WO2020194631A1 - Vapor deposition device - Google Patents

Vapor deposition device Download PDF

Info

Publication number
WO2020194631A1
WO2020194631A1 PCT/JP2019/013462 JP2019013462W WO2020194631A1 WO 2020194631 A1 WO2020194631 A1 WO 2020194631A1 JP 2019013462 W JP2019013462 W JP 2019013462W WO 2020194631 A1 WO2020194631 A1 WO 2020194631A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
vapor deposition
deposition apparatus
metal net
vapor
Prior art date
Application number
PCT/JP2019/013462
Other languages
French (fr)
Japanese (ja)
Inventor
海軍 栗
時由 梅田
優人 塚本
植竹 猶基
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2019/013462 priority Critical patent/WO2020194631A1/en
Publication of WO2020194631A1 publication Critical patent/WO2020194631A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/87Arrangements for heating or cooling
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources

Definitions

  • the present invention relates to a vapor deposition apparatus including a crucible that accommodates a vapor deposition material and sublimates or evaporates and releases the vapor deposition material.
  • organic EL material When producing an organic EL display device, it is necessary to deposit organic EL material. At this time, the organic EL material is uniformly discharged not only near the wall surface of the vapor deposition source but also near the center, so that a uniform vapor deposition film can be obtained.
  • the organic EL material In order to ensure a stable deposition rate, the organic EL material must be heated within a time that does not deteriorate the metal surface of the crucible. In addition, in order to make the characteristics of the organic EL display device uniform, it is necessary to consider the film thickness for setting the organic layer of each color.
  • a red light emitting layer and a green light emitting layer can be formed by a vapor deposition method using a mixed material containing a low molecular weight material and a high molecular weight material as a plurality of types of vapor deposition materials. It is disclosed.
  • Patent Document 2 discloses a vapor deposition apparatus for co-depositing a mixed material containing a plurality of types of vapor deposition materials.
  • the organic EL material since the organic EL material has low thermal conductivity, it causes a problem that only the vicinity of the wall surface of the vapor deposition source sublimates or evaporates, whereas the vicinity of the center remains without sublimation or evaporation.
  • the vapor-deposited material may suddenly collapse. In such a case, the film formation rate fluctuates greatly, and a uniform vapor deposition film cannot be obtained.
  • the metal surface of the crucible is heated for a long period of time, the metal surface of the crucible is likely to deteriorate and the vapor deposition rate is often unstable. As a result, a large deviation occurs in the film thickness for setting the organic layer of each color, and as a result, the characteristics of the organic EL display device greatly vary.
  • one aspect of the present invention is to provide a vapor deposition apparatus capable of increasing thermal conductivity and significantly improving the stability of the vapor deposition rate.
  • the thin-film deposition apparatus is a vapor deposition apparatus provided with a crucible that accommodates the vapor-deposited material and releases the vapor-deposited material, and the crucible divides the inside thereof. It is characterized in that a metal mesh structure is provided as described above.
  • a thin-film deposition apparatus capable of increasing the thermal conductivity for a thin-film deposition material and significantly improving the stability of the thin-film deposition rate.
  • FIG. 1 It is a block diagram which shows the structure of the vapor deposition apparatus of this invention.
  • the configuration of the crucible of the vapor deposition apparatus of the comparative example is shown, (a) is a cross-sectional view of the crucible of the vapor deposition apparatus, (b) is a vertical sectional view of the crucible of the vapor deposition apparatus, and (c). Is a top view of the crucible of the vapor deposition apparatus.
  • the crucible of the vapor deposition apparatus according to the first embodiment is shown, (a) is a cross-sectional view of the crucible of the vapor deposition apparatus, (b) is a vertical sectional view of the crucible of the vapor deposition apparatus, and (c).
  • FIG. 3D is an explanatory view showing a planar metal net.
  • the crucible of the vapor deposition apparatus according to the second embodiment is shown, (a) is a cross-sectional view of the crucible of the vapor deposition apparatus, (b) is a vertical sectional view of the crucible of the vapor deposition apparatus, and (c). Is a top view of the crucible of the vapor deposition apparatus, and FIG. 3D is an explanatory view showing a three-dimensional metal net.
  • the crucible of the vapor deposition apparatus according to the second embodiment is shown, and (a) shows a plurality of planar metal nets parallel to the vertical direction (in the height direction) in the vertical cross-sectional view of FIG. 3 (b). It is explanatory drawing which shows the case of juxtaposing such as. (B) is an explanatory view showing a case where a plurality of planar metal nets are arranged side by side in the horizontal direction in the vertical cross-sectional view of FIG. 3 (b). It shows the crucible of the vapor deposition apparatus which concerns on Embodiment 2.
  • FIG. 1A is an explanatory diagram showing a case where the planar metal net is provided so that the mesh spacing on the upper surface side is narrower than the mesh spacing on the bottom surface side in the depth direction of the crucible.
  • (B) is an explanatory view showing a case where the planar metal net is provided so that the distance between the meshes near the center of the crucible is narrower than the distance between the meshes on the end side of the crucible. It shows the crucible of the vapor deposition apparatus which concerns on Embodiment 2.
  • (A) is an explanatory view showing a case where the structure (shape) of a plurality of planar metal nets is skewered.
  • (B) is an explanatory view showing a case where the structure (shape) of the plurality of planar metal nets is X-shaped.
  • (C) is an explanatory diagram showing a case where the structure (shape) of the plurality of planar metal nets is * (asterisk).
  • (D) is an explanatory view showing a case where the structure (shape) of the plurality of planar metal nets is in the shape of a rice character.
  • Embodiment 1 of the present invention will be described in detail below with reference to FIGS. 1 to 3 and 5 to 7.
  • the vapor deposition apparatus 5 includes, for example, a crystal oscillator 2 for detecting a vapor deposition rate that detects the vapor deposition rate of the vapor deposition particles when the vapor deposition particles are injected.
  • the vapor deposition apparatus 5 further includes a tube portion 4 having a conduction opening (not shown) capable of inducing vapor deposition particles from a nozzle (not shown) in the vapor deposition source 1 to the crystal oscillator 2.
  • the thin-film deposition source 1 is further provided with a thin-film deposition 7, and a thin-film deposition material is simultaneously applied as a vapor-deposited film 6 to a substrate 3 which is a substrate to be vapor-deposited (a substrate to be deposited) from the cell 7.
  • a co-deposited film formed (co-deposited) is formed (deposited).
  • the bottom of the crucible 7 is filled with an organic EL material, and then a flat metal net 7a (metal mesh structure) is further provided on the organic EL material (see (d) in FIG. 3).
  • the flat metal net 7a is provided so that at least a part of the end portion thereof contacts the inner wall of the crucible 7.
  • a mesh may be provided in the vapor-deposited material.
  • the crucible 7 is provided with a flat metal net 7a so as to divide the inside of the crucible 7.
  • the planar metal net 7a is provided so that the distance between the meshes near the center of the crucible 7 is narrower than the distance between the meshes on the end side of the crucible 7. This is preferable from the viewpoint of efficiently receiving heat from the organic EL material.
  • the flat metal net 7a is provided so that the mesh spacing on the upper surface side is narrower than the mesh spacing on the bottom surface side in the depth direction of the crucible 7. It is preferable from the viewpoint that the organic EL material can be heated efficiently.
  • the flat metal net 7a is made of a metal alloy material having high thermal conductivity, for example, a titanium alloy, similar to the crucible 7. Further, the number of flat metal nets 7a installed is not limited to one, and may be a plurality.
  • a plurality of planar metal nets 7a are arranged side by side so as to be parallel to the vertical direction (height direction) in the vertical sectional view of FIG. 3B. You may.
  • a plurality of planar metal nets 7a may be arranged side by side in the horizontal direction in the vertical cross-sectional view of FIG. 3B.
  • the structure (shape) of the plurality of planar metal nets 7a for example, skewered shape (see (a) of FIG. 7), X shape (see (b) of FIG. 7), * shape ((see FIG. 7 (b)) c)) or a structure (shape) such as a US character (see (d) in FIG. 7) may be adopted.
  • the plurality of flat metal nets 7a may be inclined with respect to the inner wall of the crucible 7, and the plurality of flat metal nets may intersect each other.
  • the size of the flat metal net 7a varies depending on the internal size of the crucible 7.
  • the crucible 7 has two types (host and dopant).
  • the length inside the crucible 7 (the length in the horizontal direction in the vertical sectional view of FIG. 3B) is about 1000 mm to 1200 mm and is high.
  • the length (length in the vertical direction in the vertical cross-sectional view of FIG. 3B) is 200 mm to 300 mm.
  • the size of the inside of the crucible 7 is different, and the size of the inside of the crucible for the host material (the lateral length in (a) of FIG. 3) is about 40 mm to 80 mm, and the size of the inside of the crucible for the dopant material.
  • the crucible is 20-40 mm.
  • the planar metal net 7a is made of, for example, a heat generating material. This material may generate heat when energized. Further, the flat metal net 7a is movably provided in the crucible 7.
  • the thin-film deposition apparatus 5 may be provided with a liquid level sensor, and may be further provided with a control unit for controlling the movement of the planar metal net 7a below the liquid level of the vapor-deposited material.
  • the control unit controls the position of the planar metal net 7a so as to prevent the heat generating material from coming out above the liquid surface (deposited material).
  • the liquid level sensor is not particularly limited as long as it is a sensor such as a resistor that can handle the temperature inside the crucible 7. By providing such a liquid level sensor, it is possible to prevent the heat generating material from coming out above the liquid level.
  • FIGS. 3A to 3C are a cross-sectional view, a vertical cross-sectional view, and a top view when the organic EL material is heated in the crucible 7, respectively.
  • FIG. 3D is an explanatory view showing an overall view of the planar metal net 7a in FIG. 3C.
  • the solid line arrow means the heating of the organic EL material
  • the broken line arrow means the sublimation or evaporation of the organic EL material.
  • the organic EL material has low thermal conductivity, but (1) the organic EL material near the wall surface of the vapor deposition source 1 is heated and the organic EL material is heated. (2) The organic EL material in contact with the flat metal net 7a and the organic EL material in the vicinity of the flat metal net 7a are heated. Note that FIG. 3D is an explanatory view showing the planar metal net 7a.
  • the organic EL material is significantly heated by the amount of heating in (2) above, as compared with the case of the comparative example ((a) to (c) in FIG. 2). (The area of the organic EL material that receives heat is significantly increased by the amount of heating in (2) above).
  • the solid line arrows in FIGS. 2A to 2C mean heating of the organic EL material, and the broken line arrow means sublimation or evaporation of the organic EL material.
  • the organic EL material since the organic EL material has low thermal conductivity, it is heated, sublimated or evaporated, and vapor-deposited only in the vicinity of the wall surface of the vapor deposition source. In other words, in the region other than the vicinity of the wall surface of the vapor deposition source, the organic EL material causes a problem that it remains unheated to the extent that it is sublimated or evaporated and vapor-deposited. In addition, the organic EL material may suddenly collapse, resulting in large fluctuations in the film formation rate of the vapor deposition film.
  • the area to be heated in the first embodiment is much wider than that in the comparative examples shown in FIGS. 2 (a) to 2 (c), so that the organic EL material is the vapor deposition source 1. It will be heated and sublimated or evaporated not only near the wall surface but also in the central region. As a result, the organic EL material receives heat and is vapor-deposited in far more regions than in the case of the above comparative example. Further, the crucible 7 shown in FIGS. 3 (a) to 3 (c) surely solves the problem that the organic EL material suddenly collapses, and as a result, the film formation rate of the vapor-deposited film greatly fluctuates. can do.
  • the amount of the organic EL material decreases with the vapor deposition time, but since the flat metal net 7a is provided so as to be movable in the crucible 7, the flat metal net 7a is provided according to the remaining amount of the organic EL material.
  • the position of 7a will be adjusted automatically. That is, the position of the planar metal net 7a in the crucible 7 is automatically lowered as the amount of the organic EL material decreases.
  • the thermal conductivity, heating efficiency, heating uniformity, etc. for the organic EL material can all be improved and the stability of the vapor deposition rate can be improved.
  • the crucible 7 and the flat metal net 7a can be cleaned separately, the cleaning ability of the crucible 7 and the flat metal net 7a can be increased, and the vapor deposition accuracy can be improved. It becomes possible.
  • Embodiment 2 of the present invention will be described in detail below with reference to FIGS. 1 and 4.
  • the crucible 7 provided in the vapor deposition source 1 of the vapor deposition apparatus 5 of the second embodiment further improves the thermal conductivity, heating uniformity, etc. with respect to the powdery organic EL material, and remarkably improves the stability of the vapor deposition rate. It has a structure that can be used. This will be described in detail below.
  • the vapor deposition apparatus 5 includes, for example, a crystal oscillator 2 for detecting a vapor deposition rate that detects the vapor deposition rate of the vapor deposition particles when the vapor deposition particles are injected.
  • the vapor deposition apparatus 5 further includes a tube portion 4 having a conduction opening (not shown) capable of inducing vapor deposition particles from a nozzle (not shown) in the vapor deposition source 1 to the crystal oscillator 2.
  • the thin-film deposition source 1 is further provided with the above-mentioned ⁇ ⁇ 7, and the vapor-deposited material is used as the vapor-deposited film 6 on the substrate 3 which is the substrate to be vapor-deposited (the substrate to be deposited) from the pit 7. At the same time, a co-deposited film formed (co-deposited) is formed (deposited).
  • the bottom of the crucible 7 is filled with an organic EL material, and then a three-dimensional metal net 7b (metal mesh structure) is further provided on the organic EL material.
  • the three-dimensional metal net 7b is provided so that at least a part of the end portion thereof contacts the inner wall of the crucible 7.
  • the crucible 7 is provided with a three-dimensional metal net 7a so as to divide the inside of the crucible 7.
  • the three-dimensional metal net 7b may be provided so that the space between the meshes near the center of the crucible 7 is narrower than the space between the meshes on the end side of the crucible 7. Further, the three-dimensional metal net 7b may be provided so that the mesh spacing on the upper surface side is narrower than the mesh spacing on the bottom surface side in the depth direction of the crucible 7. However, it is preferable that these meshes are provided so as to have a uniform structure from the viewpoint of efficiently receiving heat from the organic EL material.
  • the three-dimensional metal net 7b may be provided so that the mesh spacing on the upper surface side is narrower than the mesh spacing on the bottom surface side in the depth direction of the crucible 7. It is preferable that these meshes are provided so as to be uniform from the viewpoint that the organic EL material can be heated efficiently.
  • the three-dimensional metal net 7b is made of a metal alloy material having high thermal conductivity, for example, a titanium alloy, similar to the crucible 7.
  • the number of the three-dimensional metal nets 7b installed is not limited to one, and may be a plurality.
  • a plurality of three-dimensional metal nets 7b are arranged in the vertical direction (height direction) in the vertical sectional view of FIG. 4B. It may be installed side by side.
  • a plurality of three-dimensional metal nets 7b are arranged in the horizontal direction in the vertical sectional view of FIG. 4 (b). It may be installed.
  • the size of the three-dimensional metal net 7b varies depending on the internal size of the crucible 7.
  • the crucible 7 has two types (host and dopant).
  • the length inside the crucible 7 (the length in the horizontal direction in FIG. 4B) is about 2000 mm to 3000 mm, and the height (FIG. 4). (Vertical length in (b)) is 300 mm to 500 mm.
  • the size of the inside of the crucible 7 is different, and the size of the inside of the crucible for the host material (the lateral length in (a) of FIG. 4) is about 80 mm to 200 mm, and the size of the inside of the crucible for the dopant material. Is 20-40 mm.
  • the organic EL material is three-dimensionally heated in a cubic lattice shape, which is different from the configuration of the first embodiment.
  • the three-dimensional metal net 7b is made of, for example, a heat generating material. Further, the three-dimensional metal net 7b is provided so as to be movable in the crucible 7.
  • the thin-film deposition apparatus 5 may be provided with a liquid level sensor and a control unit for controlling the movement of the three-dimensional metal net 7b below the liquid level of the vapor-deposited material.
  • the liquid level sensor is not particularly limited as long as it is a sensor such as a resistor that can handle the temperature inside the crucible 7. By providing such a liquid level sensor, it is possible to prevent the heat generating material from coming out above the liquid level.
  • FIGS. 4A to 4C are a cross-sectional view, a vertical cross-sectional view, and a top view of the case where the organic EL material is heated in the crucible 7, respectively.
  • FIG. 4D is an explanatory view showing an overall view of the three-dimensional metal net 7b in FIGS. 4A to 4C.
  • the solid line arrow means the heating of the organic EL material
  • the broken line arrow means the sublimation or evaporation of the organic EL material
  • the organic EL material has low thermal conductivity, but (1) the vicinity of the wall surface of the vapor deposition source 1 is heated, and (2) the above. The three-dimensional metal net 7b will be heated.
  • the organic EL material is significantly heated by the amount of heating in (2) above, as compared with the cases (a) to (c) in FIG.
  • the area of the organic EL material that receives heat is further significantly increased by the amount of heating in (2).
  • the organic EL material is heated not only in the vicinity of the wall surface of the vapor deposition source 1 but also in the central region. It will be sublimated. As a result, the organic EL material receives heat and is vapor-deposited in far more regions than in the cases (a) to (c) of FIG. Further, the crucible 7 shown in FIGS. 3 (a) to 3 (c) surely solves the problem that the organic EL material suddenly collapses, and as a result, the film formation rate of the vapor-deposited film greatly fluctuates. can do.
  • the organic EL material decreases with the vapor deposition time, but since the three-dimensional metal net 7b is provided so as to be movable in the crucible 7, the three-dimensional metal net 7b is provided according to the remaining amount of the organic EL material.
  • the position of 7b will be adjusted automatically. That is, the position of the three-dimensional metal net 7b in the crucible 7 is automatically lowered as the amount of the organic EL material decreases.
  • the thermal conductivity, heating efficiency, heating uniformity, etc. for the organic EL material can all be further improved, and the stability of the vapor deposition rate can be further improved.
  • the cleaning ability of the crucible 7 and the three-dimensional metal net 7b can be increased, and the vapor deposition accuracy can be improved. It becomes possible.
  • the thin-film deposition apparatus is a thin-film deposition apparatus provided with a crucible that accommodates the vapor-deposited material and discharges the vapor-deposited material. It is characterized by that.
  • the vapor deposition apparatus is characterized in that, in addition to the configuration of the first aspect, the metal mesh-like structure is composed of a heat generating material.
  • the vapor deposition apparatus is characterized in that, in addition to the configuration of the first aspect or the second aspect, the metal mesh-like structure is provided so as to be movable in the crucible.
  • the thin-film deposition apparatus includes a liquid level sensor, and a control unit that controls the movement of the metal mesh-like structure below the liquid level of the vapor-deposited material. It is characterized by being further provided.
  • the vapor deposition apparatus according to claim 1 or 2 wherein the thin-film deposition apparatus according to the fifth aspect is the configuration of the first or second aspect, and the network-like structure is at least one planar metal network. It is characterized by being.
  • the vapor deposition apparatus according to claim 1 or 2 wherein the thin-film deposition apparatus according to the sixth aspect is the configuration of the first or second aspect, and the network structure is at least one three-dimensional metal network. It is characterized by being.
  • the thin-film deposition apparatus is characterized in that the flat metal net is provided so that at least a part of the end portion thereof contacts the inner wall of the crucible. ..
  • the thin-film deposition apparatus is characterized in that the three-dimensional metal net is provided so that at least a part of the end portion thereof contacts the inner wall of the crucible. ..
  • the at least one planar metal net is composed of a plurality of planar metal nets, and the plurality of planar metal nets are the height of the crucible. It is characterized in that it is provided so as to be parallel to the vertical direction or the direction perpendicular to the height direction of the crucible.
  • the at least one three-dimensional metal net is composed of a plurality of three-dimensional metal nets, and the plurality of three-dimensional metal nets are the height of the crucible. It is characterized in that it is provided so as to be parallel to the vertical direction or the direction perpendicular to the height direction of the crucible.
  • the planar metal mesh is provided so that the mesh spacing on the upper surface side is narrower than the mesh spacing on the bottom surface side in the depth direction of the crucible. It is characterized by being.
  • the planar metal net has a mesh spacing near the center of the crucible narrower than the mesh spacing on the end side of the crucible. It is characterized by being provided.
  • the vapor deposition apparatus is characterized in that, in addition to the configuration of the eighth aspect, the three-dimensional metal net is provided so as to have a mesh having a uniform structure.
  • the flat metal net is provided so as to be movable in the crucible, and the flat metal net depends on the remaining amount of the vapor deposition material. Therefore, it is characterized by moving in the above-mentioned crucible.
  • the three-dimensional metal net is provided so as to be movable in the crucible, and the three-dimensional metal net depends on the remaining amount of the vapor deposition material. Therefore, it is characterized by moving in the above-mentioned crucible.
  • the display element includes a display element whose brightness and transmittance are controlled by an electric current and a display element whose brightness and transmittance are controlled by a voltage.
  • the current control display element include an EL display device such as an organic EL (Electro Luminescence) display device equipped with an OLED (Organic Light Emitting Diode) or an inorganic EL display device equipped with an inorganic light emitting diode.
  • an EL display device such as an organic EL (Electro Luminescence) display device equipped with an OLED (Organic Light Emitting Diode) or an inorganic EL display device equipped with an inorganic light emitting diode.
  • OLED Organic Light Emitting Diode
  • an inorganic EL display device equipped with an inorganic light emitting diode.
  • QLED display device or the like equipped with a QLED (Quantum dot Light Emitting Diode).
  • the voltage control display element there is a liquid crystal display element or the like. Furthermore, it can be applied not only to glass OLEDs but also to flexible OLEDs.

Abstract

A vapor deposition device (5) is equipped with a crucible (7) in which a vapor deposition material is placed and the vapor deposition material is sublimated or evaporated to release the vapor deposition material, wherein the crucible (7) is provided with a metal-made net-like structure (7a) that partitions the inside of the crucible (7).

Description

蒸着装置Thin film deposition equipment
 本発明は、蒸着材料を収容すると共に蒸着材料を昇華又は蒸発して放出する坩堝を備えた蒸着装置に関する。 The present invention relates to a vapor deposition apparatus including a crucible that accommodates a vapor deposition material and sublimates or evaporates and releases the vapor deposition material.
 有機EL表示装置を制作する場合、有機EL材料の蒸着を行う必要がある。この際、有機EL材料が、蒸着源の壁面付近のみならず、中央付近も含めて均一に放出されることによって、均一な蒸着膜が得られる。 When producing an organic EL display device, it is necessary to deposit organic EL material. At this time, the organic EL material is uniformly discharged not only near the wall surface of the vapor deposition source but also near the center, so that a uniform vapor deposition film can be obtained.
 安定な蒸着レートを確保するめに、有機EL材料は、坩堝の金属表面が劣化しない時間内で加熱されなければならない。加えて、有機EL表示装置の特性を均一にするために、各色の有機層を設定する膜厚にも配慮が必要とされる。 In order to ensure a stable deposition rate, the organic EL material must be heated within a time that does not deteriorate the metal surface of the crucible. In addition, in order to make the characteristics of the organic EL display device uniform, it is necessary to consider the film thickness for setting the organic layer of each color.
 例えば、特許文献1には、有機EL表示装置において、赤色発光層および緑色発光層を、複数種類の蒸着材料として低分子材料と高分子材料を含む混合材料を用いた蒸着方法により形成することが開示されている。 For example, in Patent Document 1, in an organic EL display device, a red light emitting layer and a green light emitting layer can be formed by a vapor deposition method using a mixed material containing a low molecular weight material and a high molecular weight material as a plurality of types of vapor deposition materials. It is disclosed.
 また、特許文献2には、複数種類の蒸着材料を含む混合材料を共蒸着するための蒸着装置が開示されている。 Further, Patent Document 2 discloses a vapor deposition apparatus for co-depositing a mixed material containing a plurality of types of vapor deposition materials.
日本国公開特許公報「特開2012-028764号」Japanese Patent Publication "Japanese Patent Laid-Open No. 2012-028764" 国際公開第2012/105333号パンフレットInternational Publication No. 2012/105333 Pamphlet
 しかしながら、有機EL材料は、熱伝導性が低いので、蒸着源の壁面付近だけが昇華又は蒸発するのに対し、中央付近が昇華又は蒸発せずに残ってしまうという問題を招来する。 However, since the organic EL material has low thermal conductivity, it causes a problem that only the vicinity of the wall surface of the vapor deposition source sublimates or evaporates, whereas the vicinity of the center remains without sublimation or evaporation.
 また、蒸着材料が、突然、崩壊してしまう場合がある。このような場合、成膜速度が大きく変動してしまい、均一な蒸着膜を得ることができなくなる。 Also, the vapor-deposited material may suddenly collapse. In such a case, the film formation rate fluctuates greatly, and a uniform vapor deposition film cannot be obtained.
 更に、上記坩堝の金属表面の加熱が長時間に亘って行われると、坩堝の金属表面が劣化しやすくなると共に、蒸着レートが、しばしば、不安定になる。その結果、各色の有機層を設定する膜厚に大きな偏差が生じ、その結果、有機EL表示装置の特性が大きくばらついてしまう。 Furthermore, if the metal surface of the crucible is heated for a long period of time, the metal surface of the crucible is likely to deteriorate and the vapor deposition rate is often unstable. As a result, a large deviation occurs in the film thickness for setting the organic layer of each color, and as a result, the characteristics of the organic EL display device greatly vary.
 そこで、本発明の一態様は、熱伝導性が高くなり、蒸着レートの安定性を大幅に改善することができる蒸着装置を提供することを目的とする。 Therefore, one aspect of the present invention is to provide a vapor deposition apparatus capable of increasing thermal conductivity and significantly improving the stability of the vapor deposition rate.
 上記の課題を解決するために、本発明の一態様に係る蒸着装置は、蒸着材料を収容するとともに、蒸着材料を放出する坩堝を備えた蒸着装置であって、上記坩堝は、その内部を区切るように金属製網目状構造物が設けられていることを特徴としている。 In order to solve the above problems, the thin-film deposition apparatus according to one aspect of the present invention is a vapor deposition apparatus provided with a crucible that accommodates the vapor-deposited material and releases the vapor-deposited material, and the crucible divides the inside thereof. It is characterized in that a metal mesh structure is provided as described above.
 発明の一態様によれば、蒸着材料に対する熱伝導性を高くすることができ、蒸着レートの安定性が大幅に改善する蒸着装置を提供することができる。 According to one aspect of the invention, it is possible to provide a thin-film deposition apparatus capable of increasing the thermal conductivity for a thin-film deposition material and significantly improving the stability of the thin-film deposition rate.
本発明の蒸着装置の構成を示すブロック図である。It is a block diagram which shows the structure of the vapor deposition apparatus of this invention. 比較例の蒸着装置の坩堝の構成を示すものであり、(a)は、蒸着装置の坩堝の横断面図であり、(b)は、蒸着装置の坩堝の縦断面図であり、(c)は、蒸着装置の坩堝の上面図である。The configuration of the crucible of the vapor deposition apparatus of the comparative example is shown, (a) is a cross-sectional view of the crucible of the vapor deposition apparatus, (b) is a vertical sectional view of the crucible of the vapor deposition apparatus, and (c). Is a top view of the crucible of the vapor deposition apparatus. 実施形態1に係る蒸着装置の坩堝を示すものであり、(a)は、蒸着装置の坩堝の横断面図であり、(b)は、蒸着装置の坩堝の縦断面図であり、(c)は、蒸着装置の坩堝の上面図であり、(d)は、平面状金属網を示す説明図である。The crucible of the vapor deposition apparatus according to the first embodiment is shown, (a) is a cross-sectional view of the crucible of the vapor deposition apparatus, (b) is a vertical sectional view of the crucible of the vapor deposition apparatus, and (c). Is a top view of the crucible of the vapor deposition apparatus, and FIG. 3D is an explanatory view showing a planar metal net. 実施形態2に係る蒸着装置の坩堝を示すものであり、(a)は、蒸着装置の坩堝の横断面図であり、(b)は、蒸着装置の坩堝の縦断面図であり、(c)は、蒸着装置の坩堝の上面図であり、(d)は、立体状金属網を示す説明図である。The crucible of the vapor deposition apparatus according to the second embodiment is shown, (a) is a cross-sectional view of the crucible of the vapor deposition apparatus, (b) is a vertical sectional view of the crucible of the vapor deposition apparatus, and (c). Is a top view of the crucible of the vapor deposition apparatus, and FIG. 3D is an explanatory view showing a three-dimensional metal net. 実施形態2に係る蒸着装置の坩堝を示すものであり、(a)は、複数個の平面状金属網を図3の(b)の縦断面図における縦方向(高さ方向に)に平行になるように並設する場合を示す説明図である。(b)は、複数個の平面状金属網を図3の(b)の縦断面図における横方向に並設する場合を示す説明図である。The crucible of the vapor deposition apparatus according to the second embodiment is shown, and (a) shows a plurality of planar metal nets parallel to the vertical direction (in the height direction) in the vertical cross-sectional view of FIG. 3 (b). It is explanatory drawing which shows the case of juxtaposing such as. (B) is an explanatory view showing a case where a plurality of planar metal nets are arranged side by side in the horizontal direction in the vertical cross-sectional view of FIG. 3 (b). 実施形態2に係る蒸着装置の坩堝を示すものである。(a)は、坩堝の深さ方向において、平面状金属網が、底面側での網目間隔よりも上面側での網目間隔が狭くなるように設けられている場合を示す説明図である。 (b)は、平面状金属網が、坩堝の中央付近における網目の間隔が、坩堝の端部側における網目の間隔よりも狭くなるように設けられている場合を示す説明図である。It shows the crucible of the vapor deposition apparatus which concerns on Embodiment 2. FIG. 1A is an explanatory diagram showing a case where the planar metal net is provided so that the mesh spacing on the upper surface side is narrower than the mesh spacing on the bottom surface side in the depth direction of the crucible. (B) is an explanatory view showing a case where the planar metal net is provided so that the distance between the meshes near the center of the crucible is narrower than the distance between the meshes on the end side of the crucible. 実施形態2に係る蒸着装置の坩堝を示すものである。(a)は、複数個の平面状金属網の構造(形状)が、串刺し状の場合を示す説明図である。(b)は、複数個の平面状金属網の構造(形状)が、X状の場合を示す説明図である。(c)は、複数個の平面状金属網の構造(形状)が、*(アスタリスク)状の場合を示す説明図である。(d)は、複数個の平面状金属網の構造(形状)が、米字状の場合を示す説明図である。It shows the crucible of the vapor deposition apparatus which concerns on Embodiment 2. (A) is an explanatory view showing a case where the structure (shape) of a plurality of planar metal nets is skewered. (B) is an explanatory view showing a case where the structure (shape) of the plurality of planar metal nets is X-shaped. (C) is an explanatory diagram showing a case where the structure (shape) of the plurality of planar metal nets is * (asterisk). (D) is an explanatory view showing a case where the structure (shape) of the plurality of planar metal nets is in the shape of a rice character.
 〔実施形態1〕
 本発明の実施形態1について、図1~図3、及び、図5~図7を参照し、以下に詳細に説明する。
[Embodiment 1]
Embodiment 1 of the present invention will be described in detail below with reference to FIGS. 1 to 3 and 5 to 7.
 図1に示すように、蒸着装置5は、例えば、蒸着粒子を射出すると、上記蒸着粒子の蒸着レートを検出する蒸着レート検出用の水晶振動子2を備えている。上記蒸着源1内の図示しないノズルから上記水晶振動子2へ蒸着粒子を誘導可能な導通開口(図示しない)を有する管部4が、上記蒸着装置5において、更に備えられている。 As shown in FIG. 1, the vapor deposition apparatus 5 includes, for example, a crystal oscillator 2 for detecting a vapor deposition rate that detects the vapor deposition rate of the vapor deposition particles when the vapor deposition particles are injected. The vapor deposition apparatus 5 further includes a tube portion 4 having a conduction opening (not shown) capable of inducing vapor deposition particles from a nozzle (not shown) in the vapor deposition source 1 to the crystal oscillator 2.
 図1に示すように、上記蒸着源1は、更に、坩堝7を備え、この坩堝7から被蒸着基板(被成膜基板)である基板3に対して、蒸着膜6として、蒸着材料を同時に蒸着(共蒸着)してなる共蒸着膜を形成(成膜)するものである。 As shown in FIG. 1, the thin-film deposition source 1 is further provided with a thin-film deposition 7, and a thin-film deposition material is simultaneously applied as a vapor-deposited film 6 to a substrate 3 which is a substrate to be vapor-deposited (a substrate to be deposited) from the cell 7. A co-deposited film formed (co-deposited) is formed (deposited).
 上記坩堝7は、その底部に、有機EL材料を充填後、当該有機EL材料上に平面状金属網7a(金属性網目状構造物)を更に設けている(図3の(d)参照)。この平面状金属網7aは、その少なくとも一部の端部が、上記坩堝7の内壁に接触するように設けられている。なお、蒸着材料の中に網目が設けられていてもよい。上記坩堝7は、その内部を区切るように平面状金属網7aが設けられている。 The bottom of the crucible 7 is filled with an organic EL material, and then a flat metal net 7a (metal mesh structure) is further provided on the organic EL material (see (d) in FIG. 3). The flat metal net 7a is provided so that at least a part of the end portion thereof contacts the inner wall of the crucible 7. A mesh may be provided in the vapor-deposited material. The crucible 7 is provided with a flat metal net 7a so as to divide the inside of the crucible 7.
 上記平面状金属網7aは、図6の(b)に示すように、上記坩堝7の中央付近における網目の間隔が、上記坩堝7の端部側における網目の間隔よりも狭くなるように設けられていることが、有機EL材料が効率良く受熱する観点から好ましい。また、上記平面状金属網7aは、図6の(a)に示すように、上記坩堝7の深さ方向において、底面側での網目間隔よりも上面側での網目間隔が狭くなるように設けられていることが、有機EL材料を効率良く加熱することができる観点から好ましい。 As shown in FIG. 6B, the planar metal net 7a is provided so that the distance between the meshes near the center of the crucible 7 is narrower than the distance between the meshes on the end side of the crucible 7. This is preferable from the viewpoint of efficiently receiving heat from the organic EL material. Further, as shown in FIG. 6A, the flat metal net 7a is provided so that the mesh spacing on the upper surface side is narrower than the mesh spacing on the bottom surface side in the depth direction of the crucible 7. It is preferable from the viewpoint that the organic EL material can be heated efficiently.
 この平面状金属網7aは、上記坩堝7と同様に、例えば、チタン合金などの熱伝導性が高い金属合金材料からなる。また、平面状金属網7aの設置数は、一つに限定されるものではなく、複数個であってもよい。 The flat metal net 7a is made of a metal alloy material having high thermal conductivity, for example, a titanium alloy, similar to the crucible 7. Further, the number of flat metal nets 7a installed is not limited to one, and may be a plurality.
 例えば、図5の(a)に例示すように、複数個の平面状金属網7aを図3の(b)の縦断面図における縦方向(高さ方向に)に平行になるように並設してもよい。あるいは、例えば、図5の(b)に例示すように、複数個の平面状金属網7aを図3の(b)の縦断面図における横方向に並設してもよい。 For example, as shown in FIG. 5A as an example, a plurality of planar metal nets 7a are arranged side by side so as to be parallel to the vertical direction (height direction) in the vertical sectional view of FIG. 3B. You may. Alternatively, for example, as shown in FIG. 5B as an example, a plurality of planar metal nets 7a may be arranged side by side in the horizontal direction in the vertical cross-sectional view of FIG. 3B.
 あるいは、複数個の平面状金属網7aの構造(形状)として、例えば、串刺し状(図7の(a)参照)、X状(図7の(b)参照)、*状(図7の(c)参照)、又は、米字状(図7の(d)参照)等の構造(形状)を採用してもよい。このように、複数個の各平面状金属網7aが、上記坩堝7の内壁に対して、傾斜して、複数個の平面状金属網が互いに交差する等してもよい。 Alternatively, as the structure (shape) of the plurality of planar metal nets 7a, for example, skewered shape (see (a) of FIG. 7), X shape (see (b) of FIG. 7), * shape ((see FIG. 7 (b)) c)) or a structure (shape) such as a US character (see (d) in FIG. 7) may be adopted. In this way, the plurality of flat metal nets 7a may be inclined with respect to the inner wall of the crucible 7, and the plurality of flat metal nets may intersect each other.
 上記平面状金属網7aの大きさは、上記坩堝7の内部サイズによって変わる。例えば、上記坩堝7は、2種類(ホスト及びドーパント)あり、例えば、坩堝7内部の長さ(図3の(b)の縦断面図における横方向の長さ)が、約1000mm~1200mm、高さ(図3の(b)の縦断面図における縦方向の長さ)が200mm~300mmである。ただし、坩堝7内部の広さは異なり、ホスト材料用の坩堝内部の広さ(図3の(a)における横方向の長さ))は、約40mm~80mm、ドーパント材料用の坩堝内部の広さは20~40mmである。 The size of the flat metal net 7a varies depending on the internal size of the crucible 7. For example, the crucible 7 has two types (host and dopant). For example, the length inside the crucible 7 (the length in the horizontal direction in the vertical sectional view of FIG. 3B) is about 1000 mm to 1200 mm and is high. The length (length in the vertical direction in the vertical cross-sectional view of FIG. 3B) is 200 mm to 300 mm. However, the size of the inside of the crucible 7 is different, and the size of the inside of the crucible for the host material (the lateral length in (a) of FIG. 3) is about 40 mm to 80 mm, and the size of the inside of the crucible for the dopant material. The crucible is 20-40 mm.
 上記構成により、上記有機EL材料は、その上の平面から加熱され、この点で上記坩堝17と異なっている。平面状金属網7aは、例えば、発熱材料により構成されている。この材料は、通電により、発熱するものでもよい。また、平面状金属網7aは、上記坩堝7内で、移動可能に設けられている。 Due to the above configuration, the organic EL material is heated from the plane above it, which is different from the crucible 17. The planar metal net 7a is made of, for example, a heat generating material. This material may generate heat when energized. Further, the flat metal net 7a is movably provided in the crucible 7.
 上記蒸着装置5は、液面センサを備え、蒸着材料の液面よりも下層に平面状金属網7aを移動するように制御する制御部が更に設けられていてもよい。当該制御部は、発熱材料が液面(蒸着材料)よりも上に出るのを防ぐように、上記平面状金属網7aの位置を制御する。なお、液面センサとしては、例えば、抵抗体等、上記坩堝7内の温度に対応できるセンサであれば、特に限定されない。このような液面センサを設けることにより、発熱材料が液面よりも上方へ出ることを防ぐことができる。 The thin-film deposition apparatus 5 may be provided with a liquid level sensor, and may be further provided with a control unit for controlling the movement of the planar metal net 7a below the liquid level of the vapor-deposited material. The control unit controls the position of the planar metal net 7a so as to prevent the heat generating material from coming out above the liquid surface (deposited material). The liquid level sensor is not particularly limited as long as it is a sensor such as a resistor that can handle the temperature inside the crucible 7. By providing such a liquid level sensor, it is possible to prevent the heat generating material from coming out above the liquid level.
 図3の(a)~(c)は、それぞれ、坩堝7内において、有機EL材料が加熱された場合の横断面図、縦断面図、及び、上面図である。図3の(d)は、図3の(c)における上記平面状金属網7aの全体図を示す説明図である。なお、図3の(a)~(c)において、実線の矢印は、有機EL材料の加熱を意味し、破線の矢印は、有機EL材料の昇華又は蒸発を意味する。 (A) to (c) of FIG. 3 are a cross-sectional view, a vertical cross-sectional view, and a top view when the organic EL material is heated in the crucible 7, respectively. FIG. 3D is an explanatory view showing an overall view of the planar metal net 7a in FIG. 3C. In FIGS. 3A to 3C, the solid line arrow means the heating of the organic EL material, and the broken line arrow means the sublimation or evaporation of the organic EL material.
 図3の(a)~(c)が示すように、有機EL材料は、低い熱伝導性を有しているが、(1)蒸着源1の壁面付近の有機EL材料が加熱されると共に、(2)上記平面状金属網7aに接する有機EL材料及び上記平面状金属網7a近傍の有機EL材料が加熱されることになる。なお、図3の(d)は、上記平面状金属網7aを示す説明図である。 As shown in FIGS. 3A to 3C, the organic EL material has low thermal conductivity, but (1) the organic EL material near the wall surface of the vapor deposition source 1 is heated and the organic EL material is heated. (2) The organic EL material in contact with the flat metal net 7a and the organic EL material in the vicinity of the flat metal net 7a are heated. Note that FIG. 3D is an explanatory view showing the planar metal net 7a.
 換言すれば、上記坩堝7においては、比較例(図2の(a)~(c))の場合よりも、上記(2)の加熱の分だけ、大幅に上記有機EL材料が加熱されることになる(上記(2)の加熱の分だけ、受熱する有機EL材料の面積が大幅に広くなる。)。 In other words, in the crucible 7, the organic EL material is significantly heated by the amount of heating in (2) above, as compared with the case of the comparative example ((a) to (c) in FIG. 2). (The area of the organic EL material that receives heat is significantly increased by the amount of heating in (2) above).
 なお、図2の(a)~(c)における実線の矢印は、有機EL材料の加熱を意味し、破線の矢印は、有機EL材料の昇華又は蒸発を意味する。図2の(a)~(c)が示すように、有機EL材料は、熱伝導性が低いので、蒸着源の壁面付近のみにおいて、加熱され、昇華又は蒸発され、蒸着される。換言すれば、蒸着源の壁面付近を除く領域においては、有機EL材料は、昇華又は蒸発して蒸着されるほどには加熱されずに残ってしまうという問題点を招来する。加えて、有機EL材料が、突然崩壊し、その結果、蒸着膜の成膜速度が大きく変動してしまうことがある。 The solid line arrows in FIGS. 2A to 2C mean heating of the organic EL material, and the broken line arrow means sublimation or evaporation of the organic EL material. As shown in FIGS. 2A to 2C, since the organic EL material has low thermal conductivity, it is heated, sublimated or evaporated, and vapor-deposited only in the vicinity of the wall surface of the vapor deposition source. In other words, in the region other than the vicinity of the wall surface of the vapor deposition source, the organic EL material causes a problem that it remains unheated to the extent that it is sublimated or evaporated and vapor-deposited. In addition, the organic EL material may suddenly collapse, resulting in large fluctuations in the film formation rate of the vapor deposition film.
 それゆえ、図2の(a)~(c)に示す比較例の場合よりも、実施形態1の方が、加熱される領域が遥かに広くなるので、上記有機EL材料は、蒸着源1の壁面付近のみならず、中央領域においても加熱され、昇華又は蒸発することになる。その結果、上記比較例の場合よりも遥かに多くの領域において、有機EL材料が受熱して蒸着されることになる。また、図3の(a)~(c)で示す上記坩堝7は、有機EL材料が、突然崩壊し、その結果、蒸着膜の成膜速度が大きく変動してしまうという問題点を確実に解決することができる。 Therefore, the area to be heated in the first embodiment is much wider than that in the comparative examples shown in FIGS. 2 (a) to 2 (c), so that the organic EL material is the vapor deposition source 1. It will be heated and sublimated or evaporated not only near the wall surface but also in the central region. As a result, the organic EL material receives heat and is vapor-deposited in far more regions than in the case of the above comparative example. Further, the crucible 7 shown in FIGS. 3 (a) to 3 (c) surely solves the problem that the organic EL material suddenly collapses, and as a result, the film formation rate of the vapor-deposited film greatly fluctuates. can do.
 更に、蒸着時間と共に有機EL材料が減少していくが、平面状金属網7aは、坩堝7内を移動可能に設けられているので、有機EL材料の残量に応じて、上記平面状金属網7aの位置が自動的に調整されることになる。すなわち、平面状金属網7aは、有機EL材料の減少に応じて、坩堝7内での位置が自動的に下がる。 Further, the amount of the organic EL material decreases with the vapor deposition time, but since the flat metal net 7a is provided so as to be movable in the crucible 7, the flat metal net 7a is provided according to the remaining amount of the organic EL material. The position of 7a will be adjusted automatically. That is, the position of the planar metal net 7a in the crucible 7 is automatically lowered as the amount of the organic EL material decreases.
 また、有機EL材料に対する熱伝導性、加熱効率、加熱均一性等は、いずれも、向上すると共に、蒸着レートの安定性を改善することができる。 In addition, the thermal conductivity, heating efficiency, heating uniformity, etc. for the organic EL material can all be improved and the stability of the vapor deposition rate can be improved.
 しかも、上記坩堝7と、上記平面状金属網7aとを別々に分けて洗浄することもできるので、坩堝7及び上記平面状金属網7aに対する洗浄能力を高くすることができ、蒸着精度を向上させることが可能となる。 Moreover, since the crucible 7 and the flat metal net 7a can be cleaned separately, the cleaning ability of the crucible 7 and the flat metal net 7a can be increased, and the vapor deposition accuracy can be improved. It becomes possible.
 〔実施形態2〕
 本発明の実施形態2について、図1及び図4を参照し、以下に詳細に説明する。
[Embodiment 2]
Embodiment 2 of the present invention will be described in detail below with reference to FIGS. 1 and 4.
 以下に、本発明の実施形態2について詳細に説明する。なお、実施形態1と同様の機能を有する部材については同じ/同様の参照符号を付記する。 The second embodiment of the present invention will be described in detail below. The same / similar reference numerals are added to the members having the same functions as those in the first embodiment.
 本実施形態2の蒸着装置5の蒸着源1内に設けられている坩堝7は、粉状の有機EL材料に対する熱伝導性、加熱均一性等を更に高くし、蒸着レートの安定性を著しく改善することができる構成を有している。このことについて、以下に、詳細に説明する。 The crucible 7 provided in the vapor deposition source 1 of the vapor deposition apparatus 5 of the second embodiment further improves the thermal conductivity, heating uniformity, etc. with respect to the powdery organic EL material, and remarkably improves the stability of the vapor deposition rate. It has a structure that can be used. This will be described in detail below.
 図1に示すように、蒸着装置5は、例えば、蒸着粒子を射出すると、上記蒸着粒子の蒸着レートを検出する蒸着レート検出用の水晶振動子2を備えている。上記蒸着源1内の図示しないノズルから上記水晶振動子2へ蒸着粒子を誘導可能な導通開口(図示しない)を有する管部4が、上記蒸着装置5において、更に備えられている。 As shown in FIG. 1, the vapor deposition apparatus 5 includes, for example, a crystal oscillator 2 for detecting a vapor deposition rate that detects the vapor deposition rate of the vapor deposition particles when the vapor deposition particles are injected. The vapor deposition apparatus 5 further includes a tube portion 4 having a conduction opening (not shown) capable of inducing vapor deposition particles from a nozzle (not shown) in the vapor deposition source 1 to the crystal oscillator 2.
 図1に示すように、上記蒸着源1は、更に、上記坩堝7を備え、この坩堝7から被蒸着基板(被成膜基板)である基板3に対して、蒸着膜6として、蒸着材料を同時に蒸着(共蒸着)してなる共蒸着膜を形成(成膜)するものである。 As shown in FIG. 1, the thin-film deposition source 1 is further provided with the above-mentioned 坩 堝 7, and the vapor-deposited material is used as the vapor-deposited film 6 on the substrate 3 which is the substrate to be vapor-deposited (the substrate to be deposited) from the pit 7. At the same time, a co-deposited film formed (co-deposited) is formed (deposited).
 上記坩堝7は、その底部に、有機EL材料を充填後、当該有機EL材料上に立体状金属網7b(金属性網目状構造物)を更に設けている。この立体状金属網7bは、その少なくとも一部の端部が、上記坩堝7の内壁に接触するように設けられている。上記坩堝7は、その内部を区切るように立体状金属網7aが設けられている。 The bottom of the crucible 7 is filled with an organic EL material, and then a three-dimensional metal net 7b (metal mesh structure) is further provided on the organic EL material. The three-dimensional metal net 7b is provided so that at least a part of the end portion thereof contacts the inner wall of the crucible 7. The crucible 7 is provided with a three-dimensional metal net 7a so as to divide the inside of the crucible 7.
 上記立体状金属網7bは、上記坩堝7の中央付近における網目の間隔が、上記坩堝7の端部側における網目の間隔よりも狭くなるように設けられていてもよい。また、上記立体状金属網7bは、上記坩堝7の深さ方向において、底面側での網目間隔よりも上面側での網目間隔が狭くなるように設けられていてもよい。但し、これらの網目は均一な構造を有するように設けられた方が、有機EL材料が効率良く受熱する観点から好ましい。 The three-dimensional metal net 7b may be provided so that the space between the meshes near the center of the crucible 7 is narrower than the space between the meshes on the end side of the crucible 7. Further, the three-dimensional metal net 7b may be provided so that the mesh spacing on the upper surface side is narrower than the mesh spacing on the bottom surface side in the depth direction of the crucible 7. However, it is preferable that these meshes are provided so as to have a uniform structure from the viewpoint of efficiently receiving heat from the organic EL material.
 また、上記立体状金属網7bは、上記坩堝7の深さ方向において、底面側での網目間隔よりも上面側での網目間隔が狭くなるように設けられていてもよい。なお、これらの網目は均一になるように設けられた方が、有機EL材料を効率良く加熱することができる観点から好ましい。 Further, the three-dimensional metal net 7b may be provided so that the mesh spacing on the upper surface side is narrower than the mesh spacing on the bottom surface side in the depth direction of the crucible 7. It is preferable that these meshes are provided so as to be uniform from the viewpoint that the organic EL material can be heated efficiently.
 この立体状金属網7bは、上記坩堝7と同様に、例えば、チタン合金などの熱伝導性が高い金属合金材料からなる。立体状金属網7bの設置数は、一つに限定されるものではなく、複数個であってもよい。 The three-dimensional metal net 7b is made of a metal alloy material having high thermal conductivity, for example, a titanium alloy, similar to the crucible 7. The number of the three-dimensional metal nets 7b installed is not limited to one, and may be a plurality.
 図示しないが、例えば、図5の(a)に例示した平面状金属網7aのように、複数個の立体状金属網7bを図4の(b)の縦断面図における縦方向(高さ方向に)に並設してもよい。あるいは、図示しないが、例えば、図5の(b)に例示した平面状金属網7aのように、複数個の立体状金属網7bを図4の(b)の縦断面図における横方向に並設してもよい。 Although not shown, for example, as in the planar metal net 7a illustrated in FIG. 5A, a plurality of three-dimensional metal nets 7b are arranged in the vertical direction (height direction) in the vertical sectional view of FIG. 4B. It may be installed side by side. Alternatively, although not shown, for example, as in the planar metal net 7a illustrated in FIG. 5 (b), a plurality of three-dimensional metal nets 7b are arranged in the horizontal direction in the vertical sectional view of FIG. 4 (b). It may be installed.
 上記立体状金属網7bの大きさは、上記坩堝7の内部サイズによって変わる。例えば、上記坩堝7は、2種類(ホスト及びドーパント)あり、例えば、坩堝7内部の長さ(図4の(b)における横方向の長さ)が、約2000mm~3000mm、高さ(図4の(b)における縦方向の長さ)が300mm~500mmである。ただし、坩堝7内部の広さは異なり、ホスト材料用の坩堝内部の広さ(図4の(a)における横方向の長さ)は、約80mm~200mm、ドーパント材料用の坩堝内部の広さは20~40mmである。 The size of the three-dimensional metal net 7b varies depending on the internal size of the crucible 7. For example, the crucible 7 has two types (host and dopant). For example, the length inside the crucible 7 (the length in the horizontal direction in FIG. 4B) is about 2000 mm to 3000 mm, and the height (FIG. 4). (Vertical length in (b)) is 300 mm to 500 mm. However, the size of the inside of the crucible 7 is different, and the size of the inside of the crucible for the host material (the lateral length in (a) of FIG. 4) is about 80 mm to 200 mm, and the size of the inside of the crucible for the dopant material. Is 20-40 mm.
 上記構成により、上記有機EL材料は、立体格子状に立体的に加熱され、この点で、実施形態1の構成と異なっている。立体状金属網7bは、例えば、発熱材料により構成されている。また、なお、立体状金属網7bは、上記坩堝7内で、移動可能に設けられている。 With the above configuration, the organic EL material is three-dimensionally heated in a cubic lattice shape, which is different from the configuration of the first embodiment. The three-dimensional metal net 7b is made of, for example, a heat generating material. Further, the three-dimensional metal net 7b is provided so as to be movable in the crucible 7.
 なお、上記蒸着装置5(図1参照)は、液面センサを備え、蒸着材料の液面よりも下層に立体状金属網7bを移動するように制御する制御部が設けられていてもよい。なお、液面センサとしては、例えば、抵抗体等、上記坩堝7内の温度に対応できるセンサであれば、特に限定されない。このような液面センサを設けることにより、発熱材料が液面よりも上方へ出るのを防ぐことができる。 The thin-film deposition apparatus 5 (see FIG. 1) may be provided with a liquid level sensor and a control unit for controlling the movement of the three-dimensional metal net 7b below the liquid level of the vapor-deposited material. The liquid level sensor is not particularly limited as long as it is a sensor such as a resistor that can handle the temperature inside the crucible 7. By providing such a liquid level sensor, it is possible to prevent the heat generating material from coming out above the liquid level.
 図4の(a)~(c)は、それぞれ、坩堝7内において、有機EL材料が加熱された場合の横断面図、縦断面図、及び、上面図である。図4の(d)は、図4の(a)~(c)における上記立体状金属網7bの全体図を示す説明図である。 FIGS. 4A to 4C are a cross-sectional view, a vertical cross-sectional view, and a top view of the case where the organic EL material is heated in the crucible 7, respectively. FIG. 4D is an explanatory view showing an overall view of the three-dimensional metal net 7b in FIGS. 4A to 4C.
 なお、図4の(a)~(c)において、実線の矢印は、有機EL材料の加熱を意味し、破線の矢印は、有機EL材料の昇華又は蒸発を意味する。 In FIGS. 4A to 4C, the solid line arrow means the heating of the organic EL material, and the broken line arrow means the sublimation or evaporation of the organic EL material.
 図4の(a)~(c)が示すように、有機EL材料は、低い熱伝導性を有しているが、(1)蒸着源1の壁面付近が加熱されると共に、(2)上記立体状金属網7bが加熱されることになる。 As shown in FIGS. 4A to 4C, the organic EL material has low thermal conductivity, but (1) the vicinity of the wall surface of the vapor deposition source 1 is heated, and (2) the above. The three-dimensional metal net 7b will be heated.
 換言すれば、上記坩堝7においては、図2の(a)~(c)の場合よりも、上記(2)の加熱の分だけ、大幅に上記有機EL材料が加熱されることになる(上記(2)の加熱の分だけ、受熱する有機EL材料の面積が更に大幅に広くなる。)。 In other words, in the crucible 7, the organic EL material is significantly heated by the amount of heating in (2) above, as compared with the cases (a) to (c) in FIG. The area of the organic EL material that receives heat is further significantly increased by the amount of heating in (2).)
 それゆえ、図2の(a)~(c)の場合よりも、加熱される領域が遥かに広くなるので、上記有機EL材料は、蒸着源1の壁面付近のみならず、中央領域においても加熱され、昇華することになる。その結果、図2の(a)~(c)の場合よりも遥かに多くの領域において、有機EL材料が受熱して蒸着されることになる。また、図3の(a)~(c)で示す上記坩堝7は、有機EL材料が、突然崩壊し、その結果、蒸着膜の成膜速度が大きく変動してしまうという問題点を確実に解決することができる。 Therefore, since the heated region is much wider than in the cases (a) to (c) of FIG. 2, the organic EL material is heated not only in the vicinity of the wall surface of the vapor deposition source 1 but also in the central region. It will be sublimated. As a result, the organic EL material receives heat and is vapor-deposited in far more regions than in the cases (a) to (c) of FIG. Further, the crucible 7 shown in FIGS. 3 (a) to 3 (c) surely solves the problem that the organic EL material suddenly collapses, and as a result, the film formation rate of the vapor-deposited film greatly fluctuates. can do.
 更に、蒸着時間と共に有機EL材料が減少していくが、上記立体状金属網7bは坩堝7内を移動可能に設けられているので、有機EL材料の残量に応じて、上記立体状金属網7bの位置が自動的に調整されることになる。すなわち、立体状金属網7bは、有機EL材料の減少に応じて、坩堝7内での位置が自動的に下がる。 Further, the organic EL material decreases with the vapor deposition time, but since the three-dimensional metal net 7b is provided so as to be movable in the crucible 7, the three-dimensional metal net 7b is provided according to the remaining amount of the organic EL material. The position of 7b will be adjusted automatically. That is, the position of the three-dimensional metal net 7b in the crucible 7 is automatically lowered as the amount of the organic EL material decreases.
 また、有機EL材料に対する熱伝導性、加熱効率、及び、加熱均一性等は、いずれも、更に向上すると共に、蒸着レートの安定性を更に改善することができる。 Further, the thermal conductivity, heating efficiency, heating uniformity, etc. for the organic EL material can all be further improved, and the stability of the vapor deposition rate can be further improved.
 しかも、上記坩堝7と、上記立体状金属網7bとを別々に分けて洗浄することもできるので、坩堝7及び上記立体状金属網7bに対する洗浄能力を高くすることができ、蒸着精度を向上させることが可能となる。 Moreover, since the crucible 7 and the three-dimensional metal net 7b can be separately cleaned, the cleaning ability of the crucible 7 and the three-dimensional metal net 7b can be increased, and the vapor deposition accuracy can be improved. It becomes possible.
 〔まとめ〕
 態様1に係る蒸着装置は、蒸着材料を収容するとともに、蒸着材料を放出する坩堝を備えた蒸着装置であって、上記坩堝は、その内部を区切るように金属製網目状構造物を設けていることを特徴としている。
[Summary]
The thin-film deposition apparatus according to the first aspect is a thin-film deposition apparatus provided with a crucible that accommodates the vapor-deposited material and discharges the vapor-deposited material. It is characterized by that.
 態様2に係る蒸着装置は、態様1の構成に加えて、上記金属製網目状構造物が発熱材料により構成されていることを特徴としている。 The vapor deposition apparatus according to the second aspect is characterized in that, in addition to the configuration of the first aspect, the metal mesh-like structure is composed of a heat generating material.
 態様3に係る蒸着装置は、態様1または態様2の構成に加えて、上記金属製の網目状構造物が、上記坩堝内で移動可能に設けられていることを特徴としている。 The vapor deposition apparatus according to the third aspect is characterized in that, in addition to the configuration of the first aspect or the second aspect, the metal mesh-like structure is provided so as to be movable in the crucible.
 態様4に係る蒸着装置は、態様3の構成に加えて、液面センサを備え、上記蒸着材料の液面よりも下層に、上記金属製網目状構造物を移動するように制御する制御部が更に設けられていることを特徴としている。 In addition to the configuration of the third aspect, the thin-film deposition apparatus according to the fourth aspect includes a liquid level sensor, and a control unit that controls the movement of the metal mesh-like structure below the liquid level of the vapor-deposited material. It is characterized by being further provided.
 態様5に係る蒸着装置は、態様1または態様2の構成に加えて、上記網目状構造物が、少なくとも一つの平面状金属網であることを特徴とする請求項1又は2に記載の蒸着装置あることを特徴としている。 The vapor deposition apparatus according to claim 1 or 2, wherein the thin-film deposition apparatus according to the fifth aspect is the configuration of the first or second aspect, and the network-like structure is at least one planar metal network. It is characterized by being.
 態様6に係る蒸着装置は、態様1または態様2の構成に加えて、上記網目状構造物が、少なくとも一つの立体状金属網であることを特徴とする請求項1又は2に記載の蒸着装置であることを特徴としている。 The vapor deposition apparatus according to claim 1 or 2, wherein the thin-film deposition apparatus according to the sixth aspect is the configuration of the first or second aspect, and the network structure is at least one three-dimensional metal network. It is characterized by being.
 態様7に係る蒸着装置は、態様5の構成に加えて、上記平面状金属網は、その少なくとも一部の端部が、上記坩堝の内壁に接触するように設けられていることを特徴としている。 In addition to the configuration of the fifth aspect, the thin-film deposition apparatus according to the seventh aspect is characterized in that the flat metal net is provided so that at least a part of the end portion thereof contacts the inner wall of the crucible. ..
 態様8に係る蒸着装置は、態様6の構成に加えて、上記立体状金属網は、その少なくとも一部の端部が、上記坩堝の内壁に接触するように設けられていることを特徴としている。
態様9に係る蒸着装置は、態様5の構成に加えて、上記少なくとも一つの平面状金属網が、複数個の平面状金属網からなり、上記複数個の平面状金属網が、上記坩堝の高さ方向、又は、上記坩堝の高さ方向と垂直な方向に平行になるように設けられていることを特徴としている。
In addition to the configuration of the sixth aspect, the thin-film deposition apparatus according to the eighth aspect is characterized in that the three-dimensional metal net is provided so that at least a part of the end portion thereof contacts the inner wall of the crucible. ..
In the vapor deposition apparatus according to the ninth aspect, in addition to the configuration of the fifth aspect, the at least one planar metal net is composed of a plurality of planar metal nets, and the plurality of planar metal nets are the height of the crucible. It is characterized in that it is provided so as to be parallel to the vertical direction or the direction perpendicular to the height direction of the crucible.
 態様10に係る蒸着装置は、態様6の構成に加えて、上記少なくとも一つの立体状金属網が、複数個の立体状金属網からなり、上記複数個の立体状金属網が、上記坩堝の高さ方向、又は、上記坩堝の高さ方向と垂直な方向に平行になるように設けられていることを特徴としている。 In the vapor deposition apparatus according to the tenth aspect, in addition to the configuration of the sixth aspect, the at least one three-dimensional metal net is composed of a plurality of three-dimensional metal nets, and the plurality of three-dimensional metal nets are the height of the crucible. It is characterized in that it is provided so as to be parallel to the vertical direction or the direction perpendicular to the height direction of the crucible.
 態様11に係る蒸着装置は、態様5の構成に加えて、上記平面状金属網が、上記坩堝の深さ方向において、底面側の網目間隔よりも上面側の網目間隔が狭くなるように設けられていることを特徴としている。 In the vapor deposition apparatus according to the eleventh aspect, in addition to the configuration of the fifth aspect, the planar metal mesh is provided so that the mesh spacing on the upper surface side is narrower than the mesh spacing on the bottom surface side in the depth direction of the crucible. It is characterized by being.
 態様12に係る蒸着装置は、態様5の構成に加えて、上記平面状金属網が、上記坩堝の中央付近における網目の間隔が、上記坩堝の端部側における網目の間隔よりも狭くなるように設けられていることを特徴としている。 In the vapor deposition apparatus according to the twelfth aspect, in addition to the configuration of the fifth aspect, the planar metal net has a mesh spacing near the center of the crucible narrower than the mesh spacing on the end side of the crucible. It is characterized by being provided.
 態様13に係る蒸着装置は、態様8の構成に加えて、上記立体状金属網が、均一な構造を有する網目を備えるように設けられていることを特徴としている。 The vapor deposition apparatus according to the thirteenth aspect is characterized in that, in addition to the configuration of the eighth aspect, the three-dimensional metal net is provided so as to have a mesh having a uniform structure.
 態様14に係る蒸着装置は、態様5の構成に加えて、上記平面状金属網は、上記坩堝内で移動可能に設けられ、かつ、上記平面状金属網は、上記蒸着材料の残量に応じて、上記坩堝内を移動することを特徴としている。 In the vapor deposition apparatus according to the fourteenth aspect, in addition to the configuration of the fifth aspect, the flat metal net is provided so as to be movable in the crucible, and the flat metal net depends on the remaining amount of the vapor deposition material. Therefore, it is characterized by moving in the above-mentioned crucible.
 態様15に係る蒸着装置は、態様6の構成に加えて、上記立体状金属網は、上記坩堝内で移動可能に設けられ、かつ、上記立体状金属網は、上記蒸着材料の残量に応じて、上記坩堝内を移動することを特徴としている。 In the vapor deposition apparatus according to the fifteenth aspect, in addition to the configuration of the sixth aspect, the three-dimensional metal net is provided so as to be movable in the crucible, and the three-dimensional metal net depends on the remaining amount of the vapor deposition material. Therefore, it is characterized by moving in the above-mentioned crucible.
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
[Additional notes]
The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment.
 また、前記表示素子には、電流によって輝度や透過率が制御される表示素子と、電圧によって輝度や透過率が制御される表示素子とがある。電流制御の表示素子としては、OLED(Organic Light Emitting Diode:有機発光ダイオード)を備えた有機EL(Electro Luminescence:エレクトロルミネッセンス)表示装置若しくは無機発光ダイオードを備えた無機EL表示装置等のEL表示装置、又はQLED(Quantum dot Light Emitting Diode:量子ドット発光ダイオード)を備えたQLED表示装置等がある。 Further, the display element includes a display element whose brightness and transmittance are controlled by an electric current and a display element whose brightness and transmittance are controlled by a voltage. Examples of the current control display element include an EL display device such as an organic EL (Electro Luminescence) display device equipped with an OLED (Organic Light Emitting Diode) or an inorganic EL display device equipped with an inorganic light emitting diode. Alternatively, there is a QLED display device or the like equipped with a QLED (Quantum dot Light Emitting Diode).
 また、電圧制御の表示素子としては、液晶表示素子等がある。さらに、ガラスOLEDだけでなく、フレキシブルOLEDにも適用することが可能である。 Further, as the voltage control display element, there is a liquid crystal display element or the like. Furthermore, it can be applied not only to glass OLEDs but also to flexible OLEDs.
  1   蒸着源
  2   水晶振動子
  3   基板
  4   管部
  5   蒸着装置
6   蒸着膜
  7   坩堝
  7a  平面状金属網
  7b  立体状金属網
1 Thin-film deposition source 2 Crystal oscillator 3 Substrate 4 Tube 5 Vapor deposition equipment 6 Thin-film deposition film 7 Crucible 7a Planar metal net 7b Three-dimensional metal net

Claims (15)

  1.  蒸着材料を収容するとともに、蒸着材料を放出する坩堝を備えた蒸着装置であって、
     上記坩堝は、その内部を区切るように金属製網目状構造物を設けていることを特徴とする蒸着装置。
    It is a thin-film deposition device equipped with a crucible that accommodates the vapor-deposited material and discharges the vapor-deposited material.
    The crucible is a thin-film deposition apparatus characterized in that a metal mesh-like structure is provided so as to divide the inside of the crucible.
  2.  上記金属製網目状構造物が、発熱材料により構成されていることを特徴とする請求項1に記載の蒸着装置。 The vapor deposition apparatus according to claim 1, wherein the metal mesh-like structure is made of a heat-generating material.
  3.  上記金属製網目状構造物が、上記坩堝内で移動可能に設けられていることを特徴とする請求項1又は2に記載の蒸着装置。 The vapor deposition apparatus according to claim 1 or 2, wherein the metal mesh-like structure is movably provided in the crucible.
  4.  液面センサを備え、上記蒸着材料の液面よりも下層に、上記金属製網目状構造物を移動するように制御する制御部が更に設けられていることを特徴とする請求項3に記載の蒸着装置。 The third aspect of the present invention, wherein the liquid level sensor is provided, and a control unit for controlling the movement of the metal mesh structure is further provided below the liquid level of the vapor-deposited material. Thin film deposition equipment.
  5.  上記金属製網目状構造物が、少なくとも一つの平面状金属網であることを特徴とする請求項1又は2に記載の蒸着装置。 The vapor deposition apparatus according to claim 1 or 2, wherein the metal mesh-like structure is at least one planar metal mesh.
  6.  上記金属製網目状構造物が、少なくとも一つの立体状金属網であることを特徴とする請求項1又は2に記載の蒸着装置。 The vapor deposition apparatus according to claim 1 or 2, wherein the metal mesh-like structure is at least one three-dimensional metal mesh.
  7.  上記平面状金属網は、その少なくとも一部の端部が、上記坩堝の内壁に接触するように設けられていることを特徴とする請求項5に記載の蒸着装置。 The vapor deposition apparatus according to claim 5, wherein at least a part of the flat metal net is provided so as to be in contact with the inner wall of the crucible.
  8.  上記立体状金属網は、その少なくとも一部の端部が、上記坩堝の内壁に接触するように設けられていることを特徴とする請求項6に記載の蒸着装置。 The vapor deposition apparatus according to claim 6, wherein at least a part of the three-dimensional metal net is provided so as to be in contact with the inner wall of the crucible.
  9.  上記少なくとも一つの平面状金属網が、複数個の平面状金属網からなり、
     上記複数個の平面状金属網が、上記坩堝の高さ方向、又は、上記坩堝の高さ方向と垂直な方向に平行になるように設けられていることを特徴とする請求項5に記載の蒸着装置。
    The at least one planar metal net is composed of a plurality of planar metal nets.
    The fifth aspect of claim 5, wherein the plurality of planar metal nets are provided so as to be parallel to the height direction of the crucible or the direction perpendicular to the height direction of the crucible. Deposition equipment.
  10.  上記少なくとも一つの立体状金属網が、複数個の立体状金属網からなり、
     上記複数個の立体状金属網が、上記坩堝の高さ方向、又は、上記坩堝の高さ方向と垂直な方向に平行になるように設けられていることを特徴とする請求項6に記載の蒸着装置。
    The at least one three-dimensional metal net is composed of a plurality of three-dimensional metal nets.
    The sixth aspect of claim 6, wherein the plurality of three-dimensional metal nets are provided so as to be parallel to the height direction of the crucible or the direction perpendicular to the height direction of the crucible. Deposition equipment.
  11.  上記平面状金属網が、上記坩堝の深さ方向において、底面側の網目間隔よりも上面側の網目間隔が狭くなるように設けられていることを特徴とする請求項5に記載の蒸着装置。 The vapor deposition apparatus according to claim 5, wherein the flat metal mesh is provided so that the mesh spacing on the upper surface side is narrower than the mesh spacing on the bottom surface side in the depth direction of the crucible.
  12.  上記平面状金属網は、上記坩堝の中央付近における網目の間隔が、上記坩堝の端部側における網目の間隔よりも狭くなるように設けられていることを特徴とする請求項5に記載の蒸着装置。 The vapor deposition according to claim 5, wherein the flat metal net is provided so that the distance between the meshes near the center of the crucible is narrower than the distance between the meshes on the end side of the crucible. apparatus.
  13.  上記立体状金属網が、均一な構造を有する網目を備えるように設けられていることを特徴とする請求項8に記載の蒸着装置。 The vapor deposition apparatus according to claim 8, wherein the three-dimensional metal mesh is provided so as to have a mesh having a uniform structure.
  14.  上記平面状金属網は、上記坩堝内で移動可能に設けられ、かつ、上記平面状金属網は、上記蒸着材料の残量に応じて、上記坩堝内を移動することを特徴とする請求項5に記載の蒸着装置。 5. The flat metal net is provided so as to be movable in the crucible, and the flat metal net moves in the crucible according to the remaining amount of the vapor-deposited material. The vapor deposition apparatus according to.
  15. 上記立体状金属網は、上記坩堝内で移動可能に設けられ、かつ、上記立体状金属網は、上記蒸着材料の残量に応じて、上記坩堝内を移動することを特徴とする請求項6に記載の蒸着装置。 6. The three-dimensional metal net is provided so as to be movable in the crucible, and the three-dimensional metal net moves in the crucible according to the remaining amount of the vapor-deposited material. The vapor deposition apparatus according to.
PCT/JP2019/013462 2019-03-27 2019-03-27 Vapor deposition device WO2020194631A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013462 WO2020194631A1 (en) 2019-03-27 2019-03-27 Vapor deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013462 WO2020194631A1 (en) 2019-03-27 2019-03-27 Vapor deposition device

Publications (1)

Publication Number Publication Date
WO2020194631A1 true WO2020194631A1 (en) 2020-10-01

Family

ID=72611165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013462 WO2020194631A1 (en) 2019-03-27 2019-03-27 Vapor deposition device

Country Status (1)

Country Link
WO (1) WO2020194631A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880960A (en) * 1987-03-06 1989-11-14 Centre National D'etudes Spatiales Continuous vacuum evaporation device for metal
JP2009235479A (en) * 2008-03-27 2009-10-15 Seiko Epson Corp Vapor deposition system
US20180142341A1 (en) * 2015-05-15 2018-05-24 Boe Technology Group Co., Ltd. Vapor-deposition crucible

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880960A (en) * 1987-03-06 1989-11-14 Centre National D'etudes Spatiales Continuous vacuum evaporation device for metal
JP2009235479A (en) * 2008-03-27 2009-10-15 Seiko Epson Corp Vapor deposition system
US20180142341A1 (en) * 2015-05-15 2018-05-24 Boe Technology Group Co., Ltd. Vapor-deposition crucible

Similar Documents

Publication Publication Date Title
TWI654324B (en) Systems and methods of modulating flow during vapor jet deposition of organic materials
TWI420721B (en) Vapor deposition sources and methods
JP2005044592A (en) Depositing mask, film formation method using it, and film formation device using it
CN101803462B (en) Vapor emission device, organic thin-film vapor deposition apparatus and method of organic thin-film vapor deposition
JP2007186787A (en) Vapor deposition pot, thin-film forming apparatus provided therewith and method for producing display device
KR101233629B1 (en) Large capacity depositing apparatus for forming thin film
KR101106289B1 (en) Linear deposition sources for deposition processes
TW201403911A (en) Deposition apparatus
TWI576456B (en) Deposition apparatus and method for manufacturing organic light emitting diode display using the same
JP2015067847A (en) Vacuum vapor deposition device
JP4478113B2 (en) Heating vessel support and vapor deposition apparatus equipped with the same
KR20080013686A (en) Apparatus for depositing thin films over large-area substrates
WO2020194631A1 (en) Vapor deposition device
JP2003293120A (en) Evaporating source and thin film deposition system using the same
WO2009101953A1 (en) Vapor generating apparatus and deposition apparatus
JP2011127137A (en) Vapor deposition crucible and vapor deposition device
JP4110966B2 (en) Vapor deposition apparatus and vapor deposition method
KR20070097633A (en) Deposition apparatus
JP2004296201A5 (en)
TW201443259A (en) Deposition source and deposition apparatus having the same
JP2015067865A (en) Evaporation source, and vacuum vapor deposition device using the same
KR102231490B1 (en) Organic light emitting diode
KR101553619B1 (en) Inline deposition apparatus for manufacturing oled
JP6823954B2 (en) Film formation equipment and film formation method
CN209508394U (en) The manufacturing device of evaporation source, film formation device and electronic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP