WO2019181668A1 - Microcapsule-containing composition, laundry composition, daycare composition and haircare composition - Google Patents

Microcapsule-containing composition, laundry composition, daycare composition and haircare composition Download PDF

Info

Publication number
WO2019181668A1
WO2019181668A1 PCT/JP2019/010130 JP2019010130W WO2019181668A1 WO 2019181668 A1 WO2019181668 A1 WO 2019181668A1 JP 2019010130 W JP2019010130 W JP 2019010130W WO 2019181668 A1 WO2019181668 A1 WO 2019181668A1
Authority
WO
WIPO (PCT)
Prior art keywords
microcapsule
mass
shell
structure derived
isocyanate compound
Prior art date
Application number
PCT/JP2019/010130
Other languages
French (fr)
Japanese (ja)
Inventor
田中 智史
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2019181668A1 publication Critical patent/WO2019181668A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/87Polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q13/00Formulations or additives for perfume preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers

Definitions

  • the present disclosure relates to a microcapsule-containing composition, a laundry composition, a day care composition, and a hair care composition.
  • microcapsules have added new value to customers by including and protecting functional materials such as fragrances, dyes, heat storage materials, and pharmaceutical ingredients, and releasing functional materials in response to stimuli. It is attracting attention because there is a possibility that it can be provided.
  • the shell material used in perfume microcapsules is mainly a reaction product of aldehyde and amine (for example, melamine formaldehyde resin).
  • Patent Document 1 uses a resin containing a fragrance as a core material and a wall material (shell material) containing a reaction product of an aldehyde (for example, formaldehyde) and an amine (for example, melamine). Microcapsules that have been described are described.
  • Patent Document 2 describes a polyurea microcapsule including a polyurea wall (polyurea wall) containing a reaction product of polymerization of polyisocyanate and polyamine, and a fragrance encapsulated in the polyurea wall.
  • the microcapsules as described above use pressure responsiveness to release the encapsulated component to the outside, for example, when used as a perfume microcapsule, the capsule breaks due to pressure being applied to the clothing.
  • the fragrance by the fragrance is diffused. Therefore, in the state where no pressure is applied to the capsule, the fragrance is held in the capsule and cannot be continuously obtained.
  • the problem to be solved by one embodiment of the present invention is to provide a microcapsule-containing composition by forming microcapsules having sustained release properties and high breaking strength.
  • a microcapsule-containing composition comprising a microcapsule having a shell and a core containing a fragrance, i) from a structure derived from a bifunctional aliphatic isocyanate compound and a structure derived from a bifunctional aromatic isocyanate compound Microcapsule-containing composition having at least one selected structure of 10% by mass to 70% by mass with respect to the total mass of the shell material forming the shell, and ii) the thickness of the shell is 0.3 to 2.0 ⁇ m object.
  • microcapsule-containing composition according to ⁇ 1> or ⁇ 2>, wherein the shell material contains at least one of polyurethane and polyurea or melamine formaldehyde resin.
  • the shell material includes at least one of polyurethane and polyurea having a structure derived from a polyisocyanate compound.
  • ⁇ 5> At least one structure selected from a structure derived from a trifunctional or higher functional aliphatic isocyanate compound, a structure derived from a bifunctional aliphatic isocyanate compound, and a structure derived from a bifunctional aromatic isocyanate compound;
  • ⁇ 4> The microcapsule-containing composition according to ⁇ 4>, comprising polyurethane or polyurea.
  • the shell material has a structure derived from a melamine formaldehyde prepolymer compound, a structure derived from a bifunctional aliphatic isocyanate compound, and at least one structure selected from a structure derived from a bifunctional aromatic isocyanate compound.
  • a laundry composition, day care composition or hair care composition comprising the microcapsule-containing composition according to any one of ⁇ 1> to ⁇ 7>.
  • a microcapsule-containing composition having sustained release properties is provided by forming microcapsules having sustained release properties and high breaking strength.
  • microcapsule-containing composition of the present disclosure will be described in detail.
  • a numerical range indicated using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value, respectively.
  • an upper limit value or a lower limit value described in a numerical range may be replaced with an upper limit value or a lower limit value in another numerical range.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the values shown in the examples.
  • shell refers to a wall of a microcapsule
  • core refers to a portion enclosed in the shell.
  • a material for forming the shell is referred to as “shell material”.
  • the components contained in the core are collectively referred to as “core material”.
  • the “encapsulation” refers to a state in which an object is covered and confined by the shell of the microcapsule.
  • the microcapsule-containing composition of the present disclosure includes a microcapsule having sustained release properties and high breaking strength.
  • the microcapsule has a shell and a core containing a fragrance.
  • the inventor of the present invention pays particular attention to the characteristics of the shell material of the microcapsule, and includes a fragrance as a core material, and i) a structure derived from a bifunctional aliphatic isocyanate compound and a bifunctional aromatic isocyanate compound
  • a microcapsule having at least one structure selected from the structures derived from (ii) having a mass of 10 to 70% by mass with respect to the total mass of the shell material and having a shell thickness of 0.3 to 2.0 ⁇ m.
  • the microcapsule in the present disclosure has a core and a shell enclosing the core, and i) at least selected from a structure derived from a bifunctional aliphatic isocyanate compound and a structure derived from a bifunctional aromatic isocyanate compound.
  • One structure has 10% by mass to 70% by mass with respect to the total mass of the shell material, and ii) the thickness of the shell is 0.3 to 2.0 ⁇ m.
  • the microcapsules in the present disclosure preferably have a breaking strength of 16 MPa or more. Accordingly, the microcapsules can be uniformly adhered to the fibers without being broken even in various processes during washing, particularly in the dehydration process. From the same viewpoint as described above, the breaking strength of the microcapsule is more preferably 18 to 35 MPa, and particularly preferably 20 to 30 MPa.
  • the breaking strength of the microcapsule can be measured by the following method.
  • the aqueous microcapsule dispersion was diluted 1000 times with water, dropped by 0.1 cc onto the slide glass, dried, and the breaking strength of the microcapsule having a diameter of about 20 ⁇ m on the slide glass was measured.
  • a microhardness meter DUH-W201 manufactured by Shimadzu Corporation was used, and the size of the microcapsule was confirmed and measured using an attached microscope.
  • a 50 ⁇ m planar indenter was used as the indenter. The destructive force of microcapsules is described in Zhang, Z. et al.
  • the microcapsules in the present disclosure have sustained release properties. Sustained release is a property in which a slight fragrance is obtained even when the core fragrance does not break the microcapsules and the fragrance is maintained for a long time. In the present disclosure, it is determined that the microcapsule has a sustained release property if the amount of the fragrance decreased after 48 hours at 25 ° C. of the cotton towel obtained by the following process is 5 to 30% by mass.
  • the fragrance reduction amount is 5% by mass or more, the released fragrance can be sufficiently felt, and when it is 30% by mass or less, the fragrance can be maintained for a long time.
  • the fragrance reduction amount is more preferably 8 to 25% by mass, and particularly preferably 10 to 20% by mass.
  • decrease amount can be measured by the method as described in sustained release evaluation by the fragrance
  • the microcapsule in the present disclosure has a shell that encloses a core.
  • the shell material forming the shell in the present disclosure preferably has at least one of polyurethane and polyurea having a structure derived from a polyisocyanate compound, or a melamine formaldehyde resin having a structure derived from a melamine formaldehyde prepolymer compound.
  • the microcapsule of the present disclosure includes a shell for enclosing the core material, and preferably includes polyurethane or polyurea as the shell material forming the shell.
  • the polyurethane and polyurea contained in the shell will be described in detail.
  • the polyurethane and polyurea in the present disclosure preferably have a structure derived from polyisocyanate from the viewpoint of storage stability. That is, the polyurethane and polyurea in the present disclosure are preferably polymers obtained using polyisocyanate from the viewpoint of storage stability. That is, the polyurethane and the polyurea preferably have a structure derived from an isocyanate compound.
  • the structure derived from the isocyanate compound includes a structure derived from a tri- or higher functional aliphatic isocyanate compound and a bifunctional aliphatic isocyanate compound. It is preferably at least one structure selected from a structure derived from a structure derived from a bifunctional aromatic isocyanate compound.
  • the polyurethane or polyurea in the present disclosure includes polyurethane polyurea.
  • polyurethane polyurea is more preferable.
  • the polyurethane, polyurea and polyurethane polyurea preferably have at least one structure selected from a structure derived from a bifunctional aliphatic isocyanate compound and a structure derived from a bifunctional aromatic isocyanate compound.
  • the shell in the present disclosure has a sustained release property by using a bifunctional isocyanate compound in the formation of polyurethane or polyurea.
  • bifunctional aliphatic isocyanate compound and the bifunctional aromatic isocyanate compound may be collectively referred to as “specific diisocyanate”.
  • the polyurethane or polyurea that is a shell material forming the shell is at least one selected from a structure derived from a specific diisocyanate, that is, a structure derived from a bifunctional aliphatic isocyanate compound and a structure derived from a bifunctional aromatic isocyanate compound. It is preferable to have the following structure.
  • the structure derived from a bifunctional aliphatic isocyanate compound refers to a structure formed by a urethane reaction or a urea reaction of a bifunctional aliphatic isocyanate.
  • the structure derived from a bifunctional aromatic isocyanate compound refers to a structure formed by the reaction of urethane or urea with a bifunctional aromatic isocyanate.
  • bifunctional aliphatic isocyanate compound examples include trimethylene diisocyanate, hexamethylene diisocyanate, propylene-1,2-diisocyanate, butylene-1,2-diisocyanate, cyclohexylene-1,2-diisocyanate, cyclohexylene-1, 3-diisocyanate, cyclohexylene-1,4-diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, 1,4-bis (isocyanatemethyl) cyclohexane and 1,3-bis (isocyanatemethyl) cyclohexane, isophorone diisocyanate, lysine diisocyanate And hydrogenated xylylene diisocyanate.
  • bifunctional aromatic isocyanate compound examples include m-phenylene diisocyanate, p-phenylene diisocyanate, 2,6-tolylene diisocyanate, 2,4-tolylene diisocyanate, naphthalene-1,4-diisocyanate, diphenylmethane-4, 4'-diisocyanate, 3,3'-dimethoxy-biphenyl diisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, xylylene-1,4-diisocyanate, xylylene-1,3-diisocyanate, 4-chloroxyl Len-1,3-diisocyanate, 2-methylxylylene-1,3-diisocyanate, 4,4'-diphenylpropane diisocyanate, 4,4'-diphenylhexafluoropropane diisocyanate, etc. It is.
  • Isocyanate compounds are described in “Polyurethane Resin Handbook” (edited by Keiji Iwata, published by Nikkan Kogyo Shimbun (1987)).
  • the total mass ratio is preferably 10% by mass to 70% by mass, more preferably 10% by mass to 65% by mass, and still more preferably 12% by mass to 60% by mass.
  • the proportion of the structure derived from the specific diisocyanate is 10% by mass or more, the crosslinking density of the shell is lowered, and the sustained release property of the core material to be included can be enhanced.
  • the proportion of the structure derived from the specific diisocyanate is 70% by mass or less, and further 60% by mass or less, the flexibility of the shell can be easily maintained, and, for example, adhesion to fibers or hairs can be favorably maintained.
  • the polyurethane or polyurea which is a shell material forming the shell preferably has a structure derived from a tri- or higher functional aliphatic isocyanate compound.
  • a structure derived from a trifunctional or higher functional aliphatic isocyanate compound By having a structure derived from a trifunctional or higher functional aliphatic isocyanate compound, the flexibility and breaking strength of the shell can be increased, and adhesion to an object to be adhered such as fiber or hair can be obtained.
  • the structure derived from a trifunctional or higher functional aliphatic isocyanate compound refers to a structure formed by a urethane reaction or a urea reaction of a trifunctional or higher functional aliphatic isocyanate compound.
  • Examples of the trifunctional or higher functional aliphatic isocyanate compound include a bifunctional aliphatic isocyanate compound (a compound having two isocyanate groups in the molecule) and a compound having three or more active hydrogen groups in the molecule (for example, a trifunctional or higher functional group).
  • adduct adduct with a polyol, polyamine, polythiol, etc.
  • a trifunctional or higher functional isocyanate compound adduct type
  • a bifunctional aliphatic isocyanate compound trimer (biuret type or isocyanurate type) Can do.
  • a commercially available product may be used as the adduct type trifunctional or higher functional isocyanate compound.
  • HT manufactured by Bayer Corporation
  • Coronate registered trademark
  • HX manufactured by Tosoh Corporation
  • Duranate P301-75E manufactured by Asahi Kasei Co., Ltd.
  • Barnock registered trademark
  • Takenate (registered trademark) series for example, Takenate D-110N, D-120N, D-140N, D-160N, etc.
  • DIC stock More preferable is at least one selected from Vernock (registered trademark) D-750 manufactured by the company.
  • isocyanurate-type trifunctional or higher functional isocyanate compound a commercially available product may be used.
  • examples of commercially available products include Takenate (registered trademark) D-127N, D-170N, D-170HN, D-172N, D-177N (manufactured by Mitsui Chemicals), Sumidur N3300, Death Module (registered trademark) N3600.
  • biuret type trifunctional or higher functional isocyanate compound commercially available products may be used.
  • D-165N Takenate (registered trademark) D-165N, NP1200 (manufactured by Mitsui Chemicals), Desmodur (registered trademark) N3200A (Manufactured by Bayer Corporation), Duranate (registered trademark) 24A-100, 22A-75P (manufactured by Asahi Kasei Corporation) and the like.
  • the ratio of the structure derived from the trifunctional or higher aliphatic isocyanate compound to the total mass of the shell material is preferably 20% by mass to 95% by mass, and more preferably 20% by mass to 90% by mass.
  • the content is preferably 35% by mass to 80% by mass.
  • the proportion of the structure derived from the tri- or higher functional aliphatic isocyanate compound is 20% by mass or more, the shell can be provided with good flexibility and breaking strength.
  • the ratio of the structure derived from the trifunctional or higher aliphatic isocyanate compound is 95% by mass or less, it is suitable for maintaining the sustained release property to the outside of the core material.
  • the ratio of the trifunctional aliphatic isocyanate compound to the specific diisocyanate is preferably from 95/5 to 20/80, more preferably from 90/10 to 30/70, and more preferably from 90/10 to 90/10. More preferably, it is 40/60. When the ratio of the trifunctional aliphatic isocyanate compound to the specific diisocyanate is within the above range, the sustained release property of the core material is excellent.
  • Polyurethane or polyurea which is a shell material that forms a shell, may have a structure derived from other isocyanate compounds in addition to the trifunctional aliphatic isocyanate compound and the specific diisocyanate.
  • the structure derived from another isocyanate compound refers to a structure formed by the urethane reaction or urea reaction of another isocyanate compound.
  • Examples of other isocyanate compounds include trifunctional or higher functional aromatic isocyanate compounds.
  • trifunctional or higher functional aromatic isocyanate compound examples include 2,6-tolylene diisocyanate, 2,4-tolylene diisocyanate, or an adduct (adduct) of hexamethylene diisocyanate and trimethylolpropane, biuret or isocyanate. A nurate body etc. are mentioned. Commercially available products marketed as trifunctional or higher functional aromatic isocyanate compounds may be used.
  • Examples of commercially available products include Barnock (registered trademark) D-750 (manufactured by DIC Corporation), Takenate (registered trademark) D- 102, D-103, D-103H, D-103M2, D-110N, Olester (registered trademark) P49-75S (above, manufactured by Mitsui Chemicals, Inc.), Death Module (registered trademark) L75, IL-135-BA , HL-BA, Sumijoule (registered trademark) E-21-1 (manufactured by Bayer Co., Ltd.), Coronate (registered trademark) L, L-55, L-55E (manufactured by Tosoh Corporation), Bernock (registered trademark) D -750, D-800 (manufactured by DIC Corporation) and the like.
  • Barnock registered trademark
  • D-750 manufactured by DIC Corporation
  • Takenate D- 102, D-103, D-103H, D-103M2, D-110N
  • the microcapsule of the present disclosure preferably includes a shell for enclosing the core material, and preferably includes a melamine formaldehyde resin as the shell material forming the shell.
  • the melamine formaldehyde resin contained in the shell will be described in detail.
  • the melamine formaldehyde resin in the present disclosure preferably has a structure derived from a melamine formaldehyde prepolymer compound from the viewpoint of storage stability. That is, the melamine formaldehyde resin in the present disclosure is preferably a polymer obtained using a melamine formaldehyde prepolymer compound from the viewpoint of storage stability.
  • the melamine formaldehyde resin in the present disclosure also includes an aminoplast resin in which a melamine formaldehyde prepolymer compound and a polyisocyanate are crosslinked.
  • the melamine formaldehyde resin is at least one structure selected from a structure derived from a melamine formaldehyde prepolymer, a structure derived from a bifunctional aliphatic isocyanate compound, and a structure derived from a bifunctional aromatic isocyanate compound; It is preferable to have.
  • the shell in the present disclosure has a sustained release property by using a melamine formaldehyde prepolymer compound and a bifunctional isocyanate compound.
  • the difunctional isocyanate compound those described in the above-mentioned “specific diisocyanate” can be used as appropriate.
  • the melamine formaldehyde resin which is a shell material that forms a shell, preferably has a structure derived from a melamine formaldehyde prepolymer compound.
  • the melamine formaldehyde prepolymer compound is an initial polymer obtained by reacting melamine and formaldehyde, and it is preferable to use the melamine formaldehyde prepolymer compound from the viewpoint of handling when forming the shell of the microcapsule.
  • the melamine formaldehyde prepolymer compound can be produced from melamine and formaldehyde according to a conventional method. Moreover, what is marketed can be used suitably as a melamine formaldehyde prepolymer compound.
  • a melamine formaldehyde prepolymer compound for example, becamine APM, becamine M-3, becamine M-3 (60), becamine MA-S, becamine J-101, becamine J-101LF (manufactured by DIC Corporation), nicalesin S-176, nicalesin S-260 ( As mentioned above, Nippon Carbide Co., Ltd.) etc. are mentioned.
  • the ratio of the melamine formaldehyde prepolymer compound to the specific diisocyanate is preferably 95/5 to 20/80, more preferably 90/10 to 30/70, more preferably 90/10 to 40 / More preferably, it is 60.
  • the core material has excellent sustained release properties.
  • the thickness (wall thickness) of the shell (wall) of the microcapsule of the present disclosure is in the range of 0.3 ⁇ m to 2.0 ⁇ m.
  • the wall thickness of the microcapsule is 0.3 ⁇ m or more, the microcapsule can be prevented from cracking in the washing process, particularly the dehydration process, and the core material can be protected in the core.
  • the wall thickness of the microcapsule is 2.0 ⁇ m or less, the microcapsule can be provided with sustained release, and the scent can be released from the microcapsule attached to the fiber.
  • the wall thickness of the microcapsule is more preferably 0.4 ⁇ m to 1.7 ⁇ m, and still more preferably 0.4 ⁇ m to 1.5 ⁇ m.
  • the wall thickness refers to an average value obtained by averaging the individual wall thicknesses ( ⁇ m) of five microcapsules with a scanning electron microscope (SEM). Specifically, a microcapsule solution is applied on an arbitrary support and dried to form a coating film. A cross section of the obtained coating film is prepared, the cross section is observed using an SEM, arbitrary five microcapsules are selected, the cross section of each of the microcapsules is observed, and the wall thickness is measured. And calculating the average value.
  • SEM scanning electron microscope
  • the median diameter (D50) of the volume standard of the microcapsules is preferably 0.1 ⁇ m to 100 ⁇ m.
  • the volume standard median diameter (D50) of the microcapsules is more preferably 1 ⁇ m to 70 ⁇ m, and still more preferably 5 ⁇ m to 50 ⁇ m.
  • the volume standard median diameter of the microcapsules can be preferably controlled by changing dispersion conditions.
  • the median diameter of the volume standard of the microcapsule is the volume of the particle on the large diameter side and the small diameter side when the entire microcapsule is divided into two with the particle diameter at which the cumulative volume is 50% as a threshold value.
  • the diameter is the same as the total.
  • the median diameter of the volume standard of the microcapsule is measured using Microtrac MT3300EXII (manufactured by Nikkiso Co., Ltd.).
  • the level of monodispersity of the microcapsules can be expressed using a CV value (coefficient of variation).
  • the CV value is a value obtained by the following formula.
  • CV value (%) (standard deviation / volume average particle diameter) ⁇ 100 The lower the CV value, the higher the monodispersity of the microcapsules, and the higher the CV value, the lower the monodispersibility of the microcapsules.
  • the volume average particle diameter and the standard deviation are calculated using Microtrac MT3300EXII (manufactured by Nikkiso Co., Ltd.).
  • “highly monodispersed” of the microcapsule means that the CV value of the particle size distribution of the microcapsule is preferably 40% or less, more preferably 35% or less, still more preferably 30% or less, particularly preferably. It means 25% or less.
  • the lower limit of the CV value of the particle size distribution of the microcapsules is not limited, but is preferably 0% or more, and more preferably 5% or more.
  • the form of the microcapsule may be, for example, a microcapsule dispersion, preferably a microcapsule aqueous dispersion.
  • the microcapsule in the present disclosure preferably has a core encapsulated in a shell and includes a fragrance as a core material in the core.
  • the microcapsule according to the present disclosure adheres to clothes fibers or hair (hair etc.) without being destroyed even after a washing process, particularly a dehydration process, and includes a fragrance as a core material, thereby providing sustained release. It can be scented for a long time.
  • fragrance As the fragrance, synthetic fragrances, natural essential oils, and natural fragrances described in “Japan Patent Office, Well-known and commonly used technology (fragrance) Part III, cosmetic fragrances, pages 49-103, issued on June 15, 2001” Appropriate ones can be selected and used from animal and plant extracts.
  • fragrances include monoterpenes such as D-limonene, pinene, myrcene, camphene and R-limonene, sesquiterpenes such as cedrene, caryophyllene and longifolene, 1,3,5-undecatriene, ⁇ -amylcinnamyl aldehyde Synthetic fragrances such as dihydrojasmon, methylionone, ⁇ -damascone, acetyl cedrene, methyl dihydrojasmonate, cyclopentadecanolide, and natural essential oils such as orange essential oil, lemon essential oil, bergamot essential oil, and mandarin essential oil.
  • the content of the fragrance with respect to the total mass of the core material is preferably 20 to 100% by mass, more preferably 30 to 95% by mass, and particularly preferably 40 to 85% by mass.
  • the core may contain a solvent as an oil component.
  • the solvent include fatty acid ester compounds such as tri (capryl / capric acid) glyceryl and isopropyl myristate, alkylnaphthalene compounds such as diisopropylnaphthalene, diarylalkane compounds such as 1-phenyl-1-xylylethane, isopropylbiphenyl, and the like.
  • Aromatic hydrocarbons such as alkylbiphenyl compounds such as triarylmethane compounds, alkylbenzene compounds, benzylnaphthalene compounds, diarylalkylene compounds, arylindane compounds; aliphatic hydrocarbons such as dibutyl phthalate and isoparaffins; Examples include camellia oil, soybean oil, corn oil, cottonseed oil, rapeseed oil, natural animal and vegetable oils such as olive oil, coconut oil, castor oil, and fish oil; high-boiling fractions of natural products such as mineral oil.
  • the content of the solvent in the encapsulated component is preferably less than 50% by mass, more preferably 40% by mass or less, and particularly preferably 30% by mass or less with respect to the total mass of the encapsulated component.
  • the encapsulated component may contain an auxiliary solvent as an oil phase component for enhancing the solubility of each material in the oil phase when producing the microcapsules, if necessary.
  • the auxiliary solvent does not include the above solvent.
  • the auxiliary solvent include ketone compounds such as methyl ethyl ketone, ester compounds such as ethyl acetate, alcohol compounds such as isopropyl alcohol, and the like.
  • the auxiliary solvent has a boiling point of 130 ° C or lower.
  • the content of the auxiliary solvent in the encapsulated component is preferably less than 50% by mass, more preferably less than 40% by mass, and even more preferably less than 30% by mass with respect to the total mass of the encapsulated component.
  • additives such as ultraviolet absorbers, light stabilizers, antioxidants, waxes, odor inhibitors and the like can be included in the microcapsules as necessary.
  • the additive can be contained, for example, in an amount of 0% by mass to 20% by mass, preferably 1% by mass to 15% by mass, and more preferably 5% by mass to 10% by mass with respect to the total mass of the core.
  • the microcapsule-containing composition of the present disclosure preferably further contains a microcapsule dispersion medium.
  • a microcapsule dispersion medium By further containing a microcapsule dispersion medium, the microcapsule-containing composition can be easily blended when used in various applications.
  • the dispersion medium in the microcapsule-containing composition is appropriately selected according to the purpose of use of the composition.
  • the dispersion medium is preferably a liquid component that does not affect the wall material of the microcapsule.
  • Preferred dispersion media include aqueous solvents, viscosity modifiers, stabilizers, and the like. Examples of the aqueous solvent include water, water, alcohol and the like, and ion-exchanged water or the like can be used.
  • what is necessary is just to select suitably content of the dispersion medium in the microcapsule containing composition of this indication according to a use.
  • the microcapsule-containing composition of the present disclosure can further contain other components in addition to the microcapsule and the dispersion medium that is a combination component.
  • other components include a surfactant, a crosslinking agent, a lubricant, an ultraviolet absorber, an antioxidant, and an antistatic agent.
  • the microcapsule-containing composition of the present disclosure preferably has an embodiment in which the microcapsule has an anionic charge on the surface and further contains a cationic surfactant. Thereby, an interaction is obtained between the microcapsule and the cationic surfactant, and a positive charge of the cationic surfactant can be imparted around the microcapsule. As a result, it becomes possible to improve the adhesion property of the microcapsule to an attachment object (for example, hair or fiber) having an anionic charge.
  • an attachment object for example, hair or fiber
  • the microcapsule has an anionic charge on the surface by measuring the zeta potential when the microcapsule is dispersed in water. When the zeta potential is negative, it indicates that the surface of the microcapsule is covered with an anionic charge.
  • the zeta potential of the microcapsule when dispersed in water, is preferably ⁇ 80 meV to ⁇ 5 meV, more preferably ⁇ 80 meV to ⁇ 11 meV, and further preferably ⁇ 50 meV to ⁇ 10 meV. preferable.
  • Zero potential (z) means the apparent electrostatic potential generated by a charged object in solution, measured by a special measurement technique.
  • a detailed discussion of the logical basis and actual relevance of the zeta potential is, for example, “Colloid Science: Zeta Potential in Colloid Sciences: Principles and Applications” (Hunter Robert J. 1981; p 1988).
  • the zeta potential of an object is measured at some distance from the surface of the object and generally does not exceed the electrostatic potential at the surface itself. However, the value can be a good measure of the ability of an object to establish an electrostatic interaction with other objects in solution, particularly molecules having multiple binding sites.
  • the zeta potential is a relative measurement value, and the value tends to depend on the measurement method.
  • the zeta potential is a value measured by the following method.
  • the apparatus uses ELSZ-2000ZS (manufactured by Otsuka Electronics Co., Ltd.).
  • the device settings are as follows.
  • the sample preparation procedure is as follows.
  • the slurry containing the target capsule is added to water so that the capsule concentration is 0.5% by mass, and the slurry is diluted.
  • the measurement concentration is adjusted as necessary so that the measurement rate falls within a preferable range by automatic detection.
  • the zeta potential of the diluted sample is measured without filtering the sample.
  • the filtered slurry is poured into a standard cell unit (manufactured by Otsuka Electronics Co., Ltd.), and the cell is inserted into the apparatus. Set the test temperature to 25 ° C. (Iv) Start the measurement after the temperature has stabilized (usually after 3 to 5 minutes). Each sample is set to measure 5 times and measured. d.
  • the zeta potential in the present disclosure is a value measured in units of “mV” as an average of three measured values for each slurry. Based on the above, the zeta potential of the microcapsule can be measured using ELSZ-2000ZS (manufactured by Otsuka Electronics Co., Ltd.).
  • the method for imparting an anionic charge to the microcapsule surface is not particularly limited, for example, a method for binding an anionic group-imparting agent to the shell, a method for imparting an anionic charge to the microcapsule surface using a surface anionizing agent, etc. Is mentioned. Among these, from the viewpoint of work efficiency, a method of imparting an anionic charge to the microcapsule surface using a surface anionizing agent is preferable.
  • an oil phase is prepared by stirring and mixing the fragrance and the shell material.
  • an aqueous solution containing an anionic group-imparting agent for example, lysine
  • the oil phase is added to the prepared aqueous phase to disperse and emulsify, and the resulting emulsion is heated and stirred and then cooled.
  • an aqueous solution of a base for example, sodium hydroxide
  • the aqueous solution containing the anionic group-imparting agent may be added after the emulsion is formed, or an aqueous base solution may be added to the aqueous phase in advance.
  • content of said each component can be changed suitably.
  • -Anionic group imparting agent- There is no restriction
  • the protective colloid means a colloid that can impart an anionic charge to the microcapsule surface by being present on the microcapsule surface.
  • the surface anionizing agent is not particularly limited as long as it can give an anionic charge to the microcapsule surface (anionic water-soluble polymers (anionic polysaccharides such as anion-modified polyvinyl alcohol, carboxymethyl cellulose, carrageenan, polyacrylic acid)). And copolymers with sodium and other monomers, copolymers with sodium polymaleate and other monomers) and anionic surfactants (sodium dodecyl sulfate, sodium lauryl sulfate, etc.).
  • anionic water-soluble polymers anionic polysaccharides such as anion-modified polyvinyl alcohol, carboxymethyl cellulose, carrageenan, polyacrylic acid
  • anionic surfactants sodium dodecyl sulfate, sodium lauryl sulfate, etc.
  • the microcapsule in the microcapsule-containing composition of the present disclosure preferably has an anion-modified polyvinyl alcohol on at least a part of the surface from the viewpoint of imparting an anionic charge to the microcapsule surface.
  • Examples of the method for forming a protective colloid on the surface of the microcapsule using the surface anionizing agent include the following methods. However, the present disclosure is not limited to the following method. First, an oil phase is prepared by stirring and mixing a solvent, a trifunctional aliphatic isocyanate and a specific diisocyanate which are shell materials. Subsequently, an aqueous solution containing a surface anionizing agent (for example, anion-modified polyvinyl alcohol) is prepared as an aqueous phase. The oil phase is added to the prepared aqueous phase and dispersed to emulsify, and the resulting emulsion is heated, stirred and cooled.
  • a surface anionizing agent for example, anion-modified polyvinyl alcohol
  • a base for example, sodium hydroxide aqueous solution
  • a base for example, sodium hydroxide aqueous solution
  • content of each above-mentioned component can be changed suitably.
  • the anion-modified polyvinyl alcohol commercially available products can be used.
  • commercially available products are Kuraray Poval KM-618 (manufactured by Kuraray Co., Ltd.), Kuraray Poval KL-318 (manufactured by Kuraray Co., Ltd.), Gohsenol L-3266 (manufactured by Nippon Synthetic Chemical Co., Ltd.), Gohsenol T-330 (Japan) Synthetic Chemical Co., Ltd.).
  • the anion-modified polyvinyl alcohol is preferably Kuraray Poval KM-618 or Gohsenol L-3266, and more preferably Kuraray Poval KM-618.
  • the microcapsule-containing composition of the present disclosure preferably contains a cationic surfactant when an anionic charge is imparted to the microcapsule surface.
  • a cationic surfactant when an anionic charge is imparted to the microcapsule surface.
  • the anion charge (minus charge) of the microcapsule and the plus charge of the cationic surfactant attract each other due to the interaction, so that the plus charge of the cationic surfactant covers the microcapsule.
  • a positive charge can be generated as a whole capsule, and the positive charge of the microcapsule attracts the negative charge of the attached object (for example, fiber or hair) to which the microcapsule adheres. Adhesion can be further improved.
  • the cationic surfactant is not particularly limited, and conventionally known cationic surfactants can be used.
  • alkylamine salts for example, quaternary ammonium salts (for example, hexadecyltrimethylammonium chloride), polyoxyethylene alkylamine salts, polyethylene Examples include polyamine derivatives.
  • a commercially available product may be used as the cationic surfactant.
  • examples of commercially available products include cation EQ-01D (NOF Corporation), cation SF-10 (manufactured by Sanyo Kasei Kogyo Co., Ltd.), cation SF-75PA (manufactured by Sanyo Kasei Kogyo Co., Ltd.), and Adecamin SF-108 (stock) The company ADEKA).
  • the microcapsule of this indication can be manufactured with the following method, for example, it is not limited to the following method.
  • the microcapsule manufacturing method of the present disclosure disperses an oil phase containing a fragrance and a polyisocyanate as a shell material in an aqueous phase containing an emulsifier.
  • the step of preparing an emulsified liquid emulsification step
  • the step of polymerizing the shell material at the interface between the oil phase and the aqueous phase to form a shell and forming microcapsules enclosing a fragrance emulsification step
  • emulsification step emulsification step
  • encapsulation step emulsification step
  • Including interfacial polymerization methods can be used as appropriate.
  • an oil phase containing a fragrance is dispersed in an aqueous phase containing an emulsifier to prepare an emulsion (emulsification step), and a shell material is added to the aqueous phase to emulsify
  • a coacervation method including a step (encapsulation step) of forming a microcapsule encapsulating a fragrance by forming a polymer layer formed of a shell material on the surface of the droplet can be used as appropriate.
  • the microcapsule manufacturing method of the present disclosure disperses an oil phase containing a fragrance and a polyisocyanate as a shell material in an aqueous phase containing an emulsifier. And a step of preparing an emulsion (emulsification step).
  • the shell is formed from a melamine formaldehyde resin, it includes a step (emulsification step) of preparing an emulsion by dispersing an oil phase containing a fragrance in an aqueous phase containing an emulsifier.
  • Emulsified liquid of the present disclosure is formed by dispersing an oil phase containing a fragrance and, if necessary, a polyisocyanate which is a shell material in an aqueous phase containing an emulsifier.
  • the oil phase of the present disclosure includes at least a fragrance.
  • the shell material may further include components such as polyisocyanate, a solvent, a co-solvent, and / or an additive.
  • solvents, cosolvents, and additives are as described in the section ⁇ Microcapsules>.
  • the shell material in the present disclosure can include a polyisocyanate or a melamine formaldehyde prepolymer. Furthermore, it is preferable that specific diisocyanate is included.
  • the shell material is, for example, more than 0.1% by mass and 20% by mass or less, preferably 0.5% by mass to 10% by mass, more preferably 1% by mass to 5% by mass with respect to the total mass of the oil phase. Contained in The concentration of the shell material can be appropriately adjusted in view of the size of the microcapsules, the wall thickness, and the like.
  • the aqueous phase of the present disclosure includes at least an aqueous medium and an emulsifier.
  • aqueous medium of the present disclosure examples include water and a mixed solvent of water and a water-soluble organic solvent, preferably water.
  • Water-soluble means that the amount of the target substance dissolved in 100% by mass of water at 25 ° C. is 5% by mass or more.
  • the aqueous medium is preferably 20% by mass to 80% by mass, more preferably 30% by mass to 70% by mass, and still more preferably 40% by mass with respect to the total mass of the emulsion that is a mixture of an oil phase and an aqueous phase. ⁇ 60% by mass.
  • the emulsifier includes a dispersant, a surfactant, or a combination thereof.
  • dispersant examples include polyvinyl alcohol and modified products thereof, polyacrylic acid amide and derivatives thereof, ethylene-vinyl acetate copolymer, styrene-maleic anhydride copolymer, ethylene-maleic anhydride copolymer, isobutylene- Mention may be made of maleic anhydride copolymer, polyvinylpyrrolidone, ethylene-acrylic acid copolymer, vinyl acetate-acrylic acid copolymer, carboxymethylcellulose, methylcellulose, casein, gelatin, starch derivatives, gum arabic and sodium alginate. Polyvinyl alcohol is preferred. These dispersants preferably do not react with the shell material or are extremely difficult to react. For example, those having a reactive amino group in a molecular chain such as gelatin are preliminarily treated to lose the reactivity. It is necessary.
  • surfactant examples include nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants.
  • Surfactant may be used independently and may be used in combination of 2 or more type.
  • the nonionic surfactant is not particularly limited, and a conventionally known nonionic surfactant can be used.
  • a conventionally known nonionic surfactant can be used.
  • polyoxyethylene alkyl ether compounds polyoxyethylene alkyl phenyl ether compounds, polyoxyethylene polystyryl phenyl ether compounds, polyoxyethylene polyoxypropylene alkyl ether compounds, glycerin fatty acid partial ester compounds, sorbitan fatty acid moieties Ester compounds, pentaerythritol fatty acid partial ester compounds, propylene glycol mono fatty acid ester compounds, sucrose fatty acid partial ester compounds, polyoxyethylene sorbitan fatty acid partial ester compounds, polyoxyethylene sorbitol fatty acid partial ester compounds, polyethylene glycol Fatty acid ester compounds, polyglycerin fatty acid partial ester compounds, polyoxyethylenated castor oil compounds Polyoxyethylene glycerin fatty acid partial ester compound, fatty acid
  • the anionic surfactant is not particularly limited, and conventionally known anionic surfactants can be used.
  • fatty acid salt, abietic acid salt, hydroxyalkane sulfonate, alkane sulfonate, dialkyl sulfosuccinate ester salt linear alkyl benzene sulfonate, branched alkyl benzene sulfonate, alkyl naphthalene sulfonate, alkyl phenoxy poly Oxyethylenepropyl sulfonate, polyoxyethylene alkylsulfophenyl ether salt, N-methyl-N-oleyl taurine sodium salt, N-alkylsulfosuccinic acid monoamide disodium salt, petroleum sulfonate, sulfated beef oil, fatty acid alkyl ester Sulfate ester salt, alkyl sulfate ester salt, polyoxyethylene alkyl ether sulfate ester,
  • the cationic surfactant is not particularly limited, and conventionally known cationic surfactants can be used. Examples thereof include alkylamine salts, quaternary ammonium salts (for example, hexadecyltrimethylammonium chloride), polyoxyethylene alkylamine salts, polyethylene polyamine derivatives, and the like.
  • amphoteric surfactant is not particularly limited, and a conventionally known amphoteric surfactant can be used. Examples thereof include carboxybetaine, aminocarboxylic acid, sulfobetaine, aminosulfuric acid ester, imidazoline and the like.
  • the concentration of the emulsifier is preferably more than 0% by mass and 20% by mass or less, more preferably from 0.005% by mass to 10% by mass, with respect to the total mass of the emulsion that is a mixture of the oil phase and the aqueous phase.
  • the content is more preferably from 01% by mass to 10% by mass, and particularly preferably from 1% by mass to 5% by mass.
  • the aqueous phase may contain other components such as an ultraviolet absorber, an antioxidant, and a preservative as necessary.
  • Such other components are, for example, more than 0% by mass and 20% by mass or less, preferably more than 0.1% by mass and 15% by mass or less, more preferably more than 1% by mass and 10% by mass with respect to the total mass of the aqueous phase. The following may be contained.
  • Dispersion refers to dispersing (emulsifying) the oil phase of the present disclosure as oil droplets in the water phase of the present disclosure.
  • the dispersion can be carried out by means usually used for dispersion of an oil phase and an aqueous phase, for example, a homogenizer, a Manton Gory, an ultrasonic disperser, a dissolver, a teddy mill, or other known dispersion devices.
  • the mixing ratio of the oil phase to the water phase is preferably 0.1 to 1.5, more preferably 0.2 to 1.2, and still more preferably 0.4 to 1.0. .
  • the mixing ratio is in the range of 0.1 to 1.5, an appropriate viscosity can be maintained, the production suitability is excellent, and the stability of the emulsion is excellent.
  • the method for producing a microcapsule of the present disclosure includes an interfacial polymerization method in which a shell material is polymerized at an interface between an oil phase and an aqueous phase to form a shell, and an oil phase and an aqueous phase are emulsified and then a shell material is added and polymerized.
  • a step of forming a microcapsule enclosing a fragrance is included by using a selvage method. Thereby, the microcapsule in which the fragrance
  • Polymerization is a step of polymerizing the shell material contained in the emulsion, whereby a shell is formed.
  • the polymerization is preferably performed under heating.
  • the reaction temperature in the polymerization is usually preferably 40 ° C to 100 ° C, more preferably 50 ° C to 80 ° C.
  • the polymerization reaction time is usually preferably about 0.5 to 10 hours, more preferably about 1 to 5 hours. The higher the polymerization temperature, the shorter the polymerization time, but when using inclusions or shell materials that may decompose at high temperatures, select a polymerization initiator that works at low temperatures and polymerize at relatively low temperatures. Is desirable.
  • an aqueous solution for example, water, an aqueous acetic acid solution, etc.
  • a dispersing agent for preventing aggregation may be added again during the polymerization process.
  • a charge control agent such as nigrosine, or any other auxiliary agent can be added as necessary.
  • microcapsule-containing composition of the present disclosure can be used for various applications.
  • examples of the microcapsule-containing composition may include uses such as washing, hair care, and day care.
  • the microcapsule-containing composition of the present disclosure can be made into a softener for clothing by including, for example, a core material (for example, a fragrance). Thereby, the microcapsule-containing composition of the present disclosure can be applied to a laundry composition.
  • the microcapsule-containing composition which is a softener for clothing of the present disclosure, is obtained by immersing the clothing in the microcapsule-containing composition, dehydrating and drying, so that the microcapsules contained in the microcapsule-containing composition are adsorbed on the fibers of the clothing Or enter into the fine gaps between the fibers and held by the clothing. For this reason, softening, an antistatic property, etc. are provided with respect to clothing, Furthermore, a core material can be discharge
  • the core material When wearing clothing treated with the softener for clothing of the present disclosure, the core material is stably contained in the microcapsule in addition to the soft comfort, so even after lapse of time, stress is applied by rubbing the clothing, etc.
  • the core material can be released by disintegrating the microcapsules. Moreover, even if it does not give stress in particular, by wearing clothes and acting, the microcapsules are gradually collapsed, and the core material can be gradually released.
  • the softening agent for clothing preferably contains 0.3 to 3% by mass of the core encapsulated in the microcapsule with respect to the microcapsule-containing composition in the total amount of the microcapsule-containing composition.
  • it can further contain a known component contained in the softener for clothing, such as an antifoaming agent, a coloring material, and a fragrance.
  • the dispersion medium used for the softener for clothing is preferably water such as ion exchange water.
  • the microcapsule-containing composition containing the microcapsules and the microcapsule dispersion medium in the present disclosure can be applied to the hair care composition as it is.
  • the use of the hair care composition can be arbitrarily applied to hair cosmetics such as rinses, conditioners, hair styling agents, and the like.
  • the microcapsule-containing composition of the present disclosure which is a hair cosmetic, adheres to the hair, and when the hair is rubbed or combed, the microcapsule disintegrates due to stress, and the core material Can be released.
  • the microcapsules can be stably stored for a longer time by filling the spray container.
  • the hair cosmetic is applied to the hair by spraying, the dispersion medium and the microcapsules adhere to the hair. Thereafter, by performing massage or the like on the scalp, the microcapsules are collapsed by applying stress to the microcapsules, and the core material can be attached to the hair.
  • the microcapsule-containing composition of the present disclosure that is a hair cosmetic can optionally contain known components that can be included in the hair cosmetic.
  • Known components that can be included in hair cosmetics include aqueous media such as alcohol, oil agents, surfactants as cleaning or dispersing components, active ingredients that penetrate the skin, colorants, and fragrances.
  • the microcapsule-containing composition of the present disclosure is applied to, for example, a day care composition such as a cosmetic sheet or a diaper including a support and the microcapsule-containing composition of the present disclosure described above impregnated in the support. Can do.
  • the support is not particularly limited as long as the liquid component can be retained.
  • the support is preferably a non-woven fabric, a woven fabric or the like, a fiber assembly having a void for retaining moisture therein, a porous material such as a sponge sheet, and the like.
  • the support By impregnating the support with the microcapsule-containing composition of the present disclosure, the support is pressed against the skin and rubbed, so that the microcapsules are disintegrated and the core material can be released at an arbitrary time. Moreover, it can be set as the sheet
  • Cosmetic sheets, diapers and the like are preferably packaged with a water-impermeable packaging material in order to stably hold the microcapsule-containing composition, from the viewpoint of sustaining effects.
  • the microcapsule-containing composition of the present disclosure can release the core material at an arbitrary timing at a necessary timing, it can be applied to various uses.
  • the use described above is an example thereof, and the use of the microcapsule-containing composition of the present disclosure is not limited to the above description.
  • volume-based median diameter, standard deviation, and volume average particle diameter were measured by Microtrac MT3300EXII (manufactured by Nikkiso Co., Ltd.).
  • the wall thickness was measured by observing the cross section of the microcapsule with a scanning electron microscope JSM-7800F (manufactured by JEOL Ltd.).
  • the breaking strength of the microcapsules was obtained by diluting the microcapsule aqueous dispersion 1000 times with water, and dropping and drying on a slide glass.
  • the breaking strength of microcapsules having a diameter of about 20 ⁇ m on the slad glass was measured using a microhardness meter DUH-W201 (manufactured by Shimadzu Corporation). Measurement was performed on 6 microcapsules per sample, and the average value was taken as the measured value.
  • Example 1 18.2 parts by mass of Saracos (registered trademark) HG-8 (manufactured by Nisshin Oillio Group Co., Ltd.) as a solvent, 54.7 parts by mass of D-limonene (manufactured by Yashara Chemical Co., Ltd., fragrance), and trifunctional as a shell material 13.5 parts by mass of Takenate (registered trademark) D-160N (made by Mitsui Chemicals, Inc., hexamethylene diisocyanate trimethylolpropane adduct), 4,4′-diphenylmethane diisocyanate (MDI, Wako Pure Chemical) Kogyo Co., Ltd .; specific diisocyanate compound) 4.5 parts by mass was stirred and mixed to obtain an oil phase solution.
  • Saracos registered trademark
  • HG-8 manufactured by Nisshin Oillio Group Co., Ltd.
  • D-limonene manufactured by Yashara Chemical Co., Ltd., fragrance
  • the content ratio of the structure derived from the bifunctional aromatic isocyanate compound to the total mass of the shell material is 25% by mass.
  • an oil phase solution was added to and dispersed in 157 parts of a 5.8% aqueous solution of Kuraray Poval (registered trademark) PVA-217E (manufactured by Kuraray Co., Ltd., PVA), which is polyvinyl alcohol, and the resulting emulsion was heated to 70 ° C. Warmed up. After stirring for 6 hours, 3.8 parts by mass of a 10% by mass aqueous sodium hydroxide solution was added to obtain an aqueous microcapsule dispersion.
  • the volume-based median diameter (D50) of the obtained microcapsules was 18 ⁇ m.
  • the breaking strength of the microcapsule was 20.5 MPa.
  • a microcapsule-containing composition was prepared by mixing with a fragrance-free softener (ULTRA Downy, manufactured by Procter & Gamble Japan Co., Ltd.) so that the fragrance conversion of the microcapsule produced above was 1.0 mass%. Put about 1.5 kg of cotton towel (36 cm x 36 cm) into automatic washing machine AW-422S (H) (manufactured by Toshiba Corporation), add 30 L of water, and add 10 parts by weight of the microcapsule-containing composition as a washing base softener. It was put into the injection port and a washing process (washing 10 minutes, rinsing 25 minutes, dehydration 10 minutes) was performed. Thereafter, the sample was dried for 24 hours to obtain a sample for sustained release evaluation.
  • a fragrance-free softener ULTRA Downy, manufactured by Procter & Gamble Japan Co., Ltd.
  • Example 2 A microcapsule aqueous dispersion was obtained in the same manner as in Example 1 except that the polyvinyl alcohol used in Example 1 was used as described in Table 1. The volume-based median diameter, standard deviation, volume average particle diameter, wall thickness, and microcapsule breaking strength of the obtained microcapsules were measured in the same manner as in Example 1.
  • Example 3 to Example 17 A microcapsule aqueous dispersion was obtained in the same manner as in Example 1 except that the polyvinyl alcohol used in Example 1 was changed and the type and mixing ratio of the isocyanate compound were changed as shown in Table 1. It was. The volume-based median diameter, standard deviation, volume average particle diameter, wall thickness, and microcapsule breaking strength of the obtained microcapsules were measured in the same manner as in Example 1.
  • Example 5 A microcapsule aqueous dispersion was obtained in the same manner as in Example 1 except that the type and mixing ratio of the isocyanate compound used were changed as shown in Table 1 in Example 1. The volume-based median diameter, standard deviation, volume average particle diameter, wall thickness, and microcapsule breaking strength of the obtained microcapsules were measured in the same manner as in Example 1.
  • Example 18 75 parts by mass of Isoban (registered trademark) 10 (manufactured by Kuraray Co., Ltd., 10% isobutylene-maleic anhydride copolymer aqueous solution) and 80 parts by mass of water were mixed, and the pH of this mixture was adjusted with a 10% aqueous sodium hydroxide solution. The aqueous phase solution was adjusted to 4.5.
  • Example 19 to Example 33 A microcapsule aqueous dispersion was obtained in the same manner as in Example 18 except that the type and mixing ratio of the melamine formaldehyde prepolymer and isocyanate compound used were changed as shown in Table 2. The volume-based median diameter, standard deviation, volume average particle diameter, wall thickness, and microcapsule breaking strength of the obtained microcapsules were measured in the same manner as in Example 18.
  • Example 18 a microcapsule aqueous dispersion was obtained in the same manner as in Example 18, except that the type and mixing ratio of the isocyanate compound used were changed as shown in Table 2. The volume-based median diameter, standard deviation, volume average particle diameter, wall thickness, and microcapsule breaking strength of the obtained microcapsules were measured in the same manner as in Example 18.
  • the evaluation sample (cotton towel) obtained above was cut into a square of 1/6 area, and the cut towel was immersed in 100 g of dimethyl sulfoxide and allowed to stand for 24 hours to extract the fragrance inside the microcapsule.
  • the extracted amount (mg) of the fragrance was quantified in the obtained dimethyl sulfoxide solution with a gas chromatograph analyzer (QP2010Ultra, manufactured by Shimadzu Corporation).
  • QP2010Ultra gas chromatograph analyzer
  • PVA in Table 1 represents an emulsifier.
  • Tables 1 and 2 Details of the components in Tables 1 and 2 are as follows.
  • 217E Kuraray Poval PVA-217E (partially saponified polyvinyl alcohol), manufactured by Kuraray Co., Ltd.
  • KM-618 Kuraray Poval KM-618 (anion modified polyvinyl alcohol), manufactured by Kuraray Co., Ltd.
  • D-160N Takenate D-160N (Hexamethylene diisocyanate trimethylolpropane adduct), manufactured by Mitsui Chemicals, Inc.
  • MDI 4,4′-diphenylmethane diisocyanate (manufactured by Wako Pure Chemical Industries, Ltd.)
  • HDI Hexamethylene diisocyanate (Wako Pure Chemical Industries, Ltd.)
  • DMDI 4,4′-dicyclohexylmethane diisocyanate (Wako Pure Chemical Industries, Ltd.)
  • THDI Trimethylhexamethylene diisocyanate (Wako Pure Chemical Industries, Ltd.)
  • Isoban 10 Concentrated 10% isobutylene-maleic anhydride copolymer aqueous solution, manufactured by Kuraray Co., Ltd.
  • Nikaresin S-260 Melamine-formaldehyde prepolymer, manufactured by Nippon Carbide Industries, Ltd.
  • the shell material is a microcapsule containing polyurethane or polyurea, and i) at least one selected from a structure derived from a bifunctional aliphatic isocyanate compound and a structure derived from a bifunctional aromatic isocyanate compound
  • Examples 1 to 17 which are microcapsule compositions having a structure of 10% by mass to 70% by mass with respect to the total mass of the shell material and having a shell thickness of 0.3 to 2.0 ⁇ m are as follows: It was found that the sustained release properties were superior to those of Comparative Examples 1 to 5 that did not satisfy this requirement.
  • microcapsule of the present disclosure can be suitably used as a core material, particularly in a mode in which a fragrance is included, and can exhibit various preferable functions such as fragrance protection and sustained release.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Fats And Perfumes (AREA)

Abstract

Provided is a microcapsule-containing composition produced by making sustained-release microcapsules having a high break strength. This microcapsule-containing composition includes microcapsules having a shell and a core containing a fragrance, wherein i) at least either one selected from a structure derived from a bifunctional aliphatic isocyanate compound and a structure derived from a bifunctional aromatic isocyanate compound is contained in the amount of 10 to 70 mass% with respect to the total mass of the shell material constituting the shell, and ii) the shell thickness is 0.3 to 2.0 μm.

Description

マイクロカプセル含有組成物、洗濯組成物、デイケア組成物及びヘアケア用組成物Microcapsule-containing composition, laundry composition, day care composition and hair care composition
 本開示は、マイクロカプセル含有組成物、洗濯組成物、デイケア組成物及びヘアケア用組成物に関する。 The present disclosure relates to a microcapsule-containing composition, a laundry composition, a day care composition, and a hair care composition.
 近年、マイクロカプセルは、香料、染料、蓄熱材、医薬品成分などの機能性材料を内包して保護すること、機能性材料を刺激に応答して放出させること等の点で、新たな価値を顧客に提供できる可能性があることから注目されている。 In recent years, microcapsules have added new value to customers by including and protecting functional materials such as fragrances, dyes, heat storage materials, and pharmaceutical ingredients, and releasing functional materials in response to stimuli. It is attracting attention because there is a possibility that it can be provided.
 香料をマイクロカプセルに内包する場合には、例えば、香料を内包したマイクロカプセル(以下、香料マイクロカプセルともいう。)を柔軟剤と混合することで、柔軟剤を使用して衣服を洗濯した後、柔軟剤に含まれるマイクロカプセルが衣服に付着し、圧力等によりマイクロカプセルが破壊されると内包されている香料が放出され、香料による香りを継続的に生じさせることができる。
 現在、香料マイクロカプセルに用いられているシェル材はアルデヒドとアミンとの反応生成物(例えばメラミンホルムアルデヒド樹脂)が主体である。
When encapsulating a fragrance in a microcapsule, for example, by mixing a microcapsule encapsulating a fragrance (hereinafter also referred to as a fragrance microcapsule) with a softening agent, washing clothes using the softening agent, When the microcapsules contained in the softening agent adhere to the clothes and the microcapsules are broken by pressure or the like, the contained fragrance is released, and the fragrance by the fragrance can be continuously generated.
At present, the shell material used in perfume microcapsules is mainly a reaction product of aldehyde and amine (for example, melamine formaldehyde resin).
 シェルにメラミンホルムアルデヒド樹脂を用いる例として、特許文献1には、コア材料として香料を含み、壁材料(シェル材)としてアルデヒド(例えばホルムアルデヒド)とアミン(例えばメラミン)の反応生成物を含む樹脂を用いたマイクロカプセルが記載されている。 As an example of using a melamine formaldehyde resin for a shell, Patent Document 1 uses a resin containing a fragrance as a core material and a wall material (shell material) containing a reaction product of an aldehyde (for example, formaldehyde) and an amine (for example, melamine). Microcapsules that have been described are described.
 また、シェルとしてポリウレタン又はポリウレアを用いるマイクロカプセルも提案されている。
 例えば、特許文献2には、ポリイソシアネートとポリアミンとの重合の反応生成物を含むポリ尿素壁(ポリウレア壁)と、ポリ尿素壁に封入された香料を含むポリ尿素マイクロカプセルが記載されている。
In addition, a microcapsule using polyurethane or polyurea as a shell has been proposed.
For example, Patent Document 2 describes a polyurea microcapsule including a polyurea wall (polyurea wall) containing a reaction product of polymerization of polyisocyanate and polyamine, and a fragrance encapsulated in the polyurea wall.
特開2017-122235号公報JP 2017-122235 A 特表2013-530825号公報Special table 2013-530825 gazette
 しかしながら、上記のようなマイクロカプセルは、圧力応答性を利用して内包成分を外部へ放出するものであるため、例えば香料マイクロカプセルとして用いる際には、衣類に圧力が加えられることでカプセルが壊れ、香料による芳香が拡散される。したがって、圧力がカプセルに加えられない状態では、香料はカプセル内に閉じ込められたまま保持され、香料による芳香を継続的に得ることはできない。 However, since the microcapsules as described above use pressure responsiveness to release the encapsulated component to the outside, for example, when used as a perfume microcapsule, the capsule breaks due to pressure being applied to the clothing. The fragrance by the fragrance is diffused. Therefore, in the state where no pressure is applied to the capsule, the fragrance is held in the capsule and cannot be continuously obtained.
 本発明の一実施形態が解決しようとする課題は、徐放性を有し、かつ高い破壊強度を有するマイクロカプセルを形成し、マイクロカプセル含有組成物を提供することである。 The problem to be solved by one embodiment of the present invention is to provide a microcapsule-containing composition by forming microcapsules having sustained release properties and high breaking strength.
 上記課題を解決するための具体的手段は、以下の態様を含む。
<1>
 シェルと、香料を内包したコアとを有するマイクロカプセルを含むマイクロカプセル含有組成物であって、i)2官能の脂肪族イソシアネート化合物に由来する構造及び2官能の芳香族イソシアネート化合物に由来する構造から選ばれる少なくとも一方の構造を、シェルを形成するシェル材の全質量に対して10質量%~70質量%有し、ii)シェルの厚みが0.3~2.0μmである、マイクロカプセル含有組成物。
<2>
 マイクロカプセルの破壊強度が16MPa以上である<1>に記載のマイクロカプセル含有組成物。
<3>
 シェル材がポリウレタン及びポリウレアの少なくとも一方又はメラミンホルムアルデヒド樹脂のいずれかを含む<1>又は<2>に記載のマイクロカプセル含有組成物。
<4>
 シェル材が、ポリイソシアネート化合物に由来する構造を有するポリウレタン及びポリウレアの少なくとも一方を含む<1>~<3>のいずれか1項に記載のマイクロカプセル含有組成物。
<5>
 シェル材が、3官能以上の脂肪族イソシアネート化合物に由来する構造と、2官能の脂肪族イソシアネート化合物に由来する構造及び2官能の芳香族イソシアネート化合物に由来する構造から選ばれる少なくとも一方の構造と、を有するポリウレタン又はポリウレアを含む<4>に記載のマイクロカプセル含有組成物。
<6>
 シェル材が、メラミンホルムアルデヒドプレポリマー化合物に由来する構造を有するメラミンホルムアルデヒド樹脂を含む<1>~<3>のいずれか1項に記載のマイクロカプセル含有組成物。
<7>
 シェル材が、メラミンホルムアルデヒドプレポリマー化合物に由来する構造と、2官能の脂肪族イソシアネート化合物に由来する構造及び2官能の芳香族イソシアネート化合物に由来する構造から選ばれる少なくとも一方の構造と、を有するメラミンホルムアルデヒド樹脂を含む<6>に記載のマイクロカプセル含有組成物。
<8>
 <1>~<7>のいずれかに1項に記載のマイクロカプセル含有組成物を含む洗濯組成物、デイケア組成物又はヘアケア用組成物。
Specific means for solving the above problems includes the following aspects.
<1>
A microcapsule-containing composition comprising a microcapsule having a shell and a core containing a fragrance, i) from a structure derived from a bifunctional aliphatic isocyanate compound and a structure derived from a bifunctional aromatic isocyanate compound Microcapsule-containing composition having at least one selected structure of 10% by mass to 70% by mass with respect to the total mass of the shell material forming the shell, and ii) the thickness of the shell is 0.3 to 2.0 μm object.
<2>
The microcapsule-containing composition according to <1>, wherein the microcapsule has a breaking strength of 16 MPa or more.
<3>
The microcapsule-containing composition according to <1> or <2>, wherein the shell material contains at least one of polyurethane and polyurea or melamine formaldehyde resin.
<4>
The microcapsule-containing composition according to any one of <1> to <3>, wherein the shell material includes at least one of polyurethane and polyurea having a structure derived from a polyisocyanate compound.
<5>
At least one structure selected from a structure derived from a trifunctional or higher functional aliphatic isocyanate compound, a structure derived from a bifunctional aliphatic isocyanate compound, and a structure derived from a bifunctional aromatic isocyanate compound; <4> The microcapsule-containing composition according to <4>, comprising polyurethane or polyurea.
<6>
The microcapsule-containing composition according to any one of <1> to <3>, wherein the shell material includes a melamine formaldehyde resin having a structure derived from a melamine formaldehyde prepolymer compound.
<7>
The shell material has a structure derived from a melamine formaldehyde prepolymer compound, a structure derived from a bifunctional aliphatic isocyanate compound, and at least one structure selected from a structure derived from a bifunctional aromatic isocyanate compound. The microcapsule-containing composition according to <6>, comprising a formaldehyde resin.
<8>
A laundry composition, day care composition or hair care composition comprising the microcapsule-containing composition according to any one of <1> to <7>.
 本開示の一実施形態によれば、徐放性を有し、かつ高い破壊強度を有するマイクロカプセルを形成することで、徐放性を有するマイクロカプセル含有組成物を提供することである。 According to one embodiment of the present disclosure, a microcapsule-containing composition having sustained release properties is provided by forming microcapsules having sustained release properties and high breaking strength.
 以下、本開示のマイクロカプセル含有組成物の一実施形態について詳細に説明する。 Hereinafter, an embodiment of the microcapsule-containing composition of the present disclosure will be described in detail.
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ下限値及び上限値として含む範囲を意味する。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において、「シェル」とは、マイクロカプセルの壁をいい、「コア」とは、シェルに内包される部分をいう。
 本開示において、シェルを形成するための材料を「シェル材」という。また、コアに含まれる成分を総称して「コア材」という。
 本開示のマイクロカプセルにおいて、「内包」とは、目的物がマイクロカプセルのシェルに覆われて閉じ込められている状態を指す。
In the present specification, a numerical range indicated using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value, respectively. In a numerical range described in stages in the present disclosure, an upper limit value or a lower limit value described in a numerical range may be replaced with an upper limit value or a lower limit value in another numerical range. Further, in the numerical ranges described in the present disclosure, the upper limit value or the lower limit value described in a certain numerical range may be replaced with the values shown in the examples.
In this specification, “shell” refers to a wall of a microcapsule, and “core” refers to a portion enclosed in the shell.
In the present disclosure, a material for forming the shell is referred to as “shell material”. The components contained in the core are collectively referred to as “core material”.
In the microcapsule of the present disclosure, the “encapsulation” refers to a state in which an object is covered and confined by the shell of the microcapsule.
≪マイクロカプセル含有組成物≫
 本開示のマイクロカプセル含有組成物は、徐放性を有し、かつ高い破壊強度を有するマイクロカプセルを含む。マイクロカプセルは、シェルと、香料を内包したコアとを有する。
≪Composition containing microcapsules≫
The microcapsule-containing composition of the present disclosure includes a microcapsule having sustained release properties and high breaking strength. The microcapsule has a shell and a core containing a fragrance.
上述の通り従来より知られているマイクロカプセルは、一般的に圧力が加えられない状態では、香料はカプセル内に閉じ込められたまま保持され、カプセルのシェルが破壊されない限り香料による芳香が放散される機能を有していない。しかし、圧力応答性を有する香料マイクロカプセルは、洗濯時の様々な工程、特に脱水工程で力がかかると破壊されてしまい、衣類に付着した香料マイクロカプセルにムラが生じる。一方、カプセルが破壊されない状況でも、僅かながら芳香が得られ、かつ、芳香を長時間に亘って持続させることができる性質、即ち香料が自然的に徐々に放出される徐放性を有する香料マイクロカプセルに対する要望がある。
 上記に鑑み、本発明者は、特にマイクロカプセルのシェル材の特性に着目し、コア材として香料を内包し、i)2官能の脂肪族イソシアネート化合物に由来する構造及び2官能の芳香族イソシアネート化合物に由来する構造から選ばれる少なくとも一方の構造をシェル材の全質量に対して10質量%~70質量%有し、ii)シェルの厚みが0.3~2.0μmであるマイクロカプセルとする。これにより、マイクロカプセルの洗濯工程で破壊されることなく、かつ、内包成分を徐々に放出させることができることを見出した。
As described above, conventionally known microcapsules generally retain the fragrance in the capsule when no pressure is applied, and the fragrance is released by the fragrance unless the capsule shell is broken. Has no function. However, the perfume microcapsules having pressure responsiveness are destroyed when force is applied in various processes during washing, particularly the dehydration process, and unevenness occurs in the perfume microcapsules attached to the clothes. On the other hand, even in a situation where the capsule is not broken, a perfume micro having a property that a slight aroma can be obtained and that the aroma can be maintained for a long time, that is, a perfume is gradually released naturally. There is a demand for capsules.
In view of the above, the inventor of the present invention pays particular attention to the characteristics of the shell material of the microcapsule, and includes a fragrance as a core material, and i) a structure derived from a bifunctional aliphatic isocyanate compound and a bifunctional aromatic isocyanate compound A microcapsule having at least one structure selected from the structures derived from (ii) having a mass of 10 to 70% by mass with respect to the total mass of the shell material and having a shell thickness of 0.3 to 2.0 μm. As a result, it has been found that the encapsulated components can be gradually released without being destroyed in the washing process of the microcapsules.
<マイクロカプセル>
 本開示におけるマイクロカプセルは、コアとコアを内包するシェルとを有しており、i)2官能の脂肪族イソシアネート化合物に由来する構造及び2官能の芳香族イソシアネート化合物に由来する構造から選ばれる少なくとも一方の構造をシェル材の全質量に対して10質量%~70質量%有し、ii)シェルの厚みが0.3~2.0μmである。
<Microcapsule>
The microcapsule in the present disclosure has a core and a shell enclosing the core, and i) at least selected from a structure derived from a bifunctional aliphatic isocyanate compound and a structure derived from a bifunctional aromatic isocyanate compound. One structure has 10% by mass to 70% by mass with respect to the total mass of the shell material, and ii) the thickness of the shell is 0.3 to 2.0 μm.
(破壊強度)
 本開示におけるマイクロカプセルは16MPa以上の破壊強度を有することが好ましい。これにより洗濯時の様々な工程、特に脱水工程においてもマイクロカプセルが破壊されることなく、繊維に均一に付着させることができる。上記と同様の観点から、マイクロカプセルの破壊強度は18~35MPaがより好ましく、20~30MPaが特に好ましい。
(destruction strength)
The microcapsules in the present disclosure preferably have a breaking strength of 16 MPa or more. Accordingly, the microcapsules can be uniformly adhered to the fibers without being broken even in various processes during washing, particularly in the dehydration process. From the same viewpoint as described above, the breaking strength of the microcapsule is more preferably 18 to 35 MPa, and particularly preferably 20 to 30 MPa.
 マイクロカプセルの破壊強度は以下の方法で測定できる。
マイクロカプセル水分散液を1000倍に水で希釈し、スライドガラスに0.1cc滴下後、乾燥し、スライドガラス上にある直径約20μmのマイクロカプセルについて破壊力を測定した。測定には微小硬度計DUH-W201(株式会社島津製作所製)を用い、付属の顕微鏡を用いてマイクロカプセルのサイズを確認し測定を行った。圧子には50μmの平面圧子を用いた。マイクロカプセルの破壊力は、Zhang,Z.;Sun,G;「Mechanical Properties of Melamine-Formaldehyde microcapsules,」J.Microencapsulation,vol 18,no.5,pages 593~602,2001に与えられている手順を使用して決定した。次に、破壊力(ニュートン単位)を、対応するマイクロカプセルの断面積(πr、式中、rは、圧縮前のマイクロカプセルの半径である)で割ることによって、各粒子の破壊強度を計算した。破壊強度は10個のマイクロカプセルについて測定した平均値を使用した。
The breaking strength of the microcapsule can be measured by the following method.
The aqueous microcapsule dispersion was diluted 1000 times with water, dropped by 0.1 cc onto the slide glass, dried, and the breaking strength of the microcapsule having a diameter of about 20 μm on the slide glass was measured. For the measurement, a microhardness meter DUH-W201 (manufactured by Shimadzu Corporation) was used, and the size of the microcapsule was confirmed and measured using an attached microscope. A 50 μm planar indenter was used as the indenter. The destructive force of microcapsules is described in Zhang, Z. et al. Sun, G; “Mechanical Properties of Melamine-Formaldehyde microcapsules,” J .; Microencapsulation, vol 18, no. 5, pages 593-602, 2001. Next, calculate the breaking strength of each particle by dividing the breaking force (in Newtons) by the cross-sectional area of the corresponding microcapsule (πr 2 , where r is the radius of the microcapsule before compression). did. For the breaking strength, the average value measured for 10 microcapsules was used.
 本開示におけるマイクロカプセルは徐放性を有する。徐放性とはコアの香料がマイクロカプセルが破壊されない状況でも僅かな芳香が得られ、かつ芳香を長時間に亘って持続させる性質である。
 本開示において、下記工程により得られた木綿タオルの25℃48時間後の香料減少量が5~30質量%であればマイクロカプセルが徐放性を有すると判断する。
 a)洗濯機に縦36cm×横36cmの木綿タオル1.5kgを入れる工程
 b)香料換算1.0質量%となるように無香料柔軟剤と混合したマイクロカプセル含有組成物10質量部を上記洗濯機の柔軟剤注入口に入れる工程
 c)上記洗濯機に水30Lを入れる工程
 d)上記洗濯機を用いて洗濯10分、すすぎ25分、脱水10分を行う工程
 e)上記で得られた木綿タオルを乾燥する工程
 つまり、マイクロカプセルが繊維に付着したあと、マイクロカプセル内の香料が放出され、香料が減少することで徐放性の有無を確認できる。香料減少量が5質量%以上であることで放出した香料を十分に感じることができ、30質量%以下であることで長期に亘り芳香を持続できる。
 上記と同様の観点から、香料減少量としては8~25質量%であることがより好ましく、10~20質量%であることが特に好ましい。尚、香料減少量は、例えば、後述する実施例に記載の香料減少量による徐放性評価に記載の方法で測定することができる。
The microcapsules in the present disclosure have sustained release properties. Sustained release is a property in which a slight fragrance is obtained even when the core fragrance does not break the microcapsules and the fragrance is maintained for a long time.
In the present disclosure, it is determined that the microcapsule has a sustained release property if the amount of the fragrance decreased after 48 hours at 25 ° C. of the cotton towel obtained by the following process is 5 to 30% by mass.
a) A step of putting 1.5 kg of a cotton towel of 36 cm in length and 36 cm in width into a washing machine b) Washing 10 parts by mass of the microcapsule-containing composition mixed with an unscented softener so as to be 1.0% by mass in terms of fragrance C) Step of putting 30 L of water into the washing machine d) Step of washing 10 minutes, rinsing 25 minutes, dehydration 10 minutes using the washing machine e) Cotton obtained above Step of drying towel In other words, after the microcapsule adheres to the fiber, the fragrance in the microcapsule is released, and the presence or absence of sustained release can be confirmed by decreasing the fragrance. When the fragrance reduction amount is 5% by mass or more, the released fragrance can be sufficiently felt, and when it is 30% by mass or less, the fragrance can be maintained for a long time.
From the same viewpoint as described above, the fragrance reduction amount is more preferably 8 to 25% by mass, and particularly preferably 10 to 20% by mass. In addition, a fragrance | flavor reduction | decrease amount can be measured by the method as described in sustained release evaluation by the fragrance | flavor reduction amount as described in the Example mentioned later, for example.
(シェル)
 本開示におけるマイクロカプセルは、コアを内包するシェルを有する。
 本開示におけるシェルを形成するシェル材は、ポリイソシアネート化合物に由来する構造を有するポリウレタン及びポリウレアの少なくとも一方、又はメラミンホルムアルデヒドプレポリマー化合物に由来する構造を有するメラミンホルムアルデヒド樹脂を有することが好ましい。
(shell)
The microcapsule in the present disclosure has a shell that encloses a core.
The shell material forming the shell in the present disclosure preferably has at least one of polyurethane and polyurea having a structure derived from a polyisocyanate compound, or a melamine formaldehyde resin having a structure derived from a melamine formaldehyde prepolymer compound.
~ポリウレタン、ポリウレア~
 本開示のマイクロカプセルは、コア材を内包するためのシェルを含み、シェルを形成するシェル材としてポリウレタン又はポリウレアを含むことが好ましい。
-Polyurethane, Polyurea-
The microcapsule of the present disclosure includes a shell for enclosing the core material, and preferably includes polyurethane or polyurea as the shell material forming the shell.
 シェルに含まれるポリウレタン及びポリウレアについて詳細に説明する。
 本開示におけるポリウレタン及びポリウレアは、保存安定性の観点から、ポリイソシアネートに由来する構造を有することが好ましい。即ち、本開示におけるポリウレタン及びポリウレアは、保存安定性の観点から、ポリイソシアネートを用いて得られるポリマーであることが好ましい。即ち、ポリウレタン及びポリウレアは、イソシアネート化合物に由来する構造を有することが好ましく、イソシアネート化合物に由来する構造としては、3官能以上の脂肪族イソシアネート化合物に由来する構造と、2官能の脂肪族イソシアネート化合物に由来する構造及び2官能の芳香族イソシアネート化合物に由来する構造から選ばれる少なくとも一方の構造であることが好ましい。
The polyurethane and polyurea contained in the shell will be described in detail.
The polyurethane and polyurea in the present disclosure preferably have a structure derived from polyisocyanate from the viewpoint of storage stability. That is, the polyurethane and polyurea in the present disclosure are preferably polymers obtained using polyisocyanate from the viewpoint of storage stability. That is, the polyurethane and the polyurea preferably have a structure derived from an isocyanate compound. The structure derived from the isocyanate compound includes a structure derived from a tri- or higher functional aliphatic isocyanate compound and a bifunctional aliphatic isocyanate compound. It is preferably at least one structure selected from a structure derived from a structure derived from a bifunctional aromatic isocyanate compound.
 本開示におけるポリウレタン又はポリウレアには、ポリウレタンポリウレアが含まれる。また、本開示におけるポリウレタン又はポリウレアとしては、ポリウレタンポリウレアがより好ましい。
 本開示においてポリウレタン、ポリウレア及びポリウレタンポリウレアは、2官能の脂肪族イソシアネート化合物に由来する構造及び2官能の芳香族イソシアネート化合物に由来する構造から選ばれる少なくとも一方の構造を有していることが好ましい。
 本開示におけるシェルは、ポリウレタン又はポリウレアの形成において、2官能のイソシアネート化合物が用いられることで、徐放性を兼ね備える。
The polyurethane or polyurea in the present disclosure includes polyurethane polyurea. In addition, as the polyurethane or polyurea in the present disclosure, polyurethane polyurea is more preferable.
In the present disclosure, the polyurethane, polyurea and polyurethane polyurea preferably have at least one structure selected from a structure derived from a bifunctional aliphatic isocyanate compound and a structure derived from a bifunctional aromatic isocyanate compound.
The shell in the present disclosure has a sustained release property by using a bifunctional isocyanate compound in the formation of polyurethane or polyurea.
 なお、以下において、2官能の脂肪族イソシアネート化合物及び2官能の芳香族イソシアネート化合物を総じて、「特定ジイソシアネート」と称する場合がある。 In the following, the bifunctional aliphatic isocyanate compound and the bifunctional aromatic isocyanate compound may be collectively referred to as “specific diisocyanate”.
-特定ジイソシアネート-
 シェルを形成するシェル材であるポリウレタン又はポリウレアは、特定ジイソシアネートに由来する構造、即ち、2官能の脂肪族イソシアネート化合物に由来する構造及び2官能の芳香族イソシアネート化合物に由来する構造から選ばれる少なくとも一方の構造を有することが好ましい。
 2官能の脂肪族イソシアネート化合物に由来する構造とは、2官能の脂肪族イソシアネートがウレタン反応又はウレア反応して形成される構造を指す。
 2官能の芳香族イソシアネート化合物に由来する構造とは、2官能の芳香族イソシアネートがウレタン反応又はウレア反応して形成される構造を指す。
-Specific diisocyanate-
The polyurethane or polyurea that is a shell material forming the shell is at least one selected from a structure derived from a specific diisocyanate, that is, a structure derived from a bifunctional aliphatic isocyanate compound and a structure derived from a bifunctional aromatic isocyanate compound. It is preferable to have the following structure.
The structure derived from a bifunctional aliphatic isocyanate compound refers to a structure formed by a urethane reaction or a urea reaction of a bifunctional aliphatic isocyanate.
The structure derived from a bifunctional aromatic isocyanate compound refers to a structure formed by the reaction of urethane or urea with a bifunctional aromatic isocyanate.
 2官能の脂肪族イソシアネート化合物としては、例えば、トリメチレンジイソシアネート、ヘキサメチレンジイソシアネート、プロピレン-1,2-ジイソシアネート、ブチレン-1,2-ジイソシアネート、シクロヘキシレン-1,2-ジイソシアネート、シクロヘキシレン-1,3-ジイソシアネート、シクロヘキシレン-1,4-ジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、1,4-ビス(イソシアネートメチル)シクロヘキサン及び1,3-ビス(イソシアネートメチル)シクロヘキサン、イソホロンジイソシアネート、リジンジイソシアネート、水素化キシリレンジイソシアネート等が挙げられる。 Examples of the bifunctional aliphatic isocyanate compound include trimethylene diisocyanate, hexamethylene diisocyanate, propylene-1,2-diisocyanate, butylene-1,2-diisocyanate, cyclohexylene-1,2-diisocyanate, cyclohexylene-1, 3-diisocyanate, cyclohexylene-1,4-diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, 1,4-bis (isocyanatemethyl) cyclohexane and 1,3-bis (isocyanatemethyl) cyclohexane, isophorone diisocyanate, lysine diisocyanate And hydrogenated xylylene diisocyanate.
 2官能の芳香族イソシアネート化合物としては、例えば、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、2,6-トリレンジイソシアネート、2,4-トリレンジイソシアネート、ナフタレン-1,4-ジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、3,3’-ジメトキシ-ビフェニルジイソシアネート、3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、キシリレン-1,4-ジイソシアネート、キシリレン-1,3-ジイソシアネート、4-クロロキシリレン-1,3-ジイソシアネート、2-メチルキシリレン-1,3-ジイソシアネート、4,4’-ジフェニルプロパンジイソシアネート、4,4’-ジフェニルヘキサフルオロプロパンジイソシアネート等が挙げられる。 Examples of the bifunctional aromatic isocyanate compound include m-phenylene diisocyanate, p-phenylene diisocyanate, 2,6-tolylene diisocyanate, 2,4-tolylene diisocyanate, naphthalene-1,4-diisocyanate, diphenylmethane-4, 4'-diisocyanate, 3,3'-dimethoxy-biphenyl diisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, xylylene-1,4-diisocyanate, xylylene-1,3-diisocyanate, 4-chloroxyl Len-1,3-diisocyanate, 2-methylxylylene-1,3-diisocyanate, 4,4'-diphenylpropane diisocyanate, 4,4'-diphenylhexafluoropropane diisocyanate, etc. It is.
 イソシアネート化合物については「ポリウレタン樹脂ハンドブック」(岩田敬治編、日刊工業新聞社発行(1987))に記載されている。 Isocyanate compounds are described in “Polyurethane Resin Handbook” (edited by Keiji Iwata, published by Nikkan Kogyo Shimbun (1987)).
 特定ジイソシアネートに由来する構造、即ち、2官能の脂肪族イソシアネートに由来する構造及び2官能の芳香族イソシアネートに由来する構造から選ばれる少なくとも一方の構造の、シェル材の全質量に占める割合としては、合計の質量比率で10質量%~70質量%であることが好ましく、10質量%~65質量%であることがより好ましく、12質量%~60質量%であることが更に好ましい。
 特定ジイソシアネートに由来する構造の割合が10質量%以上であると、シェルの架橋密度が低くなり、内包されるコア材の徐放性を高めることができる。また、特定ジイソシアネートに由来する構造の割合が70質量%以下、更には60質量%以下であると、シェルの柔軟性を保ちやすく、例えば繊維又は毛等に対する付着性を良好に維持することができる。
As a ratio of at least one structure selected from a structure derived from a specific diisocyanate, that is, a structure derived from a bifunctional aliphatic isocyanate and a structure derived from a bifunctional aromatic isocyanate, to the total mass of the shell material, The total mass ratio is preferably 10% by mass to 70% by mass, more preferably 10% by mass to 65% by mass, and still more preferably 12% by mass to 60% by mass.
When the proportion of the structure derived from the specific diisocyanate is 10% by mass or more, the crosslinking density of the shell is lowered, and the sustained release property of the core material to be included can be enhanced. Further, when the proportion of the structure derived from the specific diisocyanate is 70% by mass or less, and further 60% by mass or less, the flexibility of the shell can be easily maintained, and, for example, adhesion to fibers or hairs can be favorably maintained. .
-3官能以上の脂肪族イソシアネート化合物-
 シェルを形成するシェル材であるポリウレタン又はポリウレアは、3官能以上の脂肪族イソシアネート化合物に由来する構造を有することが好ましい。3官能以上の脂肪族イソシアネート化合物に由来する構造を有していることで、シェルの柔軟性及び破壊強度を高めることができ、繊維又は毛等の付着対象物に対する付着性が得られる。
 3官能以上の脂肪族イソシアネート化合物に由来する構造とは、3官能以上の脂肪族イソシアネート化合物がウレタン反応又はウレア反応して形成される構造を指す。
-3 Functional or higher aliphatic isocyanate compounds
The polyurethane or polyurea which is a shell material forming the shell preferably has a structure derived from a tri- or higher functional aliphatic isocyanate compound. By having a structure derived from a trifunctional or higher functional aliphatic isocyanate compound, the flexibility and breaking strength of the shell can be increased, and adhesion to an object to be adhered such as fiber or hair can be obtained.
The structure derived from a trifunctional or higher functional aliphatic isocyanate compound refers to a structure formed by a urethane reaction or a urea reaction of a trifunctional or higher functional aliphatic isocyanate compound.
 3官能以上の脂肪族イソシアネート化合物としては、2官能の脂肪族イソシアネート化合物(分子中に2つのイソシアネート基を有する化合物)と分子中に3つ以上の活性水素基を有する化合物(3官能以上の例えばポリオール、ポリアミン又はポリチオール等)とのアダクト体(付加物)として3官能以上としたイソシアネート化合物(アダクト型)、2官能の脂肪族イソシアネート化合物の3量体(ビウレット型又はイソシアヌレート型)を挙げることができる。 Examples of the trifunctional or higher functional aliphatic isocyanate compound include a bifunctional aliphatic isocyanate compound (a compound having two isocyanate groups in the molecule) and a compound having three or more active hydrogen groups in the molecule (for example, a trifunctional or higher functional group). As an adduct (adduct) with a polyol, polyamine, polythiol, etc.), a trifunctional or higher functional isocyanate compound (adduct type), a bifunctional aliphatic isocyanate compound trimer (biuret type or isocyanurate type) Can do.
 アダクト型の3官能以上のイソシアネート化合物は、上市されている市販品を用いてもよい。市販品の例としては、タケネート(登録商標)D-120N(イソシアネート価=3.5 mmol/g)、D-140N、D-160N(以上、三井化学株式会社製)、スミジュール(登録商標)HT(バイエル株式会社製)、コロネート(登録商標)HL、HX(東ソー株式会社製)、デュラネートP301-75E(旭化成株式会社製)、バーノック(登録商標)DN-950(DIC株式会社製)などが挙げられる。
 中でも、アダクト型の3官能以上のイソシアネート化合物として、三井化学株式会社製のタケネート(登録商標)シリーズ(例えば、タケネートD-110N、D-120N、D-140N、D-160N等)、及びDIC株式会社製のバーノック(登録商標)D-750から選ばれる少なくとも1種がより好ましい。
A commercially available product may be used as the adduct type trifunctional or higher functional isocyanate compound. Examples of commercially available products include Takenate (registered trademark) D-120N (isocyanate number = 3.5 mmol / g), D-140N, D-160N (manufactured by Mitsui Chemicals, Inc.), Sumijoule (registered trademark). HT (manufactured by Bayer Corporation), Coronate (registered trademark) HL, HX (manufactured by Tosoh Corporation), Duranate P301-75E (manufactured by Asahi Kasei Co., Ltd.), Barnock (registered trademark) DN-950 (manufactured by DIC Corporation), etc. Can be mentioned.
Among them, as adduct type tri- or higher functional isocyanate compounds, Takenate (registered trademark) series (for example, Takenate D-110N, D-120N, D-140N, D-160N, etc.) manufactured by Mitsui Chemicals, Inc., and DIC stock More preferable is at least one selected from Vernock (registered trademark) D-750 manufactured by the company.
 イソシアヌレート型の3官能以上のイソシアネート化合物は、上市されている市販品を用いてもよい。市販品の例としては、タケネート(登録商標)D-127N、D-170N、D-170HN、D-172N、D-177N(三井化学株式会社製)、スミジュールN3300、デスモジュール(登録商標)N3600、N3900、Z4470BA(以上、バイエル株式会社製)、コロネート(登録商標)HK(東ソー株式会社製)、デュラネート(登録商標)TPA-100、TKA-100(旭化成株式会社製)、バーノック(登録商標)DN-980(DIC株式会社製)などが挙げられる。 As the isocyanurate-type trifunctional or higher functional isocyanate compound, a commercially available product may be used. Examples of commercially available products include Takenate (registered trademark) D-127N, D-170N, D-170HN, D-172N, D-177N (manufactured by Mitsui Chemicals), Sumidur N3300, Death Module (registered trademark) N3600. N3900, Z4470BA (manufactured by Bayer Co., Ltd.), Coronate (registered trademark) HK (manufactured by Tosoh Corporation), Duranate (registered trademark) TPA-100, TKA-100 (manufactured by Asahi Kasei Corporation), Barnock (registered trademark) DN-980 (manufactured by DIC Corporation) and the like.
 ビウレット型の3官能以上のイソシアネート化合物は、上市されている市販品を用いてもよく、例えば、タケネート(登録商標)D-165N、NP1200(三井化学株式会社製)、デスモジュール(登録商標)N3200A(バイエル株式会社製)、デュラネート(登録商標)24A-100、22A-75P(旭化成株式会社製)などが挙げられる。 As the biuret type trifunctional or higher functional isocyanate compound, commercially available products may be used. For example, Takenate (registered trademark) D-165N, NP1200 (manufactured by Mitsui Chemicals), Desmodur (registered trademark) N3200A (Manufactured by Bayer Corporation), Duranate (registered trademark) 24A-100, 22A-75P (manufactured by Asahi Kasei Corporation) and the like.
 3官能以上の脂肪族イソシアネート化合物に由来する構造の、シェル材の全質量に占める割合としては、20質量%~95質量%であることが好ましく、20質量%~90質量%であることがより好ましく、35質量%~80質量%であることが更に好ましい。
 3官能以上の脂肪族イソシアネート化合物に由来する構造の割合が20質量%以上であると、シェルに良好な柔軟性と破壊強度を付与することができる。また、3官能以上の脂肪族イソシアネート化合物に由来する構造の割合が95質量%以下であると、コア材の外部への徐放性を保持するのに適している。
The ratio of the structure derived from the trifunctional or higher aliphatic isocyanate compound to the total mass of the shell material is preferably 20% by mass to 95% by mass, and more preferably 20% by mass to 90% by mass. The content is preferably 35% by mass to 80% by mass.
When the proportion of the structure derived from the tri- or higher functional aliphatic isocyanate compound is 20% by mass or more, the shell can be provided with good flexibility and breaking strength. Moreover, when the ratio of the structure derived from the trifunctional or higher aliphatic isocyanate compound is 95% by mass or less, it is suitable for maintaining the sustained release property to the outside of the core material.
 特定ジイソシアネートに対する3官能の脂肪族イソシアネート化合物の比率としては、質量基準で、95/5~20/80であることが好ましく、90/10~30/70であることがより好ましく、90/10~40/60であることが更に好ましい。
 特定ジイソシアネートに対する3官能の脂肪族イソシアネート化合物の比率が上記の範囲内であると、コア材の徐放性に優れたものとなる。
The ratio of the trifunctional aliphatic isocyanate compound to the specific diisocyanate is preferably from 95/5 to 20/80, more preferably from 90/10 to 30/70, and more preferably from 90/10 to 90/10. More preferably, it is 40/60.
When the ratio of the trifunctional aliphatic isocyanate compound to the specific diisocyanate is within the above range, the sustained release property of the core material is excellent.
-他のイソシアネート化合物-
 シェルを形成するシェル材であるポリウレタン又はポリウレアは、上記の3官能の脂肪族イソシアネート化合物及び特定ジイソシアネート以外に、他のイソシアネート化合物に由来する構造を有していてもよい。
 他のイソシアネート化合物に由来する構造とは、他のイソシアネート化合物がウレタン反応又はウレア反応して形成される構造を指す。
-Other isocyanate compounds-
Polyurethane or polyurea, which is a shell material that forms a shell, may have a structure derived from other isocyanate compounds in addition to the trifunctional aliphatic isocyanate compound and the specific diisocyanate.
The structure derived from another isocyanate compound refers to a structure formed by the urethane reaction or urea reaction of another isocyanate compound.
 他のイソシアネート化合物としては、例えば、3官能以上の芳香族イソシアネート化合物が挙げられる。 Examples of other isocyanate compounds include trifunctional or higher functional aromatic isocyanate compounds.
 3官能以上の芳香族イソシアネート化合物の具体例としては、2,6-トリレンジイソシアネート、2,4-トリレンジイソシアネート又はヘキサメチレンジイソシアネートとトリメチロールプロパンとの付加物(アダクト体)、ビウレット体もしくはイソシアヌレート体等が挙げられる。
 3官能以上の芳香族イソシアネート化合物として上市されている市販品を用いてもよく、市販品の例としては、バーノック(登録商標)D-750(DIC株式会社製)、タケネート(登録商標)D-102、D-103、D-103H、D-103M2、D-110N、オレスター(登録商標)P49-75S(以上、三井化学株式会社製)、デスモジュール(登録商標)L75、IL-135-BA、HL-BA、スミジュール(登録商標)E-21-1(バイエル株式会社製)、コロネート(登録商標)L、L-55、L-55E(東ソー株式会社製)、バーノック(登録商標)D-750、D-800(DIC株式会社製)等が挙げられる。
Specific examples of the trifunctional or higher functional aromatic isocyanate compound include 2,6-tolylene diisocyanate, 2,4-tolylene diisocyanate, or an adduct (adduct) of hexamethylene diisocyanate and trimethylolpropane, biuret or isocyanate. A nurate body etc. are mentioned.
Commercially available products marketed as trifunctional or higher functional aromatic isocyanate compounds may be used. Examples of commercially available products include Barnock (registered trademark) D-750 (manufactured by DIC Corporation), Takenate (registered trademark) D- 102, D-103, D-103H, D-103M2, D-110N, Olester (registered trademark) P49-75S (above, manufactured by Mitsui Chemicals, Inc.), Death Module (registered trademark) L75, IL-135-BA , HL-BA, Sumijoule (registered trademark) E-21-1 (manufactured by Bayer Co., Ltd.), Coronate (registered trademark) L, L-55, L-55E (manufactured by Tosoh Corporation), Bernock (registered trademark) D -750, D-800 (manufactured by DIC Corporation) and the like.
~メラミンホルムアルデヒド樹脂~
 本開示のマイクロカプセルは、コア材を内包するためのシェルを含み、シェルを形成するシェル材としてメラミンホルムアルデヒド樹脂を含むことが好ましい。
-Melamine formaldehyde resin-
The microcapsule of the present disclosure preferably includes a shell for enclosing the core material, and preferably includes a melamine formaldehyde resin as the shell material forming the shell.
 シェルに含まれるメラミンホルムアルデヒド樹脂について詳細に説明する。
 本開示におけるメラミンホルムアルデヒド樹脂は、保存安定性の観点から、メラミンホルムアルデヒドプレポリマー化合物に由来する構造を有することが好ましい。即ち、本開示におけるメラミンホルムアルデヒド樹脂は、保存安定性の観点から、メラミンホルムアルデヒドプレポリマー化合物を用いて得られるポリマーであることが好ましい。
The melamine formaldehyde resin contained in the shell will be described in detail.
The melamine formaldehyde resin in the present disclosure preferably has a structure derived from a melamine formaldehyde prepolymer compound from the viewpoint of storage stability. That is, the melamine formaldehyde resin in the present disclosure is preferably a polymer obtained using a melamine formaldehyde prepolymer compound from the viewpoint of storage stability.
 本開示におけるメラミンホルムアルデヒド樹脂には、メラミンホルムアルデヒドプレポリマー化合物とポリイソシアネートが架橋したアミノプラスト樹脂も含まれる。
 本開示においてメラミンホルムアルデヒド樹脂は、メラミンホルムアルデヒドプレポリマーに由来する構造と、2官能の脂肪族イソシアネート化合物に由来する構造及び2官能の芳香族イソシアネート化合物に由来する構造から選ばれる少なくとも一方の構造と、を有していることが好ましい。
 メラミンホルムアルデヒド樹脂の形成において、メラミンホルムアルデヒドプレポリマー化合物と2官能のイソシアネート化合物とが用いられることで、本開示におけるシェルは、徐放性を兼ね備えたものである。2官能のイソシアネート化合物は上述の-特定ジイソシアネート-の項に記載したものを適時使用できる。
The melamine formaldehyde resin in the present disclosure also includes an aminoplast resin in which a melamine formaldehyde prepolymer compound and a polyisocyanate are crosslinked.
In the present disclosure, the melamine formaldehyde resin is at least one structure selected from a structure derived from a melamine formaldehyde prepolymer, a structure derived from a bifunctional aliphatic isocyanate compound, and a structure derived from a bifunctional aromatic isocyanate compound; It is preferable to have.
In the formation of the melamine formaldehyde resin, the shell in the present disclosure has a sustained release property by using a melamine formaldehyde prepolymer compound and a bifunctional isocyanate compound. As the difunctional isocyanate compound, those described in the above-mentioned “specific diisocyanate” can be used as appropriate.
-メラミンホルムアルデヒドプレポリマー化合物-
 シェルを形成するシェル材であるメラミンホルムアルデヒド樹脂は、メラミンホルムアルデヒドプレポリマー化合物に由来する構造を有することが好ましい。メラミンホルムアルデヒドプレポリマー化合物に由来する構造を有していることで、洗濯工程での高い安定性が得られる。
 メラミンホルムアルデヒドプレポリマー化合物はメラミンとホルムアルデヒドを反応させた初期重合体であり、マイクロカプセルのシェルを形成する際の取り扱いの観点からもメラミンホルムアルデヒドプレポリマー化合物を用いることが好ましい。
-Melamine formaldehyde prepolymer compound-
The melamine formaldehyde resin, which is a shell material that forms a shell, preferably has a structure derived from a melamine formaldehyde prepolymer compound. By having the structure derived from the melamine formaldehyde prepolymer compound, high stability in the washing process can be obtained.
The melamine formaldehyde prepolymer compound is an initial polymer obtained by reacting melamine and formaldehyde, and it is preferable to use the melamine formaldehyde prepolymer compound from the viewpoint of handling when forming the shell of the microcapsule.
 メラミンホルムアルデヒドプレポリマー化合物はメラミンとホルムアルデヒドから常法に従って製造することができる。また、メラミンホルムアルデヒドプレポリマー化合物としては、市販されているものも適宜使用できる。
例えばベッカミン APM、ベッカミンM-3、ベッカミンM-3(60)、ベッカミンMA-S、ベッカミンJ-101、ベッカミンJ-101LF(以上、DIC株式会社製)、ニカレジンS-176、ニカレジンS-260(以上、日本カーバイト株式会社製)等が挙げられる。
The melamine formaldehyde prepolymer compound can be produced from melamine and formaldehyde according to a conventional method. Moreover, what is marketed can be used suitably as a melamine formaldehyde prepolymer compound.
For example, becamine APM, becamine M-3, becamine M-3 (60), becamine MA-S, becamine J-101, becamine J-101LF (manufactured by DIC Corporation), nicalesin S-176, nicalesin S-260 ( As mentioned above, Nippon Carbide Co., Ltd.) etc. are mentioned.
 特定ジイソシアネートに対するメラミンホルムアルデヒドプレポリマー化合物の比率としては、質量基準で、95/5~20/80であることが好ましく、90/10~30/70であることがより好ましく、90/10~40/60であることが更に好ましい。
 特定ジイソシアネートに対するメラミンホルムアルデヒドプレポリマー化合物の比率が上記の範囲内であると、コア材の徐放性に優れたものとなる。
The ratio of the melamine formaldehyde prepolymer compound to the specific diisocyanate is preferably 95/5 to 20/80, more preferably 90/10 to 30/70, more preferably 90/10 to 40 / More preferably, it is 60.
When the ratio of the melamine formaldehyde prepolymer compound to the specific diisocyanate is within the above range, the core material has excellent sustained release properties.
 本開示のマイクロカプセルのシェル(壁)の厚み(壁厚)は、0.3μm~2.0μmの範囲である。マイクロカプセルの壁厚が0.3μm以上であることで、マイクロカプセルが洗濯工程、特に脱水工程で割れることを抑制することができ、コア材をコア内において保護することができる。マイクロカプセルの壁厚が2.0μm以下であることで、マイクロカプセルに徐放性を付与し、繊維に付着したマイクロカプセルから香りを放出することができる。
 上記と同様の観点から、マイクロカプセルの壁厚は、より好ましくは0.4μm~1.7μmであり、さらに好ましくは0.4μm~1.5μmである。
The thickness (wall thickness) of the shell (wall) of the microcapsule of the present disclosure is in the range of 0.3 μm to 2.0 μm. When the wall thickness of the microcapsule is 0.3 μm or more, the microcapsule can be prevented from cracking in the washing process, particularly the dehydration process, and the core material can be protected in the core. When the wall thickness of the microcapsule is 2.0 μm or less, the microcapsule can be provided with sustained release, and the scent can be released from the microcapsule attached to the fiber.
From the same viewpoint as described above, the wall thickness of the microcapsule is more preferably 0.4 μm to 1.7 μm, and still more preferably 0.4 μm to 1.5 μm.
 壁厚は、5個のマイクロカプセルの個々の壁厚(μm)を走査型電子顕微鏡(SEM)により求めて平均した平均値をいう。
 具体的には、マイクロカプセル液を任意の支持体上に塗布し、乾燥させて塗布膜を形成する。得られた塗布膜の断面切片を作製し、その断面をSEMを用いて観察し、任意の5個のマイクロカプセルを選択して、それら個々のマイクロカプセルの断面を観察して壁厚を測定して平均値を算出することにより求められる。
The wall thickness refers to an average value obtained by averaging the individual wall thicknesses (μm) of five microcapsules with a scanning electron microscope (SEM).
Specifically, a microcapsule solution is applied on an arbitrary support and dried to form a coating film. A cross section of the obtained coating film is prepared, the cross section is observed using an SEM, arbitrary five microcapsules are selected, the cross section of each of the microcapsules is observed, and the wall thickness is measured. And calculating the average value.
 マイクロカプセルの体積標準のメジアン径(D50)は、0.1μm~100μmであることが好ましい。
 メジアン径(D50)が0.1μm以上であることで、マイクロカプセルが、微細な空隙に入り込むことで、割れにくくなることを防ぐことができる。メジアン径(D50)が100μm以下であることで、付着性の低下を防ぐことができる。
 上記の観点から、マイクロカプセルの体積標準のメジアン径(D50)は、1μm~70μmであることがより好ましく、5μm~50μmであることが更により好ましい。マイクロカプセルの体積標準のメジアン径は、本開示において、分散の条件を変更することなどにより、好ましく制御することができる。
 ここで、マイクロカプセルの体積標準のメジアン径とは、マイクロカプセル全体を体積累計が50%となる粒子径を閾値に2つに分けた場合に、大径側と小径側での粒子の体積の合計が等量となる径をいう。
 本開示において、マイクロカプセルの体積標準のメジアン径は、マイクロトラックMT3300EXII(日機装株式会社製)を用いて測定される。
The median diameter (D50) of the volume standard of the microcapsules is preferably 0.1 μm to 100 μm.
When the median diameter (D50) is 0.1 μm or more, the microcapsules can be prevented from becoming difficult to break due to entering the minute voids. When the median diameter (D50) is 100 μm or less, it is possible to prevent a decrease in adhesion.
From the above viewpoint, the volume standard median diameter (D50) of the microcapsules is more preferably 1 μm to 70 μm, and still more preferably 5 μm to 50 μm. In the present disclosure, the volume standard median diameter of the microcapsules can be preferably controlled by changing dispersion conditions.
Here, the median diameter of the volume standard of the microcapsule is the volume of the particle on the large diameter side and the small diameter side when the entire microcapsule is divided into two with the particle diameter at which the cumulative volume is 50% as a threshold value. The diameter is the same as the total.
In the present disclosure, the median diameter of the volume standard of the microcapsule is measured using Microtrac MT3300EXII (manufactured by Nikkiso Co., Ltd.).
 本開示のマイクロカプセルについて、「単分散性が高い」とは、粒径分布の範囲が狭い(すなわち、粒径のバラツキが少ない)ことを意味し、「単分散性が低い」とは、粒径分布の範囲が広い(すなわち、粒径のバラツキが多い)ことを意味する。
 より具体的には、マイクロカプセルの単分散性の高低は、CV値(coefficient of variation;変動係数)を用いて表すことができる。ここで、CV値とは、下記式で求められる値である。
 CV値(%)=(標準偏差/体積平均粒径)×100
 CV値が低いほどマイクロカプセルの単分散性が高く、CV値が高いほどマイクロカプセルの単分散性が低いことが表される。
 本開示において、体積平均粒径及び標準偏差は、マイクロトラックMT3300EXII(日機装株式会社製)を用いて算出される。
With respect to the microcapsules of the present disclosure, “highly monodispersed” means that the range of particle size distribution is narrow (that is, there is little variation in particle size), and “lowly monodispersed” means It means that the range of the diameter distribution is wide (that is, there are many variations in particle diameter).
More specifically, the level of monodispersity of the microcapsules can be expressed using a CV value (coefficient of variation). Here, the CV value is a value obtained by the following formula.
CV value (%) = (standard deviation / volume average particle diameter) × 100
The lower the CV value, the higher the monodispersity of the microcapsules, and the higher the CV value, the lower the monodispersibility of the microcapsules.
In the present disclosure, the volume average particle diameter and the standard deviation are calculated using Microtrac MT3300EXII (manufactured by Nikkiso Co., Ltd.).
 例えば、マイクロカプセルの「単分散性が高い」とは、マイクロカプセルの粒径分布のCV値が、好ましくは40%以下、より好ましくは35%以下、更により好ましくは30%以下、特に好ましくは25%以下であることをいう。CV値が上記範囲である場合、マイクロカプセルの粒径の単分散性が高いため、マイクロカプセルの取扱い、機能発現の制御などが容易になる。マイクロカプセルの粒径分布のCV値の下限値としては、限定的ではないが、0%以上が好ましく、5%以上がより好ましい。 For example, “highly monodispersed” of the microcapsule means that the CV value of the particle size distribution of the microcapsule is preferably 40% or less, more preferably 35% or less, still more preferably 30% or less, particularly preferably. It means 25% or less. When the CV value is in the above range, since the monodispersity of the microcapsule particle size is high, handling of the microcapsules, control of function expression, and the like are facilitated. The lower limit of the CV value of the particle size distribution of the microcapsules is not limited, but is preferably 0% or more, and more preferably 5% or more.
 マイクロカプセルの形態は、例えば、マイクロカプセル分散液、好ましくはマイクロカプセル水分散液の形態であってよい。 The form of the microcapsule may be, for example, a microcapsule dispersion, preferably a microcapsule aqueous dispersion.
(コア)
 本開示におけるマイクロカプセルは、シェルに内包されたコアを有し、コア中のコア材として香料を含むことが好ましい。
 本開示におけるマイクロカプセルは、洗濯工程、特に脱水工程を経ても破壊されることなく衣服の繊維又は毛(毛髪等)に対して付着し、コア材として香料を含むことにより、徐放性によって、長期に亘り芳香させることができる。
(core)
The microcapsule in the present disclosure preferably has a core encapsulated in a shell and includes a fragrance as a core material in the core.
The microcapsule according to the present disclosure adheres to clothes fibers or hair (hair etc.) without being destroyed even after a washing process, particularly a dehydration process, and includes a fragrance as a core material, thereby providing sustained release. It can be scented for a long time.
(香料)
 香料としては、「特許庁、周知慣用技術集(香料)第III部香粧品香料、頁49-103頁、平成13年6月15日発行」に記載されている合成香料、天然精油、天然香料、動植物エキスなどから、適するものを適宜選択し、用いることができる。
 具体的な香料としては、D-リモネン、ピネン、ミルセン、カンフェン、Rリモネンなどのモノテルペン、セドレン、カリオフィレン、ロンギフォレンなどのセスキテルペン、1,3,5-ウンデカトリエン、α-アミルシンナミルアルデヒド、ジヒドロジャスモン、メチルイオノン、α-ダマスコン、アセチルセドレン、ジヒドロジャスモン酸メチル、シクロペンタデカノリドなど合成香料、オレンジ精油、レモン精油、ベルガモット精油、マンダリン精油などの天然精油が挙げられる。
 コア材の全質量に対する香料の含有量としては、20~100質量%以下が好ましく、30~95質量%以下がより好ましく、40~85質量%が特に好ましい。
(Fragrance)
As the fragrance, synthetic fragrances, natural essential oils, and natural fragrances described in “Japan Patent Office, Well-known and commonly used technology (fragrance) Part III, cosmetic fragrances, pages 49-103, issued on June 15, 2001” Appropriate ones can be selected and used from animal and plant extracts.
Specific fragrances include monoterpenes such as D-limonene, pinene, myrcene, camphene and R-limonene, sesquiterpenes such as cedrene, caryophyllene and longifolene, 1,3,5-undecatriene, α-amylcinnamyl aldehyde Synthetic fragrances such as dihydrojasmon, methylionone, α-damascone, acetyl cedrene, methyl dihydrojasmonate, cyclopentadecanolide, and natural essential oils such as orange essential oil, lemon essential oil, bergamot essential oil, and mandarin essential oil.
The content of the fragrance with respect to the total mass of the core material is preferably 20 to 100% by mass, more preferably 30 to 95% by mass, and particularly preferably 40 to 85% by mass.
(溶媒)
 コアは、オイル成分として溶媒を含有してもよい。
 溶媒の例としては、トリ(カプリル・カプリン酸)グリセリル、ミリスチン酸イソプロピル等の脂肪酸エステル系化合物、ジイソプロピルナフタレン等のアルキルナフタレン系化合物、1-フェニル-1-キシリルエタン等のジアリールアルカン系化合物、イソプロピルビフェニル等のアルキルビフェニル系化合物、トリアリールメタン系化合物、アルキルベンゼン系化合物、ベンジルナフタレン系化合物、ジアリールアルキレン系化合物、アリールインダン系化合物等の芳香族炭化水素;フタル酸ジブチル、イソパラフィン等の脂肪族炭化水素;ツバキ油、大豆油、コーン油、綿実油、菜種油、オリーブ油、ヤシ油、ひまし油、魚油等の天然動植物油;鉱物油等の天然物高沸点留分などが挙げられる。
 内包成分中の溶媒の含有量は、内包成分の全質量に対して、50質量%未満が好ましく、40質量%以下がより好ましく、30質量%以下が特に好ましい。
(solvent)
The core may contain a solvent as an oil component.
Examples of the solvent include fatty acid ester compounds such as tri (capryl / capric acid) glyceryl and isopropyl myristate, alkylnaphthalene compounds such as diisopropylnaphthalene, diarylalkane compounds such as 1-phenyl-1-xylylethane, isopropylbiphenyl, and the like. Aromatic hydrocarbons such as alkylbiphenyl compounds such as triarylmethane compounds, alkylbenzene compounds, benzylnaphthalene compounds, diarylalkylene compounds, arylindane compounds; aliphatic hydrocarbons such as dibutyl phthalate and isoparaffins; Examples include camellia oil, soybean oil, corn oil, cottonseed oil, rapeseed oil, natural animal and vegetable oils such as olive oil, coconut oil, castor oil, and fish oil; high-boiling fractions of natural products such as mineral oil.
The content of the solvent in the encapsulated component is preferably less than 50% by mass, more preferably 40% by mass or less, and particularly preferably 30% by mass or less with respect to the total mass of the encapsulated component.
(補助溶媒)
 内包成分は、必要に応じて、マイクロカプセルを製造する際の各素材の油相中への溶解性を高めるための油相成分として補助溶媒を含有してもよい。補助溶媒には、上記の溶媒は含まれない。
 補助溶媒としては、例えば、メチルエチルケトン等のケトン系化合物、酢酸エチル等のエステル系化合物、イソプロピルアルコール等のアルコール系化合物等が挙げられる。好ましくは、補助溶媒は、沸点が130℃以下である。
 内包成分における補助溶媒の含有量は、内包成分の全質量に対して、50質量%未満が好ましく、40質量%未満がより好ましく、30質量%未満がさらに好ましい。
(Co-solvent)
The encapsulated component may contain an auxiliary solvent as an oil phase component for enhancing the solubility of each material in the oil phase when producing the microcapsules, if necessary. The auxiliary solvent does not include the above solvent.
Examples of the auxiliary solvent include ketone compounds such as methyl ethyl ketone, ester compounds such as ethyl acetate, alcohol compounds such as isopropyl alcohol, and the like. Preferably, the auxiliary solvent has a boiling point of 130 ° C or lower.
The content of the auxiliary solvent in the encapsulated component is preferably less than 50% by mass, more preferably less than 40% by mass, and even more preferably less than 30% by mass with respect to the total mass of the encapsulated component.
(添加剤)
 例えば、紫外線吸収剤、光安定化剤、酸化防止剤、ワックス、臭気抑制剤などの添加剤は、必要に応じて、マイクロカプセルに内包することができる。
 添加剤は、コアの全質量に対し、例えば、0質量%~20質量%、好ましくは1質量%~15質量%、より好ましくは5質量%~10質量%含有することができる。
(Additive)
For example, additives such as ultraviolet absorbers, light stabilizers, antioxidants, waxes, odor inhibitors and the like can be included in the microcapsules as necessary.
The additive can be contained, for example, in an amount of 0% by mass to 20% by mass, preferably 1% by mass to 15% by mass, and more preferably 5% by mass to 10% by mass with respect to the total mass of the core.
<分散媒>
 本開示のマイクロカプセル含有組成物は、さらに、マイクロカプセルの分散媒を含むことが好ましい。
 マイクロカプセルの分散媒をさらに含むことで、マイクロカプセル含有組成物は種々の用途に用いる際に、容易に配合することができる。
 マイクロカプセル含有組成物における分散媒は、組成物の使用目的に応じて適宜選択される。分散媒としては、マイクロカプセルの壁材に影響を与えない液状成分であることが好ましい。
 好ましい分散媒としては、水系溶媒、粘度調整剤、安定化剤などが挙げられる。
 水系溶媒としては、水、水及びアルコール等が挙げられ、イオン交換水等を用いることができる。
 なお、本開示のマイクロカプセル含有組成物における分散媒の含有量は、用途に応じて適宜選択すればよい。
<Dispersion medium>
The microcapsule-containing composition of the present disclosure preferably further contains a microcapsule dispersion medium.
By further containing a microcapsule dispersion medium, the microcapsule-containing composition can be easily blended when used in various applications.
The dispersion medium in the microcapsule-containing composition is appropriately selected according to the purpose of use of the composition. The dispersion medium is preferably a liquid component that does not affect the wall material of the microcapsule.
Preferred dispersion media include aqueous solvents, viscosity modifiers, stabilizers, and the like.
Examples of the aqueous solvent include water, water, alcohol and the like, and ion-exchanged water or the like can be used.
In addition, what is necessary is just to select suitably content of the dispersion medium in the microcapsule containing composition of this indication according to a use.
(その他の成分)
 本開示のマイクロカプセル含有組成物は、マイクロカプセル、併用成分である分散媒に加え、さらにその他の成分を含有することができる。
 その他の成分には、特に制限はなく、目的又は必要に応じて適宜選択すればよい。
 その他の成分としては、例えば、界面活性剤、架橋剤、潤滑剤、紫外線吸収剤、酸化防止剤、帯電防止剤等が挙げられる。
(Other ingredients)
The microcapsule-containing composition of the present disclosure can further contain other components in addition to the microcapsule and the dispersion medium that is a combination component.
There is no restriction | limiting in particular in another component, What is necessary is just to select suitably according to the objective or necessity.
Examples of other components include a surfactant, a crosslinking agent, a lubricant, an ultraviolet absorber, an antioxidant, and an antistatic agent.
 本開示のマイクロカプセル含有組成物は、マイクロカプセルが表面にアニオン電荷を有し、かつ、更にカチオン性界面活性剤を含有する態様が好ましい。
 これにより、マイクロカプセルとカチオン性界面活性剤との間に相互作用が得られ、マイクロカプセルの周囲にカチオン性界面活性剤の正電荷を付与することができる。結果、アニオン電荷を有する付着対象物(例えば毛又は繊維)に対するマイクロカプセルの付着性を向上することが可能になる。
The microcapsule-containing composition of the present disclosure preferably has an embodiment in which the microcapsule has an anionic charge on the surface and further contains a cationic surfactant.
Thereby, an interaction is obtained between the microcapsule and the cationic surfactant, and a positive charge of the cationic surfactant can be imparted around the microcapsule. As a result, it becomes possible to improve the adhesion property of the microcapsule to an attachment object (for example, hair or fiber) having an anionic charge.
 マイクロカプセルが表面にアニオン電荷を有することは、マイクロカプセルを水中に分散させた場合のゼータ電位を測定することで確認できる。ゼータ電位がマイナスである場合、マイクロカプセルの表面がアニオン電荷で覆われていることを指す。 It can be confirmed that the microcapsule has an anionic charge on the surface by measuring the zeta potential when the microcapsule is dispersed in water. When the zeta potential is negative, it indicates that the surface of the microcapsule is covered with an anionic charge.
 マイクロカプセルのゼータ電位としては、水中に分散した場合の値として、-80meV~-5meVであることが好ましく、-80meV~-11meVであることがより好ましく、-50meV~-10meVであることが更に好ましい。 The zeta potential of the microcapsule, when dispersed in water, is preferably −80 meV to −5 meV, more preferably −80 meV to −11 meV, and further preferably −50 meV to −10 meV. preferable.
 「ゼータ電位」(z)は、特殊な測定技術によって測定される、溶液中の帯電物体によって生成される見掛けの静電位を意味する。ゼータ電位の論理的基本及び実際の関連性の詳細な考察は、例えば、「Colloid Science:Zeta Potential in Colloid Sciences:Principles and Applications」(Hunter Robert J.;Editor.;Publisher(Academic Press,London);1981;p 1988)に記載されている。物体のゼータ電位は、物体の表面からある程度の距離で測定され、一般に表面自体での静電位を超えない。しかしながら、その値は、溶液中にある他の物体、特に複数の結合部位を有する分子との静電的相互作用を確立する物体の能力の好適な尺度となり得る。 “Zeta potential” (z) means the apparent electrostatic potential generated by a charged object in solution, measured by a special measurement technique. A detailed discussion of the logical basis and actual relevance of the zeta potential is, for example, “Colloid Science: Zeta Potential in Colloid Sciences: Principles and Applications” (Hunter Robert J. 1981; p 1988). The zeta potential of an object is measured at some distance from the surface of the object and generally does not exceed the electrostatic potential at the surface itself. However, the value can be a good measure of the ability of an object to establish an electrostatic interaction with other objects in solution, particularly molecules having multiple binding sites.
 ゼータ電位は、相対測定値であり、値は測定方法に依存する傾向がある。本開示において、ゼータ電位は、以下の方法により測定される値である。
 a.装置はELSZ-2000ZS(大塚電子株式会社製)を用いる。
 b.装置の設定は以下の通りである。
 c.試料の調製手順は以下の通りである。
 (i)対象とするカプセルを含有するスラリーをカプセル濃度として0.5質量%となるように水に加え、スラリーを希釈する。測定濃度は必要に応じて、計測率が自動検出により好ましい範囲になるように調整する。
 (ii)希釈した試料のゼータ電位を、試料を濾過せずに測定する。
 (iii)濾過したスラリーを標準セルユニット(大塚電子株式会社製)に注入し、セルを装置に挿入する。試験温度を25℃に設定する。
 (iv)温度が安定してから(通常3~5分後)測定を開始する。それぞれの試料について、5回の測定を行うように設定し、測定する。
 d.本開示におけるゼータ電位は、各スラリーに対して3回の測定値の平均として「mV」を単位として測定される値である。
 上記のもと、マイクロカプセルのゼータ電位は、ELSZ-2000ZS(大塚電子株式会社製)を用いて測定することができる。
The zeta potential is a relative measurement value, and the value tends to depend on the measurement method. In the present disclosure, the zeta potential is a value measured by the following method.
a. The apparatus uses ELSZ-2000ZS (manufactured by Otsuka Electronics Co., Ltd.).
b. The device settings are as follows.
c. The sample preparation procedure is as follows.
(I) The slurry containing the target capsule is added to water so that the capsule concentration is 0.5% by mass, and the slurry is diluted. The measurement concentration is adjusted as necessary so that the measurement rate falls within a preferable range by automatic detection.
(Ii) The zeta potential of the diluted sample is measured without filtering the sample.
(Iii) The filtered slurry is poured into a standard cell unit (manufactured by Otsuka Electronics Co., Ltd.), and the cell is inserted into the apparatus. Set the test temperature to 25 ° C.
(Iv) Start the measurement after the temperature has stabilized (usually after 3 to 5 minutes). Each sample is set to measure 5 times and measured.
d. The zeta potential in the present disclosure is a value measured in units of “mV” as an average of three measured values for each slurry.
Based on the above, the zeta potential of the microcapsule can be measured using ELSZ-2000ZS (manufactured by Otsuka Electronics Co., Ltd.).
 マイクロカプセル表面にアニオン電荷を付与する方法としては、特に制限はなく、例えば、アニオン性基付与剤をシェルに結合させる方法、マイクロカプセル表面に表面アニオン化剤を用いてアニオン電荷を付与する方法等が挙げられる。中でも、作業効率の観点から、マイクロカプセル表面に表面アニオン化剤を用いてアニオン電荷を付与する方法が好ましい。 The method for imparting an anionic charge to the microcapsule surface is not particularly limited, for example, a method for binding an anionic group-imparting agent to the shell, a method for imparting an anionic charge to the microcapsule surface using a surface anionizing agent, etc. Is mentioned. Among these, from the viewpoint of work efficiency, a method of imparting an anionic charge to the microcapsule surface using a surface anionizing agent is preferable.
 アニオン性基付与剤を用いてシェルの表面にアニオン性基を結合させる方法としては、以下の方法を一例として挙げることができる。
 即ち、香料、並びに、シェル材を撹拌混合して油相を調製する。続いて、水相として、アニオン性基付与剤(例えばリシン)を含む水溶液を調製する。調製した水相に油相を加えて分散して乳化し、得られた乳化液を加温して撹拌した後、冷却する。冷却後、塩基(例えば水酸化ナトリウム)の水溶液を添加し、表面にアニオン性基を有するマイクロカプセルの水分散液を得る。
 アニオン性基付与剤を含む水溶液は、乳化液を生成した後に添加してもよいし、塩基の水溶液を事前に水相に加えておいてもよい。
 なお、上記の各成分の含有量は、適宜変更することができる。
As a method for bonding an anionic group to the surface of the shell using an anionic group-imparting agent, the following method can be given as an example.
That is, an oil phase is prepared by stirring and mixing the fragrance and the shell material. Subsequently, an aqueous solution containing an anionic group-imparting agent (for example, lysine) is prepared as an aqueous phase. The oil phase is added to the prepared aqueous phase to disperse and emulsify, and the resulting emulsion is heated and stirred and then cooled. After cooling, an aqueous solution of a base (for example, sodium hydroxide) is added to obtain an aqueous dispersion of microcapsules having an anionic group on the surface.
The aqueous solution containing the anionic group-imparting agent may be added after the emulsion is formed, or an aqueous base solution may be added to the aqueous phase in advance.
In addition, content of said each component can be changed suitably.
-アニオン性基付与剤-
 アニオン性基付与剤としては、特に制限はなく、例えば、リシン、アスパラギン酸、グルタミン酸(以上、和光純薬工業株式会社製)等が挙げられる。
-Anionic group imparting agent-
There is no restriction | limiting in particular as an anionic group provision agent, For example, a lysine, aspartic acid, glutamic acid (above, Wako Pure Chemical Industries Ltd. make) etc. are mentioned.
 マイクロカプセル表面に表面アニオン化剤を用いてアニオン電荷を付与する方法としては、特に制限はなく、例えば、表面アニオン化剤を用いてマイクロカプセル表面に保護コロイドを形成する方法が好ましい。
 保護コロイドとは、マイクロカプセル表面に存在することでマイクロカプセル表面にアニオン電荷を付与できるコロイドをいう。
There is no restriction | limiting in particular as a method of providing an anionic charge using a surface anionizing agent on the microcapsule surface, For example, the method of forming a protective colloid on the microcapsule surface using a surface anionizing agent is preferable.
The protective colloid means a colloid that can impart an anionic charge to the microcapsule surface by being present on the microcapsule surface.
-表面アニオン化剤-
 表面アニオン化剤としては、マイクロカプセル表面にアニオン電荷を付与できるものであれば特に制限はなく、アニオン性水溶性ポリマー(アニオン変性ポリビニルアルコール、カルボキシメチルセルロース、カラギーナンなどのアニオン性多糖類、ポリアクリル酸ナトリウム及び他のモノマーとの共重合体、ポリマレイン酸ナトリウム及び他のモノマーとの共重合体等)及びアニオン性界面活性剤(ドデシル硫酸ナトリウム、ラウリル硫酸ナトリウム等)などが挙げられる。
-Surface anionizing agent-
The surface anionizing agent is not particularly limited as long as it can give an anionic charge to the microcapsule surface (anionic water-soluble polymers (anionic polysaccharides such as anion-modified polyvinyl alcohol, carboxymethyl cellulose, carrageenan, polyacrylic acid)). And copolymers with sodium and other monomers, copolymers with sodium polymaleate and other monomers) and anionic surfactants (sodium dodecyl sulfate, sodium lauryl sulfate, etc.).
 本開示のマイクロカプセル含有組成物におけるマイクロカプセルは、マイクロカプセル表面へのアニオン電荷付与の点から、表面の少なくとも一部にアニオン変性ポリビニルアルコールを有していることが好ましい。 The microcapsule in the microcapsule-containing composition of the present disclosure preferably has an anion-modified polyvinyl alcohol on at least a part of the surface from the viewpoint of imparting an anionic charge to the microcapsule surface.
 表面アニオン化剤を用いてマイクロカプセル表面に保護コロイドを形成する方法としては、例えば以下の方法が挙げられる。但し、本開示においては、以下の方法に限定されるものではない。
 まず、溶媒と、シェル材である3官能の脂肪族イソシアネート及び特定ジイソシアネートと、を撹拌混合して、油相を調製する。続いて、水相として、表面アニオン化剤(例えばアニオン変性ポリビニルアルコール)を含む水溶液を調製する。調製した水相に油相を加えて分散させて乳化し、生成した乳化液を加温して撹拌し、冷却する。冷却後、塩基(例えば水酸化ナトリウム水溶液)を添加し、表面に保護コロイドを有するマイクロカプセルの水分散液を得る。
 なお、上記した各成分の含有量は、適宜変更することができる。
Examples of the method for forming a protective colloid on the surface of the microcapsule using the surface anionizing agent include the following methods. However, the present disclosure is not limited to the following method.
First, an oil phase is prepared by stirring and mixing a solvent, a trifunctional aliphatic isocyanate and a specific diisocyanate which are shell materials. Subsequently, an aqueous solution containing a surface anionizing agent (for example, anion-modified polyvinyl alcohol) is prepared as an aqueous phase. The oil phase is added to the prepared aqueous phase and dispersed to emulsify, and the resulting emulsion is heated, stirred and cooled. After cooling, a base (for example, sodium hydroxide aqueous solution) is added to obtain an aqueous dispersion of microcapsules having a protective colloid on the surface.
In addition, content of each above-mentioned component can be changed suitably.
 アニオン変性ポリビニルアルコールは、上市されている市販品を用いることができる。
 市販品の例としては、クラレポバールKM-618(株式会社クラレ製)、クラレポバールKL-318(株式会社クラレ製)、ゴーセノールL-3266(日本合成化学株式会社製)、ゴーセノールT-330(日本合成化学株式会社製)等が挙げられる。中でも、アニオン性付与の観点から、アニオン変性ポリビニルアルコールとしては、クラレポバールKM-618、ゴーセノールL-3266が好ましく、クラレポバールKM-618がより好ましい。
As the anion-modified polyvinyl alcohol, commercially available products can be used.
Examples of commercially available products are Kuraray Poval KM-618 (manufactured by Kuraray Co., Ltd.), Kuraray Poval KL-318 (manufactured by Kuraray Co., Ltd.), Gohsenol L-3266 (manufactured by Nippon Synthetic Chemical Co., Ltd.), Gohsenol T-330 (Japan) Synthetic Chemical Co., Ltd.). Among these, from the viewpoint of imparting anionic property, the anion-modified polyvinyl alcohol is preferably Kuraray Poval KM-618 or Gohsenol L-3266, and more preferably Kuraray Poval KM-618.
-カチオン性界面活性剤-
 本開示のマイクロカプセル含有組成物は、マイクロカプセル表面にアニオン電荷が付与されている場合には、カチオン性界面活性剤を含有していることが好ましい。これにより、マイクロカプセルのアニオン電荷(マイナス電荷)と、カチオン性界面活性剤のプラス電荷と、が相互作用によって引き合うことで、マイクロカプセルをカチオン性界面活性剤のプラス電荷が覆う。結果、カプセル全体として、プラス電荷を生じさせることができ、マイクロカプセルのプラス電荷とマイクロカプセルが付着する付着対象物(例えば繊維又は毛)が有するマイナス電荷とが引き合い、付着対象物に対するマイクロカプセルの付着性をより向上させることができる。
-Cationic surfactant-
The microcapsule-containing composition of the present disclosure preferably contains a cationic surfactant when an anionic charge is imparted to the microcapsule surface. Thereby, the anion charge (minus charge) of the microcapsule and the plus charge of the cationic surfactant attract each other due to the interaction, so that the plus charge of the cationic surfactant covers the microcapsule. As a result, a positive charge can be generated as a whole capsule, and the positive charge of the microcapsule attracts the negative charge of the attached object (for example, fiber or hair) to which the microcapsule adheres. Adhesion can be further improved.
 カチオン界面活性剤は、特に限定されず、従来公知のものを用いることができ、例えば、アルキルアミン塩、第四級アンモニウム塩(例えば、ヘキサデシルトリメチルアンモニウムクロライド)、ポリオキシエチレンアルキルアミン塩、ポリエチレンポリアミン誘導体が挙げられる。 The cationic surfactant is not particularly limited, and conventionally known cationic surfactants can be used. For example, alkylamine salts, quaternary ammonium salts (for example, hexadecyltrimethylammonium chloride), polyoxyethylene alkylamine salts, polyethylene Examples include polyamine derivatives.
 カチオン性界面活性剤としては、上市されている市販品を用いてもよい。市販品の例としては、カチオンEQ-01D(日油株式会社)、カチオンSF-10(三洋化成工業株式会社製)、カチオンSF-75PA(三洋化成工業株式会社製)、アデカミンSF-108(株式会社ADEKA製)等が挙げられる。 As the cationic surfactant, a commercially available product may be used. Examples of commercially available products include cation EQ-01D (NOF Corporation), cation SF-10 (manufactured by Sanyo Kasei Kogyo Co., Ltd.), cation SF-75PA (manufactured by Sanyo Kasei Kogyo Co., Ltd.), and Adecamin SF-108 (stock) The company ADEKA).
<マイクロカプセルの製造方法>
 本開示のマイクロカプセルは、例えば、以下の方法で製造できるが、以下の方法に限定されない。
 本開示のマイクロカプセルの製造方法は、シェルがポリウレタン及びポリウレアの少なくとも一方により形成されている場合、香料と、シェル材であるポリイソシアネートと、を含む油相を、乳化剤を含む水相に分散して乳化液を調製する工程(乳化工程)と、シェル材を油相と水相との界面で重合させてシェルを形成し、香料を内包するマイクロカプセルを形成する工程(カプセル化工程)とを含む界面重合法を適宜使用できる。
シェルがメラミンホルムアルデヒド樹脂から形成される場合は、香料を含む油相を、乳化剤を含む水相に分散して乳化液を調製する工程(乳化工程)と、シェル材を水相に添加し、乳化液滴の表面にシェル材から形成される高分子層を形成し、香料を内包するマイクロカプセルを形成する工程(カプセル化工程)を含むコアセルベーション法を適宜使用できる。
<Method for producing microcapsules>
Although the microcapsule of this indication can be manufactured with the following method, for example, it is not limited to the following method.
When the shell is formed of at least one of polyurethane and polyurea, the microcapsule manufacturing method of the present disclosure disperses an oil phase containing a fragrance and a polyisocyanate as a shell material in an aqueous phase containing an emulsifier. The step of preparing an emulsified liquid (emulsification step) and the step of polymerizing the shell material at the interface between the oil phase and the aqueous phase to form a shell and forming microcapsules enclosing a fragrance (encapsulation step) Including interfacial polymerization methods can be used as appropriate.
When the shell is formed from a melamine formaldehyde resin, an oil phase containing a fragrance is dispersed in an aqueous phase containing an emulsifier to prepare an emulsion (emulsification step), and a shell material is added to the aqueous phase to emulsify A coacervation method including a step (encapsulation step) of forming a microcapsule encapsulating a fragrance by forming a polymer layer formed of a shell material on the surface of the droplet can be used as appropriate.
[乳化工程]
 本開示のマイクロカプセルの製造方法は、シェルがポリウレタン及びポリウレアの少なくとも一方により形成されている場合、香料と、シェル材であるポリイソシアネートと、を含む油相を、乳化剤を含む水相に分散して乳化液を調製する工程(乳化工程)を含む。シェルがメラミンホルムアルデヒド樹脂から形成される場合は、香料を含む油相を、乳化剤を含む水相に分散して乳化液を調製する工程(乳化工程)を含む。
[Emulsification process]
When the shell is formed of at least one of polyurethane and polyurea, the microcapsule manufacturing method of the present disclosure disperses an oil phase containing a fragrance and a polyisocyanate as a shell material in an aqueous phase containing an emulsifier. And a step of preparing an emulsion (emulsification step). When the shell is formed from a melamine formaldehyde resin, it includes a step (emulsification step) of preparing an emulsion by dispersing an oil phase containing a fragrance in an aqueous phase containing an emulsifier.
~乳化液~
 本開示の乳化液は、香料と、必要に応じてシェル材であるポリイソシアネートと、を含む油相を、乳化剤を含む水相に分散させることにより形成される。
~ Emulsified liquid ~
The emulsified liquid of the present disclosure is formed by dispersing an oil phase containing a fragrance and, if necessary, a polyisocyanate which is a shell material in an aqueous phase containing an emulsifier.
(油相)
 本開示の油相には、少なくとも、香料が含まれる。必要に応じて、更にシェル材であるポリイソシアネート、溶媒、補助溶媒、及び/又は添加剤などの成分が更に含まれてもよい。そのような溶媒、補助溶媒、及び添加剤は、<マイクロカプセル>の項に記載した通りである。
(Oil phase)
The oil phase of the present disclosure includes at least a fragrance. If necessary, the shell material may further include components such as polyisocyanate, a solvent, a co-solvent, and / or an additive. Such solvents, cosolvents, and additives are as described in the section <Microcapsules>.
-溶媒-
 本開示の製造方法において使用される溶媒は、<マイクロカプセル>の項に記載した通りである。
-solvent-
The solvent used in the production method of the present disclosure is as described in the section <Microcapsule>.
-シェル材-
 本開示におけるシェル材は、ポリイソシアネート又はメラミンホルムアルデヒドプレポリマーを含むことができる。さらに、特定ジイソシアネートを含むことが好ましい。
-Shell material-
The shell material in the present disclosure can include a polyisocyanate or a melamine formaldehyde prepolymer. Furthermore, it is preferable that specific diisocyanate is included.
 シェル材は、油相の全質量に対し、例えば、0.1質量%超20質量%以下、好ましくは0.5質量%~10質量%、より好ましくは1質量%~5質量%で油相に含有される。
 シェル材の濃度は、マイクロカプセルの大きさ、壁厚などに鑑みて、適宜調整することができる。
The shell material is, for example, more than 0.1% by mass and 20% by mass or less, preferably 0.5% by mass to 10% by mass, more preferably 1% by mass to 5% by mass with respect to the total mass of the oil phase. Contained in
The concentration of the shell material can be appropriately adjusted in view of the size of the microcapsules, the wall thickness, and the like.
(水相)
 本開示の水相は、少なくとも、水性媒体、及び乳化剤を含む。
(Water phase)
The aqueous phase of the present disclosure includes at least an aqueous medium and an emulsifier.
-水性媒体-
 本開示の水性媒体としては、水、水と水溶性有機溶剤との混合溶媒が挙げられ、好ましくは水である。「水溶性」とは、25℃の水100質量%に対する対象物質の溶解量が5質量%以上であることを意味する。
 水性媒体は、油相と水相との混合物である乳化液の全質量に対し、好ましくは20質量%~80質量%、より好ましくは30質量%~70質量%、更により好ましくは40質量%~60質量%である。
-Aqueous medium-
Examples of the aqueous medium of the present disclosure include water and a mixed solvent of water and a water-soluble organic solvent, preferably water. “Water-soluble” means that the amount of the target substance dissolved in 100% by mass of water at 25 ° C. is 5% by mass or more.
The aqueous medium is preferably 20% by mass to 80% by mass, more preferably 30% by mass to 70% by mass, and still more preferably 40% by mass with respect to the total mass of the emulsion that is a mixture of an oil phase and an aqueous phase. ~ 60% by mass.
-乳化剤-
 乳化剤には、分散剤、若しくは界面活性剤、又はこれらの組み合わせが含まれる。
-emulsifier-
The emulsifier includes a dispersant, a surfactant, or a combination thereof.
 分散剤としては、例えば、ポリビニルアルコール及びその変性物、ポリアクリル酸アミド及びその誘導体、エチレン-酢酸ビニル共重合体、スチレン-無水マレイン酸共重合体、エチレン-無水マレイン酸共重合体、イソブチレン-無水マレイン酸共重合体、ポリビニルピロリドン、エチレン-アクリル酸共重合体、酢酸ビニル-アクリル酸共重合体、カルボキシメチルセルロース、メチルセルロース、カゼイン、ゼラチン、澱粉誘導体、アラビアゴム及びアルギン酸ナトリウムなどを挙げることができ、ポリビニルアルコールが好ましい。
 これらの分散剤は、シェル材と反応しない、又は極めて反応し難いことが好ましく、例えばゼラチンなどの分子鎖中に反応性のアミノ基を有するものは、予め反応性を失わせる処理をしておくことが必要である。
Examples of the dispersant include polyvinyl alcohol and modified products thereof, polyacrylic acid amide and derivatives thereof, ethylene-vinyl acetate copolymer, styrene-maleic anhydride copolymer, ethylene-maleic anhydride copolymer, isobutylene- Mention may be made of maleic anhydride copolymer, polyvinylpyrrolidone, ethylene-acrylic acid copolymer, vinyl acetate-acrylic acid copolymer, carboxymethylcellulose, methylcellulose, casein, gelatin, starch derivatives, gum arabic and sodium alginate. Polyvinyl alcohol is preferred.
These dispersants preferably do not react with the shell material or are extremely difficult to react. For example, those having a reactive amino group in a molecular chain such as gelatin are preliminarily treated to lose the reactivity. It is necessary.
 界面活性剤としては、ノニオン界面活性剤、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤等が挙げられる。界面活性剤は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the surfactant include nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants. Surfactant may be used independently and may be used in combination of 2 or more type.
 ノニオン界面活性剤は、特に限定されず、従来公知のものを用いることができる。例えば、ポリオキシエチレンアルキルエーテル系化合物、ポリオキシエチレンアルキルフェニルエーテル系化合物、ポリオキシエチレンポリスチリルフェニルエーテル系化合物、ポリオキシエチレンポリオキシプロピレンアルキルエーテル系化合物、グリセリン脂肪酸部分エステル系化合物、ソルビタン脂肪酸部分エステル系化合物、ペンタエリスリトール脂肪酸部分エステル系化合物、プロピレングリコールモノ脂肪酸エステル系化合物、ショ糖脂肪酸部分エステル系化合物、ポリオキシエチレンソルビタン脂肪酸部分エステル系化合物、ポリオキシエチレンソルビトール脂肪酸部分エステル系化合物、ポリエチレングリコール脂肪酸エステル系化合物、ポリグリセリン脂肪酸部分エステル系化合物、ポリオキシエチレン化ひまし油系化合物、ポリオキシエチレングリセリン脂肪酸部分エステル系化合物、脂肪酸ジエタノールアミド系化合物、N,N-ビス-2-ヒドロキシアルキルアミン系化合物、ポリオキシエチレンアルキルアミン、トリエタノールアミン脂肪酸エステル、トリアルキルアミンオキシド、ポリエチレングリコール、ポリエチレングリコールとポリプロピレングリコールの共重合体等が挙げられる。 The nonionic surfactant is not particularly limited, and a conventionally known nonionic surfactant can be used. For example, polyoxyethylene alkyl ether compounds, polyoxyethylene alkyl phenyl ether compounds, polyoxyethylene polystyryl phenyl ether compounds, polyoxyethylene polyoxypropylene alkyl ether compounds, glycerin fatty acid partial ester compounds, sorbitan fatty acid moieties Ester compounds, pentaerythritol fatty acid partial ester compounds, propylene glycol mono fatty acid ester compounds, sucrose fatty acid partial ester compounds, polyoxyethylene sorbitan fatty acid partial ester compounds, polyoxyethylene sorbitol fatty acid partial ester compounds, polyethylene glycol Fatty acid ester compounds, polyglycerin fatty acid partial ester compounds, polyoxyethylenated castor oil compounds Polyoxyethylene glycerin fatty acid partial ester compound, fatty acid diethanolamide compound, N, N-bis-2-hydroxyalkylamine compound, polyoxyethylene alkylamine, triethanolamine fatty acid ester, trialkylamine oxide, polyethylene glycol And a copolymer of polyethylene glycol and polypropylene glycol.
 アニオン界面活性剤は、特に限定されず、従来公知のものを用いることができる。例えば、脂肪酸塩、アビエチン酸塩、ヒドロキシアルカンスルホン酸塩、アルカンスルホン酸塩、ジアルキルスルホ琥珀酸エステル塩、直鎖アルキルベンゼンスルホン酸塩、分岐鎖アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルキルフェノキシポリオキシエチレンプロピルスルホン酸塩、ポリオキシエチレンアルキルスルホフェニルエーテル塩、N-メチル-N-オレイルタウリンナトリウム塩、N-アルキルスルホコハク酸モノアミド二ナトリウム塩、石油スルホン酸塩、硫酸化牛脂油、脂肪酸アルキルエステルの硫酸エステル塩、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、脂肪酸モノグリセリド硫酸エステル塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンスチリルフェニルエーテル硫酸エステル塩、アルキルリン酸エステル塩、ポリオキシエチレンアルキルエーテルリン酸エステル塩、ポリオキシエチレンアルキルフェニルエーテルリン酸エステル塩、スチレン-無水マレイン酸共重合物の部分けん化物、オレフィン-無水マレイン酸共重合物の部分けん化物、ナフタレンスルホン酸塩ホルマリン縮合物、アルキルポリオキシアルキレンスルホアルキルエーテルの塩、アルケニルポリオキシアルキレンスルホアルキルエーテルの塩等が挙げられる。 The anionic surfactant is not particularly limited, and conventionally known anionic surfactants can be used. For example, fatty acid salt, abietic acid salt, hydroxyalkane sulfonate, alkane sulfonate, dialkyl sulfosuccinate ester salt, linear alkyl benzene sulfonate, branched alkyl benzene sulfonate, alkyl naphthalene sulfonate, alkyl phenoxy poly Oxyethylenepropyl sulfonate, polyoxyethylene alkylsulfophenyl ether salt, N-methyl-N-oleyl taurine sodium salt, N-alkylsulfosuccinic acid monoamide disodium salt, petroleum sulfonate, sulfated beef oil, fatty acid alkyl ester Sulfate ester salt, alkyl sulfate ester salt, polyoxyethylene alkyl ether sulfate ester, fatty acid monoglyceride sulfate ester, polyoxyethylene alkyl phenyl ether sulfate ester Part of salt, polyoxyethylene styryl phenyl ether sulfate ester, alkyl phosphate ester salt, polyoxyethylene alkyl ether phosphate ester salt, polyoxyethylene alkyl phenyl ether phosphate ester salt, styrene-maleic anhydride copolymer And olefin-maleic anhydride copolymer partial saponification product, naphthalene sulfonate formalin condensate, alkyl polyoxyalkylene sulfoalkyl ether salt, alkenyl polyoxyalkylene sulfoalkyl ether salt, and the like.
 カチオン界面活性剤は、特に限定されず、従来公知のものを用いることができる。例えば、アルキルアミン塩、第四級アンモニウム塩(例えば、ヘキサデシルトリメチルアンモニウムクロライド)、ポリオキシエチレンアルキルアミン塩、ポリエチレンポリアミン誘導体等が挙げられる。 The cationic surfactant is not particularly limited, and conventionally known cationic surfactants can be used. Examples thereof include alkylamine salts, quaternary ammonium salts (for example, hexadecyltrimethylammonium chloride), polyoxyethylene alkylamine salts, polyethylene polyamine derivatives, and the like.
 両性界面活性剤は、特に限定されず、従来公知のものを用いることができる。例えば、カルボキシベタイン、アミノカルボン酸、スルホベタイン、アミノ硫酸エステル、イミタゾリン等が挙げられる。 The amphoteric surfactant is not particularly limited, and a conventionally known amphoteric surfactant can be used. Examples thereof include carboxybetaine, aminocarboxylic acid, sulfobetaine, aminosulfuric acid ester, imidazoline and the like.
 乳化剤の濃度は、油相と水相との混合物である乳化液の全質量に対し、0質量%超20質量%以下が好ましく、0.005質量%以上10質量%以下がより好ましく、0.01質量%以上10質量%以下が更により好ましく、1質量%以上5質量%以下が特に好ましい。 The concentration of the emulsifier is preferably more than 0% by mass and 20% by mass or less, more preferably from 0.005% by mass to 10% by mass, with respect to the total mass of the emulsion that is a mixture of the oil phase and the aqueous phase. The content is more preferably from 01% by mass to 10% by mass, and particularly preferably from 1% by mass to 5% by mass.
 水相は、必要に応じて、紫外線吸収剤、酸化防止剤、防腐剤などの他の成分を含有してもよい。そのような他の成分は、水相の全質量に対し、例えば、0質量%超20質量%以下、好ましくは0.1質量%超15質量%以下、より好ましくは1質量%超10質量%以下含有されてよい。 The aqueous phase may contain other components such as an ultraviolet absorber, an antioxidant, and a preservative as necessary. Such other components are, for example, more than 0% by mass and 20% by mass or less, preferably more than 0.1% by mass and 15% by mass or less, more preferably more than 1% by mass and 10% by mass with respect to the total mass of the aqueous phase. The following may be contained.
(分散)
 分散は、本開示の油相を油滴として本開示の水相に分散させること(乳化)をいう。分散は、油相と水相との分散に通常用いられる手段、例えば、ホモジナイザー、マントンゴーリー、超音波分散機、ディゾルバー、ケディーミル、又はその他の公知の分散装置を用いて行なうことができる。
(dispersion)
Dispersion refers to dispersing (emulsifying) the oil phase of the present disclosure as oil droplets in the water phase of the present disclosure. The dispersion can be carried out by means usually used for dispersion of an oil phase and an aqueous phase, for example, a homogenizer, a Manton Gory, an ultrasonic disperser, a dissolver, a teddy mill, or other known dispersion devices.
 油相の水相に対する混合比(油相質量/水相質量)は、0.1~1.5が好ましく、0.2~1.2がより好ましく、0.4~1.0がさらに好ましい。混合比が0.1~1.5の範囲内であると、適度の粘度に保持でき、製造適性に優れ、乳化液の安定性に優れる。 The mixing ratio of the oil phase to the water phase (oil phase mass / water phase mass) is preferably 0.1 to 1.5, more preferably 0.2 to 1.2, and still more preferably 0.4 to 1.0. . When the mixing ratio is in the range of 0.1 to 1.5, an appropriate viscosity can be maintained, the production suitability is excellent, and the stability of the emulsion is excellent.
[カプセル化工程]
 本開示のマイクロカプセルの製造方法は、シェル材を油相と水相との界面で重合させてシェルを形成する界面重合法、油相と水相を乳化後、シェル材を添加し重合させるコアセルベーション法を用いて、香料を内包するマイクロカプセルを形成する工程を含む。これにより、本開示の香料がシェルに内包されたマイクロカプセルが形成される。
[Encapsulation process]
The method for producing a microcapsule of the present disclosure includes an interfacial polymerization method in which a shell material is polymerized at an interface between an oil phase and an aqueous phase to form a shell, and an oil phase and an aqueous phase are emulsified and then a shell material is added and polymerized. A step of forming a microcapsule enclosing a fragrance is included by using a selvage method. Thereby, the microcapsule in which the fragrance | flavor of this indication was included in the shell is formed.
(重合)
 重合は、乳化液中に含まれるシェル材を重合させる工程であり、これによりシェルが形成される。重合は、好ましくは加熱下で行われる。重合における反応温度は、通常は40℃~100℃が好ましく、50℃~80℃がより好ましい。また、重合の反応時間は、通常は0.5時間~10時間程度が好ましく、1時間~5時間程度がより好ましい。重合温度が高い程、重合時間は短くなるが、高温で分解するおそれのある内包物やシェル材を使用する場合には、低温で作用する重合開始剤を選択して、比較的低温で重合させるのが望ましい。
(polymerization)
Polymerization is a step of polymerizing the shell material contained in the emulsion, whereby a shell is formed. The polymerization is preferably performed under heating. The reaction temperature in the polymerization is usually preferably 40 ° C to 100 ° C, more preferably 50 ° C to 80 ° C. The polymerization reaction time is usually preferably about 0.5 to 10 hours, more preferably about 1 to 5 hours. The higher the polymerization temperature, the shorter the polymerization time, but when using inclusions or shell materials that may decompose at high temperatures, select a polymerization initiator that works at low temperatures and polymerize at relatively low temperatures. Is desirable.
 重合工程中に、マイクロカプセル同士の凝集を防止するためには、水性溶液(例えば、水、酢酸水溶液など)を更に加えてマイクロカプセル同士の衝突確率を下げることが好ましく、充分な攪拌を行うことも好ましい。重合工程中に改めて凝集防止用の分散剤を添加してもよい。更に、必要に応じて、ニグロシン等の荷電調節剤、又はその他任意の補助剤を添加することができる。これらの補助剤は、シェルの形成時、又は任意の時点で添加することができる。 In order to prevent the microcapsules from aggregating during the polymerization step, it is preferable to further add an aqueous solution (for example, water, an aqueous acetic acid solution, etc.) to reduce the collision probability between the microcapsules, and perform sufficient stirring. Is also preferable. A dispersing agent for preventing aggregation may be added again during the polymerization process. Furthermore, a charge control agent such as nigrosine, or any other auxiliary agent can be added as necessary. These adjuvants can be added at the time of shell formation or at any point.
<マイクロカプセル含有組成物の用途>
 本開示のマイクロカプセル含有組成物は種々の用途に使用することができる。
 マイクロカプセル含有組成物は、例えば、洗濯、ヘアケア、デイケア等の用途を挙げることができる。
<Use of microcapsule-containing composition>
The microcapsule-containing composition of the present disclosure can be used for various applications.
Examples of the microcapsule-containing composition may include uses such as washing, hair care, and day care.
(洗濯組成物)
-衣料用柔軟剤-
 本開示のマイクロカプセル含有組成物は、例えば、コア材(例えば香料)を含むことで衣料用柔軟剤とすることができる。これによって、本開示のマイクロカプセル含有組成物は、洗濯組成物に適用することができる。
 本開示の衣料用柔軟剤であるマイクロカプセル含有組成物は、衣料をマイクロカプセル含有組成物に浸漬し、脱水、乾燥することで、マイクロカプセル含有組成物に含まれるマイクロカプセルが衣料の繊維に吸着したり、繊維間の微細な空隙に入り込んだりして、衣料に保持される。このため、衣類に対し、柔軟化、帯電防止性などが付与され、さらに、コア材を含むマイクロカプセルを含むことで、所望の時期にコア材を放出することができる。
(Laundry composition)
-Softener for clothing-
The microcapsule-containing composition of the present disclosure can be made into a softener for clothing by including, for example, a core material (for example, a fragrance). Thereby, the microcapsule-containing composition of the present disclosure can be applied to a laundry composition.
The microcapsule-containing composition, which is a softener for clothing of the present disclosure, is obtained by immersing the clothing in the microcapsule-containing composition, dehydrating and drying, so that the microcapsules contained in the microcapsule-containing composition are adsorbed on the fibers of the clothing Or enter into the fine gaps between the fibers and held by the clothing. For this reason, softening, an antistatic property, etc. are provided with respect to clothing, Furthermore, a core material can be discharge | released at a desired time by including the microcapsule containing a core material.
 本開示の衣料用柔軟剤により処理した衣料を着用した場合、柔らかな着心地に加え、マイクロカプセル内にコア材が安定に含まれるため、経時後であっても、衣服を擦るなどして応力を与え、マイクロカプセルを崩壊させることでコア材を放出させることができる。また、特に応力を付与しなくても、衣服を着用し、行動することにより、徐々にマイクロカプセルが崩壊され、徐々にコア材を放出させることができる。 When wearing clothing treated with the softener for clothing of the present disclosure, the core material is stably contained in the microcapsule in addition to the soft comfort, so even after lapse of time, stress is applied by rubbing the clothing, etc. The core material can be released by disintegrating the microcapsules. Moreover, even if it does not give stress in particular, by wearing clothes and acting, the microcapsules are gradually collapsed, and the core material can be gradually released.
 衣料用柔軟剤としては、マイクロカプセル含有組成物全量中、マイクロカプセルに内包されるコアをマイクロカプセル含有組成物に対して、0.3質量%~3質量%含むことが好ましい。
 その他、衣料用柔軟剤に含まれる公知の成分、例えば、消泡剤、色材、香料などをさらに含むことができる。衣料用柔軟剤に用いられる分散媒としては、イオン交換水等の水が好ましい。
The softening agent for clothing preferably contains 0.3 to 3% by mass of the core encapsulated in the microcapsule with respect to the microcapsule-containing composition in the total amount of the microcapsule-containing composition.
In addition, it can further contain a known component contained in the softener for clothing, such as an antifoaming agent, a coloring material, and a fragrance. The dispersion medium used for the softener for clothing is preferably water such as ion exchange water.
(ヘアケア組成物)
 本開示におけるマイクロカプセルと、マイクロカプセルの分散媒とを含むマイクロカプセル含有組成物は、そのままヘアケア組成物に適用することができる。
 ヘアケア組成物の用途としては、リンス、コンディショナー、整髪料等の毛髪化粧料等に任意に適用することができる。
 毛髪化粧料である本開示のマイクロカプセル含有組成物は、毛髪に適用した場合、マイクロカプセルが毛髪に付着し、毛髪を擦る、櫛でとく等した場合、応力によりマイクロカプセルが崩壊し、コア材を放出することができる。
(Hair Care Composition)
The microcapsule-containing composition containing the microcapsules and the microcapsule dispersion medium in the present disclosure can be applied to the hair care composition as it is.
The use of the hair care composition can be arbitrarily applied to hair cosmetics such as rinses, conditioners, hair styling agents, and the like.
When applied to hair, the microcapsule-containing composition of the present disclosure, which is a hair cosmetic, adheres to the hair, and when the hair is rubbed or combed, the microcapsule disintegrates due to stress, and the core material Can be released.
 液状の毛髪化粧料の場合、スプレー容器に充填することで、より長時間に亘り、マイクロカプセルを安定に保存することができ、好ましい。
 スプレーにより毛髪化粧料を毛髪に付与した場合、分散媒とマイクロカプセルとが、毛髪に付着する。その後、頭皮をマッサージするなどを行なうことにより、マイクロカプセルに応力が掛かることでマイクロカプセルが崩壊し、コア材を毛髪に付着させることができる。
 毛髪化粧料である本開示のマイクロカプセル含有組成物には、毛髪化粧料に含まれ得る公知の成分を任意に含有することができる。
 毛髪化粧料の含まれ得る公知の成分としては、アルコールなどの水性媒体、油剤、洗浄成分或いは分散成分としての界面活性剤、皮膚に浸透する有効成分、色材、香料などが挙げられる。
In the case of liquid hair cosmetics, it is preferable that the microcapsules can be stably stored for a longer time by filling the spray container.
When the hair cosmetic is applied to the hair by spraying, the dispersion medium and the microcapsules adhere to the hair. Thereafter, by performing massage or the like on the scalp, the microcapsules are collapsed by applying stress to the microcapsules, and the core material can be attached to the hair.
The microcapsule-containing composition of the present disclosure that is a hair cosmetic can optionally contain known components that can be included in the hair cosmetic.
Known components that can be included in hair cosmetics include aqueous media such as alcohol, oil agents, surfactants as cleaning or dispersing components, active ingredients that penetrate the skin, colorants, and fragrances.
(デイケア組成物)
 本開示のマイクロカプセル含有組成物は、例えば、支持体と、支持体に含浸された既述の本開示のマイクロカプセル含有組成物とを含む化粧用シート、おむつ等のデイケア組成物に適用することができる。
 支持体としては、液状成分を保持することができれば特に制限はない。支持体としては、不織布、織布などの内部に水分を保持する空隙を有する繊維集合体、スポンジシートなどの多孔質体等が好ましい。
 支持体に、本開示のマイクロカプセル含有組成物を含浸させることで、支持体を皮膚に押しつけて擦ることで、マイクロカプセルが崩壊し、任意の時期にコア材を放出することができる。また、マイクロカプセル含有組成物が、界面活性剤等の洗浄成分を含むことで、皮膚清拭用のシートとすることができる。
 化粧用シート、おむつ等は、マイクロカプセル含有組成物を安定に保持するため、水不透過性の包装材料により包装されることが、効果の持続性の観点から好ましい。
(Day care composition)
The microcapsule-containing composition of the present disclosure is applied to, for example, a day care composition such as a cosmetic sheet or a diaper including a support and the microcapsule-containing composition of the present disclosure described above impregnated in the support. Can do.
The support is not particularly limited as long as the liquid component can be retained. The support is preferably a non-woven fabric, a woven fabric or the like, a fiber assembly having a void for retaining moisture therein, a porous material such as a sponge sheet, and the like.
By impregnating the support with the microcapsule-containing composition of the present disclosure, the support is pressed against the skin and rubbed, so that the microcapsules are disintegrated and the core material can be released at an arbitrary time. Moreover, it can be set as the sheet | seat for skin wiping because a microcapsule containing composition contains cleaning components, such as surfactant.
Cosmetic sheets, diapers and the like are preferably packaged with a water-impermeable packaging material in order to stably hold the microcapsule-containing composition, from the viewpoint of sustaining effects.
 既述のように、本開示のマイクロカプセル含有組成物は、必要なタイミングで任意の時期にコア材を放出しうるため、種々の用途に適用することができる。既述の用途は、その一例であり、本開示のマイクロカプセル含有組成物の用途は、上記記載には限定されない。 As described above, since the microcapsule-containing composition of the present disclosure can release the core material at an arbitrary timing at a necessary timing, it can be applied to various uses. The use described above is an example thereof, and the use of the microcapsule-containing composition of the present disclosure is not limited to the above description.
 以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。また、特に断りのない限り、「部」及び「%」は質量基準である。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded. Unless otherwise specified, “part” and “%” are based on mass.
 なお、本実施例において、体積基準のメジアン径、標準偏差、体積平均粒径は、マイクロトラックMT3300EXII(日機装株式会社製)により測定した。壁厚は、マイクロカプセルの断面を走査型電子顕微鏡JSM-7800F(日本電子株式会社製)により観察することで測定した。 In this example, the volume-based median diameter, standard deviation, and volume average particle diameter were measured by Microtrac MT3300EXII (manufactured by Nikkiso Co., Ltd.). The wall thickness was measured by observing the cross section of the microcapsule with a scanning electron microscope JSM-7800F (manufactured by JEOL Ltd.).
(マイクロカプセルの破壊強度測定)
 本実施例において、マイクロカプセルの破壊強度はマイクロカプセル水分散液を1000倍に水で希釈し、スライドガラスに滴下、乾燥した。スラドガラス上の直径約20μmのマイクロカプセルの破壊強度を微小硬度計DUH-W201(株式会社島津製作所製)を用いて測定した。1つのサンプルにつき6つのマイクロカプセルについて測定を行い、平均値を測定値とした。
(Measurement of breaking strength of microcapsules)
In this example, the breaking strength of the microcapsules was obtained by diluting the microcapsule aqueous dispersion 1000 times with water, and dropping and drying on a slide glass. The breaking strength of microcapsules having a diameter of about 20 μm on the slad glass was measured using a microhardness meter DUH-W201 (manufactured by Shimadzu Corporation). Measurement was performed on 6 microcapsules per sample, and the average value was taken as the measured value.
(実施例1)
 溶媒としてサラコス(登録商標)HG-8(日清オイリオグループ株式会社製)を18.2質量部、香料としてD-リモネン(ヤスハラケミカル株式会社製、香料)54.7質量部、シェル材として3官能の脂肪族イソシアネート化合物であるタケネート(登録商標)D-160N(三井化学株式会社製、ヘキサメチレンジイソシアネートトリメチロールプロパンアダクト体)13.5質量部、4,4’-ジフェニルメタンジイソシアネート(MDI、和光純薬工業株式会社製;特定ジイソシアネート化合物)4.5質量部を撹拌混合して油相溶液を得た。2官能の芳香族イソシアネート化合物に由来する構造の、シェル材の全質量に対する含有比率は、25質量%である。
 また、ポリビニルアルコールであるクラレポバール(登録商標)PVA-217E(株式会社クラレ製、PVA)の5.8%水溶液157部に油相溶液を加えて分散し、得られた乳化液を70℃まで加温した。6時間撹拌し、10質量%水酸化ナトリウム水溶液を3.8質量部添加しマイクロカプセル水分散液を得た。
 得られたマイクロカプセルの体積基準のメジアン径(D50)は18μmであった。また、粒径分布のCV値[=(標準偏差/体積平均粒径)×100]は36%であった。マイクロカプセルの破壊強度は20.5MPaであった。
(Example 1)
18.2 parts by mass of Saracos (registered trademark) HG-8 (manufactured by Nisshin Oillio Group Co., Ltd.) as a solvent, 54.7 parts by mass of D-limonene (manufactured by Yashara Chemical Co., Ltd., fragrance), and trifunctional as a shell material 13.5 parts by mass of Takenate (registered trademark) D-160N (made by Mitsui Chemicals, Inc., hexamethylene diisocyanate trimethylolpropane adduct), 4,4′-diphenylmethane diisocyanate (MDI, Wako Pure Chemical) Kogyo Co., Ltd .; specific diisocyanate compound) 4.5 parts by mass was stirred and mixed to obtain an oil phase solution. The content ratio of the structure derived from the bifunctional aromatic isocyanate compound to the total mass of the shell material is 25% by mass.
Further, an oil phase solution was added to and dispersed in 157 parts of a 5.8% aqueous solution of Kuraray Poval (registered trademark) PVA-217E (manufactured by Kuraray Co., Ltd., PVA), which is polyvinyl alcohol, and the resulting emulsion was heated to 70 ° C. Warmed up. After stirring for 6 hours, 3.8 parts by mass of a 10% by mass aqueous sodium hydroxide solution was added to obtain an aqueous microcapsule dispersion.
The volume-based median diameter (D50) of the obtained microcapsules was 18 μm. The CV value [= (standard deviation / volume average particle size) × 100] of the particle size distribution was 36%. The breaking strength of the microcapsule was 20.5 MPa.
<評価サンプルの作成>
 上記で作製したマイクロカプセルの香料換算1.0質量%となるように、無香料柔軟剤(ULTRA Downy、プロクター・アンド・ギャンブル・ジャパン株式会社製)と混合しマイクロカプセル含有組成物とした。自動洗濯機AW-422S(H)(株式会社東芝製)に木綿タオル(36cm×36cm)約1.5kgを入れ、さらに水30Lをいれ、マイクロカプセル含有組成物10質量部を洗濯基の柔軟剤注入口に入れ、洗濯工程(洗濯10分、すすぎ25分、脱水10分)を行った。その後24時間乾燥し、徐放性評価用のサンプルとした。
<Creation of evaluation sample>
A microcapsule-containing composition was prepared by mixing with a fragrance-free softener (ULTRA Downy, manufactured by Procter & Gamble Japan Co., Ltd.) so that the fragrance conversion of the microcapsule produced above was 1.0 mass%. Put about 1.5 kg of cotton towel (36 cm x 36 cm) into automatic washing machine AW-422S (H) (manufactured by Toshiba Corporation), add 30 L of water, and add 10 parts by weight of the microcapsule-containing composition as a washing base softener. It was put into the injection port and a washing process (washing 10 minutes, rinsing 25 minutes, dehydration 10 minutes) was performed. Thereafter, the sample was dried for 24 hours to obtain a sample for sustained release evaluation.
(実施例2)
 実施例1において、使用したポリビニルアルコールを、表1に記載した通りに用いた以外は、実施例1と同様にして、マイクロカプセル水分散液を得た。
 得られたマイクロカプセルの体積基準のメジアン径、標準偏差、体積平均粒径、壁厚、マイクロカプセルの破壊強度は、実施例1と同様に測定した。
(Example 2)
A microcapsule aqueous dispersion was obtained in the same manner as in Example 1 except that the polyvinyl alcohol used in Example 1 was used as described in Table 1.
The volume-based median diameter, standard deviation, volume average particle diameter, wall thickness, and microcapsule breaking strength of the obtained microcapsules were measured in the same manner as in Example 1.
(実施例3~実施例17)
 実施例1において、使用したポリビニルアルコールを変更し、かつイソシアネート化合物の種類及び混合比を、表1に記載の通りに変更した以外は、実施例1と同様にして、マイクロカプセル水分散液を得た。
 得られたマイクロカプセルの体積基準のメジアン径、標準偏差、体積平均粒径、壁厚、マイクロカプセルの破壊強度は、実施例1と同様に測定した。
(Example 3 to Example 17)
A microcapsule aqueous dispersion was obtained in the same manner as in Example 1 except that the polyvinyl alcohol used in Example 1 was changed and the type and mixing ratio of the isocyanate compound were changed as shown in Table 1. It was.
The volume-based median diameter, standard deviation, volume average particle diameter, wall thickness, and microcapsule breaking strength of the obtained microcapsules were measured in the same manner as in Example 1.
(比較例1~5)
 実施例1において、使用したイソシアネート化合物の種類及び混合比を、表1に記載の通りに変更した以外は、実施例1と同様にして、マイクロカプセル水分散液を得た。
 得られたマイクロカプセルの体積基準のメジアン径、標準偏差、体積平均粒径、壁厚、マイクロカプセルの破壊強度は、実施例1と同様に測定した。
(Comparative Examples 1 to 5)
A microcapsule aqueous dispersion was obtained in the same manner as in Example 1 except that the type and mixing ratio of the isocyanate compound used were changed as shown in Table 1 in Example 1.
The volume-based median diameter, standard deviation, volume average particle diameter, wall thickness, and microcapsule breaking strength of the obtained microcapsules were measured in the same manner as in Example 1.
(実施例18)
 イソバン(登録商標)10(クラレ株式会社製、濃度10%イソブチレン-無水マレイン酸共重合体水溶液)75質量部と水80質量部を混合し、この混合液のpHを10%水酸化ナトリウム水溶液で4.5に調整し水相溶液とした。溶媒としてサラコス(登録商標)HG-8(日清オイリオ製)を18.3質量部、香料としてD-リモネン(ヤスハラケミカル株式会社製、香料)54.7質量部、シェル材として4,4’-ジフェニルメタンジイソシアネート(MDI、和光純薬工業株式会社製;特定ジイソシアネート化合物)4.5質量部を混合し油相溶液とし、水相溶液140質量部に調整した油相溶液の全量を加えて分散し乳化液を得た。シェル材としてメラミン―ホルムアルデヒドプレポリマーであるニカレジンS-260(日本カーバイト工業株式会社製)10.1質量部を、乳化液に加えてから加熱し65℃に達してから、24時間カプセル膜形成反応を続け反応させた。残留ホルムアルデヒドを減少させるために、30℃に冷却後29%アンモニア水をpH7.5になるまで添加してマイクロカプセル水分散液を得た。
 得られたマイクロカプセルの体積基準のメジアン径(D50)は18μmであった。また、粒径分布のCV値[=(標準偏差/体積平均粒径)×100]は36%であった。マイクロカプセルの破壊強度は24.3MPaであった。
(Example 18)
75 parts by mass of Isoban (registered trademark) 10 (manufactured by Kuraray Co., Ltd., 10% isobutylene-maleic anhydride copolymer aqueous solution) and 80 parts by mass of water were mixed, and the pH of this mixture was adjusted with a 10% aqueous sodium hydroxide solution. The aqueous phase solution was adjusted to 4.5. 18.3 parts by mass of Saracos (registered trademark) HG-8 (manufactured by Nisshin Oillio) as a solvent, 54.7 parts by mass of D-limonene (manufactured by Yashara Chemical Co., Ltd., fragrance) as a fragrance, and 4,4′- as a shell material 4.5 parts by mass of diphenylmethane diisocyanate (MDI, manufactured by Wako Pure Chemical Industries, Ltd .; specific diisocyanate compound) is mixed to form an oil phase solution, and the total amount of the oil phase solution adjusted to 140 parts by mass of the aqueous phase solution is added and dispersed to emulsify. A liquid was obtained. 10.1 parts by mass of melamine-formaldehyde prepolymer Nical Resin S-260 (manufactured by Nippon Carbide Industries Co., Ltd.) as a shell material was added to the emulsified liquid, heated to 65 ° C., and then formed into a capsule film for 24 hours The reaction was continued and allowed to react. In order to reduce the residual formaldehyde, after cooling to 30 ° C., 29% aqueous ammonia was added until the pH reached 7.5 to obtain a microcapsule aqueous dispersion.
The volume-based median diameter (D50) of the obtained microcapsules was 18 μm. The CV value [= (standard deviation / volume average particle size) × 100] of the particle size distribution was 36%. The breaking strength of the microcapsule was 24.3 MPa.
(実施例19~実施例33)
 実施例18において、使用したメラミンホルムアルデヒドプレポリマー及びイソシアネート化合物の種類及び混合比を、表2に記載の通りに変更した以外は、実施例18と同様にして、マイクロカプセル水分散液を得た。
 得られたマイクロカプセルの体積基準のメジアン径、標準偏差、体積平均粒径、壁厚、マイクロカプセルの破壊強度は、実施例18と同様に測定した。
(Example 19 to Example 33)
A microcapsule aqueous dispersion was obtained in the same manner as in Example 18 except that the type and mixing ratio of the melamine formaldehyde prepolymer and isocyanate compound used were changed as shown in Table 2.
The volume-based median diameter, standard deviation, volume average particle diameter, wall thickness, and microcapsule breaking strength of the obtained microcapsules were measured in the same manner as in Example 18.
(比較例6~10)
 実施例18において、使用したイソシアネート化合物の種類及び混合比を、表2に記載の通りに変更した以外は、実施例18と同様にして、マイクロカプセル水分散液を得た。
 得られたマイクロカプセルの体積基準のメジアン径、標準偏差、体積平均粒径、壁厚、マイクロカプセルの破壊強度は、実施例18と同様に測定した。
(Comparative Examples 6 to 10)
In Example 18, a microcapsule aqueous dispersion was obtained in the same manner as in Example 18, except that the type and mixing ratio of the isocyanate compound used were changed as shown in Table 2.
The volume-based median diameter, standard deviation, volume average particle diameter, wall thickness, and microcapsule breaking strength of the obtained microcapsules were measured in the same manner as in Example 18.
-評価-
(徐放性の官能評価)
 上記で得た評価サンプル(木綿タオル)を25℃で経時し、香りの強度を24時間おきに10人のパネラーに評価してもらった。以下の基準で点数をつけ、5回の平均値(整数に四捨五入)を求めて徐放性を評価する指標とした。
 <評価基準>
0点:乾燥直後でも香りがしない。
1点:乾燥直後は香りがするが、24時間経時した時点では香りがしない。
2点:24時間以降も香りがするが、48時間経時した時点は香りがしない。
3点:48時間以降も香りがするが、72時間経時した時点は香りがしない。
4点:72時間以降も香りがする。
-Evaluation-
(Sensory evaluation of sustained release)
The evaluation sample (cotton towel) obtained above was aged at 25 ° C., and the scent intensity was evaluated by 10 panelists every 24 hours. The score was given according to the following criteria, and an average value of 5 times (rounded to the nearest whole number) was obtained as an index for evaluating sustained release.
<Evaluation criteria>
0 point: There is no scent immediately after drying.
1 point: Scented immediately after drying, but not scented after 24 hours.
2 points: scented after 24 hours, but not scented after 48 hours.
3 points: scented after 48 hours, but not scented after 72 hours.
4 points: Scented after 72 hours.
(香料減少量による徐放性評価)
上記で得られた評価サンプル(木綿タオル)を6分の1の面積の方形に切り取り、切り取ったタオルをジメチルスルホキシド100gに浸漬し、24時間静置することでマイクロカプセル内部の香料を抽出した。得られたジメチルスルホキシド溶液をガスクロマトグラフ分析計(QP2010Ultra、株式会社島津製作所製)にて香料の抽出量(mg)を定量した。この香料抽出量について、評価サンプル作製直後と25℃で48時間経時後の香料抽出量から次式を用いて香料減少量を算出した。
 (式)
 香料減少量(質量%)=(作製直後の香料抽出量(mg)-25℃48時間経時後の香料抽出量(mg))/作製直後の香料抽出量(mg)×100
(Evaluation of sustained release by reducing fragrance)
The evaluation sample (cotton towel) obtained above was cut into a square of 1/6 area, and the cut towel was immersed in 100 g of dimethyl sulfoxide and allowed to stand for 24 hours to extract the fragrance inside the microcapsule. The extracted amount (mg) of the fragrance was quantified in the obtained dimethyl sulfoxide solution with a gas chromatograph analyzer (QP2010Ultra, manufactured by Shimadzu Corporation). About this fragrance | flavor extraction amount, the fragrance | flavor reduction amount was computed using the following formula from the fragrance | flavor extraction amount immediately after preparation of an evaluation sample and 48 hours after a time lapse.
(formula)
Fragrance reduction amount (% by mass) = (fragrance extraction amount immediately after preparation (mg) −fragrance extraction amount after aging at 25 ° C. for 48 hours (mg)) / fragrance extraction amount immediately after preparation (mg) × 100
Figure JPOXMLDOC01-appb-T000001
尚、表1中のPVAは乳化剤のことを表す。
Figure JPOXMLDOC01-appb-T000001
In addition, PVA in Table 1 represents an emulsifier.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2中、「-」は成分が含まれていないことを表す。 In Tables 1 and 2, “-” indicates that no component is contained.
 表1及び表2中の成分の詳細は、以下の通りである。
・217E:クラレポバールPVA―217E(部分ケン化ポリビニルアルコール)、株式会社クラレ製
・KM-618:クラレポバールKM-618(アニオン変性ポリビニルアルコール)、株式会社クラレ製
・D-160N:タケネートD-160N(ヘキサメチレンジイソシアネートトリメチロールプロパンアダクト体)、三井化学株式会社製
・MDI:4,4’-ジフェニルメタンジイソシアネート(和光純薬工業株式会社製)
・HDI:ヘキサメチレンジイソシアネート(和光純薬工業株式会社製)
・DMDI:4,4’-ジシクロヘキシルメタンジイソシアネート(和光純薬工業株式会社製)
・THDI:トリメチルヘキサメチレンジイソシアネート(和光純薬工業株式会社製)
Details of the components in Tables 1 and 2 are as follows.
217E: Kuraray Poval PVA-217E (partially saponified polyvinyl alcohol), manufactured by Kuraray Co., Ltd. KM-618: Kuraray Poval KM-618 (anion modified polyvinyl alcohol), manufactured by Kuraray Co., Ltd. D-160N: Takenate D-160N (Hexamethylene diisocyanate trimethylolpropane adduct), manufactured by Mitsui Chemicals, Inc. MDI: 4,4′-diphenylmethane diisocyanate (manufactured by Wako Pure Chemical Industries, Ltd.)
・ HDI: Hexamethylene diisocyanate (Wako Pure Chemical Industries, Ltd.)
DMDI: 4,4′-dicyclohexylmethane diisocyanate (Wako Pure Chemical Industries, Ltd.)
・ THDI: Trimethylhexamethylene diisocyanate (Wako Pure Chemical Industries, Ltd.)
・イソバン10:濃度10%イソブチレン-無水マレイン酸共重合体水溶液、株式会社クラレ製
・ニカレジンS-260:メラミン―ホルムアルデヒドプレポリマー、日本カーバイド工業株式会社製
・ Isoban 10: Concentrated 10% isobutylene-maleic anhydride copolymer aqueous solution, manufactured by Kuraray Co., Ltd. ・ Nikaresin S-260: Melamine-formaldehyde prepolymer, manufactured by Nippon Carbide Industries, Ltd.
 表1に示す通り、シェル材がポリウレタン又はポリウレアを含むマイクロカプセルであり、i)2官能の脂肪族イソシアネート化合物に由来する構造及び2官能の芳香族イソシアネート化合物に由来する構造から選ばれる少なくとも一方の構造をシェル材の全質量に対して10質量%~70質量%有し、ii)シェルの厚みが0.3~2.0μmであるマイクロカプセル組成物である実施例1~実施例17は、それを満たさない比較例1~5よりも、徐放性に優れることがわかった。
 また、実施例6~11のマイクロカプセルから、徐放性の点で、3官能以上の脂肪族イソシアネート化合物と特定ジイソシアネート化合物の量的関係に好ましい範囲があることが分かった。
 また、表2に示す通り、シェル材がメラミンホルムアルデヒド樹脂を含むマイクロカプセルを用いた場合も上記と同様の結果であった。
As shown in Table 1, the shell material is a microcapsule containing polyurethane or polyurea, and i) at least one selected from a structure derived from a bifunctional aliphatic isocyanate compound and a structure derived from a bifunctional aromatic isocyanate compound Examples 1 to 17 which are microcapsule compositions having a structure of 10% by mass to 70% by mass with respect to the total mass of the shell material and having a shell thickness of 0.3 to 2.0 μm are as follows: It was found that the sustained release properties were superior to those of Comparative Examples 1 to 5 that did not satisfy this requirement.
Further, from the microcapsules of Examples 6 to 11, it was found that there is a preferable range in the quantitative relationship between the trifunctional or higher functional aliphatic isocyanate compound and the specific diisocyanate compound in terms of sustained release.
Moreover, as shown in Table 2, the same results as described above were obtained when microcapsules containing a melamine formaldehyde resin as the shell material were used.
 本開示のマイクロカプセルは、コア材として、特に香料を内包する態様で好適に利用でき、香料の保護、徐放性などの種々の好ましい機能を発揮することができる。 The microcapsule of the present disclosure can be suitably used as a core material, particularly in a mode in which a fragrance is included, and can exhibit various preferable functions such as fragrance protection and sustained release.

Claims (8)

  1.  シェルと、香料を内包したコアとを有するマイクロカプセルを含むマイクロカプセル含有組成物であって、
     i)2官能の脂肪族イソシアネート化合物に由来する構造及び2官能の芳香族イソシアネート化合物に由来する構造から選ばれる少なくとも一方の構造を、前記シェルを形成するシェル材の全質量に対して10質量%~70質量%有し、
     ii)シェルの厚みが0.3~2.0μmである、
     マイクロカプセル含有組成物。
    A microcapsule-containing composition comprising a microcapsule having a shell and a core containing a fragrance,
    i) At least one structure selected from a structure derived from a bifunctional aliphatic isocyanate compound and a structure derived from a bifunctional aromatic isocyanate compound is 10% by mass with respect to the total mass of the shell material forming the shell. ~ 70% by mass,
    ii) the thickness of the shell is 0.3 to 2.0 μm;
    A composition containing microcapsules.
  2.  前記マイクロカプセルの破壊強度が16MPa以上である請求項1に記載のマイクロカプセル含有組成物。 The microcapsule-containing composition according to claim 1, wherein the microcapsule has a breaking strength of 16 MPa or more.
  3.  前記シェル材が、ポリウレタン及びポリウレアの少なくとも一方又はメラミンホルムアルデヒド樹脂のいずれかを含む請求項1又は請求項2に記載のマイクロカプセル含有組成物。 The microcapsule-containing composition according to claim 1 or 2, wherein the shell material contains at least one of polyurethane and polyurea or a melamine formaldehyde resin.
  4.  前記シェル材が、ポリイソシアネート化合物に由来する構造を有するポリウレタン及びポリウレアの少なくとも一方を含む請求項1~請求項3のいずれか1項に記載のマイクロカプセル含有組成物。 The microcapsule-containing composition according to any one of claims 1 to 3, wherein the shell material includes at least one of polyurethane having a structure derived from a polyisocyanate compound and polyurea.
  5.  前記シェル材が、3官能以上の脂肪族イソシアネート化合物に由来する構造と、2官能の脂肪族イソシアネート化合物に由来する構造及び2官能の芳香族イソシアネート化合物に由来する構造から選ばれる少なくとも一方の構造と、を有するポリウレタン又はポリウレアを含む請求項4に記載のマイクロカプセル含有組成物。 The shell material is at least one structure selected from a structure derived from a trifunctional or higher functional aliphatic isocyanate compound, a structure derived from a bifunctional aliphatic isocyanate compound, and a structure derived from a bifunctional aromatic isocyanate compound; The microcapsule-containing composition according to claim 4, comprising a polyurethane or polyurea having.
  6.  前記シェル材が、メラミンホルムアルデヒドプレポリマー化合物に由来する構造を有するメラミンホルムアルデヒド樹脂を含む請求項1~請求項3のいずれか1項に記載のマイクロカプセル含有組成物。 The microcapsule-containing composition according to any one of claims 1 to 3, wherein the shell material contains a melamine formaldehyde resin having a structure derived from a melamine formaldehyde prepolymer compound.
  7.  前記シェル材が、メラミンホルムアルデヒドプレポリマー化合物に由来する構造と、2官能の脂肪族イソシアネート化合物に由来する構造及び2官能の芳香族イソシアネート化合物に由来する構造から選ばれる少なくとも一方の構造と、を有するメラミンホルムアルデヒド樹脂を含む請求項6に記載のマイクロカプセル含有組成物。 The shell material has at least one structure selected from a structure derived from a melamine formaldehyde prepolymer compound, a structure derived from a bifunctional aliphatic isocyanate compound, and a structure derived from a bifunctional aromatic isocyanate compound. The microcapsule-containing composition according to claim 6, comprising a melamine formaldehyde resin.
  8.  請求項1~請求項7のいずれかに1項に記載のマイクロカプセル含有組成物を含む洗濯組成物、デイケア組成物又はヘアケア用組成物。 A laundry composition, day care composition or hair care composition comprising the microcapsule-containing composition according to any one of claims 1 to 7.
PCT/JP2019/010130 2018-03-23 2019-03-13 Microcapsule-containing composition, laundry composition, daycare composition and haircare composition WO2019181668A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018056636A JP2021088505A (en) 2018-03-23 2018-03-23 Microcapsule-containing composition
JP2018-056636 2018-03-23

Publications (1)

Publication Number Publication Date
WO2019181668A1 true WO2019181668A1 (en) 2019-09-26

Family

ID=67987203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010130 WO2019181668A1 (en) 2018-03-23 2019-03-13 Microcapsule-containing composition, laundry composition, daycare composition and haircare composition

Country Status (2)

Country Link
JP (1) JP2021088505A (en)
WO (1) WO2019181668A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111117462A (en) * 2020-01-06 2020-05-08 深圳市美施美克新材料有限公司 Two-component environment-friendly coating rich in d-limonene and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248039A (en) * 1988-08-10 1990-02-16 Kanzaki Paper Mfg Co Ltd Production of microcapsule
JP2003200035A (en) * 2001-08-22 2003-07-15 Hokushin Ind Inc Ph responsible microcapsule
JP2006159194A (en) * 2001-07-19 2006-06-22 New Industry Research Organization Method for manufacturing target component-encapsulated fine particle and hollow polymer fine particle and method for manufacturing it
JP2006255536A (en) * 2005-03-15 2006-09-28 Trans Parent:Kk Preparation method of ph responsive microcapsule
JP2008161859A (en) * 2006-12-06 2008-07-17 Nippon Shokubai Co Ltd Multilayer microcapsule and its manufacturing method
JP2012506844A (en) * 2008-10-27 2012-03-22 ユニリーバー・ナームローゼ・ベンノートシヤープ Antiperspirant or deodorant composition
JP2016148042A (en) * 2010-07-15 2016-08-18 ユニリーバー・ナームローゼ・ベンノートシヤープ Benefit agent delivery particle, method for preparing the particle, compositions comprising the particles, and method for treating substrates
WO2017135087A1 (en) * 2016-02-05 2017-08-10 富士フイルム株式会社 Microcapsules, aqueous dispersion, production method for aqueous dispersion, and image formation method
JP2017176907A (en) * 2016-03-28 2017-10-05 株式会社日本カプセルプロダクツ Method for producing microcapsules, and microcapsules produced by the method
WO2019035382A1 (en) * 2017-08-18 2019-02-21 三井化学株式会社 Hollow resin particles, heat-sensitive recording material, and method for producing hollow resin particles

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248039A (en) * 1988-08-10 1990-02-16 Kanzaki Paper Mfg Co Ltd Production of microcapsule
JP2006159194A (en) * 2001-07-19 2006-06-22 New Industry Research Organization Method for manufacturing target component-encapsulated fine particle and hollow polymer fine particle and method for manufacturing it
JP2003200035A (en) * 2001-08-22 2003-07-15 Hokushin Ind Inc Ph responsible microcapsule
JP2006255536A (en) * 2005-03-15 2006-09-28 Trans Parent:Kk Preparation method of ph responsive microcapsule
JP2008161859A (en) * 2006-12-06 2008-07-17 Nippon Shokubai Co Ltd Multilayer microcapsule and its manufacturing method
JP2012506844A (en) * 2008-10-27 2012-03-22 ユニリーバー・ナームローゼ・ベンノートシヤープ Antiperspirant or deodorant composition
JP2016148042A (en) * 2010-07-15 2016-08-18 ユニリーバー・ナームローゼ・ベンノートシヤープ Benefit agent delivery particle, method for preparing the particle, compositions comprising the particles, and method for treating substrates
WO2017135087A1 (en) * 2016-02-05 2017-08-10 富士フイルム株式会社 Microcapsules, aqueous dispersion, production method for aqueous dispersion, and image formation method
JP2017176907A (en) * 2016-03-28 2017-10-05 株式会社日本カプセルプロダクツ Method for producing microcapsules, and microcapsules produced by the method
WO2019035382A1 (en) * 2017-08-18 2019-02-21 三井化学株式会社 Hollow resin particles, heat-sensitive recording material, and method for producing hollow resin particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111117462A (en) * 2020-01-06 2020-05-08 深圳市美施美克新材料有限公司 Two-component environment-friendly coating rich in d-limonene and preparation method thereof

Also Published As

Publication number Publication date
JP2021088505A (en) 2021-06-10

Similar Documents

Publication Publication Date Title
JP6911014B2 (en) Encapsulation
WO2020195132A1 (en) Perfume microcapsules, perfume microcapsule composition, softener, and detergent
US11504689B2 (en) Encapsulated perfume compositions and methods of preparing them
MX2014006809A (en) Improvements in or relating to the encapsulation of perfumes.
US20110071064A1 (en) Encapsulated Active Materials
WO2019171929A1 (en) Microcapsule-containing composition
WO2020194910A1 (en) Microcapsules, microcapsule composition, softener, and detergent
JP2019167455A (en) Manufacturing method of micro capsule and manufacturing method of micro capsule-containing composition
JP2019150783A (en) Manufacturing method of microcapsule and manufacturing method of microcapsule-containing composition
WO2019181668A1 (en) Microcapsule-containing composition, laundry composition, daycare composition and haircare composition
WO2019039385A1 (en) Microcapsule, composition, and sheet for cosmetics
WO2019187835A1 (en) Microcapsule-containing composition
EP3515403A2 (en) Use of an ampholyte copolymer as colloidal stabilizer in a process of encapsulating fragrance
JP6986070B2 (en) Improvements in or related to organic compounds
WO2019171959A1 (en) Microcapsule and microcapsule-containing composition
WO2020066159A1 (en) Microcapsule and microcapsule-containing composition
JP2021073323A (en) Microcapsule-containing composition
WO2019181682A1 (en) Microcapsule-containing composition, laundering composition, day-care composition, and hair-care composition
JP2019151759A (en) Method of manufacturing microcapsule, and method of manufacturing microcapsule-containing composition
JP2021053594A (en) Microcapsule, microcapsule composition and production method of the same, as well as softener and detergent
RU2774912C2 (en) Encapsulated perfume composition and its production method
CA3231703A1 (en) Gelatin based urethane/urea microcapsules
BR112020012385B1 (en) ENCAPSULATED PERFUME COMPOSITION AND METHOD FOR PREPARING IT
BR112020016366A2 (en) IMPROVEMENTS IN OR IN RELATION TO ORGANIC COMPOUNDS
BR112020016366B1 (en) PROCESS FOR PREPARING AN ENCAPSULATED FRAGRANCE COMPOSITION, USE OF AN ANIONICALLY MODIFIED POLYISOCYANATE, ENCAPSULATED FRAGRANCE COMPOSITION AND CONSUMER PRODUCT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP