaust position (g). At the same time, the exhaust solenoid valve 20 is switched from the valve closing position (i) to the valve opening position (j). At this time, the electric motor 4 of the compressor 3 is driven and stopped so as to interrupt the compression operation.
 これにより、エアサスペンション1(エア室1C)内の圧縮空気は、各分岐管10A(空気導管10)から給排切換弁17を介して給排管路6、エアドライヤ7内を逆流し、さらに、排気管路19および排気電磁弁20を介して排気ポート19Aから直接的に外気へと排出(開放)される。この場合、給排管路6の途中に設けたスローリターンバルブ8はチェック弁8Bが閉弁した状態となる。スローリターンバルブ8を流通(逆流)する圧縮空気は、絞り8Aにより流量が絞られるので、エアドライヤ7内をゆっくりと小流量で逆流することになる。 As a result, the compressed air in the air suspension 1 (air chamber 1C) flows back from each branch pipe 10A (air conduit 10) through the supply / exhaust switching valve 17 into the supply / exhaust pipe passage 6 and the air dryer 7, and further. It is discharged (opened) directly from the exhaust port 19A to the outside air via the exhaust pipe line 19 and the exhaust solenoid valve 20. In this case, the slow return valve 8 provided in the middle of the supply / discharge pipe line 6 is in a state in which the check valve 8B is closed. Since the flow rate of the compressed air flowing (backflowing) through the slow return valve 8 is throttled by the throttle 8A, it slowly flows back in the air dryer 7 at a small flow rate.
 このため、エアサスペンション1(エア室1C)から排出された圧縮空気(排気)は、エアドライヤ7(給排管路6)内を逆方向に流通するときに、乾燥したエアがエアドライヤ7内を逆流する。このため、エアドライヤ7内の水分吸着剤は、この乾燥エアにより水分が脱着される。これにより、エアドライヤ7の水分吸着剤は再生され、再び水分を吸着可能な状態に戻される。 Therefore, when the compressed air (exhaust) discharged from the air suspension 1 (air chamber 1C) flows in the reverse direction in the air dryer 7 (supply / exhaust pipe line 6), the dried air flows back in the air dryer 7. To do. Therefore, the moisture adsorbent in the air dryer 7 is desorbed by the dry air. As a result, the water adsorbent of the air dryer 7 is regenerated and returned to a state in which water can be adsorbed again.
 即ち、このときにエアサスペンション1(エア室1C)から排出される圧縮空気は、給排管路6を介してエアドライヤ7内を逆流する。このため、エアドライヤ7の水分吸着剤は、エアサスペンション1の乾燥された空気を通すことにより再生され、エアドライヤ7の再生を効率的に行うことができる。これにより、エアサスペンション1のエア室1Cを縮小させて車高を下げるときの車高下降速度を適度に速くできると共に、効率的なエアドライヤ7の再生処理を実現することができる。 That is, the compressed air discharged from the air suspension 1 (air chamber 1C) at this time flows back in the air dryer 7 via the supply / exhaust pipe line 6. Therefore, the moisture adsorbent of the air dryer 7 is regenerated by passing the dry air of the air suspension 1, and the air dryer 7 can be efficiently regenerated. As a result, the vehicle height lowering speed when the air chamber 1C of the air suspension 1 is reduced to lower the vehicle height can be appropriately increased, and efficient regeneration processing of the air dryer 7 can be realized.
 次のステップ5では、前記ステップ4の処理により車高が目標車高まで下降されているか否かを判定する。具体的には、車高センサ23からの検出信号(車高値)を読込むことによって、このときの検出車高が前記自動モードによる設定高さ(目標車高)に到達したか否かを判定する。ステップ5で「NO」と判定する間は、前記ステップ4に戻って、これ以降の処理を続行する。そして、ステップ5で「YES」と判定したときには、次のステップ6で車高調整を完了させる処理を行う。具体的には、前記ステップ6の処理により、コントローラ22は、エアサスペンション1の給排気弁11を閉弁位置(a)に戻して閉弁させると共に、排気電磁弁20も閉弁位置(i)に戻し、排気ポート19Aからの圧縮空気の排出(排気)を停止させる。 In the next step 5, it is determined whether or not the vehicle height has been lowered to the target vehicle height by the process of step 4. Specifically, by reading the detection signal (vehicle height value) from the vehicle height sensor 23, it is determined whether or not the detected vehicle height at this time has reached the set height (target vehicle height) in the automatic mode. To do. While the determination is "NO" in step 5, the process returns to step 4 and the subsequent processing is continued. Then, when it is determined as "YES" in step 5, the process of completing the vehicle height adjustment is performed in the next step 6. Specifically, by the process of step 6, the controller 22 returns the air supply / exhaust valve 11 of the air suspension 1 to the valve closing position (a) to close the valve, and the exhaust solenoid valve 20 is also closed at the valve closing position (i). And stop the discharge (exhaust) of compressed air from the exhaust port 19A.
 一方、前記ステップ2で「NO」と判定したときには、「オートレベリングによる車高調整指示」ではなく、例えば選択スイッチ24の操作によって運転者が好みに応じて任意に車高を変える選択モードの場合である。また、前記ステップ3で「NO」と判定したときには、「オートレベリングによる車高調整指示」が下降指示(指令)ではなく、例えば車高を上げる上昇指令の場合である。 On the other hand, when it is determined as "NO" in step 2, the case of the selection mode in which the driver arbitrarily changes the vehicle height according to his / her preference, for example, by operating the selection switch 24 instead of the "vehicle height adjustment instruction by auto-leveling". Is. Further, when "NO" is determined in step 3, the "vehicle height adjustment instruction by auto-leveling" is not a descending instruction (command) but, for example, an ascending command to raise the vehicle height.
 そこで、このような場合には次のステップ7で、「クローズドシステムによるコンプレッサ駆動の早い車高調整」を実行する。具体的には車高を上げる場合、コントローラ22は、吸気電磁弁14を閉弁位置(c)から開弁位置(d)に切換えて開弁状態とし、電動モータ4によりコンプレッサ3を駆動すると共に、給排切換弁17を給排位置(g)に保持し、エアサスペンション1の給排気弁11を閉弁位置(a)から開弁位置(b)に切換えて開弁状態とする。 Therefore, in such a case, in the next step 7, "quick adjustment of the height of the compressor driven by the closed system" is executed. Specifically, when raising the vehicle height, the controller 22 switches the intake solenoid valve 14 from the valve closing position (c) to the valve opening position (d) to open the valve, and drives the compressor 3 by the electric motor 4. The supply / exhaust switching valve 17 is held at the supply / exhaust position (g), and the supply / exhaust valve 11 of the air suspension 1 is switched from the valve closing position (a) to the valve opening position (b) to open the valve.
 上記の切換え制御により、タンク12内の圧縮空気は、タンク側吸込管路13に流出し、コンプレッサ3の作動に伴って吸気側3Aから吸込まれつつ、圧縮空気の圧力が昇圧される。そして、コンプレッサ3の吐出側3Bから吐出され昇圧された圧縮空気は、エアドライヤ7、スローリターンバルブ8のチェック弁8B、給排切換弁17を介してエアサスペンション1のエア室1Cに供給される。これによって、エアサスペンション1は車高を上昇方向に駆動できる。このように、車高の上昇時においては、コンプレッサ3で圧縮された空気は、エアドライヤ7を通ることにより乾燥され、乾燥状態の圧縮空気がエアサスペンション1のエア室1C内へと供給される。 By the above switching control, the compressed air in the tank 12 flows out to the tank side suction pipe line 13, and the pressure of the compressed air is boosted while being sucked from the intake side 3A as the compressor 3 operates. Then, the compressed air discharged from the discharge side 3B of the compressor 3 and boosted is supplied to the air chamber 1C of the air suspension 1 via the air dryer 7, the check valve 8B of the slow return valve 8, and the supply / discharge switching valve 17. As a result, the air suspension 1 can drive the vehicle height in the ascending direction. As described above, when the vehicle height rises, the air compressed by the compressor 3 is dried by passing through the air dryer 7, and the compressed air in the dried state is supplied into the air chamber 1C of the air suspension 1.
 また、車高を下げる場合、コントローラ22は、エアサスペンション1の給排気弁11を閉弁位置(a)から開弁位置(b)に切換えて開弁状態とし、給排切換弁17を給排位置(g)から還流位置(h)に切換えると共に、電動モータ4によりコンプレッサ3を駆動し、戻し電磁弁16を閉弁位置(e)から開弁位置(f)に切換える。これにより、エアサスペンション1(エア室1C)内の圧縮空気は、各分岐管10A(空気導管10)から給排切換弁17を介して還流管路18に流出し、コンプレッサ3の作動に伴って吸気側3Aから吸込まれつつ、吐出側3Bから昇圧された圧縮空気が吐出される。 When lowering the vehicle height, the controller 22 switches the air supply / exhaust valve 11 of the air suspension 1 from the valve closing position (a) to the valve opening position (b) to open the valve, and supplies / exhausts the supply / exhaust switching valve 17. The position (g) is switched to the reflux position (h), the compressor 3 is driven by the electric motor 4, and the return solenoid valve 16 is switched from the valve closing position (e) to the valve opening position (f). As a result, the compressed air in the air suspension 1 (air chamber 1C) flows out from each branch pipe 10A (air conduit 10) to the recirculation pipe line 18 via the supply / discharge switching valve 17, and is accompanied by the operation of the compressor 3. While being sucked from the intake side 3A, the compressed air boosted from the discharge side 3B is discharged.
 このとき、コンプレッサ3の吐出側3Bから吐出される圧縮空気は、エアドライヤ7、スローリターンバルブ8のチェック弁8B、タンク用管路15および戻し電磁弁16を介してタンク12内へと蓄圧するように充填される。即ち、エアサスペンション1(エア室1C)内の圧縮空気をタンク12内に向けて強制的に供給(充填)することにより、エアサスペンション1のエア室1Cを縮小させて車高を下げることができる。 At this time, the compressed air discharged from the discharge side 3B of the compressor 3 is stored in the tank 12 via the air dryer 7, the check valve 8B of the slow return valve 8, the tank pipe line 15, and the return solenoid valve 16. Is filled with. That is, by forcibly supplying (filling) the compressed air in the air suspension 1 (air chamber 1C) toward the inside of the tank 12, the air chamber 1C of the air suspension 1 can be reduced and the vehicle height can be lowered. ..
 次のステップ8では、前記ステップ7の処理により車高が目標車高に到達したか否かを判定する。具体的には、車高センサ23からの検出信号(車高)を読込むことによって、このときの検出車高が前記選択モードまたは自動モードによる設定高さ(目標車高)に到達したか否かを判定する。ステップ8で「NO」と判定する間は、前記ステップ7に戻って、これ以降の処理を続行する。そして、ステップ8で「YES」と判定したときには、前記ステップ6に移って車高調整を完了させる処理を行う。 In the next step 8, it is determined whether or not the vehicle height has reached the target vehicle height by the process of step 7. Specifically, by reading the detection signal (vehicle height) from the vehicle height sensor 23, whether or not the detected vehicle height at this time reaches the set height (target vehicle height) in the selection mode or the automatic mode. Is determined. While the determination is "NO" in step 8, the process returns to step 7 and the subsequent processing is continued. Then, when it is determined as "YES" in step 8, the process proceeds to step 6 to complete the vehicle height adjustment.
 即ち、ステップ6の車高調整完了処理を行うため、コントローラ22は、エアサスペンション1の給排気弁11を閉弁位置(a)に戻して閉弁させ、電動モータ4によりコンプレッサ3を停止させると共に、吸気電磁弁14は閉弁位置(c)に保持し、給排切換弁17は給排位置(g)に保持する。これにより、前記ステップ1の車高調整指示に基づく車高調整を完了することができる。 That is, in order to perform the vehicle height adjustment completion process in step 6, the controller 22 returns the air supply / exhaust valve 11 of the air suspension 1 to the valve closing position (a) to close the valve, and the electric motor 4 stops the compressor 3 and stops the compressor 3. The intake solenoid valve 14 is held in the closed position (c), and the supply / exhaust switching valve 17 is held in the supply / discharge position (g). As a result, the vehicle height adjustment based on the vehicle height adjustment instruction in step 1 can be completed.
 かくして、第1の実施形態によれば、コンプレッサ3の電動モータ4と、FL側,FR側,RL側,RR側の給排気弁11と、吸気電磁弁14(第1弁)、戻し電磁弁16(第2弁)、給排切換弁17および排気電磁弁20(第3弁)等とを作動または開閉制御する制御手段(コントローラ22)は、車両の走行条件または車高状態に応じて車高の下降指令を出力する下降指令部22B(例えば、図2と図3のステップ3参照)を有し、下降指令部22Bから下降指令が出力されたときには、エアサスペンション1(エア室1C)内の圧縮空気を用いてエアドライヤ7の再生処理を行う構成としている。 Thus, according to the first embodiment, the electric motor 4 of the compressor 3, the air supply / exhaust valves 11 on the FL side, FR side, RL side, and RR side, the intake solenoid valve 14 (first valve), and the return solenoid valve. The control means (controller 22) for operating or opening / closing the 16 (second valve), the supply / exhaust switching valve 17, the exhaust solenoid valve 20 (third valve), etc. is a vehicle according to the traveling condition or the vehicle height state of the vehicle. It has a descent command unit 22B (for example, see step 3 in FIGS. 2 and 3) that outputs a high descent command, and when a descent command is output from the descent command unit 22B, it is inside the air suspension 1 (air chamber 1C). The air dryer 7 is regenerated using the compressed air of the above.
 具体的には、オートレベリングによる車高調整指令が下降指令の場合にエアドライヤ7の再生処理を実施することで、ドライヤ再生時に発生する排気音(排気ポート19Aから発する排気音)やバルブ(例えば、給排気弁11や排気電磁弁20)作動時のノイズによる搭乗者(運転者)への違和感、不快感を軽減することができる。そして、従来技術で用いている温度センサ、湿度センサ等を不要にできるので、センサの個数を増やすことなく、エアドライヤ7の再生を効率的に行うことができ、装置の信頼性を向上することができる。 Specifically, when the vehicle height adjustment command by auto-leveling is a descending command, the air dryer 7 is regenerated to generate exhaust noise (exhaust noise emitted from the exhaust port 19A) and valves (for example, exhaust port 19A). The air supply / exhaust valve 11 and the exhaust solenoid valve 20) can reduce discomfort and discomfort to the passenger (driver) due to noise during operation. Since the temperature sensor, humidity sensor, etc. used in the prior art can be eliminated, the air dryer 7 can be efficiently regenerated without increasing the number of sensors, and the reliability of the device can be improved. it can.
 また、図3のステップ2で「NO」と判定し、次のステップ7で「クローズドシステムによるコンプレッサ駆動の早い車高調整」を行う場合には、選択スイッチ24による所謂マニュアル操作で車高調整を素早く、短時間で行うことができる。一方、ステップ4でオートレベリングによる車高(下降)調整を行う場合には、エアサスペンション1(エア室1C)内の圧縮空気をスローリターンバルブ8(絞り8A)、エアドライヤ7を介して排気することにより、ゆったりとした自然な車高調整を実現できる。 Further, when it is determined as "NO" in step 2 of FIG. 3 and "the vehicle height is adjusted quickly by the compressor drive by the closed system" in the next step 7, the vehicle height is adjusted by the so-called manual operation by the selection switch 24. It can be done quickly and in a short time. On the other hand, when adjusting the vehicle height (lowering) by auto-leveling in step 4, the compressed air in the air suspension 1 (air chamber 1C) is exhausted via the slow return valve 8 (aperture 8A) and the air dryer 7. As a result, a relaxed and natural vehicle height adjustment can be realized.
