WO2020066159A1 - Microcapsule and microcapsule-containing composition - Google Patents

Microcapsule and microcapsule-containing composition Download PDF

Info

Publication number
WO2020066159A1
WO2020066159A1 PCT/JP2019/024124 JP2019024124W WO2020066159A1 WO 2020066159 A1 WO2020066159 A1 WO 2020066159A1 JP 2019024124 W JP2019024124 W JP 2019024124W WO 2020066159 A1 WO2020066159 A1 WO 2020066159A1
Authority
WO
WIPO (PCT)
Prior art keywords
isocyanate compound
microcapsule
trifunctional
mass
microcapsules
Prior art date
Application number
PCT/JP2019/024124
Other languages
French (fr)
Japanese (ja)
Inventor
優樹 中川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2020066159A1 publication Critical patent/WO2020066159A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/87Polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q13/00Formulations or additives for perfume preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B9/00Essential oils; Perfumes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes

Definitions

  • the present disclosure relates to microcapsules and compositions containing microcapsules.
  • microcapsules have added new value to customers in terms of encapsulating and protecting functional materials such as fragrances, dyes, heat storage materials, and pharmaceutical ingredients, and releasing functional materials in response to stimuli. has been attracting attention because of its potential.
  • a microcapsule containing the fragrance (hereinafter, also referred to as a fragrance capsule) can be mixed with the softener.
  • a fragrance capsule When washing clothes using the softener containing the microcapsules, when the microcapsules contained in the softener adhere to the clothes and the pressure or the like is applied and the microcapsules are broken, The contained fragrance is released. Therefore, by encapsulating the fragrance, the fragrance can be held for a certain period of time, and the fragrance due to the fragrance can be generated at a desired time.
  • JP-T-2009-524723 discloses a composition comprising particles comprising a core material and a wall material surrounding the core material, wherein the particles are at least 0.05, preferably at least 7, more preferably Has a delivery index of at least 70, wherein the composition is a consumer product.
  • a problem to be solved by one embodiment of the present disclosure is to provide a microcapsule and a microcapsule-containing composition having good fragrance intensity.
  • Means for solving the above problems include the following aspects.
  • a shell material of a shell including a core a polyurethane or polyurea having a structure derived from a trifunctional or more isocyanate compound and a structure derived from a bifunctional isocyanate compound is included, and in the shell material, The ratio of the content of the structure derived from the bifunctional isocyanate compound to the content of the structure derived from the trifunctional or more isocyanate compound is 5/95 to 20/80 on a mass basis, and contains a fragrance as a core material.
  • ⁇ 3> The microcapsule according to ⁇ 1> or ⁇ 2>, wherein the fracture deformation rate is 30% or less.
  • ⁇ 4> The microcapsule according to any one of ⁇ 1> to ⁇ 3>, having a breaking strength of 10 MPa or less.
  • ⁇ 5> The microcapsule according to any one of ⁇ 1> to ⁇ 4>, having a breaking strength of 6 MPa or less.
  • ⁇ 6> The microcapsule according to any one of ⁇ 1> to ⁇ 5>, wherein the bifunctional isocyanate compound includes an aromatic isocyanate compound, and the trifunctional or higher functional isocyanate compound includes an aliphatic isocyanate compound. .
  • the ratio of the content of the structure derived from the bifunctional isocyanate compound to the content of the structure derived from the trifunctional or more isocyanate compound is 7/93 to 20 / 80 is the microcapsule according to any one of ⁇ 1> to ⁇ 6>.
  • the trifunctional or higher functional isocyanate compound includes at least one of a trifunctional or higher functional aliphatic isocyanate compound and a trifunctional or higher functional aromatic isocyanate compound, and is derived from the trifunctional or higher functional isocyanate compound in the shell material.
  • ⁇ 10> The microcapsule according to any one of ⁇ 1> to ⁇ 8>, wherein the trifunctional or higher functional isocyanate compound is a trifunctional or higher functional aliphatic isocyanate compound.
  • ⁇ 11> The ratio of the content of the structure derived from the trifunctional or more aromatic isocyanate compound to the total content of the structure derived from the trifunctional or more aliphatic isocyanate compound in the shell material is based on mass.
  • ⁇ 12> The microcapsule according to any one of ⁇ 1> to ⁇ 11>, which has an anionic charge on its surface.
  • ⁇ 13> The microcapsule according to any one of ⁇ 1> to ⁇ 12>, wherein at least a part of the surface has anion-modified polyvinyl alcohol.
  • ⁇ 14> The microcapsule according to any one of ⁇ 1> to ⁇ 13>, which is used for laundry, day care, or hair care.
  • ⁇ 15> A microcapsule-containing composition containing the microcapsule according to any one of ⁇ 1> to ⁇ 14> and an aqueous solvent.
  • a numerical range indicated by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit, respectively.
  • the upper limit or the lower limit described in a certain numerical range may be replaced with the upper limit or the lower limit of another numerical range described in a stepwise manner.
  • the upper limit or the lower limit described in a certain numerical range may be replaced with the value shown in the embodiment.
  • the “shell” refers to a wall of a microcapsule (also referred to as a capsule wall), and the “core” refers to a portion included in the shell.
  • a material for forming a shell is referred to as a “shell material”
  • a component contained in a core is referred to as a “core material”.
  • encapsulation refers to a state in which an object is covered by a shell (capsule wall) of the microcapsule.
  • the amount of each component in the microcapsule or microcapsule-containing composition of the present disclosure is, unless there is a plurality of substances corresponding to each component in the microcapsule or microcapsule-containing composition, unless otherwise specified, microcapsules or microcapsules. It means the total amount of a plurality of substances present in the capsule-containing composition.
  • the microcapsules of the present disclosure include a polyurethane or polyurea having a structure derived from a trifunctional or more isocyanate compound and a structure derived from a bifunctional isocyanate compound as a shell material of a shell including a core, and The ratio of the content of the structure derived from the bifunctional isocyanate compound to the content of the structure derived from the trifunctional or more isocyanate compound in the shell material is 5/95 to 20/80 on a mass basis, and the core material As a fragrance, and the breaking deformation rate is 50% or less.
  • Examples of the form of the microcapsule include a microcapsule dispersion, and the microcapsule is preferably in the form of a microcapsule aqueous dispersion in which the microcapsules are dispersed in an aqueous solvent.
  • the present inventors have found that the strength of the scent can be improved by making the microcapsules easily breakable.
  • the shape of the fibers in clothing is not a plane shape but a linear shape, and if the microcapsules attached to the linear fibers are subjected to pressure enough to break the microcapsules, the fibers themselves move easily.
  • the microcapsules move easily so as to release the applied pressure, and it is difficult to fix the microcapsules on the surface of the linear fibers. As a result, it is presumed that it becomes difficult to apply pressure required for breaking to the microcapsules.
  • a part of the trifunctional or higher polyisocyanate compound is replaced with a bifunctional isocyanate compound having a structure in which the distance between cross-linking points is short to form a shell material of the microcapsule.
  • the breaking deformation rate can be reduced.
  • the microcapsules are easily broken even on the fiber, and the fragrance contained in the microcapsules can be satisfactorily released.
  • the microcapsules of the present disclosure have a breaking deformation rate of 50% or less.
  • the breaking deformation rate refers to the minimum deformation rate of the microcapsule at the breaking point.
  • the breaking deformation ratio is preferably 40% or less, and more preferably 30% or less.
  • the breaking deformation rate is preferably 5% or more.
  • the breaking deformation rate is determined by the displacement of the microcapsule when the microcapsule particles are broken, which is determined by the method used for measuring the breaking strength described later (the microcapsule is used after the indenter used for measuring the breaking strength contacts the microcapsule). Is a value calculated as a percentage, which is calculated by subtracting the average distance of the diameters of 50 particles before deformation by applying pressure.
  • the microcapsules of the present disclosure preferably have a breaking strength of 10 MPa or less. This makes it possible to break down the microcapsules with a smaller pressure, so that the contained fragrance is released well. As a result, the scent intensity is further improved. From the above viewpoint, the microcapsules of the present disclosure more preferably have a breaking strength of 6 MPa or less.
  • the lower limit of the breaking strength is not particularly limited, but may be more than 0 MPa or 1 MPa or more.
  • the breaking strength of the microcapsule can be measured by the following method. A solution obtained by diluting the aqueous microcapsule dispersion with ion-exchanged water is dropped onto a slide and dried. Next, a value is calculated by gradually subtracting the rupture force of the particles from the cross-sectional area of the particles.
  • the destructive power of particles is described in J. Microencapsulation, vol 18, no. 5, pp. 593-602; Zhang, Z .; , Sun, G, "Mechanical Properties of Melamine-Formaldehyde microcapsules".
  • a value calculated by gradually reducing the breaking force of the particles by the cross-sectional area of the particles is obtained, and the above values of the 50 particles are averaged and measured as a breaking strength (MPa).
  • the unit of the breaking force of the particles is N (Newton), and the cross-sectional area of the particles is calculated by ⁇ r 2 (r is the radius of the microcapsule particles before being deformed by applying pressure). Can be.
  • the above r is calculated by dividing the median diameter of the volume standard of the microcapsule measured by using Microtrac MT3300EXII (manufactured by Nikkiso Co., Ltd.) by 2. Using the calculated r, the cross-sectional area is determined.
  • the microcapsule of the present disclosure has a shell that contains a core.
  • the shell material forming the shell in the present disclosure includes polyurethane or polyurea.
  • the polyurethane or polyurea in the present disclosure has a structure derived from a trifunctional or more isocyanate compound and a structure derived from a bifunctional isocyanate compound.
  • the microcapsules of the present disclosure are characterized in that the bifunctional isocyanate compound contains an aromatic isocyanate compound, and the trifunctional or more isocyanate compound contains an aliphatic isocyanate compound, from the viewpoint of reducing the breaking deformation rate and the breaking strength and increasing the fragrance strength. It is preferred to include.
  • Trifunctional or higher isocyanate compound Polyurethane or polyurea, which is a shell material forming a shell, has a structure derived from a trifunctional or higher functional isocyanate compound.
  • a structure derived from a tri- or more functional isocyanate compound By having a structure derived from a tri- or more functional isocyanate compound, the flexibility of the shell can be increased, and adhesion to an object to be attached such as fiber or hair can be obtained.
  • the structure derived from a trifunctional or higher functional isocyanate compound refers to a structure formed by urethane or urea conversion of a trifunctional or higher functional isocyanate compound.
  • Examples of the trifunctional or higher aliphatic aliphatic isocyanate compound include a bifunctional aliphatic isocyanate compound (compound having two isocyanate groups in a molecule) and a compound having three or more active hydrogen groups in a molecule (for example, a trifunctional or higher functional compound).
  • Examples of an adduct (adduct) with a polyol, polyamine or polythiol) include an isocyanate compound having three or more functional groups (adduct type) and a trimer of a bifunctional aliphatic isocyanate compound (biuret type or isocyanurate type). Can be.
  • Takenate (registered trademark) series for example, Takenate D-110N, D-120N, D-140N, D-160N, etc. are more preferable as adduct-type isocyanate compounds having three or more functions.
  • isocyanurate-type trifunctional or higher isocyanate compound a commercially available product may be used.
  • examples of commercially available products include Takenate (registered trademark) D-127N, D-170N, D-170HN, D-172N, D-177N (manufactured by Mitsui Chemicals, Inc.), Sumidur N3300, and Desmodur (registered trademark) N3600.
  • N3900, Z4470BA manufactured by Bayer Corporation
  • Coronate registered trademark
  • HK manufactured by Tosoh Corporation
  • Duranate registered trademark
  • TPA-100, TKA-100 manufactured by Asahi Kasei Corporation
  • Barnock registered trademark
  • DN-980 manufactured by DIC Corporation
  • biuret-type trifunctional or higher isocyanate compound commercially available products may be used.
  • D-165N Takenate (registered trademark) D-165N, NP1200 (manufactured by Mitsui Chemicals, Inc.), Desmodur (registered trademark) N3200A (Manufactured by Bayer Corporation), Duranate (registered trademark) 24A-100, 22A-75P (manufactured by Asahi Kasei Corporation) and the like.
  • tri- or higher functional aromatic isocyanate compound examples include 2,6-tolylene diisocyanate, 2,4-tolylene diisocyanate or an adduct of hexamethylene diisocyanate with trimethylolpropane (adduct), biuret or isocyanate. Nurates and the like can be mentioned.
  • Commercially available products that are marketed as tri- or more functional aromatic isocyanate compounds may be used. Examples of commercially available products include Vernock (registered trademark) D-750, D-800 (manufactured by DIC Corporation), and Takenate (registered trademark).
  • the ratio of the structure derived from the trifunctional or higher isocyanate compound to the total mass of the shell material is preferably 80% by mass to 95% by mass, and more preferably 80% by mass to 90% by mass.
  • the ratio of the structure derived from the trifunctional or higher isocyanate compound is 80% by mass or more, the shell can be favorably formed. Further, when the proportion of the structure derived from the trifunctional or higher isocyanate compound is 95% by mass or less, the shell is more easily broken by pressure, and more favorable scent intensity can be obtained.
  • the trifunctional or higher functional isocyanate compound in the present disclosure preferably includes at least one of a trifunctional or higher functional aliphatic isocyanate compound and a trifunctional or higher functional aromatic isocyanate compound, and the trifunctional or higher functional isocyanate compound is a trifunctional or higher functional isocyanate compound. It may contain a group III isocyanate compound and a tri- or more functional aromatic isocyanate compound, or may contain a tri- or more functional aliphatic isocyanate compound alone.
  • a structural portion derived from the trifunctional or higher functional isocyanate compound in the shell material Is preferably 0% to 87.5% by mass on the basis of mass based on the total content of the above-mentioned trifunctional or higher functional aromatic isocyanate compound.
  • the ratio of the content of the structural portion derived from the trifunctional or more aromatic isocyanate compound to the total content of the structural portion derived from the trifunctional or more isocyanate compound in the shell material is within the above range. Since the breaking deformation rate can be further reduced, the fragrance intensity is excellent.
  • the ratio of the content of the structural part derived from the aromatic compound having three or more functional groups to the total content of the structural part derived from the trifunctional or more isocyanate compound in the shell material is 87% by mass.
  • the content is not more than 0.5% by mass, the strength of the shell can be more favorably maintained.
  • the ratio of the content of the structural part derived from the trifunctional or higher aromatic isocyanate compound to the total content of the structural parts derived from the trifunctional or higher isocyanate compound in the shell material is as follows: It is more preferably from 0% by mass to 56.0% by mass, even more preferably from 0% by mass to 40.0% by mass on a mass basis.
  • the trifunctional or higher functional isocyanate compound is a trifunctional or higher functional aliphatic isocyanate compound
  • the ratio of the content of the structure derived from the trifunctional or higher aromatic isocyanate compound to the total content of the structure derived from the functional or higher functional isocyanate compound may be 10% by mass to 40% by mass on a mass basis. preferable.
  • -Bifunctional isocyanate compound- Polyurethane or polyurea, which is a shell material forming a shell, has a structure derived from a bifunctional isocyanate compound. That is, the polyurethane or polyurea, which is the shell material forming the shell, has at least one structure selected from a structure derived from a bifunctional aliphatic isocyanate compound and a structure derived from a bifunctional aromatic isocyanate compound.
  • the structure derived from the bifunctional aliphatic isocyanate compound refers to a structure formed by urethane or urea conversion of the bifunctional aliphatic isocyanate compound.
  • the structure derived from a bifunctional aromatic isocyanate compound refers to a structure formed by urethane or urea conversion of a bifunctional aromatic isocyanate compound.
  • bifunctional aliphatic isocyanate compound examples include trimethylene diisocyanate, hexamethylene diisocyanate, propylene-1,2-diisocyanate, butylene-1,2-diisocyanate, cyclohexylene-1,2-diisocyanate, cyclohexylene-1, 3-diisocyanate, cyclohexylene-1,4-diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, 1,4-bis (isocyanatomethyl) cyclohexane and 1,3-bis (isocyanatomethyl) cyclohexane, isophorone diisocyanate, lysine diisocyanate And hydrogenated xylylene diisocyanate.
  • bifunctional aromatic isocyanate compound examples include m-phenylene diisocyanate, p-phenylene diisocyanate, 2,6-tolylene diisocyanate, 2,4-tolylene diisocyanate, naphthalene-1,4-diisocyanate and methylene diphenyl-4.
  • the isocyanate compound is described in "Polyurethane Resin Handbook” (edited by Keiji Iwata, published by Nikkan Kogyo Shimbun (1987)).
  • the structure derived from the bifunctional isocyanate compound that is, at least one structure selected from the structure derived from the bifunctional aliphatic isocyanate compound and the structure derived from the bifunctional aromatic isocyanate compound,
  • the proportion occupied is preferably from 5% by mass to 20% by mass, more preferably from 5% by mass to 15% by mass, even more preferably from 5% by mass to 10% by mass in total mass ratio.
  • the proportion of the structure derived from the bifunctional isocyanate compound is 5% by mass or more, a portion having a short distance between crosslinking points partially exists in the shell. It is presumed that a weakly fragile part is present in the shell, and the fracture deformation rate can be further reduced. Further, when the proportion of the structure derived from the bifunctional isocyanate compound is 20% by mass or less, the same effect as described above can be obtained favorably.
  • the ratio of the content of the structural portion derived from the bifunctional isocyanate compound to the content of the structural portion derived from the trifunctional or more isocyanate compound in the shell material is 5/95 to 5/95 on a mass basis. 20/80.
  • the ratio of the content of the structural portion derived from the bifunctional isocyanate compound to the content of the structural portion derived from the trifunctional or more isocyanate compound in the shell material is 5/95 or more on a mass basis, the content in the shell becomes Since there is a part where the distance between bridging points is short, it is presumed that there is a part in the shell that is vulnerable to strain due to pressure when pressure is applied and that it is susceptible to cracking, and it is possible to further reduce the fracture deformation rate . As a result, the scent intensity can be improved.
  • the ratio of the content of the structural portion derived from the bifunctional isocyanate compound to the content of the structural portion derived from the trifunctional or more isocyanate compound in the shell material is 20/80 or less on a mass basis, the same as described above. Effect is obtained favorably. Further, the strength of the shell can be more favorably maintained.
  • the ratio of the content of the structural portion derived from the bifunctional isocyanate compound to the content of the structural portion derived from the trifunctional or more isocyanate compound in the shell material is 7/93 to 20 / 80 is preferable, and 7/93 to 15/85 is more preferable.
  • the thickness (wall thickness) of the shell (wall) of the microcapsule is preferably 0.01 ⁇ m to 1 ⁇ m.
  • the wall thickness of the microcapsules is 0.01 ⁇ m or more, the microcapsules are prevented from being easily broken, and the core material can be protected in the core until the time when the core material is desired to be released.
  • the wall thickness of the microcapsule is 1 ⁇ m or less, the microcapsule can be given an appropriate degree of fragility, and the core material can be released at a desired time.
  • the wall thickness of the microcapsule is more preferably 0.05 ⁇ m to 0.7 ⁇ m, and further preferably 0.05 ⁇ m to 0.2 ⁇ m.
  • the wall thickness refers to an average value obtained by averaging the individual wall thicknesses ( ⁇ m) of the five microcapsules by using a scanning electron microscope (SEM). Specifically, the microcapsule liquid is applied on an arbitrary support and dried to form a coating film. A cross section of the obtained coating film was prepared, the cross section was observed using an SEM, five arbitrary microcapsules were selected, and the cross section of each of the microcapsules was observed to measure the wall thickness. It is obtained by calculating the average value.
  • SEM scanning electron microscope
  • the microcapsule of the present disclosure has a core encapsulated in a shell, and includes a fragrance as a core material.
  • a fragrance as a core material.
  • fragrance examples include synthetic fragrances, natural essential oils, natural fragrances described in "Japan Patent Office, Well-known and Conventional Techniques (Fragrances), Part III, Cosmetic Fragrances, pp. 49-103, issued on June 15, 2001".
  • a suitable one can be appropriately selected from animal and plant extracts and the like.
  • fragrance examples include monoterpenes such as pinene, myrcene, camphene and R-limonene; sesquiterpenes such as sedren, caryophyllene, and longifolene; , ⁇ -damascon, acetyl cedrene, methyl dihydrojasmonate, cyclopentadecanolide and the like; natural essential oils such as orange essential oil, lemon essential oil, bergamot essential oil, and mandarin essential oil.
  • the content of the fragrance with respect to the total mass of the core material is preferably 100% by mass to 20% by mass, more preferably 95% by mass to 30% by mass, and still more preferably 85% by mass to 40% by mass.
  • the core may contain other inclusion components other than the fragrance, and examples of the other inclusion components include a solvent and an auxiliary solvent.
  • the core may contain a solvent.
  • the solvent include fatty acid ester compounds such as glyceryl tri (caprylate / caprate) and isopropyl myristate, alkylnaphthalene compounds such as diisopropylnaphthalene, diarylalkane compounds such as 1-phenyl-1-xylylethane, and isopropylbiphenyl.
  • Aromatic hydrocarbons such as alkylbiphenyl compounds, triarylmethane compounds, alkylbenzene compounds, benzylnaphthalene compounds, diarylalkylene compounds, and arylindane compounds; aliphatic hydrocarbons such as dibutyl phthalate and isoparaffin; Natural animal and vegetable oils such as camellia oil, soybean oil, corn oil, cottonseed oil, rapeseed oil, olive oil, coconut oil, castor oil, fish oil, and the like, and high-boiling fractions of natural products such as mineral oil.
  • the content of the solvent in the core material is preferably less than 50% by mass, more preferably 40% by mass or less, and most preferably 30% by mass or less based on the total mass of the core material.
  • the core may contain an auxiliary solvent as an oil phase component from the viewpoint of increasing the solubility of the shell material used in producing the microcapsules in the oil phase.
  • the auxiliary solvent does not include the above solvents.
  • the auxiliary solvent include ketone compounds such as methyl ethyl ketone, ester compounds such as ethyl acetate, and alcohol compounds such as isopropyl alcohol.
  • the auxiliary solvent preferably has a boiling point of 130 ° C. or lower.
  • the content of the auxiliary solvent in the core material is preferably less than 50% by mass, more preferably less than 30% by mass, and even more preferably less than 20% by mass based on the total mass of the core material.
  • the core may contain, in addition to the above components, additives such as an ultraviolet absorber, a light stabilizer, an antioxidant, a wax, and an odor suppressant.
  • additives such as an ultraviolet absorber, a light stabilizer, an antioxidant, a wax, and an odor suppressant.
  • the content of the additive may be within a range that does not impair the effects of the present disclosure, and is preferably 0% to 20% by mass, more preferably 1% to 15% by mass, based on the total mass of the core material. More preferably, the content is 5% by mass to 10% by mass.
  • the microcapsules of the present disclosure preferably have an anionic charge on the surface. Whether the microcapsules have an anionic charge on the surface can be confirmed by measuring the zeta potential when the microcapsules are dispersed in water. When the zeta potential is negative, it indicates that the surface of the microcapsule is covered with an anionic charge.
  • the zeta potential of the microcapsules when dispersed in water, is preferably from -80 meV to -5 meV, more preferably from -80 meV to -11 meV, further preferably from -50 meV to -10 meV. preferable.
  • Zero potential (z) means the apparent electrostatic potential generated by a charged object in a solution, measured by a special measurement technique.
  • zeta potential means the apparent electrostatic potential generated by a charged object in a solution, measured by a special measurement technique.
  • the zeta potential of an object is measured at some distance from the surface of the object and generally does not exceed the electrostatic potential at the surface itself. However, that value can be a good measure of the ability of an object to establish electrostatic interactions with other objects in solution, especially molecules with multiple binding sites.
  • Zeta potential is a relative measurement and the value tends to depend on the method of measurement.
  • the zeta potential is a value measured by the following method.
  • a. The apparatus uses ELSZ-2000ZS (manufactured by Otsuka Electronics Co., Ltd.).
  • b. The device settings are as follows.
  • c. The procedure for preparing the sample is as follows.
  • (I) The slurry containing the target microcapsules is added to water so as to have a capsule concentration of 0.5% by mass to dilute the slurry. The measurement concentration is adjusted, if necessary, so that the measurement rate is in a preferable range by automatic detection.
  • IIi Measure the zeta potential of the diluted sample without filtering the sample.
  • the filtered slurry is injected into a standard cell unit (manufactured by Otsuka Electronics Co., Ltd.), and the cell is inserted into the device. Set the test temperature to 25 ° C. (Iv) The measurement is started after the temperature is stabilized (usually after 3 to 5 minutes). Each sample is set to perform five measurements, and the measurement is performed. d.
  • the zeta potential in the present disclosure is a value measured in units of “mV” as an average of three measurements for each slurry. Based on the above, the zeta potential of the microcapsule can be measured using ELSZ-2000ZS (manufactured by Otsuka Electronics Co., Ltd.).
  • the method for imparting an anionic charge to the surface of the microcapsule is not particularly limited.
  • a method of binding an anionic group-imparting agent to a shell, a method of imparting an anionic charge to a surface of a microcapsule using a surface anionizing agent, and the like Is mentioned.
  • a method of imparting an anionic charge to the surface of the microcapsule using a surface anionizing agent is preferable from the viewpoint of working efficiency.
  • an anionic group-imparting agent As a method for bonding an anionic group to the surface of the shell using an anionic group-imparting agent, the following method can be mentioned as an example. That is, a solvent and a trifunctional aliphatic isocyanate compound and a bifunctional isocyanate compound which are shell materials are stirred and mixed to prepare an oil phase. Subsequently, an aqueous solution containing an anionic group imparting agent (for example, lysine) is prepared as an aqueous phase. The oil phase is added to the prepared aqueous phase, dispersed and emulsified, and the resulting emulsion is heated, stirred, and cooled.
  • an anionic group imparting agent for example, lysine
  • an aqueous solution of a base for example, sodium hydroxide
  • a base for example, sodium hydroxide
  • the aqueous solution containing the anionic group imparting agent may be added after the emulsion is formed, or the aqueous solution of the base may be added to the aqueous phase in advance.
  • the content of each of the above components can be appropriately changed.
  • the anionic group-providing agent is not particularly limited, and examples thereof include lysine, aspartic acid, and glutamic acid (all manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.).
  • the method for imparting an anionic charge to the surface of the microcapsules using a surface anionizing agent is not particularly limited, and for example, a method of forming a protective colloid on the microcapsule surface using a surface anionizing agent is preferable.
  • the protective colloid refers to a colloid that can impart an anionic charge to the surface of the microcapsule when present on the surface of the microcapsule.
  • the surface anionizing agent is not particularly limited as long as it can impart an anionic charge to the surface of the microcapsules.
  • Anionic water-soluble polymers anionic polysaccharides such as anion-modified polyvinyl alcohol, carboxymethyl cellulose, carrageenan, polyacrylic acid
  • copolymers of sodium and other monomers, copolymers of sodium polymaleate and other monomers, and anionic surfactants such as sodium dodecyl sulfate and sodium lauryl sulfate.
  • microcapsules in the microcapsule-containing composition of the present disclosure preferably have anion-modified polyvinyl alcohol on at least a part of the surface from the viewpoint of imparting an anionic charge to the surface of the microcapsules.
  • Examples of a method for forming a protective colloid on the surface of the microcapsule using a surface anionizing agent include the following methods. However, the present disclosure is not limited to the following method. First, an oil phase is prepared by stirring and mixing a solvent, a trifunctional aliphatic isocyanate compound and a bifunctional isocyanate compound which are shell materials. Subsequently, an aqueous solution containing a surface anionizing agent (for example, anion-modified polyvinyl alcohol) is prepared as an aqueous phase. The oil phase is added to the prepared aqueous phase, dispersed and emulsified, and the resulting emulsion is heated, stirred, and cooled. After cooling, a base (for example, aqueous sodium hydroxide solution) is added to obtain an aqueous dispersion of microcapsules having a protective colloid on the surface. In addition, the content of each component described above can be appropriately changed.
  • a surface anionizing agent for example, anion
  • anion-modified polyvinyl alcohol commercially available products can be used.
  • commercially available products include Kuraray Povar KM-618 (manufactured by Kuraray Co., Ltd.), Kuraray Povar KL-318 (manufactured by Kuraray Co., Ltd.), Gosenex L-3266 (manufactured by Nippon Synthetic Chemical Co., Ltd.), and Gosenex T-330 (Japan Synthetic Chemical Co., Ltd.).
  • Kuraray Povar KM-618 and Gohsenex L-3266 are preferable, and Kuraray Povar KM-618 is more preferable.
  • the volume standard median diameter (D50) of the microcapsules is preferably 0.1 ⁇ m to 100 ⁇ m.
  • D50 median diameter
  • the median diameter (D50) is 0.1 ⁇ m or more, it is possible to prevent the microcapsules from entering into minute voids of an attached object (hair, fiber, or the like), thereby preventing the microcapsules from becoming difficult to be broken.
  • the median diameter (D50) is 100 ⁇ m or less, a decrease in adhesion can be prevented.
  • the volume standard median diameter (D50) of the microcapsules is preferably 1 ⁇ m to 70 ⁇ m, more preferably 5 ⁇ m to 50 ⁇ m, and even more preferably 5 ⁇ m to 30 ⁇ m.
  • the median diameter of the volume standard of the microcapsules can be controlled by changing the dispersion conditions and the like.
  • the median diameter of the volume standard of the microcapsule is defined as the volume of the particles on the large diameter side and the small diameter side when the entire microcapsule is divided into two thresholds with the particle diameter at which the cumulative volume becomes 50%. It means the diameter whose sum is equivalent.
  • the median diameter of the volume standard of the microcapsule is measured using Microtrack MT3300EXII (manufactured by Nikkiso Co., Ltd.).
  • “highly monodisperse” means that the range of the particle size distribution is narrow (that is, there is little variation in particle size), and “low monodispersity” means that the particle size is low. It means that the range of the size distribution is wide (that is, the variation of the particle size is large). More specifically, the degree of monodispersity of the microcapsules can be expressed using a CV value (coefficient of variation; coefficient of variation).
  • the CV value is a value obtained by the following equation.
  • CV value (%) (standard deviation of particle size distribution / volume average particle size) ⁇ 100
  • the volume average particle size and the standard deviation of the particle size distribution (hereinafter, also simply referred to as the standard deviation) are calculated using Microtrack MT3300EXII (manufactured by Nikkiso Co., Ltd.).
  • “high monodispersity” of microcapsules can also mean that the CV value of the particle size distribution of the microcapsules is preferably 40% or less, more preferably 35% or less.
  • the monodispersity of the particle diameter of the microcapsules is high, so that the handling of the microcapsules and the control of the function development are facilitated.
  • the microcapsule-containing composition of the present disclosure contains at least the above-described microcapsules of the present disclosure and an aqueous solvent.
  • the microcapsule-containing composition of the present disclosure if necessary, preferably further contains a cationic surfactant, an anionic group-providing agent, a surface anionizing agent, and the like. Other components may be contained.
  • microcapsules contained in the microcapsule-containing composition of the present disclosure are as described above, and preferred embodiments are also the same.
  • the content ratio of the microcapsules in the microcapsule-containing composition is not particularly limited, and may be selected according to the purpose or case. % By mass to 50% by mass.
  • aqueous solvent examples include water, water, and alcohol, and ion-exchanged water can be used.
  • the content ratio of the aqueous solvent in the microcapsule-containing composition is not particularly limited, and may be selected according to the purpose or case. % By mass to 70% by mass.
  • the microcapsule-containing composition of the present disclosure preferably has an embodiment in which the microcapsules have an anionic charge on the surface and further contain a cationic surfactant. Thereby, an interaction is obtained between the microcapsules and the cationic surfactant, and a positive charge of the cationic surfactant can be provided around the microcapsules. As a result, it is possible to improve the adhesion of the microcapsule to an attachment target (for example, hair or fiber) having an anionic charge.
  • an attachment target for example, hair or fiber
  • the microcapsule-containing composition of the present disclosure preferably contains a cationic surfactant when the surface of the microcapsule is provided with an anionic charge.
  • a cationic surfactant when the surface of the microcapsule is provided with an anionic charge.
  • the anion charge (negative charge) of the microcapsules and the positive charge of the cationic surfactant attract each other through the interaction, so that the positive charge of the cationic surfactant covers the microcapsules.
  • a positive charge can be generated as a whole capsule, and the positive charge of the microcapsule and the negative charge of the adhered object (for example, fiber or hair) to which the microcapsule adheres are attracted, and the microcapsule with respect to the adhered object Adhesion can be further improved.
  • the cationic surfactant is not particularly limited, and a conventionally known one can be used. Examples thereof include an alkylamine salt, a quaternary ammonium salt (for example, hexadecyltrimethylammonium chloride), a polyoxyethylene alkylamine salt, and polyethylene. And polyamine derivatives.
  • cationic surfactant commercially available products may be used.
  • examples of commercially available products include Cation EQ-01D (NOF Corporation), Cation SF-10 (manufactured by Sanyo Chemical Industry Co., Ltd.), Cation SF-75PA (manufactured by Sanyo Chemical Industry Co., Ltd.), and Adecamine SF-108 (stock (Made by the company ADEKA).
  • the microcapsule-containing composition of the present disclosure may include a dispersion medium other than the aqueous solvent.
  • a dispersion medium other than the aqueous solvent By further including another dispersion medium in the microcapsule-containing composition, the microcapsules can be easily blended when used for various applications.
  • Other dispersion media in the microcapsule-containing composition can be appropriately selected depending on the purpose of use of the composition.
  • the other dispersion medium is preferably a liquid component that does not affect the wall material of the microcapsule.
  • Preferred other dispersion media include a viscosity modifier, a stabilizer and the like. Note that the content of the dispersion medium in the microcapsule-containing composition of the present disclosure may be appropriately selected depending on the use.
  • the microcapsule-containing composition of the present disclosure can contain components other than the components described above.
  • Other components are not particularly limited, and may be appropriately selected depending on the purpose or case.
  • Other components include, for example, surfactants other than the above-mentioned cationic surfactants, crosslinking agents, lubricants, ultraviolet absorbers, antioxidants, antistatic agents and the like.
  • microcapsules of the present disclosure can be manufactured by a known method, for example, the following manufacturing method. However, the present disclosure is not limited to the following method.
  • the microcapsules according to the present disclosure include a solvent and an oil phase containing a trifunctional or higher functional isocyanate compound and a bifunctional isocyanate compound as a shell material, an emulsifier and (if necessary, an anionic group-providing agent or a surface anionizing agent).
  • a step of preparing an emulsion by dispersing in an aqueous phase containing (an emulsifying step) and a step of forming a shell by polymerizing a shell material at an interface between an oil phase and an aqueous phase to form microcapsules containing a core ( (Encapsulation step).
  • the fracture deformation rate in the microcapsule of the present disclosure can be achieved by appropriately adjusting the addition ratio of the trifunctional or more isocyanate compound and the bifunctional isocyanate compound.
  • the anionic group imparting agent may be added after the emulsification step.
  • Emsification step In the emulsification step, a solvent and an oil phase containing a trifunctional isocyanate compound and a bifunctional isocyanate compound as a shell material are converted into an aqueous phase containing an emulsifier and (if necessary, an anionic group-providing agent or a surface anionizing agent). Disperse to prepare an emulsion. When the oil phase contains a solvent, the monodispersibility of the microcapsules is enhanced.
  • Emulsion of the present disclosure can be prepared by dispersing an oil phase containing a solvent and a shell material in an aqueous phase containing an emulsifier.
  • the oil phase in the present disclosure includes at least a solvent and a trifunctional isocyanate compound and a bifunctional isocyanate compound as shell materials, and if necessary, other components such as a fragrance, an auxiliary solvent, and an additive. May be included.
  • a fragrance e.g., a benzyl alcohol, benzyl ether, benzyl ether, benzyl ether, benzyl ether, benzyl, sulfate, sulfate, and a sulfate, and if necessary. May be included.
  • the details of the fragrance, the auxiliary solvent, and the additives are as described in the section on the microcapsules described above.
  • the shell material in the present disclosure includes a trifunctional isocyanate compound and a bifunctional isocyanate compound.
  • the content of the shell material in the oil phase is preferably more than 0.1% by mass and not more than 20% by mass, more preferably 0.5% by mass to 15% by mass, based on the total mass of the oil phase.
  • the concentration of the shell material can be appropriately adjusted in consideration of the size, wall thickness, and the like of the microcapsules.
  • the aqueous phase in the present disclosure preferably contains at least an aqueous solvent and an emulsifier, and may further contain, for example, an anionic group imparting agent or a surface anionizing agent as a component for imparting an anionic charge to the surface of the microcapsules.
  • aqueous medium of the present disclosure examples include water, water, and alcohol, and ion-exchanged water can be used.
  • the content of the aqueous medium in the aqueous phase is preferably from 20% by mass to 80% by mass, more preferably from 30% by mass to 70% by mass, based on the total mass of the emulsion obtained by emulsifying and dispersing the oil phase in the aqueous phase. Is more preferably 40% by mass to 60% by mass.
  • -emulsifier- Emulsifiers include dispersants or surfactants or combinations thereof.
  • the dispersing agent include polyvinyl alcohol and modified products thereof (eg, anion-modified polyvinyl alcohol), polyacrylamide and derivatives thereof, ethylene-vinyl acetate copolymer, styrene-maleic anhydride copolymer, ethylene-maleic anhydride.
  • Acid copolymer isobutylene-maleic anhydride copolymer, polyvinylpyrrolidone, ethylene-acrylic acid copolymer, vinyl acetate-acrylic acid copolymer, carboxymethylcellulose, methylcellulose, casein, gelatin, starch derivatives, gum arabic and alginic acid Sodium and the like can be mentioned, and polyvinyl alcohol is preferable.
  • the dispersant does not react with the shell material or very hardly reacts.For example, those having a reactive amino group in a molecular chain such as gelatin may be subjected to a treatment for losing reactivity in advance. preferable.
  • surfactant examples include a nonionic surfactant, an anionic surfactant, a cationic surfactant, an amphoteric surfactant and the like.
  • the surfactants may be used alone or in a combination of two or more.
  • Nonionic surfactant is not particularly limited, and a conventionally known nonionic surfactant can be used.
  • Nonionic surfactants include, for example, polyoxyethylene alkyl ether compounds, polyoxyethylene alkyl phenyl ether compounds, polyoxyethylene polystyryl phenyl ether compounds, polyoxyethylene polyoxypropylene alkyl ether compounds, and glycerin fatty acid moieties.
  • Examples include amine oxide, polyethylene glycol, and a copolymer of polyethylene glycol and polypropylene glycol.
  • the anionic surfactant is not particularly limited, and a conventionally known anionic surfactant can be used.
  • the anionic surfactant include fatty acid salts, abietic acid salts, hydroxyalkanesulfonic acid salts, alkanesulfonic acid salts, dialkylsulfosuccinic acid ester salts, linear alkylbenzenesulfonic acid salts, branched alkylbenzenesulfonic acid salts, and alkylnaphthalenes.
  • the cationic surfactant is not particularly limited, and a conventionally known cationic surfactant can be used.
  • the cationic surfactant include an alkylamine salt, a quaternary ammonium salt (for example, hexadecyltrimethylammonium chloride), a polyoxyethylene alkylamine salt, and a polyethylenepolyamine derivative.
  • amphoteric surfactant is not particularly limited, and a conventionally known amphoteric surfactant can be used.
  • amphoteric surfactant include carboxybetaine, aminocarboxylic acid, sulfobetaine, aminosulfate, and imitazoline.
  • the concentration of the emulsifier is preferably more than 0% by mass and 20% by mass or less, more preferably 0.005% by mass or more and 10% by mass or less, and more preferably 0.01% by mass or more and 10% by mass or less based on the total mass of the emulsifier. More preferably, the content is 1% by mass or more and 5% by mass or less.
  • the aqueous phase in the present disclosure preferably contains an anionic group imparting agent or a surface anionizing agent.
  • the details of the anionic group-imparting agent and the surface anionizing agent are as described in the section of the microcapsule described above. Note that some anionic group-providing agents and surface anionizing agents (for example, anion-modified polyvinyl alcohol) can also be used as an emulsifier described below. When used, an emulsifier described below need not be added.
  • the content of the anionic group imparting agent in the shell is preferably 0.5% by mass to 20% by mass, more preferably 1% by mass to 10% by mass, and more preferably 2.5% by mass with respect to the total mass of the shell material. -7% by mass is more preferred.
  • the content of the surface anionizing agent is preferably 1% by mass to 15% by mass, more preferably 2% by mass to 12% by mass, and still more preferably 4% by mass to 10% by mass based on the total mass of the aqueous phase. .
  • the aqueous phase may contain other components such as an ultraviolet absorber, an antioxidant, and a preservative, if necessary.
  • the content is preferably more than 0% by mass and 20% by mass or less, more preferably more than 0.1% by mass and 15% by mass or less, more preferably more than 1% by mass based on the total mass of the aqueous phase. 10 mass% or less is more preferable.
  • Dispersion refers to dispersing (emulsifying) the oil phase of the present disclosure as oil droplets in the aqueous phase of the present disclosure. Dispersion can be performed using a means usually used for dispersing an oil phase and an aqueous phase, for example, a homogenizer, a Menton-Gawley, an ultrasonic disperser, a dissolver, a Keddy mill, or other known dispersing devices.
  • a means usually used for dispersing an oil phase and an aqueous phase for example, a homogenizer, a Menton-Gawley, an ultrasonic disperser, a dissolver, a Keddy mill, or other known dispersing devices.
  • the mixing ratio of the oil phase to the aqueous phase is preferably 0.1 to 1.5, more preferably 0.2 to 1.2, and 0.4 to 1.0. More preferred.
  • the mixing ratio is in the range of 0.1 to 1.5, the viscosity can be maintained at an appropriate level, the production suitability is excellent, and the stability of the emulsion is excellent.
  • the microcapsule manufacturing method of the present disclosure includes a step of forming a shell by polymerizing a shell material at an interface between an oil phase and an aqueous phase to form a microcapsule containing a solvent. Thereby, a microcapsule in which the solvent of the present disclosure is included in the shell is formed.
  • the polymerization is a step of polymerizing the shell material contained in the oil phase in the emulsion at the interface with the aqueous phase, whereby a shell is formed.
  • the polymerization is preferably carried out under heating.
  • the reaction temperature in the polymerization is usually preferably from 40 ° C to 100 ° C, more preferably from 50 ° C to 80 ° C.
  • the reaction time of the polymerization is usually preferably about 0.5 to 10 hours, more preferably about 1 to 5 hours. The higher the polymerization temperature, the shorter the polymerization time, but when using an encapsulating component or shell material that may decompose at high temperature, select a polymerization initiator that works at low temperature and polymerize at relatively low temperature. It is desirable.
  • aqueous solution for example, water, an aqueous acetic acid solution, etc.
  • a dispersant for preventing aggregation may be added again during the polymerization step.
  • a charge control agent such as nigrosine or any other auxiliary agent can be added.
  • microcapsules of the present disclosure can be used for various applications.
  • the microcapsules can be applied, for example, to uses such as laundry, hair care, and day care.
  • microcapsules of the present disclosure containing a fragrance as a core material in the microcapsules can be used, for example, in the form of a microcapsule-containing composition as a softener for clothing. That is, the microcapsules of the present disclosure are suitable for laundry applications.
  • the microcapsules contained in the microcapsule-containing composition and, if necessary, the cationic surfactant are adsorbed to the fibers of the clothing. Or retained in the garment by penetrating into fine voids between the fibers. Thereby, flexibility, antistatic property, etc. are provided to the garment.
  • the microcapsules of the present disclosure alone or with a cationic surfactant, function as a softener component.
  • the encapsulated components (such as fragrances) can be released from the microcapsules at a desired time.
  • the microcapsules When clothing treated with a clothing softener is worn, in addition to soft comfort, the microcapsules stably contain contained components (such as fragrances), so that even after lapse of time, the clothing may be rubbed. By applying stress and disintegrating the microcapsules, the encapsulated components can be released.
  • the content of the microcapsules in the softener for clothing is preferably 0.3% by mass to 3% by mass based on the total mass of the composition containing microcapsules.
  • the content of the cationic surfactant is preferably from 10% by mass to 30% by mass based on the total mass of the composition containing microcapsules.
  • the microcapsule-containing composition can further include a known component (for example, an antifoaming agent, a coloring material, a fragrance, and the like) included in the softener for clothing. Water such as ion-exchanged water is preferred as the dispersion medium used in the softener for clothing.
  • the microcapsule of the present disclosure and the microcapsule-containing composition containing the microcapsule and the aqueous solvent can be directly applied to hair care applications.
  • a hair care application it can be arbitrarily applied to a hair cosmetic such as a rinse, a conditioner, and a hairdressing agent.
  • a hair cosmetic such as a rinse, a conditioner, and a hairdressing agent.
  • the microcapsule-containing composition of the present disclosure is applied to hair as a hair cosmetic, the microcapsules adhere to the hair, and when the hair is rubbed or combed, the microcapsules collapse due to stress, and the core material is released. can do.
  • the microcapsules can be stably stored for a longer period of time by filling in a spray container, which is preferable.
  • a spray container which is preferable.
  • the hair cosmetic is applied to the hair by spraying, the dispersion medium and the microcapsules adhere to the hair. Thereafter, the scalp is massaged to apply stress to the microcapsules so that the microcapsules collapse and the core material can be attached to the hair.
  • the microcapsule-containing composition of the present disclosure which is a hair cosmetic, may optionally contain known components that can be included in the hair cosmetic.
  • Known components that can be included in hair cosmetics include aqueous media such as alcohols, oils, surfactants as cleaning or dispersing components, active ingredients that penetrate the skin, coloring materials, and fragrances.
  • microcapsules of the present disclosure can be applied to, for example, day care applications (for example, cosmetic sheets, diapers, and the like) including a support and the above-described microcapsule-containing composition impregnated in the support.
  • day care applications for example, cosmetic sheets, diapers, and the like
  • the microcapsule-containing composition contains a cleaning component such as a surfactant, it can be used as a sheet for wiping the skin.
  • the support is not particularly limited as long as it can hold the liquid component.
  • the support is preferably a nonwoven fabric, a woven fabric, or the like, a fiber aggregate having a void for retaining moisture therein, a porous body such as a sponge sheet, or the like.
  • the support can be pressed against the skin and rubbed to break the microcapsules and release the encapsulated component (core material) at any time, and Even when no stress is applied, the inclusion components are released spontaneously, so that the effect of releasing the inclusion components can be obtained for a long period of time.
  • cosmetic sheets, diapers and the like are preferably packaged with a water-impermeable packaging material from the viewpoint of sustaining the effect.
  • the microcapsules of the present disclosure can release the core material well, and thus can be applied to various uses.
  • the use described above is an example, and the use of the microcapsule of the present disclosure is not limited to the above description.
  • Example 1 Preparation of microcapsule-containing composition- 18.2 parts by mass of Saracos (registered trademark) HG-8 (manufactured by Nisshin Oillio Group Co., Ltd.) as a solvent, 54.7 parts by mass of D-limonene as a fragrance (manufactured by Yashara Chemical Co., Ltd .; fragrance), and shell material 3.1 parts by mass of Vernock (registered trademark) D-750 (manufactured by DIC Corporation, tolylene diisocyanate trimethylolpropane adduct), which is a trifunctional aromatic isocyanate compound, and takenate, which is a trifunctional aliphatic isocyanate compound (Registered trademark) D-160N (manufactured by Mitsui Chemicals, Inc., hexamethylene diisocyanate trimethylolpropane adduct) 0.45 parts by mass, and methylene diphenyl-4,4'-diiso
  • the mixture was stirred and mixed to obtain an oil phase. Further, a 5.8% by mass aqueous solution of Kuraray Povar (registered trademark) PVA-217E (manufactured by Kuraray Co., Ltd .; PVA), which is a polyvinyl alcohol, was prepared. After adding and dispersing an oil phase to 157 parts by mass of this aqueous solution, the resulting emulsion was heated to 70 ° C. and stirred for 1 hour. Subsequently, after cooling, 3.8 parts by mass of a 10% by mass aqueous solution of sodium hydroxide was added to obtain a microcapsule aqueous dispersion. The volume-based median diameter (D50) of the obtained microcapsules was 18 ⁇ m.
  • D50 volume-based median diameter
  • the volume-based median diameter, standard deviation, and volume average particle diameter were measured using Microtrac MT3300EXII (manufactured by Nikkiso Co., Ltd.).
  • the zeta potential of the aqueous microcapsule dispersion was 0 mV.
  • the zeta potential was measured by ELSZ-2000ZS (manufactured by Otsuka Electronics Co., Ltd.).
  • the wall thickness of the microcapsules was 0.12 ⁇ m.
  • Examples 2 to 10 and Comparative Examples 1 to 4 The type and mixing ratio of the trifunctional aromatic isocyanate compound, the trifunctional aliphatic isocyanate compound and the bifunctional isocyanate compound, and the type of polyvinyl alcohol were changed as shown in Tables 1 and 2 to prepare a microcapsule aqueous dispersion.
  • a microcapsule-containing composition was prepared in the same manner as in Example 1 except that the composition was obtained.
  • the wall thickness here was the same as in Example 1.
  • -Evaluation- (Evaluation 1) 5 parts by weight of the microcapsule-containing composition prepared above and 995 parts by weight of water were mixed, sprayed onto a cotton towel (35 cm ⁇ 35 cm) five times by spraying, and dried for 24 hours to prepare a sample for evaluation. . After the evaluation sample (cotton towel) obtained above was rubbed 5 times, the intensity of the generated fragrance was evaluated by 10 panelists, and the score (0 point (0 fragrance intensity) was divided into 7 levels according to the following evaluation criteria. (Weak) to 6 points (strong scent intensity)), and an average value (rounded to an integer) was obtained for sensory evaluation. The results are shown in Table 1.
  • the unit of the mixing ratio in Tables 1 and 2 is parts by mass.
  • the description of “-” in Tables 1 and 2 means that the component is not contained.
  • “-" indicates that the microcapsules are brittle, and when the fracture deformation rate and the fracture strength are measured, the microcapsule wall is collapsed. It means there is.
  • MDI Methylene diphenyl-4,4'-diisocyanate (bifunctional aromatic isocyanate compound, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
  • HDI Hexamethylene diisocyanate (bifunctional aliphatic isocyanate compound, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
  • Examples 1 to 10 had good fragrance intensity. Above all, Examples 5 to 10 in which the breaking deformation rate was 30% or less had better fragrance strength than Examples 1 to 4 in which the breaking deformation rate was more than 30%. Example 7 having a breaking strength of 6 MPa or less had better fragrance strength than Example 5 having a breaking strength of more than 6 MPa.
  • the trifunctional or higher functional isocyanate compound is a trifunctional or higher functional aliphatic isocyanate compound, and the content of the structural portion derived from the bifunctional isocyanate compound relative to the content of the structural component derived from the trifunctional or higher functional isocyanate compound in the shell material. In Examples 8 and 9 in which the ratio was 7/93 to 20/80 on a mass basis, the fragrance intensity was particularly excellent.
  • the ratio of the content of the structure is 10% by mass to 40% by mass on a mass basis, and the structure derived from the bifunctional isocyanate compound with respect to the content of the structural portion derived from the trifunctional or more isocyanate compound in the shell material.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Birds (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

A microcapsule that comprises, as a shell material for a shell encapsulating a core therein, a polyurethane or polyurea having a structure derived from a tri- or higher functional isocyanate compound together with a structure derived from a bifunctional aliphatic isocyanate compound and/or a structure derived from a bifunctional aromatic isocyanate compound, wherein: in the shell material, the ratio by mass of the content of the structure moiety derived from the bifunctional isocyanate compound(s) to the content of the structure moiety derived from the trifunctional isocyanate compound is from 5/95 to 20/80; a perfume is contained as a core material; and the break deformation rate is 50% or less, and a microcapsule-containing composition.

Description

マイクロカプセル及びマイクロカプセル含有組成物Microcapsules and compositions containing microcapsules
 本開示は、マイクロカプセル及びマイクロカプセル含有組成物に関する。 The present disclosure relates to microcapsules and compositions containing microcapsules.
 近年、マイクロカプセルは、香料、染料、蓄熱材、医薬品成分などの機能性材料を内包して保護すること、機能性材料を刺激に応答して放出させること等の点で、新たな価値を顧客に提供できる可能性があることから注目されている。 In recent years, microcapsules have added new value to customers in terms of encapsulating and protecting functional materials such as fragrances, dyes, heat storage materials, and pharmaceutical ingredients, and releasing functional materials in response to stimuli. Has been attracting attention because of its potential.
 香料をマイクロカプセルに内包する場合には、例えば、香料を内包したマイクロカプセル(以下、香料カプセルともいう。)を柔軟剤と混合することができる。そして、上記マイクロカプセルを含む柔軟剤を使用して衣服を洗濯する際、柔軟剤に含まれるマイクロカプセルが衣服に付着し、圧力等が加えられて上記マイクロカプセルが破壊されると、マイクロカプセルに内包されている香料が放出される。したがって、香料をカプセル化することにより、香料を一定期間保持でき、香料による香りを所望の時期に生じさせることができる。 す る When the fragrance is encapsulated in the microcapsules, for example, a microcapsule containing the fragrance (hereinafter, also referred to as a fragrance capsule) can be mixed with the softener. When washing clothes using the softener containing the microcapsules, when the microcapsules contained in the softener adhere to the clothes and the pressure or the like is applied and the microcapsules are broken, The contained fragrance is released. Therefore, by encapsulating the fragrance, the fragrance can be held for a certain period of time, and the fragrance due to the fragrance can be generated at a desired time.
 特表2009-524723号公報には、コア物質と、上記コア物質を包囲する壁物質とを含む粒子を含む組成物であって、上記粒子は、少なくとも0.05、好ましくは少なくとも7、より好ましくは少なくとも70の送達指数を有し、上記組成物は、消費者製品である、組成物が記載されている。 JP-T-2009-524723 discloses a composition comprising particles comprising a core material and a wall material surrounding the core material, wherein the particles are at least 0.05, preferably at least 7, more preferably Has a delivery index of at least 70, wherein the composition is a consumer product.
 従来より、衣服に香料を含むマイクロカプセルを付着させた場合に、衣服を着用した際の香りの強度を改善することが求められている。
 上記の特表2009-524723号公報に記載の組成物は、衣服に香料を含むマイクロカプセルを付着させた場合にすべてのマイクロカプセルが破壊されるわけではないと考えられるため、すべてのマイクロカプセルから香料が放出されるわけではなく、香り強度の改善の余地があると考えられる。
Conventionally, when microcapsules containing a fragrance are adhered to clothes, it has been required to improve the intensity of the scent when the clothes are worn.
Since the composition described in JP-T-2009-524723 is considered not to destroy all microcapsules when microcapsules containing a fragrance are attached to clothes, Perfume is not released, and it is considered that there is room for improvement in fragrance intensity.
 本開示の一実施形態が解決しようとする課題は、香り強度が良好なマイクロカプセル及びマイクロカプセル含有組成物を提供することである。 A problem to be solved by one embodiment of the present disclosure is to provide a microcapsule and a microcapsule-containing composition having good fragrance intensity.
 上記課題を解決する手段には、以下の態様が含まれる。
  <1> コアを内包するシェルのシェル材として、3官能以上のイソシアネート化合物に由来する構造と、2官能のイソシアネート化合物に由来する構造と、を有するポリウレタン又はポリウレアを含み、かつ、シェル材における、3官能以上のイソシアネート化合物に由来する構造の含有量に対する、2官能のイソシアネート化合物に由来する構造の含有量の比率が、質量基準で5/95~20/80であり、コア材として香料を含み、破壊変形率が50%以下であるマイクロカプセルである。
  <2> 上記破壊変形率が40%以下である<1>に記載のマイクロカプセルである。
  <3> 上記破壊変形率が30%以下である<1>又は<2>に記載のマイクロカプセルである。
  <4> 破壊強度が10MPa以下である<1>~<3>のいずれか1つに記載のマイクロカプセルである。
  <5> 破壊強度が6MPa以下である<1>~<4>のいずれか1つに記載のマイクロカプセルである。
  <6> 上記2官能のイソシアネート化合物が芳香族イソシアネート化合物を含み、上記3官能以上のイソシアネート化合物が脂肪族イソシアネート化合物を含む<1>~<5>のいずれか1つに記載のマイクロカプセルである。
  <7> 上記シェル材における、上記3官能以上のイソシアネート化合物に由来する構造の含有量に対する、上記2官能のイソシアネート化合物に由来する構造の含有量の比率が、質量基準で7/93~20/80である<1>~<6>のいずれか1つに記載のマイクロカプセルである。
  <8> 上記3官能以上のイソシアネート化合物は、3官能以上の脂肪族イソシアネート化合物及び3官能以上の芳香族イソシアネート化合物の少なくとも一方を含み、上記シェル材における、上記3官能以上のイソシアネート化合物に由来する構造の総含有量に対する、上記3官能以上の芳香族イソシアネート化合物に由来する構造の含有量の比率が、質量基準で、0質量%~87.5質量%である<1>~<7>のいずれか1つに記載のマイクロカプセルである。
  <9> 上記3官能以上のイソシアネート化合物は、3官能以上の脂肪族イソシアネート化合物及び3官能以上の芳香族イソシアネート化合物を含む<1>~<8>のいずれか1つに記載のマイクロカプセルである。
  <10> 上記3官能以上のイソシアネート化合物は、3官能以上の脂肪族イソシアネート化合物である<1>~<8>のいずれか1つに記載のマイクロカプセルである。
  <11> 上記シェル材における、上記3官能以上の脂肪族イソシアネート化合物に由来する構造の総含有量に対する、上記3官能以上の芳香族イソシアネート化合物に由来する構造の含有量の比率が、質量基準で、10質量%~40質量%である<8>又は<9>に記載のマイクロカプセルである。
  <12> 表面にアニオン電荷を有する<1>~<11>のいずれか1つに記載のマイクロカプセルである。
  <13> 表面の少なくとも一部にアニオン変性ポリビニルアルコールを有する<1>~<12>のいずれか1つに記載のマイクロカプセルである。
  <14> 洗濯、デイケア又はヘアケアの用途に用いられる<1>~<13>のいずれか1つに記載のマイクロカプセルである。
  <15> <1>~<14>のいずれか1つに記載のマイクロカプセルと、水系溶媒と、を含有するマイクロカプセル含有組成物である。
Means for solving the above problems include the following aspects.
<1> As a shell material of a shell including a core, a polyurethane or polyurea having a structure derived from a trifunctional or more isocyanate compound and a structure derived from a bifunctional isocyanate compound is included, and in the shell material, The ratio of the content of the structure derived from the bifunctional isocyanate compound to the content of the structure derived from the trifunctional or more isocyanate compound is 5/95 to 20/80 on a mass basis, and contains a fragrance as a core material. And microcapsules having a breaking deformation rate of 50% or less.
<2> The microcapsule according to <1>, wherein the fracture deformation rate is 40% or less.
<3> The microcapsule according to <1> or <2>, wherein the fracture deformation rate is 30% or less.
<4> The microcapsule according to any one of <1> to <3>, having a breaking strength of 10 MPa or less.
<5> The microcapsule according to any one of <1> to <4>, having a breaking strength of 6 MPa or less.
<6> The microcapsule according to any one of <1> to <5>, wherein the bifunctional isocyanate compound includes an aromatic isocyanate compound, and the trifunctional or higher functional isocyanate compound includes an aliphatic isocyanate compound. .
<7> In the shell material, the ratio of the content of the structure derived from the bifunctional isocyanate compound to the content of the structure derived from the trifunctional or more isocyanate compound is 7/93 to 20 / 80 is the microcapsule according to any one of <1> to <6>.
<8> The trifunctional or higher functional isocyanate compound includes at least one of a trifunctional or higher functional aliphatic isocyanate compound and a trifunctional or higher functional aromatic isocyanate compound, and is derived from the trifunctional or higher functional isocyanate compound in the shell material. <1> to <7>, wherein the ratio of the content of the structure derived from the trifunctional or higher aromatic isocyanate compound to the total content of the structure is 0% to 87.5% by mass on a mass basis. A microcapsule according to any one of the above.
<9> The microcapsule according to any one of <1> to <8>, wherein the trifunctional or higher functional isocyanate compound includes a trifunctional or higher functional aliphatic isocyanate compound and a trifunctional or higher functional aromatic isocyanate compound. .
<10> The microcapsule according to any one of <1> to <8>, wherein the trifunctional or higher functional isocyanate compound is a trifunctional or higher functional aliphatic isocyanate compound.
<11> The ratio of the content of the structure derived from the trifunctional or more aromatic isocyanate compound to the total content of the structure derived from the trifunctional or more aliphatic isocyanate compound in the shell material is based on mass. The microcapsule according to <8> or <9>, wherein the content is 10% by mass to 40% by mass.
<12> The microcapsule according to any one of <1> to <11>, which has an anionic charge on its surface.
<13> The microcapsule according to any one of <1> to <12>, wherein at least a part of the surface has anion-modified polyvinyl alcohol.
<14> The microcapsule according to any one of <1> to <13>, which is used for laundry, day care, or hair care.
<15> A microcapsule-containing composition containing the microcapsule according to any one of <1> to <14> and an aqueous solvent.
 本開示の一実施形態によれば、香り強度が良好なマイクロカプセル及びマイクロカプセル含有組成物を提供できる。 According to one embodiment of the present disclosure, it is possible to provide a microcapsule and a microcapsule-containing composition having good fragrance intensity.
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ下限値及び上限値として含む範囲を意味する。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。 に お い て In this specification, a numerical range indicated by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit, respectively. In the numerical ranges described stepwise in the present disclosure, the upper limit or the lower limit described in a certain numerical range may be replaced with the upper limit or the lower limit of another numerical range described in a stepwise manner. Further, in the numerical ranges described in the present disclosure, the upper limit or the lower limit described in a certain numerical range may be replaced with the value shown in the embodiment.
 本明細書において、「シェル」とはマイクロカプセルの壁(カプセル壁ともいう。)をいい、「コア」とはシェルに内包された部分をいう。また、本明細書において、シェルを形成するための材料を「シェル材」といい、コアに含まれる成分を「コア材」という。
 本開示のマイクロカプセルにおいて、「内包」とは、目的物がマイクロカプセルのシェル(カプセル壁)に覆われて閉じ込められている状態を指す。
 本開示のマイクロカプセル又はマイクロカプセル含有組成物における各成分の量は、マイクロカプセル又はマイクロカプセル含有組成物中に各成分に該当する物質が複数存在する場合は、特に断らない限り、マイクロカプセル又はマイクロカプセル含有組成物中に存在する複数の物質の合計量を意味する。
In this specification, the “shell” refers to a wall of a microcapsule (also referred to as a capsule wall), and the “core” refers to a portion included in the shell. In this specification, a material for forming a shell is referred to as a “shell material”, and a component contained in a core is referred to as a “core material”.
In the microcapsule of the present disclosure, “encapsulation” refers to a state in which an object is covered by a shell (capsule wall) of the microcapsule.
The amount of each component in the microcapsule or microcapsule-containing composition of the present disclosure is, unless there is a plurality of substances corresponding to each component in the microcapsule or microcapsule-containing composition, unless otherwise specified, microcapsules or microcapsules. It means the total amount of a plurality of substances present in the capsule-containing composition.
≪マイクロカプセル≫
 本開示のマイクロカプセルは、コアを内包するシェルのシェル材として、3官能以上のイソシアネート化合物に由来する構造と、2官能のイソシアネート化合物に由来する構造と、を有するポリウレタン又はポリウレアを含み、かつ、シェル材における、3官能以上のイソシアネート化合物に由来する構造の含有量に対する、2官能のイソシアネート化合物に由来する構造の含有量の比率が、質量基準で5/95~20/80であり、コア材として香料を含み、破壊変形率が50%以下である。
 マイクロカプセルの形態としては、例えば、マイクロカプセル分散液を挙げることができ、マイクロカプセルが水系溶媒に分散されたマイクロカプセル水分散液の形態であることが好ましい。
≪Microcapsules≫
The microcapsules of the present disclosure include a polyurethane or polyurea having a structure derived from a trifunctional or more isocyanate compound and a structure derived from a bifunctional isocyanate compound as a shell material of a shell including a core, and The ratio of the content of the structure derived from the bifunctional isocyanate compound to the content of the structure derived from the trifunctional or more isocyanate compound in the shell material is 5/95 to 20/80 on a mass basis, and the core material As a fragrance, and the breaking deformation rate is 50% or less.
Examples of the form of the microcapsule include a microcapsule dispersion, and the microcapsule is preferably in the form of a microcapsule aqueous dispersion in which the microcapsules are dispersed in an aqueous solvent.
 本発明者は、香りの強度は、マイクロカプセルを破壊されやすくすることで改善できるとの知見を得た。衣服の繊維の形状は、面形状ではなく線形状であり、線形状である繊維に付着したマイクロカプセルに、マイクロカプセルを破壊できる程度の圧力を加えようとすると、繊維自体が動きやすいために加えた圧力を逃がすようにマイクロカプセルも動きやすく、また線状の繊維の表面にマイクロカプセルを固定させておくことが難しい。結果、マイクロカプセルに、破壊に必要な圧力を加えることが難しくなると推察される。 The present inventors have found that the strength of the scent can be improved by making the microcapsules easily breakable. The shape of the fibers in clothing is not a plane shape but a linear shape, and if the microcapsules attached to the linear fibers are subjected to pressure enough to break the microcapsules, the fibers themselves move easily. The microcapsules move easily so as to release the applied pressure, and it is difficult to fix the microcapsules on the surface of the linear fibers. As a result, it is presumed that it becomes difficult to apply pressure required for breaking to the microcapsules.
 これに対し、本開示は、香料を含むマイクロカプセルを、例えば繊維上で破壊する場合において、シェルが破壊されずにコア材をコア内部に内包していられるマイクロカプセルの最大の変形率(破壊変形率)に着目した。
 繊維上に存在するマイクロカプセルの破壊のされやすさは、破壊変形率が低いほど、マクロカプセルが破壊される確率が上がると推定される。そして、マイクロカプセルをポリウレタン又はポリウレアを用いて形成するにあたり、3官能以上のポリイソシアネート化合物の一部を架橋点間距離が短い構造である2官能のイソシアネート化合物に代えてマイクロカプセルのシェル材とすることで、破壊変形率を小さくすることができる。
 これによって、繊維上であってもマイクロカプセルが破壊されやすくなり、良好にマイクロカプセルに含まれる香料を放出することができる。
On the other hand, according to the present disclosure, when a microcapsule containing a fragrance is broken on, for example, a fiber, the maximum deformation rate (breaking deformation) of the microcapsule in which the core material is included inside the core without breaking the shell Rate).
It is estimated that the probability of breakage of the microcapsules existing on the fiber increases as the fracture deformation rate decreases. In forming the microcapsules using polyurethane or polyurea, a part of the trifunctional or higher polyisocyanate compound is replaced with a bifunctional isocyanate compound having a structure in which the distance between cross-linking points is short to form a shell material of the microcapsule. Thus, the breaking deformation rate can be reduced.
As a result, the microcapsules are easily broken even on the fiber, and the fragrance contained in the microcapsules can be satisfactorily released.
<破壊変形率>
 本開示のマイクロカプセルは、破壊変形率が50%以下である。
 破壊変形率とは、破壊点におけるマイクロカプセルの最小の変形率を指す。これによって、マイクロカプセルを破壊する際の変形を抑制することができるため、小さい圧力でマイクロカプセルを破壊することが可能となり、繊維上においても、内包される香料が良好に放出される。その結果、香り強度が大きく向上する。
 上記の観点から、破壊変形率は、40%以下であることが好ましく、30%以下であることがより好ましい。
 また、必要な圧力が加わったときに選択的に破壊されるようにするため、破壊変形率は、5%以上であることが好ましい。
<Destructive deformation rate>
The microcapsules of the present disclosure have a breaking deformation rate of 50% or less.
The breaking deformation rate refers to the minimum deformation rate of the microcapsule at the breaking point. As a result, the deformation when the microcapsules are broken can be suppressed, so that the microcapsules can be broken with a small pressure, and the fragrance contained therein can be satisfactorily released even on the fiber. As a result, the scent intensity is greatly improved.
From the above viewpoint, the breaking deformation ratio is preferably 40% or less, and more preferably 30% or less.
Further, in order to selectively break when a necessary pressure is applied, the breaking deformation rate is preferably 5% or more.
 破壊変形率は、後述する破壊強度の測定に用いられる方法で求められるマイクロカプセル粒子を破壊した際のマイクロカプセルの変位(破壊強度の測定に用いられる圧子が、マイクロカプセルに接触してからマイクロカプセルが破壊されるまでに移動した距離)を、圧力を加えることで変形する前の50粒の粒子の直径の平均値で徐算した値を百分率に換算した値として算出される値である。 The breaking deformation rate is determined by the displacement of the microcapsule when the microcapsule particles are broken, which is determined by the method used for measuring the breaking strength described later (the microcapsule is used after the indenter used for measuring the breaking strength contacts the microcapsule). Is a value calculated as a percentage, which is calculated by subtracting the average distance of the diameters of 50 particles before deformation by applying pressure.
<破壊強度>
 本開示のマイクロカプセルは、破壊強度が10MPa以下であることが好ましい。
 これによって、より小さい圧力で、マイクロカプセルを破壊することが可能となり、内包される香料が良好に放出される。その結果、香り強度がより向上する。
 上記の観点から、本開示のマイクロカプセルは、破壊強度が6MPa以下であることがより好ましい。
 また、上記破壊強度の下限値としては、特に制限はないが、0MPa超としてもよく、1MPa以上としてもよい。
<Destruction strength>
The microcapsules of the present disclosure preferably have a breaking strength of 10 MPa or less.
This makes it possible to break down the microcapsules with a smaller pressure, so that the contained fragrance is released well. As a result, the scent intensity is further improved.
From the above viewpoint, the microcapsules of the present disclosure more preferably have a breaking strength of 6 MPa or less.
The lower limit of the breaking strength is not particularly limited, but may be more than 0 MPa or 1 MPa or more.
 マイクロカプセルの破壊強度は、以下の方法により測定できる。
 マイクロカプセル水分散液をイオン交換水で希釈した液を、プレパラートへ数滴滴下して乾燥させる。
 次に、粒子の破壊力(rupture force)を粒子の断面積で徐して算出される値を求める。
 粒子の破壊力は、2001年発行のJ.Microencapsulation誌、vol18,no. 5、593-602頁、Zhang,Z.、Sun,Gによる“Mechanical Properties of Melamine-Formaldehyde microcapsules”に記載されている方法を用いて測定できる。
 50粒の粒子について、粒子の破壊力を粒子の断面積で徐して算出される値を求め、50粒の粒子の上記値を平均して破壊強度(MPa)として測定する。
 なお、上記粒子の破壊力の単位はN(ニュートン)であり、上記粒子の断面積はπr(rは圧力を加えることで変形する前のマイクロカプセル粒子の半径である。)で算出することができる。
 なお、上記rは、マイクロトラックMT3300EXII(日機装株式会社製)を用いて測定したマイクロカプセルの体積標準のメジアン径を2で除して算出する。算出した上記rを用いて、上記断面積を求める。
The breaking strength of the microcapsule can be measured by the following method.
A solution obtained by diluting the aqueous microcapsule dispersion with ion-exchanged water is dropped onto a slide and dried.
Next, a value is calculated by gradually subtracting the rupture force of the particles from the cross-sectional area of the particles.
The destructive power of particles is described in J. Microencapsulation, vol 18, no. 5, pp. 593-602; Zhang, Z .; , Sun, G, "Mechanical Properties of Melamine-Formaldehyde microcapsules".
With respect to 50 particles, a value calculated by gradually reducing the breaking force of the particles by the cross-sectional area of the particles is obtained, and the above values of the 50 particles are averaged and measured as a breaking strength (MPa).
The unit of the breaking force of the particles is N (Newton), and the cross-sectional area of the particles is calculated by πr 2 (r is the radius of the microcapsule particles before being deformed by applying pressure). Can be.
The above r is calculated by dividing the median diameter of the volume standard of the microcapsule measured by using Microtrac MT3300EXII (manufactured by Nikkiso Co., Ltd.) by 2. Using the calculated r, the cross-sectional area is determined.
<シェル>
 本開示のマイクロカプセルは、コアを内包するシェルを有する。
 本開示におけるシェルを形成するシェル材は、ポリウレタン又はポリウレアを含む。
 本開示におけるポリウレタン又はポリウレアは、3官能以上のイソシアネート化合物に由来する構造と、2官能のイソシアネート化合物に由来する構造と、を有する。
<Shell>
The microcapsule of the present disclosure has a shell that contains a core.
The shell material forming the shell in the present disclosure includes polyurethane or polyurea.
The polyurethane or polyurea in the present disclosure has a structure derived from a trifunctional or more isocyanate compound and a structure derived from a bifunctional isocyanate compound.
 本開示のマイクロカプセルは、破壊変形率及び破壊強度を小さくして香り強度を強くする観点から、2官能のイソシアネート化合物が芳香族イソシアネート化合物を含み、3官能以上のイソシアネート化合物が脂肪族イソシアネート化合物を含むことが好ましい。 The microcapsules of the present disclosure are characterized in that the bifunctional isocyanate compound contains an aromatic isocyanate compound, and the trifunctional or more isocyanate compound contains an aliphatic isocyanate compound, from the viewpoint of reducing the breaking deformation rate and the breaking strength and increasing the fragrance strength. It is preferred to include.
(3官能以上のイソシアネート化合物)
 シェルを形成するシェル材であるポリウレタン又はポリウレアは、3官能以上のイソシアネート化合物に由来する構造を有する。3官能以上のイソシアネート化合物に由来する構造を有していることで、シェルの柔軟性を高めることができ、繊維又は毛等の付着対象物に対する付着性が得られる。
 3官能以上のイソシアネート化合物に由来する構造とは、3官能以上のイソシアネート化合物がウレタン化又はウレア化して形成される構造を指す。
(Trifunctional or higher isocyanate compound)
Polyurethane or polyurea, which is a shell material forming a shell, has a structure derived from a trifunctional or higher functional isocyanate compound. By having a structure derived from a tri- or more functional isocyanate compound, the flexibility of the shell can be increased, and adhesion to an object to be attached such as fiber or hair can be obtained.
The structure derived from a trifunctional or higher functional isocyanate compound refers to a structure formed by urethane or urea conversion of a trifunctional or higher functional isocyanate compound.
 3官能以上の脂肪族イソシアネート化合物としては、2官能の脂肪族イソシアネート化合物(分子中に2つのイソシアネート基を有する化合物)と分子中に3つ以上の活性水素基を有する化合物(3官能以上の例えばポリオール、ポリアミン又はポリチオール等)とのアダクト体(付加物)として3官能以上としたイソシアネート化合物(アダクト型)、2官能の脂肪族イソシアネート化合物の3量体(ビウレット型又はイソシアヌレート型)を挙げることができる。 Examples of the trifunctional or higher aliphatic aliphatic isocyanate compound include a bifunctional aliphatic isocyanate compound (compound having two isocyanate groups in a molecule) and a compound having three or more active hydrogen groups in a molecule (for example, a trifunctional or higher functional compound). Examples of an adduct (adduct) with a polyol, polyamine or polythiol) include an isocyanate compound having three or more functional groups (adduct type) and a trimer of a bifunctional aliphatic isocyanate compound (biuret type or isocyanurate type). Can be.
 アダクト型の3官能以上のイソシアネート化合物は、上市されている市販品を用いてもよい。市販品の例としては、タケネート(登録商標)D-120N(イソシアネート価=3.5 mmol/g)、D-140N、D-160N(以上、三井化学株式会社製)、スミジュール(登録商標)HT(バイエル株式会社製)、コロネート(登録商標)HL、HX(東ソー株式会社製)、デュラネートP301-75E(旭化成株式会社製)、バーノック(登録商標)DN-950(DIC株式会社製)などが挙げられる。
 中でも、アダクト型の3官能以上のイソシアネート化合物として、三井化学株式会社製のタケネート(登録商標)シリーズ(例えば、タケネートD-110N、D-120N、D-140N、D-160N等)がより好ましい。
As the adduct-type trifunctional or higher isocyanate compound, a commercially available product may be used. Examples of commercially available products include Takenate (registered trademark) D-120N (isocyanate value = 3.5 mmol / g), D-140N and D-160N (all manufactured by Mitsui Chemicals, Inc.), Sumidur (registered trademark) HT (manufactured by Bayer Corporation), Coronate (registered trademark) HL, HX (manufactured by Tosoh Corporation), Duranate P301-75E (manufactured by Asahi Kasei Corporation), Vernock (registered trademark) DN-950 (manufactured by DIC Corporation), etc. No.
Among them, Takenate (registered trademark) series (for example, Takenate D-110N, D-120N, D-140N, D-160N, etc.) manufactured by Mitsui Chemicals, Inc. are more preferable as adduct-type isocyanate compounds having three or more functions.
 イソシアヌレート型の3官能以上のイソシアネート化合物は、上市されている市販品を用いてもよい。市販品の例としては、タケネート(登録商標)D-127N、D-170N、D-170HN、D-172N、D-177N(三井化学株式会社製)、スミジュールN3300、デスモジュール(登録商標)N3600、N3900、Z4470BA(以上、バイエル株式会社製)、コロネート(登録商標)HK(東ソー株式会社製)、デュラネート(登録商標)TPA-100、TKA-100(旭化成株式会社製)、バーノック(登録商標)DN-980(DIC株式会社製)などが挙げられる。 As the isocyanurate-type trifunctional or higher isocyanate compound, a commercially available product may be used. Examples of commercially available products include Takenate (registered trademark) D-127N, D-170N, D-170HN, D-172N, D-177N (manufactured by Mitsui Chemicals, Inc.), Sumidur N3300, and Desmodur (registered trademark) N3600. , N3900, Z4470BA (manufactured by Bayer Corporation), Coronate (registered trademark) HK (manufactured by Tosoh Corporation), Duranate (registered trademark) TPA-100, TKA-100 (manufactured by Asahi Kasei Corporation), Barnock (registered trademark) DN-980 (manufactured by DIC Corporation).
 ビウレット型の3官能以上のイソシアネート化合物は、上市されている市販品を用いてもよく、例えば、タケネート(登録商標)D-165N、NP1200(三井化学株式会社製)、デスモジュール(登録商標)N3200A(バイエル株式会社製)、デュラネート(登録商標)24A-100、22A-75P(旭化成株式会社製)などが挙げられる。 As the biuret-type trifunctional or higher isocyanate compound, commercially available products may be used. For example, Takenate (registered trademark) D-165N, NP1200 (manufactured by Mitsui Chemicals, Inc.), Desmodur (registered trademark) N3200A (Manufactured by Bayer Corporation), Duranate (registered trademark) 24A-100, 22A-75P (manufactured by Asahi Kasei Corporation) and the like.
 3官能以上の芳香族イソシアネート化合物の具体例としては、2,6-トリレンジイソシアネート、2,4-トリレンジイソシアネート又はヘキサメチレンジイソシアネートとトリメチロールプロパンとの付加物(アダクト体)、ビウレット体もしくはイソシアヌレート体等が挙げられる。
 3官能以上の芳香族イソシアネート化合物として上市されている市販品を用いてもよく、市販品の例としては、バーノック(登録商標)D-750、D-800(DIC株式会社製)、タケネート(登録商標)D-102、D-103、D-103H、D-103M2、D-110N、オレスター(登録商標)P49-75S(以上、三井化学株式会社製)、デスモジュール(登録商標)L75、IL-135-BA、HL-BA、スミジュール(登録商標)E-21-1(バイエル株式会社製)、コロネート(登録商標)L、L-55、L-55E(東ソー株式会社製)等が挙げられる。
Specific examples of the tri- or higher functional aromatic isocyanate compound include 2,6-tolylene diisocyanate, 2,4-tolylene diisocyanate or an adduct of hexamethylene diisocyanate with trimethylolpropane (adduct), biuret or isocyanate. Nurates and the like can be mentioned.
Commercially available products that are marketed as tri- or more functional aromatic isocyanate compounds may be used. Examples of commercially available products include Vernock (registered trademark) D-750, D-800 (manufactured by DIC Corporation), and Takenate (registered trademark). Trademarks) D-102, D-103, D-103H, D-103M2, D-110N, Olestar (registered trademark) P49-75S (all manufactured by Mitsui Chemicals, Inc.), Desmodur (registered trademark) L75, IL -135-BA, HL-BA, Sumidur (registered trademark) E-21-1 (manufactured by Bayer Corporation), Coronate (registered trademark) L, L-55, L-55E (manufactured by Tosoh Corporation) and the like. Can be
 3官能以上のイソシアネート化合物に由来する構造の、シェル材の全質量に占める割合としては、80質量%~95質量%であることが好ましく、80質量%~90質量%であることがより好ましい。
 3官能以上のイソシアネート化合物に由来する構造の割合が80質量%以上であると、良好にシェルを形成することができる。また、3官能以上のイソシアネート化合物に由来する構造の割合が95質量%以下であると、圧力によりシェルがより破壊されやすくなり、より良好な香り強度を得ることができる。
The ratio of the structure derived from the trifunctional or higher isocyanate compound to the total mass of the shell material is preferably 80% by mass to 95% by mass, and more preferably 80% by mass to 90% by mass.
When the ratio of the structure derived from the trifunctional or higher isocyanate compound is 80% by mass or more, the shell can be favorably formed. Further, when the proportion of the structure derived from the trifunctional or higher isocyanate compound is 95% by mass or less, the shell is more easily broken by pressure, and more favorable scent intensity can be obtained.
 本開示における3官能以上のイソシアネート化合物が、3官能以上の脂肪族イソシアネート化合物及び3官能以上の芳香族イソシアネート化合物の少なくとも一方を含むことが好ましく、3官能以上のイソシアネート化合物が、3官能以上の脂肪族イソシアネート化合物及び3官能以上の芳香族イソシアネート化合物を含んでいてもよく、3官能以上の脂肪族イソシアネート化合物を単独で含んでいてもよい。 The trifunctional or higher functional isocyanate compound in the present disclosure preferably includes at least one of a trifunctional or higher functional aliphatic isocyanate compound and a trifunctional or higher functional aromatic isocyanate compound, and the trifunctional or higher functional isocyanate compound is a trifunctional or higher functional isocyanate compound. It may contain a group III isocyanate compound and a tri- or more functional aromatic isocyanate compound, or may contain a tri- or more functional aliphatic isocyanate compound alone.
 3官能以上のイソシアネート化合物が、3官能以上の脂肪族イソシアネート化合物及び3官能以上の芳香族イソシアネート化合物の少なくとも一方を含んでいる場合、上記シェル材における上記3官能以上のイソシアネート化合物に由来する構造部分の総含有量に対する、上記3官能以上の芳香族イソシアネート化合物に由来する構造部分の含有量の比率が、質量基準で、0質量%~87.5質量%であることが好ましい。
 上記シェル材における上記3官能以上のイソシアネート化合物に由来する構造部分の総含有量に対する、上記3官能以上の芳香族イソシアネート化合物に由来する構造部分の含有量の比率が、上記範囲内にあることで、破壊変形率をより小さくすることができるため、香り強度に優れる。また、上記シェル材における上記3官能以上のイソシアネート化合物に由来する構造部分の総含有量に対する、上記3官能以上の芳香族イソシアネート化合物に由来する構造部分の含有量の比率が、質量基準で、87.5質量%以下であることで、シェルの強度をより良好に保持することができる。
 上記と同様の観点から、上記シェル材における上記3官能以上のイソシアネート化合物に由来する構造部分の総含有量に対する、上記3官能以上の芳香族イソシアネート化合物に由来する構造部分の含有量の比率が、質量基準で、0質量%~56.0質量%であることがより好ましく、0質量%~40.0質量%であることがさらに好ましい。
When the trifunctional or higher functional isocyanate compound contains at least one of a trifunctional or higher functional aliphatic isocyanate compound and a trifunctional or higher functional aromatic isocyanate compound, a structural portion derived from the trifunctional or higher functional isocyanate compound in the shell material Is preferably 0% to 87.5% by mass on the basis of mass based on the total content of the above-mentioned trifunctional or higher functional aromatic isocyanate compound.
The ratio of the content of the structural portion derived from the trifunctional or more aromatic isocyanate compound to the total content of the structural portion derived from the trifunctional or more isocyanate compound in the shell material is within the above range. Since the breaking deformation rate can be further reduced, the fragrance intensity is excellent. Further, the ratio of the content of the structural part derived from the aromatic compound having three or more functional groups to the total content of the structural part derived from the trifunctional or more isocyanate compound in the shell material is 87% by mass. When the content is not more than 0.5% by mass, the strength of the shell can be more favorably maintained.
From the same viewpoint as described above, the ratio of the content of the structural part derived from the trifunctional or higher aromatic isocyanate compound to the total content of the structural parts derived from the trifunctional or higher isocyanate compound in the shell material is as follows: It is more preferably from 0% by mass to 56.0% by mass, even more preferably from 0% by mass to 40.0% by mass on a mass basis.
 上記3官能以上のイソシアネート化合物が、3官能以上の脂肪族イソシアネート化合物である場合には、破壊変形率及び破壊強さをより小さくして、香り強度に向上させる観点から、上記シェル材における上記3官能以上のイソシアネート化合物に由来する構造の総含有量に対する、上記3官能以上の芳香族イソシアネート化合物に由来する構造の含有量の比率が、質量基準で、10質量%~40質量%であることが好ましい。 When the trifunctional or higher functional isocyanate compound is a trifunctional or higher functional aliphatic isocyanate compound, from the viewpoint of further reducing the breaking deformation rate and the breaking strength and improving the fragrance strength, the above 3 The ratio of the content of the structure derived from the trifunctional or higher aromatic isocyanate compound to the total content of the structure derived from the functional or higher functional isocyanate compound may be 10% by mass to 40% by mass on a mass basis. preferable.
-2官能のイソシアネート化合物-
 シェルを形成するシェル材であるポリウレタン又はポリウレアは、2官能のイソシアネート化合物に由来する構造を有する。即ち、シェルを形成するシェル材であるポリウレタン又はポリウレアは、2官能の脂肪族イソシアネート化合物に由来する構造及び2官能の芳香族イソシアネート化合物に由来する構造から選ばれる少なくとも一方の構造を有する。
 2官能の脂肪族イソシアネート化合物に由来する構造とは、2官能の脂肪族イソシアネート化合物がウレタン化又はウレア化して形成される構造を指す。
 2官能の芳香族イソシアネート化合物に由来する構造とは、2官能の芳香族イソシアネート化合物がウレタン化又はウレア化して形成される構造を指す。
-Bifunctional isocyanate compound-
Polyurethane or polyurea, which is a shell material forming a shell, has a structure derived from a bifunctional isocyanate compound. That is, the polyurethane or polyurea, which is the shell material forming the shell, has at least one structure selected from a structure derived from a bifunctional aliphatic isocyanate compound and a structure derived from a bifunctional aromatic isocyanate compound.
The structure derived from the bifunctional aliphatic isocyanate compound refers to a structure formed by urethane or urea conversion of the bifunctional aliphatic isocyanate compound.
The structure derived from a bifunctional aromatic isocyanate compound refers to a structure formed by urethane or urea conversion of a bifunctional aromatic isocyanate compound.
 2官能の脂肪族イソシアネート化合物としては、例えば、トリメチレンジイソシアネート、ヘキサメチレンジイソシアネート、プロピレン-1,2-ジイソシアネート、ブチレン-1,2-ジイソシアネート、シクロヘキシレン-1,2-ジイソシアネート、シクロヘキシレン-1,3-ジイソシアネート、シクロヘキシレン-1,4-ジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、1,4-ビス(イソシアネートメチル)シクロヘキサン及び1,3-ビス(イソシアネートメチル)シクロヘキサン、イソホロンジイソシアネート、リジンジイソシアネート、水素化キシリレンジイソシアネート等が挙げられる。 Examples of the bifunctional aliphatic isocyanate compound include trimethylene diisocyanate, hexamethylene diisocyanate, propylene-1,2-diisocyanate, butylene-1,2-diisocyanate, cyclohexylene-1,2-diisocyanate, cyclohexylene-1, 3-diisocyanate, cyclohexylene-1,4-diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, 1,4-bis (isocyanatomethyl) cyclohexane and 1,3-bis (isocyanatomethyl) cyclohexane, isophorone diisocyanate, lysine diisocyanate And hydrogenated xylylene diisocyanate.
 2官能の芳香族イソシアネート化合物としては、例えば、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、2,6-トリレンジイソシアネート、2,4-トリレンジイソシアネート、ナフタレン-1,4-ジイソシアネート、メチレンジフェニル-4,4’-ジイソシアネート、3,3’-ジメトキシ-ビフェニルジイソシアネート、3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、キシリレン-1,4-ジイソシアネート、キシリレン-1,3-ジイソシアネート、4-クロロキシリレン-1,3-ジイソシアネート、2-メチルキシリレン-1,3-ジイソシアネート、4,4’-ジフェニルプロパンジイソシアネート、4,4’-ジフェニルヘキサフルオロプロパンジイソシアネート等が挙げられる。 Examples of the bifunctional aromatic isocyanate compound include m-phenylene diisocyanate, p-phenylene diisocyanate, 2,6-tolylene diisocyanate, 2,4-tolylene diisocyanate, naphthalene-1,4-diisocyanate and methylene diphenyl-4. 4,4'-diisocyanate, 3,3'-dimethoxy-biphenyl diisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, xylylene-1,4-diisocyanate, xylylene-1,3-diisocyanate, 4-chloro Xylylene-1,3-diisocyanate, 2-methylxylylene-1,3-diisocyanate, 4,4'-diphenylpropane diisocyanate, 4,4'-diphenylhexafluoropropane diisocyanate, etc. It is below.
 イソシアネート化合物については「ポリウレタン樹脂ハンドブック」(岩田敬治編、日刊工業新聞社発行(1987))に記載されている。 The isocyanate compound is described in "Polyurethane Resin Handbook" (edited by Keiji Iwata, published by Nikkan Kogyo Shimbun (1987)).
 2官能のイソシアネート化合物に由来する構造、即ち、2官能の脂肪族イソシアネート化合物に由来する構造及び2官能の芳香族イソシアネート化合物に由来する構造から選ばれる少なくとも一方の構造の、シェル材の全質量に占める割合としては、合計の質量比率で5質量%~20質量%であることが好ましく、5質量%~15質量%であることがより好ましく、5質量%~10質量%であることが更に好ましい。
 2官能のイソシアネート化合物に由来する構造の割合が5質量%以上であると、シェル内に架橋点間距離の短い部位が部分的に存在するため、圧力をかけた際に圧力に対するひずみに対して弱く割れやすい部位がシェル内に存在すると推定され、破壊変形率をより小さくすることができる。また、2官能のイソシアネート化合物に由来する構造の割合が20質量%以下であると、上記と同様の効果が良好に得られる。
The structure derived from the bifunctional isocyanate compound, that is, at least one structure selected from the structure derived from the bifunctional aliphatic isocyanate compound and the structure derived from the bifunctional aromatic isocyanate compound, The proportion occupied is preferably from 5% by mass to 20% by mass, more preferably from 5% by mass to 15% by mass, even more preferably from 5% by mass to 10% by mass in total mass ratio. .
When the proportion of the structure derived from the bifunctional isocyanate compound is 5% by mass or more, a portion having a short distance between crosslinking points partially exists in the shell. It is presumed that a weakly fragile part is present in the shell, and the fracture deformation rate can be further reduced. Further, when the proportion of the structure derived from the bifunctional isocyanate compound is 20% by mass or less, the same effect as described above can be obtained favorably.
 本開示のマイクロカプセルは、シェル材における3官能以上のイソシアネート化合物に由来する構造部分の含有量に対する、2官能のイソシアネート化合物に由来する構造部分の含有量の比率が、質量基準で5/95~20/80である。
 シェル材における3官能以上のイソシアネート化合物に由来する構造部分の含有量に対する、2官能のイソシアネート化合物に由来する構造部分の含有量の比率が、質量基準で5/95以上であると、シェル内に架橋点間距離の短い部位が部分的に存在するため、圧力をかけた際に圧力に対するひずみに対して弱く割れやすい部位がシェル内に存在すると推定され、破壊変形率をより小さくすることができる。その結果、香り強度を向上させることができる。
 シェル材における3官能以上のイソシアネート化合物に由来する構造部分の含有量に対する、2官能のイソシアネート化合物に由来する構造部分の含有量の比率が、質量基準で20/80以下であると、上記と同様の効果が良好に得られる。また、シェルの強度をより良好に保持することができる。
 上記の観点から、シェル材における3官能以上のイソシアネート化合物に由来する構造部分の含有量に対する、2官能のイソシアネート化合物に由来する構造部分の含有量の比率が、質量基準で7/93~20/80が好ましく、7/93~15/85がより好ましい。
In the microcapsule of the present disclosure, the ratio of the content of the structural portion derived from the bifunctional isocyanate compound to the content of the structural portion derived from the trifunctional or more isocyanate compound in the shell material is 5/95 to 5/95 on a mass basis. 20/80.
When the ratio of the content of the structural portion derived from the bifunctional isocyanate compound to the content of the structural portion derived from the trifunctional or more isocyanate compound in the shell material is 5/95 or more on a mass basis, the content in the shell becomes Since there is a part where the distance between bridging points is short, it is presumed that there is a part in the shell that is vulnerable to strain due to pressure when pressure is applied and that it is susceptible to cracking, and it is possible to further reduce the fracture deformation rate . As a result, the scent intensity can be improved.
When the ratio of the content of the structural portion derived from the bifunctional isocyanate compound to the content of the structural portion derived from the trifunctional or more isocyanate compound in the shell material is 20/80 or less on a mass basis, the same as described above. Effect is obtained favorably. Further, the strength of the shell can be more favorably maintained.
In view of the above, the ratio of the content of the structural portion derived from the bifunctional isocyanate compound to the content of the structural portion derived from the trifunctional or more isocyanate compound in the shell material is 7/93 to 20 / 80 is preferable, and 7/93 to 15/85 is more preferable.
 マイクロカプセルのシェル(壁)の厚み(壁厚)としては、0.01μm~1μmが好ましい。マイクロカプセルの壁厚が0.01μm以上であることで、マイクロカプセルが割れやすくなることが抑制され、コア材を放出したい時期までコア材をコア内において保護することができる。マイクロカプセルの壁厚が1μm以下であることで、マイクロカプセルの適度な割れやすさを付与することができ、所望の時期にコア材を放出することができる。
 上記と同様の観点から、マイクロカプセルの壁厚は、より好ましくは0.05μm~0.7μmであり、さらに好ましくは0.05μm~0.2μmである。
The thickness (wall thickness) of the shell (wall) of the microcapsule is preferably 0.01 μm to 1 μm. When the wall thickness of the microcapsules is 0.01 μm or more, the microcapsules are prevented from being easily broken, and the core material can be protected in the core until the time when the core material is desired to be released. When the wall thickness of the microcapsule is 1 μm or less, the microcapsule can be given an appropriate degree of fragility, and the core material can be released at a desired time.
From the same viewpoint as above, the wall thickness of the microcapsule is more preferably 0.05 μm to 0.7 μm, and further preferably 0.05 μm to 0.2 μm.
 壁厚は、5個のマイクロカプセルの個々の壁厚(μm)を走査型電子顕微鏡(SEM)により求めて平均した平均値をいう。
 具体的には、マイクロカプセル液を任意の支持体上に塗布し、乾燥させて塗布膜を形成する。得られた塗布膜の断面切片を作製し、その断面をSEMを用いて観察し、任意の5個のマイクロカプセルを選択して、それら個々のマイクロカプセルの断面を観察して壁厚を測定して平均値を算出することにより求められる。
The wall thickness refers to an average value obtained by averaging the individual wall thicknesses (μm) of the five microcapsules by using a scanning electron microscope (SEM).
Specifically, the microcapsule liquid is applied on an arbitrary support and dried to form a coating film. A cross section of the obtained coating film was prepared, the cross section was observed using an SEM, five arbitrary microcapsules were selected, and the cross section of each of the microcapsules was observed to measure the wall thickness. It is obtained by calculating the average value.
<コア>
 本開示のマイクロカプセルは、シェルに内包されたコアを有し、コア材として香料を含む。
 本開示のマイクロカプセルが例えば衣服の繊維又は毛(毛髪等)等に付着させて使用される場合、コア材として香料を含むことにより、衣服又は毛髪に擦れ等により圧力が与えられた際には、カプセルが壊れて香料が放出され、所望とする芳香を拡散させることができる。
<Core>
The microcapsule of the present disclosure has a core encapsulated in a shell, and includes a fragrance as a core material.
When the microcapsules of the present disclosure are used, for example, by adhering to clothes fibers or hairs (hair, etc.), by including a fragrance as a core material, when pressure is applied to the clothes or hairs by rubbing or the like, The capsule is broken and the fragrance is released, and the desired fragrance can be diffused.
(香料)
 香料としては、「特許庁、周知慣用技術集(香料)第III部香粧品香料、頁49-103頁、平成13年6月15日発行」に記載の、合成香料、天然精油、天然香料、動植物エキス等の中から適するものを適宜選択することができる。
 香料としては、例えば、ピネン、ミルセン、カンフェン、Rリモネン等のモノテルペン;セドレン、カリオフィレン、ロンギフォレン等のセスキテルペン;1,3,5-ウンデカトリエン、α-アミルシンナミルアルデヒド、ジヒドロジャスモン、メチルイオノン、α-ダマスコン、アセチルセドレン、ジヒドロジャスモン酸メチル、シクロペンタデカノリド等の合成香料;オレンジ精油、レモン精油、ベルガモット精油、マンダリン精油等の天然精油;が挙げられる。
 コア材の全質量に対する香料の含有量としては、100質量%~20質量%が好ましく、95質量%~30質量%がより好ましく、85質量%~40質量%が更に好ましい。
(Fragrance)
Examples of the fragrance include synthetic fragrances, natural essential oils, natural fragrances described in "Japan Patent Office, Well-known and Conventional Techniques (Fragrances), Part III, Cosmetic Fragrances, pp. 49-103, issued on June 15, 2001". A suitable one can be appropriately selected from animal and plant extracts and the like.
Examples of the fragrance include monoterpenes such as pinene, myrcene, camphene and R-limonene; sesquiterpenes such as sedren, caryophyllene, and longifolene; , Α-damascon, acetyl cedrene, methyl dihydrojasmonate, cyclopentadecanolide and the like; natural essential oils such as orange essential oil, lemon essential oil, bergamot essential oil, and mandarin essential oil.
The content of the fragrance with respect to the total mass of the core material is preferably 100% by mass to 20% by mass, more preferably 95% by mass to 30% by mass, and still more preferably 85% by mass to 40% by mass.
 コアには、香料以外の他の内包成分を含めることができ、他の内包成分の例としては、溶媒、補助溶媒等が挙げられる。 The core may contain other inclusion components other than the fragrance, and examples of the other inclusion components include a solvent and an auxiliary solvent.
(溶媒)
 コアには、溶媒が含有されてもよい。
 溶媒の例としては、トリ(カプリル・カプリン酸)グリセリル、ミリスチン酸イソプロピル等の脂肪酸エステル系化合物、ジイソプロピルナフタレン等のアルキルナフタレン系化合物、1-フェニル-1-キシリルエタン等のジアリールアルカン系化合物、イソプロピルビフェニル等のアルキルビフェニル系化合物、トリアリールメタン系化合物、アルキルベンゼン系化合物、ベンジルナフタレン系化合物、ジアリールアルキレン系化合物、アリールインダン系化合物等の芳香族炭化水素;フタル酸ジブチル、イソパラフィン等の脂肪族炭化水素;ツバキ油、大豆油、コーン油、綿実油、菜種油、オリーブ油、ヤシ油、ひまし油、魚油等の天然動植物油;鉱物油等の天然物高沸点留分などが挙げられる。
 溶媒のコア材中における含有量は、コア材の全質量に対して、50質量%未満が好ましく、40質量%以下がより好ましく、30質量%以下が最も好ましい。
(solvent)
The core may contain a solvent.
Examples of the solvent include fatty acid ester compounds such as glyceryl tri (caprylate / caprate) and isopropyl myristate, alkylnaphthalene compounds such as diisopropylnaphthalene, diarylalkane compounds such as 1-phenyl-1-xylylethane, and isopropylbiphenyl. Aromatic hydrocarbons such as alkylbiphenyl compounds, triarylmethane compounds, alkylbenzene compounds, benzylnaphthalene compounds, diarylalkylene compounds, and arylindane compounds; aliphatic hydrocarbons such as dibutyl phthalate and isoparaffin; Natural animal and vegetable oils such as camellia oil, soybean oil, corn oil, cottonseed oil, rapeseed oil, olive oil, coconut oil, castor oil, fish oil, and the like, and high-boiling fractions of natural products such as mineral oil.
The content of the solvent in the core material is preferably less than 50% by mass, more preferably 40% by mass or less, and most preferably 30% by mass or less based on the total mass of the core material.
(補助溶媒)
 コアには、マイクロカプセルを製造する際に用いられるシェル材の油相中への溶解性を高める観点から、油相成分として補助溶媒が含有されてもよい。補助溶媒には、上記の溶媒は含まれない。
 補助溶媒としては、例えば、メチルエチルケトン等のケトン系化合物、酢酸エチル等のエステル系化合物、イソプロピルアルコール等のアルコール系化合物等が挙げられる。補助溶媒の沸点は、130℃以下であることが好ましい。
 補助溶媒のコア材中における含有量は、コア材の全質量に対して、50質量%未満が好ましく、30質量%未満がより好ましく、20質量%未満がさらに好ましい。
(Auxiliary solvent)
The core may contain an auxiliary solvent as an oil phase component from the viewpoint of increasing the solubility of the shell material used in producing the microcapsules in the oil phase. The auxiliary solvent does not include the above solvents.
Examples of the auxiliary solvent include ketone compounds such as methyl ethyl ketone, ester compounds such as ethyl acetate, and alcohol compounds such as isopropyl alcohol. The auxiliary solvent preferably has a boiling point of 130 ° C. or lower.
The content of the auxiliary solvent in the core material is preferably less than 50% by mass, more preferably less than 30% by mass, and even more preferably less than 20% by mass based on the total mass of the core material.
(添加剤)
 コアには、上記成分のほか、例えば、紫外線吸収剤、光安定化剤、酸化防止剤、ワックス、臭気抑制剤等の添加剤が含有されていてもよい。
 添加剤の含有量は、本開示における効果を損なわない範囲であればよく、コア材の全質量に対して、0質量%~20質量%が好ましく、1質量%~15質量%がより好ましく、5質量%~10質量%がさらに好ましい。
(Additive)
The core may contain, in addition to the above components, additives such as an ultraviolet absorber, a light stabilizer, an antioxidant, a wax, and an odor suppressant.
The content of the additive may be within a range that does not impair the effects of the present disclosure, and is preferably 0% to 20% by mass, more preferably 1% to 15% by mass, based on the total mass of the core material. More preferably, the content is 5% by mass to 10% by mass.
<アニオン電荷>
 本開示のマイクロカプセルは、表面にアニオン電荷を有することが好ましい。
 マイクロカプセルが表面にアニオン電荷を有することは、マイクロカプセルを水中に分散させた場合のゼータ電位を測定することで確認できる。ゼータ電位がマイナスである場合、マイクロカプセルの表面がアニオン電荷で覆われていることを指す。
<Anion charge>
The microcapsules of the present disclosure preferably have an anionic charge on the surface.
Whether the microcapsules have an anionic charge on the surface can be confirmed by measuring the zeta potential when the microcapsules are dispersed in water. When the zeta potential is negative, it indicates that the surface of the microcapsule is covered with an anionic charge.
 マイクロカプセルのゼータ電位としては、水中に分散した場合の値として、-80meV~-5meVであることが好ましく、-80meV~-11meVであることがより好ましく、-50meV~-10meVであることが更に好ましい。 The zeta potential of the microcapsules, when dispersed in water, is preferably from -80 meV to -5 meV, more preferably from -80 meV to -11 meV, further preferably from -50 meV to -10 meV. preferable.
 「ゼータ電位」(z)は、特殊な測定技術によって測定される、溶液中の帯電物体によって生成される見掛けの静電位を意味する。ゼータ電位の論理的基本及び実際の関連性の詳細な考察は、例えば、「Colloid Science:Zeta Potential in Colloid Sciences:Principles and Applications」(Hunter Robert J.;Editor.;Publisher(Academic Press,London);1981;p 1988)に記載されている。物体のゼータ電位は、物体の表面からある程度の距離で測定され、一般に表面自体での静電位を超えない。しかしながら、その値は、溶液中にある他の物体、特に複数の結合部位を有する分子との静電的相互作用を確立する物体の能力の好適な尺度となり得る。 “Zeta potential” (z) means the apparent electrostatic potential generated by a charged object in a solution, measured by a special measurement technique. For a detailed discussion of the logical basis and actual relevance of the zeta potential, see, for example, "Colloid \ Science: Zeta \ Potential \ in \ Colloid \ Sciences: Principles \ Applications \ Applications" (Hunter @ Robert, J .; Deb. 1981; p @ 1988). The zeta potential of an object is measured at some distance from the surface of the object and generally does not exceed the electrostatic potential at the surface itself. However, that value can be a good measure of the ability of an object to establish electrostatic interactions with other objects in solution, especially molecules with multiple binding sites.
 ゼータ電位は、相対測定値であり、値は測定方法に依存する傾向がある。本開示において、ゼータ電位は、以下の方法により測定される値である。
 a.装置はELSZ-2000ZS(大塚電子株式会社製)を用いる。
 b.装置の設定は以下の通りである。
 c.試料の調製手順は以下の通りである。
 (i)対象とするマイクロカプセルを含有するスラリーをカプセル濃度として0.5質量%となるように水に加え、スラリーを希釈する。測定濃度は必要に応じて、計測率が自動検出により好ましい範囲になるように調整する。
 (ii)希釈した試料のゼータ電位を、試料を濾過せずに測定する。
 (iii)濾過したスラリーを標準セルユニット(大塚電子株式会社製)に注入し、セルを装置に挿入する。試験温度を25℃に設定する。
 (iv)温度が安定してから(通常3~5分後)測定を開始する。それぞれの試料に
ついて、5回の測定を行うように設定し、測定する。
 d.本開示におけるゼータ電位は、各スラリーに対して3回の測定値の平均として「mV」を単位として測定される値である。
 上記のもと、マイクロカプセルのゼータ電位は、ELSZ-2000ZS(大塚電子株式会社製)を用いて測定することができる。
Zeta potential is a relative measurement and the value tends to depend on the method of measurement. In the present disclosure, the zeta potential is a value measured by the following method.
a. The apparatus uses ELSZ-2000ZS (manufactured by Otsuka Electronics Co., Ltd.).
b. The device settings are as follows.
c. The procedure for preparing the sample is as follows.
(I) The slurry containing the target microcapsules is added to water so as to have a capsule concentration of 0.5% by mass to dilute the slurry. The measurement concentration is adjusted, if necessary, so that the measurement rate is in a preferable range by automatic detection.
(Ii) Measure the zeta potential of the diluted sample without filtering the sample.
(Iii) The filtered slurry is injected into a standard cell unit (manufactured by Otsuka Electronics Co., Ltd.), and the cell is inserted into the device. Set the test temperature to 25 ° C.
(Iv) The measurement is started after the temperature is stabilized (usually after 3 to 5 minutes). Each sample is set to perform five measurements, and the measurement is performed.
d. The zeta potential in the present disclosure is a value measured in units of “mV” as an average of three measurements for each slurry.
Based on the above, the zeta potential of the microcapsule can be measured using ELSZ-2000ZS (manufactured by Otsuka Electronics Co., Ltd.).
 マイクロカプセル表面にアニオン電荷を付与する方法としては、特に制限はなく、例えば、アニオン性基付与剤をシェルに結合させる方法、マイクロカプセル表面に表面アニオン化剤を用いてアニオン電荷を付与する方法等が挙げられる。中でも、作業効率の観点から、マイクロカプセル表面に表面アニオン化剤を用いてアニオン電荷を付与する方法が好ましい。 The method for imparting an anionic charge to the surface of the microcapsule is not particularly limited. For example, a method of binding an anionic group-imparting agent to a shell, a method of imparting an anionic charge to a surface of a microcapsule using a surface anionizing agent, and the like Is mentioned. Among them, a method of imparting an anionic charge to the surface of the microcapsule using a surface anionizing agent is preferable from the viewpoint of working efficiency.
 アニオン性基付与剤を用いてシェルの表面にアニオン性基を結合させる方法としては、以下の方法を一例として挙げることができる。
 即ち、溶媒、並びに、シェル材である3官能の脂肪族イソシアネート化合物及び2官能のイソシアネート化合物を撹拌混合して油相を調製する。続いて、水相として、アニオン性基付与剤(例えばリシン)を含む水溶液を調製する。調製した水相に油相を加えて分散して乳化し、得られた乳化液を加温して撹拌した後、冷却する。冷却後、塩基(例えば水酸化ナトリウム)の水溶液を添加し、表面にアニオン性基を有するマイクロカプセルの水分散液を得る。
 アニオン性基付与剤を含む水溶液は、乳化液を生成した後に添加してもよいし、塩基の水溶液を事前に水相に加えておいてもよい。
 なお、上記の各成分の含有量は、適宜変更することができる。
As a method for bonding an anionic group to the surface of the shell using an anionic group-imparting agent, the following method can be mentioned as an example.
That is, a solvent and a trifunctional aliphatic isocyanate compound and a bifunctional isocyanate compound which are shell materials are stirred and mixed to prepare an oil phase. Subsequently, an aqueous solution containing an anionic group imparting agent (for example, lysine) is prepared as an aqueous phase. The oil phase is added to the prepared aqueous phase, dispersed and emulsified, and the resulting emulsion is heated, stirred, and cooled. After cooling, an aqueous solution of a base (for example, sodium hydroxide) is added to obtain an aqueous dispersion of microcapsules having an anionic group on the surface.
The aqueous solution containing the anionic group imparting agent may be added after the emulsion is formed, or the aqueous solution of the base may be added to the aqueous phase in advance.
In addition, the content of each of the above components can be appropriately changed.
(アニオン性基付与剤)
 アニオン性基付与剤としては、特に制限はなく、例えば、リシン、アスパラギン酸、グルタミン酸(以上、富士フイルム和光純薬株式会社製)等が挙げられる。
(Anionic group imparting agent)
The anionic group-providing agent is not particularly limited, and examples thereof include lysine, aspartic acid, and glutamic acid (all manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.).
 マイクロカプセル表面に表面アニオン化剤を用いてアニオン電荷を付与する方法としては、特に制限はなく、例えば、表面アニオン化剤を用いてマイクロカプセル表面に保護コロイドを形成する方法が好ましい。
 保護コロイドとは、マイクロカプセル表面に存在することでマイクロカプセル表面にアニオン電荷を付与できるコロイドをいう。
The method for imparting an anionic charge to the surface of the microcapsules using a surface anionizing agent is not particularly limited, and for example, a method of forming a protective colloid on the microcapsule surface using a surface anionizing agent is preferable.
The protective colloid refers to a colloid that can impart an anionic charge to the surface of the microcapsule when present on the surface of the microcapsule.
(表面アニオン化剤)
 表面アニオン化剤としては、マイクロカプセル表面にアニオン電荷を付与できるものであれば特に制限はなく、アニオン性水溶性ポリマー(アニオン変性ポリビニルアルコール、カルボキシメチルセルロース、カラギーナンなどのアニオン性多糖類、ポリアクリル酸ナトリウムおよび他のモノマーとの共重合体、ポリマレイン酸ナトリウム及び他のモノマーとの共重合体等)及びアニオン性界面活性剤(ドデシル硫酸ナトリウム、ラウリル硫酸ナトリウム等)などが挙げられる。
(Surface anionizing agent)
The surface anionizing agent is not particularly limited as long as it can impart an anionic charge to the surface of the microcapsules. Anionic water-soluble polymers (anionic polysaccharides such as anion-modified polyvinyl alcohol, carboxymethyl cellulose, carrageenan, polyacrylic acid) And copolymers of sodium and other monomers, copolymers of sodium polymaleate and other monomers, and anionic surfactants (such as sodium dodecyl sulfate and sodium lauryl sulfate).
 本開示のマイクロカプセル含有組成物におけるマイクロカプセルは、マイクロカプセル表面へのアニオン電荷付与の点から、表面の少なくとも一部にアニオン変性ポリビニルアルコールを有していることが好ましい。 マ イ ク ロ The microcapsules in the microcapsule-containing composition of the present disclosure preferably have anion-modified polyvinyl alcohol on at least a part of the surface from the viewpoint of imparting an anionic charge to the surface of the microcapsules.
 表面アニオン化剤を用いてマイクロカプセル表面に保護コロイドを形成する方法としては、例えば以下の方法が挙げられる。但し、本開示においては、以下の方法に限定されるものではない。
 まず、溶媒と、シェル材である3官能の脂肪族イソシアネート化合物及び2官能のイソシアネート化合物と、を撹拌混合して、油相を調製する。続いて、水相として、表面アニオン化剤(例えばアニオン変性ポリビニルアルコール)を含む水溶液を調製する。調製した水相に油相を加えて分散させて乳化し、生成した乳化液を加温して撹拌し、冷却する。冷却後、塩基(例えば水酸化ナトリウム水溶液)を添加し、表面に保護コロイドを有するマイクロカプセルの水分散液を得る。
 なお、上記した各成分の含有量は、適宜変更することができる。
Examples of a method for forming a protective colloid on the surface of the microcapsule using a surface anionizing agent include the following methods. However, the present disclosure is not limited to the following method.
First, an oil phase is prepared by stirring and mixing a solvent, a trifunctional aliphatic isocyanate compound and a bifunctional isocyanate compound which are shell materials. Subsequently, an aqueous solution containing a surface anionizing agent (for example, anion-modified polyvinyl alcohol) is prepared as an aqueous phase. The oil phase is added to the prepared aqueous phase, dispersed and emulsified, and the resulting emulsion is heated, stirred, and cooled. After cooling, a base (for example, aqueous sodium hydroxide solution) is added to obtain an aqueous dispersion of microcapsules having a protective colloid on the surface.
In addition, the content of each component described above can be appropriately changed.
 アニオン変性ポリビニルアルコールは、上市されている市販品を用いることができる。
 市販品の例としては、クラレポバールKM-618(株式会社クラレ製)、クラレポバールKL-318(株式会社クラレ製)、ゴーセネックスL-3266(日本合成化学株式会社製)、ゴーセネックスT-330(日本合成化学株式会社製)等が挙げられる。中でも、アニオン性付与の観点から、アニオン変性ポリビニルアルコールとしては、クラレポバールKM-618、ゴーセネックスL-3266が好ましく、クラレポバールKM-618がより好ましい。
As the anion-modified polyvinyl alcohol, commercially available products can be used.
Examples of commercially available products include Kuraray Povar KM-618 (manufactured by Kuraray Co., Ltd.), Kuraray Povar KL-318 (manufactured by Kuraray Co., Ltd.), Gosenex L-3266 (manufactured by Nippon Synthetic Chemical Co., Ltd.), and Gosenex T-330 (Japan Synthetic Chemical Co., Ltd.). Above all, from the viewpoint of imparting anionic properties, as the anion-modified polyvinyl alcohol, Kuraray Povar KM-618 and Gohsenex L-3266 are preferable, and Kuraray Povar KM-618 is more preferable.
~マイクロカプセルの物性~
 マイクロカプセルの体積標準のメジアン径(D50)は、0.1μm~100μmであることが好ましい。
 メジアン径(D50)が0.1μm以上であることで、マイクロカプセルが、付着する対象物(毛、繊維等)が有する微細な空隙に入り込むことで、割れにくくなることを防ぐことができる。メジアン径(D50)が100μm以下であることで、付着性の低下を防ぐことができる。
 上記の観点から、マイクロカプセルの体積標準のメジアン径(D50)は、1μm~70μmであることが好ましく、5μm~50μmであることがより好ましく、5μm~30μmであることが更に好ましい。
 マイクロカプセルの体積標準のメジアン径は、分散条件を変更すること等により制御することができる。
 ここで、マイクロカプセルの体積標準のメジアン径とは、マイクロカプセル全体を体積累計が50%となる粒子径を閾値に2つに分けた場合に、大径側と小径側での粒子の体積の合計が等量となる径をいう。
 本開示において、マイクロカプセルの体積標準のメジアン径は、マイクロトラックMT3300EXII(日機装株式会社製)を用いて測定される。
-Physical properties of microcapsules-
The volume standard median diameter (D50) of the microcapsules is preferably 0.1 μm to 100 μm.
When the median diameter (D50) is 0.1 μm or more, it is possible to prevent the microcapsules from entering into minute voids of an attached object (hair, fiber, or the like), thereby preventing the microcapsules from becoming difficult to be broken. When the median diameter (D50) is 100 μm or less, a decrease in adhesion can be prevented.
In view of the above, the volume standard median diameter (D50) of the microcapsules is preferably 1 μm to 70 μm, more preferably 5 μm to 50 μm, and even more preferably 5 μm to 30 μm.
The median diameter of the volume standard of the microcapsules can be controlled by changing the dispersion conditions and the like.
Here, the median diameter of the volume standard of the microcapsule is defined as the volume of the particles on the large diameter side and the small diameter side when the entire microcapsule is divided into two thresholds with the particle diameter at which the cumulative volume becomes 50%. It means the diameter whose sum is equivalent.
In the present disclosure, the median diameter of the volume standard of the microcapsule is measured using Microtrack MT3300EXII (manufactured by Nikkiso Co., Ltd.).
 本開示のマイクロカプセルについて、「単分散性が高い」とは、粒径分布の範囲が狭い(すなわち、粒径のバラツキが少ない)ことを意味し、「単分散性が低い」とは、粒径分布の範囲が広い(すなわち、粒径のバラツキが多い)ことを意味する。
 より具体的には、マイクロカプセルの単分散性の高低は、CV値(coefficient of variation;変動係数)を用いて表すことができる。ここで、CV値とは、下記式で求められる値である。
 CV値(%)=(粒径分布の標準偏差/体積平均粒径)×100
 CV値が低いほどマイクロカプセルの単分散性が高く、CV値が高いほどマイクロカプセルの単分散性が低いことが表される。
 本開示において、体積平均粒径及び粒径分布の標準偏差(以下、単に標準偏差ともいう)は、マイクロトラックMT3300EXII(日機装株式会社製)を用いて算出される。
With respect to the microcapsules of the present disclosure, “highly monodisperse” means that the range of the particle size distribution is narrow (that is, there is little variation in particle size), and “low monodispersity” means that the particle size is low. It means that the range of the size distribution is wide (that is, the variation of the particle size is large).
More specifically, the degree of monodispersity of the microcapsules can be expressed using a CV value (coefficient of variation; coefficient of variation). Here, the CV value is a value obtained by the following equation.
CV value (%) = (standard deviation of particle size distribution / volume average particle size) × 100
The lower the CV value, the higher the monodispersity of the microcapsules, and the higher the CV value, the lower the monodispersity of the microcapsules.
In the present disclosure, the volume average particle size and the standard deviation of the particle size distribution (hereinafter, also simply referred to as the standard deviation) are calculated using Microtrack MT3300EXII (manufactured by Nikkiso Co., Ltd.).
 例えば、マイクロカプセルの「単分散性が高い」とは、マイクロカプセルの粒径分布のCV値が、好ましくは40%以下、より好ましくは35%以下であることをいうこともできる。CV値が上記範囲である場合、マイクロカプセルの粒径の単分散性が高いため、マイクロカプセルの取扱い、機能発現の制御などが容易になる。 For example, “high monodispersity” of microcapsules can also mean that the CV value of the particle size distribution of the microcapsules is preferably 40% or less, more preferably 35% or less. When the CV value is in the above range, the monodispersity of the particle diameter of the microcapsules is high, so that the handling of the microcapsules and the control of the function development are facilitated.
≪マイクロカプセル含有組成物≫
 本開示のマイクロカプセル含有組成物は、少なくとも、既述の本開示のマイクロカプセルと、水系溶媒と、を含有する。本開示のマイクロカプセル含有組成物は、必要に応じて、更に、カチオン性界面活性剤、アニオン性基付与剤、表面アニオン化剤等を含有することが好ましく、必要に応じて、添加物等の他の成分を含有していてもよい。
<< composition containing microcapsules >>
The microcapsule-containing composition of the present disclosure contains at least the above-described microcapsules of the present disclosure and an aqueous solvent. The microcapsule-containing composition of the present disclosure, if necessary, preferably further contains a cationic surfactant, an anionic group-providing agent, a surface anionizing agent, and the like. Other components may be contained.
 本開示のマイクロカプセル含有組成物に含まれるマイクロカプセルの詳細については、既述の通りであり、好ましい態様も同様である。 マ イ ク ロ The details of the microcapsules contained in the microcapsule-containing composition of the present disclosure are as described above, and preferred embodiments are also the same.
 マイクロカプセルのマイクロカプセル含有組成物中における含有比率としては、特に制限されるものではなく、目的又は場合に応じて選択すればよく、例えば、マイクロカプセル含有組成物の全固形分に対して、20質量%~50質量%とすることができる。 The content ratio of the microcapsules in the microcapsule-containing composition is not particularly limited, and may be selected according to the purpose or case. % By mass to 50% by mass.
(水系溶媒)
 水系溶媒としては、水、水及びアルコール等が挙げられ、イオン交換水等を用いることができる。
 水系溶媒のマイクロカプセル含有組成物中における含有比率としては、特に制限されるものではなく、目的又は場合に応じて選択すればよく、例えば、マイクロカプセル含有組成物の全固形分に対して、50質量%~70質量%とすることができる。
(Aqueous solvent)
Examples of the aqueous solvent include water, water, and alcohol, and ion-exchanged water can be used.
The content ratio of the aqueous solvent in the microcapsule-containing composition is not particularly limited, and may be selected according to the purpose or case. % By mass to 70% by mass.
 本開示のマイクロカプセル含有組成物は、マイクロカプセルが表面にアニオン電荷を有し、かつ、更にカチオン性界面活性剤を含有する態様が好ましい。
 これにより、マイクロカプセルとカチオン性界面活性剤との間に相互作用が得られ、マイクロカプセルの周囲にカチオン性界面活性剤の正電荷を付与することができる。結果、アニオン電荷を有する付着対象物(例えば毛又は繊維)に対するマイクロカプセルの付着性を向上することが可能になる。
The microcapsule-containing composition of the present disclosure preferably has an embodiment in which the microcapsules have an anionic charge on the surface and further contain a cationic surfactant.
Thereby, an interaction is obtained between the microcapsules and the cationic surfactant, and a positive charge of the cationic surfactant can be provided around the microcapsules. As a result, it is possible to improve the adhesion of the microcapsule to an attachment target (for example, hair or fiber) having an anionic charge.
(カチオン性界面活性剤)
 本開示のマイクロカプセル含有組成物は、マイクロカプセル表面にアニオン電荷が付与されている場合には、カチオン性界面活性剤を含有していることが好ましい。これにより、マイクロカプセルのアニオン電荷(マイナス電荷)と、カチオン性界面活性剤のプラス電荷と、が相互作用によって引き合うことで、マイクロカプセルをカチオン性界面活性剤のプラス電荷が覆う。結果、カプセル全体として、プラス電荷を生じさせることができ、マイクロカプセルのプラス電荷とマイクロカプセルが付着する付着対象物(例えば繊維又は毛)が有するマイナス電荷とが引き合い、付着対象物に対するマイクロカプセルの付着性をより向上させることができる。
(Cationic surfactant)
The microcapsule-containing composition of the present disclosure preferably contains a cationic surfactant when the surface of the microcapsule is provided with an anionic charge. As a result, the anion charge (negative charge) of the microcapsules and the positive charge of the cationic surfactant attract each other through the interaction, so that the positive charge of the cationic surfactant covers the microcapsules. As a result, a positive charge can be generated as a whole capsule, and the positive charge of the microcapsule and the negative charge of the adhered object (for example, fiber or hair) to which the microcapsule adheres are attracted, and the microcapsule with respect to the adhered object Adhesion can be further improved.
 カチオン界面活性剤は、特に限定されず、従来公知のものを用いることができ、例えば、アルキルアミン塩、第四級アンモニウム塩(例えば、ヘキサデシルトリメチルアンモニウムクロライド)、ポリオキシエチレンアルキルアミン塩、ポリエチレンポリアミン誘導体が挙げられる。 The cationic surfactant is not particularly limited, and a conventionally known one can be used. Examples thereof include an alkylamine salt, a quaternary ammonium salt (for example, hexadecyltrimethylammonium chloride), a polyoxyethylene alkylamine salt, and polyethylene. And polyamine derivatives.
 カチオン性界面活性剤としては、上市されている市販品を用いてもよい。市販品の例としては、カチオンEQ-01D(日油株式会社)、カチオンSF-10(三洋化成工業株式会社製)、カチオンSF-75PA(三洋化成工業株式会社製)、アデカミンSF-108(株式会社ADEKA製)等が挙げられる。 As the cationic surfactant, commercially available products may be used. Examples of commercially available products include Cation EQ-01D (NOF Corporation), Cation SF-10 (manufactured by Sanyo Chemical Industry Co., Ltd.), Cation SF-75PA (manufactured by Sanyo Chemical Industry Co., Ltd.), and Adecamine SF-108 (stock (Made by the company ADEKA).
-分散媒-
 本開示のマイクロカプセル含有組成物は、水系溶媒以外の他の分散媒を含んでもよい。
 マイクロカプセル含有組成物に他の分散媒を更に含むことで、マイクロカプセルは、種々の用途に用いる際に容易に配合することができる。
 マイクロカプセル含有組成物における他の分散媒は、組成物の使用目的に応じて適宜選択することができる。他の分散媒としては、マイクロカプセルの壁材に影響を与えない液状成分であることが好ましい。
 好ましい他の分散媒としては、粘度調整剤、安定化剤などが挙げられる。
 なお、本開示のマイクロカプセル含有組成物における分散媒の含有量は、用途に応じて適宜選択すればよい。
-Dispersion medium-
The microcapsule-containing composition of the present disclosure may include a dispersion medium other than the aqueous solvent.
By further including another dispersion medium in the microcapsule-containing composition, the microcapsules can be easily blended when used for various applications.
Other dispersion media in the microcapsule-containing composition can be appropriately selected depending on the purpose of use of the composition. The other dispersion medium is preferably a liquid component that does not affect the wall material of the microcapsule.
Preferred other dispersion media include a viscosity modifier, a stabilizer and the like.
Note that the content of the dispersion medium in the microcapsule-containing composition of the present disclosure may be appropriately selected depending on the use.
-他の成分-
 本開示のマイクロカプセル含有組成物は、上記した成分以外の他の成分を含有することができる。
 他の成分は、特に制限がなく、目的又は場合により適宜選択すればよい。他の成分としては、例えば、上記カチオン性界面活性剤以外の界面活性剤、架橋剤、潤滑剤、紫外線吸収剤、酸化防止剤、帯電防止剤等が挙げられる。
-Other components-
The microcapsule-containing composition of the present disclosure can contain components other than the components described above.
Other components are not particularly limited, and may be appropriately selected depending on the purpose or case. Other components include, for example, surfactants other than the above-mentioned cationic surfactants, crosslinking agents, lubricants, ultraviolet absorbers, antioxidants, antistatic agents and the like.
<マイクロカプセルの製造方法>
 本開示のマイクロカプセルの製造は、公知の方法により行うことができ、例えば以下に示す製造方法で製造することができる。但し、本開示は、以下の方法に制限されるものではない。
<Method for producing microcapsules>
The microcapsules of the present disclosure can be manufactured by a known method, for example, the following manufacturing method. However, the present disclosure is not limited to the following method.
 本開示のマイクロカプセルは、溶媒並びにシェル材である3官能以上のイソシアネート化合物及び2官能のイソシアネート化合物を含む油相を、乳化剤及び(必要に応じてアニオン性基付与剤又は表面アニオン化剤)を含む水相に分散して乳化液を調製する工程(乳化工程)と、シェル材を油相と水相との界面で重合させてシェルを形成してコアを内包したマイクロカプセルを形成する工程(カプセル化工程)と、を有する方法で作製することができる。
 また、本開示のマイクロカプセルにおける破壊変形率は、上記3官能以上のイソシアネート化合物及び上記2官能のイソシアネート化合物の添加比率を適宜調整することで達成することができる。
 アニオン性基付与剤は、乳化工程後に添加してもよい。
The microcapsules according to the present disclosure include a solvent and an oil phase containing a trifunctional or higher functional isocyanate compound and a bifunctional isocyanate compound as a shell material, an emulsifier and (if necessary, an anionic group-providing agent or a surface anionizing agent). A step of preparing an emulsion by dispersing in an aqueous phase containing (an emulsifying step) and a step of forming a shell by polymerizing a shell material at an interface between an oil phase and an aqueous phase to form microcapsules containing a core ( (Encapsulation step).
In addition, the fracture deformation rate in the microcapsule of the present disclosure can be achieved by appropriately adjusting the addition ratio of the trifunctional or more isocyanate compound and the bifunctional isocyanate compound.
The anionic group imparting agent may be added after the emulsification step.
[乳化工程]
 乳化工程では、溶媒並びにシェル材である3官能のイソシアネート化合物及び2官能のイソシアネート化合物を含む油相を、乳化剤及び(必要に応じてアニオン性基付与剤又は表面アニオン化剤)を含む水相に分散して乳化液を調製する。
 油相が溶媒を含むことにより、マイクロカプセルの単分散性が高められる。
[Emulsification step]
In the emulsification step, a solvent and an oil phase containing a trifunctional isocyanate compound and a bifunctional isocyanate compound as a shell material are converted into an aqueous phase containing an emulsifier and (if necessary, an anionic group-providing agent or a surface anionizing agent). Disperse to prepare an emulsion.
When the oil phase contains a solvent, the monodispersibility of the microcapsules is enhanced.
~乳化液~
 本開示の乳化液は、溶媒とシェル材とを含む油相を、乳化剤を含む水相に分散させることにより調製することができる。
~ Emulsion ~
The emulsion of the present disclosure can be prepared by dispersing an oil phase containing a solvent and a shell material in an aqueous phase containing an emulsifier.
(油相)
 本開示における油相は、少なくとも、溶媒と、シェル材である3官能のイソシアネート化合物及び2官能のイソシアネート化合物と、を含み、必要に応じて、香料、補助溶媒、添加剤などの他の成分が含まれてもよい。香料、補助溶媒、及び添加剤の詳細については、既述のマイクロカプセルの項に記載した通りである。
(Oil phase)
The oil phase in the present disclosure includes at least a solvent and a trifunctional isocyanate compound and a bifunctional isocyanate compound as shell materials, and if necessary, other components such as a fragrance, an auxiliary solvent, and an additive. May be included. The details of the fragrance, the auxiliary solvent, and the additives are as described in the section on the microcapsules described above.
-溶媒-
 本開示における製造方法で使用することができる溶媒は、既述のマイクロカプセルの項に記載した通りである。
-solvent-
Solvents that can be used in the production method of the present disclosure are as described in the section on microcapsules described above.
-シェル材- 
 本開示におけるシェル材は、3官能のイソシアネート化合物及び2官能のイソシアネート化合物を含む。
 シェル材の油相中における含有量としては、油相の全質量に対して、0.1質量%超20質量%以下が好ましく、0.5質量%~15質量%がより好ましい。
 シェル材の濃度は、マイクロカプセルの大きさ、壁厚等に鑑みて適宜調整することができる。
-Shell material-
The shell material in the present disclosure includes a trifunctional isocyanate compound and a bifunctional isocyanate compound.
The content of the shell material in the oil phase is preferably more than 0.1% by mass and not more than 20% by mass, more preferably 0.5% by mass to 15% by mass, based on the total mass of the oil phase.
The concentration of the shell material can be appropriately adjusted in consideration of the size, wall thickness, and the like of the microcapsules.
(水相)
 本開示における水相は、少なくとも水系溶媒及び乳化剤を含むことが好ましく、マイクロカプセルの表面にアニオン電荷を付与するための成分として例えばアニオン性基付与剤又は表面アニオン化剤を更に含むことができる。
(Aqueous phase)
The aqueous phase in the present disclosure preferably contains at least an aqueous solvent and an emulsifier, and may further contain, for example, an anionic group imparting agent or a surface anionizing agent as a component for imparting an anionic charge to the surface of the microcapsules.
-水系媒体-
 本開示の水系媒体は、水、水及びアルコール等が挙げられ、イオン交換水等を用いることができる。
 水系媒体の水相中における含有量としては、水相に油相を乳化分散して得られる乳化液の全質量に対して、20質量%~80質量%が好ましく、30質量%~70質量%がより好ましく、40質量%~60質量%が更に好ましい。
-Aqueous medium-
Examples of the aqueous medium of the present disclosure include water, water, and alcohol, and ion-exchanged water can be used.
The content of the aqueous medium in the aqueous phase is preferably from 20% by mass to 80% by mass, more preferably from 30% by mass to 70% by mass, based on the total mass of the emulsion obtained by emulsifying and dispersing the oil phase in the aqueous phase. Is more preferably 40% by mass to 60% by mass.
-乳化剤-
 乳化剤には、分散剤もしくは界面活性剤又はこれらの組み合わせが含まれる。
 分散剤としては、例えば、ポリビニルアルコール及びその変性物(例えばアニオン変性ポリビニルアルコール)、ポリアクリル酸アミド及びその誘導体、エチレン-酢酸ビニル共重合体、スチレン-無水マレイン酸共重合体、エチレン-無水マレイン酸共重合体、イソブチレン-無水マレイン酸共重合体、ポリビニルピロリドン、エチレン-アクリル酸共重合体、酢酸ビニル-アクリル酸共重合体、カルボキシメチルセルロース、メチルセルロース、カゼイン、ゼラチン、澱粉誘導体、アラビアゴム及びアルギン酸ナトリウムなどを挙げることができ、ポリビニルアルコールが好ましい。
 分散剤は、シェル材と反応しないこと又は極めて反応し難いことが好ましく、例えばゼラチンなどの分子鎖中に反応性のアミノ基を有するものは、予め反応性を失わせる処理をしておくことが好ましい。
-emulsifier-
Emulsifiers include dispersants or surfactants or combinations thereof.
Examples of the dispersing agent include polyvinyl alcohol and modified products thereof (eg, anion-modified polyvinyl alcohol), polyacrylamide and derivatives thereof, ethylene-vinyl acetate copolymer, styrene-maleic anhydride copolymer, ethylene-maleic anhydride. Acid copolymer, isobutylene-maleic anhydride copolymer, polyvinylpyrrolidone, ethylene-acrylic acid copolymer, vinyl acetate-acrylic acid copolymer, carboxymethylcellulose, methylcellulose, casein, gelatin, starch derivatives, gum arabic and alginic acid Sodium and the like can be mentioned, and polyvinyl alcohol is preferable.
It is preferable that the dispersant does not react with the shell material or very hardly reacts.For example, those having a reactive amino group in a molecular chain such as gelatin may be subjected to a treatment for losing reactivity in advance. preferable.
 界面活性剤としては、ノニオン界面活性剤、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤等が挙げられる。界面活性剤は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。 Examples of the surfactant include a nonionic surfactant, an anionic surfactant, a cationic surfactant, an amphoteric surfactant and the like. The surfactants may be used alone or in a combination of two or more.
 ノニオン界面活性剤は、特に制限されず、従来公知のものを用いることができる。
 ノニオン界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル系化合物、ポリオキシエチレンアルキルフェニルエーテル系化合物、ポリオキシエチレンポリスチリルフェニルエーテル系化合物、ポリオキシエチレンポリオキシプロピレンアルキルエーテル系化合物、グリセリン脂肪酸部分エステル系化合物、ソルビタン脂肪酸部分エステル系化合物、ペンタエリスリトール脂肪酸部分エステル系化合物、プロピレングリコールモノ脂肪酸エステル系化合物、ショ糖脂肪酸部分エステル系化合物、ポリオキシエチレンソルビタン脂肪酸部分エステル系化合物、ポリオキシエチレンソルビトール脂肪酸部分エステル系化合物、ポリエチレングリコール脂肪酸エステル系化合物、ポリグリセリン脂肪酸部分エステル系化合物、ポリオキシエチレン化ひまし油系化合物、ポリオキシエチレングリセリン脂肪酸部分エステル系化合物、脂肪酸ジエタノールアミド系化合物、N,N-ビス-2-ヒドロキシアルキルアミン系化合物、ポリオキシエチレンアルキルアミン、トリエタノールアミン脂肪酸エステル、トリアルキルアミンオキシド、ポリエチレングリコール、ポリエチレングリコールとポリプロピレングリコールの共重合体が挙げられる。
The nonionic surfactant is not particularly limited, and a conventionally known nonionic surfactant can be used.
Nonionic surfactants include, for example, polyoxyethylene alkyl ether compounds, polyoxyethylene alkyl phenyl ether compounds, polyoxyethylene polystyryl phenyl ether compounds, polyoxyethylene polyoxypropylene alkyl ether compounds, and glycerin fatty acid moieties. Ester compound, sorbitan fatty acid partial ester compound, pentaerythritol fatty acid partial ester compound, propylene glycol monofatty acid ester compound, sucrose fatty acid partial ester compound, polyoxyethylene sorbitan fatty acid partial ester compound, polyoxyethylene sorbitol fatty acid Partial ester compounds, polyethylene glycol fatty acid ester compounds, polyglycerin fatty acid partial ester compounds, polio Sethylenated castor oil compound, polyoxyethylene glycerin fatty acid partial ester compound, fatty acid diethanolamide compound, N, N-bis-2-hydroxyalkylamine compound, polyoxyethylene alkylamine, triethanolamine fatty acid ester, trialkyl Examples include amine oxide, polyethylene glycol, and a copolymer of polyethylene glycol and polypropylene glycol.
 アニオン界面活性剤は、特に限定されず、従来公知のものを用いることができる。
 アニオン界面活性剤としては、例えば、脂肪酸塩、アビエチン酸塩、ヒドロキシアルカンスルホン酸塩、アルカンスルホン酸塩、ジアルキルスルホ琥珀酸エステル塩、直鎖アルキルベンゼンスルホン酸塩、分岐鎖アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルキルフェノキシポリオキシエチレンプロピルスルホン酸塩、ポリオキシエチレンアルキルスルホフェニルエーテル塩、N-メチル-N-オレイルタウリンナトリウム塩、N-アルキルスルホコハク酸モノアミド二ナトリウム塩、石油スルホン酸塩、硫酸化牛脂油、脂肪酸アルキルエステルの硫酸エステル塩、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、脂肪酸モノグリセリド硫酸エステル塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンスチリルフェニルエーテル硫酸エステル塩、アルキルリン酸エステル塩、ポリオキシエチレンアルキルエーテルリン酸エステル塩、ポリオキシエチレンアルキルフェニルエーテルリン酸エステル塩、スチレン-無水マレイン酸共重合物の部分けん化物、オレフィン-無水マレイン酸共重合物の部分けん化物、ナフタレンスルホン酸塩ホルマリン縮合物、アルキルポリオキシアルキレンスルホアルキルエーテルの塩、アルケニルポリオキシアルキレンスルホアルキルエーテルの塩などが挙げられる。
The anionic surfactant is not particularly limited, and a conventionally known anionic surfactant can be used.
Examples of the anionic surfactant include fatty acid salts, abietic acid salts, hydroxyalkanesulfonic acid salts, alkanesulfonic acid salts, dialkylsulfosuccinic acid ester salts, linear alkylbenzenesulfonic acid salts, branched alkylbenzenesulfonic acid salts, and alkylnaphthalenes. Sulfonate, alkylphenoxy polyoxyethylene propyl sulfonate, polyoxyethylene alkyl sulfophenyl ether salt, N-methyl-N-oleyl taurine sodium salt, N-alkyl sulfosuccinic acid monoamide disodium salt, petroleum sulfonate, sulfuric acid Beef tallow oil, fatty acid alkyl ester sulfates, alkyl sulfates, polyoxyethylene alkyl ether sulfates, fatty acid monoglyceride sulfates, polyoxyethylene alkyls Phenyl ether sulfate, polyoxyethylene styryl phenyl ether sulfate, alkyl phosphate, polyoxyethylene alkyl ether phosphate, polyoxyethylene alkyl phenyl ether phosphate, styrene-maleic anhydride copolymer Saponified product, partially saponified olefin-maleic anhydride copolymer, naphthalene sulfonate formalin condensate, salt of alkyl polyoxyalkylene sulfoalkyl ether, salt of alkenyl polyoxyalkylene sulfoalkyl ether, and the like. .
 カチオン界面活性剤は、特に限定されず、従来公知のものを用いることができる。
 カチオン界面活性剤としては、例えば、アルキルアミン塩、第四級アンモニウム塩(例えば、ヘキサデシルトリメチルアンモニウムクロライド)、ポリオキシエチレンアルキルアミン塩、ポリエチレンポリアミン誘導体が挙げられる。
The cationic surfactant is not particularly limited, and a conventionally known cationic surfactant can be used.
Examples of the cationic surfactant include an alkylamine salt, a quaternary ammonium salt (for example, hexadecyltrimethylammonium chloride), a polyoxyethylene alkylamine salt, and a polyethylenepolyamine derivative.
 両性界面活性剤は、特に限定されず、従来公知のものを用いることができる。
 両性界面活性剤としては、例えば、カルボキシベタイン、アミノカルボン酸、スルホベタイン、アミノ硫酸エステル、イミタゾリンが挙げられる。
The amphoteric surfactant is not particularly limited, and a conventionally known amphoteric surfactant can be used.
Examples of the amphoteric surfactant include carboxybetaine, aminocarboxylic acid, sulfobetaine, aminosulfate, and imitazoline.
 乳化剤の濃度は、乳化液の全質量に対して、0質量%超20質量%以下が好ましく、0.005質量%以上10質量%以下がより好ましく、0.01質量%以上10質量%以下が更に更に好ましく、1質量%以上5質量%以下が更に好ましい。 The concentration of the emulsifier is preferably more than 0% by mass and 20% by mass or less, more preferably 0.005% by mass or more and 10% by mass or less, and more preferably 0.01% by mass or more and 10% by mass or less based on the total mass of the emulsifier. More preferably, the content is 1% by mass or more and 5% by mass or less.
-アニオン性基付与剤又は表面アニオン化剤-
 本開示における水相は、アニオン性基付与剤又は表面アニオン化剤を含むことが好ましい。アニオン性基付与剤及び表面アニオン化剤の詳細については、既述のマイクロカプセルの項において説明した通りである。
 なお、一部のアニオン性基付与剤及び表面アニオン化剤(例えば、アニオン変性ポリビニルアルコール)は、後述する乳化剤としても用いることができるため、一部のアニオン性基付与剤及び表面アニオン化剤を用いる場合には、後述する乳化剤を添加しなくてもよい。
-Anionic group imparting agent or surface anionizing agent-
The aqueous phase in the present disclosure preferably contains an anionic group imparting agent or a surface anionizing agent. The details of the anionic group-imparting agent and the surface anionizing agent are as described in the section of the microcapsule described above.
Note that some anionic group-providing agents and surface anionizing agents (for example, anion-modified polyvinyl alcohol) can also be used as an emulsifier described below. When used, an emulsifier described below need not be added.
 アニオン性基付与剤のシェルにおける含有量としては、シェル材の全質量に対して、0.5質量%~20質量%が好ましく、1質量%~10質量%がより好ましく、2.5質量%~7質量%がさらに好ましい。 The content of the anionic group imparting agent in the shell is preferably 0.5% by mass to 20% by mass, more preferably 1% by mass to 10% by mass, and more preferably 2.5% by mass with respect to the total mass of the shell material. -7% by mass is more preferred.
 表面アニオン化剤の含有量としては、水相の全質量に対して、1質量%~15質量%が好ましく、2質量%~12質量%がより好ましく、4質量%~10質量%が更に好ましい。 The content of the surface anionizing agent is preferably 1% by mass to 15% by mass, more preferably 2% by mass to 12% by mass, and still more preferably 4% by mass to 10% by mass based on the total mass of the aqueous phase. .
 水相は、必要に応じて、紫外線吸収剤、酸化防止剤、防腐剤などの他の成分を含有してもよい。他の成分を含有する場合の含有量は、水相の全質量に対して、0質量%超20質量%以下が好ましく、0.1質量%超15質量%以下がより好ましく、1質量%超10質量%以下が更に好ましい。 The aqueous phase may contain other components such as an ultraviolet absorber, an antioxidant, and a preservative, if necessary. When other components are contained, the content is preferably more than 0% by mass and 20% by mass or less, more preferably more than 0.1% by mass and 15% by mass or less, more preferably more than 1% by mass based on the total mass of the aqueous phase. 10 mass% or less is more preferable.
(分散)
 分散は、本開示の油相を油滴として本開示の水相に分散させること(乳化)をいう。分散は、油相と水相との分散に通常用いられる手段、例えば、ホモジナイザー、マントンゴーリー、超音波分散機、ディゾルバー、ケディーミル、又はその他の公知の分散装置を用いて行うことができる。
(dispersion)
Dispersion refers to dispersing (emulsifying) the oil phase of the present disclosure as oil droplets in the aqueous phase of the present disclosure. Dispersion can be performed using a means usually used for dispersing an oil phase and an aqueous phase, for example, a homogenizer, a Menton-Gawley, an ultrasonic disperser, a dissolver, a Keddy mill, or other known dispersing devices.
 水相に対する油相の混合比率(油相/水相;質量基準)としては、0.1~1.5が好ましく、0.2~1.2がより好ましく、0.4~1.0が更に好ましい。混合比率が0.1~1.5の範囲内であると、適度の粘度に保持でき、製造適性に優れ、乳化液の安定性に優れる。 The mixing ratio of the oil phase to the aqueous phase (oil phase / water phase; mass basis) is preferably 0.1 to 1.5, more preferably 0.2 to 1.2, and 0.4 to 1.0. More preferred. When the mixing ratio is in the range of 0.1 to 1.5, the viscosity can be maintained at an appropriate level, the production suitability is excellent, and the stability of the emulsion is excellent.
[カプセル化工程]
 本開示のマイクロカプセルの製造方法は、シェル材を油相と水相との界面で重合させてシェルを形成し、溶媒を内包するマイクロカプセルを形成する工程を含む。これにより、本開示の溶媒がシェルに内包されたマイクロカプセルが形成される。
[Encapsulation process]
The microcapsule manufacturing method of the present disclosure includes a step of forming a shell by polymerizing a shell material at an interface between an oil phase and an aqueous phase to form a microcapsule containing a solvent. Thereby, a microcapsule in which the solvent of the present disclosure is included in the shell is formed.
(重合)
 重合は、乳化液中の油相に含まれるシェル材を水相との界面で重合させる工程であり、これによりシェルが形成される。重合は、好ましくは加熱下で行われる。重合における反応温度は、通常は40℃~100℃が好ましく、50℃~80℃がより好ましい。また、重合の反応時間は、通常は0.5時間~10時間程度が好ましく、1時間~5時間程度がより好ましい。重合温度が高い程、重合時間は短くなるが、高温で分解するおそれのある内包成分やシェル材を使用する場合には、低温で作用する重合開始剤を選択して、比較的低温で重合させるのが望ましい。
(polymerization)
The polymerization is a step of polymerizing the shell material contained in the oil phase in the emulsion at the interface with the aqueous phase, whereby a shell is formed. The polymerization is preferably carried out under heating. The reaction temperature in the polymerization is usually preferably from 40 ° C to 100 ° C, more preferably from 50 ° C to 80 ° C. The reaction time of the polymerization is usually preferably about 0.5 to 10 hours, more preferably about 1 to 5 hours. The higher the polymerization temperature, the shorter the polymerization time, but when using an encapsulating component or shell material that may decompose at high temperature, select a polymerization initiator that works at low temperature and polymerize at relatively low temperature. It is desirable.
 重合工程中に、マイクロカプセル同士の凝集を防止するためには、水性溶液(例えば、水、酢酸水溶液など)を更に加えてマイクロカプセル同士の衝突確率を下げることが好ましく、充分な攪拌を行うことも好ましい。重合工程中に改めて凝集防止用の分散剤を添加してもよい。更に、必要に応じて、ニグロシン等の荷電調節剤、又はその他任意の補助剤を添加することができる。これらの補助剤は、シェルの形成時、又は任意の時点で添加することができる。 In order to prevent aggregation of the microcapsules during the polymerization step, it is preferable to further reduce the probability of collision between the microcapsules by further adding an aqueous solution (for example, water, an aqueous acetic acid solution, etc.), and perform sufficient stirring. Is also preferred. A dispersant for preventing aggregation may be added again during the polymerization step. Furthermore, if necessary, a charge control agent such as nigrosine or any other auxiliary agent can be added. These adjuvants can be added during the formation of the shell or at any time.
~マイクロカプセルの用途~
 本開示のマイクロカプセルは種々の用途に使用することができる。
 マイクロカプセルは、例えば、洗濯、ヘアケア、デイケア等の用途に適用することができる。
-Applications of microcapsules-
The microcapsules of the present disclosure can be used for various applications.
The microcapsules can be applied, for example, to uses such as laundry, hair care, and day care.
-洗濯-
 マイクロカプセル内にコア材として香料を含む本開示のマイクロカプセルは、例えば、マイクロカプセル含有組成物の形態で衣料用柔軟剤として用いることができる。つまり、本開示のマイクロカプセルは洗濯の用途に好適である。
 衣料を衣料用柔軟剤であるマイクロカプセル含有組成物に浸漬し、脱水、乾燥することで、マイクロカプセル含有組成物に含まれるマイクロカプセル及び必要に応じてカチオン性界面活性剤が衣料の繊維に吸着したり、繊維間の微細な空隙に入り込む等することにより衣料に保持される。これにより、衣類に対して、柔軟性、帯電防止性などが付与される。このように、本開示のマイクロカプセルは単独でも、カチオン性界面活性剤と共にでも、柔軟剤成分として機能する。また、マイクロカプセルからは、所望の時期に内包成分(香料等)が放出され得る。
-Washing-
The microcapsules of the present disclosure containing a fragrance as a core material in the microcapsules can be used, for example, in the form of a microcapsule-containing composition as a softener for clothing. That is, the microcapsules of the present disclosure are suitable for laundry applications.
By immersing the clothing in the microcapsule-containing composition which is a softener for clothing, dehydrating and drying, the microcapsules contained in the microcapsule-containing composition and, if necessary, the cationic surfactant are adsorbed to the fibers of the clothing. Or retained in the garment by penetrating into fine voids between the fibers. Thereby, flexibility, antistatic property, etc. are provided to the garment. Thus, the microcapsules of the present disclosure, alone or with a cationic surfactant, function as a softener component. In addition, the encapsulated components (such as fragrances) can be released from the microcapsules at a desired time.
 衣料用柔軟剤により処理された衣料を着用した場合、柔らかな着心地に加え、マイクロカプセル内に内包成分(香料等)が安定に含まれるため、経時後であっても衣服を擦るなどして応力を与え、マイクロカプセルを崩壊させることで、内包成分を放出させることができる。 When clothing treated with a clothing softener is worn, in addition to soft comfort, the microcapsules stably contain contained components (such as fragrances), so that even after lapse of time, the clothing may be rubbed. By applying stress and disintegrating the microcapsules, the encapsulated components can be released.
 衣料用柔軟剤は、マイクロカプセル含有組成物の全質量に対するマイクロカプセルの含有量が0.3質量%~3質量%であることが好ましい。また、マイクロカプセル含有組成物がカチオン性界面活性剤を更に含有する場合は、マイクロカプセル含有組成物の全質量に対するカチオン性界面活性剤の含有量が10質量%~30質量%であることが好ましい。
 そのほか、マイクロカプセル含有組成物は、衣料用柔軟剤に含まれる公知の成分(例えば、消泡剤、色材、香料など)を更に含むことができる。衣料用柔軟剤に用いられる分散媒としては、イオン交換水等の水が好ましい。
The content of the microcapsules in the softener for clothing is preferably 0.3% by mass to 3% by mass based on the total mass of the composition containing microcapsules. When the composition containing microcapsules further contains a cationic surfactant, the content of the cationic surfactant is preferably from 10% by mass to 30% by mass based on the total mass of the composition containing microcapsules. .
In addition, the microcapsule-containing composition can further include a known component (for example, an antifoaming agent, a coloring material, a fragrance, and the like) included in the softener for clothing. Water such as ion-exchanged water is preferred as the dispersion medium used in the softener for clothing.
-ヘアケア-
 本開示のマイクロカプセル、並びにマイクロカプセル及び水系溶媒を含むマイクロカプセル含有組成物は、そのままヘアケアの用途に適用することができる。
 ヘアケアの用途としては、リンス、コンディショナー、整髪料等の毛髪化粧料等に任意に適用することができる。
 本開示のマイクロカプセル含有組成物を毛髪化粧料として毛髪に適用した場合、マイクロカプセルが毛髪に付着し、毛髪を擦る、櫛でとく等した場合、応力によりマイクロカプセルが崩壊し、コア材を放出することができる。
-hair care-
The microcapsule of the present disclosure and the microcapsule-containing composition containing the microcapsule and the aqueous solvent can be directly applied to hair care applications.
As a hair care application, it can be arbitrarily applied to a hair cosmetic such as a rinse, a conditioner, and a hairdressing agent.
When the microcapsule-containing composition of the present disclosure is applied to hair as a hair cosmetic, the microcapsules adhere to the hair, and when the hair is rubbed or combed, the microcapsules collapse due to stress, and the core material is released. can do.
 液状の毛髪化粧料の場合、スプレー容器に充填することで、より長時間に亘り、マイクロカプセルを安定に保存することができ、好ましい。
 スプレーにより毛髪化粧料を毛髪に付与した場合、分散媒とマイクロカプセルとが、毛髪に付着する。その後、頭皮をマッサージするなどを行なうことにより、マイクロカプセルに応力が掛かることでマイクロカプセルが崩壊し、コア材を毛髪に付着させることができる。
 毛髪化粧料である本開示のマイクロカプセル含有組成物には、毛髪化粧料に含まれ得る公知の成分を任意に含有することができる。
 毛髪化粧料に含まれ得る公知の成分としては、アルコールなどの水性媒体、油剤、洗浄成分或いは分散成分としての界面活性剤、皮膚に浸透する有効成分、色材、香料などが挙げられる。
In the case of a liquid hair cosmetic, the microcapsules can be stably stored for a longer period of time by filling in a spray container, which is preferable.
When the hair cosmetic is applied to the hair by spraying, the dispersion medium and the microcapsules adhere to the hair. Thereafter, the scalp is massaged to apply stress to the microcapsules so that the microcapsules collapse and the core material can be attached to the hair.
The microcapsule-containing composition of the present disclosure, which is a hair cosmetic, may optionally contain known components that can be included in the hair cosmetic.
Known components that can be included in hair cosmetics include aqueous media such as alcohols, oils, surfactants as cleaning or dispersing components, active ingredients that penetrate the skin, coloring materials, and fragrances.
-デイケア-
 本開示のマイクロカプセルは、例えば、支持体と支持体に含浸された既述のマイクロカプセル含有組成物とを含むデイケア(例えば、化粧用シート、おむつ等)の用途に適用することができる。
 また、マイクロカプセル含有組成物が界面活性剤等の洗浄成分を含む場合、皮膚清拭用のシートとすることができる。
-Day care-
The microcapsules of the present disclosure can be applied to, for example, day care applications (for example, cosmetic sheets, diapers, and the like) including a support and the above-described microcapsule-containing composition impregnated in the support.
When the microcapsule-containing composition contains a cleaning component such as a surfactant, it can be used as a sheet for wiping the skin.
 支持体としては、液状成分を保持することができれば特に制限はない。支持体としては、不織布、織布などの内部に水分を保持する空隙を有する繊維集合体、スポンジシートなどの多孔質体等が好ましい。
 支持体に本開示のマイクロカプセル含有組成物を含浸させることで、支持体を皮膚に押しつけて擦ることでマイクロカプセルが壊れ、任意の時期に内包成分(コア材)を放出させることができ、かつ、応力を加えない状態でも、内包成分が自然的に放出されるので、長期に亘って内包成分の放出効果が得られる。
 化粧用シート、おむつ等は、マイクロカプセルを安定に保持するため、水不透過性の包装材料により包装されることが、効果の持続性の観点から好ましい。
The support is not particularly limited as long as it can hold the liquid component. The support is preferably a nonwoven fabric, a woven fabric, or the like, a fiber aggregate having a void for retaining moisture therein, a porous body such as a sponge sheet, or the like.
By impregnating the support with the microcapsule-containing composition of the present disclosure, the support can be pressed against the skin and rubbed to break the microcapsules and release the encapsulated component (core material) at any time, and Even when no stress is applied, the inclusion components are released spontaneously, so that the effect of releasing the inclusion components can be obtained for a long period of time.
In order to stably hold the microcapsules, cosmetic sheets, diapers and the like are preferably packaged with a water-impermeable packaging material from the viewpoint of sustaining the effect.
 既述のように、本開示のマイクロカプセルは、良好にコア材を放出しうるため、種々の用途に適用することができる。既述の用途は、その一例であり、本開示のマイクロカプセルの用途は、上記記載には限定されない。 As described above, the microcapsules of the present disclosure can release the core material well, and thus can be applied to various uses. The use described above is an example, and the use of the microcapsule of the present disclosure is not limited to the above description.
 以下、本開示の実施形態を実施例により更に具体的に説明するが、本開示はその主旨を越えない限り、以下の実施例に限定されるものではない。なお、特に断りのない限り、「部」は質量基準である。
 なお、本実施例において、マイクロカプセルの体積平均粒径、CV値、破壊変形率及び破壊強度は既述の方法により測定した。
Hereinafter, embodiments of the present disclosure will be described more specifically with reference to Examples, but the present disclosure is not limited to the following Examples as long as the gist of the present disclosure is not exceeded. Unless otherwise specified, “parts” are based on mass.
In this example, the volume average particle diameter, CV value, breaking deformation ratio and breaking strength of the microcapsules were measured by the methods described above.
(実施例1)
-マイクロカプセル含有組成物の作製-
 溶媒としてサラコス(登録商標)HG-8(日清オイリオグループ株式会社製)18.2質量部と、香料であるD-リモネン(ヤスハラケミカル株式会社製;香料)54.7質量部と、シェル材として、3官能の芳香族イソシアネート化合物であるバーノック(登録商標)D-750(DIC株式会社製、トリレンジイソシアネートトリメチロールプロパンアダクト体)3.1質量部、及び3官能の脂肪族イソシアネート化合物であるタケネート(登録商標)D-160N(三井化学株式会社製、ヘキサメチレンジイソシアネートトリメチロールプロパンアダクト体)0.45質量部と、メチレンジフェニル-4,4’-ジイソシアネート(MDI、富士フイルム和光純薬株式会社製;2官能のイソシアネート化合物)0.67質量部と、を撹拌混合して油相を得た。
 また、ポリビニルアルコールであるクラレポバール(登録商標)PVA-217E(株式会社クラレ製;PVA)の5.8質量%水溶液を用意した。この水溶液157質量部に油相を加えて分散した後、生成した乳化液を70℃まで加温し、1時間撹拌した。続いて、冷却した後、10質量%水酸化ナトリウム水溶液を3.8質量部添加し、マイクロカプセル水分散液を得た。
 得られたマイクロカプセルの体積基準のメジアン径(D50)は18μmであった。また、粒径分布のCV値[=(標準偏差/体積平均粒径)×100]は36%であった。なお、体積基準のメジアン径、標準偏差、体積平均粒径は、マイクロトラックMT3300EXII(日機装株式会社製)により測定した。マイクロカプセル水分散液のゼータ電位は0mVであった。ゼータ電位はELSZ-2000ZS(大塚電子株式会社製)により測定した。また、マイクロカプセルの壁厚は、0.12μmであった。
(Example 1)
-Preparation of microcapsule-containing composition-
18.2 parts by mass of Saracos (registered trademark) HG-8 (manufactured by Nisshin Oillio Group Co., Ltd.) as a solvent, 54.7 parts by mass of D-limonene as a fragrance (manufactured by Yashara Chemical Co., Ltd .; fragrance), and shell material 3.1 parts by mass of Vernock (registered trademark) D-750 (manufactured by DIC Corporation, tolylene diisocyanate trimethylolpropane adduct), which is a trifunctional aromatic isocyanate compound, and takenate, which is a trifunctional aliphatic isocyanate compound (Registered trademark) D-160N (manufactured by Mitsui Chemicals, Inc., hexamethylene diisocyanate trimethylolpropane adduct) 0.45 parts by mass, and methylene diphenyl-4,4'-diisocyanate (MDI, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 0.67 parts by mass of a bifunctional isocyanate compound). The mixture was stirred and mixed to obtain an oil phase.
Further, a 5.8% by mass aqueous solution of Kuraray Povar (registered trademark) PVA-217E (manufactured by Kuraray Co., Ltd .; PVA), which is a polyvinyl alcohol, was prepared. After adding and dispersing an oil phase to 157 parts by mass of this aqueous solution, the resulting emulsion was heated to 70 ° C. and stirred for 1 hour. Subsequently, after cooling, 3.8 parts by mass of a 10% by mass aqueous solution of sodium hydroxide was added to obtain a microcapsule aqueous dispersion.
The volume-based median diameter (D50) of the obtained microcapsules was 18 μm. The CV value [= (standard deviation / volume average particle size) × 100] of the particle size distribution was 36%. The volume-based median diameter, standard deviation, and volume average particle diameter were measured using Microtrac MT3300EXII (manufactured by Nikkiso Co., Ltd.). The zeta potential of the aqueous microcapsule dispersion was 0 mV. The zeta potential was measured by ELSZ-2000ZS (manufactured by Otsuka Electronics Co., Ltd.). The wall thickness of the microcapsules was 0.12 μm.
 上記で得られたマイクロカプセル水分散液の香料換算1.0質量部と、カチオン性界面活性剤を含む無香料柔軟剤(ULTRA Downy、プロクター・アンド・ギャンブル・ジャパン株式会社製)99質量部と、を混合してマイクロカプセル含有組成物を作製した。 1.0 part by mass of the aqueous dispersion of microcapsules obtained above in terms of perfume, and 99 parts by mass of a perfume-free softener containing a cationic surfactant (ULTRA @ Downy, manufactured by Procter & Gamble Japan KK) Was mixed to prepare a microcapsule-containing composition.
(実施例2~実施例10、及び、比較例1~比較例4)
 3官能芳香族イソシアネート化合物、3官能脂肪族イソシアネート化合物及び2官能のイソシアネート化合物の種類並びに混合比、並びに、ポリビニルアルコールの種類を表1及び表2に示す通りに変更してマイクロカプセル水分散液を得た以外は、実施例1と同様にしてマイクロカプセル含有組成物を作製した。ここでの壁厚は、実施例1と同様とした。
(Examples 2 to 10 and Comparative Examples 1 to 4)
The type and mixing ratio of the trifunctional aromatic isocyanate compound, the trifunctional aliphatic isocyanate compound and the bifunctional isocyanate compound, and the type of polyvinyl alcohol were changed as shown in Tables 1 and 2 to prepare a microcapsule aqueous dispersion. A microcapsule-containing composition was prepared in the same manner as in Example 1 except that the composition was obtained. The wall thickness here was the same as in Example 1.
-評価-
(評価1)
 上記で作製したマイクロカプセル含有組成物5質量部と水995質量部とを混合し、これを木綿タオル(35cm×35cm)へ霧吹きで5回噴霧して24時間乾燥し、評価用サンプルを作製した。
 上記で得た評価サンプル(木綿タオル)を5回擦り合わせた後、発生した香りの強度を10人のパネラーに評価してもらい、下記評価基準に従って7段階に分けて点数(0点(香り強度弱い)~6点(香り強度強い))をつけ、平均値(整数に四捨五入)を求めて官能評価を行った。結果は表1に示す。
-評価基準-
0:香りを全く感じ取れない。
1:香りをわずかに感じとれるが、ほとんど香りを感じない。
2:弱い香りを感じ取れる。
3:香りを感じ取れる。
4:はっきりと香りを感じ取れる。
5:強い香りを感じ取れる。
6:非常に強い香りを感じ取れる。
-Evaluation-
(Evaluation 1)
5 parts by weight of the microcapsule-containing composition prepared above and 995 parts by weight of water were mixed, sprayed onto a cotton towel (35 cm × 35 cm) five times by spraying, and dried for 24 hours to prepare a sample for evaluation. .
After the evaluation sample (cotton towel) obtained above was rubbed 5 times, the intensity of the generated fragrance was evaluated by 10 panelists, and the score (0 point (0 fragrance intensity) was divided into 7 levels according to the following evaluation criteria. (Weak) to 6 points (strong scent intensity)), and an average value (rounded to an integer) was obtained for sensory evaluation. The results are shown in Table 1.
-Evaluation criteria-
0: No scent can be felt at all.
1: Smell can be slightly felt, but hardly felt.
2: A weak scent can be felt.
3: Smell can be felt.
4: Smell can be clearly sensed.
5: A strong scent can be felt.
6: A very strong scent can be felt.
(評価2)
 実施例7及び実施例10において作製したマイクロカプセル含有組成物5質量部と水995質量部とを混合し、これに木綿タオル(35cm×35cm)を20分浸漬し、絞った後24時間乾燥し、評価用サンプルを作製した以外は、上記評価1と同様にして、上記評価1と同様の評価基準に従って、繊維に対する付着の影響を考慮した香り強度の官能評価を行った。結果は表2に示す。
(Evaluation 2)
5 parts by mass of the microcapsule-containing composition prepared in Example 7 and Example 10 and 995 parts by mass of water were mixed, and a cotton towel (35 cm × 35 cm) was immersed in the mixture for 20 minutes, squeezed, and dried for 24 hours. A sensory evaluation of the scent intensity was performed in the same manner as in Evaluation 1 above, except that an evaluation sample was prepared, in accordance with the same evaluation criteria as in Evaluation 1 above, taking into account the effect of adhesion to the fiber. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000002

 
Figure JPOXMLDOC01-appb-T000002

 
 なお、表1及び表2における混合比の単位は、質量部である。また、表1及び表2中の「-」の記載は、該当成分を含有していないことを意味する。
 表1及び表2における破壊変形率及び破壊強度について、「-」の記載は、マイクロカプセルが脆く、破壊変形率及び破壊強度を測定しようとするとマイクロカプセル壁が崩れるために、測定が不可能であることを意味する。
The unit of the mixing ratio in Tables 1 and 2 is parts by mass. The description of “-” in Tables 1 and 2 means that the component is not contained.
Regarding the fracture deformation rate and the fracture strength in Tables 1 and 2, "-" indicates that the microcapsules are brittle, and when the fracture deformation rate and the fracture strength are measured, the microcapsule wall is collapsed. It means there is.
 表1及び表2中の成分の詳細は以下の通りである。
 217E:クラレポバールPVA―217E(部分ケン化ポリビニルアルコール)、株式会社クラレ製
 KM-618:クラレポバールKM-618(アニオン変性ポリビニルアルコール)、株式会社クラレ製
 D-750:バーノックD-750(トリレンジイソシアネートトリメチロールプロパンアダクト体;3官能以上の芳香族イソシアネート化合物)、DIC社製
 D-160N:タケネートD-160N(ヘキサメチレンジイソシアネートトリメチロールプロパンアダクト体;3官能の脂肪族イソシアネート化合物)、三井化学株式会社製
 MDI:メチレンジフェニル-4,4’-ジイソシアネート(2官能の芳香族イソシアネート化合物、富士フイルム和光純薬株式会社製)
 HDI:ヘキサメチレンジイソシアネート(2官能の脂肪族イソシアネート化合物、富士フイルム和光純薬株式会社製)
Details of the components in Tables 1 and 2 are as follows.
217E: Kuraray Povar PVA-217E (partially saponified polyvinyl alcohol), Kuraray Co., Ltd. KM-618: Kuraray Povar KM-618 (anion-modified polyvinyl alcohol), Kuraray Co., Ltd. D-750: Barnock D-750 (Torirange) Isocyanate trimethylolpropane adduct; trifunctional or higher aromatic isocyanate compound), DIC D-160N: Takenate D-160N (hexamethylene diisocyanate trimethylolpropane adduct; trifunctional aliphatic isocyanate compound), Mitsui Chemicals, Inc. MDI: Methylene diphenyl-4,4'-diisocyanate (bifunctional aromatic isocyanate compound, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
HDI: Hexamethylene diisocyanate (bifunctional aliphatic isocyanate compound, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
 表1及び表2に示すとおり、実施例1~実施例10は香り強度が良好であった。
 中でも、破壊変形率が30%以下である実施例5~実施例10は、破壊変形率が30%超である実施例1~実施例4と比較してより香り強度が良好であった。
 破壊強度が6MPa以下である実施例7は、破壊強度が6MPa超である実施例5と比較してより香り強度が良好であった。
 3官能以上のイソシアネート化合物が3官能以上の脂肪族イソシアネート化合物であり、シェル材における3官能以上のイソシアネート化合物に由来する構造部分の含有量に対する、2官能のイソシアネート化合物に由来する構造部分の含有量の比率が、質量基準で7/93~20/80である実施例8及び実施例9は、香り強度に特に優れていた。
 3官能以上の脂肪族イソシアネート化合物及び3官能以上の芳香族イソシアネート化合物を含み、シェル材における3官能以上のイソシアネート化合物に由来する構造の総含有量に対する、3官能以上の芳香族イソシアネート化合物に由来する構造の含有量の比率が、質量基準で、10質量%~40質量%であり、シェル材における3官能以上のイソシアネート化合物に由来する構造部分の含有量に対する、2官能のイソシアネート化合物に由来する構造部分の含有量の比率が、質量基準で7/93~20/80である実施例7は、香り強度に特に優れていた。
As shown in Tables 1 and 2, Examples 1 to 10 had good fragrance intensity.
Above all, Examples 5 to 10 in which the breaking deformation rate was 30% or less had better fragrance strength than Examples 1 to 4 in which the breaking deformation rate was more than 30%.
Example 7 having a breaking strength of 6 MPa or less had better fragrance strength than Example 5 having a breaking strength of more than 6 MPa.
The trifunctional or higher functional isocyanate compound is a trifunctional or higher functional aliphatic isocyanate compound, and the content of the structural portion derived from the bifunctional isocyanate compound relative to the content of the structural component derived from the trifunctional or higher functional isocyanate compound in the shell material. In Examples 8 and 9 in which the ratio was 7/93 to 20/80 on a mass basis, the fragrance intensity was particularly excellent.
It contains a trifunctional or higher functional aliphatic isocyanate compound and a trifunctional or higher functional aromatic isocyanate compound, and is derived from the trifunctional or higher functional aromatic isocyanate compound with respect to the total content of the structure derived from the trifunctional or higher functional isocyanate compound in the shell material. The ratio of the content of the structure is 10% by mass to 40% by mass on a mass basis, and the structure derived from the bifunctional isocyanate compound with respect to the content of the structural portion derived from the trifunctional or more isocyanate compound in the shell material. Example 7 in which the content ratio of the parts was 7/93 to 20/80 on a mass basis was particularly excellent in fragrance intensity.
 2018年9月28日に出願された日本国特許出願2018-185464号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2018-185644 filed on September 28, 2018 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned herein are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.

Claims (15)

  1.  コアを内包するシェルのシェル材として、
     3官能以上のイソシアネート化合物に由来する構造と、
     2官能のイソシアネート化合物に由来する構造と、
     を有するポリウレタン又はポリウレアを含み、かつ、
     シェル材における、3官能以上のイソシアネート化合物に由来する構造の含有量に対する、2官能のイソシアネート化合物に由来する構造の含有量の比率が、質量基準で5/95~20/80であり、
     コア材として香料を含み、破壊変形率が50%以下であるマイクロカプセル。
    As a shell material for the shell that contains the core,
    A structure derived from a trifunctional or more isocyanate compound,
    A structure derived from a bifunctional isocyanate compound,
    Comprising a polyurethane or polyurea having, and
    The ratio of the content of the structure derived from the bifunctional isocyanate compound to the content of the structure derived from the trifunctional or more isocyanate compound in the shell material is 5/95 to 20/80 on a mass basis,
    Microcapsules containing a fragrance as a core material and having a breaking deformation rate of 50% or less.
  2.  前記破壊変形率が40%以下である請求項1に記載のマイクロカプセル。 マ イ ク ロ The microcapsule according to claim 1, wherein the fracture deformation rate is 40% or less.
  3.  前記破壊変形率が30%以下である請求項1又は請求項2に記載のマイクロカプセル。 The microcapsule according to claim 1 or 2, wherein the fracture deformation rate is 30% or less.
  4.  破壊強度が10MPa以下である請求項1~請求項3のいずれか1項に記載のマイクロカプセル。 The microcapsule according to any one of claims 1 to 3, wherein the microcapsule has a breaking strength of 10 MPa or less.
  5.  破壊強度が6MPa以下である請求項1~請求項4のいずれか1項に記載のマイクロカプセル。 The microcapsule according to any one of claims 1 to 4, wherein the microcapsule has a breaking strength of 6 MPa or less.
  6.  前記2官能のイソシアネート化合物が芳香族イソシアネート化合物を含み、前記3官能以上のイソシアネート化合物が脂肪族イソシアネート化合物を含む請求項1~請求項5のいずれか1項に記載のマイクロカプセル。 The microcapsule according to any one of claims 1 to 5, wherein the bifunctional isocyanate compound includes an aromatic isocyanate compound, and the trifunctional or higher isocyanate compound includes an aliphatic isocyanate compound.
  7.  前記シェル材における、前記3官能以上のイソシアネート化合物に由来する構造の含有量に対する、前記2官能のイソシアネート化合物に由来する構造の含有量の比率が、質量基準で7/93~20/80である請求項1~請求項6のいずれか1項に記載のマイクロカプセル。 The ratio of the content of the structure derived from the bifunctional isocyanate compound to the content of the structure derived from the trifunctional or more isocyanate compound in the shell material is 7/93 to 20/80 on a mass basis. The microcapsule according to any one of claims 1 to 6.
  8.  前記3官能以上のイソシアネート化合物は、3官能以上の脂肪族イソシアネート化合物及び3官能以上の芳香族イソシアネート化合物の少なくとも一方を含み、前記シェル材における、前記3官能以上のイソシアネート化合物に由来する構造の総含有量に対する、前記3官能以上の芳香族イソシアネート化合物に由来する構造の含有量の比率が、質量基準で、0質量%~87.5質量%である請求項1~請求項7のいずれか1項に記載のマイクロカプセル。 The trifunctional or higher functional isocyanate compound includes at least one of a trifunctional or higher functional aliphatic isocyanate compound and a trifunctional or higher functional aromatic isocyanate compound, and the shell material has a total structure derived from the trifunctional or higher functional isocyanate compound. 8. The method according to claim 1, wherein a ratio of the content of the structure derived from the trifunctional or higher aromatic isocyanate compound to the content is 0% by mass to 87.5% by mass on a mass basis. The microcapsule according to the above item.
  9.  前記3官能以上のイソシアネート化合物は、3官能以上の脂肪族イソシアネート化合物及び3官能以上の芳香族イソシアネート化合物を含む請求項1~請求項8のいずれか1項に記載のマイクロカプセル。 The microcapsule according to any one of claims 1 to 8, wherein the trifunctional or higher functional isocyanate compound includes a trifunctional or higher functional aliphatic isocyanate compound and a trifunctional or higher functional aromatic isocyanate compound.
  10.  前記3官能以上のイソシアネート化合物は、3官能以上の脂肪族イソシアネート化合物である請求項1~請求項8のいずれか1項に記載のマイクロカプセル。 The microcapsule according to any one of claims 1 to 8, wherein the trifunctional or higher functional isocyanate compound is a trifunctional or higher functional aliphatic isocyanate compound.
  11.  前記シェル材における、前記3官能以上のイソシアネート化合物に由来する構造の総含有量に対する、前記3官能以上の芳香族イソシアネート化合物に由来する構造の含有量の比率が、質量基準で、10質量%~40質量%である請求項8又は請求項9に記載のマイクロカプセル。 In the shell material, the ratio of the content of the structure derived from the trifunctional or more aromatic isocyanate compound to the total content of the structure derived from the trifunctional or more isocyanate compound is from 10% by mass to The microcapsule according to claim 8 or 9, which is 40% by mass.
  12.  表面にアニオン電荷を有する請求項1~請求項11のいずれか1項に記載のマイクロカプセル。 The microcapsule according to any one of claims 1 to 11, having an anionic charge on the surface.
  13.  表面の少なくとも一部にアニオン変性ポリビニルアルコールを有する請求項1~請求項12のいずれか1項に記載のマイクロカプセル。 The microcapsule according to any one of claims 1 to 12, wherein the microcapsule has an anion-modified polyvinyl alcohol on at least a part of the surface.
  14.  洗濯、デイケア又はヘアケアの用途に用いられる請求項1~請求項13のいずれか1項に記載のマイクロカプセル。 The microcapsule according to any one of claims 1 to 13, which is used for washing, day care, or hair care.
  15.  請求項1~請求項14のいずれか1項に記載のマイクロカプセルと、水系溶媒と、を含有するマイクロカプセル含有組成物。 マ イ ク ロ A microcapsule-containing composition comprising the microcapsule according to any one of claims 1 to 14 and an aqueous solvent.
PCT/JP2019/024124 2018-09-28 2019-06-18 Microcapsule and microcapsule-containing composition WO2020066159A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-185464 2018-09-28
JP2018185464 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020066159A1 true WO2020066159A1 (en) 2020-04-02

Family

ID=69953046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024124 WO2020066159A1 (en) 2018-09-28 2019-06-18 Microcapsule and microcapsule-containing composition

Country Status (1)

Country Link
WO (1) WO2020066159A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02240123A (en) * 1989-03-13 1990-09-25 Dainippon Ink & Chem Inc Polyurethane polyurea particle and its production
JPH05155967A (en) * 1991-12-03 1993-06-22 Dainippon Ink & Chem Inc Polyurethane-polyurea particle
JP2013530825A (en) * 2010-06-11 2013-08-01 フイルメニツヒ ソシエテ アノニム Method for producing polyurea microcapsules
JP2013538882A (en) * 2010-07-15 2013-10-17 ユニリーバー・ナームローゼ・ベンノートシヤープ Benefit agent delivery particles, methods for preparing the particles, compositions comprising the particles and methods for treating the substrate
JP2014507433A (en) * 2011-02-07 2014-03-27 フイルメニツヒ ソシエテ アノニム Polyurea microcapsule
WO2017135087A1 (en) * 2016-02-05 2017-08-10 富士フイルム株式会社 Microcapsules, aqueous dispersion, production method for aqueous dispersion, and image formation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02240123A (en) * 1989-03-13 1990-09-25 Dainippon Ink & Chem Inc Polyurethane polyurea particle and its production
JPH05155967A (en) * 1991-12-03 1993-06-22 Dainippon Ink & Chem Inc Polyurethane-polyurea particle
JP2013530825A (en) * 2010-06-11 2013-08-01 フイルメニツヒ ソシエテ アノニム Method for producing polyurea microcapsules
JP2013538882A (en) * 2010-07-15 2013-10-17 ユニリーバー・ナームローゼ・ベンノートシヤープ Benefit agent delivery particles, methods for preparing the particles, compositions comprising the particles and methods for treating the substrate
JP2014507433A (en) * 2011-02-07 2014-03-27 フイルメニツヒ ソシエテ アノニム Polyurea microcapsule
WO2017135087A1 (en) * 2016-02-05 2017-08-10 富士フイルム株式会社 Microcapsules, aqueous dispersion, production method for aqueous dispersion, and image formation method

Similar Documents

Publication Publication Date Title
JP6911014B2 (en) Encapsulation
WO2020195132A1 (en) Perfume microcapsules, perfume microcapsule composition, softener, and detergent
US11504689B2 (en) Encapsulated perfume compositions and methods of preparing them
JP2023512861A (en) Polyurea capsules crosslinked with chitosan
MX2014006809A (en) Improvements in or relating to the encapsulation of perfumes.
WO2019171929A1 (en) Microcapsule-containing composition
WO2020194910A1 (en) Microcapsules, microcapsule composition, softener, and detergent
JP2019167455A (en) Manufacturing method of micro capsule and manufacturing method of micro capsule-containing composition
JP2019150783A (en) Manufacturing method of microcapsule and manufacturing method of microcapsule-containing composition
CN104789355B (en) The polyurea shell essence microcapsule of a kind of surface with positive charge and preparation method thereof
WO2019181668A1 (en) Microcapsule-containing composition, laundry composition, daycare composition and haircare composition
CN109789084B (en) Use of ampholyte copolymers as colloidal stabilizers in the encapsulation of fragrances
WO2020066159A1 (en) Microcapsule and microcapsule-containing composition
EP3515589B1 (en) Improvements in or relating to organic compounds
WO2019187835A1 (en) Microcapsule-containing composition
WO2019171959A1 (en) Microcapsule and microcapsule-containing composition
JP2021073323A (en) Microcapsule-containing composition
JP2019151759A (en) Method of manufacturing microcapsule, and method of manufacturing microcapsule-containing composition
WO2019181682A1 (en) Microcapsule-containing composition, laundering composition, day-care composition, and hair-care composition
JP2021053594A (en) Microcapsule, microcapsule composition and production method of the same, as well as softener and detergent
RU2774912C2 (en) Encapsulated perfume composition and its production method
BR112020012385B1 (en) ENCAPSULATED PERFUME COMPOSITION AND METHOD FOR PREPARING IT
BR112020016366B1 (en) PROCESS FOR PREPARING AN ENCAPSULATED FRAGRANCE COMPOSITION, USE OF AN ANIONICALLY MODIFIED POLYISOCYANATE, ENCAPSULATED FRAGRANCE COMPOSITION AND CONSUMER PRODUCT
BR112020016366A2 (en) IMPROVEMENTS IN OR IN RELATION TO ORGANIC COMPOUNDS
JP2022546957A (en) Improvements in or Related to Organic Compounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19868131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19868131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP