WO2020194454A1 - 海水中の二枚貝の浮遊幼生を選択的に沈殿させる方法 - Google Patents
海水中の二枚貝の浮遊幼生を選択的に沈殿させる方法 Download PDFInfo
- Publication number
- WO2020194454A1 WO2020194454A1 PCT/JP2019/012538 JP2019012538W WO2020194454A1 WO 2020194454 A1 WO2020194454 A1 WO 2020194454A1 JP 2019012538 W JP2019012538 W JP 2019012538W WO 2020194454 A1 WO2020194454 A1 WO 2020194454A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seawater
- larvae
- water
- floating
- plankton
- Prior art date
Links
- 239000013535 sea water Substances 0.000 title claims abstract description 83
- 238000000034 method Methods 0.000 title claims abstract description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 47
- 239000008399 tap water Substances 0.000 claims abstract description 30
- 235000020679 tap water Nutrition 0.000 claims abstract description 30
- 239000013505 freshwater Substances 0.000 claims abstract description 29
- 241000237852 Mollusca Species 0.000 claims description 12
- 230000001376 precipitating effect Effects 0.000 claims description 9
- 238000001914 filtration Methods 0.000 claims description 5
- 241000548230 Crassostrea angulata Species 0.000 description 19
- 241000237502 Ostreidae Species 0.000 description 15
- 235000020636 oyster Nutrition 0.000 description 15
- 230000009182 swimming Effects 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 238000000926 separation method Methods 0.000 description 8
- 230000009193 crawling Effects 0.000 description 7
- 241000237536 Mytilus edulis Species 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 235000020638 mussel Nutrition 0.000 description 6
- 239000012498 ultrapure water Substances 0.000 description 5
- 238000011084 recovery Methods 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 229910021642 ultra pure water Inorganic materials 0.000 description 4
- 238000011276 addition treatment Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 3
- 230000029052 metamorphosis Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 241000133262 Nauplius Species 0.000 description 2
- 241000238585 Thoracica Species 0.000 description 2
- 238000009360 aquaculture Methods 0.000 description 2
- 244000144974 aquaculture Species 0.000 description 2
- 238000009395 breeding Methods 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009313 farming Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 235000015170 shellfish Nutrition 0.000 description 2
- 241000238586 Cirripedia Species 0.000 description 1
- 241000257303 Hymenoptera Species 0.000 description 1
- 241001072261 Musculista senhousia Species 0.000 description 1
- 241000237507 Ostreoida Species 0.000 description 1
- 241000237509 Patinopecten sp. Species 0.000 description 1
- 241000237523 Pteriomorphia Species 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 230000001418 larval effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 235000020637 scallop Nutrition 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K61/00—Culture of aquatic animals
- A01K61/50—Culture of aquatic animals of shellfish
- A01K61/54—Culture of aquatic animals of shellfish of bivalves, e.g. oysters or mussels
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K80/00—Harvesting oysters, mussels, sponges or the like
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/80—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
- Y02A40/81—Aquaculture, e.g. of fish
Definitions
- the present invention relates to a method for selectively precipitating floating larvae of bivalve molluscs in seawater.
- An object of the present invention is to provide a novel method for selectively precipitating floating larvae of bivalve molluscs in seawater.
- the invention of the present application is the following [1] to [8].
- [1] A method for selectively precipitating floating bivalve larvae in plankton in seawater, which comprises adding fresh water to seawater in which the floating bivalve larvae are present.
- [2] The method according to [1], wherein the fresh water is tap water, and the tap water is added to the seawater in an equal amount or more.
- [3] The method according to [1], wherein the fresh water is pure water, and the pure water is added to the seawater in an amount of half or more.
- [4] A method of increasing the proportion of floating larvae of bivalves in plankton in seawater. The first step of collecting floating bivalve larvae from the seawater together with the plankton, and A second step of suspending the recovered floating larvae of the bivalve and the plankton in seawater diluted with fresh water, and The third step of collecting the precipitated fraction containing the floating larvae of the bivalve, and How to include.
- the fresh water is tap water, and the seawater diluted with the fresh water is characterized in that the tap water is added in an equal amount or more to the original seawater [4]. The method described.
- the fresh water is pure water, and the seawater diluted with the fresh water is characterized in that more than half of the pure water is added to the original seawater [4].
- the method described. [7] The method according to any one of [4] to [6], wherein floating larvae of bivalve molluscs are collected together with the plankton by filtering the seawater with a 200 ⁇ m mesh. [8] Further including a step of allowing the collected floating larvae of the bivalve and the seawater in which the plankton is resuspended to stand for 1 to 5 minutes between the second step and the third step [4]. The method according to any one of [7].
- the present invention has made it possible to provide a novel method for selectively precipitating floating larvae of bivalve molluscs in seawater.
- One embodiment of the present invention is a method for selectively precipitating floating larvae of bivalves in plankton in seawater, and includes a step of adding fresh water to the seawater in which the bivalves are present. By this treatment, the floating larvae of bivalves are closed and settled, but the other plankton remain floating.
- selective precipitation means that the floating larvae of bivalve molluscs are precipitated more frequently than other plankton, and the precipitation is not limited to only the floating larvae of bivalve molluscs.
- floating larvae of bivalve molluscs precipitate 60% or more, 70% or more, 80% or more or 90% or more, and other plankton are 40% or less, 30% or less, 20% or less or 10% or less as a whole. Only precipitates.
- Bivalves are organisms belonging to the class Conchifera, Conchifera, Mollusc.
- the species is not particularly limited, but organisms belonging to the pteriomorphia that put out byssus and fix their bodies to sand mud and rocks, such as mussels and mussels belonging to the order Ostreoida, and mussels belonging to the order Mussel. , Mussels, green mussels and the like are preferable.
- the seawater may be natural seawater or artificial seawater.
- the salinity in seawater is 3.1% to 3.8%.
- Fresh water means water having a salt concentration of 0.05% or less, and the type thereof is not particularly limited, but includes tap water, pure water such as distilled water and ion-exchanged water, and ultrapure water such as milliQ water. Is done.
- Tap water is water supplied from the water supply for household use, and tap water in Japan is preferable.
- the average electrical conductivity of tap water in Japan is about 100 to 200 ⁇ S / cm. Pure water is high-purity water, which is produced by ion exchange, distillation, filtration, reverse osmosis membrane treatment, and the like.
- the electric conductivity of pure water is not particularly limited, but is preferably 0.1 to 1.0 ⁇ S / cm.
- Ultrapure water is water with extremely high purity among pure water, and can be produced by Milli-Q or the like.
- the electric conductivity of ultrapure water is not particularly limited, but is preferably less than 0.1 ⁇ S / cm.
- the ratio of adding fresh water to seawater is not particularly limited as long as the floating larvae of bivalve molluscs can be selectively precipitated.
- the volume is 50% or more of seawater. It is preferable to add 75% or more, more preferably 100% or more, and in the case of pure water or ultrapure water, 30% or more, more preferably 40% or more, still more preferably 50% with respect to seawater. It may be added by volume or more, more preferably 100% or more.
- One embodiment of the present invention is a method for increasing the proportion of floating bivalve larvae in plankton in seawater, the first step of recovering floating bivalve larvae from seawater together with plankton, and seawater diluted with fresh water. Includes a second step of suspending the recovered floating bivalve larvae and plankton, and a third step of recovering the precipitated fraction containing the recovered bivalve flora. As a result, when floating bivalve larvae and other plankton are present in seawater, the proportion of floating bivalve larvae in the total plankton can be increased.
- plankton collect floating bivalve larvae from seawater together with other plankton.
- the recovery method is not particularly limited, but it is preferable to filter using a net.
- the mesh size of the mesh is preferably 200 ⁇ m or less, but may be 100 ⁇ m or less or 50 ⁇ m or less.
- plankton may be collected from the filtered fraction by filtering with a net with a larger mesh. Thereby, unnecessary substances such as dust can be removed.
- the precipitated fraction contains more bivalve floating larvae, and by collecting such precipitated fractions, a fraction with a high proportion of bivalve floating larvae to the entire plankton is obtained. be able to.
- this precipitated fraction is suspended in seawater, the proportion of floating bivalve larvae in this seawater is higher than in the seawater where plankton was first recovered.
- the floating larvae of bivalves obtained by collecting the precipitated fraction can swim or crawle again after a certain period of time. Furthermore, the recovered floating bivalve larvae are capable of adhering metamorphosis. Therefore, according to this embodiment, it is possible to increase the proportion of floating larvae of bivalves living in water.
- Example 1 Effect of swimming or crawling stop of Pacific oyster larvae by adding pure water or tap water 1.
- Test method Breeding Pacific oyster larvae (eye-point ants) were collected with a mesh having a mesh size of 100 ⁇ m and transferred to test seawater (after filtration through a 0.3 ⁇ m filter).
- Seawater containing larvae was added to each well of a 96w microplate in an amount of 100 ⁇ L so as to contain about 10 Pacific oyster larvae.
- Pure water was created with Elix Advantage (Merck).
- the tap water used was water obtained from a tap installed at 1-2-6 Miyajimaguchinishi, Himeji City, Hyogo Prefecture, or 770 Shirahamacho, Himeji City, Hyogo Prefecture.
- Table 1 and FIG. 1 show the results of the effect of stopping the swimming or crawling of oyster larvae by adding pure water. Similarly, the results of tap water are shown in Table 2 and FIG. According to the estimation curves of FIGS. 1 and 2, the amount of addition that gives a half-shell continuation rate (5 minutes) to oyster larvae in 100 ⁇ L of test seawater is 21.1 ⁇ L for pure water and 62.7 ⁇ L for tap water, which are pure. Water was more effective. Comparing the 90% closed shell continuation rate (5 minutes), pure water was 45.3 ⁇ L and tap water was 79.5 ⁇ L.
- Example 2 Time until the closed-shelled individual recovers by adding water 1. Test method In the same manner as in Example 1, 100 ⁇ L of test seawater was added to each well of the 96w microplate so that 10 Pacific oyster larvae could be contained. After confirming that all the individuals were swimming with an inverted microscope, 50 ⁇ L of tap water or 30 ⁇ L of pure water was added. After adding each water, time-lapse observation was performed. A stopwatch was used to record the time each individual recovered (started swimming or crawling). Table 3 shows the data sorted in ascending order of the time required for recovery.
- Example 3 Adhesion and metamorphosis of oyster larvae recovered by water addition treatment 1.
- Test method Three 50 mL centrifuge tubes containing 25 mL of seawater containing dozens of individuals (> 20) of Pacific oyster larvae were prepared. After confirming that all the larvae were swimming, 25 mL of test seawater (control), pure water, and tap water were added to each centrifuge tube. The centrifuge tube was overturned and mixed gently, and after 5 minutes, it was confirmed that the Pacific oyster larvae had settled, and the Pacific oyster larvae were collected. In the case of the control, the Pacific oyster larvae were collected immediately after the addition of the test seawater.
- the collected Pacific oyster larvae were transferred to a petri dish by adding 50 mL of seawater, and 20 individuals of each were transferred to a 6w plate for breeding. As food, one drop of Quitoceras (sp.) Culture solution was given. After that, observations were made regularly until the 17th day, and the number of swimming crawling individuals, the number of attached individuals, and the number of dead individuals were measured.
- Quitoceras (sp.) Culture solution was given. After that, observations were made regularly until the 17th day, and the number of swimming crawling individuals, the number of attached individuals, and the number of dead individuals were measured.
- Example 4 Recovery of Pacific oyster larvae using a separator tube 1.
- Method 300 mL of seawater filtered through a 3 ⁇ m filter was placed in a separation tube (Fig. 4) with the cock installed at the bottom closed, and 20 Pacific oyster pediperinger larvae were placed.
- 300 mL of tap water was added, and the mixture was stirred 10 times with a spoon and allowed to stand for 30 seconds.
- the mixture was stirred again 10 times, allowed to stand for 30 seconds, the cock was opened, diluted seawater was separated by 2 mL, and the number of larvae in each fraction was examined. The same test was repeated 3 times.
- Example 5 Effect of removing contaminant plankton 1.
- Method 1-1 Seawater collection At the candidate site for Pacific oyster seedling collection , 500 L of seawater worth of plankton was collected using the Kitahara-style surface plankton net (REGOSHA, # 5511). Two samples (500 L of seawater x 2) were collected at each of the collection points A to E.
- a separated sample Using one sample, larva separation was performed by the following steps (Fig. 5). 1) Collect plankton collected from the plankton net, 2) Filter the collected sample with a 400 ⁇ m mesh and 3) The filtered fraction was filtered with a 200 ⁇ m mesh, and the minute substances including bivalve larvae remaining on the 200 ⁇ m mesh were collected. 4) The recovered micromaterial was resuspended in a mixed solution (1: 1) of tap water and seawater whose impurities were filtered with a 60 ⁇ m mesh, left to stand for about 1 to 2 minutes, and then contained shellfish larvae from the lower part of the separation cylinder. However, the precipitated fraction was collected and used as a sample (hereinafter referred to as a separated sample).
- the other sample was fixed with formalin (5% volume) without larval separation, filtered through a 400 ⁇ m mesh, the filtered fraction was filtered through a 200 ⁇ m mesh, and the fraction remaining on the mesh was transferred to a centrifuge tube. After leaving it for 24 hours, the sedimentation volume was measured. Then, avoiding the fractionation of the lower layer containing the sedimented oyster larvae, a part (100 ⁇ L) of the lower layer was collected from the upper layer and used as a sample (hereinafter referred to as a contaminating fraction).
- Plankton was identified and counted using a stereomicroscope for each of the separated sample and the contaminant fraction, and converted to the number of individuals per 500 L of seawater collected.
- Bivalve molluscs are cultivated not only in Japan but all over the world.
- a common method for culturing oysters in Japan is to attach floating oyster larvae floating in the sea to a seedling collector made of scallop shells, etc., and hang the juveniles attached to the seedling collector in the sea. Wait for it to grow.
- When attaching the juveniles to the seedling collector avoiding the attachment of barnacles and attaching the juveniles to the seedling collector in the desired number affects the subsequent aquaculture results.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Animal Husbandry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Marine Sciences & Fisheries (AREA)
- Zoology (AREA)
- Farming Of Fish And Shellfish (AREA)
- Mechanical Means For Catching Fish (AREA)
Abstract
【課題】 本発明は、海水中の二枚貝の浮遊幼生を選択的に沈殿させる新規な方法を提供することを目的とする。 【解決手段】 二枚貝の浮遊幼生が存在する海水に、純水や水道水などの淡水を添加することにより、海水中の二枚貝の浮遊幼生を選択的に沈殿させることができる。
Description
本発明は、海水中の二枚貝の浮遊幼生を選択的に沈殿させる方法に関する。
冷却水として海水を利用する火力・原子力発電所においては、海から海水を取り入れて復水器に供給する取水路や、復水器を通った海水を海へ放出するための放水路の内部に、フジツボ類、イガイ類、カキ類等の海洋生物が付着しやすい。このような海洋生物の付着量が多くなると、冷却水の流路が塞がれて、冷却能が低下するなどの不具合を招く恐れがある。そのため、塩素や過酸化水素製剤等を連続注入して付着を抑制したり、定期的に取水路や放水路を点検し、取水路や放水路に海洋生物が大量付着した場合には、機械を用いたりして、取水路や放水路に付着した海洋生物を除去している。
取水路や放水路への海洋生物の付着を未然に防ぐためには、幼生が流入する時期において集中的に塩素を注入するなどの対策を実施することが有効である。しかしながら、取水路内や放水路内は流速が速く、管路、暗渠である場合が多いため、現在存在する手段(例えば、市販のプランクトンネット等)を用いて、取水路内や放水路内に存在する海洋生物の幼生を採取し、流入時期を調べることは困難であった。例えば、現在までに、海水に含まれる植物性プランクトンを観察するシステムが存在するが、このシステムは、特定の大きさのプランクトンを採取することができなかった(例えば、特許文献1参照)。また、特定の大きさの水中の微小物質を、効率よく採取するための装置が開発されたが、特定種のプランクトンを選択して採取することができなかった(例えば、特許文献2参照)。
本発明は、海水中の二枚貝の浮遊幼生を選択的に沈殿させる新規な方法を提供することを目的とする。
本願発明者らは鋭意研究の結果、貝類の浮遊幼生が存在する海水中に淡水を添加することにより、二枚貝の浮遊幼生は閉殻し、沈降しやすくなることを見出した。
このことを利用し、選択的に二枚貝の浮遊幼生を生きたまま濃縮することに成功した。
このことを利用し、選択的に二枚貝の浮遊幼生を生きたまま濃縮することに成功した。
従って、本願発明は以下の[1]~[8]である。
[1]海水中のプランクトン中で二枚貝の浮遊幼生を選択的に沈殿させる方法であって、前記二枚貝の浮遊幼生が存在する海水に淡水を添加することを含む方法。
[2]前記淡水が水道水であって、当該水道水が前記海水に等量以上添加されることを特徴とする、[1]に記載の方法。
[3]前記淡水が純水であって、当該純水が前記海水に半分量以上添加されることを特徴とする、[1]に記載の方法。
[1]海水中のプランクトン中で二枚貝の浮遊幼生を選択的に沈殿させる方法であって、前記二枚貝の浮遊幼生が存在する海水に淡水を添加することを含む方法。
[2]前記淡水が水道水であって、当該水道水が前記海水に等量以上添加されることを特徴とする、[1]に記載の方法。
[3]前記淡水が純水であって、当該純水が前記海水に半分量以上添加されることを特徴とする、[1]に記載の方法。
[4]海水中のプランクトン中で二枚貝の浮遊幼生の割合を高める方法であって、
前記海水から二枚貝の浮遊幼生を前記プランクトンとともに回収する第1の工程と、
淡水で希釈された海水に、回収した前記二枚貝の浮遊幼生および前記プランクトンを懸濁する第2の工程と、
前記二枚貝の浮遊幼生を含む沈殿画分を回収する第3の工程と、
を含む方法。
[5]前記淡水が水道水であって、前記淡水で希釈された海水は、もとの海水に対して、当該水道水が等量以上添加されていることを特徴とする、[4]に記載の方法。
[6]前記淡水が純水であって、前記淡水で希釈された海水は、もとの海水に対して、当該純水が半分量以上添加されていることを特徴とする、[4]に記載の方法。
[7]前記海水を200μmメッシュでろ過することによって、二枚貝の浮遊幼生が前記プランクトンとともに回収される、[4]~[6]のいずれか一項に記載の方法。
[8]第2の工程と第3の工程の間に、前記回収した前記二枚貝の浮遊幼生および前記プランクトンを再懸濁した海水を1分~5分間静置する工程を
さらに含む、[4]~[7]のいずれか一項に記載の方法。
前記海水から二枚貝の浮遊幼生を前記プランクトンとともに回収する第1の工程と、
淡水で希釈された海水に、回収した前記二枚貝の浮遊幼生および前記プランクトンを懸濁する第2の工程と、
前記二枚貝の浮遊幼生を含む沈殿画分を回収する第3の工程と、
を含む方法。
[5]前記淡水が水道水であって、前記淡水で希釈された海水は、もとの海水に対して、当該水道水が等量以上添加されていることを特徴とする、[4]に記載の方法。
[6]前記淡水が純水であって、前記淡水で希釈された海水は、もとの海水に対して、当該純水が半分量以上添加されていることを特徴とする、[4]に記載の方法。
[7]前記海水を200μmメッシュでろ過することによって、二枚貝の浮遊幼生が前記プランクトンとともに回収される、[4]~[6]のいずれか一項に記載の方法。
[8]第2の工程と第3の工程の間に、前記回収した前記二枚貝の浮遊幼生および前記プランクトンを再懸濁した海水を1分~5分間静置する工程を
さらに含む、[4]~[7]のいずれか一項に記載の方法。
本発明により、海水中の二枚貝の浮遊幼生を選択的に沈殿させる新規な方法を提供することが可能になった。
本発明の目的、特徴、利点、およびそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を再現できる。以下に記載された発明の実施の形態および具体的な実施例などは、本発明の好ましい実施態様を示すものであり、例示または説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図並びに範囲内で、本明細書の記載に基づき、様々な改変並びに修飾ができることは、当業者にとって明らかである。
==海水中のプランクトン中で二枚貝の浮遊幼生を選択的に沈殿させる方法==
本発明の一実施形態は、海水中のプランクトン中で二枚貝の浮遊幼生を選択的に沈殿させる方法であって、前記二枚貝が存在する海水に淡水を添加する工程を含む。この処理によって、二枚貝の浮遊幼生は閉殻し沈殿するが、他のプランクトンは浮遊したままである。ここで、選択的に沈殿させるというのは、二枚貝の浮遊幼生をそれ以外のプランクトンより、高頻度に沈殿させることを言うのであって、二枚貝の浮遊幼生だけを沈殿させることに限らない。例えば、二枚貝の浮遊幼生は、60%以上、70%以上、80%以上または90%以上沈殿し、それ以外のプランクトンは、全体として、40%以下、30%以下、20%以下または10%以下しか沈殿しない。
本発明の一実施形態は、海水中のプランクトン中で二枚貝の浮遊幼生を選択的に沈殿させる方法であって、前記二枚貝が存在する海水に淡水を添加する工程を含む。この処理によって、二枚貝の浮遊幼生は閉殻し沈殿するが、他のプランクトンは浮遊したままである。ここで、選択的に沈殿させるというのは、二枚貝の浮遊幼生をそれ以外のプランクトンより、高頻度に沈殿させることを言うのであって、二枚貝の浮遊幼生だけを沈殿させることに限らない。例えば、二枚貝の浮遊幼生は、60%以上、70%以上、80%以上または90%以上沈殿し、それ以外のプランクトンは、全体として、40%以下、30%以下、20%以下または10%以下しか沈殿しない。
二枚貝は、動物界軟体動物門貝殻亜門二枚貝綱に属する生物である。種は特に限定されないが、足糸(そくし)を出して砂泥や岩などに自分の体を固定する翼形亜綱の属する生物、たとえば、カキ目に属するマガキやタイラギ、イガイ目に属するイガイ、ムラサキイガイ、ミドリイガイなどが好ましい。
浮遊幼生とは、二枚貝の幼生のなかで遊泳することが可能な幼生を意味する。例えばカキの場合、ベリジャー幼生(=D型幼生)や、さらに眼点と足を有するペディベリジャー幼生が含まれる。
浮遊幼生とは、二枚貝の幼生のなかで遊泳することが可能な幼生を意味する。例えばカキの場合、ベリジャー幼生(=D型幼生)や、さらに眼点と足を有するペディベリジャー幼生が含まれる。
海水は、天然の海水であっても人工海水であってもよい。海水中の塩分濃度は、3.1%~3.8%である。
淡水は、塩分濃度が0.05%以下の水を意味し、その種類は特に限定されないが、水道水、蒸留水やイオン交換水などの純水、ミリQ水などの超純水などが含まれる。
水道水とは、家庭用に上水道から供給される水であり、日本の水道水が好ましい。なお、日本の平均的な水道水の電気伝導率は約100~200μS/cmである。
純水とは、純度の高い水のことであり、イオン交換、蒸留、濾過、逆浸透膜処理などによって製造される。純水の電気伝導率は特に限定されないが、0.1~1.0μS/cmであることが好ましい。
超純水とは、純水の中でも極めて純度の高い水のことであり、ミリQなどによって製造できる。超純水の電気伝導率は特に限定されないが、0.1μS/cm未満であることが好ましい。
淡水は、塩分濃度が0.05%以下の水を意味し、その種類は特に限定されないが、水道水、蒸留水やイオン交換水などの純水、ミリQ水などの超純水などが含まれる。
水道水とは、家庭用に上水道から供給される水であり、日本の水道水が好ましい。なお、日本の平均的な水道水の電気伝導率は約100~200μS/cmである。
純水とは、純度の高い水のことであり、イオン交換、蒸留、濾過、逆浸透膜処理などによって製造される。純水の電気伝導率は特に限定されないが、0.1~1.0μS/cmであることが好ましい。
超純水とは、純水の中でも極めて純度の高い水のことであり、ミリQなどによって製造できる。超純水の電気伝導率は特に限定されないが、0.1μS/cm未満であることが好ましい。
海水に対して淡水を添加する割合は、二枚貝の浮遊幼生を選択的に沈殿させることができる割合であれば特に限定されないが、例えば、水道水の場合、海水に対して50%容量以上、より好ましくは75%容量以上、さらに好ましくは100%容量以上添加すればよく、純水や超純水の場合、海水に対して30%容量以上、より好ましくは40%容量以上、さらに好ましくは50%容量以上、さらに好ましくは100%容量以上添加すればよい。
沈殿した二枚貝の浮遊幼生を回収し、再度海水に懸濁すると、一定時間後再度遊泳あるいは匍匐可能になり、本実施形態により、生きた二枚貝の浮遊幼生を高い割合で回収することが可能になる。
==二枚貝の浮遊幼生の割合を高める方法==
本発明の一実施形態は、海水中のプランクトン中で二枚貝の浮遊幼生の割合を高める方法であって、海水から二枚貝の浮遊幼生をプランクトンとともに回収する第1の工程と、淡水で希釈された海水に、回収した二枚貝の浮遊幼生およびプランクトンを懸濁する第2の工程と、二枚貝の浮遊幼生を含む沈殿画分を回収する第3の工程と、を含む。これによって、海水中に二枚貝の浮遊幼生とそれ以外のプランクトンが存在する場合、全体のプランクトンの中での二枚貝の浮遊幼生の割合を高めることができる。
本発明の一実施形態は、海水中のプランクトン中で二枚貝の浮遊幼生の割合を高める方法であって、海水から二枚貝の浮遊幼生をプランクトンとともに回収する第1の工程と、淡水で希釈された海水に、回収した二枚貝の浮遊幼生およびプランクトンを懸濁する第2の工程と、二枚貝の浮遊幼生を含む沈殿画分を回収する第3の工程と、を含む。これによって、海水中に二枚貝の浮遊幼生とそれ以外のプランクトンが存在する場合、全体のプランクトンの中での二枚貝の浮遊幼生の割合を高めることができる。
まず、海水から二枚貝の浮遊幼生をそれ以外のプランクトンとともに回収する。回収方法は特に限定されないが、網を用いてろ過するのが好ましい。網の目合いは、200μm以下であることが好ましいが、100μm以下または50μm以下であってもよい。プランクトンを網で回収する前に、より大きな目合いの網を用いてろ過し、ろ過画分からプランクトンを回収してもよい。それによって、ごみなどの不要物を除去することができる。
次に、淡水で希釈された海水に、回収した二枚貝の浮遊幼生およびプランクトンを懸濁する。「海水中のプランクトン中で二枚貝の浮遊幼生を選択的に沈殿させる」方法を説明した節では、プランクトンが存在する海水に淡水を添加していたが、その代わりに、プランクトンを、淡水で希釈された海水に懸濁する。両方とも、結果的に、淡水で希釈された海水にプランクトンが存在するように行えばよいので、本実施形態においても、実施の条件は、「海水中のプランクトン中で二枚貝の浮遊幼生を選択的に沈殿させる」方法に準じるものでよい。
上述したように、二枚貝の浮遊幼生は、淡水で希釈された海水では閉殻して沈殿するが、それ以外のプランクトンは浮遊している。従って、沈殿画分には、二枚貝の浮遊幼生がより多く含まれ、そのような沈殿画分を回収することによって、プランクトン全体に対して、二枚貝の浮遊幼生の割合が高くなった画分を得ることができる。この沈殿画分を海水に懸濁すると、この海水中の二枚貝の浮遊幼生の割合は、最初にプランクトンを回収した海水より高くなる。
沈殿画分を回収することにより得られた二枚貝の浮遊幼生は、一定時間後再度遊泳あるいは匍匐可能になる。さらに、回収された二枚貝の浮遊幼生は、付着変態をすることが可能である。従って、本実施形態により、水中で生きている二枚貝の浮遊幼生の割合を高めることが可能になる。
以下、本発明について実施例を参照して詳細に説明するが、本発明はこれらの実施例により限定されない。
実施例1 純水又は水道水添加によるマガキ幼生の遊泳または匍匐停止効果
1.試験方法
飼育マガキ幼生(眼点アリ)を目合い100μmのメッシュで回収し、試験海水(0.3μmフィルター濾過後)に移した。幼生を含んだ海水を、96wマイクロプレートの各ウエルに、約10個体のマガキ幼生が入るように、100μLずつ入れた。
純水は、Elix Advantage(Merck)で作成した。水道水は、広島県廿日市市宮島口西1丁目2-6、あるいは兵庫県姫路市白浜町甲770番地に設置された水道の蛇口から得られた水を用いた。
1.試験方法
飼育マガキ幼生(眼点アリ)を目合い100μmのメッシュで回収し、試験海水(0.3μmフィルター濾過後)に移した。幼生を含んだ海水を、96wマイクロプレートの各ウエルに、約10個体のマガキ幼生が入るように、100μLずつ入れた。
純水は、Elix Advantage(Merck)で作成した。水道水は、広島県廿日市市宮島口西1丁目2-6、あるいは兵庫県姫路市白浜町甲770番地に設置された水道の蛇口から得られた水を用いた。
倒立顕微鏡でマガキ幼生を観察し、全個体遊泳中であることを確認した後、純水または水道水を、20~100μLまで添加量を変えながら試験容器に添加した(表1、2)。
純水または水道水を添加後、ストップウォッチを用いて5分観察し、その間、閉殻を継続した個体の数を記録した。データは統計解析ソフトR(3.2.0)の一般化線形モデル(glm, probit)で解析した。
純水または水道水を添加後、ストップウォッチを用いて5分観察し、その間、閉殻を継続した個体の数を記録した。データは統計解析ソフトR(3.2.0)の一般化線形モデル(glm, probit)で解析した。
2.結果
純水添加によるカキ幼生の遊泳または匍匐の停止効果の結果を表1と図1に示した。同様に水道水の結果を表2と図2に示した。図1、2の推定曲線により、試験海水100μL中のカキ幼生に対して半数閉殻継続率(5分)となる添加量は、純水が21.1μL、水道水が62.7μLであり、純水の方が高い効果を示した。9割閉殻継続率(5分)で比較すると、純水が45.3μL、水道水が79.5μLであった。
純水添加によるカキ幼生の遊泳または匍匐の停止効果の結果を表1と図1に示した。同様に水道水の結果を表2と図2に示した。図1、2の推定曲線により、試験海水100μL中のカキ幼生に対して半数閉殻継続率(5分)となる添加量は、純水が21.1μL、水道水が62.7μLであり、純水の方が高い効果を示した。9割閉殻継続率(5分)で比較すると、純水が45.3μL、水道水が79.5μLであった。
このように、純水の場合は試験海水の半分、水道水の場合は試験海水と等量を添加することにより、ほとんどのカキ幼生の遊泳匍匐の遊泳または匍匐を少なくとも5分間停止させることが可能である。
実施例2 水添加により閉殻した個体が回復するまでの時間
1.試験方法
実施例1と同様に、96wマイクロプレートの各ウエルに、10個体のマガキ幼生が入るように、100μLずつ試験海水を入れた。倒立顕微鏡で全ての個体が遊泳していることを確認した後、水道水50μLまたは純水30μLを添加した。
各水を添加した後、経時観察を行った。ストップウォッチを用い、各個体が回復(遊泳あるいは匍匐を開始すること)した時間を記録した。回復するまでに要した時間の短い順に並び変えたデータを表3に示す。
1.試験方法
実施例1と同様に、96wマイクロプレートの各ウエルに、10個体のマガキ幼生が入るように、100μLずつ試験海水を入れた。倒立顕微鏡で全ての個体が遊泳していることを確認した後、水道水50μLまたは純水30μLを添加した。
各水を添加した後、経時観察を行った。ストップウォッチを用い、各個体が回復(遊泳あるいは匍匐を開始すること)した時間を記録した。回復するまでに要した時間の短い順に並び変えたデータを表3に示す。
2.結果
純水30μL添加の場合も水道水50μL添加の場合も、マガキ幼生は、いったん閉殻した後、時間と共に回復し、遊泳を始めた。水道水50μL添加の場合5分以内に全てが回復したが、純水の場合は30μLの添加で、最初の1個体が回復するまでに3分近い時間を要した。
このように、水道水または純水の添加によってマガキ幼生を閉殻させても、条件を調節することで、水を交換しなくても回復しうる。
純水30μL添加の場合も水道水50μL添加の場合も、マガキ幼生は、いったん閉殻した後、時間と共に回復し、遊泳を始めた。水道水50μL添加の場合5分以内に全てが回復したが、純水の場合は30μLの添加で、最初の1個体が回復するまでに3分近い時間を要した。
このように、水道水または純水の添加によってマガキ幼生を閉殻させても、条件を調節することで、水を交換しなくても回復しうる。
実施例3 水添加処理で回収したカキ幼生の付着及び変態
1.試験方法
数十個体(>20)のマガキ幼生を含む海水25mLをいれた50mL遠沈管を3本準備した。全幼生が遊泳していることを確認し、試験海水(対照)、純水、水道水を、それぞれの遠沈管に25mLずつ加えた。遠沈管を転倒させ、ゆるやかに混ぜて5分後、マガキ幼生が沈降していることを確認し、マガキ幼生を回収した。対照の場合は試験海水添加直後、マガキ幼生を回収した。回収したマガキ幼生を50mLの海水を加え、シャーレに移しかえ、それぞれ20個体を6wプレートに移して飼育した。エサとして、キートセラス(sp.)培養液1滴を与えた。その後定期的に4.17日目まで観察を行い、遊泳匍匐する個体数、付着した個体数及び死亡した個体数を計測した。
1.試験方法
数十個体(>20)のマガキ幼生を含む海水25mLをいれた50mL遠沈管を3本準備した。全幼生が遊泳していることを確認し、試験海水(対照)、純水、水道水を、それぞれの遠沈管に25mLずつ加えた。遠沈管を転倒させ、ゆるやかに混ぜて5分後、マガキ幼生が沈降していることを確認し、マガキ幼生を回収した。対照の場合は試験海水添加直後、マガキ幼生を回収した。回収したマガキ幼生を50mLの海水を加え、シャーレに移しかえ、それぞれ20個体を6wプレートに移して飼育した。エサとして、キートセラス(sp.)培養液1滴を与えた。その後定期的に4.17日目まで観察を行い、遊泳匍匐する個体数、付着した個体数及び死亡した個体数を計測した。
2.結果
水添加処理後に試験海水を交換した場合のカキ幼生の観察結果を表4に示した。多くのマガキ幼生が処理後数日生存し、付着変態した(図3)。
このように、淡水添加処理によって回収したマガキ幼生は、海水に再懸濁することにより、生体としての実験や養殖に用いることが可能である。さらに、淡水添加により、生存率や付着率が高くなる。
水添加処理後に試験海水を交換した場合のカキ幼生の観察結果を表4に示した。多くのマガキ幼生が処理後数日生存し、付着変態した(図3)。
このように、淡水添加処理によって回収したマガキ幼生は、海水に再懸濁することにより、生体としての実験や養殖に用いることが可能である。さらに、淡水添加により、生存率や付着率が高くなる。
実施例4 分離筒によるマガキ幼生の回収
1.方法
下部に設置されたコックを閉じた分離筒(図4)内に3μmフィルターでろ過した海水300mLを入れ、マガキペディペリンジャー幼生を20個体入れた。水道水300mLを加え、薬さじで10回撹拌し、30秒静置した。再び10回撹拌し、30秒静置し、コックを開き、2mLずつ希釈海水を分取し、各分画中の幼生の個数を調べた。同じ試験を繰り返して3度行った。
1.方法
下部に設置されたコックを閉じた分離筒(図4)内に3μmフィルターでろ過した海水300mLを入れ、マガキペディペリンジャー幼生を20個体入れた。水道水300mLを加え、薬さじで10回撹拌し、30秒静置した。再び10回撹拌し、30秒静置し、コックを開き、2mLずつ希釈海水を分取し、各分画中の幼生の個数を調べた。同じ試験を繰り返して3度行った。
2.結果
分離筒によるマガキペディペリンジャー幼生は、試験区では分画1の平均回収率が78%であり、大半が分画1で回収されていることが判明した(表5)。
分離筒によるマガキペディペリンジャー幼生は、試験区では分画1の平均回収率が78%であり、大半が分画1で回収されていることが判明した(表5)。
実施例5 夾雑プランクトンの除去効果
1.方法
1―1.海水採取
マガキ採苗候補地で海水500L分のプランクトンを北原式表面プランクトンネット(REGOSHA, #5511)を用いて採集した。採集地点A~Eで各々2試料(海水500L分×2)を採集した。
1.方法
1―1.海水採取
マガキ採苗候補地で海水500L分のプランクトンを北原式表面プランクトンネット(REGOSHA, #5511)を用いて採集した。採集地点A~Eで各々2試料(海水500L分×2)を採集した。
1―2.幼生分離
1つの試料を用い、以下の工程により、幼生分離を行った(図5)。
1)プランクトンネットから採集したプランクトンを回収、
2)回収した試料を400μmメッシュでろ過し、
3)ろ過画分を200μmメッシュでろ過し、200μmメッシュ上に残った二枚貝幼生を含む微小物質を回収し、
4)回収した微小物質を、60μmメッシュで不純物をろ過した水道水と海水の混合液(1:1)に再懸濁し、約1~2分間の静置後、分離筒下部から貝類幼生を含んだ沈殿画分を回収して、試料とした(以下、分離試料と称する)。
1つの試料を用い、以下の工程により、幼生分離を行った(図5)。
1)プランクトンネットから採集したプランクトンを回収、
2)回収した試料を400μmメッシュでろ過し、
3)ろ過画分を200μmメッシュでろ過し、200μmメッシュ上に残った二枚貝幼生を含む微小物質を回収し、
4)回収した微小物質を、60μmメッシュで不純物をろ過した水道水と海水の混合液(1:1)に再懸濁し、約1~2分間の静置後、分離筒下部から貝類幼生を含んだ沈殿画分を回収して、試料とした(以下、分離試料と称する)。
もう1つの試料は、幼生分離を行わず、ホルマリン固定(5%容)した後、400μmメッシュでろ過し、ろ過画分を200μmメッシュでろ過し、メッシュ上に残った分画を遠沈管に移して24時間放置し、沈降容積を測定した。そして、沈降したカキ幼生を含む下層の分画を避け、上層部から、その一部(100μL)を回収して試料とした(以下、夾雑分画と称する)。
分離試料と夾雑分画について、それぞれ実体顕微鏡を用いてプランクトンの同定・計数を行い、採取した500L海水中当たりの個体数に換算した。
2.結果
夾雑分画の24時間沈降容積は1.3~3.9mLであった。それに対し、分離試料では、全てが50μL以下であった(図6)。
プランクトン分析の結果を表6に示した。主要な夾雑プランクトン(たとえば、マガキ養殖の妨げとなる、フジツボの幼生を含むノープリウス幼生やキプリス幼生)は、分離試料中にはわずかしか含まれず、除去率は96%以上で、多くはほぼ100%であった。
夾雑分画の24時間沈降容積は1.3~3.9mLであった。それに対し、分離試料では、全てが50μL以下であった(図6)。
プランクトン分析の結果を表6に示した。主要な夾雑プランクトン(たとえば、マガキ養殖の妨げとなる、フジツボの幼生を含むノープリウス幼生やキプリス幼生)は、分離試料中にはわずかしか含まれず、除去率は96%以上で、多くはほぼ100%であった。
二枚貝、とりわけ牡蠣の養殖は、日本国内のみならず、世界各地で行われている。日本国内における牡蠣の一般的な養殖方法は、海中に浮遊する牡蠣の浮遊幼生をホタテの貝殻などからなる採苗器に付着させ、採苗器に付着した稚貝を海中に筏垂下ぶら下げ、牡蠣が大きくなるのを待つというものである。稚貝を採苗器に付着させる際、フジツボなどの付着を避け、狙い通りの数で稚貝を採苗器に付着させることが、その後の養殖成果に影響する。本発明を用いることにより、フジツボの幼生を含むノープリウス幼生やキプリス幼生を減少させて、生きているマガキ幼生を濃縮することが可能であり、そうして得られた水または塩水を利用することにより、牡蠣の養殖成果を向上させることが可能である。
Claims (8)
- 海水中のプランクトン中で二枚貝の浮遊幼生を選択的に沈殿させる方法であって、前記二枚貝の浮遊幼生が存在する海水に淡水を添加することを含む方法。
- 前記淡水が水道水であって、当該水道水が前記海水に等量以上添加されることを特徴とする、請求項1に記載の方法。
- 前記淡水が純水であって、当該純水が前記海水に半分量以上添加されることを特徴とする、請求項1に記載の方法。
- 海水中のプランクトン中で二枚貝の浮遊幼生の割合を高める方法であって、
前記海水から二枚貝の浮遊幼生を前記プランクトンとともに回収する第1の工程と、
淡水で希釈された海水に、回収した前記二枚貝の浮遊幼生および前記プランクトンを懸濁する第2の工程と、
前記二枚貝の浮遊幼生を含む沈殿画分を回収する第3の工程と、
を含む方法。 - 前記淡水が水道水であって、前記淡水で希釈された海水は、もとの海水に対して、当該水道水が等量以上添加されていることを特徴とする、請求項4に記載の方法。
- 前記淡水が純水であって、前記淡水で希釈された海水は、もとの海水に対して、当該純水が半分量以上添加されていることを特徴とする、請求項4に記載の方法。
- 前記海水を200μmメッシュでろ過することによって、二枚貝の浮遊幼生が前記プランクトンとともに回収される、請求項4~6のいずれか一項に記載の方法。
- 第2の工程と第3の工程の間に、前記回収した前記二枚貝の浮遊幼生および前記プランクトンを再懸濁した海水を1分~5分間静置する工程をさらに含む、請求項4~7のいずれか一項に記載の方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/012538 WO2020194454A1 (ja) | 2019-03-25 | 2019-03-25 | 海水中の二枚貝の浮遊幼生を選択的に沈殿させる方法 |
JP2019535409A JP6618232B1 (ja) | 2019-03-25 | 2019-03-25 | 海水中の二枚貝の浮遊幼生を選択的に沈殿させる方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/012538 WO2020194454A1 (ja) | 2019-03-25 | 2019-03-25 | 海水中の二枚貝の浮遊幼生を選択的に沈殿させる方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020194454A1 true WO2020194454A1 (ja) | 2020-10-01 |
Family
ID=68836069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/012538 WO2020194454A1 (ja) | 2019-03-25 | 2019-03-25 | 海水中の二枚貝の浮遊幼生を選択的に沈殿させる方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6618232B1 (ja) |
WO (1) | WO2020194454A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05172728A (ja) * | 1991-12-24 | 1993-07-09 | Hitachi Ltd | 水圏観察、監視及び浄化システム |
JPH07203802A (ja) * | 1994-01-25 | 1995-08-08 | Marsima Aqua Syst Corp | 湖沼・池等の植物性プランクトン分離回収装置 |
JP2009244200A (ja) * | 2008-03-31 | 2009-10-22 | Chugoku Electric Power Co Inc:The | 微小物質サンプリング装置、及びその使用方法 |
JP2009240274A (ja) * | 2008-03-31 | 2009-10-22 | Chugoku Electric Power Co Inc:The | プランクトン濃縮装置及びプランクトン濃縮システム |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4963295B2 (ja) * | 2008-02-28 | 2012-06-27 | 長崎県 | 二枚貝浮遊幼生飼育方法およびその飼育装置 |
-
2019
- 2019-03-25 WO PCT/JP2019/012538 patent/WO2020194454A1/ja active Application Filing
- 2019-03-25 JP JP2019535409A patent/JP6618232B1/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05172728A (ja) * | 1991-12-24 | 1993-07-09 | Hitachi Ltd | 水圏観察、監視及び浄化システム |
JPH07203802A (ja) * | 1994-01-25 | 1995-08-08 | Marsima Aqua Syst Corp | 湖沼・池等の植物性プランクトン分離回収装置 |
JP2009244200A (ja) * | 2008-03-31 | 2009-10-22 | Chugoku Electric Power Co Inc:The | 微小物質サンプリング装置、及びその使用方法 |
JP2009240274A (ja) * | 2008-03-31 | 2009-10-22 | Chugoku Electric Power Co Inc:The | プランクトン濃縮装置及びプランクトン濃縮システム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020194454A1 (ja) | 2021-04-08 |
JP6618232B1 (ja) | 2019-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4884416B2 (ja) | 微小物質サンプリング装置、及びその使用方法 | |
Wallace et al. | Phylum rotifera | |
CN101820749B (zh) | 获得抗病原体之牡蛎的方法 | |
Cognie et al. | Selection and processing of large suspended algae in the oyster Crassostrea gigas | |
Leppäkoski et al. | Enclosed seas under man-induced change: a comparison between the Baltic and Black Seas | |
Ismail et al. | Microplastics ingestion by fish in the Pangandaran Bay, Indonesia | |
Palos Ladeiro et al. | Assessment of Toxoplasma gondii levels in zebra mussel (Dreissena polymorpha) by real-time PCR: an organotropism study | |
von Brand et al. | Scallop fishery and aquaculture in Chile: A history of developments and declines | |
Comeau et al. | Comparison of eastern oyster (Crassostrea virginica) and blue mussel (Mytilus edulis) filtration rates at low temperatures | |
Imai et al. | Cysts of the red tide flagellate Heterosigma akashiwo, Raphidophyceae, found in bottom sediments of northern Hiroshima Bay, Japan | |
Francis | Bryozoan statoblasts | |
Dubois et al. | Efficiency of particle retention and clearance rate in the polychaete Sabellaria alveolata L. | |
Folino-Rorem et al. | Effects of artificial filamentous substrate on zebra mussel (Dreissena polymorpha) settlement | |
WO2020194454A1 (ja) | 海水中の二枚貝の浮遊幼生を選択的に沈殿させる方法 | |
Srisuphanunt et al. | Detection of Cryptosporidium oocysts in green mussels (Perna viridis) from shell-fish markets of Thailand | |
Paavo et al. | Morphology and life history of Ophryotrocha adherens sp. nov.(Polychaeta, Dorvilleidae) | |
WO2013138899A1 (en) | Euglena biofilter | |
Tanyaros | The effect of substrate conditioning on larval settlement and spat growth of the cupped oyster, Crassostrea belcheri (Sowerby), in a Hatchery | |
Willis et al. | Static tank depuration and chronic short-term experimental contamination of Eastern oysters (Crassostrea virginica) with Giardia duodenalis cysts | |
Yang et al. | Effects of Daphnia-associated infochemicals on the morphology and growth of Scenedesmus obliquus and Microcystis aeruginosa | |
RU2678122C1 (ru) | Способ получения половых продуктов мидии mytilus galloprovincialis lam | |
Pietrak et al. | Culture of Sea Cucumbers in Korea: A guide to Korean methods and the local sea cucumber in the Northeast US | |
Conley | Mechanics and selectivity of filtration by tunicates | |
JPH053321B2 (ja) | ||
Carpenter et al. | The Impact of Microplastics on Crassostrea virginica Filtration Efficiency |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019535409 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19922061 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19922061 Country of ref document: EP Kind code of ref document: A1 |