 図3のステップ3~5の処理により、エアドライヤ7の再生処理を行う機会を創出することができ、水分吸着剤の水分飽和によるドライヤ機能の低下を防ぎ、エアドライヤ7の再生処理を効率的に実施することができると共に、エアサスペンションシステムの信頼性を向上することができる。この場合、一般的には、タンク12に充填(貯留)される圧縮空気の圧力よりも、エアサスペンション1(エア室1C)に充填される圧縮空気の圧力は低くほぼ一定である。このため、エアサスペンション1から排気される圧縮空気を利用してエアドライヤ7の再生処理を行うことは、エアドライヤ7の再生効率を高める上で有効である。 The treatment of steps 3 to 5 in FIG. 3 can create an opportunity to regenerate the air dryer 7, prevent deterioration of the dryer function due to moisture saturation of the water adsorbent, and efficiently carry out the regeneration treatment of the air dryer 7. At the same time, the reliability of the air suspension system can be improved. In this case, in general, the pressure of the compressed air filled in the air suspension 1 (air chamber 1C) is lower than the pressure of the compressed air filled (stored) in the tank 12, and is substantially constant. Therefore, it is effective to regenerate the air dryer 7 by using the compressed air exhausted from the air suspension 1 in order to improve the regeneration efficiency of the air dryer 7.
 従って、第1の実施形態によれば、センサの個数を増やすことなく、エアドライヤ7の再生を効率的に行うことができ、装置の信頼性を向上することができる。また、エアドライヤ7の再生処理を、オートレベリングによる車高(下降)調整指令で、例えば車両停車時の下降指令に基づいて行うことにより、ドライヤ再生時に発生する排気音やバルブ作動時のノイズによる搭乗者への違和感、不快感を軽減することができる。 Therefore, according to the first embodiment, the air dryer 7 can be efficiently regenerated without increasing the number of sensors, and the reliability of the device can be improved. Further, by performing the regeneration process of the air dryer 7 based on the vehicle height (descent) adjustment command by auto-leveling, for example, based on the descent command when the vehicle is stopped, boarding due to the exhaust noise generated during the dryer regeneration and the noise during valve operation. It is possible to reduce discomfort and discomfort to the person.
 また、第1の実施形態によるエアサスペンション装置は、空気を圧縮するコンプレッサ3と、空気を貯留するように構成されたタンク12と、該タンク12内の圧縮空気をコンプレッサ3の吸気側3Aに供給するタンク側吸込管路13(第1通路)と、コンプレッサ3の吐出側3Bとタンク12とを繋ぐタンク用管路15(第2通路)と、コンプレッサ3の吐出側3Bにエアドライヤ7を介して接続されるエアサスペンション1と、前記第1通路(タンク側吸込管路13)に設けられる第1弁(吸気電磁弁14)と、前記第2通路(タンク用管路15)に設けられる第2弁(戻し電磁弁16)と、コンプレッサ3の吐出側3Bとエアドライヤ7との間から分岐して設けられ、排気電磁弁20(第3弁)を開弁することにより大気に接続される排気管路19(第3通路)と、を備え、前記第1弁、第2弁を閉弁し、前記第3弁を開弁することにより、エアサスペンション1内の圧縮空気を介してエアドライヤ7を再生可能としている。 Further, the air suspension device according to the first embodiment supplies the compressor 3 for compressing air, the tank 12 configured to store air, and the compressed air in the tank 12 to the intake side 3A of the compressor 3. The tank-side suction pipe line 13 (first passage), the tank pipe line 15 (second passage) connecting the discharge side 3B of the compressor 3 and the tank 12, and the discharge side 3B of the compressor 3 via the air dryer 7. The air suspension 1 to be connected, the first valve (intake solenoid valve 14) provided in the first passage (tank side suction pipeline 13), and the second valve provided in the second passage (tank pipeline 15). An exhaust pipe that is branched from the valve (return solenoid valve 16) and the discharge side 3B of the compressor 3 and the air dryer 7, and is connected to the atmosphere by opening the exhaust solenoid valve 20 (third valve). A road 19 (third passage) is provided, the first valve and the second valve are closed, and the third valve is opened to regenerate the air dryer 7 through the compressed air in the air suspension 1. It is possible.
 このため、吸気電磁弁14(第1弁)と戻し電磁弁16(第2弁)とを閉弁させた状態で排気電磁弁20(第3弁)を開弁させることにより、圧縮空気をエアサスペンション1から大気へ排気してエアドライヤ7を再生することができる。そして、エアサスペンション1内の圧力の方がタンク12内の圧力よりも低いときには、効率的にエアドライヤ7を再生し、再生頻度を減少させることができる。これにより、ドライヤ再生工程によるコンプレッサ3の駆動時間を短縮することが可能となる。 Therefore, the compressed air is aired by opening the exhaust solenoid valve 20 (third valve) with the intake solenoid valve 14 (first valve) and the return solenoid valve 16 (second valve) closed. The air dryer 7 can be regenerated by exhausting air from the suspension 1 to the atmosphere. Then, when the pressure in the air suspension 1 is lower than the pressure in the tank 12, the air dryer 7 can be efficiently regenerated and the regeneration frequency can be reduced. This makes it possible to shorten the driving time of the compressor 3 in the dryer regeneration process.
 また、コンプレッサ3とタンク12との間に設ける吸気電磁弁14(第1弁)、戻し電磁弁16(第2弁)および排気電磁弁20(第3弁)を、例えばオン・オフ式の汎用性の高い、安価な電磁式切換弁(二方電磁弁)を用いて構成することができる。このため、例えば特許文献1の従来技術に比較して低コストなシステムにすることができる。即ち、従来技術では、コンプレッサの吸気側、吐出側とタンクとの間を、三方電磁弁で接続している。 Further, the intake solenoid valve 14 (first valve), the return solenoid valve 16 (second valve), and the exhaust solenoid valve 20 (third valve) provided between the compressor 3 and the tank 12 are, for example, an on / off type general-purpose valve. It can be configured by using a highly efficient and inexpensive solenoid type switching valve (two-way solenoid valve). Therefore, for example, the system can be made at a lower cost than the conventional technique of Patent Document 1. That is, in the prior art, a three-way solenoid valve is used to connect the intake side and discharge side of the compressor to the tank.
 これに対し、本実施形態では、コンプレッサ3の吸気側3A、吐出側3Bとタンク12との間を、例えばオン・オフ式の二方電磁弁からなる吸気電磁弁14、戻し電磁弁16を介して接続している。そして、吸気電磁弁14と戻し電磁弁16との閉弁時(ソレノイドの消磁状態)には、タンク12がコンプレッサ3、エアサスペンション1と遮断されるので、タンク12内に貯留(蓄圧)した圧縮空気のエア漏れリスクを確実に減少させることができる。これにより、コンプレッサ3による外気の圧縮回数を減らすことができ、結果的にはエアドライヤ7の再生頻度を減少させることができる。 On the other hand, in the present embodiment, the intake solenoid valve 14 and the return solenoid valve 16 including, for example, an on / off type two-way solenoid valve are interposed between the intake side 3A and the discharge side 3B of the compressor 3 and the tank 12. Is connected. When the intake solenoid valve 14 and the return solenoid valve 16 are closed (demagnetized state of the solenoid), the tank 12 is shut off from the compressor 3 and the air suspension 1, so that the compression stored (accumulated) in the tank 12 is performed. The risk of air leakage can be reliably reduced. As a result, the number of times the outside air is compressed by the compressor 3 can be reduced, and as a result, the regeneration frequency of the air dryer 7 can be reduced.
 また、タンク12内の圧力にかかわらず、コンプレッサ3で外気を吸入することにより直接エアサスペンション1に圧縮空気を供給し、車高調整をすることができる。このため、タンク圧が大気圧より高い状況にて、外気によりエアサスペンション1へ圧縮空気を余分に充填し、直ぐにエアサスペンション1からエアドライヤ7の再生工程を実施でき、これにより、エアドライヤ7の再生機会を創出することができる。 Further, regardless of the pressure in the tank 12, the compressed air can be directly supplied to the air suspension 1 by sucking the outside air with the compressor 3, and the vehicle height can be adjusted. Therefore, when the tank pressure is higher than the atmospheric pressure, the air suspension 1 can be filled with extra compressed air by the outside air, and the air suspension 1 to the air dryer 7 can be immediately regenerated. This gives an opportunity to regenerate the air dryer 7. Can be created.
 しかも、第1の実施形態によるエアサスペンション装置は、圧縮された圧縮空気をタンク12に蓄えておくことができ、このタンク12に蓄えられた圧縮空気を、さらにコンプレッサ3で圧縮しつつ、エアサスペンション1に供給することができる閉回路(クローズドシステム)を実現することができる。また、エアサスペンション1のエア室1Cから排出される圧縮空気を大気中に放出することなく、戻し電磁弁16を用いてタンク12に戻し貯留しておくことができ、圧縮空気を無駄に排気することなく、有効に活用することができる。 Moreover, in the air suspension device according to the first embodiment, the compressed compressed air can be stored in the tank 12, and the compressed air stored in the tank 12 is further compressed by the compressor 3 while being further compressed by the compressor 3. It is possible to realize a closed circuit (closed system) that can be supplied to 1. Further, the compressed air discharged from the air chamber 1C of the air suspension 1 can be returned and stored in the tank 12 by using the return solenoid valve 16 without being released to the atmosphere, and the compressed air is wastedly exhausted. It can be used effectively without any problems.
 さらに、第1の実施形態によるエアサスペンション装置は、コンプレッサ3がタンク12内の圧縮空気を吸込んで圧縮するため、外部の大気から空気を吸込む頻度(即ち、吸気バルブ9の開弁頻度)を大幅に減らすことができ、大気中の粉塵や水分を吸込むことによる不具合の発生頻度を下げることができる。また、従来のクローズドシステムタイプに比較して、特別に圧力センサ等を用いて圧力制御等を行うことは必須ではなく、複雑な制御をする必要がなく、全体の構成を簡素化することができる。 Further, in the air suspension device according to the first embodiment, since the compressor 3 sucks and compresses the compressed air in the tank 12, the frequency of sucking air from the outside atmosphere (that is, the frequency of opening the intake valve 9) is significantly increased. It is possible to reduce the frequency of problems caused by inhaling dust and moisture in the air. Further, as compared with the conventional closed system type, it is not essential to perform pressure control or the like by using a pressure sensor or the like, and it is not necessary to perform complicated control, and the entire configuration can be simplified. ..
 このように、第1の実施形態によれば、エアドライヤ7による水分の吸着、再生が適切に行なわれるため水分吸着剤の飽和を防ぐことができる。また、コントローラ22により複雑な制御を必要としないクローズドタイプのシステムを提供することができる。しかも、従来技術(特許文献1)のように、複数の3方電磁弁を必要とせず、低コストなシステムを提供できる。給排気弁11、吸気電磁弁14、戻し電磁弁16および排気電磁弁20として、オン・オフ式の汎用性の高い電磁式切換弁(二方電磁弁)を採用でき、その数量を最小限とすることができる。 As described above, according to the first embodiment, the air dryer 7 appropriately adsorbs and regenerates the water, so that the saturation of the water adsorbent can be prevented. Further, the controller 22 can provide a closed type system that does not require complicated control. Moreover, unlike the prior art (Patent Document 1), it is possible to provide a low-cost system without requiring a plurality of three-way solenoid valves. As the supply / exhaust valve 11, intake solenoid valve 14, return solenoid valve 16, and exhaust solenoid valve 20, a highly versatile on / off solenoid switching valve (two-way solenoid valve) can be adopted, and the number thereof is minimized. can do.
 さらに、第1の実施形態にあっては、エアサスペンション装置としての通常使用範囲は、クローズドシステムで成立するため、高頻度使用時の車高上昇時間を短縮することができる。そして、車高調整範囲が通常使用範囲よりも大きくなった場合にのみ、必要に応じて大気を吸気(吸気バルブ9を開弁)したり、圧縮空気を大気中に放出(排気電磁弁20を開弁)したりすることができる。 Further, in the first embodiment, since the normal use range as the air suspension device is established by the closed system, the vehicle height rise time at the time of high frequency use can be shortened. Then, only when the vehicle height adjustment range becomes larger than the normal use range, the atmosphere is taken in (the intake valve 9 is opened) or the compressed air is released into the atmosphere (exhaust solenoid valve 20) as needed. It can be opened).
 なお、前記第1の実施形態では、図1に示すように圧力検出器21を用いてエア室1Cまたはタンク12内の圧力を検出する場合を例に挙げて説明した。しかし、本発明はこれに限らず、例えば車高センサ23の検出信号を用いて、車高の変化具合からエア室1Cまたはタンク12内の圧力を推定する構成としてもよい。この場合は、車高センサ23が検出手段となり、圧力検出器21を不要にすることができる。 In the first embodiment, the case where the pressure in the air chamber 1C or the tank 12 is detected by using the pressure detector 21 as shown in FIG. 1 has been described as an example. However, the present invention is not limited to this, and for example, the pressure in the air chamber 1C or the tank 12 may be estimated from the change in the vehicle height by using the detection signal of the vehicle height sensor 23. In this case, the vehicle height sensor 23 serves as a detection means, and the pressure detector 21 can be eliminated.
 次に、図4は第2の実施形態を示している。本実施形態の特徴は、エアサスペンション内の圧力を推定もしくは算出する検出手段を備え、前記検出手段による検出圧力が所定圧を超えるときには、前記エアサスペンション内の圧縮空気をタンクに供給し、前記所定圧より低いときには、前記エアサスペンションから排気される圧縮空気を用いてエアドライヤを再生させる構成としたことにある。なお、第2の実施形態では、前述した第1の実施形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。 Next, FIG. 4 shows a second embodiment. The feature of this embodiment is provided with a detecting means for estimating or calculating the pressure in the air suspension, and when the pressure detected by the detecting means exceeds a predetermined pressure, the compressed air in the air suspension is supplied to the tank to supply the compressed air in the predetermined pressure. When the pressure is lower than the pressure, the air dryer is regenerated by using the compressed air exhausted from the air suspension. In the second embodiment, the same components as those in the first embodiment described above are designated by the same reference numerals, and the description thereof will be omitted.
 ここで、図4は、第2の実施形態による車高調整およびドライヤ再生の制御処理を示しており、このプログラムは、例えば図2に示すコントローラ22のメモリ22Aに格納されている。図4の処理動作がスタートすると、ステップ11~13では、前述した第1の実施形態による図3のステップ1~3と同様に判定処理を行う。 Here, FIG. 4 shows the vehicle height adjustment and dryer regeneration control processing according to the second embodiment, and this program is stored in the memory 22A of the controller 22 shown in FIG. 2, for example. When the processing operation of FIG. 4 starts, in steps 11 to 13, determination processing is performed in the same manner as in steps 1 to 3 of FIG. 3 according to the first embodiment described above.
 ステップ13で「YES」と判定したときには、次のステップ14で「エアサス圧は所定圧よりも低い」か否かを判定する。この場合、エアサスペンション1(エア室1C)に充填するように供給された圧縮空気の圧力は、前記検出手段(即ち、圧力検出器21)を用いて検出することができる。エアサスペンション1(エア室1C)内の圧力が大気圧よりも高く、所定圧(圧力閾値)よりも低い場合には、エアサスペンション1から排気される圧縮空気を利用してエアドライヤ7の再生処理を効率的に行うことができる。しかし、エアサスペンション1(エア室1C)内の圧力が前記所定圧(圧力閾値)以上に高い場合は、エアドライヤ7の再生効率が低下してしまう。このようなドライヤ再生効率の良否を判定するための圧力閾値(大気圧よりも高い圧力)として、前記所定圧は決められている。 When it is determined as "YES" in step 13, it is determined in the next step 14 whether or not "the air suspension pressure is lower than the predetermined pressure". In this case, the pressure of the compressed air supplied to fill the air suspension 1 (air chamber 1C) can be detected by using the detection means (that is, the pressure detector 21). When the pressure in the air suspension 1 (air chamber 1C) is higher than the atmospheric pressure and lower than the predetermined pressure (pressure threshold value), the compressed air exhausted from the air suspension 1 is used to regenerate the air dryer 7. It can be done efficiently. However, if the pressure in the air suspension 1 (air chamber 1C) is higher than the predetermined pressure (pressure threshold value), the regeneration efficiency of the air dryer 7 is lowered. The predetermined pressure is determined as a pressure threshold value (pressure higher than atmospheric pressure) for determining the quality of such dryer regeneration efficiency.
 そこで、ステップ14で「YES」と判定したときには、エアサスペンション1内の圧力(エアサス圧)が所定圧よりも低く、エアドライヤ7の再生処理を効率的に行うことができるので、次のステップ15に移って「オートレベリングによる車高調整」の下降指示(指令)に従った処理を行うため大気への排気による車高調整を、第1の実施形態による図3のステップ4と同様に行う。また、ステップ16,17の処理も図3のステップ5,6と同様に行う。これにより、エアドライヤ7の再生処理を効率的に行うことができ、水分吸着剤の水分飽和によるドライヤ機能の低下を防ぐことができる。 Therefore, when it is determined as "YES" in step 14, the pressure in the air suspension 1 (air suspension pressure) is lower than the predetermined pressure, and the regeneration process of the air dryer 7 can be efficiently performed. Therefore, the next step 15 is performed. Then, in order to perform the process according to the descending instruction (command) of the "vehicle height adjustment by auto-leveling", the vehicle height adjustment by exhausting to the atmosphere is performed in the same manner as in step 4 of FIG. 3 according to the first embodiment. Further, the processes of steps 16 and 17 are also performed in the same manner as in steps 5 and 6 of FIG. As a result, the regeneration process of the air dryer 7 can be efficiently performed, and the deterioration of the dryer function due to the water saturation of the water adsorbent can be prevented.
 また、前記ステップ12またはステップ13で「NO」と判定したときには、次のステップ18,19で第1の実施形態による図3のステップ7,8と同様の処理を行う。これによって、「クローズドシステムによるコンプレッサ駆動の早い車高調整」を素早く、短時間で行うことができる。その後は、ステップ17の車高調整完了処理を行うようにする。 Further, when it is determined as "NO" in step 12 or step 13, the same processing as in steps 7 and 8 of FIG. 3 according to the first embodiment is performed in the next steps 18 and 19. This makes it possible to quickly and quickly adjust the vehicle height by using a closed system to drive the compressor quickly. After that, the vehicle height adjustment completion process of step 17 is performed.
 一方、前記ステップ14で「NO」と判定したときには、エアサスペンション1(エア室1C)内の圧力が前記所定圧以上に高くなっており、仮に排気電磁弁20を開弁位置(j)に切換えて排気を行ったとしても、エアドライヤ7の再生を効率的に行うことは難しいと判断できる。このため、次のステップ20に移って、コントローラ22は、電動モータ4によりコンプレッサ3を駆動し、タンク12内に圧縮空気を蓄圧しながら、車高の下降調整を実行する。 On the other hand, when "NO" is determined in step 14, the pressure in the air suspension 1 (air chamber 1C) is higher than the predetermined pressure, and the exhaust solenoid valve 20 is temporarily switched to the valve opening position (j). It can be judged that it is difficult to efficiently regenerate the air dryer 7 even if the air dryer 7 is exhausted. Therefore, moving to the next step 20, the controller 22 drives the compressor 3 by the electric motor 4 and executes the lowering adjustment of the vehicle height while accumulating the compressed air in the tank 12.
 即ち、前記ステップ20では車高の下降調整を行うために、コントローラ22は、エアサスペンション1の給排気弁11を閉弁位置(a)から開弁位置(b)に切換えて開弁状態とし、給排切換弁17を給排位置(g)から還流位置(h)に切換えると共に、電動モータ4によりコンプレッサ3を駆動し、戻し電磁弁16を閉弁位置(e)から開弁位置(f)に切換える。なお、排気電磁弁20は閉弁位置(i)に戻している。 That is, in step 20, in order to adjust the lowering of the vehicle height, the controller 22 switches the air supply / exhaust valve 11 of the air suspension 1 from the valve closing position (a) to the valve opening position (b) to open the valve. The supply / exhaust switching valve 17 is switched from the supply / discharge position (g) to the reflux position (h), the compressor 3 is driven by the electric motor 4, and the return solenoid valve 16 is moved from the valve closing position (e) to the valve opening position (f). Switch to. The exhaust solenoid valve 20 is returned to the closed position (i).
 これにより、エアサスペンション1(エア室1C)内の圧縮空気は、各分岐管10A(空気導管10)から給排切換弁17を介して還流管路18に流出し、コンプレッサ3の作動に伴って吸気側3Aから吸込まれ、コンプレッサ3の吐出側3Bからは圧縮空気が吐出される。そして、この圧縮空気は、エアドライヤ7、スローリターンバルブ8のチェック弁8B、タンク用管路15および戻し電磁弁16を介してタンク12内へと蓄圧するように充填される。即ち、エアサスペンション1(エア室1C)内の圧縮空気をタンク12内に向けて強制的に逃がすことにより、エアサスペンション1のエア室1Cを縮小させて車高を下げることができる。 As a result, the compressed air in the air suspension 1 (air chamber 1C) flows out from each branch pipe 10A (air conduit 10) to the recirculation pipe line 18 via the supply / discharge switching valve 17, and is accompanied by the operation of the compressor 3. It is sucked from the intake side 3A, and compressed air is discharged from the discharge side 3B of the compressor 3. Then, this compressed air is filled into the tank 12 via the air dryer 7, the check valve 8B of the slow return valve 8, the tank pipe line 15, and the return solenoid valve 16. That is, by forcibly releasing the compressed air in the air suspension 1 (air chamber 1C) toward the tank 12, the air chamber 1C of the air suspension 1 can be reduced and the vehicle height can be lowered.
 次のステップ21では、前記ステップ20の処理により車高が目標車高まで下降されているか否かを判定する。具体的には、車高センサ23による検出車高が設定高さ(目標車高)に到達したか否かを判定する。ステップ21で「NO」と判定する間は、前記ステップ14に戻って、これ以降の処理を続行する。即ち、前記ステップ20の処理でエアサスペンション1はエア室1C内から圧縮空気を排気するため、エアサスペンション1(エア室1C)内の圧力が前記所定圧よりも低いか否かをステップ14で判定する。そして、ステップ14で「YES」と判定したときには、前記ステップ15の処理により、エアドライヤ7の再生処理を効率的に行うことができる。 In the next step 21, it is determined whether or not the vehicle height has been lowered to the target vehicle height by the process of the step 20. Specifically, it is determined whether or not the vehicle height detected by the vehicle height sensor 23 has reached the set height (target vehicle height). While the determination is "NO" in step 21, the process returns to step 14 and the subsequent processing is continued. That is, since the air suspension 1 exhausts compressed air from the air chamber 1C in the process of the step 20, it is determined in the step 14 whether or not the pressure in the air suspension 1 (air chamber 1C) is lower than the predetermined pressure. To do. Then, when it is determined as "YES" in step 14, the regenerating process of the air dryer 7 can be efficiently performed by the process of step 15.
 しかし、ステップ14で「NO」と判定したときには、前記ステップ20,21の処理を行い、エアサスペンション1(エア室1C)内の圧縮空気をタンク12内に蓄圧する。ステップ21では、エアサスペンション1のエア室1Cを縮小させることにより車高が目標車高まで下降されたか否かを判定する。そして、ステップ21で「YES」と判定したときには、前記ステップ17に移って車高調整を完了させる処理を行う。即ち、コントローラ22はステップ17で、エアサスペンション1の給排気弁11を閉弁位置(a)に戻して閉弁させると共に、電動モータ4によるコンプレッサ3の駆動を停止すると共に、給排切換弁17を給排位置(g)に戻し、戻し電磁弁16を閉弁位置(e)に復帰させ、これによって車高調整を完了させる。 However, when it is determined as "NO" in step 14, the processes of steps 20 and 21 are performed, and the compressed air in the air suspension 1 (air chamber 1C) is accumulated in the tank 12. In step 21, it is determined whether or not the vehicle height has been lowered to the target vehicle height by reducing the air chamber 1C of the air suspension 1. Then, when it is determined as "YES" in step 21, the process proceeds to step 17 to complete the vehicle height adjustment. That is, in step 17, the controller 22 returns the air supply / exhaust valve 11 of the air suspension 1 to the valve closing position (a) to close the valve, stops the drive of the compressor 3 by the electric motor 4, and the supply / exhaust switching valve 17. Is returned to the supply / discharge position (g), and the return solenoid valve 16 is returned to the valve closing position (e), thereby completing the vehicle height adjustment.
 かくして、このように構成される第2の実施形態でも、オートレベリングによる車高調整指令が下降指令の場合にエアドライヤ7の再生処理を実施することで、ドライヤ再生時に発生する排気音やバルブ作動時のノイズによる搭乗者への違和感、不快感を軽減することができる。また、センサの個数を増やすことなく、エアドライヤ7の再生を効率的に行うことができ、装置の信頼性を向上することができる。 Thus, even in the second embodiment configured in this way, when the vehicle height adjustment command by auto-leveling is a descending command, the air dryer 7 is regenerated, so that the exhaust noise generated during the dryer regeneration and the valve operation are performed. It is possible to reduce the discomfort and discomfort to the passengers due to the noise. Further, the air dryer 7 can be efficiently regenerated without increasing the number of sensors, and the reliability of the device can be improved.
 特に、第2の実施形態では、車高を下げるためにエアサスペンション1内の圧縮空気を排気するときに、圧力検出器21による検出圧力が前記所定圧を超えるときには、エアサスペンション1内の圧縮空気をタンク用管路15および戻し電磁弁16を介してタンク12内へと蓄圧するように充填(供給)できる。一方、前記検出圧力が所定圧より低いときには、エアサスペンション1内の圧縮空気を大気に排出しつつエアドライヤ7を再生することができ、エアサスペンション1内の所定圧よりも低い圧力(エアサス圧)を利用して、エアドライヤ7の再生処理を効率的に行うことができる。 In particular, in the second embodiment, when the compressed air in the air suspension 1 is exhausted in order to lower the vehicle height, when the pressure detected by the pressure detector 21 exceeds the predetermined pressure, the compressed air in the air suspension 1 is exhausted. Can be filled (supplied) so as to accumulate pressure in the tank 12 via the tank pipeline 15 and the return solenoid valve 16. On the other hand, when the detected pressure is lower than the predetermined pressure, the air dryer 7 can be regenerated while discharging the compressed air in the air suspension 1 to the atmosphere, and the pressure lower than the predetermined pressure in the air suspension 1 (air suspension pressure) is applied. By utilizing this, the regeneration process of the air dryer 7 can be efficiently performed.
 次に、図5は第3の実施形態を示している。本実施形態の特徴は、下降指令部から下降指令があったときに予め決められた間隔で、ドライヤの再生を行う構成としたことにある。なお、第3の実施形態では、前述した第1の実施形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。 Next, FIG. 5 shows a third embodiment. The feature of this embodiment is that the dryer is regenerated at predetermined intervals when a descending command is issued from the descending command unit. In the third embodiment, the same components as those in the first embodiment described above are designated by the same reference numerals, and the description thereof will be omitted.
 ここで、図5は、第3の実施形態による車高調整およびドライヤ再生の制御処理を示しており、このプログラムは、例えば図2に示すコントローラ22のメモリ22Aに格納されている。図5の処理動作がスタートすると、ステップ31~33では、前述した第1の実施形態による図3のステップ1~3と同様に判定処理を行う。 Here, FIG. 5 shows the vehicle height adjustment and dryer regeneration control processing according to the third embodiment, and this program is stored in the memory 22A of the controller 22 shown in FIG. 2, for example. When the processing operation of FIG. 5 starts, in steps 31 to 33, the determination processing is performed in the same manner as in steps 1 to 3 of FIG. 3 according to the first embodiment described above.
 ステップ33で「YES」と判定したときには、次のステップ34で「ドライヤの再生」が必要か否かを判定する。この場合、エアドライヤ7の再生処理は、例えば1日(前回の再生処理から24時間が経過するまで)に1回だけ行えば、エアドライヤ7による水分の吸着、再生が適切に行なわれるため水分吸着剤の飽和を防ぐことができる。また、オートレベリングによる車高調整指令(下降指令)の回数が、前回の下降指令時から所定の回数(例えば、100回目の下降指令の回数)に達するまでの間に、エアドライヤ7の再生処理を行うことにより、水分吸着剤の飽和を防ぐことができる。 When it is determined as "YES" in step 33, it is determined in the next step 34 whether or not "regeneration of the dryer" is necessary. In this case, if the regeneration treatment of the air dryer 7 is performed only once a day (until 24 hours have passed since the previous regeneration treatment), the air dryer 7 can appropriately adsorb and regenerate the moisture, so that the moisture adsorbent Saturation can be prevented. Further, the air dryer 7 is regenerated during the period from the time of the previous descent command to the predetermined number of times (for example, the number of the 100th descent commands) of the vehicle height adjustment command (descent command) by auto-leveling. By doing so, saturation of the water adsorbent can be prevented.
 そこで、前記ステップ34では、オートレベリングによる車高の下降指令回数が、前回の下降指令時から所定の回数に達したか否かを判定し、「ドライヤの再生」が必要か否かを判断する。また、前回の再生処理から所定時間(例えば、24時間)が経過したか否かにより、「ドライヤの再生」が必要か否かを判定する構成であってもよい。 Therefore, in step 34, it is determined whether or not the number of vehicle height descent commands by auto-leveling has reached a predetermined number of times since the previous descent command, and it is determined whether or not "regeneration of the dryer" is necessary. .. Further, it may be configured to determine whether or not "regeneration of the dryer" is necessary depending on whether or not a predetermined time (for example, 24 hours) has elapsed from the previous regeneration process.
 ステップ34で「YES」と判定したときには、下降指令部22Bから下降指令があったときに予め決められた間隔で、エアドライヤ7の再生処理を行うべき場合である。そこで、ステップ34で「YES」と判定したときには、次のステップ35に移って「オートレベリングによる車高調整」の下降指示(指令)に従った処理を行うため大気への排気による車高調整を、第1の実施形態による図3のステップ4と同様に行う。また、ステップ36,37の処理も図3のステップ5,6と同様に行う。これにより、エアドライヤ7の再生処理を効率的に行うことができ、水分吸着剤の水分飽和によるドライヤ機能の低下を防ぐことができる。 When it is determined as "YES" in step 34, it is a case where the air dryer 7 should be regenerated at a predetermined interval when the descending command unit 22B issues a descending command. Therefore, when it is determined as "YES" in step 34, the vehicle height is adjusted by exhausting to the atmosphere in order to move to the next step 35 and perform processing according to the descending instruction (command) of "vehicle height adjustment by auto-leveling". , The same as step 4 of FIG. 3 according to the first embodiment. Further, the processes of steps 36 and 37 are also performed in the same manner as in steps 5 and 6 of FIG. As a result, the regeneration process of the air dryer 7 can be efficiently performed, and the deterioration of the dryer function due to the water saturation of the water adsorbent can be prevented.
 また、前記ステップ32、ステップ33またはステップ34で「NO」と判定したときには、次のステップ38,39で第1の実施形態による図3のステップ7,8と同様の処理を行う。これによって、「クローズドシステムによるコンプレッサ駆動の早い車高調整」を素早く、短時間で行うことができる。その後は、ステップ37の車高調整完了処理を行うようにする。 Further, when it is determined as "NO" in step 32, step 33 or step 34, the same processing as in steps 7 and 8 of FIG. 3 according to the first embodiment is performed in the next steps 38 and 39. This makes it possible to quickly and quickly adjust the vehicle height by using a closed system to drive the compressor quickly. After that, the vehicle height adjustment completion process of step 37 is performed.
 かくして、このように構成される第3の実施形態でも、前記第1の実施形態と同様に、エアサスペンション1から排気される圧縮空気を利用してエアドライヤ7の再生処理を効率的に行うことができる。特に、第3の実施形態では、下降指令部22Bから下降指令があったときに予め決められた間隔で、エアドライヤ7の再生処理を行う構成としている。 Thus, also in the third embodiment configured as described above, the regeneration process of the air dryer 7 can be efficiently performed by utilizing the compressed air exhausted from the air suspension 1 as in the first embodiment. it can. In particular, in the third embodiment, the air dryer 7 is regenerated at predetermined intervals when a descending command is issued from the descending command unit 22B.
 これによって、エアドライヤ7の再生処理を、例えば1日(前回の再生処理から24時間が経過するまで)に1回だけ行うことで、エアドライヤ7による水分の吸着、再生が適切に行なわれるため水分吸着剤の飽和を防ぎ、エアドライヤ7の再生処理を必要最小限の回数で行うことができる。また、オートレベリングによる車高調整指令(下降指令)の回数が、前回の下降指令時から所定の回数(例えば、100回目の下降指令の回数)に達するまでの間にエアドライヤ7の再生処理を1回行うことにより、水分吸着剤の飽和を防ぐことができ、エアドライヤ7を効果的に再生することができる。 As a result, by performing the regeneration process of the air dryer 7 only once a day (until 24 hours have passed from the previous regeneration process), the air dryer 7 appropriately adsorbs and regenerates the moisture, so that the moisture is adsorbed. The saturation of the agent can be prevented, and the regeneration process of the air dryer 7 can be performed the minimum number of times necessary. Further, the regeneration process of the air dryer 7 is performed 1 during the period from the time of the previous descent command to the predetermined number of times (for example, the number of the 100th descent commands) of the vehicle height adjustment command (descent command) by auto-leveling. By repeating this process, saturation of the water adsorbent can be prevented, and the air dryer 7 can be effectively regenerated.
 なお、前記第3の実施形態では、図1に示すように圧力検出器21を用いてエア室1Cまたはタンク12内の圧力を検出する場合を例に挙げて説明した。しかし、本発明はこれに限らず、例えば車高センサ23の検出信号を用いて、車高の変化具合からエア室1Cまたはタンク12内の圧力を推定する構成としてもよい。この場合は、車高センサ23が検出手段であり、圧力検出器21は不要できる。この点は、前記第1,第2の実施形態についても同様である。 In the third embodiment, the case where the pressure in the air chamber 1C or the tank 12 is detected by using the pressure detector 21 as shown in FIG. 1 has been described as an example. However, the present invention is not limited to this, and for example, the pressure in the air chamber 1C or the tank 12 may be estimated from the change in the vehicle height by using the detection signal of the vehicle height sensor 23. In this case, the vehicle height sensor 23 is the detection means, and the pressure detector 21 can be unnecessary. This point is the same for the first and second embodiments.
 また、前記各実施形態では、コンプレッサ装置2に対して吸気ポート5Bと排気ポート19Aとを別々に互いに離間して設ける場合を例に挙げて説明した。しかし、本発明はこれに限らず、例えば排気管路19の先端側を吸気管路(例えば、吸気バルブ9と吸気ポート5Bとの間)に接続し、吸気ポートが排気ポートを兼用する吸・排気ポートとしてもよい。 Further, in each of the above-described embodiments, the case where the intake port 5B and the exhaust port 19A are separately provided separately from each other for the compressor device 2 has been described as an example. However, the present invention is not limited to this, for example, the tip end side of the exhaust pipe line 19 is connected to the intake pipe line (for example, between the intake valve 9 and the intake port 5B), and the intake port also serves as the exhaust port. It may be an exhaust port.
 次に、前記実施形態に含まれる発明について記載する。即ち、本発明の第1の態様としては、車両に設けられるエアサスペンション装置であって、空気を圧縮するコンプレッサと、空気を貯留するように構成されたタンクと、該タンク内の圧縮空気を前記コンプレッサの吸込み側に供給する第1通路と、前記コンプレッサの吐出側と前記タンクとを繋ぐ第2通路と、前記コンプレッサの吐出側にエアドライヤを介して接続されるエアサスペンションと、前記第1通路に設けられる第1弁と、前記第2通路に設けられる第2弁と、前記コンプレッサの吐出側と前記エアドライヤとの間から分岐して設けられ、第3弁を開弁することにより大気に接続される第3通路と、前記第1弁、第2弁および第3弁を開閉制御する制御手段と、を備え、前記制御手段は、車両の走行条件または車高状態に応じて下降指令する下降指令部を有し、前記下降指令部から下降指令が出たときに、前記エアサスペンション内の圧縮空気を用いて前記エアドライヤの再生を行うことを特徴としている。 Next, the invention included in the embodiment will be described. That is, as the first aspect of the present invention, the air suspension device provided in the vehicle, the compressor that compresses the air, the tank configured to store the air, and the compressed air in the tank are described. The first passage that supplies the suction side of the compressor, the second passage that connects the discharge side of the compressor and the tank, the air suspension that is connected to the discharge side of the compressor via an air dryer, and the first passage. A first valve provided, a second valve provided in the second passage, a branch provided from between the discharge side of the compressor and the air dryer, and connected to the atmosphere by opening the third valve. The third passage and the control means for opening and closing the first valve, the second valve and the third valve are provided, and the control means gives a lower command according to the traveling condition or the vehicle height state of the vehicle. It is characterized in that the air dryer is regenerated by using the compressed air in the air suspension when a lowering command is issued from the lowering command unit.
 また、第2の態様としては、前記第1の態様において、前記エアサスペンション内の圧力を推定もしくは算出する検出手段を備え、前記検出手段による検出圧力が所定圧を超えるとき、前記エアサスペンション内の圧縮空気は前記タンクに供給し、前記所定圧より低いときには、前記エアドライヤを再生することを特徴としている。第3の態様としては、前記第1または第2の態様において、前記エアドライヤの再生は、車両停車時の前記下降指令時に行うことを特徴としている。第4の態様としては、前記第1乃至第3の何れかの態様において、前記エアドライヤの再生は、前記下降指令部から下降指令があったとき、予め決められた間隔で行うことを特徴としている。 Further, as a second aspect, in the first aspect, the detection means for estimating or calculating the pressure in the air suspension is provided, and when the detection pressure by the detection means exceeds a predetermined pressure, the pressure in the air suspension is increased. The compressed air is supplied to the tank, and when the pressure is lower than the predetermined pressure, the air dryer is regenerated. As a third aspect, in the first or second aspect, the air dryer is regenerated at the time of the lowering command when the vehicle is stopped. As a fourth aspect, in any one of the first to third aspects, the air dryer is regenerated at predetermined intervals when a descending command is received from the descending command unit. ..
 1 エアサスペンション
 2 コンプレッサ装置
 3 コンプレッサ
 4 電動モータ
 5 吸気管路
 6 給排管路
 7 エアドライヤ
 8 スローリターンバルブ
 9 吸気バルブ
 10 空気導管
 11 給排気弁
 12 タンク
 13 タンク側吸込管路(第1通路)
 14 吸気電磁弁(第1弁)
 15 タンク用管路(第2通路)
 16 戻し電磁弁(第2弁)
 17 給排切換弁
 18 還流管路
 19 排気管路(第3通路)
 20 排気電磁弁(第3弁)
 21 圧力検出器(検出手段)
 22 コントローラ(制御手段)
 22B 下降指令部
 23 車高センサ
 24 選択スイッチ
1 Air suspension 2 Compressor device 3 Compressor 4 Electric motor 5 Intake line 6 Supply / exhaust line 7 Air dryer 8 Slow return valve 9 Intake valve 10 Air conduit 11 Supply / exhaust valve 12 Tank 13 Tank side suction line (first passage)
14 Intake solenoid valve (first valve)
15 Tank pipeline (second passage)
16 Return solenoid valve (second valve)
17 Supply / exhaust switching valve 18 Reflux line 19 Exhaust line (third passage)
20 Exhaust solenoid valve (3rd valve)
21 Pressure detector (detection means)
22 Controller (control means)
22B Down command unit 23 Vehicle height sensor 24 Selection switch

Claims (4)

  1.  車両に設けられるエアサスペンション装置であって、
     空気を圧縮するコンプレッサと、
     空気を貯留するように構成されたタンクと、
     該タンク内の圧縮空気を前記コンプレッサの吸込み側に供給する第1通路と、
     前記コンプレッサの吐出側と前記タンクとを繋ぐ第2通路と、
     前記コンプレッサの吐出側にエアドライヤを介して接続されるエアサスペンションと、
     前記第1通路に設けられる第1弁と、
     前記第2通路に設けられる第2弁と、
     前記コンプレッサの吐出側と前記エアドライヤとの間から分岐して設けられ、第3弁を開弁することにより大気に接続される第3通路と、
     前記第1弁、第2弁および第3弁を開閉制御する制御手段と、
     を備え、
     前記制御手段は、
     車両の走行条件または車高状態に応じて下降指令する下降指令部を有し、
     前記下降指令部から下降指令が出たときに、前記エアサスペンション内の圧縮空気を用いて前記エアドライヤの再生を行うことを特徴とするエアサスペンション装置。
    An air suspension device installed in a vehicle
    With a compressor that compresses air,
    With a tank configured to store air,
    A first passage that supplies compressed air in the tank to the suction side of the compressor, and
    A second passage connecting the discharge side of the compressor and the tank,
    An air suspension connected to the discharge side of the compressor via an air dryer,
    The first valve provided in the first passage and
    The second valve provided in the second passage and
    A third passage that is branched from between the discharge side of the compressor and the air dryer and is connected to the atmosphere by opening the third valve.
    A control means for controlling the opening and closing of the first valve, the second valve and the third valve,
    With
    The control means
    It has a descent command unit that gives a descent command according to the running conditions or height of the vehicle.
    An air suspension device characterized in that when a lowering command is issued from the lowering command unit, the air dryer is regenerated using compressed air in the air suspension.
  2.  前記エアサスペンション内の圧力を推定もしくは算出する検出手段を備え、
     前記検出手段による検出圧力が所定圧を超えるとき、前記エアサスペンション内の圧縮空気は前記タンクに供給し、前記所定圧より低いときには、前記エアドライヤを再生することを特徴とする請求項1に記載のエアサスペンション装置。
    A detection means for estimating or calculating the pressure in the air suspension is provided.
    The first aspect of claim 1, wherein when the pressure detected by the detection means exceeds a predetermined pressure, the compressed air in the air suspension is supplied to the tank, and when the pressure is lower than the predetermined pressure, the air dryer is regenerated. Air suspension device.
  3.  前記エアドライヤの再生は、車両停車時の前記下降指令時に行うことを特徴とする請求項1または2に記載のエアサスペンション装置。 The air suspension device according to claim 1 or 2, wherein the air dryer is regenerated at the time of the lowering command when the vehicle is stopped.
  4.  前記エアドライヤの再生は、前記下降指令部から下降指令があったとき、予め決められた間隔で行うことを特徴とする請求項1乃至3の何れかに記載のエアサスペンション装置。 The air suspension device according to any one of claims 1 to 3, wherein the air dryer is regenerated at predetermined intervals when a lowering command is given from the lowering command unit.
PCT/JP2019/049625 2019-03-27 2019-12-18 Air suspension device WO2020194926A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019060496 2019-03-27
JP2019-060496 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020194926A1 true WO2020194926A1 (en) 2020-10-01

Family

ID=72610719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049625 WO2020194926A1 (en) 2019-03-27 2019-12-18 Air suspension device

Country Status (1)

Country Link
WO (1) WO2020194926A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19620851A1 (en) * 1996-05-23 1997-12-04 Knorr Bremse Systeme Air conditioning arrangement for compressed air, in particular for pneumatic brake systems of motor vehicles
JPH11278032A (en) * 1998-03-26 1999-10-12 Toyota Motor Corp Car height adjustment device
JP2002087040A (en) * 2000-09-20 2002-03-26 Aisin Seiki Co Ltd Pneumatic vehicle height adjusting system
JP2006224869A (en) * 2005-02-18 2006-08-31 Toyota Motor Corp Air suspension device
JP2012087742A (en) * 2010-10-21 2012-05-10 Mitsubishi Fuso Truck & Bus Corp Air dryer protective device
JP2015105020A (en) * 2013-11-29 2015-06-08 日立オートモティブシステムズ株式会社 Air suspension system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19620851A1 (en) * 1996-05-23 1997-12-04 Knorr Bremse Systeme Air conditioning arrangement for compressed air, in particular for pneumatic brake systems of motor vehicles
JPH11278032A (en) * 1998-03-26 1999-10-12 Toyota Motor Corp Car height adjustment device
JP2002087040A (en) * 2000-09-20 2002-03-26 Aisin Seiki Co Ltd Pneumatic vehicle height adjusting system
JP2006224869A (en) * 2005-02-18 2006-08-31 Toyota Motor Corp Air suspension device
JP2012087742A (en) * 2010-10-21 2012-05-10 Mitsubishi Fuso Truck & Bus Corp Air dryer protective device
JP2015105020A (en) * 2013-11-29 2015-06-08 日立オートモティブシステムズ株式会社 Air suspension system

Similar Documents

Publication Publication Date Title
JP7186237B2 (en) air suspension device
CN104039570B (en) The airsuspension system of motor vehicles and for the method controlled it
JP6919648B2 (en) How to regenerate the dryer of the air suspension device
WO2018139576A1 (en) Suspension system
JP6701718B2 (en) Air suspension device
JP7125994B2 (en) air suspension system
JP2009046027A (en) Air circuit
JPWO2018021207A1 (en) Air suspension system
CN108883682B (en) Air suspension system
WO2020194926A1 (en) Air suspension device
JP2020044979A (en) Air suspension device
JP2015054643A (en) Air-suspension system
JP7300402B2 (en) Air suspension device and regeneration method for its air dryer
WO2020066515A1 (en) Air suspension device
JPH10119531A (en) Air suspension controller
JP2019038500A (en) Suspension system
US20220144033A1 (en) Method for operating a compressed air supply device, and compressed air supply device
JPS6231643B2 (en)
JP2018086861A (en) Air suspension device
JP2022091119A (en) Method for operating air suspension system using dryer regeneration function
WO2020174835A1 (en) Compressed-air supply device and compressed-air supply method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP