WO2020194910A1 - Microcapsules, microcapsule composition, softener, and detergent - Google Patents

Microcapsules, microcapsule composition, softener, and detergent Download PDF

Info

Publication number
WO2020194910A1
WO2020194910A1 PCT/JP2019/048975 JP2019048975W WO2020194910A1 WO 2020194910 A1 WO2020194910 A1 WO 2020194910A1 JP 2019048975 W JP2019048975 W JP 2019048975W WO 2020194910 A1 WO2020194910 A1 WO 2020194910A1
Authority
WO
WIPO (PCT)
Prior art keywords
microcapsules
mass
shell
microcapsule
isocyanate compound
Prior art date
Application number
PCT/JP2019/048975
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 進也
田中 智史
優樹 中川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2020194910A1 publication Critical patent/WO2020194910A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/12Processes in which the treating agent is incorporated in microcapsules

Definitions

  • the present disclosure relates to microcapsules, microcapsule compositions, fabric softeners, and detergents.
  • microcapsules have the property of being able to contain and protect functional materials such as fragrances, dyes, heat storage materials, and pharmaceutical ingredients, or having the property of releasing functional materials in response to external stimuli. For this reason, it is attracting attention as it has the potential to create new value.
  • the fragrance in the form of containing the fragrance in the microcapsules, for example, by mixing the microcapsules containing the fragrance (hereinafter, also referred to as the fragrance capsule) with the softener, the fragrance can be given to the clothes after washing. That is, when clothes are washed with a softener, the fragrance capsules contained in the softener adhere to the clothes, and when the attached fragrance capsules are destroyed by an external stimulus such as pressure, the contained fragrance is released. , Can produce a fragrance.
  • shell materials used in perfume capsules are mainly composed of reaction products of aldehydes and amines (for example, melamine formaldehyde resin).
  • a method for producing microcapsules using a plant-derived material a method for producing microcapsules using a fragrance as a core material and a polysaccharide (for example, hydroxypropylmethyl cellulose) and dextrin as a material used for forming a shell is disclosed.
  • a core / multi-layer shell capsule system with multi-layer microcapsules comprising an outer shell formed by adding glutaraldehyde to gelatin as an outer shell material and an inner shell formed of polyurea (eg,). See Patent No. 6250055).
  • a microcapsule having a microcapsule wall membrane containing hydroxypropyl cellulose bridge-bonded with an oil-soluble polyfunctional isocyanate is disclosed (see, for example, Japanese Patent Application Laid-Open No. 54-426).
  • an aqueous composition containing a water-soluble polymer substance such as hydroxypropylmethylcellulose is added to a water-insoluble organic medium to emulsify and disperse the aqueous phase in the oil phase, and an aromatic polyisocyanate is added thereto to form a capsule.
  • a water-soluble polymer substance such as hydroxypropylmethylcellulose
  • the shell portion is a thin film of less than 2 ⁇ m. It is not even planned to balance the morphological stability of microcapsules (eg, storage stability) with the release of inclusions in the presence of polar substances. Therefore, in the inventions described in Japanese Patent Application Laid-Open No. 2017-176907, Japanese Patent No. 6250055, Japanese Patent Application Laid-Open No. 54-426, and Japanese Patent Application Laid-Open No. 2-293401, the microcapsules containing the desired inclusions are used. In the usage mode where application is desired, it is difficult to use in an environment where polar substances coexist, and the expected effect of use cannot always be expected.
  • microcapsules having an excellent storage stability in the coexistence of polar substances are provided while the shell portion is made into a thin film.
  • a microcapsule composition in which the core material contained in the shell portion is stably held in the shell portion, and a softener and a detergent.
  • the present disclosure includes the following aspects. ⁇ 1> A core portion and a shell portion containing the core portion are included, and the shell portion has a covalently bonded cross-linked structure derived from the reaction of a polysaccharide and a cross-linking agent, and has a thickness of less than 2 ⁇ m. It is a microcapsule. ⁇ 2> The microcapsule according to ⁇ 1>, wherein the cross-linking agent is at least one isocyanate compound selected from a trifunctional or higher functional aliphatic isocyanate compound and a bifunctional aliphatic isocyanate compound.
  • ⁇ 3> The microcapsule according to ⁇ 1> or ⁇ 2>, wherein the polysaccharide is at least one selected from the group consisting of a cellulose compound, dextrin, gum arabic, gum arabic, and guar gum.
  • the polysaccharide contains at least one selected from the group consisting of hydroxypropyl cellulose and hydroxypropyl methyl cellulose.
  • ⁇ 5> The microcapsule according to any one of ⁇ 1> to ⁇ 4>, wherein the shell portion further contains a polyphenol compound.
  • ⁇ 6> The microcapsules according to ⁇ 5>, wherein the content of the polyphenol compound is 5% by mass or more with respect to the total mass of the shell portion.
  • ⁇ 7> The microcapsule according to any one of ⁇ 1> to ⁇ 6>, wherein the content ratio of the structural portion derived from the cross-linking agent is 4% by mass or more with respect to the total mass of the shell portion.
  • ⁇ 8> A microcapsule composition containing the microcapsule according to any one of ⁇ 1> to ⁇ 7> and a solvent.
  • ⁇ 9> A softener containing the microcapsules according to any one of ⁇ 1> to ⁇ 7>.
  • ⁇ 10> A detergent containing the microcapsules according to any one of ⁇ 1> to ⁇ 7>.
  • microcapsules having an excellent storage stability in the coexistence of polar substances are provided while the shell portion is made into a thin film.
  • a microcapsule composition in which the core material contained in the shell portion is stably held in the shell, and a softener and a detergent.
  • microcapsules of the present disclosure microcapsule compositions using the same, and softeners and detergents will be described in detail.
  • the description of the constituent elements relating to the embodiments of the present disclosure may be based on the typical embodiments of the present disclosure, but the present disclosure is not limited to such embodiments.
  • the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
  • the amount of each component in the composition or layer is the amount of the above-mentioned plurality of substances existing in the composition unless otherwise specified, when a plurality of substances corresponding to each component are present in the composition. Means the total amount.
  • “% by mass” is synonymous with “% by weight” and “parts by weight” is synonymous with “parts by weight”.
  • a combination of two or more preferred embodiments is a more preferred embodiment.
  • the "shell portion” refers to the outer shell forming the particles of the microcapsules, and refers to the so-called capsule wall.
  • the "core portion” is also referred to as a “core portion” and refers to a portion included by the shell portion.
  • the material for forming the shell portion is referred to as “shell material” or “wall material”
  • the component contained in the core portion is referred to as “core material” or “inclusion”.
  • the “inclusion” refers to a state in which a target object (that is, an inclusion) is covered with a shell portion of a microcapsule and confined.
  • the microcapsules of the present disclosure have a structure including a core portion and a shell portion containing the core portion, and the shell portion has a covalently bonded cross-linked structure derived from the reaction between the polysaccharide and the cross-linking agent. It has and has a thickness of less than 2 ⁇ m.
  • the microcapsules of the present disclosure have a covalently cross-linked structure in which the shell portion of the microcapsules is derived from the reaction between a polysaccharide and a cross-linking agent, so that even a thin film having a thickness of less than 2 ⁇ m is polar.
  • the core material (inclusion) forming the core portion can be stably held in the shell portion in a usage environment coexisting with a substance, and the storage stability is excellent.
  • microcapsules of the present disclosure exert the above-mentioned effects.
  • various techniques for producing microcapsules using materials derived from plants or animals have been studied.
  • JP-A-2017-176907, Patent No. 6250055, JP-A-54-426 and JP-A-2-293401 all of them are used in an environment where polar substances can coexist.
  • the barrier function for holding the core material (that is, the inclusion) that forms the core part contained in the shell of the microcapsule is lowered, and the core material cannot be stably held in the shell. is there.
  • a covalent cross-linking structure derived from the reaction between a polysaccharide and a cross-linking agent is introduced into the shell portion while making the thickness of the shell portion less than 2 ⁇ m. That is, a cross-linking agent is introduced into the polymer in the shell to form a covalent bond between the polymer and the cross-linking agent, and a covalent cross-linking structure is introduced.
  • a cross-linking agent is introduced into the polymer in the shell to form a covalent bond between the polymer and the cross-linking agent, and a covalent cross-linking structure is introduced.
  • the microcapsules of the present disclosure include a core material forming a core portion and have a shell portion which is an outer shell for forming capsule particles.
  • the shell portion in the present disclosure may contain a polymer such as polyurethane, polyurea, polyester, or polyether as the shell material forming the shell portion.
  • the shell portion has a covalently bonded cross-linked structure derived from the reaction between the polysaccharide and the cross-linking agent.
  • the shell portion is polymerized by the reaction between the plurality of hydroxyl groups of the polysaccharide and the plurality of crosslinkable groups having reactivity with the hydroxyl groups in the crosslinking agent, and a covalently bonded crosslinked structure is formed. It can be obtained by.
  • the crosslinkable group include an isocyanate group, a carboxy group, and an epoxy group.
  • a crosslinked structure by a urethane bond, a crosslinked structure by an ester bond, and a crosslinked structure by an ether bond are preferable structures.
  • the crosslinked structure by urethane bond is a structure formed by the reaction of a polysaccharide and an isocyanate compound.
  • the crosslinked structure by the ester bond is a structure formed by the reaction of the polysaccharide and the carboxylic acid halide (preferably acid chloride).
  • the crosslinked structure by the ether bond is a structure formed by the reaction of the polysaccharide and the epoxy compound.
  • the core material for example, which is excellent in storage stability even in the coexistence of a polar ionic surfactant, maintains the shape of the capsule stably, and is subjected to an external force (for example, scraping).
  • an embodiment having a crosslinked structure by urethane bond is preferable, and it is also referred to as a polyfunctional isocyanate compound (hereinafter, also referred to as "polyisocyanate"). ) Is more preferable. That is, when the shell material in the present disclosure contains polyurethane or polyurea, it is preferably obtained by using polyisocyanate from the viewpoint of storage stability.
  • Confirmation that the shell portion of the microcapsule has a covalently bonded crosslinked structure can be performed by the following method.
  • the separated microcapsules are added to dimethyl sulfoxide (DMSO) (1% by mass to 5% by mass based on DMSO) to prepare a DMSO mixture.
  • DMSO dimethyl sulfoxide
  • the thickness of the shell portion in the present disclosure is less than 2 ⁇ m.
  • the microcapsules of the present disclosure can stably maintain the shape of the capsule even if the thickness of the shell portion is less than 2 ⁇ m, and are excellent in storage stability. As a result, when an external force such as scratching is applied, it is possible to stably release the amount of core material planned from the intended stage.
  • the thickness (wall thickness) of the shell portion (wall) is preferably 1.5 ⁇ m or less, more preferably 1.0 ⁇ m or less, and further preferably 0.5 ⁇ m or less.
  • the lower limit of the thickness of the shell portion may be appropriately selected within a manufacturable range, and may be, for example, 0.1 ⁇ m.
  • the thickness (wall thickness) of the shell portion (wall) is an average value obtained by calculating the individual wall thickness ( ⁇ m) of the five microcapsules with a scanning electron microscope (SEM) and averaging them. Specifically, the microcapsule solution is applied onto an arbitrary support and dried to form a coating film. A cross-sectional section of the obtained coating film is prepared, and the cross section is observed using an SEM. Arbitrary 5 microcapsules are selected, the cross sections of the individual microcapsules are observed, the wall thickness is measured, and the average value is calculated.
  • SEM scanning electron microscope
  • polysaccharides in the present disclosure are, for example, a group consisting of mannan, glucan, glucomannan, xyloglucan, cellulose compounds, dextrin, dextran, arabic gum, kitansan gum, guar gum, galactomannan, carrageenan, pectin, alginic acid, chitosan and mixtures thereof. You can choose more. Gelatin is not included in the polysaccharides in the present disclosure.
  • Examples of the cellulose compound include hydroxyalkyl cellulose and carboxyalkyl cellulose.
  • the hydroxyalkyl cellulose preferably has 1 to 8 carbon atoms at the alkyl moiety, and more preferably 1 to 4 carbon atoms at the alkyl moiety.
  • Examples of hydroxyalkyl cellulose include hydroxyethyl cellulose (HEC), hydroxypropyl cellulose (HPC), and hydroxypropyl methylcellulose (HPMC).
  • the carboxyalkyl cellulose preferably has 1 to 4 carbon atoms at the alkyl moiety, and more preferably 1 to 2 carbon atoms at the alkyl moiety.
  • Examples of carboxyalkyl cellulose include carboxymethyl cellulose (CMC).
  • the preferred polysaccharide is at least one selected from the group consisting of cellulose compounds, dextrins, gum arabic, gum arabic, and guar gum in that the morphology of the capsule can be stably maintained and the storage stability is excellent.
  • the polysaccharide is more preferably a cellulose compound, and even more preferably at least one selected from the group consisting of hydroxypropyl cellulose and hydroxypropyl methyl cellulose.
  • the shell portion in the present disclosure may be one using two or more kinds of polysaccharides.
  • the shell portion includes, as two or more kinds of polysaccharides, a polysaccharide having a linear structure and a polysaccharide having a branched structure, in that it is easy to maintain the morphology of the capsule more stably and to enhance the storage stability. It may be a combination mode.
  • the polysaccharide having a linear structure is preferably a cellulose compound.
  • the polysaccharide having a branched structure is preferably dextrin, gum arabic, kitansan gum, or guar gum.
  • a more preferred polysaccharide is a combination of two or more polysaccharides, including at least one of the cellulose compounds and at least one selected from the group consisting of dextrin, gum arabic, kitansan gum, and guar gum.
  • a more preferred polysaccharide is a combination of at least one cellulose compound and two or more polysaccharides, including dextrin.
  • the ratio of the total amount of the cellulose compounds to the amount of dextrin is 10: 80 to 20:50 is preferable.
  • the content ratio of the structural portion derived from the polysaccharide in the shell portion is preferably 50% by mass to 95% by mass, more preferably 70% by mass to 95% by mass, and 80% by mass from the viewpoint of fracture strength and fracture deformation rate. -90% by mass is more preferable.
  • the "structural portion derived from a polysaccharide” refers to a structural unit formed by reacting a polysaccharide with a cross-linking agent.
  • cross-linking agent examples include isocyanate compounds, carboxylic acid halides, epoxy compounds, and acid anhydrides.
  • the cross-linking agent reacts with the polysaccharide, a polymer having a cross-linked structure can be obtained as a shell material.
  • the isocyanate compound in the present disclosure is preferably a polyfunctional isocyanate compound (polyisocyanate) from the viewpoint of forming a crosslinked structure.
  • Polyisocyanates include aromatic polyisocyanates and aliphatic polyisocyanates.
  • the polyisocyanate either a bifunctional polyisocyanate or a trifunctional or higher functional polyisocyanate may be used.
  • the polyurethane or polyurea in the present disclosure may include polyurethane polyurea.
  • the polyurethane and polyurea in the present disclosure are preferably polymers having a structural portion derived from an aromatic polyisocyanate and a structural portion derived from an aliphatic polyisocyanate.
  • the "structural portion” refers to a structural unit formed by a urethane reaction or a urea reaction.
  • polyurethane or polyurea which is a shell material forming the shell portion, has at least one structural portion selected from a structural portion derived from a bifunctional aliphatic isocyanate compound and a structural portion derived from a bifunctional aromatic isocyanate compound. It is preferable to have.
  • the structural portion derived from the bifunctional aliphatic isocyanate compound refers to a structural portion formed by urethanizing or ureaizing the bifunctional aliphatic isocyanate compound.
  • the structural portion derived from the bifunctional aromatic isocyanate compound refers to the structural portion formed by urethanizing or ureaizing the bifunctional aromatic isocyanate compound.
  • bifunctional aliphatic isocyanate compound examples include trimethylene diisocyanate, hexamethylene diisocyanate, propylene-1,2-diisocyanate, butylene-1,2-diisocyanate, cyclohexylene-1,2-diisocyanate, and cyclohexylene-1, 3-Diisocyanate, cyclohexylene-1,4-diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, 1,4-bis (isocyanatemethyl) cyclohexane and 1,3-bis (isocyanatemethyl) cyclohexane, isophorone diisocyanate, and lysine Examples thereof include diisocyanate and hydride xylylene diisocyanate.
  • bifunctional aromatic isocyanate compound examples include m-phenylene diisocyanate, p-phenylene diisocyanate, 2,6-toluene diisocyanate, 2,4-toluene diisocyanate, naphthalene-1,4-diisocyanate, and methylene diphenyl-4.
  • Isocyanate compounds are described in the "Polyurethane Resin Handbook" (edited by Keiji Iwata, published by Nikkan Kogyo Shimbun (1987)).
  • the proportion of the total mass is preferably 0.1% by mass to 5% by mass, more preferably 0.5% by mass to 3% by mass, and 0.5% by mass to 1.5% by mass. It is more preferably%.
  • the proportion of the structure derived from the bifunctional isocyanate compound is 0.1% by mass or more, a portion having a short distance between the cross-linking points is partially present in the shell.
  • the shell material forming the shell portion is polyurethane or polyurea
  • a structural portion derived from a trifunctional or higher functional isocyanate compound refers to a structural portion formed by urethanizing or ureaizing a trifunctional or higher functional isocyanate compound.
  • Examples of the trifunctional or higher functional aliphatic isocyanate compound include a bifunctional aliphatic isocyanate compound (a compound having two isocyanate groups in the molecule) and a compound having three or more active hydrogen groups in the molecule (for example, trifunctional or higher).
  • Biuret type or isocyanurate type can be mentioned.
  • D-160N all manufactured by Mitsu
  • the Takenate (registered trademark) series manufactured by Mitsui Chemicals, Inc. (for example, Takenate D-110N, D-120N, D-140N, and D-160N) is more preferable.
  • isocyanurate-type trifunctional or higher functional isocyanate compound a commercially available product on the market may be used.
  • examples of commercially available products include Takenate (registered trademark) D-127N, D-170N, D-170HN, D-172N, and D-177N (manufactured by Mitsui Chemicals, Inc.); Sumijour N3300, Death Module (registered trademark).
  • N3600, N3900, and Z4470BA manufactured by Bayer Co., Ltd.
  • Coronate (registered trademark) HK manufactured by Tosoh Corporation
  • Duranate (registered trademark) TPA-100, and TKA-100 manufactured by Asahi Kasei Corporation
  • Barnock (Registered trademark) DN-980 manufactured by DIC Co., Ltd.
  • biuret-type trifunctional or higher functional isocyanate compound a commercially available product on the market may be used.
  • commercially available products include, for example, Takenate (registered trademark) D-165N and NP1200 (manufactured by Mitsui Chemicals, Inc.); Death Module (registered trademark) N3200A (manufactured by Bayer Co., Ltd.); and Duranate (registered trademark) 24A-. 100 and 22A-75P (manufactured by Asahi Kasei Corporation) can be mentioned.
  • trifunctional or higher functional aromatic isocyanate compound examples include 2,6-tolylene diisocyanate, 2,4-tolylene diisocyanate or an adduct of hexamethylene diisocyanate and trimethylolpropane (adduct), biuret and isocyanate. Nurate form is mentioned. Commercially available products marketed as trifunctional or higher functional aromatic isocyanate compounds may be used.
  • Burnock® D-750 and D-800 manufactured by DIC Co., Ltd.
  • Takenate® D-102, D-103, D-103H, D-103M2, D- 110N and Olester® P49-75S all manufactured by Mitsui Chemicals, Inc.
  • Death Module® L75, IL-135-BA, and HL-BA Sumijour® E-21 -1 (manufactured by Bayer Co., Ltd.); and Coronate (registered trademark) L, L-55, and L-55E (manufactured by Tosoh Corporation).
  • the ratio of the structural portion derived from the trifunctional or higher functional isocyanate compound to the total mass of the shell material is preferably 5% by mass to 30% by mass, more preferably 5% by mass to 20% by mass, and 5% by mass to 10% by mass. % Is more preferable.
  • the proportion of the structural portion derived from the trifunctional or higher functional isocyanate compound is 5% by mass or more, the shell can be formed satisfactorily. Further, when the proportion of the structural portion derived from the trifunctional or higher functional isocyanate compound is 30% by mass or less, the shell is more easily destroyed by the pressure, and the core material (for example, fragrance) is released (for example, when fragrance is contained). Fragrance intensity) can be improved.
  • the trifunctional or higher functional isocyanate compound in the present disclosure preferably contains at least one selected from the group consisting of a trifunctional or higher functional aliphatic isocyanate compound and a trifunctional or higher functional aromatic isocyanate compound, and is preferably a trifunctional or higher functional aliphatic isocyanate compound. Is more preferable to be contained alone.
  • the trifunctional or higher functional isocyanate compound contains at least one selected from the group consisting of the trifunctional or higher functional aliphatic isocyanate compound and the trifunctional or higher functional aromatic isocyanate compound, it is derived from the trifunctional or higher functional isocyanate compound in the shell material.
  • the ratio of the content of the structural portion derived from the trifunctional or higher functional aromatic isocyanate compound to the total content of the structural portion to be subjected is preferably 0% by mass or more and less than 50% by mass on a mass basis.
  • the ratio of the content of the structural portion derived from the trifunctional or higher functional isocyanate compound to the total content of the structural portion derived from the trifunctional or higher functional isocyanate compound in the shell material is within the above range, the fracture deformation occurs. Since the rate can be made smaller, the fragrance intensity is excellent. Further, the ratio of the content of the structural portion derived from the trifunctional or higher functional isocyanate compound to the total content of the structural portion derived from the trifunctional or higher functional isocyanate compound in the shell material is less than 50% by mass on a mass basis. By being present, the strength of the shell can be better maintained.
  • the ratio of the content of the structural portion derived from the trifunctional or higher functional isocyanate compound to the total content of the structural portion derived from the trifunctional or higher functional isocyanate compound in the shell material is based on the mass. It is more preferably 0% by mass to 40% by mass, and further preferably 0% by mass to 20% by mass.
  • the trifunctional or higher functional isocyanate compound is a trifunctional or higher functional aliphatic isocyanate compound
  • the breaking deformation rate and breaking strength are increased, and the core material (for example, fragrance) is released (for example, fragrance intensity when fragrance is contained).
  • the ratio of the content of the structural part derived from the trifunctional or higher aliphatic isocyanate compound to the total content of the structural portion derived from the trifunctional or higher functional isocyanate compound in the shell material is based on the mass.
  • the content is preferably 60% by mass to 100% by mass, more preferably 80% by mass to 100% by mass.
  • the ratio of the content of the structural portion derived from the bifunctional isocyanate compound to the content of the structural portion derived from the trifunctional or higher functional isocyanate compound in the shell material is 5/95 to 5/95 on a mass basis. It is preferably 20/80.
  • the ratio of the content of the structural portion derived from the bifunctional isocyanate compound to the content of the structural portion derived from the trifunctional or higher functional isocyanate compound in the shell material is 5/95 or more on a mass basis, the inside of the shell There are some parts where the distance between the cross-linking points is short.
  • the ratio of the content of the structural portion derived from the bifunctional isocyanate compound to the content of the structural portion derived from the trifunctional or higher functional isocyanate compound in the shell material is 7/93 to 20 / on a mass basis. 80 is preferable, and 10/90 to 20/80 is more preferable.
  • the isocyanate compound used as a cross-linking agent for the shell portion in the present disclosure is preferably at least one polyisocyanate selected from a trifunctional or higher functional aliphatic isocyanate compound and a bifunctional aliphatic isocyanate compound.
  • Epoxy compounds are compounds that have a glycidyl group in the molecule. From the viewpoint of obtaining a polymer having a crosslinked structure as a shell material, the epoxy compound is preferably a compound having two or more glycidyl groups in the molecule.
  • epoxy compound examples include 4,4'-meirenbis (N, N-diglycidyl aniline), glycerin triglycidyl ether, bisphenol A diglycidyl ether, neopentyl glycol diglycidyl ether, triglycidyl isocyanurate, 4,4.
  • sorbitol polyglycidyl ether for example, Denacol series manufactured by Nagase ChemteX Corporation (eg Denacol EX-612), pentaerythritol
  • Polyglycidyl ether eg, Denacol series manufactured by Nagase ChemteX Corporation (eg Denacol EX-411
  • trimethylpropane polyglycidyl ether eg, Denacol series manufactured by Nagase ChemteX Corporation (eg, Denacol EX)
  • -321 can be mentioned.
  • the epoxy compound a commercially available product on the market may be used.
  • the carboxylic acid halide is a compound represented by R-COX (X: halogen atom).
  • Carboxylic acid halides include carboxylic acid chlorides and carboxylic acid bromides. From the viewpoint of obtaining a polymer having a crosslinked structure as a shell material, the carboxylic acid halide is preferably a compound having two or more -COX groups in the molecule.
  • carboxyl chloride also referred to as acid chloride
  • examples of the carboxyl chloride include adipoil chloride, azelaic acid chloride, suberoyl chloride, sebacoil chloride, succinate chloride, 4,4'-biphenyldicarbonyl chloride, and isophthaloyl.
  • examples thereof include chloride and terephthaloyl chloride.
  • carboxylic acid halide a commercially available product on the market may be used.
  • the content ratio of the structural portion derived from the cross-linking agent is preferably in the range of 3% by mass or more with respect to the total mass of the shell portion.
  • the content of the cross-linking agent better retains the morphology of the microcapsules in the presence of polar substances and balances the breaking strength with the release of the core material (eg, the fragrance strength when the core material contains a fragrance). From the viewpoint, 4% by mass or more is more preferable, 4% by mass to 15% by mass is further preferable, and 4% by mass to 10% by mass is particularly preferable.
  • the “structural portion derived from the cross-linking agent” refers to a structural unit formed by reacting a polysaccharide with a cross-linking agent.
  • the shell portion in the present disclosure preferably further contains a polyphenol compound.
  • the inclusion of the polyphenol compound in the shell makes it easier to maintain the shape of the capsule better.
  • polyphenol compound examples include green tea polyphenol (for example, catechin), anthocyanin, cacao polyphenol, rutin, curcumin, ferulic acid, and proanthocyanidin.
  • polyphenol compound a commercially available product on the market may be used.
  • commercially available products include the Sunfood (registered trademark) series (eg, Sunfood 100 and Sunfood CD), which are tea extracts from Mitsubishi Chemical Foods Co., Ltd., and the sugar cane extract from Mitsui Sugar Co., Ltd. (eg,). MSX-100 (J)) can be mentioned.
  • the content of the polyphenol compound is preferably in the range of 3% by mass or more with respect to the total mass of the shell portion.
  • the content of the polyphenol compound is preferably 5% by mass or more, more preferably 6% by mass or more, still more preferably 9% by mass or more, from the viewpoint of facilitating better retention of the morphology of the microcapsules in the presence of a polar substance. ..
  • the ratio of the components constituting the shell portion to the total mass of the core portion and the components constituting the shell portion is preferably 15% by mass or less.
  • the ratio of the components constituting the shell portion in the microcapsules to the total mass of the core portion and the components constituting the shell portion is adjusted by the mass ratio of the core material component and the shell material component when manufacturing the microcapsules. be able to.
  • the shell material forming the shell portion in the present invention preferably has polyurethane or polyurea having a structure derived from polyisocyanate.
  • the median diameter (D50) of the volume standard of the microcapsules is preferably 0.1 ⁇ m to 100 ⁇ m.
  • the median diameter (D50) is 0.1 ⁇ m or more, it is possible to prevent the microcapsules from entering the fine voids and becoming difficult to crack.
  • the median diameter (D50) is 100 ⁇ m or less, deterioration of adhesiveness can be prevented.
  • the median diameter (D50) of the volume standard of the microcapsules is more preferably 1 ⁇ m to 70 ⁇ m, and even more preferably 5 ⁇ m to 50 ⁇ m.
  • the median diameter of the volume standard of microcapsules can be controlled, for example, by changing the dispersion conditions.
  • the standard median diameter (D50) is the volume of particles on the large diameter side and the small diameter side when the entire microcapsule is divided into two with the particle diameter at which the cumulative volume is 50% as a threshold. The diameter at which the total is equal.
  • the median diameter of the volume standard of microcapsules is measured using Microtrack MT3300EXII (manufactured by Nikkiso Co., Ltd.).
  • the microcapsules of the present disclosure contain a desired component as a core material in the shell portion described above.
  • the core material is a material forming the core portion contained in the shell portion.
  • the core material is not particularly limited, and a desired component may be selected, and examples thereof include fragrances, solvents (oil components), phase transition materials (for example, paraffin and liquid crystal materials), and ultraviolet absorbers. Be done.
  • the fragrance is released from the microcapsules due to rubbing of clothes, rubbing of hair, etc., and the fragrance can be perceived. Since the microcapsules of the present disclosure are excellent in storage stability, it is expected that the expected amount of fragrance will be released.
  • fragrances include synthetic fragrances, natural essential oils, and natural fragrances described in "Patent Office, Well-known Conventional Technology Collection (Fragrance), Part III, Cosmetic Fragrances, pp. 49-103, published on June 15, 2001". And animal and plant extracts, suitable ones can be appropriately selected and used.
  • fragrances include pinene, milsen, camphene, monoterpenes (eg R-limonene and D-limonene), sesquitelpen such as sedren, cariophyllene, longifolene, 1,3,5-undecatorien, ⁇ - Synthetic fragrances such as amilcinnamylaldehyde, dihydrojasmon, methylionone, ⁇ -damascon, acetylsedrene, methyl dihydrojasmonate, cyclopentadecanolide; Can be mentioned.
  • the content of the fragrance with respect to the total mass of the core material is preferably 20% by mass to 100% by mass, more preferably 30% by mass to 95% by mass, still more preferably 40% by mass to 85% by mass.
  • the core material may contain a solvent as an oil component.
  • a solvent examples include tri (capryl capric acid) glyceryl (eg, glycerin fatty acid ester such as polyglycerol octacaprate (for example, Saracos (registered trademark) HG-8 manufactured by Nisshin Oillio Group Co., Ltd.), myristic acid.
  • Fatty acid ester compounds such as isopropyl, alkylnaphthalene compounds such as diisopropylnaphthalene, diarylalkane compounds such as 1-phenyl-1-xsilylethane, alkylbiphenyl compounds such as isopropylbiphenyl, triarylmethane compounds, alkylbenzene compounds, Aromatic hydrocarbons such as benzylnaphthalene compounds, diarylalkylene compounds, arylindane compounds; aliphatic hydrocarbons such as dibutylphthalate and isoparaffin; camellia oil, soybean oil, corn oil, cottonseed oil, rapeseed oil, olive oil, palm oil , Natural animal and vegetable oils such as castor oil and fish oil; and high boiling point distillates of natural compounds such as mineral oils.
  • the content of the solvent in the core material is preferably less than 50% by mass, more preferably 40% by mass or less, still more preferably 30% by mass or less, based on the total mass of the
  • the core material may contain an auxiliary solvent as an oil phase component for increasing the solubility of the wall material in the oil phase during the production of microcapsules.
  • the auxiliary solvent does not include the above solvent.
  • the auxiliary solvent include a ketone compound such as methyl ethyl ketone, an ester compound such as ethyl acetate, and an alcohol compound such as isopropyl alcohol.
  • the co-solvent has a boiling point of 130 ° C. or lower.
  • the content of the auxiliary solvent in the core material is preferably less than 50% by mass, more preferably less than 30% by mass, still more preferably less than 20% by mass, based on the total mass of the core material.
  • additives such as UV absorbers, light stabilizers, antioxidants, waxes, or odor suppressants can be encapsulated in microcapsules, if desired.
  • the content of the additive can be, for example, 0% by mass to 20% by mass, preferably 1% by mass to 15% by mass, and more preferably 5% by mass to 10% by mass with respect to the total mass of the core material. ..
  • microcapsules of the present disclosure can be produced by a known method, for example, by the production method shown below. However, the present disclosure is not limited to the following methods.
  • the microcapsules of the present disclosure use an oil phase containing a solvent, a cross-linking agent (for example, an isocyanate compound) which is a part of the shell material, and a core material (for example, an inclusion such as a fragrance) in another part of the shell material.
  • a step of preparing an emulsified solution by dispersing in an aqueous phase containing a certain polysaccharide emulsification step
  • a core material forming a shell portion by polymerizing a shell material at the interface between the oil phase and the aqueous phase to form a core portion. It can be produced by a method having a step of forming microcapsules (encapsulation step) containing the above.
  • the polysaccharide is contained in the aqueous phase in advance and further added after the emulsification step.
  • the polysaccharide further added after the emulsification step may be a polysaccharide of the same type (for example, HPC) as the polysaccharide (for example, HPMC) previously contained in the aqueous phase, or a polysaccharide previously contained in the aqueous phase. It may be a different type of polysaccharide (for example, dextrin that is not cellulosic) from the saccharide (for example, HPMC).
  • the oil phase containing the solvent, the cross-linking agent (eg, isocyanate compound) that is part of the shell material, and optionally the core material (eg, inclusions such as fragrance) is added to the other part of the shell material.
  • An emulsion can be prepared by dispersing in an aqueous phase containing the polysaccharide. The inclusion of the solvent in the oil phase enhances the monodispersity of the microcapsules.
  • Emulsified liquid ⁇ The emulsion in the present disclosure can be prepared by dispersing an oil phase containing a solvent and a part of the shell material in an aqueous phase containing another part of the shell material.
  • the above-mentioned polysaccharides are used as another part of the shell material. Since the polysaccharide also functions as an emulsifier, it is not necessary to further include an emulsifier in the aqueous phase in addition to the polysaccharide in the present disclosure, but an emulsifier described later may be further used in addition to the polysaccharide in the present disclosure.
  • the oil phase in the present disclosure contains at least a solvent and a cross-linking agent forming a part of the shell material, and may contain other components such as a fragrance, an auxiliary solvent, and an additive, if necessary. Details of fragrances, co-solvents, and additives are as described in the section on microcapsules described above.
  • cross-linking agent is included as part of the shell material in the present disclosure. Since the details of the cross-linking agent are as described above, the description thereof is omitted here.
  • the content of the cross-linking agent in the oil phase is preferably 1% by mass to 20% by mass, more preferably 1% by mass to 10% by mass, based on the total mass of the oil phase.
  • the concentration of the cross-linking agent can be appropriately adjusted in consideration of the size of the microcapsules, the wall thickness and the like.
  • the aqueous phase in the present disclosure contains at least an aqueous solvent and polysaccharides that form another part of the shell material.
  • aqueous medium of the present disclosure examples include water and alcohol, and ion-exchanged water can be used.
  • the content of the aqueous medium in the aqueous phase is preferably 20% by mass to 80% by mass, preferably 30% by mass to 70% by mass, based on the total mass of the emulsion obtained by emulsifying and dispersing the oil phase in the aqueous phase. Is more preferable, and 40% by mass to 60% by mass is further preferable.
  • a dispersant in addition to the polysaccharide, a dispersant, a surfactant, or a combination thereof may be used.
  • the dispersant include polyvinyl alcohol and its modified products (for example, anionic modified polyvinyl alcohol), polyacrylic acid amide and its derivatives, ethylene-vinyl acetate copolymer, styrene-maleic anhydride copolymer, and ethylene-maleic anhydride.
  • Acid copolymers isobutylene-maleic anhydride copolymers, polyvinylpyrrolidone, ethylene-acrylic acid copolymers, vinyl acetate-acrylic acid copolymers, casein, gelatin, starch derivatives, sodium alginate and the like can be mentioned.
  • Polyvinyl alcohol is preferable. It is preferable that the dispersant does not react with the shell material or is extremely difficult to react. For example, a dispersant having a reactive amino group in a molecular chain such as gelatin should be treated in advance to lose its reactivity. Is preferable.
  • surfactant examples include nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants.
  • the surfactant may be used alone or in combination of two or more.
  • the nonionic surfactant is not particularly limited, and conventionally known surfactants can be used.
  • the nonionic surfactant include a polyoxyethylene alkyl ether compound, a polyoxyethylene alkyl phenyl ether compound, a polyoxyethylene polystyryl phenyl ether compound, a polyoxyethylene polyoxy propylene alkyl ether compound, and a glycerin fatty acid moiety.
  • the anionic surfactant is not particularly limited, and conventionally known surfactants can be used.
  • anionic surfactants include fatty acid salts, avietates, hydroxyalcan sulfonates, alkane sulfonates, dialkyl sulfosulfonic acid ester salts, linear alkylbenzene sulfonates, branched chain alkylbenzene sulfonates, and alkylnaphthalene.
  • the cationic surfactant is not particularly limited, and conventionally known ones can be used.
  • Examples of cationic surfactants include alkylamine salts, quaternary ammonium salts (eg, hexadecyltrimethylammonium chloride), polyoxyethylene alkylamine salts, and polyethylene polyamine derivatives.
  • amphoteric surfactant is not particularly limited, and conventionally known surfactants can be used.
  • Amphoteric surfactants include, for example, carboxybetaine, aminocarboxylic acid, sulfobetaine, aminosulfate ester, and imitazoline.
  • the concentration of the polysaccharide is preferably 0.5% by mass to 20% by mass, more preferably 1% by mass to 10% by mass, still more preferably 1% by mass to 5% by mass, based on the total mass of the aqueous phase.
  • the concentration of the emulsifier other than the polysaccharide is preferably 0% by mass to 20% by mass with respect to the total mass of the emulsion.
  • the aqueous phase may contain other components such as an ultraviolet absorber, an antioxidant, and a preservative, if necessary.
  • the content of the other components is preferably more than 0% by mass and 20% by mass or less, more preferably more than 0.1% by mass and 10% by mass or less, based on the total mass of the aqueous phase. ..
  • Dispersion means that the oil phase is dispersed as oil droplets in the aqueous phase (that is, emulsification). Dispersion can be carried out using commonly used means for dispersing the oil and aqueous phases, such as homogenizers, menton gorries, ultrasonic dispersers, dissolvers, keddy mills, or other known dispersers.
  • the mixing ratio of the oil phase to the aqueous phase is preferably 0.03 to 1.5, more preferably 0.05 to 1.2, and further 0.1 to 1.0. preferable.
  • the mixing ratio is within the above range, the viscosity can be maintained at an appropriate level, the production suitability is excellent, and the stability of the emulsion is excellent.
  • the method for producing microcapsules of the present disclosure includes a step of polymerizing a shell material at an interface between an oil phase and an aqueous phase to form a shell to form microcapsules containing a solvent. As a result, microcapsules containing the oil phase component in the shell are formed.
  • Polymerization is a step of polymerizing the shell material contained in the oil phase in the emulsion at the interface with the aqueous phase, whereby a shell is formed.
  • the polymerization is preferably carried out under heating.
  • the reaction temperature in the polymerization is usually preferably 40 ° C to 100 ° C, more preferably 50 ° C to 80 ° C.
  • the polymerization reaction time is usually preferably 0.5 hours to 10 hours, more preferably 1 hour to 5 hours. The higher the polymerization temperature, the shorter the polymerization time, but when using a shell material that may decompose at high temperatures, it is desirable to select a polymerization initiator that acts at low temperatures and polymerize at a relatively low temperature. ..
  • aqueous solution for example, water or an aqueous acetic acid solution
  • a dispersant for preventing aggregation may be added again during the polymerization step.
  • a charge regulator such as niglosin or any other auxiliary agent can be added.
  • the microcapsules of the present disclosure preferably have a fracture deformation rate of 55% or less.
  • the fracture deformation rate refers to the minimum deformation rate of the microcapsules at the fracture point.
  • the fracture deformation rate is preferably 45% or less, and more preferably 35% or less.
  • the fracture deformation rate is preferably 5% or more so that the microcapsules are selectively destroyed when a required pressure is applied.
  • the fracture deformation rate is the displacement of the microcapsules when the microcapsule particles are broken, which is determined by the method used for measuring the fracture strength described later (the indenter used for measuring the fracture strength comes into contact with the microcapsules and then the microcapsules. It is a value calculated as a value obtained by gradually dividing (the distance traveled before the destruction of the particles) by the average value of the diameters of 50 particles before being deformed by applying pressure, and converting it into a percentage.
  • the microcapsules of the present disclosure preferably have a breaking strength of 20 MPa or less. This makes it possible to break the microcapsules with less pressure. For example, when the microcapsules contain a fragrance as a core material, the contained fragrance is satisfactorily released. As a result, the scent intensity is further improved. From the above viewpoint, the breaking strength of the microcapsules of the present disclosure is more preferably 15 MPa or less, further preferably 10 MPa or less, and particularly preferably 6 MPa or less.
  • the breaking strength of the microcapsules is a value measured by the following method. A few drops of the microcapsule water dispersion diluted with ion-exchanged water are added dropwise to the preparation and dried. Next, the value calculated by dividing the fracture force of the particles by the cross section of the particles is obtained.
  • the destructive power of particles is described in "Mechanical Properties of Melamine-Formaldehyde microcapsules" by Zhang, Z., Sun, G, J. Microencapsulation magazine, vol.18, no.5, 593-602, 2001. It can be measured using the above method. For 50 particles, the value calculated by dividing the breaking force of the particles by the cross section of the particles is obtained, and the above values of the 50 particles are averaged to obtain the breaking strength (MPa).
  • the unit of the destructive force of the particles is N (Newton), and the cross section of the particles is calculated by ⁇ r 2 (r is the radius of the microcapsule particles before being deformed by applying pressure). Can be done.
  • the microcapsule composition of the present disclosure contains the above-mentioned microcapsules of the present disclosure and a solvent.
  • an aqueous solvent is preferable. Since the microcapsule composition contains a solvent, the microcapsule composition can be easily blended when used for various purposes. Examples of the aqueous solvent include water and alcohol. The content of the solvent in the microcapsule composition can be appropriately selected depending on the purpose or application.
  • the microcapsule composition can contain a dispersion medium other than the above solvent for dispersing the microcapsules. Since the microcapsule composition contains a dispersion medium, the microcapsule composition can be easily blended when used for various purposes.
  • the dispersion medium here can be appropriately selected according to the intended use of the composition, and is preferably a liquid component that does not affect the shell material of the microcapsules. Preferred dispersion mediums include viscosity modifiers or stabilizers.
  • the content of the dispersion medium in the microcapsule composition may be appropriately selected depending on the purpose or application.
  • the microcapsule composition can contain other components in addition to the microcapsules, solvent and dispersion medium.
  • the other components are not particularly limited and may be appropriately selected depending on the purpose or necessity.
  • Other components include, for example, surfactants, cross-linking agents, lubricants, UV absorbers, antioxidants, and antistatic agents.
  • microcapsules of the present disclosure can be used in a variety of applications, particularly suitable for applications exposed to environments in the presence of polar substances, such as fabric softeners, laundry detergents, hair care, and day care. ..
  • the softener of the present disclosure contains the microcapsules of the present disclosure described above, and may further contain a solvent. If the softener further contains a solvent, the softener is an example of a microcapsule composition.
  • the detergent of the present disclosure contains the microcapsules of the present disclosure described above, and may further contain a solvent. If the detergent further contains a solvent, the detergent is an example of a microcapsule composition.
  • the microcapsule composition of the present disclosure can be made into a fabric softener by including a fragrance as a core material, for example. Thereby, the microcapsule composition of the present disclosure can be applied as a laundry composition.
  • the microcapsule composition which is the softener for clothing of the present disclosure the microcapsules contained in the microcapsule composition are adsorbed on the fibers of the clothing by immersing the clothing in the microcapsule composition, dehydrating and drying. It gets into the fine voids between the fibers and is retained by the clothing. Therefore, the clothing is provided with functions such as flexibility and antistatic property, and by including the microcapsules containing the core material, the core material can be released at a desired time.
  • the core material When a garment treated with the garment softener of the present disclosure is worn, the core material is stably contained in the microcapsules, so that a soft comfort can be obtained. Further, even after a lapse of time, the core material can be released by applying stress to the microcapsules by rubbing clothes or the like and causing the microcapsules to collapse. In addition, the microcapsules can be disintegrated and the core material can be released by wearing clothes and acting without applying any particular stress.
  • the fabric softener preferably contains 0.3% by mass to 3% by mass of microcapsules in the total amount of the microcapsule composition.
  • the garment softener of the present disclosure may further contain known components contained in the garment softener, for example, components such as an antifoaming agent and a coloring material.
  • the dispersion medium used in the fabric softener is preferably water such as ion-exchanged water.
  • the microcapsule composition of the present disclosure can be made into a detergent for clothing by including, for example, a fragrance as a core material. Thereby, the microcapsule composition of the present disclosure can be applied as a laundry detergent.
  • the microcapsule composition containing the microcapsules and the dispersion medium (solvent) of the microcapsules in the present disclosure can be directly applied to the hair care composition.
  • the hair care composition it can be arbitrarily applied to hair cosmetics such as conditioners, conditioners, and hair styling products.
  • the microcapsule composition of the present disclosure which is a hair cosmetic, causes the microcapsules to adhere to the hair, and when the hair is rubbed or combed, the microcapsules collapse due to stress, and the core material is used. Can be released.
  • the microcapsules can be stably stored for a longer period of time.
  • the hair cosmetic is applied to the hair by spraying, the dispersion medium and the microcapsules adhere to the hair. Then, for example, by massaging the scalp, stress is applied to the microcapsules, so that the microcapsules disintegrate and the core material can be attached to the hair.
  • the microcapsule composition of the present disclosure which is a hair cosmetic, can optionally contain a known component that can be contained in the hair cosmetic.
  • Known ingredients that can be included in hair cosmetics include aqueous media such as alcohol, oils, surfactants as cleaning or dispersing ingredients, active ingredients that penetrate the skin, coloring materials, and fragrances.
  • the microcapsule composition of the present disclosure can be applied to a day care composition such as a cosmetic sheet or a diaper containing, for example, a support and the above-mentioned microcapsule composition of the present disclosure impregnated in the support. ..
  • the support is not particularly limited as long as it can retain the liquid component.
  • the support is preferably a fiber aggregate having voids inside such as a non-woven fabric or a woven cloth, or a porous body such as a sponge sheet.
  • the microcapsule composition can be used as a skin cleaning sheet by containing a cleaning component such as a surfactant.
  • Day care compositions such as cosmetic sheets and diapers are preferably packaged in a water-impermeable packaging material in order to stably hold the microcapsule composition from the viewpoint of long-lasting effect.
  • the microcapsule composition of the present disclosure can be applied to various uses because the core material can be released at an arbitrary timing at a required timing.
  • the above-mentioned uses are an example thereof, and the uses of the microcapsule composition of the present disclosure are not limited to the above description.
  • Example 1 As a solvent, 10.5 parts by mass of Saracos (registered trademark) HG-8 (manufactured by Nisshin Oillio Group Co., Ltd .; glycerin fatty acid ester), 31.5 parts by mass of D-limonene (manufactured by Yasuhara Chemical Co., Ltd .; fragrance), and shell material. 1.74 parts by mass of Takenate (registered trademark) D-160N (manufactured by Mitsui Chemicals, Inc., hexamethylene diisocyanate trimethylolpropane adduct; cross-linking agent), which is a trifunctional aliphatic isocyanate compound, is stirred and mixed to obtain oil. Got a phase.
  • Saracos registered trademark
  • HG-8 manufactured by Nisshin Oillio Group Co., Ltd .
  • glycerin fatty acid ester 31.5 parts by mass of D-limonene (manufactured by Yasuhara
  • HPMC aqueous solution a 2.0% by mass aqueous solution (hereinafter referred to as HPMC aqueous solution) of Metrose® 60SH50 (Shin-Etsu Chemical Co., Ltd., hydroxypropylmethylcellulose (HPMC); polysaccharide) was prepared and used as an aqueous phase.
  • HPMC aqueous solution a 2.0% by mass aqueous solution (hereinafter referred to as HPMC aqueous solution) of Metrose® 60SH50 (Shin-Etsu Chemical Co., Ltd., hydroxypropylmethylcellulose (HPMC); polysaccharide) was prepared and used as an aqueous phase.
  • HPMC aqueous solution a 2.0% by mass aqueous solution (hereinafter referred to as HPMC aqueous solution) of Metrose® 60SH50 (Shin-Etsu Chemical Co., Ltd., hydroxypropylmethylcellulose (HPMC); polysaccharide) was prepared and used
  • microcapsules had a crosslinked structure.
  • the water dispersion of microcapsules was centrifuged to separate the microcapsules from the solution.
  • the separated microcapsules were mixed with dimethyl sulfoxide (DMSO) (5% by mass) to prepare a DMSO mixture.
  • DMSO dimethyl sulfoxide
  • the DMSO mixture became opaque or the swelling of the microcapsules was confirmed, it was judged that the microcapsules had a crosslinked structure.
  • the microcapsules were dissolved and the DMSO mixture became transparent, it was determined that the shell of the microcapsules did not have a crosslinked structure.
  • the presence or absence of opacity and swelling in the DMSO mixed solution was confirmed by visual observation and optical microscope observation.
  • the microcapsules of the microcapsule water dispersion had a crosslinked structure in the shell part because the DMSO mixture became opaque.
  • the thickness of the shell portion of the microcapsules was 0.25 ⁇ m.
  • the thickness of the shell portion was determined by calculating the thickness ( ⁇ m) of each shell portion of the five microcapsules with a scanning electron microscope (SEM) and averaging them.
  • the volume-based median diameter (D50) of the microcapsules in the obtained aqueous dispersion of microcapsules was 35 ⁇ m.
  • the volume-based median diameter was measured by Microtrack MT3300EXII (manufactured by Nikkiso Co., Ltd.).
  • ⁇ Evaluation criteria> A: In the softener, all 100 capsules maintained their capsule shape. B: In the softener, 90% or more and less than 100% of the microcapsules maintained the capsule shape. C: In the softener, 50% or more and less than 90% of the microcapsules maintained the capsule shape. D: In the softener, more than 0% and less than 50% of microcapsules maintained the capsule shape. E: No microcapsules could be confirmed in the softener (microcapsules disappeared).
  • the rupture force of the particles was measured based on, and the value calculated by dividing the measured rupture force of each particle (unit: N (Newton)) by the cross-sectional area of the corresponding particle was obtained. , 50 particles were obtained, and the average value of the obtained values was taken as the breaking strength (MPa).
  • Fracture deformation rate (%) displacement at break ( ⁇ m) / measured microcapsule diameter ( ⁇ m) x 100
  • Example 2 In Example 1, 60.0 parts by mass of a 25.0% by mass aqueous solution of Sandec # 180 (dextrin) was not added to the produced emulsion, and the composition was adjusted as shown in Table 1, as in Example 1. A microcapsule aqueous dispersion was obtained, and further measurement and evaluation were performed. The solid content of the microcapsules in the obtained aqueous dispersion of microcapsules was 8.6% by mass. Further, by the same method as in Example 1, it was confirmed that the shell portion of the microcapsules had a crosslinked structure because the DMSO mixed solution was opaque. The results of measurement and evaluation are shown in Table 1.
  • Example 5 Example 5
  • dextrin (60.0 parts by mass of a 25.0% by mass aqueous solution of Sandec # 180) added to the produced emulsion was replaced with the polysaccharide shown in Table 1, except that the dextrin was replaced with that of Example 1.
  • a microcapsule aqueous dispersion was obtained, and further measurement and evaluation were performed.
  • the solid content of the microcapsules in the obtained aqueous dispersion of microcapsules was 6.0% by mass.
  • the results of measurement and evaluation are shown in Table 1.
  • Example 6 Except that the 2.0% by mass aqueous solution of Metrose 60SH50 (HPMC) used as the polysaccharide in Example 1 was replaced with HPC (hydroxypropyl cellulose, Fujifilm Wako Pure Chemical Industries, Ltd .; polysaccharide) shown in Table 1. Obtained a microcapsule aqueous dispersion in the same manner as in Example 1, and further measured and evaluated it. The solid content of the microcapsules in the obtained aqueous dispersion of microcapsules was 20.8% by mass. Further, by the same method as in Example 1, it was confirmed that the shell portion of the microcapsules had a crosslinked structure because the DMSO mixed solution was opaque. The results of measurement and evaluation are shown in Table 1.
  • Example 7 In Example 1, Takenate D-160N used as a cross-linking agent was replaced with Takenate D-160N (trifunctional aliphatic isocyanate compound) and hexamethylene diisocyanate (bifunctional aliphatic isocyanate compound; HDI). Except for this, a microcapsule aqueous dispersion was obtained, and further measured and evaluated in the same manner as in Example 1. The solid content of the microcapsules in the obtained aqueous dispersion of microcapsules was 20.8% by mass. Further, by the same method as in Example 1, it was confirmed that the shell portion of the microcapsules had a crosslinked structure because the DMSO mixed solution was opaque. The results of measurement and evaluation are shown in Table 1.
  • Example 8 In Example 2, Takenate D-160N used as a cross-linking agent was replaced with Takenate D-160N (trifunctional aliphatic isocyanate compound) and hexamethylene diisocyanate (bifunctional aliphatic isocyanate compound; HDI). Except for this, a microcapsule aqueous dispersion was obtained, and further measured and evaluated in the same manner as in Example 2. The solid content of the microcapsules in the obtained aqueous dispersion of microcapsules was 8.6% by mass. Further, by the same method as in Example 1, it was confirmed that the shell portion of the microcapsules had a crosslinked structure because the DMSO mixed solution was opaque. The results of measurement and evaluation are shown in Table 1.
  • Example 9 (Examples 9 to 10)
  • Example 1 a microcapsule aqueous dispersion was obtained, measured and evaluated in the same manner as in Example 1 except that the thickness of the shell of the microcapsules was changed as shown in Table 1.
  • the solid content of the microcapsules in the obtained aqueous dispersion of microcapsules was 20.8% by mass. Further, by the same method as in Example 1, it was confirmed that the shell portion of the microcapsules had a crosslinked structure because the DMSO mixed solution was opaque. The results of measurement and evaluation are shown in Table 1.
  • Example 11 to 13 In Example 1, the amount of the tea extract (polyphenol compound) was changed as shown in Table 1, and the composition of other components was adjusted as shown in Table 1, as in Example 1. A microcapsule aqueous dispersion was obtained, and further measurement and evaluation were performed. The solid content of the microcapsules in the obtained aqueous dispersion of microcapsules was 20.8% by mass. Further, in the microcapsules, the DMSO mixture was opaque in Examples 11 to 12 and swelled in Example 13 by the same method as in Example 1, confirming that the shell portion has a crosslinked structure. Was done. The results of measurement and evaluation are shown in Table 1.
  • Example 14 In Example 1, a microcapsule aqueous dispersion was obtained, and further measured and evaluated in the same manner as in Example 1 except that the types of polysaccharides were changed as shown in Table 1. The solid content of the microcapsules in the obtained aqueous dispersion of microcapsules was 5.0% by mass. Further, since the microcapsules were swollen by the same method as in Example 1, it was confirmed that the shell portion had a crosslinked structure. The results of measurement and evaluation are shown in Table 1.
  • Examples 15 to 18 Same as in Example 1 except that the amount of Takenate D-160N used as the cross-linking agent was changed as shown in Table 1 and the other component compositions were adjusted as shown in Table 1.
  • a microcapsule aqueous dispersion was obtained, and further measurement and evaluation were performed.
  • the solid content of the microcapsules in the obtained aqueous dispersion of microcapsules was 20.8% by mass.
  • Example 19 In Example 1, a microcapsule aqueous dispersion was obtained, and further measured and evaluated in the same manner as in Example 1, except that the type of the cross-linking agent was changed as shown in Table 1. The solid content of the microcapsules in the obtained aqueous dispersion of microcapsules was 18.0% by mass. Further, since the microcapsules were swollen by the same method as in Example 1, it was confirmed that the shell portion had a crosslinked structure. The results of measurement and evaluation are shown in Table 1.
  • Example 1 a microcapsule aqueous dispersion was obtained, measured and evaluated in the same manner as in Example 1 except that the thickness of the shell of the microcapsules was changed as shown in Table 1.
  • the solid content of the microcapsules in the obtained aqueous dispersion of microcapsules was 20.8% by mass. Further, by the same method as in Example 1, it was confirmed that the shell portion of the microcapsules had a crosslinked structure because the DMSO mixed solution was opaque. The results of measurement and evaluation are shown in Table 1.
  • Example 2 In Example 1, the type of the cross-linking agent was changed as shown in Table 1, and after adding Sunfood (registered trademark) 100, which is a tea extract, tannic acid (Fujifilm Wako Pure Chemical Industries, Ltd.) 5 A microcapsule aqueous dispersion was obtained, and further measured and evaluated in the same manner as in Example 1 except that 16.0 g of a% mass aqueous solution was added. The solid content of the microcapsules in the obtained aqueous dispersion of microcapsules was 21.0% by mass. Further, since the microcapsules were made transparent by the same method as in Example 1, it was confirmed that the shell portion did not have a crosslinked structure. The results of measurement and evaluation are shown in Table 1.
  • D-160N Trifunctional aliphatic isocyanate compound (Takenate (registered trademark) D-160N, Mitsui Chemicals, Inc., hexamethylene diisocyanate trimethylolpropane adduct)
  • HDI Bifunctional aliphatic isocyanate compound (Tokyo Chemical Industry Co., Ltd., hexamethylene diisocyanate) Tannic acid: Fujifilm Wako Pure Chemical Industries, Ltd. Epoxy: 4,4'-Meilenbis (N, N-diglycidylaniline), Tokyo Chemical Industry Co., Ltd. Acid chloride: Adipoil chloride, Tokyo Chemical Industry Co., Ltd.
  • Polyphenol compound Tea extract: Sunfood (registered trademark) 100, Mitsubishi Chemical Foods Co., Ltd.
  • the morphology of the capsule was well maintained in the presence of a polar ionic surfactant, even though the shell portion was a thin film having a thickness of less than 2 ⁇ m. Good results were also obtained for the scent intensity released when an external force (scratch) was applied, and all the microcapsules were excellent in storage stability. In particular, when an isocyanate compound was used as the cross-linking agent, it was more excellent in terms of capsule morphology and storage stability.
  • Example 1 and Example 2 Comparing Example 1 and Example 2, the microcapsules of Example 1 in which two kinds of linear polysaccharides and branched polysaccharides are used in combination are compared with those of Example 2 in which only linear polysaccharides are used. It can be seen that the effect of improving the breaking strength of Comparing Example 1 with Examples 3 to 5 in which the branched polysaccharide is changed from Example 1, dextrin is more effective as the branched polysaccharide in terms of the effect of improving the breaking strength of the microcapsules. It turns out that. Comparing Example 1 and Example 6, HPMC showed better fracture strength while maintaining scent intensity as compared with HPC.
  • the increase or decrease in the amount of the polyphenol compound affects the shape retention of the microcapsules.
  • the amount of the polyphenol compound is preferably 3% by mass or more, more preferably 5% by mass or more (further, 6% by mass or more, particularly particularly) with respect to the total mass of the shell. It can be seen that it is 9% by mass or more).
  • the amount of the cross-linking agent is preferably 3% by mass or more, the morphology of the microcapsules is maintained well, and the breaking strength and the fragrance strength are balanced. From the viewpoint, the range of 4% by mass or more and 10% by mass is more preferable.
  • Comparative Example 1 in which the shell thickness exceeded 2 ⁇ m, good scent intensity could not be obtained.
  • the conventional microcapsules described in JP-A-54-426 and JP-A-2-29341 described above are also considered to have a thick shell portion, and the shell portion is less than 2 ⁇ m. It is not clear whether or not the stability of the form of microcapsules (storage stability) and the release property of core materials such as fragrances can be balanced in the coexistence of polar substances when the thin film is formed. Further, in Comparative Example 2 using tannic acid, since a covalently bonded crosslinked structure could not be obtained, the capsule morphology could not be maintained, resulting in a remarkably low scent intensity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

Microcapsules each comprising a core and a shell with which the core has been enclosed, wherein the shell has a covalent crosslinked structure derived from a reaction between a polysaccharide and a crosslinking agent and has a thickness less than 2 μm.

Description

マイクロカプセル、マイクロカプセル組成物、柔軟剤及び洗剤Microcapsules, microcapsule compositions, fabric softeners and detergents
 本開示は、マイクロカプセル、マイクロカプセル組成物、柔軟剤、及び洗剤に関する。 The present disclosure relates to microcapsules, microcapsule compositions, fabric softeners, and detergents.
 近年、マイクロカプセルは、香料、染料、蓄熱材、医薬品成分等の機能性材料を内包して保護し得ること、又は外部からの刺激に応答して機能性材料を放出し得る性質を有すること等の理由から、新たな価値を創出できる可能性があるとして注目されている。 In recent years, microcapsules have the property of being able to contain and protect functional materials such as fragrances, dyes, heat storage materials, and pharmaceutical ingredients, or having the property of releasing functional materials in response to external stimuli. For this reason, it is attracting attention as it has the potential to create new value.
 香料をマイクロカプセルに内包する形態では、例えば、香料が内包されたマイクロカプセル(以下、香料カプセルともいう。)を柔軟剤と混合することで、洗濯後の衣類に香りを付与することができる。即ち、柔軟剤を使用して衣服を洗濯することで、柔軟剤に含まれる香料カプセルが衣服に付着し、圧力等の外部刺激により付着した香料カプセルが破壊した際、内包された香料が放出され、香料による香りを生じさせることができる。近年、香料カプセルに用いられているシェル材は、アルデヒドとアミンとの反応生成物(例えばメラミンホルムアルデヒド樹脂)が主体である。 In the form of containing the fragrance in the microcapsules, for example, by mixing the microcapsules containing the fragrance (hereinafter, also referred to as the fragrance capsule) with the softener, the fragrance can be given to the clothes after washing. That is, when clothes are washed with a softener, the fragrance capsules contained in the softener adhere to the clothes, and when the attached fragrance capsules are destroyed by an external stimulus such as pressure, the contained fragrance is released. , Can produce a fragrance. In recent years, shell materials used in perfume capsules are mainly composed of reaction products of aldehydes and amines (for example, melamine formaldehyde resin).
 ところが、最近では、環境面及び人体への安全性の面から、石油系原料に代えて生物由来の材料を用いることが検討されている。マイクロカプセルの作製に用いる材料においても例外ではなく、マイクロカプセルの形態をなすシェル(いわゆるカプセル壁)の形成に石油系原料を用いず、生物由来の物質を用いることに対する要望が高まっている。 However, recently, from the viewpoint of environment and safety to the human body, it is being considered to use biological materials instead of petroleum-based raw materials. The materials used for the production of microcapsules are no exception, and there is an increasing demand for the use of biological substances instead of petroleum-based raw materials for the formation of shells (so-called capsule walls) in the form of microcapsules.
 例えば植物由来の材料を用いたマイクロカプセルの製造方法として、コア材料として香料を用い、シェルの形成に用いる材料として多糖類(例えばヒドロキシプロピルメチルセルロース)とデキストリンを用いてマイクロカプセルを作製する方法が開示されている(例えば、特開2017-176907号公報参照)。
 また、外側シェル材であるゼラチンにグルタルアルデヒドを添加して形成した外側シェルと、ポリウレアで形成された内側シェルと、を含む多層マイクロカプセルによるコア/多層シェルカプセルシステムが開示されている(例えば、特許第6250055号公報参照)。
 更に、油溶性多官能性イソシアネートで橋かけ結合されたヒドロキシプロピルセルロースを含むマイクロカプセル壁膜を有するマイクロカプセルが開示されている(例えば、特開昭54-426号公報参照)。
 上記のほか、ヒドロキシプロピルメチルセルロース等の水溶性高分子物質を含む水性組成物を水不溶性有機媒体に加えて油相中に水相を乳化分散し、これに芳香族ポリイソシアネートを加えてカプセルを形成する製法が開示されている(例えば、特開平2-293041号公報参照)。
For example, as a method for producing microcapsules using a plant-derived material, a method for producing microcapsules using a fragrance as a core material and a polysaccharide (for example, hydroxypropylmethyl cellulose) and dextrin as a material used for forming a shell is disclosed. (For example, see JP-A-2017-176907).
Also disclosed is a core / multi-layer shell capsule system with multi-layer microcapsules comprising an outer shell formed by adding glutaraldehyde to gelatin as an outer shell material and an inner shell formed of polyurea (eg,). See Patent No. 6250055).
Further, a microcapsule having a microcapsule wall membrane containing hydroxypropyl cellulose bridge-bonded with an oil-soluble polyfunctional isocyanate is disclosed (see, for example, Japanese Patent Application Laid-Open No. 54-426).
In addition to the above, an aqueous composition containing a water-soluble polymer substance such as hydroxypropylmethylcellulose is added to a water-insoluble organic medium to emulsify and disperse the aqueous phase in the oil phase, and an aromatic polyisocyanate is added thereto to form a capsule. (For example, see JP-A-2-293401).
 上記のように、植物又は動物由来の材料を用いてマイクロカプセルを製造する技術は種々検討されているものの、特に極性物質の共存下では、コア部をなす被内包物を内包するシェル部のバリア機能が低下し、被内包物を安定的にシェル部内に保持し得ない課題がある。かかる課題に対しては、マイクロカプセルのシェル部は厚膜であることが望ましいが、シェル部の厚みが2μm以上の厚膜であると、逆に被内包物の放出性が損なわれる傾向がある。
 特開2017-176907号公報、特許第6250055号公報、特開昭54-426号公報及び特開平2-293041号公報には、シェル部が2μm未満の薄膜である場合は開示されていないため、極性物質の共存下において、マイクロカプセルの形態の安定性(例えば、保存安定性)と被内包物の放出性とのバランスを保つことまで予定されていない。したがって、特開2017-176907号公報、特許第6250055号公報、特開昭54-426号公報及び特開平2-293041号公報に記載の発明では、所望とする被内包物を内包したマイクロカプセルの適用が望まれる使用態様において、極性物質が共存する環境では使用が困難であり、使用による所期の効果も必ずしも期待できない。
As described above, various techniques for producing microcapsules using materials derived from plants or animals have been studied, but especially in the coexistence of polar substances, the barrier of the shell portion containing the inclusions forming the core portion. There is a problem that the function is deteriorated and the inclusion cannot be stably held in the shell portion. To solve this problem, it is desirable that the shell portion of the microcapsules has a thick film, but if the shell portion has a thickness of 2 μm or more, the release property of the inclusions tends to be impaired. ..
Japanese Patent Application Laid-Open No. 2017-176907, Japanese Patent No. 6250055, Japanese Patent Application Laid-Open No. 54-426, and Japanese Patent Application Laid-Open No. 2-29341 do not disclose the case where the shell portion is a thin film of less than 2 μm. It is not even planned to balance the morphological stability of microcapsules (eg, storage stability) with the release of inclusions in the presence of polar substances. Therefore, in the inventions described in Japanese Patent Application Laid-Open No. 2017-176907, Japanese Patent No. 6250055, Japanese Patent Application Laid-Open No. 54-426, and Japanese Patent Application Laid-Open No. 2-293401, the microcapsules containing the desired inclusions are used. In the usage mode where application is desired, it is difficult to use in an environment where polar substances coexist, and the expected effect of use cannot always be expected.
 本開示は、上記に鑑みなされたものである。
 本開示の一実施形態によれば、シェル部を薄膜としつつ、極性物質の共存下での保存安定性に優れたマイクロカプセルが提供される。
 本開示の他の実施形態によれば、シェル部に内包されたコア材が安定的にシェル部内に保持されたマイクロカプセル組成物、並びに、柔軟剤及び洗剤が提供される。
The present disclosure has been made in view of the above.
According to one embodiment of the present disclosure, microcapsules having an excellent storage stability in the coexistence of polar substances are provided while the shell portion is made into a thin film.
According to another embodiment of the present disclosure, there is provided a microcapsule composition in which the core material contained in the shell portion is stably held in the shell portion, and a softener and a detergent.
 本開示は、以下の態様を含む。
 <1> コア部とコア部を内包するシェル部とを含み、シェル部は、多糖類と架橋剤との反応由来の共有結合性の架橋構造を有し、かつ、厚みが2μm未満である、マイクロカプセルである。
 <2> 架橋剤が、3官能以上の脂肪族イソシアネート化合物及び2官能の脂肪族イソシアネート化合物から選ばれる少なくとも一種のイソシアネート化合物である<1>に記載のマイクロカプセルである。
 <3> 多糖類が、セルロース化合物、デキストリン、アラビアガム、キタンサンガム、及びグァーガムからなる群より選ばれる少なくとも一種である<1>又は<2>に記載のマイクロカプセルである。
 <4> 多糖類が、ヒドロキシプロピルセルロース及びヒドロキシプロピルメチルセルロースからなる群より選ばれる少なくとも一種を含む<1>~<3>のいずれか1つに記載のマイクロカプセルである。
The present disclosure includes the following aspects.
<1> A core portion and a shell portion containing the core portion are included, and the shell portion has a covalently bonded cross-linked structure derived from the reaction of a polysaccharide and a cross-linking agent, and has a thickness of less than 2 μm. It is a microcapsule.
<2> The microcapsule according to <1>, wherein the cross-linking agent is at least one isocyanate compound selected from a trifunctional or higher functional aliphatic isocyanate compound and a bifunctional aliphatic isocyanate compound.
<3> The microcapsule according to <1> or <2>, wherein the polysaccharide is at least one selected from the group consisting of a cellulose compound, dextrin, gum arabic, gum arabic, and guar gum.
<4> The microcapsule according to any one of <1> to <3>, wherein the polysaccharide contains at least one selected from the group consisting of hydroxypropyl cellulose and hydroxypropyl methyl cellulose.
 <5> シェル部が、更に、ポリフェノール化合物を含む<1>~<4>のいずれか1つに記載のマイクロカプセルである。
 <6> ポリフェノール化合物の含有量が、シェル部の全質量に対して、5質量%以上である<5>に記載のマイクロカプセルである。
 <7> 架橋剤に由来する構造部分の含有比率が、シェル部の全質量に対して、4質量%以上である<1>~<6>のいずれか1つに記載のマイクロカプセルである。
 <8> <1>~<7>のいずれか1つに記載のマイクロカプセルと、溶媒と、を含有するマイクロカプセル組成物である。
 <9> <1>~<7>のいずれか1つに記載のマイクロカプセルを含む柔軟剤である。
 <10> <1>~<7>のいずれか1つに記載のマイクロカプセルを含む洗剤である。
<5> The microcapsule according to any one of <1> to <4>, wherein the shell portion further contains a polyphenol compound.
<6> The microcapsules according to <5>, wherein the content of the polyphenol compound is 5% by mass or more with respect to the total mass of the shell portion.
<7> The microcapsule according to any one of <1> to <6>, wherein the content ratio of the structural portion derived from the cross-linking agent is 4% by mass or more with respect to the total mass of the shell portion.
<8> A microcapsule composition containing the microcapsule according to any one of <1> to <7> and a solvent.
<9> A softener containing the microcapsules according to any one of <1> to <7>.
<10> A detergent containing the microcapsules according to any one of <1> to <7>.
 本発明の一実施形態によれば、シェル部を薄膜としつつ、極性物質の共存下での保存安定性に優れたマイクロカプセルが提供される。
 本発明の他の実施形態によれば、シェル部に内包されたコア材が安定的にシェル内に保持されたマイクロカプセル組成物、並びに、柔軟剤及び洗剤が提供される。
According to one embodiment of the present invention, microcapsules having an excellent storage stability in the coexistence of polar substances are provided while the shell portion is made into a thin film.
According to another embodiment of the present invention, there is provided a microcapsule composition in which the core material contained in the shell portion is stably held in the shell, and a softener and a detergent.
 以下、本開示のマイクロカプセル、並びに、これを用いたマイクロカプセル組成物、並びに、柔軟剤及び洗剤について詳細に説明する。
 なお、本開示の実施形態に関わる構成要件の説明は、本開示の代表的な実施態様に基づいてなされることがあるが、本開示はそのような実施態様に限定されるものではない。
Hereinafter, the microcapsules of the present disclosure, microcapsule compositions using the same, and softeners and detergents will be described in detail.
The description of the constituent elements relating to the embodiments of the present disclosure may be based on the typical embodiments of the present disclosure, but the present disclosure is not limited to such embodiments.
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
In the present specification, the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
In the numerical range described stepwise in the present disclosure, the upper limit value or the lower limit value described in a certain numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
 また、本開示において、組成物又は層中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する上記複数の物質の合計量を意味する。
 本開示において、「質量%」は「重量%」と同義であり、「質量部」は「重量部」と同義である。
 更に、本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
Further, in the present disclosure, the amount of each component in the composition or layer is the amount of the above-mentioned plurality of substances existing in the composition unless otherwise specified, when a plurality of substances corresponding to each component are present in the composition. Means the total amount.
In the present disclosure, "% by mass" is synonymous with "% by weight" and "parts by weight" is synonymous with "parts by weight".
Further, in the present disclosure, a combination of two or more preferred embodiments is a more preferred embodiment.
 本明細書において、「シェル部」は、マイクロカプセルの粒子を形づくる外殻を指し、いわゆるカプセル壁のことをいう。また、「コア部」は、「芯部」ともいい、シェル部により内包されている部分を指す。
 本明細書において、シェル部を形成するための材料を「シェル材」又は「壁材」といい、コア部に含まれる成分を「コア材」又は「被内包物」という。
 また、本開示において、「内包」とは、目的とする物(すなわち、被内包物)がマイクロカプセルのシェル部に覆われて閉じ込められている状態を指す。
In the present specification, the "shell portion" refers to the outer shell forming the particles of the microcapsules, and refers to the so-called capsule wall. Further, the "core portion" is also referred to as a "core portion" and refers to a portion included by the shell portion.
In the present specification, the material for forming the shell portion is referred to as "shell material" or "wall material", and the component contained in the core portion is referred to as "core material" or "inclusion".
Further, in the present disclosure, the “inclusion” refers to a state in which a target object (that is, an inclusion) is covered with a shell portion of a microcapsule and confined.
<マイクロカプセル>
 本開示のマイクロカプセルは、コア部と、コア部を内包するシェル部と、を含む構成を有しており、シェル部は、多糖類と架橋剤との反応由来の共有結合性の架橋構造を有し、かつ、厚みが2μm未満である。
<Microcapsules>
The microcapsules of the present disclosure have a structure including a core portion and a shell portion containing the core portion, and the shell portion has a covalently bonded cross-linked structure derived from the reaction between the polysaccharide and the cross-linking agent. It has and has a thickness of less than 2 μm.
 本開示のマイクロカプセルは、マイクロカプセルのシェル部が、多糖類と架橋剤との反応に由来する共有結合性の架橋構造を有していることにより、厚み2μm未満の薄膜であっても、極性物質と共存する使用環境下においてコア部をなすコア材(被内包物)を安定的にシェル部に保持し得る保存安定性に優れたものとなる。 The microcapsules of the present disclosure have a covalently cross-linked structure in which the shell portion of the microcapsules is derived from the reaction between a polysaccharide and a cross-linking agent, so that even a thin film having a thickness of less than 2 μm is polar. The core material (inclusion) forming the core portion can be stably held in the shell portion in a usage environment coexisting with a substance, and the storage stability is excellent.
 本開示のマイクロカプセルが上記の作用効果を奏する理由については、必ずしも明らかになっていないが、以下のように推測される。
 従来から、植物又は動物由来の材料を用いてマイクロカプセルを製造する技術が種々検討されている。しかしながら、特開2017-176907号公報、特許第6250055号公報、特開昭54-426号公報及び特開平2-293041号公報に記載の発明では、いずれも極性物質が共存し得る環境で使用されると、マイクロカプセルのシェルに内包されたコア部をなすコア材(すなわち、被内包物)を保持するバリア機能が低下し、シェル内にコア材を安定的に保持し得ないのが実状である。かかる状況は、シェルの厚み(即ち、カプセル壁の厚み)が薄いほど顕著に現れ、所望の目的に応じて厚みを例えば2μm未満の範囲にしようとすると、バリア機能を確保することが難しくなる。
 例えば柔軟剤又は洗濯洗剤には、極性物質であるカチオン系界面活性剤又はアニオン系界面活性剤が含有されている場合が多い。例えば香料を内包したマイクロカプセルを柔軟剤又は洗濯洗剤に混在させると、界面活性剤の極性がマイクロカプセルのシェルのイオン結合に影響を与えるものと推測される。これにより、カプセルの形態を安定的に保持できないものと考えられる。
 本開示では、シェル部の厚みを2μm未満の薄厚にしつつ、シェル部に多糖類と架橋剤との反応に由来する共有結合性の架橋構造を導入する。即ち、シェル中のポリマーに架橋剤を導入してポリマーと架橋剤との間で共有結合を形成し、共有結合性の架橋構造を導入する。これにより、極性物質が存在する環境に適用される使用態様において、シェル部の厚み(壁厚)が薄い(<2μm)構造のマイクロカプセルでも安定性を確保でき、コア材が安定的にシェル部に内包されたマイクロカプセルを提供することができる。即ち、本開示のマイクロカプセルは、シェル部の薄膜化とカプセルの形態安定化とが図られている。
The reason why the microcapsules of the present disclosure exert the above-mentioned effects is not always clear, but it is presumed as follows.
Conventionally, various techniques for producing microcapsules using materials derived from plants or animals have been studied. However, in the inventions described in JP-A-2017-176907, Patent No. 6250055, JP-A-54-426 and JP-A-2-293401, all of them are used in an environment where polar substances can coexist. Then, the barrier function for holding the core material (that is, the inclusion) that forms the core part contained in the shell of the microcapsule is lowered, and the core material cannot be stably held in the shell. is there. Such a situation becomes more remarkable as the thickness of the shell (that is, the thickness of the capsule wall) becomes thinner, and it becomes difficult to secure the barrier function when the thickness is set to, for example, less than 2 μm according to a desired purpose.
For example, fabric softeners or laundry detergents often contain polar substances such as cationic surfactants or anionic surfactants. For example, when microcapsules containing fragrance are mixed with a softener or laundry detergent, it is presumed that the polarity of the surfactant affects the ionic bonding of the shell of the microcapsules. As a result, it is considered that the shape of the capsule cannot be stably maintained.
In the present disclosure, a covalent cross-linking structure derived from the reaction between a polysaccharide and a cross-linking agent is introduced into the shell portion while making the thickness of the shell portion less than 2 μm. That is, a cross-linking agent is introduced into the polymer in the shell to form a covalent bond between the polymer and the cross-linking agent, and a covalent cross-linking structure is introduced. As a result, in a usage mode applied to an environment in which a polar substance is present, stability can be ensured even in a microcapsule having a structure in which the thickness (wall thickness) of the shell portion is thin (<2 μm), and the core material is stably in the shell portion. Microcapsules encapsulated in can be provided. That is, in the microcapsules of the present disclosure, the shell portion is thinned and the shape of the capsule is stabilized.
 以下において、まずマイクロカプセルを形作るシェル部について説明し、続いてコア部について説明する。 In the following, the shell part that forms the microcapsule will be described first, and then the core part will be described.
(シェル部)
 本開示のマイクロカプセルは、コア部をなすコア材を内包し、かつ、カプセル粒子を形作るための外殻であるシェル部を有する。
 本開示におけるシェル部は、シェル部を形成するシェル材として、ポリウレタン、ポリウレア、ポリエステル、ポリエーテル等のポリマーを含んでもよい。
(Shell part)
The microcapsules of the present disclosure include a core material forming a core portion and have a shell portion which is an outer shell for forming capsule particles.
The shell portion in the present disclosure may contain a polymer such as polyurethane, polyurea, polyester, or polyether as the shell material forming the shell portion.
-共有結合性の架橋構造-
 シェル部は、多糖類と架橋剤との反応由来の共有結合性の架橋構造を有している。
 シェル部は、多糖類が有する複数の水酸基と、架橋剤中の、水酸基と反応性を有する複数の架橋性基と、の間の反応によって高分子化し、共有結合性の架橋構造が形成されることで得られる。
 架橋性基としては、イソシアネート基、カルボキシ基、及びエポキシ基が挙げられる。
 共有結合性の架橋構造としては、ウレタン結合による架橋構造、エステル結合による架橋構造、及び、エーテル結合による架橋構造が好適な構造として挙げられる。
-Covalent bridge structure-
The shell portion has a covalently bonded cross-linked structure derived from the reaction between the polysaccharide and the cross-linking agent.
The shell portion is polymerized by the reaction between the plurality of hydroxyl groups of the polysaccharide and the plurality of crosslinkable groups having reactivity with the hydroxyl groups in the crosslinking agent, and a covalently bonded crosslinked structure is formed. It can be obtained by.
Examples of the crosslinkable group include an isocyanate group, a carboxy group, and an epoxy group.
As the covalently bonded crosslinked structure, a crosslinked structure by a urethane bond, a crosslinked structure by an ester bond, and a crosslinked structure by an ether bond are preferable structures.
 ウレタン結合による架橋構造は、多糖類とイソシアネート化合物との反応により形成される構造である。
 エステル結合による架橋構造は、多糖類とカルボン酸ハロゲン化物(好ましくは酸クロライド)との反応により形成される構造である。
 エーテル結合による架橋構造は、多糖類とエポキシ化合物との反応により形成される構造である。
 上記の中でも、極性のあるイオン系界面活性剤の共存下でも保存安定性に優れ、カプセルの形態を安定的に維持し、かつ、外力(例えば、擦過)が与えられた際のコア材(例えば香料)の放出性(例えば香料を含む場合の香り強度)が良好である点で、ウレタン結合による架橋構造を有している態様が好ましく、多官能イソシアネート化合物(以下、「ポリイソシアネート」ともいう。)に由来する構造部分を有している態様がより好ましい。即ち、本開示におけるシェル材がポリウレタン又はポリウレアを含む場合、保存安定性の観点から、ポリイソシアネートを用いて得られることが好ましい。
The crosslinked structure by urethane bond is a structure formed by the reaction of a polysaccharide and an isocyanate compound.
The crosslinked structure by the ester bond is a structure formed by the reaction of the polysaccharide and the carboxylic acid halide (preferably acid chloride).
The crosslinked structure by the ether bond is a structure formed by the reaction of the polysaccharide and the epoxy compound.
Among the above, the core material (for example,) which is excellent in storage stability even in the coexistence of a polar ionic surfactant, maintains the shape of the capsule stably, and is subjected to an external force (for example, scraping). In terms of good release property (for example, fragrance intensity when fragrance is contained), an embodiment having a crosslinked structure by urethane bond is preferable, and it is also referred to as a polyfunctional isocyanate compound (hereinafter, also referred to as "polyisocyanate"). ) Is more preferable. That is, when the shell material in the present disclosure contains polyurethane or polyurea, it is preferably obtained by using polyisocyanate from the viewpoint of storage stability.
 マイクロカプセルのシェル部が共有結合性の架橋構造を有することの確認は、以下の方法により行うことができる。
 初めに、調製したマイクロカプセル水分散液に対して遠心分離を施し、マイクロカプセルを液中から分離する。分離したマイクロカプセルをジメチルスルホキシド(DMSO)に加えて(DMSOに対して1質量%~5質量%)DMSO混合液を調製する。そして、マイクロカプセルを含むDMSO混合液が不透明化するか、又はマイクロカプセルの膨潤が確認できた場合は、マイクロカプセルのシェルが架橋構造を有するものと判断する。また、マイクロカプセルが溶解してDMSO混合液が透明化した場合は、マイクロカプセルのシェルが架橋構造を有していないものとする。DMSO混合液が不透明化していることの確認は目視により行い、マイクロカプセルが膨潤していることの確認は光学顕微鏡での観察により行う。
 上記の方法により、架橋構造が共有結合性であることも判断されるものとする。
Confirmation that the shell portion of the microcapsule has a covalently bonded crosslinked structure can be performed by the following method.
First, the prepared microcapsule aqueous dispersion is centrifuged to separate the microcapsules from the solution. The separated microcapsules are added to dimethyl sulfoxide (DMSO) (1% by mass to 5% by mass based on DMSO) to prepare a DMSO mixture. Then, when the DMSO mixture containing the microcapsules becomes opaque or the swelling of the microcapsules can be confirmed, it is determined that the shell of the microcapsules has a crosslinked structure. When the microcapsules are dissolved and the DMSO mixture becomes transparent, it is assumed that the shell of the microcapsules does not have a crosslinked structure. Confirmation that the DMSO mixture is opaque is visually confirmed, and confirmation that the microcapsules are swollen is performed by observation with an optical microscope.
By the above method, it is also determined that the crosslinked structure is covalent.
 また、本開示におけるシェル部の厚みは、2μm未満である。
 本開示のマイクロカプセルは、シェル部の厚みが2μm未満の薄膜であっても、カプセルの形態を安定的に維持でき、保存安定性に優れている。これにより、擦過等の外力が与えられた場合に所期より予定していた量のコア材を安定的に放出することが可能である。
 シェル部(壁)の厚み(壁厚)は、1.5μm以下が好ましく、1.0μm以下がより好ましく、0.5μm以下が更に好ましい。また、本開示におけるマイクロカプセルは、架橋構造を有して形状を保持しやすいため、シェル部の厚みの下限は、製造可能な範囲で適宜選択すればよく、例えば0.1μmとしてもよい。
Further, the thickness of the shell portion in the present disclosure is less than 2 μm.
The microcapsules of the present disclosure can stably maintain the shape of the capsule even if the thickness of the shell portion is less than 2 μm, and are excellent in storage stability. As a result, when an external force such as scratching is applied, it is possible to stably release the amount of core material planned from the intended stage.
The thickness (wall thickness) of the shell portion (wall) is preferably 1.5 μm or less, more preferably 1.0 μm or less, and further preferably 0.5 μm or less. Further, since the microcapsules in the present disclosure have a crosslinked structure and easily retain their shape, the lower limit of the thickness of the shell portion may be appropriately selected within a manufacturable range, and may be, for example, 0.1 μm.
 シェル部(壁)の厚み(壁厚)は、5個のマイクロカプセルの個々の壁厚(μm)を走査型電子顕微鏡(SEM)により求めて平均した平均値をいう。
 具体的には、マイクロカプセル液を任意の支持体上に塗布し、乾燥させて塗布膜を形成する。得られた塗布膜の断面切片を作製し、その断面をSEMを用いて観察する。任意の5個のマイクロカプセルを選択して、それら個々のマイクロカプセルの断面を観察して壁厚を測定して平均値を算出する。
The thickness (wall thickness) of the shell portion (wall) is an average value obtained by calculating the individual wall thickness (μm) of the five microcapsules with a scanning electron microscope (SEM) and averaging them.
Specifically, the microcapsule solution is applied onto an arbitrary support and dried to form a coating film. A cross-sectional section of the obtained coating film is prepared, and the cross section is observed using an SEM. Arbitrary 5 microcapsules are selected, the cross sections of the individual microcapsules are observed, the wall thickness is measured, and the average value is calculated.
-多糖類-
 本開示における多糖類は、例えば、マンナン、グルカン、グルコマンナン、キシログルカン、セルロース化合物、デキストリン、デキストラン、アラビアガム、キタンサンガム、グァーガム、ガラクトマンナン、カラギーナン、ペクチン、アルギン酸、キトサン及びこれらの混合物からなる群より選択することができる。
 なお、ゼラチンは、本開示における多糖類には含まれない。
-Polysaccharide-
The polysaccharides in the present disclosure are, for example, a group consisting of mannan, glucan, glucomannan, xyloglucan, cellulose compounds, dextrin, dextran, arabic gum, kitansan gum, guar gum, galactomannan, carrageenan, pectin, alginic acid, chitosan and mixtures thereof. You can choose more.
Gelatin is not included in the polysaccharides in the present disclosure.
 セルロース化合物としては、ヒドロキシアルキルセルロース、及びカルボキシアルキルセルロースが挙げられる。
 ヒドロキシアルキルセルロースは、アルキル部位の炭素数が1~8であるものが好ましく、アルキル部位の炭素数が1~4であるものがより好ましい。ヒドロキシアルキルセルロースの例としては、ヒドロキシエチルセルロース(HEC)、ヒドロキシプロピルセルロース(HPC)、及びヒドロキシプロピルメチルセルロース(HPMC)が挙げられる。
 カルボキシアルキルセルロースは、アルキル部位の炭素数が1~4であるものが好ましく、アルキル部位の炭素数が1~2であるものがより好ましい。カルボキシアルキルセルロースの例としては、カルボキシメチルセルロース(CMC)が挙げられる。
Examples of the cellulose compound include hydroxyalkyl cellulose and carboxyalkyl cellulose.
The hydroxyalkyl cellulose preferably has 1 to 8 carbon atoms at the alkyl moiety, and more preferably 1 to 4 carbon atoms at the alkyl moiety. Examples of hydroxyalkyl cellulose include hydroxyethyl cellulose (HEC), hydroxypropyl cellulose (HPC), and hydroxypropyl methylcellulose (HPMC).
The carboxyalkyl cellulose preferably has 1 to 4 carbon atoms at the alkyl moiety, and more preferably 1 to 2 carbon atoms at the alkyl moiety. Examples of carboxyalkyl cellulose include carboxymethyl cellulose (CMC).
 上記のうち、好ましい多糖類は、カプセルの形態を安定的に維持でき、保存安定性に優れる点で、セルロース化合物、デキストリン、アラビアガム、キタンサンガム、及びグァーガムからなる群より選ばれる少なくとも一種である。多糖類は、より好ましくはセルロース化合物であり、更に好ましくはヒドロキシプロピルセルロース及びヒドロキシプロピルメチルセルロースからなる群より選ばれる少なくとも一種である。 Of the above, the preferred polysaccharide is at least one selected from the group consisting of cellulose compounds, dextrins, gum arabic, gum arabic, and guar gum in that the morphology of the capsule can be stably maintained and the storage stability is excellent. The polysaccharide is more preferably a cellulose compound, and even more preferably at least one selected from the group consisting of hydroxypropyl cellulose and hydroxypropyl methyl cellulose.
 本開示におけるシェル部は、2種以上の多糖類を用いたものであってもよい。シェル部は、カプセルの形態をより安定的に維持しやすく保存安定性をより高めやすくする点で、2種以上の多糖類として、直鎖構造を有する多糖類と分岐構造を有する多糖類とを組み合わせた態様としてもよい。 The shell portion in the present disclosure may be one using two or more kinds of polysaccharides. The shell portion includes, as two or more kinds of polysaccharides, a polysaccharide having a linear structure and a polysaccharide having a branched structure, in that it is easy to maintain the morphology of the capsule more stably and to enhance the storage stability. It may be a combination mode.
 直鎖構造を有する多糖類は、セルロース化合物が好ましい。
 分岐構造を有する多糖類は、デキストリン、アラビアガム、キタンサンガム、又はグァーガムが好ましい。
 本開示において、より好ましい多糖類は、セルロース化合物の少なくとも1種と、デキストリン、アラビアガム、キタンサンガム、及びグァーガムからなる群より選ばれる少なくとも一種と、を含む2種以上の多糖類の組み合わせであり、更に好ましい多糖類は、セルロース化合物の少なくとも1種と、デキストリンと、を含む2種以上の多糖類の組み合わせである。
The polysaccharide having a linear structure is preferably a cellulose compound.
The polysaccharide having a branched structure is preferably dextrin, gum arabic, kitansan gum, or guar gum.
In the present disclosure, a more preferred polysaccharide is a combination of two or more polysaccharides, including at least one of the cellulose compounds and at least one selected from the group consisting of dextrin, gum arabic, kitansan gum, and guar gum. A more preferred polysaccharide is a combination of at least one cellulose compound and two or more polysaccharides, including dextrin.
 多糖類として、セルロース化合物の少なくとも1種と、デキストリンと、を含む2種以上の多糖類を用いる態様では、セルロース化合物の合計量とデキストリンの量との比率(セルロース化合物:デキストリン)は、10:80~20:50が好ましい。 In the embodiment in which at least one of the cellulose compounds and two or more kinds of polysaccharides including dextrin are used as the polysaccharide, the ratio of the total amount of the cellulose compounds to the amount of dextrin (cellulose compound: dextrin) is 10: 80 to 20:50 is preferable.
 シェル部に占める多糖類に由来する構造部分の含有比率は、破壊強度及び破壊変形率の観点から、50質量%~95質量%が好ましく、70質量%~95質量%がより好ましく、80質量%~90質量%が更に好ましい。
 なお、「多糖類に由来する構造部分」とは、多糖類と架橋剤とを反応させることで形成される構造単位を指す。
The content ratio of the structural portion derived from the polysaccharide in the shell portion is preferably 50% by mass to 95% by mass, more preferably 70% by mass to 95% by mass, and 80% by mass from the viewpoint of fracture strength and fracture deformation rate. -90% by mass is more preferable.
The "structural portion derived from a polysaccharide" refers to a structural unit formed by reacting a polysaccharide with a cross-linking agent.
-架橋剤-
 本開示における架橋剤としては、イソシアネート化合物、カルボン酸ハロゲン化物、エポキシ化合物、及び酸無水物が挙げられる。架橋剤が多糖類と反応することで、シェル材として架橋構造を有するポリマーが得られる。
-Crosslinking agent-
Examples of the cross-linking agent in the present disclosure include isocyanate compounds, carboxylic acid halides, epoxy compounds, and acid anhydrides. When the cross-linking agent reacts with the polysaccharide, a polymer having a cross-linked structure can be obtained as a shell material.
[イソシアネート化合物]
 本開示におけるイソシアネート化合物は、架橋構造を形成する観点から、多官能イソシアネート化合物(ポリイソシアネート)が好ましい。
 ポリイソシアネートには、芳香族ポリイソシアネート及び脂肪族ポリイソシアネートが含まれる。ポリイソシアネートとしては、2官能のポリイソシアネート及び3官能以上のポリイソシアネートのいずれを用いてもよい。
 また、本開示におけるポリウレタン又はポリウレアとして、ポリウレタンポリウレアを含むものでもよい。
[Isocyanate compound]
The isocyanate compound in the present disclosure is preferably a polyfunctional isocyanate compound (polyisocyanate) from the viewpoint of forming a crosslinked structure.
Polyisocyanates include aromatic polyisocyanates and aliphatic polyisocyanates. As the polyisocyanate, either a bifunctional polyisocyanate or a trifunctional or higher functional polyisocyanate may be used.
Further, the polyurethane or polyurea in the present disclosure may include polyurethane polyurea.
 本開示におけるポリウレタン及びポリウレアは、芳香族ポリイソシアネートに由来する構造部分及び脂肪族ポリイソシアネートに由来する構造部分を有するポリマーであることが好ましい。なお、「構造部分」とは、ウレタン反応又はウレア反応させることで形成される構造単位を指す。 The polyurethane and polyurea in the present disclosure are preferably polymers having a structural portion derived from an aromatic polyisocyanate and a structural portion derived from an aliphatic polyisocyanate. The "structural portion" refers to a structural unit formed by a urethane reaction or a urea reaction.
-2官能のイソシアネート化合物-
 シェル部を形成するシェル材がポリウレタン又はポリウレアである場合、2官能のイソシアネート化合物に由来する構造部分を有することが好ましい。即ち、シェル部を形成するシェル材であるポリウレタン又はポリウレアは、2官能の脂肪族イソシアネート化合物に由来する構造部分及び2官能の芳香族イソシアネート化合物に由来する構造部分から選ばれる少なくとも一方の構造部分を有することが好ましい。
 2官能の脂肪族イソシアネート化合物に由来する構造部分とは、2官能の脂肪族イソシアネート化合物がウレタン化又はウレア化して形成される構造部分を指す。
 2官能の芳香族イソシアネート化合物に由来する構造部分とは、2官能の芳香族イソシアネート化合物がウレタン化又はウレア化して形成される構造部分を指す。
-2-Functional isocyanate compound-
When the shell material forming the shell portion is polyurethane or polyurea, it is preferable to have a structural portion derived from a bifunctional isocyanate compound. That is, polyurethane or polyurea, which is a shell material forming the shell portion, has at least one structural portion selected from a structural portion derived from a bifunctional aliphatic isocyanate compound and a structural portion derived from a bifunctional aromatic isocyanate compound. It is preferable to have.
The structural portion derived from the bifunctional aliphatic isocyanate compound refers to a structural portion formed by urethanizing or ureaizing the bifunctional aliphatic isocyanate compound.
The structural portion derived from the bifunctional aromatic isocyanate compound refers to the structural portion formed by urethanizing or ureaizing the bifunctional aromatic isocyanate compound.
 2官能の脂肪族イソシアネート化合物としては、例えば、トリメチレンジイソシアネート、ヘキサメチレンジイソシアネート、プロピレン-1,2-ジイソシアネート、ブチレン-1,2-ジイソシアネート、シクロヘキシレン-1,2-ジイソシアネート、シクロヘキシレン-1,3-ジイソシアネート、シクロヘキシレン-1,4-ジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、1,4-ビス(イソシアネートメチル)シクロヘキサン及び1,3-ビス(イソシアネートメチル)シクロヘキサン、イソホロンジイソシアネート、及びリジンジイソシアネート、水素化キシリレンジイソシアネートが挙げられる。 Examples of the bifunctional aliphatic isocyanate compound include trimethylene diisocyanate, hexamethylene diisocyanate, propylene-1,2-diisocyanate, butylene-1,2-diisocyanate, cyclohexylene-1,2-diisocyanate, and cyclohexylene-1, 3-Diisocyanate, cyclohexylene-1,4-diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, 1,4-bis (isocyanatemethyl) cyclohexane and 1,3-bis (isocyanatemethyl) cyclohexane, isophorone diisocyanate, and lysine Examples thereof include diisocyanate and hydride xylylene diisocyanate.
 2官能の芳香族イソシアネート化合物としては、例えば、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、2,6-トリレンジイソシアネート、2,4-トリレンジイソシアネート、ナフタレン-1,4-ジイソシアネート、メチレンジフェニル-4,4’-ジイソシアネート、3,3’-ジメトキシ-ビフェニルジイソシアネート、3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、キシリレン-1,4-ジイソシアネート、キシリレン-1,3-ジイソシアネート、4-クロロキシリレン-1,3-ジイソシアネート、2-メチルキシリレン-1,3-ジイソシアネート、4,4’-ジフェニルプロパンジイソシアネート、及び4,4’-ジフェニルヘキサフルオロプロパンジイソシアネートが挙げられる。 Examples of the bifunctional aromatic isocyanate compound include m-phenylene diisocyanate, p-phenylene diisocyanate, 2,6-toluene diisocyanate, 2,4-toluene diisocyanate, naphthalene-1,4-diisocyanate, and methylene diphenyl-4. , 4'-diisocyanate, 3,3'-dimethoxy-biphenyldiisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, xylylene-1,4-diisocyanate, xylylene-1,3-diisocyanate, 4-chloro Examples thereof include xylylene-1,3-diisocyanate, 2-methylxylylene-1,3-diisocyanate, 4,4′-diphenylpropanediisocyanate, and 4,4′-diphenylhexafluoropropanediisocyanate.
 イソシアネート化合物については「ポリウレタン樹脂ハンドブック」(岩田敬治編、日刊工業新聞社発行(1987))に記載されている。 Isocyanate compounds are described in the "Polyurethane Resin Handbook" (edited by Keiji Iwata, published by Nikkan Kogyo Shimbun (1987)).
 2官能のイソシアネート化合物に由来する構造、即ち、2官能の脂肪族イソシアネート化合物に由来する構造及び2官能の芳香族イソシアネート化合物に由来する構造から選ばれる少なくとも一方の構造の、シェル材の全質量に占める割合は、合計の質量比率で0.1質量%~5質量%であることが好ましく、0.5質量%~3質量%であることがより好ましく、0.5質量%~1.5質量%であることが更に好ましい。
 2官能のイソシアネート化合物に由来する構造の割合が0.1質量%以上であると、シェル内に架橋点間距離の短い部位が部分的に存在する。そのため、圧力をかけた際に圧力に対するひずみに対して弱く割れやすい部位がシェル内に存在すると推定され、破壊変形率をより小さくすることができる。また、2官能のイソシアネート化合物に由来する構造の割合が5質量%以下であると、上記と同様の効果が良好に得られる。
The total mass of the shell material of at least one structure selected from a structure derived from a bifunctional isocyanate compound, that is, a structure derived from a bifunctional aliphatic isocyanate compound and a structure derived from a bifunctional aromatic isocyanate compound. The proportion of the total mass is preferably 0.1% by mass to 5% by mass, more preferably 0.5% by mass to 3% by mass, and 0.5% by mass to 1.5% by mass. It is more preferably%.
When the proportion of the structure derived from the bifunctional isocyanate compound is 0.1% by mass or more, a portion having a short distance between the cross-linking points is partially present in the shell. Therefore, it is presumed that there is a portion in the shell that is vulnerable to strain against pressure and easily cracked when pressure is applied, and the fracture deformation rate can be further reduced. Further, when the proportion of the structure derived from the bifunctional isocyanate compound is 5% by mass or less, the same effect as described above can be obtained satisfactorily.
-3官能以上のイソシアネート化合物-
 シェル部を形成するシェル材がポリウレタン又はポリウレアである場合、3官能以上のイソシアネート化合物に由来する構造部分を有することが好ましい。3官能以上のイソシアネート化合物に由来する構造部分を有することで、架橋密度を高め、かつ、シェル部の柔軟性を高めることができる。
 3官能以上のイソシアネート化合物に由来する構造部分とは、3官能以上のイソシアネート化合物がウレタン化又はウレア化して形成される構造部分を指す。
-3 Functional or higher functional isocyanate compounds-
When the shell material forming the shell portion is polyurethane or polyurea, it is preferable to have a structural portion derived from a trifunctional or higher functional isocyanate compound. By having a structural portion derived from a trifunctional or higher functional isocyanate compound, the crosslink density can be increased and the flexibility of the shell portion can be increased.
The structural portion derived from a trifunctional or higher functional isocyanate compound refers to a structural portion formed by urethanizing or ureaizing a trifunctional or higher functional isocyanate compound.
 3官能以上の脂肪族イソシアネート化合物としては、2官能の脂肪族イソシアネート化合物(分子中に2つのイソシアネート基を有する化合物)と分子中に3つ以上の活性水素基を有する化合物(例えば、3官能以上のポリオール、3官能以上のポリアミン又は3官能以上のポリチオール)とのアダクト体(付加物)として3官能以上としたイソシアネート化合物(アダクト型)、及び、2官能の脂肪族イソシアネート化合物の3量体(ビウレット型又はイソシアヌレート型)を挙げることができる。 Examples of the trifunctional or higher functional aliphatic isocyanate compound include a bifunctional aliphatic isocyanate compound (a compound having two isocyanate groups in the molecule) and a compound having three or more active hydrogen groups in the molecule (for example, trifunctional or higher). Polyisocyanate compound (adduct type) having trifunctional or higher functionality as an adduct compound (additive) with the polyol of trifunctional or higher functional polyamine or trifunctional or higher functional polythiol), and trimeric of difunctional aliphatic isocyanate compound (trimeric). Biuret type or isocyanurate type) can be mentioned.
 アダクト型の3官能以上のイソシアネート化合物は、上市されている市販品を用いてもよい。市販品の例としては、タケネート(登録商標)D-120N(イソシアネート価=3.5mmol/g)、D-140N、及びD-160N(以上、三井化学株式会社製)、スミジュール(登録商標)HT(バイエル株式会社製)、コロネート(登録商標)HL、及びHX(東ソー株式会社製)、デュラネートP301-75E(旭化成株式会社製)、並びにバーノック(登録商標)DN-950(DIC株式会社製)が挙げられる。
 中でも、アダクト型の3官能以上のイソシアネート化合物として、三井化学株式会社製のタケネート(登録商標)シリーズ(例えば、タケネートD-110N、D-120N、D-140N、及びD-160N)がより好ましい。
As the adduct-type trifunctional or higher functional isocyanate compound, a commercially available product on the market may be used. Examples of commercially available products include Takenate (registered trademark) D-120N (isocyanate value = 3.5 mmol / g), D-140N, and D-160N (all manufactured by Mitsui Chemicals, Inc.), Sumijour (registered trademark). HT (Bayer Co., Ltd.), Coronate (registered trademark) HL, and HX (Tosoh Co., Ltd.), Duranate P301-75E (Asahi Kasei Co., Ltd.), and Burnock (registered trademark) DN-950 (DIC Corporation) Can be mentioned.
Among them, as the adduct-type trifunctional or higher functional isocyanate compound, the Takenate (registered trademark) series manufactured by Mitsui Chemicals, Inc. (for example, Takenate D-110N, D-120N, D-140N, and D-160N) is more preferable.
 イソシアヌレート型の3官能以上のイソシアネート化合物は、上市されている市販品を用いてもよい。市販品の例としては、タケネート(登録商標)D-127N、D-170N、D-170HN、D-172N、及びD-177N(三井化学株式会社製);スミジュールN3300、デスモジュール(登録商標)N3600、N3900、及びZ4470BA(以上、バイエル株式会社製);コロネート(登録商標)HK(東ソー株式会社製);デュラネート(登録商標)TPA-100、及びTKA-100(旭化成株式会社製);並びにバーノック(登録商標)DN-980(DIC株式会社製)が挙げられる。 As the isocyanurate-type trifunctional or higher functional isocyanate compound, a commercially available product on the market may be used. Examples of commercially available products include Takenate (registered trademark) D-127N, D-170N, D-170HN, D-172N, and D-177N (manufactured by Mitsui Chemicals, Inc.); Sumijour N3300, Death Module (registered trademark). N3600, N3900, and Z4470BA (manufactured by Bayer Co., Ltd.); Coronate (registered trademark) HK (manufactured by Tosoh Corporation); Duranate (registered trademark) TPA-100, and TKA-100 (manufactured by Asahi Kasei Corporation); and Barnock (Registered trademark) DN-980 (manufactured by DIC Co., Ltd.) can be mentioned.
 ビウレット型の3官能以上のイソシアネート化合物は、上市されている市販品を用いてもよい。市販品の例としては、例えば、タケネート(登録商標)D-165N、及びNP1200(三井化学株式会社製);デスモジュール(登録商標)N3200A(バイエル株式会社製);並びにデュラネート(登録商標)24A-100、及び22A-75P(旭化成株式会社製)が挙げられる。 As the biuret-type trifunctional or higher functional isocyanate compound, a commercially available product on the market may be used. Examples of commercially available products include, for example, Takenate (registered trademark) D-165N and NP1200 (manufactured by Mitsui Chemicals, Inc.); Death Module (registered trademark) N3200A (manufactured by Bayer Co., Ltd.); and Duranate (registered trademark) 24A-. 100 and 22A-75P (manufactured by Asahi Kasei Corporation) can be mentioned.
 3官能以上の芳香族イソシアネート化合物の具体例としては、2,6-トリレンジイソシアネート、2,4-トリレンジイソシアネート又はヘキサメチレンジイソシアネートとトリメチロールプロパンとの付加物(アダクト体)、ビウレット体及びイソシアヌレート体が挙げられる。
 3官能以上の芳香族イソシアネート化合物として上市されている市販品を用いてもよい。市販品の例としては、バーノック(登録商標)D-750、及びD-800(DIC株式会社製);タケネート(登録商標)D-102、D-103、D-103H、D-103M2、D-110N、及びオレスター(登録商標)P49-75S(以上、三井化学株式会社製);デスモジュール(登録商標)L75、IL-135-BA、及びHL-BA;スミジュール(登録商標)E-21-1(バイエル株式会社製);並びにコロネート(登録商標)L、L-55、及びL-55E(東ソー株式会社製)が挙げられる。
Specific examples of the trifunctional or higher functional aromatic isocyanate compound include 2,6-tolylene diisocyanate, 2,4-tolylene diisocyanate or an adduct of hexamethylene diisocyanate and trimethylolpropane (adduct), biuret and isocyanate. Nurate form is mentioned.
Commercially available products marketed as trifunctional or higher functional aromatic isocyanate compounds may be used. Examples of commercially available products include Burnock® D-750 and D-800 (manufactured by DIC Co., Ltd.); Takenate® D-102, D-103, D-103H, D-103M2, D- 110N and Olester® P49-75S (all manufactured by Mitsui Chemicals, Inc.); Death Module® L75, IL-135-BA, and HL-BA; Sumijour® E-21 -1 (manufactured by Bayer Co., Ltd.); and Coronate (registered trademark) L, L-55, and L-55E (manufactured by Tosoh Corporation).
 3官能以上のイソシアネート化合物に由来する構造部分の、シェル材の全質量に占める割合は、5質量%~30質量%が好ましく、5質量%~20質量%がより好ましく、5質量%~10質量%が更に好ましい。3官能以上のイソシアネート化合物に由来する構造部分の割合が5質量%以上であると、良好にシェルを形成することができる。また、3官能以上のイソシアネート化合物に由来する構造部分の割合が30質量%以下であると、圧力によりシェルがより破壊されやすくなり、コア材(例えば香料)の放出性(例えば香料を含む場合の香り強度)を向上させることができる。 The ratio of the structural portion derived from the trifunctional or higher functional isocyanate compound to the total mass of the shell material is preferably 5% by mass to 30% by mass, more preferably 5% by mass to 20% by mass, and 5% by mass to 10% by mass. % Is more preferable. When the proportion of the structural portion derived from the trifunctional or higher functional isocyanate compound is 5% by mass or more, the shell can be formed satisfactorily. Further, when the proportion of the structural portion derived from the trifunctional or higher functional isocyanate compound is 30% by mass or less, the shell is more easily destroyed by the pressure, and the core material (for example, fragrance) is released (for example, when fragrance is contained). Fragrance intensity) can be improved.
 本開示における3官能以上のイソシアネート化合物は、3官能以上の脂肪族イソシアネート化合物及び3官能以上の芳香族イソシアネート化合物からなる群より選ばれる少なくとも一種を含むことが好ましく、3官能以上の脂肪族イソシアネート化合物を単独で含むことがより好ましい。 The trifunctional or higher functional isocyanate compound in the present disclosure preferably contains at least one selected from the group consisting of a trifunctional or higher functional aliphatic isocyanate compound and a trifunctional or higher functional aromatic isocyanate compound, and is preferably a trifunctional or higher functional aliphatic isocyanate compound. Is more preferable to be contained alone.
 3官能以上のイソシアネート化合物が、3官能以上の脂肪族イソシアネート化合物及び3官能以上の芳香族イソシアネート化合物からなる群より選ばれる少なくとも一種を含んでいる場合、シェル材における3官能以上のイソシアネート化合物に由来する構造部分の総含有量に対する、3官能以上の芳香族イソシアネート化合物に由来する構造部分の含有量の比率が、質量基準で、0質量%以上50質量%未満であることが好ましい。
 シェル材における3官能以上のイソシアネート化合物に由来する構造部分の総含有量に対する、3官能以上の芳香族イソシアネート化合物に由来する構造部分の含有量の比率が、上記範囲内にあることで、破壊変形率をより小さくすることができるため、香り強度に優れる。また、シェル材における3官能以上のイソシアネート化合物に由来する構造部分の総含有量に対する、3官能以上の芳香族イソシアネート化合物に由来する構造部分の含有量の比率が、質量基準で50質量%未満であることで、シェルの強度をより良好に保持することができる。
 上記と同様の観点から、シェル材における3官能以上のイソシアネート化合物に由来する構造部分の総含有量に対する、3官能以上の芳香族イソシアネート化合物に由来する構造部分の含有量の比率が、質量基準で0質量%~40質量%であることがより好ましく、0質量%~20質量%であることが更に好ましい。
When the trifunctional or higher functional isocyanate compound contains at least one selected from the group consisting of the trifunctional or higher functional aliphatic isocyanate compound and the trifunctional or higher functional aromatic isocyanate compound, it is derived from the trifunctional or higher functional isocyanate compound in the shell material. The ratio of the content of the structural portion derived from the trifunctional or higher functional aromatic isocyanate compound to the total content of the structural portion to be subjected is preferably 0% by mass or more and less than 50% by mass on a mass basis.
When the ratio of the content of the structural portion derived from the trifunctional or higher functional isocyanate compound to the total content of the structural portion derived from the trifunctional or higher functional isocyanate compound in the shell material is within the above range, the fracture deformation occurs. Since the rate can be made smaller, the fragrance intensity is excellent. Further, the ratio of the content of the structural portion derived from the trifunctional or higher functional isocyanate compound to the total content of the structural portion derived from the trifunctional or higher functional isocyanate compound in the shell material is less than 50% by mass on a mass basis. By being present, the strength of the shell can be better maintained.
From the same viewpoint as above, the ratio of the content of the structural portion derived from the trifunctional or higher functional isocyanate compound to the total content of the structural portion derived from the trifunctional or higher functional isocyanate compound in the shell material is based on the mass. It is more preferably 0% by mass to 40% by mass, and further preferably 0% by mass to 20% by mass.
 3官能以上のイソシアネート化合物が3官能以上の脂肪族イソシアネート化合物である場合、破壊変形率及び破壊強さを高め、かつ、コア材(例えば香料)の放出性(例えば香料を含む場合の香り強度)とのバランスを図る観点から、シェル材における3官能以上のイソシアネート化合物に由来する構造部分の総含有量に対する、3官能以上の脂肪族イソシアネート化合物に由来する構造部分の含有量の比率が、質量基準で、60質量%~100質量%であることが好ましく、80質量%~100質量%であることがより好ましい。 When the trifunctional or higher functional isocyanate compound is a trifunctional or higher functional aliphatic isocyanate compound, the breaking deformation rate and breaking strength are increased, and the core material (for example, fragrance) is released (for example, fragrance intensity when fragrance is contained). From the viewpoint of balancing with the above, the ratio of the content of the structural part derived from the trifunctional or higher aliphatic isocyanate compound to the total content of the structural portion derived from the trifunctional or higher functional isocyanate compound in the shell material is based on the mass. The content is preferably 60% by mass to 100% by mass, more preferably 80% by mass to 100% by mass.
 本開示のマイクロカプセルは、シェル材における3官能以上のイソシアネート化合物に由来する構造部分の含有量に対する、2官能のイソシアネート化合物に由来する構造部分の含有量の比率が、質量基準で5/95~20/80であることが好ましい。
 シェル材における3官能以上のイソシアネート化合物に由来する構造部分の含有量に対する、2官能のイソシアネート化合物に由来する構造部分の含有量の比率が、質量基準で5/95以上であると、シェル内に架橋点間距離の短い部位が部分的に存在する。そのため、圧力をかけた際に圧力に対するひずみに対して弱く割れやすい部位がシェル内に存在すると推定され、破壊変形率をより小さくすることができる。結果、外力(擦過)が与えられた際のコア材(例えば香料)の放出性(例えば香料を含む場合の香り強度)を向上させることができる。
 シェル材における3官能以上のイソシアネート化合物に由来する構造部分の含有量に対する、2官能のイソシアネート化合物に由来する構造部分の含有量の比率が、質量基準で20/80以下であると、上記と同様の効果が良好に得られる。また、シェルの強度をより良好に保持することができる。
 上記の観点から、シェル材における3官能以上のイソシアネート化合物に由来する構造部分の含有量に対する、2官能のイソシアネート化合物に由来する構造部分の含有量の比率が、質量基準で7/93~20/80が好ましく、10/90~20/80がより好ましい。
In the microcapsules of the present disclosure, the ratio of the content of the structural portion derived from the bifunctional isocyanate compound to the content of the structural portion derived from the trifunctional or higher functional isocyanate compound in the shell material is 5/95 to 5/95 on a mass basis. It is preferably 20/80.
When the ratio of the content of the structural portion derived from the bifunctional isocyanate compound to the content of the structural portion derived from the trifunctional or higher functional isocyanate compound in the shell material is 5/95 or more on a mass basis, the inside of the shell There are some parts where the distance between the cross-linking points is short. Therefore, it is presumed that there is a portion in the shell that is vulnerable to strain against pressure and easily cracked when pressure is applied, and the fracture deformation rate can be further reduced. As a result, it is possible to improve the release property (for example, fragrance intensity when fragrance is contained) of the core material (for example, fragrance) when an external force (scratch) is applied.
The same as above, when the ratio of the content of the structural portion derived from the bifunctional isocyanate compound to the content of the structural portion derived from the trifunctional or higher functional isocyanate compound in the shell material is 20/80 or less on a mass basis. The effect of is good. In addition, the strength of the shell can be better maintained.
From the above viewpoint, the ratio of the content of the structural portion derived from the bifunctional isocyanate compound to the content of the structural portion derived from the trifunctional or higher functional isocyanate compound in the shell material is 7/93 to 20 / on a mass basis. 80 is preferable, and 10/90 to 20/80 is more preferable.
 本開示におけるシェル部に架橋剤として用いるイソシアネート化合物は、3官能以上の脂肪族イソシアネート化合物及び2官能の脂肪族イソシアネート化合物から選ばれる少なくとも一種のポリイソシアネートであることが好ましい。 The isocyanate compound used as a cross-linking agent for the shell portion in the present disclosure is preferably at least one polyisocyanate selected from a trifunctional or higher functional aliphatic isocyanate compound and a bifunctional aliphatic isocyanate compound.
[エポキシ化合物]
 エポキシ化合物は、分子中にグリシジル基を有する化合物である。シェル材として架橋構造を有するポリマーを得る観点から、エポキシ化合物は、分子中に2以上のグリシジル基を有する化合物であることが好ましい。
[Epoxy compound]
Epoxy compounds are compounds that have a glycidyl group in the molecule. From the viewpoint of obtaining a polymer having a crosslinked structure as a shell material, the epoxy compound is preferably a compound having two or more glycidyl groups in the molecule.
 エポキシ化合物としては、例えば、4,4’-メイレンビス(N,N-ジグリシジルアニリン)、グリセリントリグリシジルエーテル、ビスフェノールAのジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、イソシアヌル酸トリグリシジル、4,4‘-(9-フルオレニリデン)ビス(1,2-エポキシ-3-フェノキシプロパン)、ソルビトールポリグリジジルエーテル(例えば、ナガセケムテックス株式会社製のデナコールシリーズ(例:デナコールEX-612)、ペンタエリスリトールポリグリジジルエーテル(例えば、ナガセケムテックス株式会社製のデナコールシリーズ(例:デナコールEX-411)、及びトリメチルプロパンポリグリシジルエーテル(例えば、ナガセケムテックス株式会社製のデナコールシリーズ(例:デナコールEX-321)が挙げられる。
 また、エポキシ化合物は、上市されている市販品を用いてもよい。
Examples of the epoxy compound include 4,4'-meirenbis (N, N-diglycidyl aniline), glycerin triglycidyl ether, bisphenol A diglycidyl ether, neopentyl glycol diglycidyl ether, triglycidyl isocyanurate, 4,4. '-(9-Fluorenylidene) bis (1,2-epoxy-3-phenoxypropane), sorbitol polyglycidyl ether (for example, Denacol series manufactured by Nagase ChemteX Corporation (eg Denacol EX-612), pentaerythritol) Polyglycidyl ether (eg, Denacol series manufactured by Nagase ChemteX Corporation (eg Denacol EX-411), and trimethylpropane polyglycidyl ether (eg, Denacol series manufactured by Nagase ChemteX Corporation (eg, Denacol EX)). -321) can be mentioned.
Further, as the epoxy compound, a commercially available product on the market may be used.
[カルボン酸ハロゲン化物]
 カルボン酸ハロゲン化物は、R-COX(X:ハロゲン原子)で表される化合物である。カルボン酸ハロゲン化物には、カルボン酸塩化物、及びカルボン酸臭化、物が含まれる。シェル材として架橋構造を有するポリマーを得る観点から、カルボン酸ハロゲン化物は分子中に2以上の-COX基を有する化合物が好ましい。
[Carboxylic acid halide]
The carboxylic acid halide is a compound represented by R-COX (X: halogen atom). Carboxylic acid halides include carboxylic acid chlorides and carboxylic acid bromides. From the viewpoint of obtaining a polymer having a crosslinked structure as a shell material, the carboxylic acid halide is preferably a compound having two or more -COX groups in the molecule.
 カルボン酸塩化物(酸クロライドともいう。)としては、例えば、アジポイルクロリド、アゼライン酸クロリド、スベロイルクロリド、セバコイルクロリド、コハク酸クロリド、4,4’-ビフェニルジカルボニルクロリド、イソフタロイルクロリド、テレフタロイルクロリド等が挙げられる。
 また、カルボン酸ハロゲン化物は、上市されている市販品を用いてもよい。
Examples of the carboxyl chloride (also referred to as acid chloride) include adipoil chloride, azelaic acid chloride, suberoyl chloride, sebacoil chloride, succinate chloride, 4,4'-biphenyldicarbonyl chloride, and isophthaloyl. Examples thereof include chloride and terephthaloyl chloride.
Further, as the carboxylic acid halide, a commercially available product on the market may be used.
 架橋剤に由来する構造部分の含有比率は、シェル部の全質量に対して、3質量%以上の範囲であることが好ましい。架橋剤の含有量は、極性物質の共存下でマイクロカプセルの形態をより良好に保持し、破壊強度とコア材の放出性(例えばコア材として香料を含む場合の香り強度)とのバランスをとる観点から、4質量%以上がより好ましく、4質量%~15質量%が更に好ましく、4質量%~10質量%が特に好ましい。
 なお、「架橋剤に由来する構造部分」とは、多糖類と架橋剤とを反応させることで形成される構造単位を指す。
The content ratio of the structural portion derived from the cross-linking agent is preferably in the range of 3% by mass or more with respect to the total mass of the shell portion. The content of the cross-linking agent better retains the morphology of the microcapsules in the presence of polar substances and balances the breaking strength with the release of the core material (eg, the fragrance strength when the core material contains a fragrance). From the viewpoint, 4% by mass or more is more preferable, 4% by mass to 15% by mass is further preferable, and 4% by mass to 10% by mass is particularly preferable.
The “structural portion derived from the cross-linking agent” refers to a structural unit formed by reacting a polysaccharide with a cross-linking agent.
-ポリフェノール化合物-
 本開示におけるシェル部は、更に、ポリフェノール化合物を含むことが好ましい。
 シェル部がポリフェノール化合物を含むことで、カプセルの形態をより良好に維持しやすくなる。
-Polyphenol compound-
The shell portion in the present disclosure preferably further contains a polyphenol compound.
The inclusion of the polyphenol compound in the shell makes it easier to maintain the shape of the capsule better.
 ポリフェノール化合物としては、例えば、緑茶ポリフェノール(例えば、カテキン)、アントシアニン、カカオポリフェノール、ルチン、クルクミン、フェルラ酸、及びプロアントシアニジンが挙げられる。 Examples of the polyphenol compound include green tea polyphenol (for example, catechin), anthocyanin, cacao polyphenol, rutin, curcumin, ferulic acid, and proanthocyanidin.
 また、ポリフェノール化合物は、上市されている市販品を用いてもよい。市販品の例としては、三菱ケミカルフーズ株式会社の茶抽出物であるサンフード(登録商標)シリーズ(例:サンフード100、及びサンフードCD)、及び三井製糖株式会社のさとうきび抽出物(例:MSX-100(J))が挙げられる。 Further, as the polyphenol compound, a commercially available product on the market may be used. Examples of commercially available products include the Sunfood (registered trademark) series (eg, Sunfood 100 and Sunfood CD), which are tea extracts from Mitsubishi Chemical Foods Co., Ltd., and the sugar cane extract from Mitsui Sugar Co., Ltd. (eg,). MSX-100 (J)) can be mentioned.
 ポリフェノール化合物の含有量としては、シェル部の全質量に対して、3質量%以上の範囲であることが好ましい。ポリフェノール化合物の含有量は、極性物質の共存下でマイクロカプセルの形態をより良好に保持しやすくなる点で、5質量%以上が好ましく、6質量%以上がより好ましく、9質量%以上が更に好ましい。 The content of the polyphenol compound is preferably in the range of 3% by mass or more with respect to the total mass of the shell portion. The content of the polyphenol compound is preferably 5% by mass or more, more preferably 6% by mass or more, still more preferably 9% by mass or more, from the viewpoint of facilitating better retention of the morphology of the microcapsules in the presence of a polar substance. ..
 本開示のマイクロカプセルは、シェル部を構成する成分の、コア部及びシェル部を構成する成分の全質量に対する割合は、15質量%以下であることが好ましい。
 マイクロカプセルにおけるシェル部を構成する成分の、コア部及びシェル部を構成する成分の全質量に対する割合は、マイクロカプセルを製造する際のコア材の成分とシェル材の成分との質量比により調整することができる。
 本発明におけるシェル部を形成するシェル材は、ポリイソシアネートに由来する構造を有するポリウレタン又はポリウレアを有することが好ましい。
In the microcapsules of the present disclosure, the ratio of the components constituting the shell portion to the total mass of the core portion and the components constituting the shell portion is preferably 15% by mass or less.
The ratio of the components constituting the shell portion in the microcapsules to the total mass of the core portion and the components constituting the shell portion is adjusted by the mass ratio of the core material component and the shell material component when manufacturing the microcapsules. be able to.
The shell material forming the shell portion in the present invention preferably has polyurethane or polyurea having a structure derived from polyisocyanate.
 マイクロカプセルの体積標準のメジアン径(D50)は、0.1μm~100μmであることが好ましい。
 メジアン径(D50)が0.1μm以上であると、マイクロカプセルが、微細な空隙に入り込むことで、割れにくくなることを防ぐことができる。メジアン径(D50)が100μm以下であると、付着性の低下を防ぐことができる。
 マイクロカプセルの体積標準のメジアン径(D50)は、上記の観点から、1μm~70μmであることがより好ましく、5μm~50μmであることが更により好ましい。マイクロカプセルの体積標準のメジアン径は、例えば、分散の条件を変更することにより制御することができる。
 マイクロカプセルの体積標準のメジアン径(D50)とは、マイクロカプセル全体を体積累計が50%となる粒子径を閾値に2つに分けた場合に、大径側と小径側での粒子の体積の合計が等量となる径をいう。マイクロカプセルの体積標準のメジアン径は、マイクロトラックMT3300EXII(日機装株式会社製)を用いて測定される。
The median diameter (D50) of the volume standard of the microcapsules is preferably 0.1 μm to 100 μm.
When the median diameter (D50) is 0.1 μm or more, it is possible to prevent the microcapsules from entering the fine voids and becoming difficult to crack. When the median diameter (D50) is 100 μm or less, deterioration of adhesiveness can be prevented.
From the above viewpoint, the median diameter (D50) of the volume standard of the microcapsules is more preferably 1 μm to 70 μm, and even more preferably 5 μm to 50 μm. The median diameter of the volume standard of microcapsules can be controlled, for example, by changing the dispersion conditions.
Volume of microcapsules The standard median diameter (D50) is the volume of particles on the large diameter side and the small diameter side when the entire microcapsule is divided into two with the particle diameter at which the cumulative volume is 50% as a threshold. The diameter at which the total is equal. The median diameter of the volume standard of microcapsules is measured using Microtrack MT3300EXII (manufactured by Nikkiso Co., Ltd.).
(コア部)
 本開示のマイクロカプセルは、既述のシェル部内に所望とする成分をコア材として内包している。コア材は、シェル部に内包されたコア部をなす材料である。
(Core part)
The microcapsules of the present disclosure contain a desired component as a core material in the shell portion described above. The core material is a material forming the core portion contained in the shell portion.
 コア材としては、特に制限はなく、所望とする成分を選択すればよく、例えば、香料、溶媒(オイル成分)、相転移素材(例えば、パラフィン、及び、液晶材料)、及び紫外線吸収剤が挙げられる。 The core material is not particularly limited, and a desired component may be selected, and examples thereof include fragrances, solvents (oil components), phase transition materials (for example, paraffin and liquid crystal materials), and ultraviolet absorbers. Be done.
 マイクロカプセルがコア材として香料を含む場合、衣服の擦れ、毛髪の擦れ等によりマイクロカプセルから香料が放出されて香りを感じ取ることができる。本開示のマイクロカプセルは、保存安定性に優れるので、予定された所期の量の香料の放出が期待できる。 When the microcapsules contain fragrance as the core material, the fragrance is released from the microcapsules due to rubbing of clothes, rubbing of hair, etc., and the fragrance can be perceived. Since the microcapsules of the present disclosure are excellent in storage stability, it is expected that the expected amount of fragrance will be released.
-香料-
 香料としては、「特許庁、周知慣用技術集(香料)第III部香粧品香料、頁49-103頁、2001年6月15日発行」に記載されている合成香料、天然精油、天然香料、及び動植物エキスから、適するものを適宜選択し、用いることができる。
 具体的な香料としては、ピネン、ミルセン、カンフェン、モノテルペン(例:R-リモネン、及びD-リモネン)、セドレン、カリオフィレン、ロンギフォレンなどのセスキテルペン、1,3,5-ウンデカトリエン、α-アミルシンナミルアルデヒド、ジヒドロジャスモン、メチルイオノン、α-ダマスコン、アセチルセドレン、ジヒドロジャスモン酸メチル、シクロペンタデカノリド等の合成香料;及びオレンジ精油、レモン精油、ベルガモット精油、マンダリン精油等の天然精油が挙げられる。
 コア材の全質量に対する香料の含有量は、20質量%~100質量%が好ましく、30質量%~95質量%がより好ましく、40質量%~85質量%が更に好ましい。
-Fragrance-
Examples of fragrances include synthetic fragrances, natural essential oils, and natural fragrances described in "Patent Office, Well-known Conventional Technology Collection (Fragrance), Part III, Cosmetic Fragrances, pp. 49-103, published on June 15, 2001". And animal and plant extracts, suitable ones can be appropriately selected and used.
Specific fragrances include pinene, milsen, camphene, monoterpenes (eg R-limonene and D-limonene), sesquitelpen such as sedren, cariophyllene, longifolene, 1,3,5-undecatorien, α- Synthetic fragrances such as amilcinnamylaldehyde, dihydrojasmon, methylionone, α-damascon, acetylsedrene, methyl dihydrojasmonate, cyclopentadecanolide; Can be mentioned.
The content of the fragrance with respect to the total mass of the core material is preferably 20% by mass to 100% by mass, more preferably 30% by mass to 95% by mass, still more preferably 40% by mass to 85% by mass.
-溶媒-
 コア材は、オイル成分として溶媒を含有してもよい。
 溶媒の例としては、トリ(カプリル・カプリン酸)グリセリル(例:オクタカプリン酸ポリグリセロール等のグリセリン脂肪酸エステル(例えば、日清オイリオグループ株式会社製のサラコス(登録商標)HG-8)、ミリスチン酸イソプロピル等の脂肪酸エステル系化合物、ジイソプロピルナフタレン等のアルキルナフタレン系化合物、1-フェニル-1-キシリルエタン等のジアリールアルカン系化合物、イソプロピルビフェニル等のアルキルビフェニル系化合物、トリアリールメタン系化合物、アルキルベンゼン系化合物、ベンジルナフタレン系化合物、ジアリールアルキレン系化合物、アリールインダン系化合物等の芳香族炭化水素;フタル酸ジブチル、イソパラフィン等の脂肪族炭化水素;ツバキ油、大豆油、コーン油、綿実油、菜種油、オリーブ油、ヤシ油、ひまし油、魚油等の天然動植物油;及び、鉱物油等の天然物高沸点留分が挙げられる。
 コア材中の溶媒の含有量は、コア材の全質量に対して、50質量%未満が好ましく、40質量%以下がより好ましく、30質量%以下が更に好ましい。
-solvent-
The core material may contain a solvent as an oil component.
Examples of the solvent include tri (capryl capric acid) glyceryl (eg, glycerin fatty acid ester such as polyglycerol octacaprate (for example, Saracos (registered trademark) HG-8 manufactured by Nisshin Oillio Group Co., Ltd.), myristic acid. Fatty acid ester compounds such as isopropyl, alkylnaphthalene compounds such as diisopropylnaphthalene, diarylalkane compounds such as 1-phenyl-1-xsilylethane, alkylbiphenyl compounds such as isopropylbiphenyl, triarylmethane compounds, alkylbenzene compounds, Aromatic hydrocarbons such as benzylnaphthalene compounds, diarylalkylene compounds, arylindane compounds; aliphatic hydrocarbons such as dibutylphthalate and isoparaffin; camellia oil, soybean oil, corn oil, cottonseed oil, rapeseed oil, olive oil, palm oil , Natural animal and vegetable oils such as castor oil and fish oil; and high boiling point distillates of natural compounds such as mineral oils.
The content of the solvent in the core material is preferably less than 50% by mass, more preferably 40% by mass or less, still more preferably 30% by mass or less, based on the total mass of the core material.
-補助溶媒-
 コア材は、必要に応じて、マイクロカプセルを製造する際の壁材の油相中への溶解性を高めるための油相成分として補助溶媒を含有してもよい。補助溶媒には、上記の溶媒は含まれない。また、補助溶剤を含有することにより油相の粘度を変化させ、乳化におけるせん断の程度が変わるため、変動係数を調整することができる。
 補助溶媒としては、例えば、メチルエチルケトン等のケトン系化合物、酢酸エチル等のエステル系化合物、及びイソプロピルアルコール等のアルコール系化合物が挙げられる。好ましくは、補助溶媒は、沸点が130℃以下である。
 コア材における補助溶媒の含有量は、コア材の全質量に対して、50質量%未満が好ましく、30質量%未満がより好ましく、20質量%未満がさらに好ましい。
-Auxiliary solvent-
If necessary, the core material may contain an auxiliary solvent as an oil phase component for increasing the solubility of the wall material in the oil phase during the production of microcapsules. The auxiliary solvent does not include the above solvent. Further, since the viscosity of the oil phase is changed by containing the auxiliary solvent and the degree of shearing in emulsification is changed, the coefficient of variation can be adjusted.
Examples of the auxiliary solvent include a ketone compound such as methyl ethyl ketone, an ester compound such as ethyl acetate, and an alcohol compound such as isopropyl alcohol. Preferably, the co-solvent has a boiling point of 130 ° C. or lower.
The content of the auxiliary solvent in the core material is preferably less than 50% by mass, more preferably less than 30% by mass, still more preferably less than 20% by mass, based on the total mass of the core material.
-添加剤-
 紫外線吸収剤、光安定化剤、酸化防止剤、ワックス、又は臭気抑制剤などの添加剤は、必要に応じて、マイクロカプセルに内包させることができる。
 添加剤の含有量は、コア材の全質量に対し、例えば、0質量%~20質量%、好ましくは1質量%~15質量%、より好ましくは5質量%~10質量%とすることができる。
-Additive-
Additives such as UV absorbers, light stabilizers, antioxidants, waxes, or odor suppressants can be encapsulated in microcapsules, if desired.
The content of the additive can be, for example, 0% by mass to 20% by mass, preferably 1% by mass to 15% by mass, and more preferably 5% by mass to 10% by mass with respect to the total mass of the core material. ..
~マイクロカプセルの製造方法~
 本開示のマイクロカプセルの製造は、公知の方法により行うことができ、例えば以下に示す製造方法で製造することができる。但し、本開示は、以下の方法に制限されるものではない。
~ Manufacturing method of microcapsules ~
The microcapsules of the present disclosure can be produced by a known method, for example, by the production method shown below. However, the present disclosure is not limited to the following methods.
 本開示のマイクロカプセルは、溶媒、シェル材の一部である架橋剤(例えばイソシアネート化合物)、及びコア材(例えば香料等の被内包物)を含む油相を、シェル材の他の一部である多糖類を含む水相に分散して乳化液を調製する工程(乳化工程)と、シェル材を油相と水相との界面で重合させてシェル部を形成してコア部をなすコア材を内包したマイクロカプセルを形成する工程(カプセル化工程)と、を有する方法により作製することができる。 The microcapsules of the present disclosure use an oil phase containing a solvent, a cross-linking agent (for example, an isocyanate compound) which is a part of the shell material, and a core material (for example, an inclusion such as a fragrance) in another part of the shell material. A step of preparing an emulsified solution by dispersing in an aqueous phase containing a certain polysaccharide (emulsification step) and a core material forming a shell portion by polymerizing a shell material at the interface between the oil phase and the aqueous phase to form a core portion. It can be produced by a method having a step of forming microcapsules (encapsulation step) containing the above.
 多糖類は、あらかじめ水相に含有させておき、更に、乳化工程後に添加することが好ましい。
 多糖類を乳化工程後に更に添加することにより、マイクロカプセルの破壊強度及び破壊変形率をより向上させることができる。乳化工程後に更に添加する多糖類は、水相にあらかじめ含有させておく多糖類(例えばHPMC)と同一種類の多糖類(例えばHPC)であってもよいし、水相にあらかじめ含有させておく多糖類(例えばHPMC)とは異なる種類の多糖類(セルロース系ではない例えばデキストリン)であってもよい。
It is preferable that the polysaccharide is contained in the aqueous phase in advance and further added after the emulsification step.
By further adding the polysaccharide after the emulsification step, the breaking strength and breaking deformation rate of the microcapsules can be further improved. The polysaccharide further added after the emulsification step may be a polysaccharide of the same type (for example, HPC) as the polysaccharide (for example, HPMC) previously contained in the aqueous phase, or a polysaccharide previously contained in the aqueous phase. It may be a different type of polysaccharide (for example, dextrin that is not cellulosic) from the saccharide (for example, HPMC).
[乳化工程]
 乳化工程では、溶媒、シェル材の一部である架橋剤(例えばイソシアネート化合物)、及び必要に応じてコア材(例えば香料等の被内包物)を含む油相を、シェル材の他の一部である多糖類を含む水相に分散して乳化液を調製することができる。
 油相が溶媒を含むことにより、マイクロカプセルの単分散性が高められる。
[Emulsification process]
In the emulsification step, the oil phase containing the solvent, the cross-linking agent (eg, isocyanate compound) that is part of the shell material, and optionally the core material (eg, inclusions such as fragrance) is added to the other part of the shell material. An emulsion can be prepared by dispersing in an aqueous phase containing the polysaccharide.
The inclusion of the solvent in the oil phase enhances the monodispersity of the microcapsules.
~乳化液~
 本開示における乳化液は、溶媒とシェル材の一部を含む油相を、シェル材の他の一部を含む水相に分散させることにより調製することができる。シェル材の他の一部として既述の多糖類が用いられる。多糖類は乳化剤としても機能するため、水相に本開示における多糖類とは別に更に乳化剤を含める必要はないが、本開示における多糖類に加えて後述する乳化剤を更に用いてもよい。
~ Emulsified liquid ~
The emulsion in the present disclosure can be prepared by dispersing an oil phase containing a solvent and a part of the shell material in an aqueous phase containing another part of the shell material. The above-mentioned polysaccharides are used as another part of the shell material. Since the polysaccharide also functions as an emulsifier, it is not necessary to further include an emulsifier in the aqueous phase in addition to the polysaccharide in the present disclosure, but an emulsifier described later may be further used in addition to the polysaccharide in the present disclosure.
(油相)
 本開示における油相は、少なくとも、溶媒と、シェル材の一部をなす架橋剤と、を含み、必要に応じて、香料、補助溶媒、添加剤などの他の成分を含んでいてもよい。香料、補助溶媒、及び添加剤の詳細については、既述のマイクロカプセルの項に記載した通りである。
(Oil phase)
The oil phase in the present disclosure contains at least a solvent and a cross-linking agent forming a part of the shell material, and may contain other components such as a fragrance, an auxiliary solvent, and an additive, if necessary. Details of fragrances, co-solvents, and additives are as described in the section on microcapsules described above.
-溶媒-
 本開示における製造方法で使用することができる溶媒は、既述のマイクロカプセルの項に記載した通りである。
-solvent-
The solvent that can be used in the production method in the present disclosure is as described in the section of microcapsules described above.
-シェル材の一部(架橋剤)- 
 本開示におけるシェル材の一部として、架橋剤が含まれる。架橋剤の詳細については既述の通りであるので、ここでの説明は省略する。
 架橋剤の油相中における含有量は、油相の全質量に対して、1質量%~20質量%が好ましく、1質量%~10質量%がより好ましい。
 架橋剤の濃度は、マイクロカプセルの大きさ、壁厚等に鑑みて適宜調整することができる。
-Part of shell material (crosslinking agent)-
A cross-linking agent is included as part of the shell material in the present disclosure. Since the details of the cross-linking agent are as described above, the description thereof is omitted here.
The content of the cross-linking agent in the oil phase is preferably 1% by mass to 20% by mass, more preferably 1% by mass to 10% by mass, based on the total mass of the oil phase.
The concentration of the cross-linking agent can be appropriately adjusted in consideration of the size of the microcapsules, the wall thickness and the like.
(水相)
 本開示における水相は、少なくとも水系溶媒及びシェル材の他の一部をなす多糖類を含む。
(Water phase)
The aqueous phase in the present disclosure contains at least an aqueous solvent and polysaccharides that form another part of the shell material.
-水系媒体-
 本開示の水系媒体としては、水及びアルコールが挙げられ、イオン交換水を用いることができる。
 水系媒体の水相中における含有量としては、水相に油相を乳化分散して得られる乳化液の全質量に対して、20質量%~80質量%が好ましく、30質量%~70質量%がより好ましく、40質量%~60質量%が更に好ましい。
-Aqueous medium-
Examples of the aqueous medium of the present disclosure include water and alcohol, and ion-exchanged water can be used.
The content of the aqueous medium in the aqueous phase is preferably 20% by mass to 80% by mass, preferably 30% by mass to 70% by mass, based on the total mass of the emulsion obtained by emulsifying and dispersing the oil phase in the aqueous phase. Is more preferable, and 40% by mass to 60% by mass is further preferable.
-シェル材の他の一部(多糖類)-
 多糖類については既述の通りであるので、ここでの説明は省略する。
 乳化剤として、多糖類に加えて、更に分散剤もしくは界面活性剤又はこれらの組み合わせを用いてもよい。
 分散剤としては、例えば、ポリビニルアルコール及びその変性物(例えばアニオン変性ポリビニルアルコール)、ポリアクリル酸アミド及びその誘導体、エチレン-酢酸ビニル共重合体、スチレン-無水マレイン酸共重合体、エチレン-無水マレイン酸共重合体、イソブチレン-無水マレイン酸共重合体、ポリビニルピロリドン、エチレン-アクリル酸共重合体、酢酸ビニル-アクリル酸共重合体、カゼイン、ゼラチン、澱粉誘導体、並びにアルギン酸ナトリウムなどを挙げることができ、ポリビニルアルコールが好ましい。
 分散剤は、シェル材と反応しないこと又は極めて反応し難いことが好ましく、例えばゼラチンなどの分子鎖中に反応性のアミノ基を有する分散剤は、予め反応性を失わせる処理をしておくことが好ましい。
-Other parts of shell material (polysaccharides)-
Since the polysaccharides are as described above, the description thereof is omitted here.
As the emulsifier, in addition to the polysaccharide, a dispersant, a surfactant, or a combination thereof may be used.
Examples of the dispersant include polyvinyl alcohol and its modified products (for example, anionic modified polyvinyl alcohol), polyacrylic acid amide and its derivatives, ethylene-vinyl acetate copolymer, styrene-maleic anhydride copolymer, and ethylene-maleic anhydride. Acid copolymers, isobutylene-maleic anhydride copolymers, polyvinylpyrrolidone, ethylene-acrylic acid copolymers, vinyl acetate-acrylic acid copolymers, casein, gelatin, starch derivatives, sodium alginate and the like can be mentioned. , Polyvinyl alcohol is preferable.
It is preferable that the dispersant does not react with the shell material or is extremely difficult to react. For example, a dispersant having a reactive amino group in a molecular chain such as gelatin should be treated in advance to lose its reactivity. Is preferable.
 界面活性剤としては、ノニオン界面活性剤、アニオン界面活性剤、カチオン界面活性剤、及び両性界面活性剤が挙げられる。界面活性剤は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。 Examples of the surfactant include nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants. The surfactant may be used alone or in combination of two or more.
 ノニオン界面活性剤は、特に制限されず、従来公知のものを用いることができる。
 ノニオン界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル系化合物、ポリオキシエチレンアルキルフェニルエーテル系化合物、ポリオキシエチレンポリスチリルフェニルエーテル系化合物、ポリオキシエチレンポリオキシプロピレンアルキルエーテル系化合物、グリセリン脂肪酸部分エステル系化合物、ソルビタン脂肪酸部分エステル系化合物、ペンタエリスリトール脂肪酸部分エステル系化合物、プロピレングリコールモノ脂肪酸エステル系化合物、ショ糖脂肪酸部分エステル系化合物、ポリオキシエチレンソルビタン脂肪酸部分エステル系化合物、ポリオキシエチレンソルビトール脂肪酸部分エステル系化合物、ポリエチレングリコール脂肪酸エステル系化合物、ポリグリセリン脂肪酸部分エステル系化合物、ポリオキシエチレン化ひまし油系化合物、ポリオキシエチレングリセリン脂肪酸部分エステル系化合物、脂肪酸ジエタノールアミド系化合物、N,N-ビス-2-ヒドロキシアルキルアミン系化合物、ポリオキシエチレンアルキルアミン、トリエタノールアミン脂肪酸エステル、トリアルキルアミンオキシド、ポリエチレングリコール、及びポリエチレングリコールとポリプロピレングリコールの共重合体が挙げられる。
The nonionic surfactant is not particularly limited, and conventionally known surfactants can be used.
Examples of the nonionic surfactant include a polyoxyethylene alkyl ether compound, a polyoxyethylene alkyl phenyl ether compound, a polyoxyethylene polystyryl phenyl ether compound, a polyoxyethylene polyoxy propylene alkyl ether compound, and a glycerin fatty acid moiety. Ester compounds, sorbitan fatty acid partial ester compounds, pentaerythritol fatty acid partial ester compounds, propylene glycol mono fatty acid ester compounds, sucrose fatty acid partial ester compounds, polyoxyethylene sorbitan fatty acid partial ester compounds, polyoxyethylene sorbitol fatty acids Partial ester compounds, polyethylene glycol fatty acid ester compounds, polyglycerin fatty acid partial ester compounds, polyoxyethylene hydrogenated castor oil compounds, polyoxyethylene glycerin fatty acid partial ester compounds, fatty acid diethanolamide compounds, N, N-bis- Examples thereof include 2-hydroxyalkylamine compounds, polyoxyethylene alkylamines, triethanolamine fatty acid esters, trialkylamine oxides, polyethylene glycols, and copolymers of polyethylene glycol and polypropylene glycol.
 アニオン界面活性剤は、特に限定されず、従来公知のものを用いることができる。
 アニオン界面活性剤としては、例えば、脂肪酸塩、アビエチン酸塩、ヒドロキシアルカンスルホン酸塩、アルカンスルホン酸塩、ジアルキルスルホ琥珀酸エステル塩、直鎖アルキルベンゼンスルホン酸塩、分岐鎖アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルキルフェノキシポリオキシエチレンプロピルスルホン酸塩、ポリオキシエチレンアルキルスルホフェニルエーテル塩、N-メチル-N-オレイルタウリンナトリウム塩、N-アルキルスルホコハク酸モノアミド二ナトリウム塩、石油スルホン酸塩、硫酸化牛脂油、脂肪酸アルキルエステルの硫酸エステル塩、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、脂肪酸モノグリセリド硫酸エステル塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンスチリルフェニルエーテル硫酸エステル塩、アルキルリン酸エステル塩、ポリオキシエチレンアルキルエーテルリン酸エステル塩、ポリオキシエチレンアルキルフェニルエーテルリン酸エステル塩、スチレン-無水マレイン酸共重合物の部分けん化物、オレフィン-無水マレイン酸共重合物の部分けん化物、ナフタレンスルホン酸塩ホルマリン縮合物、アルキルポリオキシアルキレンスルホアルキルエーテルの塩、及びアルケニルポリオキシアルキレンスルホアルキルエーテルの塩が挙げられる。
The anionic surfactant is not particularly limited, and conventionally known surfactants can be used.
Examples of anionic surfactants include fatty acid salts, avietates, hydroxyalcan sulfonates, alkane sulfonates, dialkyl sulfosulfonic acid ester salts, linear alkylbenzene sulfonates, branched chain alkylbenzene sulfonates, and alkylnaphthalene. Sulfonate, alkylphenoxypolyoxyethylene propyl sulfonate, polyoxyethylene alkyl sulfophenyl ether salt, N-methyl-N-oleyl taurine sodium salt, N-alkyl sulfosuccinic acid monoamide disodium salt, petroleum sulfonate, sulfuric acid Chemical beef fat oil, sulfate of fatty acid alkyl ester, alkyl sulfate, polyoxyethylene alkyl ether sulfate, fatty acid monoglyceride sulfate, polyoxyethylene alkylphenyl ether sulfate, polyoxyethylene styrylphenyl ether sulfate Salt, alkyl sulfonic acid ester salt, polyoxyethylene alkyl ether sulfonic acid ester salt, polyoxyethylene alkyl phenyl ether sulfonic acid ester salt, partial saponified product of styrene-maleic anhydride copolymer, olefin-maleic anhydride copolymer Examples thereof include a partial saponified product of the above, a naphthalene sulfonate formalin condensate, a salt of an alkylpolyoxyalkylene sulfoalkyl ether, and a salt of an alkenylpolyoxyalkylene sulfoalkyl ether.
 カチオン界面活性剤は、特に限定されず、従来公知のものを用いることができる。
 カチオン界面活性剤としては、例えば、アルキルアミン塩、第四級アンモニウム塩(例えば、ヘキサデシルトリメチルアンモニウムクロライド)、ポリオキシエチレンアルキルアミン塩、及びポリエチレンポリアミン誘導体が挙げられる。
The cationic surfactant is not particularly limited, and conventionally known ones can be used.
Examples of cationic surfactants include alkylamine salts, quaternary ammonium salts (eg, hexadecyltrimethylammonium chloride), polyoxyethylene alkylamine salts, and polyethylene polyamine derivatives.
 両性界面活性剤は、特に限定されず、従来公知のものを用いることができる。
 両性界面活性剤としては、例えば、カルボキシベタイン、アミノカルボン酸、スルホベタイン、アミノ硫酸エステル、及びイミタゾリンが挙げられる。
The amphoteric surfactant is not particularly limited, and conventionally known surfactants can be used.
Amphoteric surfactants include, for example, carboxybetaine, aminocarboxylic acid, sulfobetaine, aminosulfate ester, and imitazoline.
 多糖類の濃度は、水相の全質量に対して、0.5質量%~20質量%が好ましく、1質量%~10質量%がより好ましく、1質量%~5質量%が更に好ましい。
 また、多糖類以外の乳化剤の濃度は、乳化液の全質量に対して、0質量%~20質量%が好ましい。
The concentration of the polysaccharide is preferably 0.5% by mass to 20% by mass, more preferably 1% by mass to 10% by mass, still more preferably 1% by mass to 5% by mass, based on the total mass of the aqueous phase.
The concentration of the emulsifier other than the polysaccharide is preferably 0% by mass to 20% by mass with respect to the total mass of the emulsion.
 水相は、必要に応じて、紫外線吸収剤、酸化防止剤、防腐剤などの他の成分を含有してもよい。他の成分を含有する場合に、他の成分の含有量は、水相の全質量に対して、0質量%超20質量%以下が好ましく、0.1質量%超10質量%以下がより好ましい。 The aqueous phase may contain other components such as an ultraviolet absorber, an antioxidant, and a preservative, if necessary. When other components are contained, the content of the other components is preferably more than 0% by mass and 20% by mass or less, more preferably more than 0.1% by mass and 10% by mass or less, based on the total mass of the aqueous phase. ..
(分散)
 分散とは、油相を油滴として水相に分散させること(すなわち、乳化)をいう。分散は、油相と水相との分散に通常用いられる手段、例えば、ホモジナイザー、マントンゴーリー、超音波分散機、ディゾルバー、ケディーミル、又はその他の公知の分散装置を用いて行うことができる。
(Distributed)
Dispersion means that the oil phase is dispersed as oil droplets in the aqueous phase (that is, emulsification). Dispersion can be carried out using commonly used means for dispersing the oil and aqueous phases, such as homogenizers, menton gorries, ultrasonic dispersers, dissolvers, keddy mills, or other known dispersers.
 水相に対する油相の混合比率(油相/水相;質量基準)は、0.03~1.5が好ましく、0.05~1.2がより好ましく、0.1~1.0が更に好ましい。混合比率が上記範囲内であると、適度の粘度に保持でき、製造適性に優れ、乳化液の安定性に優れる。 The mixing ratio of the oil phase to the aqueous phase (oil phase / aqueous phase; based on mass) is preferably 0.03 to 1.5, more preferably 0.05 to 1.2, and further 0.1 to 1.0. preferable. When the mixing ratio is within the above range, the viscosity can be maintained at an appropriate level, the production suitability is excellent, and the stability of the emulsion is excellent.
[カプセル化工程]
 本開示のマイクロカプセルの製造方法は、シェル材を油相と水相との界面で重合させてシェルを形成し、溶媒を内包するマイクロカプセルを形成する工程を含む。これにより、油相成分がシェルに内包されたマイクロカプセルが形成される。
[Encapsulation process]
The method for producing microcapsules of the present disclosure includes a step of polymerizing a shell material at an interface between an oil phase and an aqueous phase to form a shell to form microcapsules containing a solvent. As a result, microcapsules containing the oil phase component in the shell are formed.
(重合)
 重合は、乳化液中の油相に含まれるシェル材を水相との界面で重合させる工程であり、これによりシェルが形成される。重合は、好ましくは加熱下で行われる。重合における反応温度は、通常は40℃~100℃が好ましく、50℃~80℃がより好ましい。また、重合の反応時間は、通常は0.5時間~10時間が好ましく、1時間~5時間がより好ましい。重合温度が高い程、重合時間は短くなるが、高温で分解するおそれのあるシェル材を使用する場合には、低温で作用する重合開始剤を選択して、比較的低温で重合させるのが望ましい。
(polymerization)
Polymerization is a step of polymerizing the shell material contained in the oil phase in the emulsion at the interface with the aqueous phase, whereby a shell is formed. The polymerization is preferably carried out under heating. The reaction temperature in the polymerization is usually preferably 40 ° C to 100 ° C, more preferably 50 ° C to 80 ° C. The polymerization reaction time is usually preferably 0.5 hours to 10 hours, more preferably 1 hour to 5 hours. The higher the polymerization temperature, the shorter the polymerization time, but when using a shell material that may decompose at high temperatures, it is desirable to select a polymerization initiator that acts at low temperatures and polymerize at a relatively low temperature. ..
 重合工程中に、マイクロカプセル同士の凝集を防止するためには、水性溶液(例えば、水、酢酸水溶液)を更に加えてマイクロカプセル同士の衝突確率を下げることが好ましく、充分な攪拌を行うことも好ましい。重合工程中に改めて凝集防止用の分散剤を添加してもよい。更に、必要に応じて、ニグロシン等の荷電調節剤、又はその他任意の補助剤を添加することができる。これらの補助剤は、シェルの形成工程、又は任意の工程で添加することができる。 In order to prevent the agglomeration of the microcapsules during the polymerization step, it is preferable to further add an aqueous solution (for example, water or an aqueous acetic acid solution) to reduce the collision probability between the microcapsules, and sufficient stirring may be performed. preferable. A dispersant for preventing aggregation may be added again during the polymerization step. Further, if necessary, a charge regulator such as niglosin or any other auxiliary agent can be added. These auxiliary agents can be added in the shell forming step or any step.
~マイクロカプセルの物性~
-破壊変形率-
 本開示のマイクロカプセルは、破壊変形率が55%以下であることが好ましい。
 破壊変形率とは、破壊点におけるマイクロカプセルの最小の変形率を指す。これによって、マイクロカプセルを破壊する際の変形を抑制することができるため、小さい圧力でマイクロカプセルを破壊することが可能となる。例えば、マイクロカプセルがコア材として香料を含む場合、マイクロカプセルが付着された繊維上においても、内包された香料が良好に放出される。その結果、香り強度が大きく向上する。
 破壊変形率は、上記の観点から、45%以下であることが好ましく、35%以下であることがより好ましい。
 また、必要な圧力が加わった際にマイクロカプセルが選択的に破壊されるようにするため、破壊変形率は、5%以上であることが好ましい。
~ Physical properties of microcapsules ~
-Fracture deformation rate-
The microcapsules of the present disclosure preferably have a fracture deformation rate of 55% or less.
The fracture deformation rate refers to the minimum deformation rate of the microcapsules at the fracture point. As a result, deformation when breaking the microcapsules can be suppressed, so that the microcapsules can be broken with a small pressure. For example, when the microcapsules contain a fragrance as a core material, the contained fragrance is satisfactorily released even on the fiber to which the microcapsules are attached. As a result, the scent intensity is greatly improved.
From the above viewpoint, the fracture deformation rate is preferably 45% or less, and more preferably 35% or less.
Further, the fracture deformation rate is preferably 5% or more so that the microcapsules are selectively destroyed when a required pressure is applied.
 破壊変形率は、後述する破壊強度の測定に用いられる方法で求められるマイクロカプセル粒子を破壊した際のマイクロカプセルの変位(破壊強度の測定に用いられる圧子が、マイクロカプセルに接触してからマイクロカプセルが破壊されるまでに移動した距離)を、圧力を加えることで変形する前の50粒の粒子の直径の平均値で徐算した値を百分率に換算した値として算出される値である。 The fracture deformation rate is the displacement of the microcapsules when the microcapsule particles are broken, which is determined by the method used for measuring the fracture strength described later (the indenter used for measuring the fracture strength comes into contact with the microcapsules and then the microcapsules. It is a value calculated as a value obtained by gradually dividing (the distance traveled before the destruction of the particles) by the average value of the diameters of 50 particles before being deformed by applying pressure, and converting it into a percentage.
-破壊強度-
 本開示のマイクロカプセルは、破壊強度が20MPa以下であることが好ましい。
 これにより、より小さい圧力でマイクロカプセルを破壊することが可能となる。例えば、マイクロカプセルがコア材として香料を含む場合、内包された香料が良好に放出される。結果、香り強度がより向上する。
 本開示のマイクロカプセルの破壊強度は、上記の観点から、15MPa以下であることがより好ましく、10MPa以下であることが更に好ましく、6MPa以下であることが特に好ましい。
-destruction strength-
The microcapsules of the present disclosure preferably have a breaking strength of 20 MPa or less.
This makes it possible to break the microcapsules with less pressure. For example, when the microcapsules contain a fragrance as a core material, the contained fragrance is satisfactorily released. As a result, the scent intensity is further improved.
From the above viewpoint, the breaking strength of the microcapsules of the present disclosure is more preferably 15 MPa or less, further preferably 10 MPa or less, and particularly preferably 6 MPa or less.
 マイクロカプセルの破壊強度は、以下の方法により測定される値である。
 マイクロカプセル水分散液をイオン交換水で希釈した液を、プレパラートへ数滴滴下して乾燥させる。
 次に、粒子の破壊力(rupture force)を粒子の断面積で除して算出される値を求める。
 粒子の破壊力は、2001年発行のJ. Microencapsulation誌、vol.18, no.5, 593-602頁、Zhang, Z., Sun, Gによる“Mechanical Properties of Melamine-Formaldehyde microcapsules”に記載されている方法を用いて測定できる。
 50粒の粒子について、粒子の破壊力を粒子の断面積で除して算出される値を求め、50粒の粒子の上記値を平均して破壊強度(MPa)とする。
 なお、上記粒子の破壊力の単位はN(ニュートン)であり、上記粒子の断面積はπr(rは圧力を加えることで変形する前のマイクロカプセル粒子の半径である。)で算出することができる。
The breaking strength of the microcapsules is a value measured by the following method.
A few drops of the microcapsule water dispersion diluted with ion-exchanged water are added dropwise to the preparation and dried.
Next, the value calculated by dividing the fracture force of the particles by the cross section of the particles is obtained.
The destructive power of particles is described in "Mechanical Properties of Melamine-Formaldehyde microcapsules" by Zhang, Z., Sun, G, J. Microencapsulation magazine, vol.18, no.5, 593-602, 2001. It can be measured using the above method.
For 50 particles, the value calculated by dividing the breaking force of the particles by the cross section of the particles is obtained, and the above values of the 50 particles are averaged to obtain the breaking strength (MPa).
The unit of the destructive force of the particles is N (Newton), and the cross section of the particles is calculated by πr 2 (r is the radius of the microcapsule particles before being deformed by applying pressure). Can be done.
<マイクロカプセル組成物>
 本開示のマイクロカプセル組成物は、既述の本開示のマイクロカプセルと、溶媒と、を含有する。
<Microcapsule composition>
The microcapsule composition of the present disclosure contains the above-mentioned microcapsules of the present disclosure and a solvent.
-溶媒-
 溶媒としては、水系溶媒が好適である。
 マイクロカプセル組成物が溶媒を含むことで、マイクロカプセル組成物は、種々の用途に用いる場合に容易に配合することができる。水系溶媒としては、水及びアルコールが挙げられる。
 マイクロカプセル組成物における溶媒の含有量は、目的又は用途に応じて適宜選択することができる。
-solvent-
As the solvent, an aqueous solvent is preferable.
Since the microcapsule composition contains a solvent, the microcapsule composition can be easily blended when used for various purposes. Examples of the aqueous solvent include water and alcohol.
The content of the solvent in the microcapsule composition can be appropriately selected depending on the purpose or application.
-分散媒-
 マイクロカプセル組成物は、マイクロカプセルを分散する上記溶媒以外の分散媒を含むことができる。マイクロカプセル組成物が分散媒を含むことで、マイクロカプセル組成物は種々の用途に用いる際に容易に配合することができる。
 ここでの分散媒は、組成物の使用目的に応じて適宜選択することができ、マイクロカプセルのシェル材に影響を与えない液状成分であることが好ましい。好ましい分散媒としては、粘度調整剤、又は安定化剤が挙げられる。
 マイクロカプセル組成物における分散媒の含有量は、目的又は用途に応じて適宜選択すればよい。
-Dispersion medium-
The microcapsule composition can contain a dispersion medium other than the above solvent for dispersing the microcapsules. Since the microcapsule composition contains a dispersion medium, the microcapsule composition can be easily blended when used for various purposes.
The dispersion medium here can be appropriately selected according to the intended use of the composition, and is preferably a liquid component that does not affect the shell material of the microcapsules. Preferred dispersion mediums include viscosity modifiers or stabilizers.
The content of the dispersion medium in the microcapsule composition may be appropriately selected depending on the purpose or application.
-その他の成分-
 マイクロカプセル組成物は、マイクロカプセル、溶媒及び分散媒に加え、更にその他の成分を含有することができる。
 その他の成分には、特に制限はなく、目的又は必要に応じて適宜選択すればよい。その他の成分としては、例えば、界面活性剤、架橋剤、潤滑剤、紫外線吸収剤、酸化防止剤、及び帯電防止剤が挙げられる。
-Other ingredients-
The microcapsule composition can contain other components in addition to the microcapsules, solvent and dispersion medium.
The other components are not particularly limited and may be appropriately selected depending on the purpose or necessity. Other components include, for example, surfactants, cross-linking agents, lubricants, UV absorbers, antioxidants, and antistatic agents.
<柔軟剤、洗剤>
 本開示のマイクロカプセルは、種々の用途に使用することができ、特に極性物質が存在する環境に曝される用途に好適であり、例えば、柔軟剤、洗濯洗剤、ヘアケア、及びデイケアに好適である。
<Softener, detergent>
The microcapsules of the present disclosure can be used in a variety of applications, particularly suitable for applications exposed to environments in the presence of polar substances, such as fabric softeners, laundry detergents, hair care, and day care. ..
 本開示の柔軟剤は、既述の本開示のマイクロカプセルを含有し、更に溶媒を含んでもよい。柔軟剤が更に溶媒を含む場合、柔軟剤はマイクロカプセル組成物の一例である。
 本開示の洗剤は、既述の本開示のマイクロカプセルを含有し、更に溶媒を含んでもよい。洗剤が更に溶媒を含む場合、洗剤はマイクロカプセル組成物の一例である。
The softener of the present disclosure contains the microcapsules of the present disclosure described above, and may further contain a solvent. If the softener further contains a solvent, the softener is an example of a microcapsule composition.
The detergent of the present disclosure contains the microcapsules of the present disclosure described above, and may further contain a solvent. If the detergent further contains a solvent, the detergent is an example of a microcapsule composition.
(洗濯組成物)
-衣料用柔軟剤-
 本開示のマイクロカプセル組成物は、例えば、コア材として香料を含めることで衣料用柔軟剤とすることができる。これにより、本開示のマイクロカプセル組成物は、洗濯用組成物として適用することができる。
 本開示の衣料用柔軟剤であるマイクロカプセル組成物は、衣料をマイクロカプセル組成物に浸漬し、脱水、乾燥することで、マイクロカプセル組成物に含まれるマイクロカプセルが衣料の繊維に吸着したり、繊維間の微細な空隙に入り込んだりして、衣料に保持される。このため、衣料に対し、柔軟性、帯電防止性等の機能が付与され、さらに、コア材を含むマイクロカプセルを含むことで、所望の時期にコア材を放出することができる。
(Washing composition)
-Clothing softener-
The microcapsule composition of the present disclosure can be made into a fabric softener by including a fragrance as a core material, for example. Thereby, the microcapsule composition of the present disclosure can be applied as a laundry composition.
In the microcapsule composition which is the softener for clothing of the present disclosure, the microcapsules contained in the microcapsule composition are adsorbed on the fibers of the clothing by immersing the clothing in the microcapsule composition, dehydrating and drying. It gets into the fine voids between the fibers and is retained by the clothing. Therefore, the clothing is provided with functions such as flexibility and antistatic property, and by including the microcapsules containing the core material, the core material can be released at a desired time.
 本開示の衣料用柔軟剤により処理された衣料を着用した場合、マイクロカプセル内にコア材が安定に含まれるため、柔らかな着心地が得られる。また、経時後であっても、衣服を擦るなどしてマイクロカプセルに応力を与え、マイクロカプセルを崩壊させることでコア材を放出させることができる。また、特に応力を付与しなくても、衣服を着用し、行動することにより、マイクロカプセルが崩壊され、コア材を放出させることができる。 When a garment treated with the garment softener of the present disclosure is worn, the core material is stably contained in the microcapsules, so that a soft comfort can be obtained. Further, even after a lapse of time, the core material can be released by applying stress to the microcapsules by rubbing clothes or the like and causing the microcapsules to collapse. In addition, the microcapsules can be disintegrated and the core material can be released by wearing clothes and acting without applying any particular stress.
 衣料用柔軟剤は、マイクロカプセル組成物全量中、マイクロカプセルを0.3質量%~3質量%含むことが好ましい。
 本開示の衣料用柔軟剤は、衣料用柔軟剤に含まれる公知の成分、例えば、消泡剤、色材等の成分を更に含むことができる。衣料用柔軟剤に用いられる分散媒は、イオン交換水等の水が好ましい。
The fabric softener preferably contains 0.3% by mass to 3% by mass of microcapsules in the total amount of the microcapsule composition.
The garment softener of the present disclosure may further contain known components contained in the garment softener, for example, components such as an antifoaming agent and a coloring material. The dispersion medium used in the fabric softener is preferably water such as ion-exchanged water.
-洗濯用洗剤-
 本開示のマイクロカプセル組成物は、上記と同様に、例えば、コア材として香料を含めることで衣料用洗剤とすることができる。これにより、本開示のマイクロカプセル組成物は、洗濯洗剤として適用することができる。
-Laundry detergent-
Similar to the above, the microcapsule composition of the present disclosure can be made into a detergent for clothing by including, for example, a fragrance as a core material. Thereby, the microcapsule composition of the present disclosure can be applied as a laundry detergent.
(ヘアケア組成物)
 本開示におけるマイクロカプセルと、マイクロカプセルの分散媒(溶媒)とを含むマイクロカプセル組成物は、そのままヘアケア組成物に適用することができる。
 ヘアケア組成物の用途としては、リンス、コンディショナー、整髪料等の毛髪化粧料に任意に適用することができる。
 毛髪化粧料である本開示のマイクロカプセル組成物は、毛髪に適用した場合、マイクロカプセルが毛髪に付着し、毛髪を擦る、櫛でとく等した場合、応力によりマイクロカプセルが崩壊し、コア材を放出することができる。
(Hair care composition)
The microcapsule composition containing the microcapsules and the dispersion medium (solvent) of the microcapsules in the present disclosure can be directly applied to the hair care composition.
As the use of the hair care composition, it can be arbitrarily applied to hair cosmetics such as conditioners, conditioners, and hair styling products.
When applied to hair, the microcapsule composition of the present disclosure, which is a hair cosmetic, causes the microcapsules to adhere to the hair, and when the hair is rubbed or combed, the microcapsules collapse due to stress, and the core material is used. Can be released.
 液状の毛髪化粧料の場合、スプレー容器に充填することで、より長時間に亘り、マイクロカプセルを安定に保存することができ、好ましい。
 スプレーにより毛髪化粧料を毛髪に付与した場合、分散媒とマイクロカプセルとが、毛髪に付着する。その後、例えば、頭皮をマッサージすることにより、マイクロカプセルに応力が掛かることでマイクロカプセルが崩壊し、コア材を毛髪に付着させることができる。
 毛髪化粧料である本開示のマイクロカプセル組成物には、毛髪化粧料に含まれ得る公知の成分を任意に含有することができる。
 毛髪化粧料の含まれ得る公知の成分としては、アルコールなどの水性媒体、油剤、洗浄成分又は分散成分としての界面活性剤、皮膚に浸透する有効成分、色材、及び香料が挙げられる。
In the case of liquid hair cosmetics, it is preferable to fill the spray container because the microcapsules can be stably stored for a longer period of time.
When the hair cosmetic is applied to the hair by spraying, the dispersion medium and the microcapsules adhere to the hair. Then, for example, by massaging the scalp, stress is applied to the microcapsules, so that the microcapsules disintegrate and the core material can be attached to the hair.
The microcapsule composition of the present disclosure, which is a hair cosmetic, can optionally contain a known component that can be contained in the hair cosmetic.
Known ingredients that can be included in hair cosmetics include aqueous media such as alcohol, oils, surfactants as cleaning or dispersing ingredients, active ingredients that penetrate the skin, coloring materials, and fragrances.
(デイケア組成物)
 本開示のマイクロカプセル組成物は、例えば、支持体と、支持体に含浸された既述の本開示のマイクロカプセル組成物とを含む化粧用シート、おむつ等のデイケア組成物に適用することができる。
 支持体は、液状成分を保持することができれば特に制限はない。支持体は、不織布、織布などの内部に水分を保持する空隙を有する繊維集合体、又は、スポンジシートなどの多孔質体が好ましい。
 支持体に、本開示のマイクロカプセル組成物を含浸させることで、支持体を皮膚に押しつけて擦ることで、マイクロカプセルが崩壊し、任意の時期にコア材を放出することができる。また、マイクロカプセル組成物が、界面活性剤等の洗浄成分を含むことで、皮膚清拭用のシートとすることができる。
 化粧用シート、おむつ等のデイケア組成物は、マイクロカプセル組成物を安定に保持するため、水不透過性の包装材料により包装されることが、効果の持続性の観点から好ましい。
(Day care composition)
The microcapsule composition of the present disclosure can be applied to a day care composition such as a cosmetic sheet or a diaper containing, for example, a support and the above-mentioned microcapsule composition of the present disclosure impregnated in the support. ..
The support is not particularly limited as long as it can retain the liquid component. The support is preferably a fiber aggregate having voids inside such as a non-woven fabric or a woven cloth, or a porous body such as a sponge sheet.
By impregnating the support with the microcapsule composition of the present disclosure, the microcapsules can be disintegrated and the core material can be released at any time by pressing the support against the skin and rubbing it. In addition, the microcapsule composition can be used as a skin cleaning sheet by containing a cleaning component such as a surfactant.
Day care compositions such as cosmetic sheets and diapers are preferably packaged in a water-impermeable packaging material in order to stably hold the microcapsule composition from the viewpoint of long-lasting effect.
 既述のように、本開示のマイクロカプセル組成物は、必要なタイミングで任意の時期にコア材を放出しうるため、種々の用途に適用することができる。既述の用途は、その一例であり、本開示のマイクロカプセル組成物の用途は、上記記載には限定されない。 As described above, the microcapsule composition of the present disclosure can be applied to various uses because the core material can be released at an arbitrary timing at a required timing. The above-mentioned uses are an example thereof, and the uses of the microcapsule composition of the present disclosure are not limited to the above description.
 以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples as long as the gist of the present invention is not exceeded.
(実施例1)
 溶媒としてサラコス(登録商標)HG-8(日清オイリオグループ株式会社製;グリセリン脂肪酸エステル)10.5質量部と、D-リモネン(ヤスハラケミカル株式会社製;香料)31.5質量部と、シェル材として3官能の脂肪族イソシアネート化合物であるタケネート(登録商標)D-160N(三井化学株式会社製、ヘキサメチレンジイソシアネートトリメチロールプロパンアダクト体;架橋剤)1.74質量部と、を撹拌混合し、油相を得た。
(Example 1)
As a solvent, 10.5 parts by mass of Saracos (registered trademark) HG-8 (manufactured by Nisshin Oillio Group Co., Ltd .; glycerin fatty acid ester), 31.5 parts by mass of D-limonene (manufactured by Yasuhara Chemical Co., Ltd .; fragrance), and shell material. 1.74 parts by mass of Takenate (registered trademark) D-160N (manufactured by Mitsui Chemicals, Inc., hexamethylene diisocyanate trimethylolpropane adduct; cross-linking agent), which is a trifunctional aliphatic isocyanate compound, is stirred and mixed to obtain oil. Got a phase.
 また、メトローズ(登録商標)60SH50(信越化学工業株式会社、ヒドロキシプロピルメチルセルロース(HPMC);多糖類)の2.0質量%水溶液(以下、HPMC水溶液)を用意し、水相とした。 Further, a 2.0% by mass aqueous solution (hereinafter referred to as HPMC aqueous solution) of Metrose® 60SH50 (Shin-Etsu Chemical Co., Ltd., hydroxypropylmethylcellulose (HPMC); polysaccharide) was prepared and used as an aqueous phase.
 HPMC水溶液(水相)180質量部を40℃に加温した状態で上記の油相43.74質量部を加えて分散し、乳化液を生成した。その後、生成した乳化液に、サンデック#180(三和澱粉工業株式会社、デキストリン;多糖類)の25.0質量%水溶液60.0質量部を加え、60℃まで加熱して20分間撹拌した。その後、茶抽出物であるサンフード(登録商標)100(三菱ケミカルフーズ株式会社;ポリフェノール化合物)の25.0質量%水溶液8.0質量部を加えて60℃のまま1時間撹拌し、加熱を止めて一晩撹拌を続けた。
 以上のようにして、マイクロカプセル水分散液(マイクロカプセル組成物)を得た。
 得られたマイクロカプセル水分散液中のマイクロカプセルの固形分量は、21.2質量%であった。
In a state where 180 parts by mass of the HPMC aqueous solution (aqueous phase) was heated to 40 ° C., 43.74 parts by mass of the above oil phase was added and dispersed to generate an emulsion. Then, 60.0 parts by mass of a 25.0% by mass aqueous solution of Sandec # 180 (Sanwa Cornstarch Co., Ltd., dextrin; polysaccharide) was added to the produced emulsion, and the mixture was heated to 60 ° C. and stirred for 20 minutes. Then, 8.0 parts by mass of a 25.0% by mass aqueous solution of Sunfood (registered trademark) 100 (Mitsubishi Chemical Foods Co., Ltd .; polyphenol compound), which is a tea extract, was added, and the mixture was stirred at 60 ° C. for 1 hour and heated. It was stopped and stirring was continued overnight.
As described above, a microcapsule aqueous dispersion (microcapsule composition) was obtained.
The solid content of the microcapsules in the obtained aqueous dispersion of microcapsules was 21.2% by mass.
 マイクロカプセルが架橋構造を有することを以下の方法で確認した。
 マイクロカプセル水分散液に対して遠心分離を施し、マイクロカプセルを液中から分離した。分離されたマイクロカプセルをジメチルスルホキシド(DMSO)に混合(5質量%)してDMSO混合液を調製した。DMSO混合液が不透明化するか、又はマイクロカプセルの膨潤が確認できた場合は、マイクロカプセルが架橋構造を有するものと判断した。これに対し、マイクロカプセルが溶解してDMSO混合液が透明化した場合は、マイクロカプセルのシェルが架橋構造を有しないものと判断した。DMSO混合液における不透明化及び膨潤の有無の確認は、目視観察及び光学顕微鏡観察により行った。
It was confirmed by the following method that the microcapsules had a crosslinked structure.
The water dispersion of microcapsules was centrifuged to separate the microcapsules from the solution. The separated microcapsules were mixed with dimethyl sulfoxide (DMSO) (5% by mass) to prepare a DMSO mixture. When the DMSO mixture became opaque or the swelling of the microcapsules was confirmed, it was judged that the microcapsules had a crosslinked structure. On the other hand, when the microcapsules were dissolved and the DMSO mixture became transparent, it was determined that the shell of the microcapsules did not have a crosslinked structure. The presence or absence of opacity and swelling in the DMSO mixed solution was confirmed by visual observation and optical microscope observation.
 結果、マイクロカプセル水分散液のマイクロカプセルは、DMSO混合液が不透明化したことから、シェル部が架橋構造を有していることが確認された。 As a result, it was confirmed that the microcapsules of the microcapsule water dispersion had a crosslinked structure in the shell part because the DMSO mixture became opaque.
 マイクロカプセルのシェル部の厚みは、0.25μmであった。シェル部の厚みは、5個のマイクロカプセルの個々のシェル部の厚み(μm)を走査型電子顕微鏡(SEM)により求めて平均して求めた。
 また、得られたマイクロカプセル水分散液中のマイクロカプセルの体積基準のメジアン径(D50)は35μmであった。体積基準のメジアン径は、マイクロトラックMT3300EXII(日機装株式会社製)により測定した。
The thickness of the shell portion of the microcapsules was 0.25 μm. The thickness of the shell portion was determined by calculating the thickness (μm) of each shell portion of the five microcapsules with a scanning electron microscope (SEM) and averaging them.
The volume-based median diameter (D50) of the microcapsules in the obtained aqueous dispersion of microcapsules was 35 μm. The volume-based median diameter was measured by Microtrack MT3300EXII (manufactured by Nikkiso Co., Ltd.).
(評価)
 得られたマイクロカプセルに対して以下の評価を行った。評価結果は表1に示す。
(Evaluation)
The following evaluations were performed on the obtained microcapsules. The evaluation results are shown in Table 1.
(1)形態観察
 以下の手順で柔軟剤中に残存するマイクロカプセルを確認した。
 得られたマイクロカプセル水分散液1.0質量部を、無香料柔軟剤(ウルトラダウニー フリー&ジェントル、プロクター・アンド・ギャンブル・ジャパン株式会社製)を水で希釈した柔軟剤液49.0質量部(無香料柔軟剤:水=9:40[質量比])に混合し、マイクロカプセル組成物を作製した。作製したマイクロカプセル組成物をプレパラートに数滴滴下して乾燥した後、金属顕微鏡(エクリプスLV100D、ニコン社製)でマイクロカプセル(100個)の観察を行い、下記の評価基準にしたがって評価した。
 <評価基準>
A:柔軟剤中において、100個全てがカプセル形状を維持していた。
B:柔軟剤中において、90%以上100%未満のマイクロカプセルがカプセル形状を維持していた。
C:柔軟剤中において、50%以上90%未満のマイクロカプセルがカプセル形状を維持していた。
D:柔軟剤中において、0%超50%未満のマイクロカプセルがカプセル形状を維持していた。
E:柔軟剤中において、マイクロカプセルが確認できなかった(マイクロァプセルが消失した)。
(1) Morphological observation The microcapsules remaining in the softener were confirmed by the following procedure.
1.0 part by mass of the obtained microcapsule water dispersion was diluted with water to an unscented softener (Ultra Downy Free & Gentle, manufactured by Proctor & Gamble Japan Co., Ltd.) 49.0 parts by mass. (Fragrance-free softener: water = 9:40 [mass ratio]) was mixed to prepare a microcapsule composition. After dropping a few drops of the prepared microcapsule composition onto a preparation and drying it, the microcapsules (100 pieces) were observed with a metallurgical microscope (Eclipse LV100D, manufactured by Nikon Corporation) and evaluated according to the following evaluation criteria.
<Evaluation criteria>
A: In the softener, all 100 capsules maintained their capsule shape.
B: In the softener, 90% or more and less than 100% of the microcapsules maintained the capsule shape.
C: In the softener, 50% or more and less than 90% of the microcapsules maintained the capsule shape.
D: In the softener, more than 0% and less than 50% of microcapsules maintained the capsule shape.
E: No microcapsules could be confirmed in the softener (microcapsules disappeared).
(2)破壊強度と破壊変形率
 マイクロカプセルの破壊強度及び破壊変形率を以下の方法により測定した。
-2.1 破壊強度-
 マイクロカプセル水分散液1.0質量部と、水10.0質量部と、無香料柔軟剤(ウルトラダウニー フリー&ジェントル、プロクター・アンド・ギャンブル・ジャパン株式会社製)を水で希釈した柔軟剤液9.0質量部(無香料柔軟剤:水=9:10[質量比])と、を混合してマイクロカプセル組成物を作製した。作製したマイクロカプセル組成物をプレパラートに数滴滴下して乾燥させた。
 次に、J. Microencapsulation誌(vol. 18, No. 5, 593-602頁, Zhang, Z., Sun, G(2001年発行)による“Mechanical Properties of Melamine-Formaldehyde microcapsules”に記載されている方法に基づいて粒子の破壊力(rupture force)を測定した。そして、測定された各粒子の破壊力(単位:N(ニュートン))を、対応する粒子の断面積で除して算出される値を、50個の粒子について求め、求めた値の平均値を破壊強度(MPa)とした。
 なお、粒子の断面積は、πr(rは圧力を加えることで変形する前のマイクロカプセル粒子の半径であり、πは円周率(=3.14)である。)で算出される値である。
(2) Fracture strength and fracture deformation rate The fracture strength and fracture deformation rate of microcapsules were measured by the following methods.
-2.1 Fracture strength-
Microcapsule water dispersion 1.0 parts by mass, 10.0 parts by mass of water, and fragrance-free softener (Ultra Downy Free & Gentle, manufactured by Proctor & Gamble Japan Co., Ltd.) diluted with water. A microcapsule composition was prepared by mixing 9.0 parts by mass (fragrance-free softener: water = 9:10 [mass ratio]). A few drops of the prepared microcapsule composition were added dropwise to the preparation and dried.
Next, the method described in “Mechanical Properties of Melamine-Formaldehyde microcapsules” by J. Microencapsulation (vol. 18, No. 5, 593-602, Zhang, Z., Sun, G (published in 2001)). The rupture force of the particles was measured based on, and the value calculated by dividing the measured rupture force of each particle (unit: N (Newton)) by the cross-sectional area of the corresponding particle was obtained. , 50 particles were obtained, and the average value of the obtained values was taken as the breaking strength (MPa).
The cross section of the particles is a value calculated by πr 2 (r is the radius of the microcapsule particles before being deformed by applying pressure, and π is the circumference ratio (= 3.14)). Is.
-2.2 破壊変形率-
 破壊強度の測定で変形したマイクロカプセルの変形率は、下記式より算出した。
 破壊変形率(%)=破壊時の変位量(μm)/計測されたマイクロカプセルの直径(μm)×100
-2.2 Fracture deformation rate-
The deformation rate of the microcapsules deformed by the measurement of the breaking strength was calculated from the following formula.
Fracture deformation rate (%) = displacement at break (μm) / measured microcapsule diameter (μm) x 100
(3)香り強度
 得られたマイクロカプセル水分散液の香料換算1.0質量%と、カチオン性界面活性剤及び水を含む無香料柔軟剤(ULTRA Downy、プロクター・アンド・ギャンブル・ジャパン株式会社製)99質量%と、を混合してマイクロカプセル組成物を作製した。
 次いで、マイクロカプセル組成物5質量部と水995質量部とを混合し、得られた混合液を木綿タオル(35cm×35cm)へ霧吹きで5回噴霧して25℃60%RH環境下で24時間乾燥させ、評価用サンプルを作製した。
 得られた評価サンプル(木綿タオル)を5回擦り合わせた後、発生した香りの強度を10人の評価者に評価してもらい、下記評価基準にしたがって6段階に分けて点数を付け、平均値(整数に四捨五入)を求め、香りを評価する指標とした。
 なお、評価基準は、0点(香り強度弱い)から点数が高くなるにつれて香り強度が強くなることを示しており、5点(香り強度強い)が最も高評価である。評価は、2点以上が実用上許容される範囲である。
 評価結果は表1に示す。
 <評価基準>
0:香りを全く感じ取れない。
1:香りを僅かに感じとれるが、ほとんど香りを感じない。
2:弱い香りを感じ取れる。
3:香りを感じ取れる。
4:はっきりと香りを感じ取れる。
5:強い香りを感じ取れる。
(3) Fragrance intensity 1.0% by mass of the obtained microcapsule water dispersion in terms of fragrance, and a fragrance-free softener containing a cationic surfactant and water (ULTRA Downy, manufactured by Proctor & Gamble Japan Co., Ltd.) ) 99% by mass was mixed to prepare a microcapsule composition.
Next, 5 parts by mass of the microcapsule composition and 995 parts by mass of water were mixed, and the obtained mixed solution was sprayed 5 times on a cotton towel (35 cm × 35 cm) by spraying 5 times in a 25 ° C. 60% RH environment for 24 hours. It was dried to prepare a sample for evaluation.
After rubbing the obtained evaluation sample (cotton towel) 5 times, we asked 10 evaluators to evaluate the intensity of the generated scent, and scored it in 6 stages according to the following evaluation criteria, and averaged the value. (Rounded to an integer) was calculated and used as an index to evaluate the scent.
The evaluation criteria indicate that the scent intensity increases as the score increases from 0 point (weak scent intensity), and 5 points (strong scent intensity) is the highest evaluation. The evaluation is within a practically acceptable range of 2 points or more.
The evaluation results are shown in Table 1.
<Evaluation criteria>
0: I can't feel the scent at all.
1: A slight scent can be felt, but almost no scent is felt.
2: You can feel a weak scent.
3: You can feel the scent.
4: You can clearly feel the scent.
5: You can feel a strong scent.
(実施例2)
 実施例1において、生成した乳化液にサンデック#180(デキストリン)の25.0質量%水溶液60.0質量部を加えず、表1に示す組成としたこと以外は、実施例1と同様に、マイクロカプセル水分散液を得、更に測定及び評価を行った。
 得られたマイクロカプセル水分散液中のマイクロカプセルの固形分量は、8.6質量%であった。
 また、実施例1と同様の方法により、マイクロカプセルは、DMSO混合液が不透明であったことから、シェル部が架橋構造を有していることが確認された。
 測定及び評価の結果を表1に示す。
(Example 2)
In Example 1, 60.0 parts by mass of a 25.0% by mass aqueous solution of Sandec # 180 (dextrin) was not added to the produced emulsion, and the composition was adjusted as shown in Table 1, as in Example 1. A microcapsule aqueous dispersion was obtained, and further measurement and evaluation were performed.
The solid content of the microcapsules in the obtained aqueous dispersion of microcapsules was 8.6% by mass.
Further, by the same method as in Example 1, it was confirmed that the shell portion of the microcapsules had a crosslinked structure because the DMSO mixed solution was opaque.
The results of measurement and evaluation are shown in Table 1.
(実施例3~5)
 実施例1において、生成した乳化液に加えたデキストリン(サンデック#180の25.0質量%水溶液60.0質量部)を、表1に示す多糖類にそれぞれ代えたこと以外は、実施例1と同様に、マイクロカプセル水分散液を得、更に測定及び評価を行った。
 得られたマイクロカプセル水分散液中のマイクロカプセルの固形分量は、6.0質量%であった。
 また、実施例1と同様の方法により、マイクロカプセルは、DMSO混合液が不透明であったことから、シェル部が架橋構造を有していることが確認された。
 測定及び評価の結果を表1に示す。
(Examples 3 to 5)
In Example 1, dextrin (60.0 parts by mass of a 25.0% by mass aqueous solution of Sandec # 180) added to the produced emulsion was replaced with the polysaccharide shown in Table 1, except that the dextrin was replaced with that of Example 1. Similarly, a microcapsule aqueous dispersion was obtained, and further measurement and evaluation were performed.
The solid content of the microcapsules in the obtained aqueous dispersion of microcapsules was 6.0% by mass.
Further, by the same method as in Example 1, it was confirmed that the shell portion of the microcapsules had a crosslinked structure because the DMSO mixed solution was opaque.
The results of measurement and evaluation are shown in Table 1.
(実施例6)
 実施例1において、多糖類として用いたメトローズ60SH50(HPMC)の2.0質量%水溶液を、表1に示すHPC(ヒドロキシプロピルセルロース、富士フイルム和光純薬株式会社;多糖類)に代えたこと以外は、実施例1と同様に、マイクロカプセル水分散液を得、更に測定及び評価を行った。
 得られたマイクロカプセル水分散液中のマイクロカプセルの固形分量は、20.8質量%であった。
 また、実施例1と同様の方法により、マイクロカプセルは、DMSO混合液が不透明であったことから、シェル部が架橋構造を有していることが確認された。
 測定及び評価の結果を表1に示す。
(Example 6)
Except that the 2.0% by mass aqueous solution of Metrose 60SH50 (HPMC) used as the polysaccharide in Example 1 was replaced with HPC (hydroxypropyl cellulose, Fujifilm Wako Pure Chemical Industries, Ltd .; polysaccharide) shown in Table 1. Obtained a microcapsule aqueous dispersion in the same manner as in Example 1, and further measured and evaluated it.
The solid content of the microcapsules in the obtained aqueous dispersion of microcapsules was 20.8% by mass.
Further, by the same method as in Example 1, it was confirmed that the shell portion of the microcapsules had a crosslinked structure because the DMSO mixed solution was opaque.
The results of measurement and evaluation are shown in Table 1.
(実施例7)
 実施例1において、架橋剤として用いたタケネートD-160Nを、タケネートD-160N(3官能の脂肪族イソシアネート化合物)及びヘキサメチレンジイソシアネート(2官能の脂肪族イソシアネート化合物;HDI)の2種に代えたこと以外は、実施例1と同様に、マイクロカプセル水分散液を得、更に測定及び評価を行った。
 得られたマイクロカプセル水分散液中のマイクロカプセルの固形分量は、20.8質量%であった。
 また、実施例1と同様の方法により、マイクロカプセルは、DMSO混合液が不透明であったことから、シェル部が架橋構造を有していることが確認された。
 測定及び評価の結果を表1に示す。
(Example 7)
In Example 1, Takenate D-160N used as a cross-linking agent was replaced with Takenate D-160N (trifunctional aliphatic isocyanate compound) and hexamethylene diisocyanate (bifunctional aliphatic isocyanate compound; HDI). Except for this, a microcapsule aqueous dispersion was obtained, and further measured and evaluated in the same manner as in Example 1.
The solid content of the microcapsules in the obtained aqueous dispersion of microcapsules was 20.8% by mass.
Further, by the same method as in Example 1, it was confirmed that the shell portion of the microcapsules had a crosslinked structure because the DMSO mixed solution was opaque.
The results of measurement and evaluation are shown in Table 1.
(実施例8)
 実施例2において、架橋剤として用いたタケネートD-160Nを、タケネートD-160N(3官能の脂肪族イソシアネート化合物)及びヘキサメチレンジイソシアネート(2官能の脂肪族イソシアネート化合物;HDI)の2種に代えたこと以外は、実施例2と同様に、マイクロカプセル水分散液を得、更に測定及び評価を行った。
 得られたマイクロカプセル水分散液中のマイクロカプセルの固形分量は、8.6質量%であった。
 また、実施例1と同様の方法により、マイクロカプセルは、DMSO混合液が不透明であったことから、シェル部が架橋構造を有していることが確認された。
 測定及び評価の結果を表1に示す。
(Example 8)
In Example 2, Takenate D-160N used as a cross-linking agent was replaced with Takenate D-160N (trifunctional aliphatic isocyanate compound) and hexamethylene diisocyanate (bifunctional aliphatic isocyanate compound; HDI). Except for this, a microcapsule aqueous dispersion was obtained, and further measured and evaluated in the same manner as in Example 2.
The solid content of the microcapsules in the obtained aqueous dispersion of microcapsules was 8.6% by mass.
Further, by the same method as in Example 1, it was confirmed that the shell portion of the microcapsules had a crosslinked structure because the DMSO mixed solution was opaque.
The results of measurement and evaluation are shown in Table 1.
(実施例9~10)
 実施例1において、マイクロカプセルのシェルの厚みを表1に示すように変更したこと以外は、実施例1と同様に、マイクロカプセル水分散液を得、測定及び評価を行った。
 得られたマイクロカプセル水分散液中のマイクロカプセルの固形分量は、20.8質量%であった。
 また、実施例1と同様の方法により、マイクロカプセルは、DMSO混合液が不透明であったことから、シェル部が架橋構造を有していることが確認された。
 測定及び評価の結果を表1に示す。
(Examples 9 to 10)
In Example 1, a microcapsule aqueous dispersion was obtained, measured and evaluated in the same manner as in Example 1 except that the thickness of the shell of the microcapsules was changed as shown in Table 1.
The solid content of the microcapsules in the obtained aqueous dispersion of microcapsules was 20.8% by mass.
Further, by the same method as in Example 1, it was confirmed that the shell portion of the microcapsules had a crosslinked structure because the DMSO mixed solution was opaque.
The results of measurement and evaluation are shown in Table 1.
(実施例11~13)
 実施例1において、茶抽出物(ポリフェノール化合物)の量を表1に示すように変更し、かつ、他の成分組成を表1に示すように調整したこと以外は、実施例1と同様に、マイクロカプセル水分散液を得、更に測定及び評価を行った。
 得られたマイクロカプセル水分散液中のマイクロカプセルの固形分量は、20.8質量%であった。
 また、実施例1と同様の方法により、マイクロカプセルは、実施例11~12はDMSO混合液が不透明化し、実施例13は膨潤したことから、シェル部が架橋構造を有していることが確認された。
 測定及び評価の結果を表1に示す。
(Examples 11 to 13)
In Example 1, the amount of the tea extract (polyphenol compound) was changed as shown in Table 1, and the composition of other components was adjusted as shown in Table 1, as in Example 1. A microcapsule aqueous dispersion was obtained, and further measurement and evaluation were performed.
The solid content of the microcapsules in the obtained aqueous dispersion of microcapsules was 20.8% by mass.
Further, in the microcapsules, the DMSO mixture was opaque in Examples 11 to 12 and swelled in Example 13 by the same method as in Example 1, confirming that the shell portion has a crosslinked structure. Was done.
The results of measurement and evaluation are shown in Table 1.
(実施例14)
 実施例1において、多糖類の種類を表1に示すように変更したこと以外は、実施例1と同様にして、マイクロカプセル水分散液を得、更に測定及び評価を行った。
 得られたマイクロカプセル水分散液中のマイクロカプセルの固形分量は、5.0質量%であった。
 また、実施例1と同様の方法により、マイクロカプセルは、膨潤したことから、シェル部が架橋構造を有していることが確認された。
 測定及び評価の結果を表1に示す。
(Example 14)
In Example 1, a microcapsule aqueous dispersion was obtained, and further measured and evaluated in the same manner as in Example 1 except that the types of polysaccharides were changed as shown in Table 1.
The solid content of the microcapsules in the obtained aqueous dispersion of microcapsules was 5.0% by mass.
Further, since the microcapsules were swollen by the same method as in Example 1, it was confirmed that the shell portion had a crosslinked structure.
The results of measurement and evaluation are shown in Table 1.
(実施例15~18)
 実施例1において、架橋剤として用いたタケネートD-160Nの量を表1に示すように変更し、かつ、他の成分組成を表1に示すように調整したこと以外は、実施例1と同様に、マイクロカプセル水分散液を得、更に測定及び評価を行った。
 得られたマイクロカプセル水分散液中のマイクロカプセルの固形分量は、20.8質量%であった。
 また、実施例1と同様の方法により、マイクロカプセルは、DMSO混合液が不透明であったことから、シェル部が架橋構造を有していることが確認された。
 測定及び評価の結果を表1に示す。
(Examples 15 to 18)
Same as in Example 1 except that the amount of Takenate D-160N used as the cross-linking agent was changed as shown in Table 1 and the other component compositions were adjusted as shown in Table 1. In addition, a microcapsule aqueous dispersion was obtained, and further measurement and evaluation were performed.
The solid content of the microcapsules in the obtained aqueous dispersion of microcapsules was 20.8% by mass.
Further, by the same method as in Example 1, it was confirmed that the shell portion of the microcapsules had a crosslinked structure because the DMSO mixed solution was opaque.
The results of measurement and evaluation are shown in Table 1.
(実施例19~20)
 実施例1において、架橋剤の種類を表1に示すように変更したこと以外は、実施例1と同様に、マイクロカプセル水分散液を得、更に測定及び評価を行った。
 得られたマイクロカプセル水分散液中のマイクロカプセルの固形分量は、18.0質量%であった。
 また、実施例1と同様の方法により、マイクロカプセルは、膨潤したことから、シェル部が架橋構造を有していることが確認された。
 測定及び評価の結果を表1に示す。
(Examples 19 to 20)
In Example 1, a microcapsule aqueous dispersion was obtained, and further measured and evaluated in the same manner as in Example 1, except that the type of the cross-linking agent was changed as shown in Table 1.
The solid content of the microcapsules in the obtained aqueous dispersion of microcapsules was 18.0% by mass.
Further, since the microcapsules were swollen by the same method as in Example 1, it was confirmed that the shell portion had a crosslinked structure.
The results of measurement and evaluation are shown in Table 1.
(比較例1)
 実施例1において、マイクロカプセルのシェルの厚みを表1に示すように変更したこと以外は、実施例1と同様に、マイクロカプセル水分散液を得、測定及び評価を行った。
 得られたマイクロカプセル水分散液中のマイクロカプセルの固形分量は、20.8質量%であった。
 また、実施例1と同様の方法により、マイクロカプセルは、DMSO混合液が不透明であったことから、シェル部が架橋構造を有していることが確認された。
 測定及び評価の結果を表1に示す。
(Comparative Example 1)
In Example 1, a microcapsule aqueous dispersion was obtained, measured and evaluated in the same manner as in Example 1 except that the thickness of the shell of the microcapsules was changed as shown in Table 1.
The solid content of the microcapsules in the obtained aqueous dispersion of microcapsules was 20.8% by mass.
Further, by the same method as in Example 1, it was confirmed that the shell portion of the microcapsules had a crosslinked structure because the DMSO mixed solution was opaque.
The results of measurement and evaluation are shown in Table 1.
(比較例2)
 実施例1において、架橋剤の種類を表1に示すように変更し、茶抽出物であるサンフード(登録商標)100を添加後に、続けてタンニン酸(富士フイルム和光純薬株式会社)の5%質量水溶液16.0gを加えたこと以外は、実施例1と同様に、マイクロカプセル水分散液を得、更に測定及び評価を行った。得られたマイクロカプセル水分散液中のマイクロカプセルの固形分量は、21.0質量%であった。
 また、実施例1と同様の方法により、マイクロカプセルは、透明化したことから、シェル部が架橋構造を有していないことが確認された。
 測定及び評価の結果を表1に示す。
(Comparative Example 2)
In Example 1, the type of the cross-linking agent was changed as shown in Table 1, and after adding Sunfood (registered trademark) 100, which is a tea extract, tannic acid (Fujifilm Wako Pure Chemical Industries, Ltd.) 5 A microcapsule aqueous dispersion was obtained, and further measured and evaluated in the same manner as in Example 1 except that 16.0 g of a% mass aqueous solution was added. The solid content of the microcapsules in the obtained aqueous dispersion of microcapsules was 21.0% by mass.
Further, since the microcapsules were made transparent by the same method as in Example 1, it was confirmed that the shell portion did not have a crosslinked structure.
The results of measurement and evaluation are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に記載の成分の詳細は以下の通りである。
・多糖類:
 HPMC:メトローズ(登録商標)60SH50、信越化学工業株式会社、ヒドロキシプロピルメチルセルロース
 HPC:ヒドロキシプロピルセルロース、富士フイルム和光純薬株式会社
 デキストリン:サンデック#180(三和澱粉工業株式会社)
 アラビアガム:富士フイルム和光純薬株式会社
 キタンサンガム:Xanthan Gum、東京化成工業株式会社
 グァーガム:富士フイルム和光純薬株式会社
・架橋剤:
 D-160N:3官能の脂肪族イソシアネート化合物(タケネート(登録商標)D-160N、三井化学株式会社、ヘキサメチレンジイソシアネートトリメチロールプロパンアダクト体)
 HDI:2官能の脂肪族イソシアネート化合物(東京化成工業株式会社、ヘキサメチレンジイソシアネート)
 タンニン酸:富士フイルム和光純薬株式会社
 エポキシ:4,4’-メイレンビス(N,N-ジグリシジルアニリン)、東京化成工業株式会社
 酸クロライド:アジポイルクロリド、東京化成工業株式会社
・ポリフェノール化合物:
 茶抽出物:サンフード(登録商標)100、三菱ケミカルフーズ株式会社
The details of the components listed in Table 1 are as follows.
・ Polysaccharides:
HPMC: Metrose (registered trademark) 60SH50, Shin-Etsu Chemical Co., Ltd., Hydroxypropyl Methyl Cellulose HPC: Hydroxypropyl Cellulose, Fujifilm Wako Pure Chemical Industries, Ltd. Dextrin: Sandec # 180 (Sanwa Stardust Industry Co., Ltd.)
Gum arabic: Fujifilm Wako Pure Chemical Industries, Ltd. Kitan Sun Gum: Xanthan Gum, Tokyo Kasei Kogyo Co., Ltd. Guar gum: Fujifilm Wako Pure Chemical Industries, Ltd.
D-160N: Trifunctional aliphatic isocyanate compound (Takenate (registered trademark) D-160N, Mitsui Chemicals, Inc., hexamethylene diisocyanate trimethylolpropane adduct)
HDI: Bifunctional aliphatic isocyanate compound (Tokyo Chemical Industry Co., Ltd., hexamethylene diisocyanate)
Tannic acid: Fujifilm Wako Pure Chemical Industries, Ltd. Epoxy: 4,4'-Meilenbis (N, N-diglycidylaniline), Tokyo Chemical Industry Co., Ltd. Acid chloride: Adipoil chloride, Tokyo Chemical Industry Co., Ltd. Polyphenol compound:
Tea extract: Sunfood (registered trademark) 100, Mitsubishi Chemical Foods Co., Ltd.
 上記の表1に示すように、実施例1~20では、シェル部の厚みが2μm未満の薄膜でありながら、極性のあるイオン系界面活性剤の共存下において、カプセルの形態が良好に維持され、外力(擦過)を与えた際に放出される香り強度も良好な結果が得られており、いずれのマイクロカプセルも保存安定性に優れるものであった。
 特に架橋剤としてイソシアネート化合物を用いた場合に、カプセルの形態及び保存安定性の点でより優れていた。
As shown in Table 1 above, in Examples 1 to 20, the morphology of the capsule was well maintained in the presence of a polar ionic surfactant, even though the shell portion was a thin film having a thickness of less than 2 μm. Good results were also obtained for the scent intensity released when an external force (scratch) was applied, and all the microcapsules were excellent in storage stability.
In particular, when an isocyanate compound was used as the cross-linking agent, it was more excellent in terms of capsule morphology and storage stability.
 実施例1と実施例2を対比すると、直鎖状多糖類と分岐状多糖類との2種を併用した実施例1は、直鎖状多糖類のみを用いた実施例2に比べ、マイクロカプセルの破壊強度の向上効果が期待できることが分かる。
 実施例1と、実施例1から分岐状多糖類を変更した実施例3~5とを対比すると、分岐状多糖類としては、マイクロカプセルの破壊強度の向上効果の点で、デキストリンがより効果的であることが分かる。
 実施例1と実施例6とを対比すると、HPMCがHPCに比べて、香り強度を維持しながら良好な破壊強度を示した。
 実施例10~13を対比すると明らかなように、ポリフェノール化合物の量の増減は、マイクロカプセルの形状保持性に影響を与える。ポリフェノール化合物の量は、マイクロカプセルの形態を良好に維持する観点から、シェルの全質量に対して、3質量%以上が好ましく、より好ましくは5質量%以上(更には6質量%以上、特には9質量%以上)であることが分かる。
 また、実施例15~18の結果から分かるように、架橋剤の量は、3質量%以上であることが好ましく、マイクロカプセルの形態を良好に維持し、破壊強度と香り強度とのバランスを図る観点からは、4質量%以上10質量%の範囲がより好適である。
Comparing Example 1 and Example 2, the microcapsules of Example 1 in which two kinds of linear polysaccharides and branched polysaccharides are used in combination are compared with those of Example 2 in which only linear polysaccharides are used. It can be seen that the effect of improving the breaking strength of
Comparing Example 1 with Examples 3 to 5 in which the branched polysaccharide is changed from Example 1, dextrin is more effective as the branched polysaccharide in terms of the effect of improving the breaking strength of the microcapsules. It turns out that.
Comparing Example 1 and Example 6, HPMC showed better fracture strength while maintaining scent intensity as compared with HPC.
As is clear from the comparison of Examples 10 to 13, the increase or decrease in the amount of the polyphenol compound affects the shape retention of the microcapsules. From the viewpoint of maintaining good morphology of the microcapsules, the amount of the polyphenol compound is preferably 3% by mass or more, more preferably 5% by mass or more (further, 6% by mass or more, particularly particularly) with respect to the total mass of the shell. It can be seen that it is 9% by mass or more).
Further, as can be seen from the results of Examples 15 to 18, the amount of the cross-linking agent is preferably 3% by mass or more, the morphology of the microcapsules is maintained well, and the breaking strength and the fragrance strength are balanced. From the viewpoint, the range of 4% by mass or more and 10% by mass is more preferable.
 これに対して、シェルの厚みが2μmを超える比較例1では、良好な香り強度が得られなかった。比較例1のように、既述の特開昭54-426号公報及び特開平2-293041号公報に記載された従来のマイクロカプセルもシェル部の厚みは厚いと考えられ、シェル部を2μm未満の薄膜にした場合に、極性物質の共存下において、マイクロカプセルの形態の安定性(保存安定性)と香料等のコア材の放出性とのバランスが図れるか否かは明らかでない。
 また、タンニン酸を用いた比較例2では、共有結合性の架橋構造が得られないため、カプセル形態を維持できず、香り強度の点で著しく低い結果となった。
On the other hand, in Comparative Example 1 in which the shell thickness exceeded 2 μm, good scent intensity could not be obtained. As in Comparative Example 1, the conventional microcapsules described in JP-A-54-426 and JP-A-2-29341 described above are also considered to have a thick shell portion, and the shell portion is less than 2 μm. It is not clear whether or not the stability of the form of microcapsules (storage stability) and the release property of core materials such as fragrances can be balanced in the coexistence of polar substances when the thin film is formed.
Further, in Comparative Example 2 using tannic acid, since a covalently bonded crosslinked structure could not be obtained, the capsule morphology could not be maintained, resulting in a remarkably low scent intensity.
 なお、2019年3月28日に出願された日本国特許出願2019-064702号の開示は、その全体が参照により本明細書に取り込まれる。また、本明細書に記載された全ての文献、特許出願および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The entire disclosure of Japanese Patent Application No. 2019-064702 filed on March 28, 2019 is incorporated herein by reference in its entirety. Also, all documents, patent applications and technical standards described herein are to the same extent as if the individual documents, patent applications and technical standards were specifically and individually stated to be incorporated by reference. , Incorporated by reference herein.

Claims (10)

  1.  コア部と前記コア部を内包するシェル部とを含み、
     前記シェル部は、多糖類と架橋剤との反応由来の共有結合性の架橋構造を有し、かつ、厚みが2μm未満である、
     マイクロカプセル。
    Including the core portion and the shell portion containing the core portion,
    The shell portion has a covalently bonded cross-linked structure derived from the reaction of the polysaccharide and the cross-linking agent, and has a thickness of less than 2 μm.
    Microcapsules.
  2.  前記架橋剤が、3官能以上の脂肪族イソシアネート化合物及び2官能の脂肪族イソシアネート化合物からなる群より選ばれる少なくとも一種のイソシアネート化合物である請求項1に記載のマイクロカプセル。 The microcapsule according to claim 1, wherein the cross-linking agent is at least one isocyanate compound selected from the group consisting of a trifunctional or higher functional aliphatic isocyanate compound and a bifunctional aliphatic isocyanate compound.
  3.  前記多糖類が、セルロース化合物、デキストリン、アラビアガム、キタンサンガム、及びグァーガムからなる群より選ばれる少なくとも一種である請求項1又は請求項2に記載のマイクロカプセル。 The microcapsule according to claim 1 or 2, wherein the polysaccharide is at least one selected from the group consisting of a cellulose compound, dextrin, gum arabic, gum arabic, and guar gum.
  4.  前記多糖類が、ヒドロキシプロピルセルロース及びヒドロキシプロピルメチルセルロースからなる群より選ばれる少なくとも一種を含む請求項1~請求項3のいずれか1項に記載のマイクロカプセル。 The microcapsule according to any one of claims 1 to 3, wherein the polysaccharide contains at least one selected from the group consisting of hydroxypropyl cellulose and hydroxypropyl methyl cellulose.
  5.  前記シェル部が、更に、ポリフェノール化合物を含む請求項1~請求項4のいずれか1項に記載のマイクロカプセル。 The microcapsule according to any one of claims 1 to 4, wherein the shell portion further contains a polyphenol compound.
  6.  前記ポリフェノール化合物の含有量が、シェル部の全質量に対して、5質量%以上である請求項5に記載のマイクロカプセル。 The microcapsule according to claim 5, wherein the content of the polyphenol compound is 5% by mass or more with respect to the total mass of the shell portion.
  7.  前記架橋剤に由来する構造部分の含有比率が、シェル部の全質量に対して、4質量%以上である請求項1~請求項6のいずれか1項に記載のマイクロカプセル。 The microcapsule according to any one of claims 1 to 6, wherein the content ratio of the structural portion derived from the cross-linking agent is 4% by mass or more with respect to the total mass of the shell portion.
  8.  請求項1~請求項7のいずれか1項に記載のマイクロカプセルと、溶媒と、を含有するマイクロカプセル組成物。 A microcapsule composition containing the microcapsule according to any one of claims 1 to 7 and a solvent.
  9.  請求項1~請求項7のいずれか1項に記載のマイクロカプセルを含む柔軟剤。 A softener containing the microcapsules according to any one of claims 1 to 7.
  10.  請求項1~請求項7のいずれか1項に記載のマイクロカプセルを含む洗剤。 Detergent containing the microcapsules according to any one of claims 1 to 7.
PCT/JP2019/048975 2019-03-28 2019-12-13 Microcapsules, microcapsule composition, softener, and detergent WO2020194910A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019064702 2019-03-28
JP2019-064702 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020194910A1 true WO2020194910A1 (en) 2020-10-01

Family

ID=72610828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048975 WO2020194910A1 (en) 2019-03-28 2019-12-13 Microcapsules, microcapsule composition, softener, and detergent

Country Status (1)

Country Link
WO (1) WO2020194910A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115069180A (en) * 2022-07-20 2022-09-20 浙江惠嘉生物科技股份有限公司 Secondary cross-linking type plant essential oil microcapsule as well as preparation method and application thereof
EP4209265A1 (en) 2022-01-07 2023-07-12 International Flavors & Fragrances Inc. Biodegradable chitosan microcapsules
WO2023137121A1 (en) 2022-01-14 2023-07-20 International Flavors & Fragrances Inc. Biodegradable prepolymer microcapsules

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54426B2 (en) * 1974-06-19 1979-01-10
JPS5422949B1 (en) * 1970-07-06 1979-08-10
JPH09309595A (en) * 1996-05-20 1997-12-02 Sumitomo Chem Co Ltd Transfer method of capsulized liquid
JP2007186496A (en) * 2005-12-12 2007-07-26 Sumitomo Chemical Co Ltd Microcapsule containing solid agrochemical active compound
JP2007186497A (en) * 2005-12-14 2007-07-26 Sumitomo Chemical Co Ltd Microcapsule containing solid agrochemical active compound
JP2010275238A (en) * 2009-05-29 2010-12-09 Sumitomo Chemical Co Ltd Method of manufacturing microcapsule
JP2013053086A (en) * 2011-09-02 2013-03-21 Nippon Jifuii Shokuhin Kk Microcapsule containing oil and fat and method for producing the same
JP2013142107A (en) * 2012-01-10 2013-07-22 Sekisui Chem Co Ltd Curing agent- and/or curing accelerator-containing capsule and thermosetting resin composition
WO2014024971A1 (en) * 2012-08-08 2014-02-13 積水化学工業株式会社 Microcapsule-manufacturing process and microcapsules
JP2015164722A (en) * 2014-02-10 2015-09-17 積水化学工業株式会社 Microcapsule having core-shell structure
CN106212485A (en) * 2016-07-28 2016-12-14 山东省农药科学研究院 Matrine microcapsule formulation and preparation method thereof
CN108124899A (en) * 2018-01-31 2018-06-08 段永恒 A kind of athomin micro-capsule suspension and preparation method thereof
JP2018518479A (en) * 2015-06-05 2018-07-12 フイルメニツヒ ソシエテ アノニムFirmenich Sa Microcapsules with high deposits on the surface

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422949B1 (en) * 1970-07-06 1979-08-10
JPS54426B2 (en) * 1974-06-19 1979-01-10
JPH09309595A (en) * 1996-05-20 1997-12-02 Sumitomo Chem Co Ltd Transfer method of capsulized liquid
JP2007186496A (en) * 2005-12-12 2007-07-26 Sumitomo Chemical Co Ltd Microcapsule containing solid agrochemical active compound
JP2007186497A (en) * 2005-12-14 2007-07-26 Sumitomo Chemical Co Ltd Microcapsule containing solid agrochemical active compound
JP2010275238A (en) * 2009-05-29 2010-12-09 Sumitomo Chemical Co Ltd Method of manufacturing microcapsule
JP2013053086A (en) * 2011-09-02 2013-03-21 Nippon Jifuii Shokuhin Kk Microcapsule containing oil and fat and method for producing the same
JP2013142107A (en) * 2012-01-10 2013-07-22 Sekisui Chem Co Ltd Curing agent- and/or curing accelerator-containing capsule and thermosetting resin composition
WO2014024971A1 (en) * 2012-08-08 2014-02-13 積水化学工業株式会社 Microcapsule-manufacturing process and microcapsules
JP2015164722A (en) * 2014-02-10 2015-09-17 積水化学工業株式会社 Microcapsule having core-shell structure
JP2018518479A (en) * 2015-06-05 2018-07-12 フイルメニツヒ ソシエテ アノニムFirmenich Sa Microcapsules with high deposits on the surface
CN106212485A (en) * 2016-07-28 2016-12-14 山东省农药科学研究院 Matrine microcapsule formulation and preparation method thereof
CN108124899A (en) * 2018-01-31 2018-06-08 段永恒 A kind of athomin micro-capsule suspension and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4209265A1 (en) 2022-01-07 2023-07-12 International Flavors & Fragrances Inc. Biodegradable chitosan microcapsules
WO2023133191A1 (en) 2022-01-07 2023-07-13 International Flavors & Fragrances Inc. Biodegradable chitosan microcapsules
WO2023137121A1 (en) 2022-01-14 2023-07-20 International Flavors & Fragrances Inc. Biodegradable prepolymer microcapsules
CN115069180A (en) * 2022-07-20 2022-09-20 浙江惠嘉生物科技股份有限公司 Secondary cross-linking type plant essential oil microcapsule as well as preparation method and application thereof
CN115069180B (en) * 2022-07-20 2022-11-04 浙江惠嘉生物科技股份有限公司 Secondary cross-linking type plant essential oil microcapsule as well as preparation method and application thereof
WO2024016581A1 (en) * 2022-07-20 2024-01-25 浙江惠嘉生物科技股份有限公司 Twice-cross-linked plant essential oil microcapsule, and preparation method therefor and use thereof

Similar Documents

Publication Publication Date Title
WO2020195132A1 (en) Perfume microcapsules, perfume microcapsule composition, softener, and detergent
WO2020194910A1 (en) Microcapsules, microcapsule composition, softener, and detergent
US10188593B2 (en) Polysaccharide delivery particle
WO2019173062A1 (en) Reduced permeability microcapsules
JP2023512861A (en) Polyurea capsules crosslinked with chitosan
JP7416620B2 (en) Method for manufacturing microcapsules
US20200315168A1 (en) Aroma-Loaded Microcapsules with Antibacterial Activity for Eco-friendly Applications
JP2005528200A (en) Method for encapsulating hydrophobic organic molecules in polyurea capsules
JP2018515653A (en) Polymer shell microcapsules with deposited polymer
US20230060181A1 (en) Environmentally biodegradable microcapsules
EP3765159B1 (en) Improvements in or relating to organic compounds
US20210015722A1 (en) Process for the preparation of microcapsules
CN109453724A (en) A kind of inside is the preparation method of the slow-release type microcapsule of multicore
JP2019167455A (en) Manufacturing method of micro capsule and manufacturing method of micro capsule-containing composition
WO2019171929A1 (en) Microcapsule-containing composition
WO2019187835A1 (en) Microcapsule-containing composition
JP2019150783A (en) Manufacturing method of microcapsule and manufacturing method of microcapsule-containing composition
JP2021053594A (en) Microcapsule, microcapsule composition and production method of the same, as well as softener and detergent
WO2019181668A1 (en) Microcapsule-containing composition, laundry composition, daycare composition and haircare composition
CN114081869B (en) Microcapsule-embedded chitosan solid fragrance and preparation method and application thereof
WO2019171959A1 (en) Microcapsule and microcapsule-containing composition
WO2020066159A1 (en) Microcapsule and microcapsule-containing composition
JP2021073323A (en) Microcapsule-containing composition
WO2019181682A1 (en) Microcapsule-containing composition, laundering composition, day-care composition, and hair-care composition
US20040161468A1 (en) Stabilization of aromatic active principles using aromatic polymers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP