WO2020066515A1 - Air suspension device - Google Patents

Air suspension device Download PDF

Info

Publication number
WO2020066515A1
WO2020066515A1 PCT/JP2019/034808 JP2019034808W WO2020066515A1 WO 2020066515 A1 WO2020066515 A1 WO 2020066515A1 JP 2019034808 W JP2019034808 W JP 2019034808W WO 2020066515 A1 WO2020066515 A1 WO 2020066515A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
valve
vehicle height
tank
air suspension
Prior art date
Application number
PCT/JP2019/034808
Other languages
French (fr)
Japanese (ja)
Inventor
小林 寛
勉 伊藤
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2020066515A1 publication Critical patent/WO2020066515A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/04Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics
    • B60G17/052Pneumatic spring characteristics

Definitions

  • the present invention relates to an air suspension device mounted on a vehicle such as a four-wheel vehicle.
  • Some vehicles such as four-wheeled vehicles are equipped with an air suspension device for adjusting the vehicle height.
  • This type of air suspension device includes an open type and a closed type.
  • the open type has the advantages that the system configuration is simple and the number of components can be reduced.
  • a closed-type air suspension device (for example, see Patent Literature 1) has an advantage that the pressure of the suction air can be made higher than the atmospheric pressure, so that the pressure of the compressed air can be increased to a desired pressure in a short time. .
  • Patent Literature 1 uses high-pressure air in the tank to regenerate the desiccant (moisture adsorbent) of the air dryer, so that the regeneration efficiency of the air dryer is reduced. There is. Furthermore, since an expensive three-way solenoid valve is used, there is a problem that the manufacturing cost increases.
  • the present invention has been made in consideration of the above-described problems of the related art, and an object of the present invention is to provide an air suspension device capable of efficiently regenerating an air dryer.
  • the present invention relates to an air suspension device, comprising: a tank configured to store air, and configured to compress air supplied from the tank through a first passage. Compressed air, an air suspension connected to the discharge side of the compressor via an air dryer, and compressed air in the air suspension via a second passage provided to branch off from between the air dryer and the air suspension.
  • a return valve configured to return to the tank by an exhaust valve provided in a third passage that opens according to the pressure in the tank and exhausts the compressed air in the air suspension through the air dryer.
  • the air dryer can be efficiently regenerated by discharging the compressed air in the air suspension to the outside air through the exhaust valve.
  • FIG. 1 is a circuit diagram illustrating an overall configuration of an air suspension device according to a first embodiment of the present invention.
  • FIG. 3 is a control block diagram of an air suspension device including a controller.
  • 5 is a flowchart illustrating a control process when the controller increases the vehicle height.
  • 5 is a flowchart showing a control process when the controller lowers the vehicle height.
  • FIG. 5 is a characteristic diagram illustrating a relationship between a pressure difference between an air suspension and a tank and a vehicle height descending speed. It is a flowchart which shows the control processing at the time of lowering
  • FIGS. 1 to 6 of the accompanying drawings taking an example in which the air suspension device is applied to a vehicle such as a four-wheeled vehicle.
  • FIGS. 1 to 5 show a first embodiment.
  • a total of four air suspensions 1 are provided on a left front wheel (FL), a right front wheel (FR), a left rear wheel (RL), and a right rear wheel (RR) side of the vehicle. (Neither is shown).
  • These air suspensions 1 adjust the vehicle height in accordance with expansion and contraction of the air chamber 1C by supplying and discharging compressed air into an air chamber 1C described later.
  • Each of the air suspensions 1 includes, for example, a cylinder 1A mounted on the axle side of the vehicle, a piston rod 1B protruding from the inside of the cylinder 1A so as to be able to expand and contract in the axial direction, and a protruding end side mounted on the vehicle body side; And an air chamber 1C which is provided so as to be extendable and contractable between the protruding end of the cylinder and the cylinder 1A and operates as an air spring.
  • the air chamber 1C of each air suspension 1 is expanded and contracted in the axial direction by supplying and discharging compressed air from a branch pipe 10A described later. At this time, each air suspension 1 adjusts the height (vehicle height) of the vehicle in accordance with the supply and discharge amount of the compressed air by the piston rod 1B extending and contracting in the axial direction from inside the cylinder 1A.
  • the compressor 2 generates compressed air while sucking air from the suction side 2A (hereinafter referred to as the suction side 2A), and is constituted by, for example, a reciprocating compressor or a scroll compressor.
  • the compressed air generated from the compressor 2 is supplied to an air chamber 1C of an air suspension 1 which is a pneumatic device.
  • the compressor 2 is rotationally driven by an electric motor 3 as a drive source. The drive and stop of the electric motor 3 are controlled by a controller 20 (see FIG. 2) described later.
  • the intake / exhaust pipe 4 is connected to the intake side 2A of the compressor 2, and the supply / discharge pipe 5 is connected to the discharge side 2B of the compressor 2.
  • One end of the supply / discharge conduit 5 is connected to the discharge side 2B of the compressor 2, and the other end is connected to an air conduit 10 described later.
  • An air dryer 6 and a slow return valve 7 are provided at an intermediate position of the supply / discharge conduit 5.
  • the intake / exhaust line 4 constitutes an intake passage of the compressor 2, and a tank-side intake line 13, which will be described later, is connected to the connection point 4A.
  • the supply / discharge conduit 5 constitutes a supply / discharge passage for supplying / discharging the compressed air generated from the compressor 2 to / from the air chamber 1 ⁇ / b> C of the air suspension 1.
  • the compressed air supplied to the air chamber 1C of the air suspension 1 is discharged from the air chamber 1C through the supply / discharge pipe 5 so as to flow back through the air dryer 6, for example, when the vehicle height is lowered, or the compressed air is supplied to a tank 12 described later. It is discharged so as to escape inside.
  • a bypass pipe 8 is provided between the intake side 2A and the discharge side 2B of the compressor 2 as a third passage which bypasses (bypasses) the compressor 2 and connects the two.
  • the bypass conduit 8 is connected to the supply / discharge conduit 5 so that one end branches off from the supply / discharge conduit 5 at the position of the connection point 5A, and the other end of the bypass conduit 8 is connected to the suction / drain at the position of the connection point 4B. It is connected to the intake / exhaust line 4 so as to branch off from the exhaust line 4. That is, the connection point 4B connects the intake / exhaust line 4 to the bypass line 8 at a position between the intake / exhaust port 9 and the intake valve 18 described later.
  • the connection point 5A connects the supply / discharge pipe line 5 to the bypass pipe line 8 at a position between the discharge side 2B of the compressor 2 and the air dryer 6.
  • An exhaust solenoid valve 17 described later is provided in the middle of the bypass pipe 8.
  • the intake / exhaust line 4 of the compressor 2 is a suction / exhaust port 9 which opens to the outside of the compressor 2.
  • the intake / exhaust port 9 is provided with a filter (not shown) for removing dust and the like in the air. ing.
  • the other end of the intake / exhaust line 4 is connected to the intake side 2 ⁇ / b> A of the compressor 2, and an intake valve 18 described later is provided in the intake / exhaust line 4.
  • the suction / discharge port 9 is a port for sucking outside air into the intake side 2A when the compressor 2 is driven, and for discharging compressed air to the outside when the exhaust solenoid valve 17 is opened.
  • the air dryer 6 constitutes an air drying means provided in the middle of the supply / discharge pipeline 5.
  • the air dryer 6 contains a moisture adsorbent (not shown) such as silica gel, for example, and is disposed between the discharge side 2B of the compressor 2 and the slow return valve 7.
  • the slow return valve 7 is configured by a parallel circuit of a throttle 7A and a check valve 7B, and does not throttle the flow rate of compressed air by opening the check valve 7B for a forward flow described later. However, the check valve 7B closes against the flow in the reverse direction, and the flow rate of the compressed air at this time is reduced by the throttle 7A, so that the compressed air flows backward in the air dryer 6 slowly with a small flow rate.
  • the air dryer 6 contacts the compressed air with the internal moisture adsorbent when the high-pressure compressed air generated by the compressor 2 flows through the supply / discharge pipe 5 in the forward direction toward the air suspension 1. Moisture is adsorbed and dried compressed air is supplied to the air chamber 1C. On the other hand, when the compressed air (exhaust) discharged from the air suspension 1 (air chamber 1C) flows in the air dryer 6 (supply / discharge conduit 5) in the opposite direction, the dried air flows back through the air dryer 6. The moisture of the moisture adsorbent in the air dryer 6 is desorbed by the dry air. As a result, the moisture adsorbent of the air dryer 6 is regenerated and returned to a state where moisture can be adsorbed again.
  • the air chamber 1 ⁇ / b> C of the air suspension 1 is connected to a supply / discharge pipe line 5 of the compressor 2 via an air conduit 10.
  • the air conduit 10 is provided with a plurality (for example, four) of branch pipes 10A that are branched from each other.
  • the distal end side of each branch pipe 10A is detachably connected to the air chamber 1C of the air suspension 1.
  • the compressed air supply / exhaust valve 11 is provided in the middle of each branch pipe 10A for controlling the supply / discharge of compressed air to / from the air chamber 1C of the air suspension 1.
  • the supply / exhaust valve 11 is constituted by, for example, an electromagnetic switching valve (solenoid valve) having two ports and two positions.
  • the supply / exhaust valve 11 is normally in the valve closing position (a), and is switched from the valve closing position (a) to the valve opening position (b) when excited by a control signal from the controller 20 described later.
  • the air supply / exhaust valve 11 may be provided so as to be connected between the air chamber 1C of the air suspension 1 and the branch pipe 10A.
  • the supply / exhaust valve 11 has a function as a relief valve (safety valve). For this reason, when the pressure in the air chamber 1C exceeds the relief set pressure, the air supply / exhaust valve 11 is temporarily switched from the valve closing position (a) to the valve opening position (b) as a relief valve even if the air supply / exhaust valve 11 remains demagnetized. The excess pressure at this time can be released into the air conduit 10.
  • the tank 12 for storing compressed air has a connection pipe 12A made of, for example, a flexible hose.
  • One end of the connection pipe 12A is detachably connected to the tank 12, and the other end is connected to a tank-side suction pipe 13 and a tank pipe 15 described later.
  • the connection pipe 12A of the tank 12 is connected to the intake side 2A of the compressor 2 via a tank-side suction pipe 13 as a first passage.
  • One end of the tank side suction pipe 13 is connected to the tank 12 (connection pipe 12A), and the other end is connected to the suction / exhaust pipe 4 at a connection point 4A.
  • connection point 4A connects the intake / exhaust pipe 4 to the tank-side suction pipe 13 at a position between the intake side 2A of the compressor 2 and the intake valve 18.
  • the tank side suction pipe 13 branches off from the suction / exhaust pipe 4 at the position of the connection point 4A.
  • the tank-side suction pipe 13 is provided with an intake solenoid valve 14 (ie, an intake switching valve) for supplying and stopping the compressed air in the tank 12 to the intake side 2A of the compressor 2.
  • the intake electromagnetic valve 14 is constituted by, for example, an electromagnetic switching valve (solenoid valve) having two ports and two positions.
  • the intake solenoid valve 14 is normally in the valve closing position (c), and is switched from the valve closing position (c) to the valve opening position (d) when excited by a control signal from the controller 20.
  • the intake solenoid valve 14 has a function as a relief valve (safety valve), similarly to the supply / exhaust valve 11 described above.
  • the intake solenoid valve 14 is an on / off type solenoid valve having a valve closing position (c) and a valve opening position (d).
  • a highly versatile electromagnetic switching valve can be employed. For example, a three-way solenoid valve is used. Such an expensive valve as described above can be eliminated. It should be noted that also for the return solenoid valve 16 and the exhaust solenoid valve 17 to be described later, similarly to the intake solenoid valve 14, a highly versatile electromagnetic switching valve can be adopted.
  • connection pipe 12A of the tank 12 is connected to the discharge side 2B of the compressor 2 via a tank pipe 15 as a second passage.
  • One end of the tank pipe 15 is connected to the tank 12 (connection pipe 12A), and the other end is connected to the supply / discharge pipe 5 at a connection point 5B. That is, the connection point 5B connects the supply / discharge conduit 5 to the tank conduit 15 at a position between the air dryer 6 and the air suspension 1 (that is, between the slow return valve 7 and the air conduit 10). ing.
  • the tank pipe 15 branches off from the supply / discharge pipe 5 at the position of the connection point 5B.
  • the tank line 15 is provided with a return solenoid valve 16 serving as a return valve for supplying and stopping compressed air in the tank 12 to return to the supply / discharge line 5.
  • the return solenoid valve 16 is configured to return the compressed air in the air suspension 1 to the tank 12 via a second passage (tank pipe 15) provided to be branched from between the air dryer 6 and the air suspension 1. This is the return valve that was set.
  • the return solenoid valve 16 is constituted by, for example, an electromagnetic switching valve (solenoid valve) having two ports and two positions.
  • the return solenoid valve 16 is normally at the valve closing position (e), and is switched from the valve closing position (e) to the valve opening position (f) when excited by a control signal from the controller 20.
  • the return solenoid valve 16 When the return solenoid valve 16 is opened, for example, the compressed air in the air suspension 1 can be accumulated so as to return to the inside of the tank 12 through the tank pipe 15. Further, the return solenoid valve 16 has a function as a relief valve (safety valve), similarly to the supply / exhaust valve 11 described above.
  • the exhaust solenoid valve 17 as an exhaust valve is provided in the bypass pipe 8 as the third passage.
  • the exhaust solenoid valve 17 is constituted by, for example, an electromagnetic switching valve (solenoid valve) having two ports and two positions.
  • the exhaust solenoid valve 17 is normally in the closed position (g), and is switched from the closed position (g) to the open position (h) when excited by a control signal from the controller 20.
  • the exhaust solenoid valve 17 is opened, the compressed air in the tank 12 is exhausted to the outside via the air dryer 6 and the bypass pipe 8, or the compressed air in the air suspension 1 is discharged to the air dryer 6 and the bypass pipe 8. And can be exhausted to the outside.
  • the exhaust electromagnetic valve 17 has a function as a relief valve (safety valve), similarly to the supply / exhaust valve 11 described above.
  • a relief valve safety valve
  • the exhaust solenoid valve 17 is slow in decreasing the vehicle height.
  • the valve is opened. In other words, the opening and closing of the exhaust electromagnetic valve 17 is controlled depending on whether the speed of decreasing the vehicle height is slow or fast.
  • the intake valve 18 is provided in the middle of the intake / exhaust pipe 4 and between the connection points 4A and 4B.
  • the intake valve 18 is a check valve configured to intake air from the atmosphere via the intake / discharge port 9. That is, when the pressure of the air between the intake side 2A of the compressor 2 and the tank 12 becomes equal to or lower than the atmospheric pressure at the position of the connection point 4A, the intake valve 18 constituted by the check valve is connected to the atmosphere via the intake / discharge port 9. It is constituted so that air may be taken in from.
  • the intake valve 18 functions as a so-called intake valve, and allows air to flow from the intake / exhaust port 9 to the inside of the intake / exhaust line 4 (that is, to the connection point 4A side of the intake / exhaust line 4). , And a check valve for preventing reverse flow. Therefore, when the pressure in the intake / exhaust pipe 4 (that is, the connection point 4A side of the intake / exhaust pipe 4) is higher than the atmospheric pressure (positive pressure), the intake valve 18 is closed, and Compressed air from the tank 12 is supplied (sucked) to the intake side 2A of the compressor 2 via the tank-side suction pipe 13 and the intake solenoid valve 14.
  • a pressure detector 19 is provided in the supply / discharge conduit 5, for example, at the position of the connection point 5B.
  • the pressure detector 19 moves, for example, the return electromagnetic valve 16 from the closed position (e) to the open position (f) in a state where all the supply / exhaust valves 11, the intake electromagnetic valve 14, and the exhaust electromagnetic valve 17 are closed.
  • the pressure in the tank 12 is detected via the tank line 15.
  • the supply / exhaust valve 11 is opened in a state where the intake electromagnetic valve 14, the return electromagnetic valve 16 and the exhaust electromagnetic valve 17 are closed, the pressure in the air chamber 1C of the corresponding air suspension 1 is increased. Can be detected by the pressure detector 19.
  • the air chambers 1C of all the air suspensions 1 communicate with each other, and the pressure in the air chamber 1C in this state can be detected by the pressure detector 19.
  • the controller 20 as a control device is constituted by, for example, a microcomputer or the like.
  • the input side of the controller 20 is connected to a pressure detector 19, a plurality of vehicle height sensors 21 (that is, the FL, FR, RL, and RR vehicle height sensors 21), a selection switch 22, and the like.
  • the FL, FR, RL, and RR side vehicle height sensors 21 are provided on each of the air suspensions 1 on the left front wheel (FL), right front wheel (FR), left rear wheel (RL), and right rear wheel (RR) sides.
  • the vehicle height is detected individually.
  • the selection switch 22 is, for example, an operation switch for switching between an automatic mode for adjusting the vehicle height and a selection mode for arbitrarily changing the vehicle height according to the driver's preference.
  • the controller 20 detects the vehicle height detected by the FL, FR, RL, and RR vehicle height sensors 21. Based on the signal, it is compared (determined) whether the vehicle height of each air suspension 1 is higher or lower than the target vehicle height (that is, the set height). Based on the comparison (judgment) result, the controller 20 controls each air suspension on the left front wheel (FL), right front wheel (FR), left rear wheel (RL) and right rear wheel (RR) sides of the vehicle. 1 is performed individually.
  • the output side of the controller 20 is connected to the electric motor 3 of the compressor 2, the supply / exhaust valves 11 on the FL side, the FR side, the RL side, and the RR side, the intake solenoid valve 14, the return solenoid valve 16, the exhaust solenoid valve 17, and the like. It is connected. Further, the controller 20 has a memory 20A including a ROM, a RAM, a nonvolatile memory, and the like. In this memory 20A, for example, a program for a control process at the time of raising the vehicle height shown in FIG. 3, a program for a control process at the time of vehicle height reduction shown in FIG. Have been.
  • the controller 20 controls the driving of the electric motor 3 based on signals from the respective vehicle height sensors 21 and the selection switch 22, and also controls the supply / exhaust valve 11, the intake solenoid valve 14, the return solenoid valve 16, and the exhaust solenoid valve.
  • a control signal is output to the control valve 17 and the like, and these valves 11, 14, 16, and 17 (specifically, each solenoid) are individually excited or demagnetized.
  • the supply / exhaust valve 11 is switched between the closed position (a) and the open position (b) shown in the drawing, and the intake solenoid valve 14, the return solenoid valve 16 and the exhaust solenoid valve 17 are each switched. It can be switched to that position.
  • the air suspension device according to the first embodiment has the above-described configuration, and its operation will be described with reference to an example in which the selection switch 22 is operated to perform the vehicle height adjustment in the automatic mode.
  • the controller 20 executes a vehicle height raising control process as shown in FIG.
  • step 1 when the processing operation of FIG. 3 starts, in step 1, the pressure in the tank 12 detected by the pressure detector 19 (that is, the tank pressure Pt) is read.
  • the pressure detector 19 By switching the return solenoid valve 16 from the valve closing position (e) to the valve opening position (f) while each of the supply / exhaust valves 11 shown in FIG. 1 is held at the valve closing position (a), the pressure detector 19 The pressure in the tank 12 can be detected. After detecting the pressure in the tank 12 (tank pressure Pt), control is performed to return the return solenoid valve 16 from the open position (f) to the closed position (e).
  • step 2 it is determined whether or not the tank pressure Pt is equal to or higher than the high pressure threshold Pm.
  • the high pressure threshold value Pm is set to a pressure value high enough to operate the air suspension 1 in the vehicle height increasing direction by the compressed air in the tank 12 without using the compressor 2.
  • the return solenoid valve 16 is switched from the closed position (e) to the open position (f) to open the valve, and in the next step 4, the supply / exhaust valve 11 of the air suspension 1 is opened. Switch to position (b). Thereby, the compressed air in the tank 12 can be directly supplied into the air chamber 1C of the air suspension 1, and the air suspension 1 can be operated in the vehicle height increasing direction while the compressor 2 is stopped. .
  • step 5 the vehicle height is read based on the detection signal from the vehicle height sensor 21.
  • step 6 it is determined whether or not the vehicle height is lower than the target vehicle height (set height). Then, if "YES" is determined in step 6, the vehicle height is lower than the set height and has not reached the target vehicle height, so the flow returns to step 3 and the subsequent processing is continued.
  • step 6 determines whether the vehicle height has become equal to or higher than the set height and the vehicle height has been increased until the vehicle height reaches the target vehicle height. Therefore, in the next step 7, the vehicle height raising operation by the air suspension 1 is stopped. That is, in the process of step 7, when the vehicle height has reached the target vehicle height, the return solenoid valve is kept in the closed position (a) while the intake / exhaust valve 11 is in the closed position (a) and the intake electromagnetic valve 14 is also in the closed position (c). Control is performed to return the valve 16 to the valve closing position (e). Then, the process returns in the next step 8.
  • step 2 when the determination in step 2 is “NO”, it can be determined that the tank pressure Pt of the tank 12 is not in a high pressure state (a high pressure state in which compressed air can be supplied from the tank 12 to the air suspension 1). Therefore, in the next step 9, the intake electromagnetic valve 14 is switched from the valve closing position (e) to the valve opening position (d), and the tank 12 is communicated with the intake / exhaust line 4 via the tank side intake line 13. . In step 9, the return solenoid valve 16 has already been returned to the valve closing position (e), and the tank 12 is shut off from the supply / discharge conduit 5.
  • the compressor 2 is driven by the electric motor 3, and in the step 11, the supply / exhaust valve 11 of the air suspension 1 is switched to the valve opening position (b).
  • the compressed air (relatively low-pressure compressed air) in the tank 12 is sucked in from the intake side 2A with the operation of the compressor 2, and the compressed air is sent from the discharge side 2B to the air dryer 6 and the slow return valve 7.
  • the air is supplied to the air chamber 1C of the air suspension 1 via the air suspension 1 so that the vehicle height can be increased.
  • the air compressed by the compressor 2 is dried by passing through the air dryer 6, and the compressed air in a dry state is supplied into the air chamber 1 ⁇ / b> C of the air suspension 1.
  • the compressor 2 can generate compressed air having a higher pressure on the discharge side 2B while sucking the compressed air stored in the tank 12 from the intake side 2A. Can be supplied quickly.
  • the compressor 2 can generate compressed air at a higher pressure by sucking the compressed air in the tank 12 that has been compressed beforehand, instead of the air at the atmospheric pressure, so that the pressurizing time of the compressed air can be shortened.
  • the air chamber 1C of the air suspension 1 can be extended (elevated) at an early stage.
  • the compressed air in the tank 12 is sucked into the intake side 2A of the compressor 2, so that the pressure in the tank 12 gradually decreases.
  • the intake valve 18 (check valve) is automatically opened. That is, by setting the intake valve 18 to open when, for example, the connection point 4A side becomes lower than the atmospheric pressure, the compressor 2 sucks air insufficient for compression from the suction / discharge port 9 to secure a necessary suction air amount. can do.
  • the compressor 2 draws compressed air from the outside air through the intake / exhaust port 9 and the intake / exhaust line 4, and sends compressed air through the supply / exhaust line 5, the air dryer 6 and the slow return valve 7.
  • the vehicle height is read based on the detection signal from the vehicle height sensor 21.
  • the next step 13 it is determined whether or not the vehicle height is lower than the target vehicle height (set height). If "YES" is determined in the step 13, the vehicle height is lower than the set height and has not reached the target vehicle height, so the flow returns to the step 9 and the subsequent processing is continued.
  • step 13 it can be determined that the vehicle height has become higher than the set height and the vehicle height has been increased until the vehicle height reaches the target vehicle height. Therefore, in order to end the vehicle height raising processing, the processing of step 7 is executed, and the intake electromagnetic valve is kept in the closed position (e) with the supply / exhaust valve 11 in the closed position (a) and the intake electromagnetic valve 16 in the closed position (e). The valve 14 is controlled to return to the valve closing position (c). Then, the process returns in the next step 8. At this time, the drive of the electric motor 3 of the compressor 2 can be stopped to interrupt the compression operation.
  • the controller 20 executes a vehicle height reduction control process as shown in FIG.
  • step 21 the pressure in the air chamber 1C of the air suspension 1 detected by the pressure detector 19 (that is, the suspension pressure Ps) is read.
  • the air chamber 1C of the air suspension 1 is switched by switching the supply / exhaust valve 11 from the closed position (a) to the open position (b) while the return electromagnetic valve 16 is returned to the closed position (e).
  • the suspension pressure Ps is detected by the pressure detector 19 in this state. After the detection of the suspension pressure Ps, control is performed to return the supply / exhaust valve 11 from the valve opening position (b) to the valve closing position (a).
  • the pressure in the tank 12 detected by the pressure detector 19, that is, the tank pressure Pt is read.
  • the pressure detection is performed by switching the return solenoid valve 16 from the closed position (e) to the open position (f) while each of the supply / exhaust valves 11 shown in FIG. 1 is held at the closed position (a).
  • the device 19 can detect the pressure in the tank 12. After the detection of the tank pressure Pt, control is performed to return the return solenoid valve 16 from the open position (f) to the closed position (e).
  • the suspension pressure Ps is compared with the tank pressure Pt to determine whether or not the suspension pressure Ps is lower than the tank pressure Pt (Ps ⁇ Pt). If "YES" is determined in step 23, since the tank pressure Pt is higher than the suspension pressure Ps, the compressed air in the air suspension 1 (air chamber 1C) is directly discharged to the outside air to reduce the vehicle height. There is a need to.
  • step 24 the supply / exhaust valve 11 of the air suspension 1 is switched to the open position (b), and in the next step 25, the exhaust electromagnetic valve 17 is switched from the closed position (g) to the open position (h). I do.
  • the compressed air is directly discharged from the air chamber 1C of the air suspension 1 to the outside air via the supply / discharge line 5, the bypass line 8, and the exhaust solenoid valve 17.
  • the vehicle height descending speed when the vehicle height is reduced by reducing the air chamber 1C of the air suspension 1 can be increased.
  • the compressed air discharged from the air suspension 1 flows back through the air dryer 6 via the supply / discharge conduit 5, so that the moisture adsorbent of the air dryer 6 causes the air suspension 1 to dry.
  • the air dryer 6 is regenerated by passing the supplied air, and the air dryer 6 can be efficiently regenerated.
  • the vehicle height is read based on the detection signal from the vehicle height sensor 21. Then, in a step 27, it is determined whether or not the vehicle height is higher than a target vehicle height (set height). If "YES" is determined in the step 27, the vehicle height is higher than the set height, and the vehicle height has not been lowered to the target vehicle height. Therefore, the process returns to the step 24 and the subsequent processes are continued.
  • step 27 determines whether the vehicle height has become equal to or less than the set height and the vehicle height has been lowered until reaching the target vehicle height. Therefore, in the next step 28, the vehicle height lowering operation by the air suspension 1 is stopped. That is, in the process of step 28, when the vehicle height has reached the target vehicle height, the exhaust electromagnetic valve is kept in the closed position (a) while the return solenoid valve 16 is kept in the closed position (e). The valve 17 is controlled to return to the valve closing position (c). Then, the process returns in the next step 29.
  • ⁇ P ⁇ P0 it is determined as “ ⁇ P ⁇ P0” whether or not the pressure difference ⁇ P is smaller than a low pressure threshold value P0 as a predetermined value.
  • the low pressure threshold value P0 serves as a criterion for determining whether the compressed air in the air chamber 1C is released into the tank 12 or directly discharged to the outside air when the air suspension 1 is operated in the vehicle height lowering direction. Pressure.
  • the speed at which the vehicle height is reduced by reducing the air chamber 1C of the air suspension 1 by releasing the compressed air in the air suspension 1 (air chamber 1C) into the tank 12 that is, the vehicle height descending speed V.
  • the pressure difference ⁇ P between the air suspension 1 and the tank 12 becomes smaller than the low pressure threshold value P0, it becomes too slow.
  • the characteristic line 23 shown in FIG. 5 is a characteristic obtained by mapping the relationship between the pressure difference ⁇ P between the suspension pressure Ps and the tank pressure Pt and the vehicle height descending speed V based on test data and the like.
  • the pressure difference ⁇ P is equal to or less than the low pressure threshold value P0
  • the vehicle height descending speed V is larger than zero and equal to or less than the speed threshold value V0 (0 ⁇ V ⁇ V0). That is, since the lowering speed of the vehicle height (vehicle lowering speed V) is reduced to the speed threshold value V0, extra time is required for the control process of lowering the vehicle height, and the workability at the time of adjusting the vehicle height is reduced.
  • step 32 it can be determined that the pressure difference ⁇ P becomes smaller than the low pressure threshold value P0 and the vehicle height descending speed V becomes slower. Therefore, in the next step 33, the return solenoid valve 16 is switched to the valve closing position (e), and the tank 12 is shut off from the supply / discharge pipe line 5. Thereafter, the processing of steps 24 to 27 is executed, and the compressed air is directly discharged from the air chamber 1C of the air suspension 1 to the outside air via the supply / discharge line 5, the bypass line 8, and the exhaust solenoid valve 17. I do.
  • the supply / exhaust valve 11 of the air suspension 1 is switched to the valve opening position (b).
  • the return solenoid valve 16 is opened in the step 30, the compressed air in the air suspension 1 (air chamber 1C) is discharged so as to escape into the tank 12, and the air chamber 1C of the air suspension 1 is discharged.
  • the height can be reduced by reducing the size.
  • step 35 the vehicle height is read based on the detection signal from the vehicle height sensor 21. Then, in step 36, it is determined whether or not the vehicle height is higher than the target vehicle height (set height). If "YES" is determined in the step 27, the vehicle height is higher than the set height, and the vehicle height has not been lowered to the target vehicle height. Therefore, the process returns to the step 30, and the subsequent processing is continued.
  • step 36 determines whether the vehicle height has become lower than the set height and the vehicle height has been lowered until reaching the target vehicle height. For this reason, the vehicle height lowering operation by the air suspension 1 is stopped by the process of step 28. That is, in the process of step 28, the supply / exhaust valve 11 is set to the closed position (a) and the return solenoid valve 16 is set to the closed position in order to end the vehicle height reduction process when the vehicle height has reached the target vehicle height. Control is performed such that the exhaust electromagnetic valve 17 is returned to the valve closing position (c) while keeping the state (e). Then, the process returns in the next step 29.
  • the controller 20 determines that the target vehicle height has been reached based on the detection signal from the vehicle height sensor 21, the controller 20 performs control to demagnetize the solenoid of the supply / exhaust valve 11 to end the vehicle height lowering operation.
  • a signal is output to return the supply / exhaust valve 11 to the valve closing position (a).
  • the supply / discharge pipe line 5 of the compressor 2 is shut off from the air chamber 1C of the air suspension 1, so that the air suspension 1 operates as an air spring so as to maintain the target vehicle height, and Thus, the vehicle height can be kept low.
  • the compressor 2 configured to compress the air supplied from the tank 12 through the tank-side suction pipe 13 (first passage), and the discharge of the compressor 2
  • An air suspension 1 connected to the side 2B via an air dryer 6 and a structure in which compressed air in the air suspension 1 (air chamber 1C) is returned to the tank 12 via a tank pipe 15 (second passage).
  • the bypass line 8 (third passage) for opening the valve in accordance with the returned solenoid valve 16 and the pressure in the tank 12 to exhaust the compressed air in the air suspension 1 (air chamber 1C) through the air dryer 6.
  • the check is configured to take in air from the atmosphere when the pressure of the air between the exhaust solenoid valve 17 provided at the intake side 2A of the compressor 2 and the tank 12 is lower than the atmospheric pressure.
  • a suction valve 18 is.
  • the compressor 2 is driven by the electric motor 3, so that the compressed air in the tank 12 is sucked in from the intake side 2A of the compressor 2 and the compressed air from the discharge side 2B is air-dried. 6. It can be supplied to the air suspension 1 via the slow return valve 7 and can drive the vehicle height in the ascending direction. When the vehicle height rises, the air compressed by the compressor 2 is dried by the air dryer 6, and the dry compressed air can be supplied into the air chamber 1 ⁇ / b> C of the air suspension 1.
  • the compressor 2 can supply compressed air having a higher pressure from the discharge side 2B into the air chamber 1C of the air suspension 1 while sucking the compressed air previously stored in the tank 12 from the intake side 2A. it can. Therefore, high-pressure compressed air can be quickly supplied into the air chamber 1C of the air suspension 1 in a short time, and the air suspension 1 can be quickly extended to increase the vehicle height. Therefore, the vehicle height can be quickly and efficiently increased as compared with a conventional open type (for example, a type in which air is compressed from atmospheric pressure by a compressor).
  • a conventional open type for example, a type in which air is compressed from atmospheric pressure by a compressor.
  • the intake valve 18 (check valve) is automatically opened.
  • the compressor 2 draws compressed air from the outside air through the intake / exhaust port 9 and the intake / exhaust line 4, and sends compressed air through the supply / exhaust line 5, the air dryer 6 and the slow return valve 7. To the air chamber 1C.
  • the control for driving the compressor 2 with the supply / exhaust valve 11 on each air suspension 1 side closed and the return solenoid valve 16 opened can be performed.
  • the compressed air generated by the compressor 2 can be stored in the tank 12, and the amount of compressed air stored in the tank 12 can be adjusted by the control of the controller 20.
  • the intake side 2A of the compressor 2 can be set to a pressure equivalent to that of the tank 12.
  • the intake solenoid valve 14 is returned from the open position (d) to the closed position (c) and closed, the intake side 2A of the compressor 2 is set to a pressure close to the atmospheric pressure, and the outside air is compressed. 2 can inhale.
  • the compressed air discharged from the air suspension 1 flows back through the air dryer 6 through the supply / discharge conduit 5, so that the moisture adsorbent of the air dryer 6 is discharged from the air suspension 1.
  • Regeneration can be performed with dry air, and regeneration of the air dryer 6 can be performed efficiently.
  • the pressure difference ⁇ P between the air suspension 1 and the tank 12 becomes a predetermined value (low pressure threshold value).
  • P0 the pressure difference between the air suspension 1 and the tank 12 becomes a predetermined value (low pressure threshold value).
  • the compressed air in the air suspension 1 can be discharged to the outside air via the exhaust solenoid valve 17. Therefore, the air dryer 6 can be efficiently regenerated.
  • An intake solenoid valve 14 (intake switching valve) is provided in the tank-side intake pipe 13 (first passage) between the intake side 2A of the compressor 2 and the tank 12. Is configured to switch between a valve closing position (c) and a valve opening position (d). Thus, if both the intake solenoid valve 14 and the return solenoid valve 16 are closed, the compressed air in the tank 12 can be prevented from leaking out of the tank, and the airtightness of the tank 12 can be improved. .
  • controller 20 as a control device is configured to control the operation and stop of the compressor 2 and the opening and closing of the return solenoid valve 16, the exhaust solenoid valve 17 and / or the intake solenoid valve 14.
  • the controller 20 controls the operation and stop of the compressor 2 and the opening and closing of the return solenoid valve 16, the exhaust solenoid valve 17 and / or the intake solenoid valve 14, as shown in FIG. Can be executed, and the vehicle height reduction control processing can be executed as shown in FIG.
  • the air suspension device can store the compressed and dry compressed air in the tank 12, and the compressed air stored in the tank 12 is further compressed by the compressor 2.
  • a closed circuit (closed type) that can be supplied to the air suspension 1 can be realized.
  • the compressed air discharged from the air chamber 1C of the air suspension 1 can be returned to the tank 12 using the return solenoid valve 16 without being released into the atmosphere, and the compressed air in a dry state is wasted. It can be used effectively without exhausting.
  • the compressor 2 sucks and compresses the compressed air in the tank 12
  • the frequency of sucking air from the outside atmosphere ie, the frequency of opening the intake valve 18
  • This can greatly reduce the frequency of occurrence of problems caused by inhaling dust and moisture in the atmosphere.
  • it is not necessary to perform pressure control using a pressure detector (pressure sensor) or the like as compared with the conventional closed type, and there is no need to perform complicated control, and the overall configuration is simplified. can do.
  • the saturation of the adsorbent can be prevented. Further, a closed-type system that does not require complicated control by the controller 20 can be provided. Moreover, unlike the related art (Patent Document 1), a low-cost system can be provided without requiring a three-way solenoid valve. As the supply / exhaust valve 11, the intake solenoid valve 14, the return solenoid valve 16, and the exhaust solenoid valve 17, an on / off type versatile electromagnetic switching valve can be adopted, and the number thereof can be minimized.
  • the vehicle height rising time at the time of frequent use can be reduced. Then, only when the vehicle height adjustment range becomes larger than the normal use range, the air is taken in (opening the intake valve 18) or the compressed air is released into the atmosphere (the exhaust solenoid valve 17 is opened) as necessary. Or open the valve).
  • FIG. 6 shows a second embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • the feature of the second embodiment is that, in the vehicle height lowering process for lowering the vehicle height to the target vehicle height (set height), the controller 20 uses the signal from the vehicle height sensor 21 to control the vehicle height reduction speed. Calculate Vd.
  • the controller 20 compares the vehicle height reduction speed Vd with a predetermined speed threshold value V0 to determine whether the vehicle height reduction speed Vd is slow or fast, and performs the opening and closing control of the exhaust electromagnetic valve 17. It has a configuration.
  • the vehicle height lowering processing program shown in FIG. 6 is stored together with the speed threshold value V0 and the like in the memory 20A of the controller 20 shown in FIG. 2, for example.
  • the controller 20 performs the processing of steps 41 to 50 in the same manner as in steps 21 to 30 shown in the first embodiment (FIG. 4).
  • step 51 shown in FIG. 6 the supply / exhaust valve 11 of the air suspension 1 is switched from the valve closing position (a) to the valve opening position (b) and opened.
  • the return solenoid valve 16 since the return solenoid valve 16 has been opened in step 50, the compressed air in the air suspension 1 (air chamber 1C) is discharged so as to escape into the tank 12, and the air chamber 1C of the air suspension 1 is discharged. Reduce the vehicle height by reducing it.
  • the vehicle height is read based on the signal (vehicle height detection value) from the vehicle height sensor 21.
  • the vehicle height reduction speed (that is, vehicle height reduction speed Vd) is calculated based on the signal from the vehicle height sensor 21.
  • the vehicle height lowering speed Vd can be obtained, for example, by dividing the change in the vehicle height detection value for each program cycle by the time of the program cycle (that is, the read repetition time).
  • the vehicle height lowering speed Vd may be calculated by differentiating the vehicle height detection value from the vehicle height sensor 21.
  • the vehicle height lowering speed Vd has decreased to or below the low speed threshold V0 as a predetermined value and the vehicle height lowering speed Vd has decreased.
  • the low speed threshold value V0 is a criterion for determining whether the compressed air in the air chamber 1C is released into the tank 12 or discharged directly to the outside air when the air suspension 1 is operated in the vehicle height lowering direction. Is a predetermined vehicle height lowering speed (lowering speed).
  • step 54 when “YES” is determined in step 54, the vehicle height reduction speed Vd has decreased to the low speed threshold value V0 and has become slow. Therefore, in the next step 55, the return solenoid valve 16 is switched to the valve closing position (e), and the tank 12 is shut off from the supply / discharge pipe line 5. Thereafter, the processing of steps 44 to 47 is executed to directly supply the compressed air from the air chamber 1C of the air suspension 1 to the outside air via the supply / discharge line 5, the bypass line 8, and the exhaust solenoid valve 17. To be discharged.
  • step 54 determines whether or not the vehicle height is higher than the target vehicle height (set height). If "YES” is determined in the step 46, the vehicle height is higher than the set height, and the vehicle height has not been lowered to the target vehicle height. Therefore, the process returns to the step 50 and the subsequent processes are continued.
  • step 48 If it is determined "NO” in step 56, it can be determined that the vehicle height has fallen below the set height and the vehicle height has been lowered until it reaches the target vehicle height. Therefore, in this case, the vehicle height lowering operation by the air suspension 1 is stopped by the processing of step 48. That is, in step 48, when the vehicle height has reached the target vehicle height, the supply / exhaust valve 11 is set to the closed position (a) and the return solenoid valve 16 is set to the closed position (e) in order to end the vehicle height lowering process. ), The exhaust electromagnetic valve 17 is controlled to return to the valve closing position (c). Then, the process returns in the next step 49.
  • the exhaust valve (the exhaust electromagnetic valve 17) is opened or closed depending on whether the vehicle height reduction speed Vd is slower or faster than the speed threshold value V0. Therefore, the same effect as that of the first embodiment can be obtained (ie, the effect that the extra time is not required for the control process for lowering the vehicle height and the workability at the time of adjusting the vehicle height can be improved).
  • the vehicle height reduction speed Vd is calculated and obtained based on the signal from the vehicle height sensor 21. Therefore, it is possible to more stably determine whether to open the exhaust valve (the exhaust electromagnetic valve 17).
  • the intake solenoid valve 14, the return solenoid valve 16, and the exhaust solenoid valve 17 are configured to have a function as a relief valve (safety valve).
  • the intake solenoid valve 14, the return solenoid valve 16 and / or the exhaust solenoid valve 17 do not necessarily need to operate as a relief valve, and the exhaust valve may be configured using an electromagnetic switching valve having no relief function. Good.
  • the intake side 2A of the compressor 2 is connected to the intake / discharge port 9 via the intake / exhaust line 4
  • the present invention is not limited to this, and the intake / exhaust passages may be configured by two separate passages (pipelines) of an intake passage and an exhaust passage.
  • the intake side 2A of the compressor 2 is configured to communicate with the outside air via the intake passage.
  • a third passage is provided as an exhaust passage which can communicate with the outside air. 17 may be provided.
  • the third passage may be connected to the connection point 5A of the supply / discharge line 5 instead of the bypass line 8.
  • an air suspension device which is configured to store air and configured to compress air supplied from the tank via a first passage. Compressed air, an air suspension connected to a discharge side of the compressor via an air dryer, and compressed air in the air suspension via a second passage provided to be branched from between the air dryer and the air suspension.
  • a return valve configured to return to the tank by an exhaust valve provided in a third passage that opens according to the pressure in the tank and exhausts the compressed air in the air suspension through the air dryer.
  • the air suspension adjusts the vehicle height by supplying and discharging compressed air
  • the exhaust valve determines whether the vehicle height decreasing speed is low, It is characterized by opening and closing control depending on whether it is fast.
  • the exhaust valve is configured to reduce the vehicle height decreasing speed when a pressure difference between a pressure in the tank and a pressure in the air suspension is equal to or less than a predetermined value. It is characterized by being opened as late.
  • the exhaust valve is closed when the vehicle height reduction speed is faster than a predetermined speed threshold, and is opened when the vehicle height reduction speed is slower than the speed threshold. It is characterized by being valved.
  • an intake switching valve is provided in the first passage between the intake side of the compressor and the tank.
  • the intake switching valve is a 2-port 2-position solenoid valve.
  • the return valve is a 2-port 2-position solenoid valve.
  • the control device controls the operation and stop of the compressor and the opening and closing of the return valve and / or the exhaust valve. It is characterized by having.
  • a control device for controlling the operation and stop of the compressor and the opening and closing of the return valve, the exhaust valve and / or the intake switching valve It is characterized by having.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

This air suspension device is provided with: a compressor 2 configured to compress air supplied from a tank 12 by way of an intake pipeline 13 (first passage); an air suspension 1 connected to a discharge side 2B of the compressor 2 by way of an air dryer 6; a return solenoid valve 16 configured to return compressed air in the air suspension 1 to the tank 12 by way of a tank pipeline 15 (second passage); a venting solenoid valve 17 which opens in accordance with the pressure in the tank 12, and which is provided in a bypass pipeline 8 (third passage) in order to vent compressed air inside the air suspension 1 by way of the air dryer 6; and an intake valve 18 comprising a check valve configured to take in air from the atmosphere if the pressure of air between an intake side 2A of the compressor 2 and the tank 12 is equal to or less than atmospheric pressure.

Description

エアサスペンション装置Air suspension device
 本発明は、例えば4輪自動車等の車両に搭載されるエアサスペンション装置に関する。 The present invention relates to an air suspension device mounted on a vehicle such as a four-wheel vehicle.
 4輪自動車等の車両には、車高調整を行うためのエアサスペンション装置が搭載されているものがある。この種のエアサスペンション装置には、オープンタイプとクローズドタイプとがあり、オープンタイプのものは、システム構成が簡素であり、構成部品を少なくできるという利点がある。しかし、空気を大気圧状態から圧縮するために、圧縮空気を所望の圧力まで昇圧させるのに時間がかかってしまう。一方、クローズドタイプのエアサスペンション装置(例えば、特許文献1参照)は、吸込み空気の圧力を大気圧よりも高くすることができるため、圧縮空気を短時間で所望の圧力まで昇圧できるという利点がある。 車 両 Some vehicles such as four-wheeled vehicles are equipped with an air suspension device for adjusting the vehicle height. This type of air suspension device includes an open type and a closed type. The open type has the advantages that the system configuration is simple and the number of components can be reduced. However, since the air is compressed from the atmospheric pressure state, it takes time to increase the pressure of the compressed air to a desired pressure. On the other hand, a closed-type air suspension device (for example, see Patent Literature 1) has an advantage that the pressure of the suction air can be made higher than the atmospheric pressure, so that the pressure of the compressed air can be increased to a desired pressure in a short time. .
特表2012-516256号公報JP-T-2012-516256A
 しかし、特許文献1に記載されたクローズドタイプのエアサスペンション装置は、エアドライヤの乾燥剤(水分吸着剤)を再生するのにタンク内の高圧エアを用いるために、エアドライヤの再生効率が低下するという問題がある。さらに、高価な三方電磁弁を用いているため、製造コストが嵩むという問題がある。 However, the closed-type air suspension device described in Patent Literature 1 uses high-pressure air in the tank to regenerate the desiccant (moisture adsorbent) of the air dryer, so that the regeneration efficiency of the air dryer is reduced. There is. Furthermore, since an expensive three-way solenoid valve is used, there is a problem that the manufacturing cost increases.
 本発明は上述した従来技術の問題に鑑みなされたもので、本発明の目的は、エアドライヤの再生を効率的に行うことができるようにしたエアサスペンション装置を提供することにある。 The present invention has been made in consideration of the above-described problems of the related art, and an object of the present invention is to provide an air suspension device capable of efficiently regenerating an air dryer.
 上述した課題を解決するため、本発明は、エアサスペンション装置であって、空気を貯留するように構成されたタンクと、該タンクから第1通路を介して供給される空気を圧縮するように構成されたコンプレッサと、該コンプレッサの吐出側にエアドライヤを介して接続されるエアサスペンションと、前記エアサスペンション内の圧縮空気を、前記エアドライヤと前記エアサスペンションの間から分岐して設けられる第2通路を介して前記タンクに戻すように構成された戻し弁と、前記タンク内の圧力に応じて開弁して前記エアサスペンション内の圧縮空気を前記エアドライヤを介して排気する第3通路に設けられる排気弁と、前記コンプレッサの吸気側と前記タンクとの間の空気の圧力が大気圧以下のとき、大気から空気を吸気するように構成されたチェック弁である吸気バルブと、を備えることを特徴としている。 In order to solve the above-mentioned problem, the present invention relates to an air suspension device, comprising: a tank configured to store air, and configured to compress air supplied from the tank through a first passage. Compressed air, an air suspension connected to the discharge side of the compressor via an air dryer, and compressed air in the air suspension via a second passage provided to branch off from between the air dryer and the air suspension. A return valve configured to return to the tank by an exhaust valve provided in a third passage that opens according to the pressure in the tank and exhausts the compressed air in the air suspension through the air dryer. When the pressure of the air between the suction side of the compressor and the tank is equal to or lower than the atmospheric pressure, the air is sucked from the atmosphere. It is characterized in that it comprises a an intake valve is configured check valve.
 本発明によれば、エアサスペンション内の圧縮空気を排気弁を介して外気に排出することにより、エアドライヤの再生を効率的に行うことができる。 According to the present invention, the air dryer can be efficiently regenerated by discharging the compressed air in the air suspension to the outside air through the exhaust valve.
本発明の第1の実施の形態によるエアサスペンション装置の全体構成を示す回路図である。FIG. 1 is a circuit diagram illustrating an overall configuration of an air suspension device according to a first embodiment of the present invention. コントローラを含めたエアサスペンション装置の制御ブロック図である。FIG. 3 is a control block diagram of an air suspension device including a controller. コントローラによる車高を上げるときの制御処理を示す流れ図である。5 is a flowchart illustrating a control process when the controller increases the vehicle height. コントローラによる車高を下げるときの制御処理を示す流れ図である。5 is a flowchart showing a control process when the controller lowers the vehicle height. エアサスペンション、タンクの圧力差と車高下降速度との関係を示す特性線図である。FIG. 5 is a characteristic diagram illustrating a relationship between a pressure difference between an air suspension and a tank and a vehicle height descending speed. 第2の実施の形態による車高を下げるときの制御処理を示す流れ図である。It is a flowchart which shows the control processing at the time of lowering | hanging a vehicle height by 2nd Embodiment.
 以下、本発明の実施の形態によるエアサスペンション装置を、4輪自動車等の車両に適用した場合を例に挙げ、添付図面の図1ないし図6を参照して詳細に説明する。 Hereinafter, an air suspension device according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 6 of the accompanying drawings, taking an example in which the air suspension device is applied to a vehicle such as a four-wheeled vehicle.
 図1ないし図5は、第1の実施の形態を示している。図において、合計4個のエアサスペンション1は、車両の左前輪(FL),右前輪(FR),左後輪(RL),右後輪(RR)側で、車両の各車軸側と車体側(いずれも図示せず)との間に設けられている。これらのエアサスペンション1は、後述のエア室1C内に圧縮空気が給排されることにより、エア室1Cの拡張,縮小に応じて車高調整を行うものである。 FIGS. 1 to 5 show a first embodiment. In the figure, a total of four air suspensions 1 are provided on a left front wheel (FL), a right front wheel (FR), a left rear wheel (RL), and a right rear wheel (RR) side of the vehicle. (Neither is shown). These air suspensions 1 adjust the vehicle height in accordance with expansion and contraction of the air chamber 1C by supplying and discharging compressed air into an air chamber 1C described later.
 各エアサスペンション1は、例えば前記車両の車軸側に取付けられるシリンダ1Aと、該シリンダ1A内から軸方向へと伸縮可能に突出し突出端側が前記車体側に取付けられるピストンロッド1Bと、該ピストンロッド1Bの突出端側とシリンダ1Aとの間に伸縮可能に設けられ空気ばねとして作動するエア室1Cとにより構成されている。各エアサスペンション1のエア室1Cは、後述の分岐管10Aから圧縮空気が給排されることにより軸方向に拡縮される。このとき、各エアサスペンション1は、ピストンロッド1Bがシリンダ1A内から軸方向に伸縮して車両の高さ(車高)を、前記圧縮空気の給排量に応じて調整する。 Each of the air suspensions 1 includes, for example, a cylinder 1A mounted on the axle side of the vehicle, a piston rod 1B protruding from the inside of the cylinder 1A so as to be able to expand and contract in the axial direction, and a protruding end side mounted on the vehicle body side; And an air chamber 1C which is provided so as to be extendable and contractable between the protruding end of the cylinder and the cylinder 1A and operates as an air spring. The air chamber 1C of each air suspension 1 is expanded and contracted in the axial direction by supplying and discharging compressed air from a branch pipe 10A described later. At this time, each air suspension 1 adjusts the height (vehicle height) of the vehicle in accordance with the supply and discharge amount of the compressed air by the piston rod 1B extending and contracting in the axial direction from inside the cylinder 1A.
 コンプレッサ2は、その吸込み側2A(以下、吸気側2Aという)から空気を吸込みつつ、圧縮空気を生成するもので、例えば往復動式圧縮機またはスクロール式圧縮機等により構成されている。コンプレッサ2から発生した圧縮空気は、空気圧機器であるエアサスペンション1のエア室1Cに供給される。コンプレッサ2は、駆動源としての電動モータ3により回転駆動される。電動モータ3は、後述のコントローラ20(図2参照)により駆動、停止が制御される。 The compressor 2 generates compressed air while sucking air from the suction side 2A (hereinafter referred to as the suction side 2A), and is constituted by, for example, a reciprocating compressor or a scroll compressor. The compressed air generated from the compressor 2 is supplied to an air chamber 1C of an air suspension 1 which is a pneumatic device. The compressor 2 is rotationally driven by an electric motor 3 as a drive source. The drive and stop of the electric motor 3 are controlled by a controller 20 (see FIG. 2) described later.
 コンプレッサ2の吸気側2Aには、吸・排気管路4が接続され、コンプレッサ2の吐出側2Bには、給排管路5が接続されている。この給排管路5は、一端側がコンプレッサ2の吐出側2Bに接続され、他端側は後述の空気導管10に接続されている。給排管路5の途中位置には、エアドライヤ6とスローリターンバルブ7とが設けられている。 (4) The intake / exhaust pipe 4 is connected to the intake side 2A of the compressor 2, and the supply / discharge pipe 5 is connected to the discharge side 2B of the compressor 2. One end of the supply / discharge conduit 5 is connected to the discharge side 2B of the compressor 2, and the other end is connected to an air conduit 10 described later. An air dryer 6 and a slow return valve 7 are provided at an intermediate position of the supply / discharge conduit 5.
 吸・排気管路4は、コンプレッサ2の吸気通路を構成し、接続点4Aの位置には、後述のタンク側吸込管路13が接続されている。給排管路5は、コンプレッサ2から発生した圧縮空気をエアサスペンション1のエア室1Cに給排する給排通路を構成している。エアサスペンション1のエア室1Cに供給された圧縮空気は、車高を下げるときにエア室1Cから給排管路5を介して、例えばエアドライヤ6を逆流するように排出されたり、後述のタンク12内に逃がすように排出されたりする。 The intake / exhaust line 4 constitutes an intake passage of the compressor 2, and a tank-side intake line 13, which will be described later, is connected to the connection point 4A. The supply / discharge conduit 5 constitutes a supply / discharge passage for supplying / discharging the compressed air generated from the compressor 2 to / from the air chamber 1 </ b> C of the air suspension 1. The compressed air supplied to the air chamber 1C of the air suspension 1 is discharged from the air chamber 1C through the supply / discharge pipe 5 so as to flow back through the air dryer 6, for example, when the vehicle height is lowered, or the compressed air is supplied to a tank 12 described later. It is discharged so as to escape inside.
 また、コンプレッサ2の吸気側2Aと吐出側2Bとの間には、コンプレッサ2をバイパス(迂回)して両者間を接続する第3通路としてのバイパス管路8が設けられている。このバイパス管路8は、一方の端部が接続点5Aの位置で給排管路5から分岐するように給排管路5に接続され、他方の端部が接続点4Bの位置で吸・排気管路4から分岐するように吸・排気管路4に接続されている。即ち、接続点4Bは、後述の吸排ポート9と吸気バルブ18との間となる位置で、吸・排気管路4をバイパス管路8に接続している。接続点5Aは、コンプレッサ2の吐出側2Bとエアドライヤ6との間となる位置で、給排管路5をバイパス管路8に接続している。バイパス管路8の途中には、後述の排気電磁弁17が設けられている。 バ イ パ ス Further, a bypass pipe 8 is provided between the intake side 2A and the discharge side 2B of the compressor 2 as a third passage which bypasses (bypasses) the compressor 2 and connects the two. The bypass conduit 8 is connected to the supply / discharge conduit 5 so that one end branches off from the supply / discharge conduit 5 at the position of the connection point 5A, and the other end of the bypass conduit 8 is connected to the suction / drain at the position of the connection point 4B. It is connected to the intake / exhaust line 4 so as to branch off from the exhaust line 4. That is, the connection point 4B connects the intake / exhaust line 4 to the bypass line 8 at a position between the intake / exhaust port 9 and the intake valve 18 described later. The connection point 5A connects the supply / discharge pipe line 5 to the bypass pipe line 8 at a position between the discharge side 2B of the compressor 2 and the air dryer 6. An exhaust solenoid valve 17 described later is provided in the middle of the bypass pipe 8.
 コンプレッサ2の吸・排気管路4は、その一端側がコンプレッサ2の外部に開口する吸排ポート9となり、この吸排ポート9には、空気中の塵埃等を除去するフィルタ(図示せず)が設けられている。吸・排気管路4の他端側は、コンプレッサ2の吸気側2Aに接続され、吸・排気管路4の途中には、後述の吸気バルブ18が設けられている。吸排ポート9は、コンプレッサ2の駆動時に外気を吸気側2Aに吸込ませたり、排気電磁弁17の開弁時に圧縮空気を外部に排気したりするポートである。 One end of the intake / exhaust line 4 of the compressor 2 is a suction / exhaust port 9 which opens to the outside of the compressor 2. The intake / exhaust port 9 is provided with a filter (not shown) for removing dust and the like in the air. ing. The other end of the intake / exhaust line 4 is connected to the intake side 2 </ b> A of the compressor 2, and an intake valve 18 described later is provided in the intake / exhaust line 4. The suction / discharge port 9 is a port for sucking outside air into the intake side 2A when the compressor 2 is driven, and for discharging compressed air to the outside when the exhaust solenoid valve 17 is opened.
 エアドライヤ6は、給排管路5の途中に介装して設けられた空気乾燥手段を構成している。このエアドライヤ6は、例えばシリカゲル等の水分吸着剤(図示せず)等を内蔵し、コンプレッサ2の吐出側2Bとスローリターンバルブ7との間に配設されている。スローリターンバルブ7は、絞り7Aとチェック弁7Bとの並列回路により構成され、後述の順方向流れに対しては、チェック弁7Bが開弁して圧縮空気の流量を絞ることはない。しかし、逆方向の流れに対してはチェック弁7Bが閉弁し、このときの圧縮空気は絞り7Aにより流量が絞られるため、エアドライヤ6内をゆっくりと小流量で逆流するものである。 The air dryer 6 constitutes an air drying means provided in the middle of the supply / discharge pipeline 5. The air dryer 6 contains a moisture adsorbent (not shown) such as silica gel, for example, and is disposed between the discharge side 2B of the compressor 2 and the slow return valve 7. The slow return valve 7 is configured by a parallel circuit of a throttle 7A and a check valve 7B, and does not throttle the flow rate of compressed air by opening the check valve 7B for a forward flow described later. However, the check valve 7B closes against the flow in the reverse direction, and the flow rate of the compressed air at this time is reduced by the throttle 7A, so that the compressed air flows backward in the air dryer 6 slowly with a small flow rate.
 エアドライヤ6は、コンプレッサ2で発生した高圧の圧縮空気がエアサスペンション1側に向けて給排管路5内を順方向に流通するときに、この圧縮空気を内部の水分吸着剤に接触させることにより水分を吸着し、乾燥した圧縮空気をエア室1Cに向けて供給する。一方、エアサスペンション1(エア室1C)から排出された圧縮空気(排気)がエアドライヤ6(給排管路5)内を逆方向に流通するときには、乾燥したエアがエアドライヤ6内を逆流するので、エアドライヤ6内の水分吸着剤は、この乾燥エアにより水分が脱着される。これにより、エアドライヤ6の水分吸着剤は再生され、再び水分を吸着可能な状態に戻される。 The air dryer 6 contacts the compressed air with the internal moisture adsorbent when the high-pressure compressed air generated by the compressor 2 flows through the supply / discharge pipe 5 in the forward direction toward the air suspension 1. Moisture is adsorbed and dried compressed air is supplied to the air chamber 1C. On the other hand, when the compressed air (exhaust) discharged from the air suspension 1 (air chamber 1C) flows in the air dryer 6 (supply / discharge conduit 5) in the opposite direction, the dried air flows back through the air dryer 6. The moisture of the moisture adsorbent in the air dryer 6 is desorbed by the dry air. As a result, the moisture adsorbent of the air dryer 6 is regenerated and returned to a state where moisture can be adsorbed again.
 エアサスペンション1のエア室1Cは、空気導管10を介してコンプレッサ2の給排管路5に接続されている。ここで、空気導管10には、複数本(例えば、4本)の分岐管10Aが互いに分岐して設けられている。各分岐管10Aの先端側は、それぞれがエアサスペンション1のエア室1Cに着脱可能に接続されている。 The air chamber 1 </ b> C of the air suspension 1 is connected to a supply / discharge pipe line 5 of the compressor 2 via an air conduit 10. Here, the air conduit 10 is provided with a plurality (for example, four) of branch pipes 10A that are branched from each other. The distal end side of each branch pipe 10A is detachably connected to the air chamber 1C of the air suspension 1.
 圧縮空気の給排気弁11は、エアサスペンション1のエア室1Cに対する圧縮空気の給排を制御するため、各分岐管10Aの途中に設けられている。給排気弁11は、例えば2ポート2位置の電磁式切換弁(ソレノイドバルブ)により構成されている。給排気弁11は、通常時は閉弁位置(a)におかれ、後述するコントローラ20からの制御信号により励磁されると、閉弁位置(a)から開弁位置(b)に切換えられる。 The compressed air supply / exhaust valve 11 is provided in the middle of each branch pipe 10A for controlling the supply / discharge of compressed air to / from the air chamber 1C of the air suspension 1. The supply / exhaust valve 11 is constituted by, for example, an electromagnetic switching valve (solenoid valve) having two ports and two positions. The supply / exhaust valve 11 is normally in the valve closing position (a), and is switched from the valve closing position (a) to the valve opening position (b) when excited by a control signal from the controller 20 described later.
 なお、各給排気弁11は、エアサスペンション1のエア室1Cと分岐管10Aとの間に接続して設ける構成でもよい。また、給排気弁11は、リリーフ弁(安全弁)としての機能を有している。このため、エア室1C内の圧力がリリーフ設定圧を越えると、給排気弁11は消磁したままでも、閉弁位置(a)から開弁位置(b)にリリーフ弁として一時的に切換わり、このときの過剰圧を空気導管10内に逃がすことができる。 The air supply / exhaust valve 11 may be provided so as to be connected between the air chamber 1C of the air suspension 1 and the branch pipe 10A. The supply / exhaust valve 11 has a function as a relief valve (safety valve). For this reason, when the pressure in the air chamber 1C exceeds the relief set pressure, the air supply / exhaust valve 11 is temporarily switched from the valve closing position (a) to the valve opening position (b) as a relief valve even if the air supply / exhaust valve 11 remains demagnetized. The excess pressure at this time can be released into the air conduit 10.
 圧縮空気を貯留するタンク12は、例えば可撓性ホース等からなる接続管12Aを有している。この接続管12Aは、一方の端部がタンク12に取外し可能に接続され、他方の端部が後述のタンク側吸込管路13とタンク用管路15とに接続されている。タンク12の接続管12Aは、コンプレッサ2の吸気側2Aに第1通路としてのタンク側吸込管路13を介して接続されている。このタンク側吸込管路13は、一方の端部がタンク12(接続管12A)に接続され、他方の端部が接続点4Aの位置で吸・排気管路4に接続されている。即ち、接続点4Aは、コンプレッサ2の吸気側2Aと吸気バルブ18との間となる位置で、吸・排気管路4をタンク側吸込管路13に接続している。換言すると、タンク側吸込管路13は、接続点4Aの位置で吸・排気管路4から分岐している。 The tank 12 for storing compressed air has a connection pipe 12A made of, for example, a flexible hose. One end of the connection pipe 12A is detachably connected to the tank 12, and the other end is connected to a tank-side suction pipe 13 and a tank pipe 15 described later. The connection pipe 12A of the tank 12 is connected to the intake side 2A of the compressor 2 via a tank-side suction pipe 13 as a first passage. One end of the tank side suction pipe 13 is connected to the tank 12 (connection pipe 12A), and the other end is connected to the suction / exhaust pipe 4 at a connection point 4A. That is, the connection point 4A connects the intake / exhaust pipe 4 to the tank-side suction pipe 13 at a position between the intake side 2A of the compressor 2 and the intake valve 18. In other words, the tank side suction pipe 13 branches off from the suction / exhaust pipe 4 at the position of the connection point 4A.
 タンク側吸込管路13には、タンク12内の圧縮空気をコンプレッサ2の吸気側2Aに供給,停止するための吸気電磁弁14(即ち、吸気切替弁)が設けられている。この吸気電磁弁14は、例えば2ポート2位置の電磁式切換弁(ソレノイドバルブ)により構成されている。吸気電磁弁14は、通常時は閉弁位置(c)におかれ、コントローラ20からの制御信号により励磁されると、閉弁位置(c)から開弁位置(d)に切換えられる。また、吸気電磁弁14は、前述した給排気弁11と同様に、リリーフ弁(安全弁)としての機能を有している。 The tank-side suction pipe 13 is provided with an intake solenoid valve 14 (ie, an intake switching valve) for supplying and stopping the compressed air in the tank 12 to the intake side 2A of the compressor 2. The intake electromagnetic valve 14 is constituted by, for example, an electromagnetic switching valve (solenoid valve) having two ports and two positions. The intake solenoid valve 14 is normally in the valve closing position (c), and is switched from the valve closing position (c) to the valve opening position (d) when excited by a control signal from the controller 20. Further, the intake solenoid valve 14 has a function as a relief valve (safety valve), similarly to the supply / exhaust valve 11 described above.
 吸気電磁弁14は、閉弁位置(c)と開弁位置(d)とからなるオン・オフ式の電磁弁で、汎用性の高い電磁式切換弁を採用することができ、例えば三方電磁弁のような高価な弁を不要にすることができる。なお、後述の戻し電磁弁16および排気電磁弁17についても、吸気電磁弁14と同様に、汎用性の高い電磁式切換弁を採用することができる。 The intake solenoid valve 14 is an on / off type solenoid valve having a valve closing position (c) and a valve opening position (d). A highly versatile electromagnetic switching valve can be employed. For example, a three-way solenoid valve is used. Such an expensive valve as described above can be eliminated. It should be noted that also for the return solenoid valve 16 and the exhaust solenoid valve 17 to be described later, similarly to the intake solenoid valve 14, a highly versatile electromagnetic switching valve can be adopted.
 また、タンク12の接続管12Aは、コンプレッサ2の吐出側2Bに第2通路としてのタンク用管路15を介して接続されている。このタンク用管路15は、一方の端部がタンク12(接続管12A)に接続され、他方の端部が接続点5Bの位置で給排管路5に接続されている。即ち、接続点5Bは、エアドライヤ6とエアサスペンション1との間(即ち、スローリターンバルブ7と空気導管10との間)となる位置で、給排管路5をタンク用管路15に接続している。換言すると、タンク用管路15は、接続点5Bの位置で給排管路5から分岐している。 The connection pipe 12A of the tank 12 is connected to the discharge side 2B of the compressor 2 via a tank pipe 15 as a second passage. One end of the tank pipe 15 is connected to the tank 12 (connection pipe 12A), and the other end is connected to the supply / discharge pipe 5 at a connection point 5B. That is, the connection point 5B connects the supply / discharge conduit 5 to the tank conduit 15 at a position between the air dryer 6 and the air suspension 1 (that is, between the slow return valve 7 and the air conduit 10). ing. In other words, the tank pipe 15 branches off from the supply / discharge pipe 5 at the position of the connection point 5B.
 タンク用管路15には、タンク12内の圧縮空気を給排管路5内へと戻すように供給,停止するための戻し弁としての戻し電磁弁16が設けられている。この戻し電磁弁16は、エアサスペンション1内の圧縮空気を、エアドライヤ6とエアサスペンション1の間から分岐して設けられる第2通路(タンク用管路15)を介してタンク12に戻すように構成された戻し弁である。戻し電磁弁16は、例えば2ポート2位置の電磁式切換弁(ソレノイドバルブ)により構成されている。戻し電磁弁16は、通常時は閉弁位置(e)におかれ、コントローラ20からの制御信号により励磁されると、閉弁位置(e)から開弁位置(f)に切換えられる。戻し電磁弁16の開弁時には、例えばエアサスペンション1内の圧縮空気をタンク用管路15を介してタンク12内へと戻すように蓄圧することができる。また、戻し電磁弁16は、前述した給排気弁11と同様に、リリーフ弁(安全弁)としての機能を有している。 The tank line 15 is provided with a return solenoid valve 16 serving as a return valve for supplying and stopping compressed air in the tank 12 to return to the supply / discharge line 5. The return solenoid valve 16 is configured to return the compressed air in the air suspension 1 to the tank 12 via a second passage (tank pipe 15) provided to be branched from between the air dryer 6 and the air suspension 1. This is the return valve that was set. The return solenoid valve 16 is constituted by, for example, an electromagnetic switching valve (solenoid valve) having two ports and two positions. The return solenoid valve 16 is normally at the valve closing position (e), and is switched from the valve closing position (e) to the valve opening position (f) when excited by a control signal from the controller 20. When the return solenoid valve 16 is opened, for example, the compressed air in the air suspension 1 can be accumulated so as to return to the inside of the tank 12 through the tank pipe 15. Further, the return solenoid valve 16 has a function as a relief valve (safety valve), similarly to the supply / exhaust valve 11 described above.
 排気弁としての排気電磁弁17は、第3通路としてのバイパス管路8に設けられている。この排気電磁弁17は、例えば2ポート2位置の電磁式切換弁(ソレノイドバルブ)により構成されている。排気電磁弁17は、通常時は閉弁位置(g)におかれ、コントローラ20からの制御信号により励磁されると、閉弁位置(g)から開弁位置(h)に切換えられる。排気電磁弁17の開弁時には、タンク12内の圧縮空気をエアドライヤ6、バイパス管路8を介して外部に排気したり、または、エアサスペンション1内の圧縮空気をエアドライヤ6、バイパス管路8を介して外部に排気したりすることができる。また、排気電磁弁17は、前述した給排気弁11と同様にリリーフ弁(安全弁)としての機能を有している。排気電磁弁17は、後述の如くタンク12内のタンク圧力Ptとエアサスペンション1内のサスペンション圧力Psとの圧力差ΔPが所定値(低圧閾値P0)以下のときに、車高の下げ速度が遅いとして開弁される。換言すると、排気電磁弁17は、車高の下げ速度が遅いか,速いかによって開,閉弁制御される。 排 気 The exhaust solenoid valve 17 as an exhaust valve is provided in the bypass pipe 8 as the third passage. The exhaust solenoid valve 17 is constituted by, for example, an electromagnetic switching valve (solenoid valve) having two ports and two positions. The exhaust solenoid valve 17 is normally in the closed position (g), and is switched from the closed position (g) to the open position (h) when excited by a control signal from the controller 20. When the exhaust solenoid valve 17 is opened, the compressed air in the tank 12 is exhausted to the outside via the air dryer 6 and the bypass pipe 8, or the compressed air in the air suspension 1 is discharged to the air dryer 6 and the bypass pipe 8. And can be exhausted to the outside. Further, the exhaust electromagnetic valve 17 has a function as a relief valve (safety valve), similarly to the supply / exhaust valve 11 described above. When the pressure difference ΔP between the tank pressure Pt in the tank 12 and the suspension pressure Ps in the air suspension 1 is equal to or less than a predetermined value (low-pressure threshold P0), the exhaust solenoid valve 17 is slow in decreasing the vehicle height. The valve is opened. In other words, the opening and closing of the exhaust electromagnetic valve 17 is controlled depending on whether the speed of decreasing the vehicle height is slow or fast.
 吸気バルブ18は、吸・排気管路4の途中で、接続点4A,4Bの間に設けられている。この吸気バルブ18は、吸排ポート9を介して大気から空気を吸気するように構成されたチェック弁である。即ち、チェック弁からなる吸気バルブ18は、接続点4Aの位置でコンプレッサ2の吸気側2Aとタンク12との間の空気の圧力が大気圧以下となったときに、吸排ポート9を介して大気から空気を吸気するように構成されている。 (4) The intake valve 18 is provided in the middle of the intake / exhaust pipe 4 and between the connection points 4A and 4B. The intake valve 18 is a check valve configured to intake air from the atmosphere via the intake / discharge port 9. That is, when the pressure of the air between the intake side 2A of the compressor 2 and the tank 12 becomes equal to or lower than the atmospheric pressure at the position of the connection point 4A, the intake valve 18 constituted by the check valve is connected to the atmosphere via the intake / discharge port 9. It is constituted so that air may be taken in from.
 吸気バルブ18は、所謂吸込弁として機能するもので、吸排ポート9から吸・排気管路4内(即ち、吸・排気管路4の接続点4A側)に向けて空気が流通するのを許し、逆向きの流れを阻止する逆止弁により構成されている。このため、吸・排気管路4内(即ち、吸・排気管路4の接続点4A側)の圧力が大気圧よりも高い圧力(正圧)のときには、吸気バルブ18が閉弁状態となり、コンプレッサ2の吸気側2Aには、タンク12からの圧縮空気がタンク側吸込管路13、吸気電磁弁14を介して供給(吸入)される。 The intake valve 18 functions as a so-called intake valve, and allows air to flow from the intake / exhaust port 9 to the inside of the intake / exhaust line 4 (that is, to the connection point 4A side of the intake / exhaust line 4). , And a check valve for preventing reverse flow. Therefore, when the pressure in the intake / exhaust pipe 4 (that is, the connection point 4A side of the intake / exhaust pipe 4) is higher than the atmospheric pressure (positive pressure), the intake valve 18 is closed, and Compressed air from the tank 12 is supplied (sucked) to the intake side 2A of the compressor 2 via the tank-side suction pipe 13 and the intake solenoid valve 14.
 さらに、給排管路5には、例えば接続点5Bの位置に圧力検出器19が設けられている。この圧力検出器19は、全ての給排気弁11、吸気電磁弁14および排気電磁弁17を閉弁した状態で、例えば戻し電磁弁16を閉弁位置(e)から開弁位置(f)に切換えたときに、タンク12内の圧力をタンク用管路15を介して検出する。また、吸気電磁弁14、戻し電磁弁16および排気電磁弁17を閉弁した状態で、例えば給排気弁11の少なくともいずれかを開弁したときには、該当するエアサスペンション1のエア室1C内の圧力を圧力検出器19により検出することができる。全ての給排気弁11を開弁したときには、全てのエアサスペンション1のエア室1Cが互いに連通し、この状態でのエア室1C内の圧力を圧力検出器19により検出することができる。 Further, a pressure detector 19 is provided in the supply / discharge conduit 5, for example, at the position of the connection point 5B. The pressure detector 19 moves, for example, the return electromagnetic valve 16 from the closed position (e) to the open position (f) in a state where all the supply / exhaust valves 11, the intake electromagnetic valve 14, and the exhaust electromagnetic valve 17 are closed. Upon switching, the pressure in the tank 12 is detected via the tank line 15. When at least one of the supply / exhaust valve 11 is opened in a state where the intake electromagnetic valve 14, the return electromagnetic valve 16 and the exhaust electromagnetic valve 17 are closed, the pressure in the air chamber 1C of the corresponding air suspension 1 is increased. Can be detected by the pressure detector 19. When all the supply / exhaust valves 11 are opened, the air chambers 1C of all the air suspensions 1 communicate with each other, and the pressure in the air chamber 1C in this state can be detected by the pressure detector 19.
 制御装置としてのコントローラ20は、例えばマイクロコンピュータ等により構成されている。コントローラ20の入力側には、圧力検出器19、複数の車高センサ21(即ち、FL側,FR側,RL側,RR側車高センサ21)および選択スイッチ22等が接続されている。FL側,FR側,RL側,RR側車高センサ21は、車両の左前輪(FL),右前輪(FR),左後輪(RL),右後輪(RR)側で各エアサスペンション1による車高を個別に検出する。選択スイッチ22は、例えば車高調整を行う上での自動モード、または運転者が好みに応じて任意に車高を変える選択モード等の切換えを行う操作スイッチである。 The controller 20 as a control device is constituted by, for example, a microcomputer or the like. The input side of the controller 20 is connected to a pressure detector 19, a plurality of vehicle height sensors 21 (that is, the FL, FR, RL, and RR vehicle height sensors 21), a selection switch 22, and the like. The FL, FR, RL, and RR side vehicle height sensors 21 are provided on each of the air suspensions 1 on the left front wheel (FL), right front wheel (FR), left rear wheel (RL), and right rear wheel (RR) sides. The vehicle height is detected individually. The selection switch 22 is, for example, an operation switch for switching between an automatic mode for adjusting the vehicle height and a selection mode for arbitrarily changing the vehicle height according to the driver's preference.
 ここで、選択スイッチ22を操作して車高調整を自動モードで行うように選択した場合、コントローラ20は、FL側,FR側,RL側,RR側車高センサ21から出力される車高検出信号に基づき、それぞれのエアサスペンション1による車高が目標車高(即ち、設定高さ)に比較して高いか、低いかを比較(判定)する。この上で、コントローラ20は、その比較(判定)結果に基づいて、車両の左前輪(FL),右前輪(FR),左後輪(RL),右後輪(RR)側で各エアサスペンション1による車高調整を個別に行うものである。 Here, when the selection switch 22 is operated to select the vehicle height adjustment in the automatic mode, the controller 20 detects the vehicle height detected by the FL, FR, RL, and RR vehicle height sensors 21. Based on the signal, it is compared (determined) whether the vehicle height of each air suspension 1 is higher or lower than the target vehicle height (that is, the set height). Based on the comparison (judgment) result, the controller 20 controls each air suspension on the left front wheel (FL), right front wheel (FR), left rear wheel (RL) and right rear wheel (RR) sides of the vehicle. 1 is performed individually.
 コントローラ20の出力側は、コンプレッサ2の電動モータ3と、FL側,FR側,RL側,RR側の給排気弁11と、吸気電磁弁14、戻し電磁弁16および排気電磁弁17等とに接続されている。また、コントローラ20は、ROM,RAM,不揮発性メモリ等からなるメモリ20Aを有している。このメモリ20Aには、例えば図3に示す車高上げ時の制御処理、図4に示す車高下げ時の制御処理のプログラムと、後述の高圧閾値Pmおよび低圧閾値P0等とが更新可能に格納されている。 The output side of the controller 20 is connected to the electric motor 3 of the compressor 2, the supply / exhaust valves 11 on the FL side, the FR side, the RL side, and the RR side, the intake solenoid valve 14, the return solenoid valve 16, the exhaust solenoid valve 17, and the like. It is connected. Further, the controller 20 has a memory 20A including a ROM, a RAM, a nonvolatile memory, and the like. In this memory 20A, for example, a program for a control process at the time of raising the vehicle height shown in FIG. 3, a program for a control process at the time of vehicle height reduction shown in FIG. Have been.
 コントローラ20は、各車高センサ21および選択スイッチ22等からの信号に基づいて、電動モータ3の駆動制御を行うと共に、各給排気弁11、吸気電磁弁14、戻し電磁弁16および排気電磁弁17等に制御信号を出力し、これらの弁11,14,16,17(具体的には、各ソレノイド)を個別に励磁したり、消磁したりする。これにより、給排気弁11は、図示の閉弁位置(a)と開弁位置(b)との何れかに切換えられ、吸気電磁弁14、戻し電磁弁16および排気電磁弁17も、それぞれ何れかの位置に切換えられるものである。 The controller 20 controls the driving of the electric motor 3 based on signals from the respective vehicle height sensors 21 and the selection switch 22, and also controls the supply / exhaust valve 11, the intake solenoid valve 14, the return solenoid valve 16, and the exhaust solenoid valve. A control signal is output to the control valve 17 and the like, and these valves 11, 14, 16, and 17 (specifically, each solenoid) are individually excited or demagnetized. As a result, the supply / exhaust valve 11 is switched between the closed position (a) and the open position (b) shown in the drawing, and the intake solenoid valve 14, the return solenoid valve 16 and the exhaust solenoid valve 17 are each switched. It can be switched to that position.
 第1の実施の形態によるエアサスペンション装置は、上述の如き構成を有するもので、車高調整を自動モードで行うように選択スイッチ22を操作した場合を例に挙げて、その作動について説明する。 The air suspension device according to the first embodiment has the above-described configuration, and its operation will be described with reference to an example in which the selection switch 22 is operated to perform the vehicle height adjustment in the automatic mode.
 車両の載荷重量が増加した場合(例えば、運転者を含めて車両の乗員が増えたり、荷物等が積載されたりした場合)に、車両重量の増加に伴ってエアサスペンション1のエア室1Cが縮小されるので、車高は設定高さ(目標とする車高)よりも低くなる。そこで、このような場合には、車高を目標車高(設定高さ)まで上昇させるため、コントローラ20は、図3に示すように、車高の上げ制御処理を実行する。 When the load on the vehicle increases (for example, when the number of occupants of the vehicle including the driver increases, or when luggage or the like is loaded), the air chamber 1C of the air suspension 1 shrinks as the vehicle weight increases. Therefore, the vehicle height is lower than the set height (target vehicle height). Therefore, in such a case, in order to raise the vehicle height to the target vehicle height (set height), the controller 20 executes a vehicle height raising control process as shown in FIG.
 即ち、図3の処理動作がスタートすると、ステップ1では、圧力検出器19により検出したタンク12内の圧力(即ち、タンク圧力Pt)を読込む。図1に示す各給排気弁11を閉弁位置(a)に保持した状態で、戻し電磁弁16を閉弁位置(e)から開弁位置(f)に切換えることにより、圧力検出器19はタンク12内の圧力を検出することができる。なお、タンク12内の圧力(タンク圧力Pt)の検出後には、戻し電磁弁16を開弁位置(f)から閉弁位置(e)に戻す制御を行う。 3. That is, when the processing operation of FIG. 3 starts, in step 1, the pressure in the tank 12 detected by the pressure detector 19 (that is, the tank pressure Pt) is read. By switching the return solenoid valve 16 from the valve closing position (e) to the valve opening position (f) while each of the supply / exhaust valves 11 shown in FIG. 1 is held at the valve closing position (a), the pressure detector 19 The pressure in the tank 12 can be detected. After detecting the pressure in the tank 12 (tank pressure Pt), control is performed to return the return solenoid valve 16 from the open position (f) to the closed position (e).
 次のステップ2では、タンク圧力Ptが高圧閾値Pm以上か否かを判定する。この高圧閾値Pmは、コンプレッサ2を使わずに、タンク12内の圧縮空気によってエアサスペンション1を車高上げ方向に作動できる程度に高い圧力値に設定されている。ステップ2で「YES」と判定したときには、タンク12の圧力(タンク圧力Pt)が十分に高い高圧状態であると判断できる。 In the next step 2, it is determined whether or not the tank pressure Pt is equal to or higher than the high pressure threshold Pm. The high pressure threshold value Pm is set to a pressure value high enough to operate the air suspension 1 in the vehicle height increasing direction by the compressed air in the tank 12 without using the compressor 2. When it is determined “YES” in step 2, it can be determined that the pressure of the tank 12 (tank pressure Pt) is a sufficiently high pressure state.
 そこで、次のステップ3では戻し電磁弁16を閉弁位置(e)から開弁位置(f)に切換えて開弁状態とし、次のステップ4では、エアサスペンション1の給排気弁11を開弁位置(b)に切換える。これにより、タンク12内の圧縮空気をエアサスペンション1のエア室1C内に直接的に供給することができ、コンプレッサ2を停止させたままで、エアサスペンション1を車高上げ方向に作動することができる。 Therefore, in the next step 3, the return solenoid valve 16 is switched from the closed position (e) to the open position (f) to open the valve, and in the next step 4, the supply / exhaust valve 11 of the air suspension 1 is opened. Switch to position (b). Thereby, the compressed air in the tank 12 can be directly supplied into the air chamber 1C of the air suspension 1, and the air suspension 1 can be operated in the vehicle height increasing direction while the compressor 2 is stopped. .
 このとき、ステップ5では、車高センサ21からの検出信号により車高を読込む。次のステップ6では、車高が目標車高(設定高さ)よりも低いか否かを判定する。そして、ステップ6で「YES」と判定したときには、車高が設定高さよりも低く、目標車高に到達はしていないので、前記ステップ3に戻って、これ以降の処理を続ける。 At this time, in step 5, the vehicle height is read based on the detection signal from the vehicle height sensor 21. In the next step 6, it is determined whether or not the vehicle height is lower than the target vehicle height (set height). Then, if "YES" is determined in step 6, the vehicle height is lower than the set height and has not reached the target vehicle height, so the flow returns to step 3 and the subsequent processing is continued.
 一方、ステップ6で「NO」と判定したときには、車高が設定高さ以上となって、目標車高に達するまで車高が上げられたと判断することができる。このため、次のステップ7では、エアサスペンション1による車高上げ動作を停止させる。即ち、ステップ7の処理では、車高が目標車高に達した状態で、給排気弁11を閉弁位置(a)とし、吸気電磁弁14も閉弁位置(c)としたまま、戻し電磁弁16を閉弁位置(e)に戻すように制御する。そして、次のステップ8でリターンする。 On the other hand, if "NO" is determined in step 6, it can be determined that the vehicle height has become equal to or higher than the set height and the vehicle height has been increased until the vehicle height reaches the target vehicle height. Therefore, in the next step 7, the vehicle height raising operation by the air suspension 1 is stopped. That is, in the process of step 7, when the vehicle height has reached the target vehicle height, the return solenoid valve is kept in the closed position (a) while the intake / exhaust valve 11 is in the closed position (a) and the intake electromagnetic valve 14 is also in the closed position (c). Control is performed to return the valve 16 to the valve closing position (e). Then, the process returns in the next step 8.
 一方、前記ステップ2で「NO」と判定したときには、タンク12のタンク圧力Ptが高圧状態(タンク12からエアサスペンション1に圧縮空気を供給できるような高圧状態)ではないと判断できる。そこで、次のステップ9では、吸気電磁弁14を閉弁位置(e)から開弁位置(d)に切換え、タンク12をタンク側吸込管路13を介して吸・排気管路4に連通させる。なお、ステップ9では、戻し電磁弁16が既に閉弁位置(e)に戻されており、タンク12は給排管路5に対して遮断されている。 On the other hand, when the determination in step 2 is “NO”, it can be determined that the tank pressure Pt of the tank 12 is not in a high pressure state (a high pressure state in which compressed air can be supplied from the tank 12 to the air suspension 1). Therefore, in the next step 9, the intake electromagnetic valve 14 is switched from the valve closing position (e) to the valve opening position (d), and the tank 12 is communicated with the intake / exhaust line 4 via the tank side intake line 13. . In step 9, the return solenoid valve 16 has already been returned to the valve closing position (e), and the tank 12 is shut off from the supply / discharge conduit 5.
 次のステップ10では電動モータ3によりコンプレッサ2を駆動し、ステップ11ではエアサスペンション1の給排気弁11を開弁位置(b)に切換える。これにより、タンク12内の圧縮空気(相対的に低圧な圧縮空気)は、コンプレッサ2の作動に伴って吸気側2Aから吸込まれ、吐出側2Bからは圧縮空気がエアドライヤ6、スローリターンバルブ7を介してエアサスペンション1のエア室1Cに供給され、車高を上昇方向に駆動できる。このように、車高の上昇時には、コンプレッサ2で圧縮された空気は、エアドライヤ6を通ることにより乾燥され、乾燥状態の圧縮空気がエアサスペンション1のエア室1C内へと供給される。 In the next step 10, the compressor 2 is driven by the electric motor 3, and in the step 11, the supply / exhaust valve 11 of the air suspension 1 is switched to the valve opening position (b). As a result, the compressed air (relatively low-pressure compressed air) in the tank 12 is sucked in from the intake side 2A with the operation of the compressor 2, and the compressed air is sent from the discharge side 2B to the air dryer 6 and the slow return valve 7. The air is supplied to the air chamber 1C of the air suspension 1 via the air suspension 1 so that the vehicle height can be increased. As described above, when the vehicle height increases, the air compressed by the compressor 2 is dried by passing through the air dryer 6, and the compressed air in a dry state is supplied into the air chamber 1 </ b> C of the air suspension 1.
 この場合、コンプレッサ2は、タンク12に貯めた圧縮空気を吸気側2Aから吸込みつつ、吐出側2Bにより高い圧力の圧縮空気を発生させることができ、この圧縮空気をエアサスペンション1のエア室1C内に迅速に供給することができる。換言すると、コンプレッサ2は、大気圧状態の空気ではなく、予め圧縮されたタンク12内の圧縮空気を吸い込んで、より高い圧力の圧縮空気を生成できるので、圧縮空気の昇圧時間を短くすることができ、エアサスペンション1のエア室1Cを早期に伸長(上昇)させることができる。 In this case, the compressor 2 can generate compressed air having a higher pressure on the discharge side 2B while sucking the compressed air stored in the tank 12 from the intake side 2A. Can be supplied quickly. In other words, the compressor 2 can generate compressed air at a higher pressure by sucking the compressed air in the tank 12 that has been compressed beforehand, instead of the air at the atmospheric pressure, so that the pressurizing time of the compressed air can be shortened. Thus, the air chamber 1C of the air suspension 1 can be extended (elevated) at an early stage.
 この間、タンク12内の圧縮空気は、コンプレッサ2の吸気側2Aに吸込まれるため、タンク12内の圧力は漸次低下する。しかし、この状態で、仮にタンク12の内圧が負圧になった場合には、吸気バルブ18(チェック弁)が自動的に開弁される。即ち、吸気バルブ18は、例えば接続点4A側が大気圧以下になると開弁するように設定することで、コンプレッサ2は圧縮に不足する空気を吸排ポート9から吸込んで、必要な吸込み空気量を確保することができる。 During this time, the compressed air in the tank 12 is sucked into the intake side 2A of the compressor 2, so that the pressure in the tank 12 gradually decreases. However, if the internal pressure of the tank 12 becomes negative in this state, the intake valve 18 (check valve) is automatically opened. That is, by setting the intake valve 18 to open when, for example, the connection point 4A side becomes lower than the atmospheric pressure, the compressor 2 sucks air insufficient for compression from the suction / discharge port 9 to secure a necessary suction air amount. can do.
 このため、コンプレッサ2は、吸排ポート9、吸・排気管路4を介して外気から空気を吸気しつつ、圧縮空気を給排管路5、エアドライヤ6およびスローリターンバルブ7を介してエアサスペンション1のエア室1Cへと供給することができる。そして、この場合も、ステップ12では、車高センサ21からの検出信号により車高を読込む。次のステップ13では、車高が目標車高(設定高さ)よりも低いか否かを判定する。ステップ13で「YES」と判定したときには、車高が設定高さよりも低く、目標車高に到達はしていないので、前記ステップ9に戻って、これ以降の処理を続ける。 For this reason, the compressor 2 draws compressed air from the outside air through the intake / exhaust port 9 and the intake / exhaust line 4, and sends compressed air through the supply / exhaust line 5, the air dryer 6 and the slow return valve 7. To the air chamber 1C. In this case also, in step 12, the vehicle height is read based on the detection signal from the vehicle height sensor 21. In the next step 13, it is determined whether or not the vehicle height is lower than the target vehicle height (set height). If "YES" is determined in the step 13, the vehicle height is lower than the set height and has not reached the target vehicle height, so the flow returns to the step 9 and the subsequent processing is continued.
 一方、ステップ13で「NO」と判定したときには、車高が設定高さ以上となって、目標車高に達するまで車高が上げられたと判断することができる。このため、車高上げ処理を終了させるべく、ステップ7の処理を実行し、給排気弁11を閉弁位置(a)とし、戻し電磁弁16を閉弁位置(e)としたまま、吸気電磁弁14を閉弁位置(c)に戻すように制御する。そして、次のステップ8でリターンする。このとき、コンプレッサ2の電動モータ3は、圧縮運転を中断させるために駆動を停止することができる。 On the other hand, if "NO" is determined in the step 13, it can be determined that the vehicle height has become higher than the set height and the vehicle height has been increased until the vehicle height reaches the target vehicle height. Therefore, in order to end the vehicle height raising processing, the processing of step 7 is executed, and the intake electromagnetic valve is kept in the closed position (e) with the supply / exhaust valve 11 in the closed position (a) and the intake electromagnetic valve 16 in the closed position (e). The valve 14 is controlled to return to the valve closing position (c). Then, the process returns in the next step 8. At this time, the drive of the electric motor 3 of the compressor 2 can be stopped to interrupt the compression operation.
 次に、車両の載荷重量が減少した場合(例えば、車両の乗員が減ったり、荷物等の積載量が減ったりした場合)に、車両重量の減少に伴ってエアサスペンション1のエア室1Cが拡張されるので、車高が設定高さ(目標とする車高)よりも高くなる。そこで、このような場合には、車高を目標車高(設定高さ)まで下降させるため、コントローラ20は、図4に示すように、車高の下げ制御処理を実行する。 Next, when the load of the vehicle decreases (for example, when the number of occupants of the vehicle decreases or the load of luggage or the like decreases), the air chamber 1C of the air suspension 1 expands as the vehicle weight decreases. Therefore, the vehicle height becomes higher than the set height (target vehicle height). Therefore, in such a case, in order to lower the vehicle height to the target vehicle height (set height), the controller 20 executes a vehicle height reduction control process as shown in FIG.
 即ち、図4の処理動作がスタートすると、ステップ21では、圧力検出器19により検出したエアサスペンション1のエア室1C内の圧力(即ち、サスペンション圧力Ps)を読込む。この場合、戻し電磁弁16は閉弁位置(e)に戻したままで、給排気弁11を閉弁位置(a)から開弁位置(b)に切換えることにより、エアサスペンション1のエア室1Cを給排管路5内と連通させ、この状態で、サスペンション圧力Psを圧力検出器19により検出する。なお、サスペンション圧力Psの検出後には、給排気弁11を開弁位置(b)から閉弁位置(a)に戻す制御を行う。 4. That is, when the processing operation of FIG. 4 starts, in step 21, the pressure in the air chamber 1C of the air suspension 1 detected by the pressure detector 19 (that is, the suspension pressure Ps) is read. In this case, the air chamber 1C of the air suspension 1 is switched by switching the supply / exhaust valve 11 from the closed position (a) to the open position (b) while the return electromagnetic valve 16 is returned to the closed position (e). The suspension pressure Ps is detected by the pressure detector 19 in this state. After the detection of the suspension pressure Ps, control is performed to return the supply / exhaust valve 11 from the valve opening position (b) to the valve closing position (a).
 次のステップ22では、圧力検出器19により検出したタンク12内の圧力、即ちタンク圧力Ptを読込む。この場合、図1に示す各給排気弁11を閉弁位置(a)に保持した状態で、戻し電磁弁16を閉弁位置(e)から開弁位置(f)に切換えることにより、圧力検出器19はタンク12内の圧力を検出することができる。なお、タンク圧力Ptの検出後には、戻し電磁弁16を開弁位置(f)から閉弁位置(e)に戻す制御を行う。 In the next step 22, the pressure in the tank 12 detected by the pressure detector 19, that is, the tank pressure Pt is read. In this case, the pressure detection is performed by switching the return solenoid valve 16 from the closed position (e) to the open position (f) while each of the supply / exhaust valves 11 shown in FIG. 1 is held at the closed position (a). The device 19 can detect the pressure in the tank 12. After the detection of the tank pressure Pt, control is performed to return the return solenoid valve 16 from the open position (f) to the closed position (e).
 次のステップ23ではサスペンション圧力Psとタンク圧力Ptとを比較し、サスペンション圧力Psがタンク圧力Ptよりも低い(Ps<Pt)か否かを判定する。ステップ23で「YES」と判定したときには、タンク圧力Ptがサスペンション圧力Psよりも高いので、車高を下げるためには、エアサスペンション1(エア室1C)内の圧縮空気を直接的に外気に排出する必要がある。 In the next step 23, the suspension pressure Ps is compared with the tank pressure Pt to determine whether or not the suspension pressure Ps is lower than the tank pressure Pt (Ps <Pt). If "YES" is determined in step 23, since the tank pressure Pt is higher than the suspension pressure Ps, the compressed air in the air suspension 1 (air chamber 1C) is directly discharged to the outside air to reduce the vehicle height. There is a need to.
 そこで、ステップ24ではエアサスペンション1の給排気弁11を開弁位置(b)に切換え、次のステップ25では、排気電磁弁17を閉弁位置(g)から開弁位置(h)に切換える制御を行う。これにより、エアサスペンション1のエア室1Cから給排管路5、バイパス管路8および排気電磁弁17を介して圧縮空気を外気へと直接的に排出する。 Then, in step 24, the supply / exhaust valve 11 of the air suspension 1 is switched to the open position (b), and in the next step 25, the exhaust electromagnetic valve 17 is switched from the closed position (g) to the open position (h). I do. As a result, the compressed air is directly discharged from the air chamber 1C of the air suspension 1 to the outside air via the supply / discharge line 5, the bypass line 8, and the exhaust solenoid valve 17.
 このため、エアサスペンション1のエア室1Cを縮小させて車高を下げるときの車高下降速度を速くすることができる。また、このときにエアサスペンション1(エア室1C)から排出される圧縮空気は、給排管路5を介してエアドライヤ6内を逆流するので、エアドライヤ6の水分吸着剤は、エアサスペンション1の乾燥された空気を通すことにより再生され、エアドライヤ6の再生を効率的に行うことができる。 Therefore, the vehicle height descending speed when the vehicle height is reduced by reducing the air chamber 1C of the air suspension 1 can be increased. Also, at this time, the compressed air discharged from the air suspension 1 (air chamber 1C) flows back through the air dryer 6 via the supply / discharge conduit 5, so that the moisture adsorbent of the air dryer 6 causes the air suspension 1 to dry. The air dryer 6 is regenerated by passing the supplied air, and the air dryer 6 can be efficiently regenerated.
 次のステップ26では、車高センサ21からの検出信号により車高を読込む。そして、ステップ27では、車高が目標車高(設定高さ)よりも高いか否かを判定する。ステップ27で「YES」と判定したときには、車高が設定高さよりも高く、目標車高まで車高が下降されていないので、前記ステップ24に戻って、これ以降の処理を続ける。 In the next step 26, the vehicle height is read based on the detection signal from the vehicle height sensor 21. Then, in a step 27, it is determined whether or not the vehicle height is higher than a target vehicle height (set height). If "YES" is determined in the step 27, the vehicle height is higher than the set height, and the vehicle height has not been lowered to the target vehicle height. Therefore, the process returns to the step 24 and the subsequent processes are continued.
 一方、ステップ27で「NO」と判定したときには、車高が設定高さ以下となって、目標車高に達するまで車高が下げられたと判断することができる。このため、次のステップ28では、エアサスペンション1による車高下げ動作を停止させる。即ち、ステップ28の処理では、車高が目標車高に達した状態で、給排気弁11を閉弁位置(a)とし、戻し電磁弁16を閉弁位置(e)にしたまま、排気電磁弁17を閉弁位置(c)に戻すように制御する。そして、次のステップ29でリターンする。 On the other hand, if "NO" is determined in the step 27, it can be determined that the vehicle height has become equal to or less than the set height and the vehicle height has been lowered until reaching the target vehicle height. Therefore, in the next step 28, the vehicle height lowering operation by the air suspension 1 is stopped. That is, in the process of step 28, when the vehicle height has reached the target vehicle height, the exhaust electromagnetic valve is kept in the closed position (a) while the return solenoid valve 16 is kept in the closed position (e). The valve 17 is controlled to return to the valve closing position (c). Then, the process returns in the next step 29.
 また、前記ステップ23で「NO」と判定したときには、サスペンション圧力Psがタンク圧力Pt以上となっているので、次のステップ30では戻し電磁弁16を閉弁位置(e)から開弁位置(f)に切換えて開弁状態とする。次のステップ31では、サスペンション圧力Psとタンク圧力Ptとの圧力差ΔPを、「ΔP=Ps-Pt」として算出する。 When the determination in step 23 is "NO", the suspension pressure Ps is equal to or higher than the tank pressure Pt, and in the next step 30, the return solenoid valve 16 is moved from the closed position (e) to the open position (f). ) To open the valve. In the next step 31, the pressure difference ΔP between the suspension pressure Ps and the tank pressure Pt is calculated as “ΔP = Ps−Pt”.
 次のステップ32では、圧力差ΔPが所定値としての低圧閾値P0以下まで小さいか否かを、「ΔP≦P0」として判定する。この低圧閾値P0は、エアサスペンション1を車高下げ方向に作動させるときに、エア室1C内の圧縮空気をタンク12内に逃がすか、外気に直接的に排出するか否かの判断基準となる圧力である。 で は In the next step 32, it is determined as “ΔP ≦ P0” whether or not the pressure difference ΔP is smaller than a low pressure threshold value P0 as a predetermined value. The low pressure threshold value P0 serves as a criterion for determining whether the compressed air in the air chamber 1C is released into the tank 12 or directly discharged to the outside air when the air suspension 1 is operated in the vehicle height lowering direction. Pressure.
 即ち、エアサスペンション1(エア室1C)内の圧縮空気をタンク12内に逃がすことにより、エアサスペンション1のエア室1Cを縮小させて車高を下げるときの速度(即ち、車高下降速度V)は、エアサスペンション1とタンク12の圧力差ΔPが低圧閾値P0以下まで小さくなると、過度に遅くなってしまう。 That is, the speed at which the vehicle height is reduced by reducing the air chamber 1C of the air suspension 1 by releasing the compressed air in the air suspension 1 (air chamber 1C) into the tank 12 (that is, the vehicle height descending speed V). When the pressure difference ΔP between the air suspension 1 and the tank 12 becomes smaller than the low pressure threshold value P0, it becomes too slow.
 図5に示す特性線23は、サスペンション圧力Psとタンク圧力Ptとの圧力差ΔPと、車高下降速度Vとの関係を試験データ等に基づいてマップ化した特性である。圧力差ΔPが低圧閾値P0以下となったときには、車高下降速度Vが零よりも大きく、速度閾値V0以下(0<V≦V0)となっている。即ち、車高の下げ速度(車高下降速度V)が速度閾値V0まで遅くなっているため、車高を下げる制御処理に余分な時間がかかり、車高調整時の作業性が低下する。 The characteristic line 23 shown in FIG. 5 is a characteristic obtained by mapping the relationship between the pressure difference ΔP between the suspension pressure Ps and the tank pressure Pt and the vehicle height descending speed V based on test data and the like. When the pressure difference ΔP is equal to or less than the low pressure threshold value P0, the vehicle height descending speed V is larger than zero and equal to or less than the speed threshold value V0 (0 <V ≦ V0). That is, since the lowering speed of the vehicle height (vehicle lowering speed V) is reduced to the speed threshold value V0, extra time is required for the control process of lowering the vehicle height, and the workability at the time of adjusting the vehicle height is reduced.
 そこで、ステップ32で「YES」と判定したときには、圧力差ΔPが低圧閾値P0以下まで小さくなり、車高下降速度Vが遅くなる場合と判断できる。このため、次のステップ33では戻し電磁弁16を閉弁位置(e)に切換えて、タンク12を給排管路5に対して遮断する。その後は前記ステップ24~27の処理を実行して、エアサスペンション1のエア室1Cから給排管路5、バイパス管路8および排気電磁弁17を介して圧縮空気を外気へと直接的に排出する。 Therefore, if "YES" is determined in step 32, it can be determined that the pressure difference ΔP becomes smaller than the low pressure threshold value P0 and the vehicle height descending speed V becomes slower. Therefore, in the next step 33, the return solenoid valve 16 is switched to the valve closing position (e), and the tank 12 is shut off from the supply / discharge pipe line 5. Thereafter, the processing of steps 24 to 27 is executed, and the compressed air is directly discharged from the air chamber 1C of the air suspension 1 to the outside air via the supply / discharge line 5, the bypass line 8, and the exhaust solenoid valve 17. I do.
 これにより、エアサスペンション1のエア室1Cを縮小させて車高を下げるときの車高下降速度を速くすることができる。そして、この場合も、エアサスペンション1(エア室1C)から排出される圧縮空気は、給排管路5を介してエアドライヤ6内を逆流するので、エアドライヤ6の水分吸着剤は、エアサスペンション1の乾燥された空気を通すことにより再生され、エアドライヤ6の再生を効率的に行うことができる。 This makes it possible to increase the vehicle height lowering speed when reducing the vehicle height by reducing the air chamber 1C of the air suspension 1. In this case as well, the compressed air discharged from the air suspension 1 (air chamber 1C) flows back through the air dryer 6 through the supply / discharge conduit 5, so that the moisture adsorbent of the air dryer 6 is It is regenerated by passing the dried air, and the air dryer 6 can be efficiently regenerated.
 一方、ステップ32で「NO」と判定するときには、圧力差ΔPが低圧閾値P0よりも大きく、車高の下げ速度(車高下降速度V)を速度閾値V0よりも速くできる場合と判断できる。このため、次のステップ34ではエアサスペンション1の給排気弁11を開弁位置(b)に切換える。この場合、戻し電磁弁16は前記ステップ30で開弁されているので、エアサスペンション1(エア室1C)内の圧縮空気をタンク12内に逃がすように排出させ、エアサスペンション1のエア室1Cを縮小させて車高を下げることができる。 On the other hand, when "NO" is determined in the step 32, it can be determined that the pressure difference ΔP is larger than the low pressure threshold value P0 and the speed of lowering the vehicle height (vehicle height lowering speed V) can be faster than the speed threshold value V0. Therefore, in the next step 34, the supply / exhaust valve 11 of the air suspension 1 is switched to the valve opening position (b). In this case, since the return solenoid valve 16 is opened in the step 30, the compressed air in the air suspension 1 (air chamber 1C) is discharged so as to escape into the tank 12, and the air chamber 1C of the air suspension 1 is discharged. The height can be reduced by reducing the size.
 次のステップ35では、車高センサ21からの検出信号により車高を読込む。そして、ステップ36では、車高が目標車高(設定高さ)よりも高いか否かを判定する。ステップ27で「YES」と判定したときには、車高が設定高さよりも高く、目標車高まで車高が下降されていないので、前記ステップ30に戻って、これ以降の処理を続ける。 In the next step 35, the vehicle height is read based on the detection signal from the vehicle height sensor 21. Then, in step 36, it is determined whether or not the vehicle height is higher than the target vehicle height (set height). If "YES" is determined in the step 27, the vehicle height is higher than the set height, and the vehicle height has not been lowered to the target vehicle height. Therefore, the process returns to the step 30, and the subsequent processing is continued.
 一方、ステップ36で「NO」と判定したときには、車高が設定高さ以下となって、目標車高に達するまで車高が下げられたと判断することができる。このため、前記ステップ28の処理により、エアサスペンション1による車高下げ動作を停止させる。即ち、ステップ28の処理は、車高が目標車高に達した状態で、車高下げ処理を終了させるため、給排気弁11を閉弁位置(a)とし、戻し電磁弁16を閉弁位置(e)にしたまま、排気電磁弁17を閉弁位置(c)に戻すように制御する。そして、次のステップ29でリターンする。 On the other hand, if "NO" is determined in the step 36, it can be determined that the vehicle height has become lower than the set height and the vehicle height has been lowered until reaching the target vehicle height. For this reason, the vehicle height lowering operation by the air suspension 1 is stopped by the process of step 28. That is, in the process of step 28, the supply / exhaust valve 11 is set to the closed position (a) and the return solenoid valve 16 is set to the closed position in order to end the vehicle height reduction process when the vehicle height has reached the target vehicle height. Control is performed such that the exhaust electromagnetic valve 17 is returned to the valve closing position (c) while keeping the state (e). Then, the process returns in the next step 29.
 換言すると、コントローラ20は、車高センサ21からの検出信号に基づいて目標車高に達したと判定すると、車高の下げ動作を終了させるため、給排気弁11のソレノイドを消磁させるように制御信号を出力し、給排気弁11を閉弁位置(a)に復帰させる。これにより、コンプレッサ2の給排管路5は、エアサスペンション1のエア室1Cに対して遮断されるので、エアサスペンション1は、前記目標車高を維持するように空気ばねとして動作し、前述の如く車高を下げた状態に保つことができる。 In other words, when the controller 20 determines that the target vehicle height has been reached based on the detection signal from the vehicle height sensor 21, the controller 20 performs control to demagnetize the solenoid of the supply / exhaust valve 11 to end the vehicle height lowering operation. A signal is output to return the supply / exhaust valve 11 to the valve closing position (a). As a result, the supply / discharge pipe line 5 of the compressor 2 is shut off from the air chamber 1C of the air suspension 1, so that the air suspension 1 operates as an air spring so as to maintain the target vehicle height, and Thus, the vehicle height can be kept low.
 かくして、第1の実施の形態によれば、タンク12からタンク側吸込管路13(第1通路)を介して供給される空気を圧縮するように構成されたコンプレッサ2と、該コンプレッサ2の吐出側2Bにエアドライヤ6を介して接続されるエアサスペンション1と、エアサスペンション1(エア室1C)内の圧縮空気を、タンク用管路15(第2通路)を介してタンク12に戻すように構成された戻し電磁弁16と、タンク12内の圧力に応じて開弁してエアサスペンション1(エア室1C)内の圧縮空気をエアドライヤ6を介して排気するためバイパス管路8(第3通路)に設けられる排気電磁弁17と、コンプレッサ2の吸気側2Aとタンク12との間の空気の圧力が大気圧以下のとき、大気から空気を吸気するように構成されたチェック弁である吸気バルブ18とを備えている。 Thus, according to the first embodiment, the compressor 2 configured to compress the air supplied from the tank 12 through the tank-side suction pipe 13 (first passage), and the discharge of the compressor 2 An air suspension 1 connected to the side 2B via an air dryer 6 and a structure in which compressed air in the air suspension 1 (air chamber 1C) is returned to the tank 12 via a tank pipe 15 (second passage). The bypass line 8 (third passage) for opening the valve in accordance with the returned solenoid valve 16 and the pressure in the tank 12 to exhaust the compressed air in the air suspension 1 (air chamber 1C) through the air dryer 6. The check is configured to take in air from the atmosphere when the pressure of the air between the exhaust solenoid valve 17 provided at the intake side 2A of the compressor 2 and the tank 12 is lower than the atmospheric pressure. And a suction valve 18 is.
 このため、コントローラ20による車高上げ制御時には、電動モータ3でコンプレッサ2を駆動することより、タンク12内の圧縮空気をコンプレッサ2の吸気側2Aから吸込みつつ、吐出側2Bからの圧縮空気をエアドライヤ6、スローリターンバルブ7を介してエアサスペンション1に供給でき、車高を上昇方向に駆動できる。そして、車高の上昇時には、コンプレッサ2で圧縮された空気をエアドライヤ6で乾燥させ、乾燥状態の圧縮空気をエアサスペンション1のエア室1C内へと供給することができる。 For this reason, at the time of vehicle height raising control by the controller 20, the compressor 2 is driven by the electric motor 3, so that the compressed air in the tank 12 is sucked in from the intake side 2A of the compressor 2 and the compressed air from the discharge side 2B is air-dried. 6. It can be supplied to the air suspension 1 via the slow return valve 7 and can drive the vehicle height in the ascending direction. When the vehicle height rises, the air compressed by the compressor 2 is dried by the air dryer 6, and the dry compressed air can be supplied into the air chamber 1 </ b> C of the air suspension 1.
 この場合、コンプレッサ2は、予めタンク12内に貯留された圧縮空気を吸気側2Aから吸込みつつ、吐出側2Bからより高い圧力の圧縮空気として、エアサスペンション1のエア室1C内に供給することができる。このため、高い圧力の圧縮空気をエアサスペンション1のエア室1C内に短時間で迅速に供給することができ、エアサスペンション1を早期に伸長させて車高を上げることができる。従って、従来のオープンタイプ(例えば、コンプレッサによって空気を大気圧から圧縮するタイプ)に比較して、車高を素早く効率的に上昇させることが可能となる。 In this case, the compressor 2 can supply compressed air having a higher pressure from the discharge side 2B into the air chamber 1C of the air suspension 1 while sucking the compressed air previously stored in the tank 12 from the intake side 2A. it can. Therefore, high-pressure compressed air can be quickly supplied into the air chamber 1C of the air suspension 1 in a short time, and the air suspension 1 can be quickly extended to increase the vehicle height. Therefore, the vehicle height can be quickly and efficiently increased as compared with a conventional open type (for example, a type in which air is compressed from atmospheric pressure by a compressor).
 一方、この状態で、仮にタンク12の内圧が負圧になった場合は、吸気バルブ18(チェック弁)が自動的に開弁される。このため、コンプレッサ2は、吸排ポート9、吸・排気管路4を介して外気から空気を吸気しつつ、圧縮空気を給排管路5、エアドライヤ6およびスローリターンバルブ7を介してエアサスペンション1のエア室1Cへと供給することができる。 On the other hand, in this state, if the internal pressure of the tank 12 becomes negative, the intake valve 18 (check valve) is automatically opened. For this reason, the compressor 2 draws compressed air from the outside air through the intake / exhaust port 9 and the intake / exhaust line 4, and sends compressed air through the supply / exhaust line 5, the air dryer 6 and the slow return valve 7. To the air chamber 1C.
 また、車高上げ制御が終了した後には、各エアサスペンション1側の給排気弁11を閉弁させ、戻し電磁弁16を開弁した状態でコンプレッサ2を駆動する制御を行うことができる。これにより、コンプレッサ2で発生した圧縮空気をタンク12内に貯留することができ、タンク12内に蓄える圧縮空気量をコントローラ20の制御で調整することができる。 After the vehicle height raising control is completed, the control for driving the compressor 2 with the supply / exhaust valve 11 on each air suspension 1 side closed and the return solenoid valve 16 opened can be performed. Thus, the compressed air generated by the compressor 2 can be stored in the tank 12, and the amount of compressed air stored in the tank 12 can be adjusted by the control of the controller 20.
 この場合、吸気電磁弁14は開弁位置(d)とすることにより、コンプレッサ2の吸気側2Aをタンク12と同等な圧力に設定できる。また、吸気電磁弁14を開弁位置(d)から閉弁位置(c)に戻して閉弁させた場合には、コンプレッサ2の吸気側2Aを大気圧に近い圧力に設定し、外気をコンプレッサ2で吸込むことができる。 In this case, by setting the intake solenoid valve 14 to the open position (d), the intake side 2A of the compressor 2 can be set to a pressure equivalent to that of the tank 12. When the intake solenoid valve 14 is returned from the open position (d) to the closed position (c) and closed, the intake side 2A of the compressor 2 is set to a pressure close to the atmospheric pressure, and the outside air is compressed. 2 can inhale.
 また、コントローラ20による車高下げ制御時には、タンク12内の圧力とエアサスペンション1(エア室1C)内の圧力との圧力差ΔPが、所定値としての低圧閾値P0よりも大きいとき(即ち、車高の下げ速度Vが速度閾値V0よりも速いとき)に、排気電磁弁17を閉弁し、戻し電磁弁16を開弁した状態でエアサスペンション1(エア室1C)内の圧縮空気を、タンク12内に向けて逃すように排出でき、エアサスペンション1とタンク12との間で圧縮空気を流通させて車高を下げることができる。 Further, at the time of vehicle height reduction control by the controller 20, when the pressure difference ΔP between the pressure in the tank 12 and the pressure in the air suspension 1 (air chamber 1C) is larger than a low pressure threshold value P0 as a predetermined value (that is, the vehicle). When the high reduction speed V is higher than the speed threshold value V0), the compressed air in the air suspension 1 (air chamber 1C) is removed from the tank while the exhaust solenoid valve 17 is closed and the return solenoid valve 16 is opened. The compressed air can be discharged into the air suspension 12 and the compressed air can be circulated between the air suspension 1 and the tank 12 to lower the vehicle height.
 一方、タンク12とエアサスペンション1(エア室1C)との圧力差ΔPが低圧閾値P0以下のとき(即ち、車高の下げ速度Vが速度閾値V0以下まで遅くなったとき)には、戻し電磁弁16を閉弁して排気電磁弁17を開弁する制御を行う。これにより、エアサスペンション1のエア室1Cから圧縮空気を給排管路5、バイパス管路8および排気電磁弁17を介して外気へと直接的に排出でき、エアサスペンション1のエア室1Cを縮小させて車高を下げるときの車高下降速度を速くすることができる。そして、この場合に、エアサスペンション1(エア室1C)から排出される圧縮空気は、給排管路5を介してエアドライヤ6内を逆流するので、エアドライヤ6の水分吸着剤をエアサスペンション1からの乾燥空気により再生することができ、エアドライヤ6の再生を効率的に行うことができる。 On the other hand, when the pressure difference ΔP between the tank 12 and the air suspension 1 (air chamber 1C) is equal to or less than the low pressure threshold value P0 (that is, when the vehicle height reduction speed V is reduced to the speed threshold value V0 or less), the return electromagnetic force is reduced. Control is performed to close the valve 16 and open the exhaust electromagnetic valve 17. Thereby, compressed air can be directly discharged from the air chamber 1C of the air suspension 1 to the outside air via the supply / discharge line 5, the bypass line 8, and the exhaust solenoid valve 17, and the air room 1C of the air suspension 1 is reduced. As a result, the vehicle height lowering speed when the vehicle height is lowered can be increased. In this case, the compressed air discharged from the air suspension 1 (air chamber 1C) flows back through the air dryer 6 through the supply / discharge conduit 5, so that the moisture adsorbent of the air dryer 6 is discharged from the air suspension 1. Regeneration can be performed with dry air, and regeneration of the air dryer 6 can be performed efficiently.
 このように、第1の実施の形態によれば、タンク12内の圧力に応じて排気電磁弁17を開弁させるため、例えばエアサスペンション1とタンク12との圧力差ΔPが所定値(低圧閾値P0)以下まで小さくなったときに、エアサスペンション1内の圧縮空気を排気電磁弁17を介して外気に排出することができる。このため、エアドライヤ6の再生を効率的に行うことができる。 As described above, according to the first embodiment, in order to open the exhaust solenoid valve 17 according to the pressure in the tank 12, for example, the pressure difference ΔP between the air suspension 1 and the tank 12 becomes a predetermined value (low pressure threshold value). When it becomes smaller than P0), the compressed air in the air suspension 1 can be discharged to the outside air via the exhaust solenoid valve 17. Therefore, the air dryer 6 can be efficiently regenerated.
 また、タンク側吸込管路13(第1通路)には、コンプレッサ2の吸気側2Aとタンク12との間に位置して吸気電磁弁14(吸気切替弁)が設けられ、この吸気電磁弁14は閉弁位置(c)と開弁位置(d)との間で切換わる構成としている。これにより、吸気電磁弁14と戻し電磁弁16とを共に閉弁状態にすれば、タンク12内の圧縮空気がタンク外に漏れるのを防ぐことができ、タンク12の気密性を高めることができる。 An intake solenoid valve 14 (intake switching valve) is provided in the tank-side intake pipe 13 (first passage) between the intake side 2A of the compressor 2 and the tank 12. Is configured to switch between a valve closing position (c) and a valve opening position (d). Thus, if both the intake solenoid valve 14 and the return solenoid valve 16 are closed, the compressed air in the tank 12 can be prevented from leaking out of the tank, and the airtightness of the tank 12 can be improved. .
 さらに、制御装置としてのコントローラ20は、コンプレッサ2の作動,停止と、戻し電磁弁16、排気電磁弁17および/または吸気電磁弁14の開,閉とを制御する構成としている。コントローラ20は、コンプレッサ2の作動,停止と、戻し電磁弁16、排気電磁弁17および/または吸気電磁弁14の開,閉とを制御することにより、図3に示すように車高上げ制御処理を実行でき、図4に示すように車高下げ制御処理を実行することができる。 Further, the controller 20 as a control device is configured to control the operation and stop of the compressor 2 and the opening and closing of the return solenoid valve 16, the exhaust solenoid valve 17 and / or the intake solenoid valve 14. The controller 20 controls the operation and stop of the compressor 2 and the opening and closing of the return solenoid valve 16, the exhaust solenoid valve 17 and / or the intake solenoid valve 14, as shown in FIG. Can be executed, and the vehicle height reduction control processing can be executed as shown in FIG.
 しかも、第1の実施の形態によるエアサスペンション装置は、圧縮された乾燥状態の圧縮空気をタンク12に蓄えておくことができ、このタンク12に蓄えられた圧縮空気を、さらにコンプレッサ2で圧縮しつつ、エアサスペンション1に供給することができる閉回路(クローズドタイプ)を実現することができる。また、エアサスペンション1のエア室1Cから排出される圧縮空気を大気中に放出することなく、戻し電磁弁16を用いてタンク12に戻し貯留しておくことができ、乾燥状態の圧縮空気を無駄に排気することなく、有効に活用することができる。 Moreover, the air suspension device according to the first embodiment can store the compressed and dry compressed air in the tank 12, and the compressed air stored in the tank 12 is further compressed by the compressor 2. In addition, a closed circuit (closed type) that can be supplied to the air suspension 1 can be realized. Further, the compressed air discharged from the air chamber 1C of the air suspension 1 can be returned to the tank 12 using the return solenoid valve 16 without being released into the atmosphere, and the compressed air in a dry state is wasted. It can be used effectively without exhausting.
 さらに、第1の実施の形態によるエアサスペンション装置は、コンプレッサ2がタンク12内の圧縮空気を吸込んで圧縮するため、外部の大気から空気を吸込む頻度(即ち、吸気バルブ18の開弁頻度)を大幅に減らすことができ、大気中の粉塵や水分を吸込むことによる不具合の発生頻度を下げることができる。また、従来のクローズドタイプに比較して、特別に圧力検出器(圧力センサ)等を用いて圧力制御等を行うことは必須ではなく、複雑な制御をする必要がなく、全体の構成を簡素化することができる。 Further, in the air suspension device according to the first embodiment, since the compressor 2 sucks and compresses the compressed air in the tank 12, the frequency of sucking air from the outside atmosphere (ie, the frequency of opening the intake valve 18) is reduced. This can greatly reduce the frequency of occurrence of problems caused by inhaling dust and moisture in the atmosphere. In addition, it is not necessary to perform pressure control using a pressure detector (pressure sensor) or the like as compared with the conventional closed type, and there is no need to perform complicated control, and the overall configuration is simplified. can do.
 従って、第1の実施の形態によれば、エアドライヤ6による水分の吸着、再生が適切に行なわれるため吸着剤の飽和を防ぐことができる。また、コントローラ20により複雑な制御を必要としないクローズドタイプのシステムを提供することができる。しかも、従来技術(特許文献1)のように、3方電磁弁を必要とせず、低コストなシステムを提供できる。給排気弁11、吸気電磁弁14、戻し電磁弁16および排気電磁弁17として、オン・オフ式の汎用性の高い電磁式切換弁を採用でき、その数量を最小限とすることができる。 Therefore, according to the first embodiment, since the adsorption and regeneration of moisture by the air dryer 6 are appropriately performed, the saturation of the adsorbent can be prevented. Further, a closed-type system that does not require complicated control by the controller 20 can be provided. Moreover, unlike the related art (Patent Document 1), a low-cost system can be provided without requiring a three-way solenoid valve. As the supply / exhaust valve 11, the intake solenoid valve 14, the return solenoid valve 16, and the exhaust solenoid valve 17, an on / off type versatile electromagnetic switching valve can be adopted, and the number thereof can be minimized.
 しかも、第1の実施の形態にあっては、エアサスペンション装置としての通常使用範囲は、クローズドシステムで成立するため、高頻度使用時の車高上昇時間を短縮することができる。そして、車高調整範囲が通常使用範囲よりも大きくなった場合にのみ、必要に応じて大気を吸気(吸気バルブ18を開弁)したり、圧縮空気を大気中に放出(排気電磁弁17を開弁)したりすることができる。 In addition, in the first embodiment, since the normal use range as the air suspension device is established by the closed system, the vehicle height rising time at the time of frequent use can be reduced. Then, only when the vehicle height adjustment range becomes larger than the normal use range, the air is taken in (opening the intake valve 18) or the compressed air is released into the atmosphere (the exhaust solenoid valve 17 is opened) as necessary. Or open the valve).
 次に、図6は第2の実施の形態を示している。なお、本実施の形態では、前記第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。しかし、第2の実施の形態の特徴は、車高を目標車高(設定高さ)まで下降させる車高下げ処理において、コントローラ20は、車高センサ21からの信号に基づいて車高下げ速度Vdを算出する。そして、コントローラ20は、この車高下げ速度Vdを所定の速度閾値V0と比較することにより、車高下げ速度Vdが遅いか,速いかを判定して排気電磁弁17の開,閉制御を行う構成としている。 FIG. 6 shows a second embodiment. Note that, in the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. However, the feature of the second embodiment is that, in the vehicle height lowering process for lowering the vehicle height to the target vehicle height (set height), the controller 20 uses the signal from the vehicle height sensor 21 to control the vehicle height reduction speed. Calculate Vd. The controller 20 compares the vehicle height reduction speed Vd with a predetermined speed threshold value V0 to determine whether the vehicle height reduction speed Vd is slow or fast, and performs the opening and closing control of the exhaust electromagnetic valve 17. It has a configuration.
 ここで、図6に示す車高下げ処理のプログラムは、例えば図2に示すコントローラ20のメモリ20Aに、速度閾値V0等と共に格納されている。図6の処理動作がスタートすると、コントローラ20は、ステップ41~50までの処理を、前記第1の実施の形態(図4)に示すステップ21~30と同様に行う。この上で、図6に示すステップ51では、エアサスペンション1の給排気弁11を閉弁位置(a)から開弁位置(b)に切換えて開弁させる。このとき、戻し電磁弁16は前記ステップ50で開弁されているので、エアサスペンション1(エア室1C)内の圧縮空気をタンク12内に逃がすように排出させ、エアサスペンション1のエア室1Cを縮小させて車高を下げるようにする。 Here, the vehicle height lowering processing program shown in FIG. 6 is stored together with the speed threshold value V0 and the like in the memory 20A of the controller 20 shown in FIG. 2, for example. When the processing operation of FIG. 6 starts, the controller 20 performs the processing of steps 41 to 50 in the same manner as in steps 21 to 30 shown in the first embodiment (FIG. 4). Then, in step 51 shown in FIG. 6, the supply / exhaust valve 11 of the air suspension 1 is switched from the valve closing position (a) to the valve opening position (b) and opened. At this time, since the return solenoid valve 16 has been opened in step 50, the compressed air in the air suspension 1 (air chamber 1C) is discharged so as to escape into the tank 12, and the air chamber 1C of the air suspension 1 is discharged. Reduce the vehicle height by reducing it.
 次のステップ52では、車高センサ21からの信号(車高検出値)により車高の読込みを行う。そして、次のステップ53では、車高センサ21からの信号に基づいて車高の下げ速度(即ち、車高下げ速度Vd)を算出する。この車高下げ速度Vdは、例えばプログラムサイクル毎の車高検出値の変化を、プログラムサイクルの時間(即ち、読込み繰り返し時間)で割算して求めることができる。また、車高下げ速度Vdは、車高センサ21からの車高検出値を微分して算出してもよい。 In the next step 52, the vehicle height is read based on the signal (vehicle height detection value) from the vehicle height sensor 21. Then, in the next step 53, the vehicle height reduction speed (that is, vehicle height reduction speed Vd) is calculated based on the signal from the vehicle height sensor 21. The vehicle height lowering speed Vd can be obtained, for example, by dividing the change in the vehicle height detection value for each program cycle by the time of the program cycle (that is, the read repetition time). The vehicle height lowering speed Vd may be calculated by differentiating the vehicle height detection value from the vehicle height sensor 21.
 次のステップ54では、車高下げ速度Vdが所定値としての低速な速度閾値V0以下まで下がり、車高下げ速度Vdが遅くなっているか否かを、「Vd≦V0」として判定する。この低速な速度閾値V0は、エアサスペンション1を車高下げ方向に作動させるときに、エア室1C内の圧縮空気をタンク12内に逃がすか、外気に直接的に排出するか否かの判断基準となる所定の車高下げ速度(下降速度)である。 In the next step 54, it is determined as "Vd≤V0" whether or not the vehicle height lowering speed Vd has decreased to or below the low speed threshold V0 as a predetermined value and the vehicle height lowering speed Vd has decreased. The low speed threshold value V0 is a criterion for determining whether the compressed air in the air chamber 1C is released into the tank 12 or discharged directly to the outside air when the air suspension 1 is operated in the vehicle height lowering direction. Is a predetermined vehicle height lowering speed (lowering speed).
 ここで、ステップ54で「YES」と判定したときには、車高下げ速度Vdが低速な速度閾値V0まで下がって遅くなっている。そこで、次のステップ55では、戻し電磁弁16を閉弁位置(e)に切換えて、タンク12を給排管路5に対して遮断する。その後は、前記ステップ44~47の処理を実行して、エアサスペンション1のエア室1Cからの圧縮空気を、給排管路5、バイパス管路8および排気電磁弁17を介して外気へと直接的に排出する。 Here, when “YES” is determined in step 54, the vehicle height reduction speed Vd has decreased to the low speed threshold value V0 and has become slow. Therefore, in the next step 55, the return solenoid valve 16 is switched to the valve closing position (e), and the tank 12 is shut off from the supply / discharge pipe line 5. Thereafter, the processing of steps 44 to 47 is executed to directly supply the compressed air from the air chamber 1C of the air suspension 1 to the outside air via the supply / discharge line 5, the bypass line 8, and the exhaust solenoid valve 17. To be discharged.
 これにより、エアサスペンション1のエア室1Cを縮小させて車高を下げるときの車高下降速度を速くすることができる。そして、この場合も、エアサスペンション1(エア室1C)から排出される圧縮空気は、給排管路5を介してエアドライヤ6内を逆流するので、エアドライヤ6の水分吸着剤は、エアサスペンション1の乾燥された空気を通すことにより再生され、エアドライヤ6の再生を効率的に行うことができる。 This makes it possible to increase the vehicle height lowering speed when reducing the vehicle height by reducing the air chamber 1C of the air suspension 1. In this case as well, the compressed air discharged from the air suspension 1 (air chamber 1C) flows back through the air dryer 6 through the supply / discharge conduit 5, so that the moisture adsorbent of the air dryer 6 is It is regenerated by passing the dried air, and the air dryer 6 can be efficiently regenerated.
 一方、ステップ54で「NO」と判定するときには、車高下げ速度Vdが速度閾値V0よりも速く、排気電磁弁17を開弁する必要はないと判断することができる。そこで、次のステップ56では、車高が目標車高(設定高さ)よりも高いか否かを判定する。ステップ46で「YES」と判定したときには、車高が設定高さよりも高く、目標車高まで車高が下降されていないので、前記ステップ50に戻って、これ以降の処理を続ける。 On the other hand, when the determination in step 54 is “NO”, it can be determined that the vehicle height reduction speed Vd is faster than the speed threshold value V0 and it is not necessary to open the exhaust electromagnetic valve 17. Therefore, in the next step 56, it is determined whether or not the vehicle height is higher than the target vehicle height (set height). If "YES" is determined in the step 46, the vehicle height is higher than the set height, and the vehicle height has not been lowered to the target vehicle height. Therefore, the process returns to the step 50 and the subsequent processes are continued.
 ステップ56で「NO」と判定したときには、車高が設定高さ以下となって、目標車高に達するまで車高が下げられたと判断することができる。そこで、この場合は、前記ステップ48の処理により、エアサスペンション1による車高下げ動作を停止させる。即ち、ステップ48では、車高が目標車高に達した状態で、車高下げ処理を終了させるため、給排気弁11を閉弁位置(a)とし、戻し電磁弁16を閉弁位置(e)にしたまま、排気電磁弁17を閉弁位置(c)に戻すように制御する。そして、次のステップ49でリターンする。 If it is determined "NO" in step 56, it can be determined that the vehicle height has fallen below the set height and the vehicle height has been lowered until it reaches the target vehicle height. Therefore, in this case, the vehicle height lowering operation by the air suspension 1 is stopped by the processing of step 48. That is, in step 48, when the vehicle height has reached the target vehicle height, the supply / exhaust valve 11 is set to the closed position (a) and the return solenoid valve 16 is set to the closed position (e) in order to end the vehicle height lowering process. ), The exhaust electromagnetic valve 17 is controlled to return to the valve closing position (c). Then, the process returns in the next step 49.
 かくして、このように構成される第2の実施の形態でも、車高下げ速度Vdが速度閾値V0に比較して遅いか,速いかによって、排気弁(排気電磁弁17)を開弁または閉弁する制御を行うので、前記第1の実施の形態と同様の効果(即ち、車高を下げる制御処理に余分な時間がかかるのを抑え、車高下げ調整時の作業性を向上できるという効果)を奏する。特に、第2の実施の形態では、車高センサ21からの信号に基づいて車高下げ速度Vdを演算して求める構成としている。このため、排気弁(排気電磁弁17)を開弁するか否かの判断を、より安定して行うことができる。 Thus, also in the second embodiment configured as described above, the exhaust valve (the exhaust electromagnetic valve 17) is opened or closed depending on whether the vehicle height reduction speed Vd is slower or faster than the speed threshold value V0. Therefore, the same effect as that of the first embodiment can be obtained (ie, the effect that the extra time is not required for the control process for lowering the vehicle height and the workability at the time of adjusting the vehicle height can be improved). To play. In particular, in the second embodiment, the vehicle height reduction speed Vd is calculated and obtained based on the signal from the vehicle height sensor 21. Therefore, it is possible to more stably determine whether to open the exhaust valve (the exhaust electromagnetic valve 17).
 即ち、エアサスペンション1により車高を下げている途中で、乗員が降りるなどの理由により車体側の荷重が変動し、サスペンション圧力Psがタンク圧力Ptより低くなってしまうような場合が想定される。このような場合にも、第2の実施の形態では、車高下げ速度Vdが速度閾値V0以下であるか否かにより、エアサスペンション1から圧縮空気を外気へと直接的に排出するか否かの判断を行い、排気電磁弁17の開,閉制御を迅速に行うことができる。 That is, it is assumed that while the vehicle height is being lowered by the air suspension 1, the load on the vehicle body fluctuates due to the occupant getting off, and the suspension pressure Ps becomes lower than the tank pressure Pt. In such a case as well, in the second embodiment, whether or not the compressed air is directly discharged from the air suspension 1 to the outside air depends on whether or not the vehicle height reduction speed Vd is equal to or lower than the speed threshold value V0. And the opening / closing control of the exhaust electromagnetic valve 17 can be quickly performed.
 なお、前記各実施の形態では、吸気電磁弁14、戻し電磁弁16および排気電磁弁17を、リリーフ弁(安全弁)としての機能を有する構成とした場合を例に挙げて説明した。しかし、吸気電磁弁14、戻し電磁弁16および/または排気電磁弁17は、必ずしもリリーフ弁として作動する必要はなく、リリーフ機能を有さない電磁式切換弁を用いて排気弁を構成してもよい。 In each of the above embodiments, an example has been described in which the intake solenoid valve 14, the return solenoid valve 16, and the exhaust solenoid valve 17 are configured to have a function as a relief valve (safety valve). However, the intake solenoid valve 14, the return solenoid valve 16 and / or the exhaust solenoid valve 17 do not necessarily need to operate as a relief valve, and the exhaust valve may be configured using an electromagnetic switching valve having no relief function. Good.
 また、前記各実施の形態では、コンプレッサ2の吸気側2Aを吸・排気管路4を介して吸排ポート9に接続する場合を例に挙げて説明した。しかし、本発明はこれに限らず、吸・排気管路は吸気通路と排気通路との2つ別々な通路(管路)により構成してもよい。換言すると、コンプレッサ2の吸気側2Aは吸気通路を介して外気と連通する構成とし、これとは別に、外気に連通可能な排気通路としての第3通路を設け、この第3通路に排気電磁弁17を設ける構成としてもよい。この場合の第3通路は、バイパス管路8に替えて、給排管路5の接続点5Aに接続する構成としてもよい。 In each of the above embodiments, the case where the intake side 2A of the compressor 2 is connected to the intake / discharge port 9 via the intake / exhaust line 4 has been described as an example. However, the present invention is not limited to this, and the intake / exhaust passages may be configured by two separate passages (pipelines) of an intake passage and an exhaust passage. In other words, the intake side 2A of the compressor 2 is configured to communicate with the outside air via the intake passage. Apart from this, a third passage is provided as an exhaust passage which can communicate with the outside air. 17 may be provided. In this case, the third passage may be connected to the connection point 5A of the supply / discharge line 5 instead of the bypass line 8.
 次に、前記実施の形態に含まれる発明について記載する。即ち、本発明の第1の態様としては、エアサスペンション装置であって、空気を貯留するように構成されたタンクと、該タンクから第1通路を介して供給される空気を圧縮するように構成されたコンプレッサと、該コンプレッサの吐出側にエアドライヤを介して接続されるエアサスペンションと、前記エアサスペンション内の圧縮空気を、前記エアドライヤと前記エアサスペンションの間から分岐して設けられる第2通路を介して前記タンクに戻すように構成された戻し弁と、前記タンク内の圧力に応じて開弁して前記エアサスペンション内の圧縮空気を前記エアドライヤを介して排気する第3通路に設けられる排気弁と、前記コンプレッサの吸気側と前記タンクとの間の空気の圧力が大気圧以下のとき、大気から空気を吸気するように構成されたチェック弁である吸気バルブと、を備えている。 Next, the invention included in the above embodiment will be described. That is, as a first aspect of the present invention, there is provided an air suspension device which is configured to store air and configured to compress air supplied from the tank via a first passage. Compressed air, an air suspension connected to a discharge side of the compressor via an air dryer, and compressed air in the air suspension via a second passage provided to be branched from between the air dryer and the air suspension. A return valve configured to return to the tank by an exhaust valve provided in a third passage that opens according to the pressure in the tank and exhausts the compressed air in the air suspension through the air dryer. When the pressure of the air between the suction side of the compressor and the tank is equal to or lower than the atmospheric pressure, the air is sucked from the atmosphere. An intake valve is a check valve which comprises a.
 また、第2の態様としては、前記第1の態様において、前記エアサスペンションは圧縮空気が給排されることにより車高調整を行い、前記排気弁は、前記車高の下げ速度が遅いか,速いかによって開,閉弁制御されることを特徴としている。第3の態様としては、前記第2の態様において、前記排気弁は、前記タンク内の圧力と前記エアサスペンション内の圧力との圧力差が所定値以下のときに、前記車高の下げ速度が遅いとして開弁されることを特徴としている。一方、第4の態様としては、前記第2の態様において、前記排気弁は、前記車高の下げ速度が所定の速度閾値よりも速いときに閉弁され、前記速度閾値よりも遅いときに開弁されることを特徴としている。 As a second aspect, in the first aspect, the air suspension adjusts the vehicle height by supplying and discharging compressed air, and the exhaust valve determines whether the vehicle height decreasing speed is low, It is characterized by opening and closing control depending on whether it is fast. As a third aspect, in the second aspect, the exhaust valve is configured to reduce the vehicle height decreasing speed when a pressure difference between a pressure in the tank and a pressure in the air suspension is equal to or less than a predetermined value. It is characterized by being opened as late. On the other hand, as a fourth aspect, in the second aspect, the exhaust valve is closed when the vehicle height reduction speed is faster than a predetermined speed threshold, and is opened when the vehicle height reduction speed is slower than the speed threshold. It is characterized by being valved.
 第5の態様としては、前記第1の態様において、前記第1通路には、前記コンプレッサの吸気側と前記タンクとの間に位置して吸気切替弁が設けられていることを特徴としている。第6の態様としては、前記第5の態様において、前記吸気切替弁は、2ポート2位置の電磁弁であることを特徴としている。第7の態様としては、前記第1の態様において、前記戻し弁は、2ポート2位置の電磁弁であることを特徴としている。 In a fifth aspect, in the first aspect, an intake switching valve is provided in the first passage between the intake side of the compressor and the tank. According to a sixth aspect, in the fifth aspect, the intake switching valve is a 2-port 2-position solenoid valve. According to a seventh aspect, in the first aspect, the return valve is a 2-port 2-position solenoid valve.
 第8の態様としては、前記第1乃至第4のいずれか、または第7の態様において、前記コンプレッサの作動,停止と、前記戻し弁および/または排気弁の開,閉とを制御する制御装置が備えられていることを特徴としている。第9の態様としては、前記第5または第6の態様において、前記コンプレッサの作動,停止と、前記戻し弁、排気弁および/または吸気切替弁の開,閉とを制御する制御装置が備えられていることを特徴としている。 According to an eighth aspect, in any one of the first to fourth or seventh aspects, the control device controls the operation and stop of the compressor and the opening and closing of the return valve and / or the exhaust valve. It is characterized by having. As a ninth aspect, in the fifth or sixth aspect, there is provided a control device for controlling the operation and stop of the compressor and the opening and closing of the return valve, the exhaust valve and / or the intake switching valve. It is characterized by having.
 1 エアサスペンション
 2 コンプレッサ
 3 電動モータ
 4 吸・排気管路
 5 給排管路
 6 エアドライヤ
 8 バイパス管路(第3通路)
 9 吸排ポート
 10 空気導管
 11 給排気弁
 12 タンク
 13 タンク側吸込管路(第1通路)
 14 吸気電磁弁(吸気切替弁)
 15 タンク用管路(第2通路)
 16 戻し電磁弁(戻し弁)
 17 排気電磁弁(排気弁)
 18 吸気バルブ
 19 圧力検出器
 20 コントローラ(制御装置)
 21 車高センサ
 P0 低圧閾値(所定値)
 ΔP 圧力差
 V0 速度閾値(所定値)
 Vd 車高下げ速度
DESCRIPTION OF SYMBOLS 1 Air suspension 2 Compressor 3 Electric motor 4 Intake / exhaust line 5 Supply / exhaust line 6 Air dryer 8 Bypass line (third passage)
9 suction / discharge port 10 air conduit 11 supply / exhaust valve 12 tank 13 tank side suction pipe (first passage)
14. Intake solenoid valve (intake switching valve)
15 Pipe for tank (second passage)
16 Return solenoid valve (return valve)
17 Exhaust solenoid valve (exhaust valve)
18 Intake valve 19 Pressure detector 20 Controller (control device)
21 Vehicle height sensor P0 Low pressure threshold (predetermined value)
ΔP Pressure difference V0 Speed threshold (predetermined value)
Vd Vehicle height reduction speed

Claims (9)

  1.  エアサスペンション装置であって、
     空気を貯留するように構成されたタンクと、
     該タンクから第1通路を介して供給される空気を圧縮するように構成されたコンプレッサと、
     該コンプレッサの吐出側にエアドライヤを介して接続されるエアサスペンションと、
     前記エアサスペンション内の圧縮空気を、前記エアドライヤと前記エアサスペンションの間から分岐して設けられる第2通路を介して前記タンクに戻すように構成された戻し弁と、
     前記タンク内の圧力に応じて開弁して前記エアサスペンション内の圧縮空気を前記エアドライヤを介して排気する第3通路に設けられる排気弁と、
     前記コンプレッサの吸気側と前記タンクとの間の空気の圧力が大気圧以下のとき、大気から空気を吸気するように構成されたチェック弁である吸気バルブと、
     を備えるエアサスペンション装置。
    An air suspension device,
    A tank configured to store air;
    A compressor configured to compress air supplied from the tank via the first passage;
    An air suspension connected to a discharge side of the compressor via an air dryer,
    A return valve configured to return the compressed air in the air suspension to the tank via a second passage branched from the air dryer and the air suspension;
    An exhaust valve provided in a third passage that opens in accordance with the pressure in the tank and exhausts the compressed air in the air suspension through the air dryer;
    When the pressure of air between the intake side of the compressor and the tank is equal to or lower than the atmospheric pressure, an intake valve that is a check valve configured to intake air from the atmosphere,
    An air suspension device comprising:
  2.  前記エアサスペンションは圧縮空気が給排されることにより車高調整を行い、
     前記排気弁は、前記車高の下げ速度が遅いか,速いかによって開,閉弁制御されることを特徴とする請求項1に記載のエアサスペンション装置。
    The air suspension adjusts the vehicle height by supplying and discharging compressed air,
    2. The air suspension device according to claim 1, wherein the exhaust valve is controlled to open and close depending on whether the speed of decreasing the vehicle height is slow or fast.
  3.  前記排気弁は、前記タンク内の圧力と前記エアサスペンション内の圧力との圧力差が所定値以下のときに、前記車高の下げ速度が遅いとして開弁されることを特徴とする請求項2に記載のエアサスペンション装置。 3. The exhaust valve according to claim 2, wherein when the pressure difference between the pressure in the tank and the pressure in the air suspension is equal to or less than a predetermined value, the speed of decreasing the vehicle height is slow, and the exhaust valve is opened. The air suspension device according to claim 1.
  4.  前記排気弁は、前記車高の下げ速度が所定の速度閾値よりも速いときに閉弁され、前記速度閾値よりも遅いときに開弁されることを特徴とする請求項2に記載のエアサスペンション装置。 3. The air suspension according to claim 2, wherein the exhaust valve is closed when the speed of decreasing the vehicle height is faster than a predetermined speed threshold, and is opened when the speed is slower than the speed threshold. 4. apparatus.
  5.  前記第1通路には、前記コンプレッサの吸気側と前記タンクとの間に位置して吸気切替弁が設けられていることを特徴とする請求項1に記載のエアサスペンション装置。 The air suspension device according to claim 1, wherein an intake switching valve is provided in the first passage between the intake side of the compressor and the tank.
  6.  前記吸気切替弁は、2ポート2位置の電磁弁であることを特徴とする請求項5に記載のエアサスペンション装置。 The air suspension device according to claim 5, wherein the intake switching valve is a 2-port 2-position solenoid valve.
  7.  前記戻し弁は、2ポート2位置の電磁弁であることを特徴とする請求項1に記載のエアサスペンション装置。 The air suspension device according to claim 1, wherein the return valve is a two-port two-position solenoid valve.
  8.  前記コンプレッサの作動,停止と、前記戻し弁および/または排気弁の開,閉とを制御する制御装置が備えられていることを特徴とする請求項1乃至4のいずれか、または請求項7に記載のエアサスペンション装置。 The control device according to any one of claims 1 to 4, wherein a control device for controlling operation and stop of the compressor and opening and closing of the return valve and / or the exhaust valve is provided. An air suspension device as described.
  9.  前記コンプレッサの作動,停止と、前記戻し弁、排気弁および/または吸気切替弁の開,閉とを制御する制御装置が備えられていることを特徴とする請求項5または6に記載のエアサスペンション装置。 7. The air suspension according to claim 5, further comprising a control device for controlling operation and stop of the compressor and opening and closing the return valve, the exhaust valve and / or the intake switching valve. apparatus.
PCT/JP2019/034808 2018-09-25 2019-09-04 Air suspension device WO2020066515A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-178772 2018-09-25
JP2018178772 2018-09-25

Publications (1)

Publication Number Publication Date
WO2020066515A1 true WO2020066515A1 (en) 2020-04-02

Family

ID=69952006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034808 WO2020066515A1 (en) 2018-09-25 2019-09-04 Air suspension device

Country Status (1)

Country Link
WO (1) WO2020066515A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0995117A (en) * 1995-09-29 1997-04-08 Aisin Seiki Co Ltd Air suspension control device
JP2002087040A (en) * 2000-09-20 2002-03-26 Aisin Seiki Co Ltd Pneumatic vehicle height adjusting system
JP2007182197A (en) * 2006-01-10 2007-07-19 Toyota Motor Corp Vehicle height adjustment device
JP2015105016A (en) * 2013-11-29 2015-06-08 アイシン精機株式会社 Vehicle height adjustment device
JP2015105020A (en) * 2013-11-29 2015-06-08 日立オートモティブシステムズ株式会社 Air suspension system
WO2016076210A1 (en) * 2014-11-10 2016-05-19 日立オートモティブシステムズ株式会社 Air suspension device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0995117A (en) * 1995-09-29 1997-04-08 Aisin Seiki Co Ltd Air suspension control device
JP2002087040A (en) * 2000-09-20 2002-03-26 Aisin Seiki Co Ltd Pneumatic vehicle height adjusting system
JP2007182197A (en) * 2006-01-10 2007-07-19 Toyota Motor Corp Vehicle height adjustment device
JP2015105016A (en) * 2013-11-29 2015-06-08 アイシン精機株式会社 Vehicle height adjustment device
JP2015105020A (en) * 2013-11-29 2015-06-08 日立オートモティブシステムズ株式会社 Air suspension system
WO2016076210A1 (en) * 2014-11-10 2016-05-19 日立オートモティブシステムズ株式会社 Air suspension device

Similar Documents

Publication Publication Date Title
JP7186237B2 (en) air suspension device
JP6919648B2 (en) How to regenerate the dryer of the air suspension device
US9931900B2 (en) Air suspension system
WO2016076210A1 (en) Air suspension device
WO2020066398A1 (en) Air suspension system
WO2018139576A1 (en) Suspension system
JP2002087040A (en) Pneumatic vehicle height adjusting system
JP2020044979A (en) Air suspension device
WO2017169772A1 (en) Air suspension system
WO2020066515A1 (en) Air suspension device
JP2015054643A (en) Air-suspension system
JPH023516A (en) Method and device for adjusting car height
JPH10119531A (en) Air suspension controller
JP7300402B2 (en) Air suspension device and regeneration method for its air dryer
WO2020194926A1 (en) Air suspension device
JP2019038500A (en) Suspension system
JP2017217976A (en) Air suspension device of vehicle
WO2021261220A1 (en) Air suspension system
WO2016158494A1 (en) Air suspension device
JPH074967Y2 (en) Air circuit for vehicle air suspension
JP6367130B2 (en) Vehicle height adjustment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP