WO2020194444A1 - Processing system - Google Patents

Processing system Download PDF

Info

Publication number
WO2020194444A1
WO2020194444A1 PCT/JP2019/012482 JP2019012482W WO2020194444A1 WO 2020194444 A1 WO2020194444 A1 WO 2020194444A1 JP 2019012482 W JP2019012482 W JP 2019012482W WO 2020194444 A1 WO2020194444 A1 WO 2020194444A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing system
work
detection
processing
powder supply
Prior art date
Application number
PCT/JP2019/012482
Other languages
French (fr)
Japanese (ja)
Inventor
壮史 松田
俊光 倉見
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2019/012482 priority Critical patent/WO2020194444A1/en
Publication of WO2020194444A1 publication Critical patent/WO2020194444A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam

Definitions

  • the present invention relates to, for example, the technical field of a processing system for performing a processing operation.
  • Patent Document 1 describes a processing system that performs a processing operation of forming a modeled object by melting a powdery material with an energy beam and then solidifying the melted material.
  • a processing system it is a technical problem to suppress the occurrence of an abnormality caused by contact between a member used for performing a processing operation and another object.
  • a powder supply member that supplies powder to the object from a powder supply port and the energy beam are used for the object.
  • a processing system including an irradiation optical system for irradiating an object and a sensor for acquiring relative position information between the powder supply member and the object is provided.
  • a powder supply member that supplies powder to the object from a powder supply port and the energy beam irradiate the object.
  • the member provided with the irradiation optical system and the sensor for acquiring the relative position information between the powder supply member and the object, and the powder supply port is provided, extends in the first direction and has a first position.
  • the dimension of the second part along the second direction intersecting with the first direction, including one part and the second part located on the first direction side of the first part, is in the second direction.
  • a machining system that is smaller than the size of the first portion along the line is provided.
  • FIG. 1 is a cross-sectional view showing the structure of the processing system of the first embodiment.
  • FIG. 2 is a system configuration diagram showing a system configuration of the processing system of the first embodiment.
  • FIG. 3 is a schematic view showing the structure of the first detection device.
  • FIG. 4A and FIG. 4B is a schematic diagram showing a detection principle by the first detection device.
  • FIG. 5 is a schematic view showing the structure of the second detection device.
  • FIG. 6 is a schematic view showing the structure of the third detection device.
  • FIG. 7 is a schematic view showing the structure of the third detection device.
  • FIG. 8 is a schematic view showing the structure of the fourth detection device.
  • FIG. 9 is a schematic view showing the structure of the fifth detection device.
  • FIG. 10 is a schematic view showing the structure of the sixth detection device.
  • FIGS. 11 (a) to 11 (e) is a cross-sectional view showing a state in which light is irradiated and a modeling material is supplied in a certain region on the work.
  • FIGS. 12 (a) to 12 (c) is a cross-sectional view showing a process of forming a three-dimensional structure.
  • FIG. 13 is a cross-sectional view showing the structure of the nozzle member included in the processing system of the second embodiment.
  • FIGS. 14 (a) to 14 (c) is a cross-sectional view showing how the tip member separates from the main body member when stress is applied to the tip member.
  • FIG. 15 is a schematic view showing a modified example of the nozzle member.
  • an embodiment of the processing system will be described using the processing system SYS that performs additional processing on the work W, which is an example of an object.
  • an embodiment of the processing system will be described using the processing system SYS that performs additional processing based on the laser overlay welding method (LMD: Laser Metal Deposition).
  • LMD Laser Metal Deposition
  • the modeling material M supplied to the work W is melted by the processing light EL to form a three-dimensional structure ST integrated with or separable from the work W. It is an additional process to be performed.
  • the laser overlay welding method includes direct metal deposition, directed energy deposition, laser cladding, laser engineered net shaping, direct light fabrication, and laser consolidation.
  • Foundation, Shape Deposition Manufacturing, Wire-Feed Laser Deposition, Gas Through Wire, Laser Powder Fusion, Laser Metal Forming, Selective Laser Powder Remelting, Laser Direct -It may also be called casting, laser powder deposition, laser additive manufacturing, or laser rapid forming.
  • each of the X-axis direction and the Y-axis direction is a horizontal direction (that is, a predetermined direction in the horizontal plane), and the Z-axis direction is a vertical direction (that is, a direction orthogonal to the horizontal plane). Yes, in effect, in the vertical direction).
  • the rotation directions (in other words, the inclination direction) around the X-axis, the Y-axis, and the Z-axis are referred to as the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction, respectively.
  • the Z-axis direction may be the direction of gravity.
  • the XY plane may be horizontal.
  • machining system SYS1 of the first embodiment
  • machining system SYS1 the machining system SYS of the first embodiment
  • machining system SYS1 the machining system SYS of the first embodiment
  • FIG. 1 is a cross-sectional view showing an example of the structure of the processing system SYS1 of the first embodiment.
  • FIG. 2 is a system configuration diagram showing an example of the system configuration of the processing system SYS1 of the first embodiment.
  • the processing system SYS1 can form a three-dimensional structure ST (that is, a three-dimensional object having a size in any of the three-dimensional directions and a three-dimensional object).
  • the processing system SYS1 can form the three-dimensional structure ST on the work W that is the basis for forming the three-dimensional structure ST.
  • the processing system SYS1 can form a three-dimensional structure ST by performing additional processing on the work W.
  • the machining system SYS1 can form the three-dimensional structure ST on the stage 31.
  • the processing system SYS1 can form the three-dimensional structure ST on the existing structure. Is.
  • the processing system SYS1 may form a three-dimensional structure ST integrated with the existing structure.
  • the operation of forming the three-dimensional structure ST integrated with the existing structure is equivalent to the operation of adding a new structure to the existing structure.
  • the processing system SYS1 may form a three-dimensional structure ST separable from the existing structure.
  • FIG. 1 shows an example in which the work W is an existing structure held by the stage 31. Further, in the following, the description will proceed with reference to an example in which the work W is an existing structure held by the stage 31.
  • the processing system SYS1 can form the three-dimensional structure ST by the laser overlay welding method. That is, it can be said that the processing system SYS1 is a 3D printer that forms an object by using the laminated modeling technique.
  • the laminated modeling technique is also referred to as rapid prototyping, rapid manufacturing, or additive manufacturing.
  • the processing system SYS1 has a material supply device 1, a processing device 2, a stage device 3, a light source 4, and a gas supply device 5, as shown in FIGS. 1 and 2. , A housing 6, a control device 7, and a detection device 8. At least a part of each of the processing device 2 and the stage device 3 is housed in the chamber space 63IN inside the housing 6.
  • the material supply device 1 supplies the modeling material M to the processing device 2.
  • the material supply device 1 corresponds to the required amount so that the modeling material M required per unit time for the processing device 2 to form the three-dimensional structure ST is supplied to the processing device 2. A desired amount of modeling material M is supplied.
  • the modeling material M is a material that can be melted by irradiation with a processing light EL having a predetermined intensity or higher.
  • a modeling material M for example, at least one of a metal material and a resin material can be used.
  • the modeling material M other materials different from the metal material and the resin material may be used.
  • the modeling material M is a powdery material. That is, the modeling material M is a powder.
  • the powder may contain a granular material in addition to the powdery material.
  • the modeling material M may contain, for example, a powder having a particle size within the range of 90 micrometers ⁇ 40 micrometers.
  • the average particle size of the powder constituting the modeling material M may be, for example, 75 micrometers or any other size.
  • the modeling material M does not have to be powder, and for example, a wire-shaped modeling material or a gaseous modeling material may be used.
  • the processing system SYS1 may process the modeling material M with an energy beam such as a charged particle beam to form a modeled object.
  • the processing device 2 forms the three-dimensional structure ST using the modeling material M supplied from the material supply device 1.
  • the processing apparatus 2 includes a processing head 21 and a head drive system 22.
  • the processing head 21 includes an irradiation optical system 211 and a material nozzle (that is, a supply system for supplying the modeling material M) 212.
  • the processing head 21 and the head drive system 22 are housed in the chamber space 63IN.
  • at least a part of the processing head 21 and / or the head drive system 22 may be arranged in the external space 64OUT, which is the space outside the housing 6.
  • the external space 64OUT may be a space accessible to the operator of the processing system SYS1.
  • the irradiation optical system 211 is an optical system (for example, a condensing optical system) for emitting processed light EL. It is optically connected to the light source 4 that emits the processed light EL via an optical transmission member (not shown) such as an optical fiber or a light pipe.
  • the irradiation optical system 211 emits processed light EL propagating from the light source 4 via the optical transmission member.
  • the irradiation optical system 211 emits the processing light EL so that the processing light EL advances in the chamber space 63IN.
  • the irradiation optical system 211 irradiates the processed light EL downward (that is, the ⁇ Z side) from the irradiation optical system 211.
  • a stage 31 is arranged below the irradiation optical system 211.
  • the irradiation optical system 211 irradiates the work W with the processing light EL.
  • the irradiation optical system 211 can irradiate the irradiation area EA set on the work W as the area where the processing light EL is irradiated (typically, the light is focused). ..
  • the state of the irradiation optical system 211 can be switched between a state in which the irradiation area EA is irradiated with the processing light EL and a state in which the irradiation area EA is not irradiated with the processing light EL under the control of the control device 7. ..
  • the direction of the processed light EL emitted from the irradiation optical system 211 is not limited to directly below (that is, coincident with the ⁇ Z axis direction), and is, for example, a direction inclined by a predetermined angle with respect to the Z axis. May be good.
  • the irradiation optical system 211 includes an optical member 2111 located closest to the work W side (that is, the stage side) along the optical path of the processed light EL.
  • the optical member 2111 located closest to the work W side may be referred to as a terminal optical member or a final optical member.
  • the irradiation optical system 211 irradiates the work W with the processing light EL via the optical member 2111.
  • the irradiation optical system 211 further includes a holding member 2112 that holds the optical member 2111.
  • the holding member 2112 is arranged at a position where the optical member 2111 can be held.
  • the holding member 2112 may be arranged around the optical member 2111.
  • the holding member 2112 may be arranged around the optical path of the processed optical EL via the optical member 2111.
  • the optical member 2111 is arranged on the work W side with respect to the holding member 2112.
  • the holding member 2112 may be arranged on the work W side with respect to the optical member 2111.
  • the material nozzle 212 includes a nozzle member 2121 that supplies the modeling material M.
  • the nozzle member 2121 is a member extending in one direction.
  • the nozzle member 2121 is a tubular member in which a hollow space extending in one direction for the modeling material M to pass through is formed.
  • the material nozzle 212 includes a holding member 2122 that holds the nozzle member 2121. However, the material nozzle 212 does not have to include the holding member 2122.
  • the material nozzle 212 supplies the modeling material M from the supply outlet 2123 formed on the nozzle member 2121 (for example, spraying, ejecting, or spraying).
  • the material nozzle 212 is physically connected to the material supply device 1 which is a supply source of the modeling material M via a pipe (not shown) or the like.
  • the material nozzle 212 supplies the modeling material M supplied from the material supply device 1 via the pipe.
  • the material nozzle 212 may pump the modeling material M supplied from the material supply device 1 via a pipe. That is, the modeling material M from the material supply device 1 and a gas for transportation (for example, an inert gas such as nitrogen or argon) may be mixed and pumped to the material nozzle 212 via a pipe.
  • a gas for transportation for example, an inert gas such as nitrogen or argon
  • the purge gas supplied from the gas supply device 5 may be used as the transport gas.
  • the material nozzle 212 is drawn in a tubular shape in FIG.
  • the shape of the material nozzle 212 is not limited to this shape.
  • the material nozzle 212 supplies the modeling material M toward the chamber space 63IN.
  • the material nozzle 212 supplies the modeling material M downward (that is, the ⁇ Z side) from the material nozzle 212.
  • a stage 31 is arranged below the material nozzle 212. When the work W is mounted on the stage 31, the material nozzle 212 supplies the modeling material M toward the work W.
  • the traveling direction of the modeling material M supplied from the material nozzle 212 is a direction inclined by a predetermined angle (an acute angle as an example) with respect to the Z-axis direction, but even if it is on the ⁇ Z side (that is, directly below). Good.
  • the material nozzle 212 is aligned with the irradiation optical system 211 so that the irradiation optical system 211 supplies the modeling material M toward the irradiation region EA on which the processing light EL is irradiated. That is, the material nozzle 212 and the irradiation region 212 are irradiated so that the supply region MA and the irradiation region EA set on the work W as the region for supplying the modeling material M coincide with (or at least partially overlap) the material nozzle 212.
  • the optical system 211 is aligned.
  • the material nozzle 212 may be aligned so as to supply the modeling material M to the molten pool MP formed by the processing light EL emitted from the irradiation optical system 211.
  • the irradiation optical system 211 irradiates the work W with a processed light EL having excellent straightness. Therefore, the irradiation optical system 211 can irradiate the processing light EL at a desired position on the surface of the work W regardless of the size of the distance between the irradiation optical system 211 and the work W.
  • the material nozzle 212 supplies the modeling material M having a physical size toward the work W. In this case, the material M is affected by the state within the chamber space 63IN (eg, the state of airflow) and / or gravity.
  • the supply path of the modeling material M between the material nozzle 212 and the work W may fluctuate under the influence of the state (for example, the airflow state) and / or gravity in the chamber space 63IN. There is. Therefore, depending on the distance between the material nozzle 212 and the work W, the material nozzle 212 may not be able to supply the modeling material M to a desired position on the surface of the work W. Typically, the greater the distance between the material nozzle 212 and the work W, the more likely it is that the material nozzle 212 will not be able to supply the modeling material M to the desired position on the surface of the work W. Become. Therefore, in the first embodiment, as shown in FIG.
  • the material nozzle 212 may be arranged so that the distance between the material nozzle 212 and the work W is relatively short.
  • the material nozzle 212 may be arranged so that the nozzle member 2121 (particularly, the supply port 2123) of the material nozzle 212 is closer to the work W than the optical member 2111 of the irradiation optical system 211.
  • the material nozzle 212 may be arranged so that the distance between the nozzle member 2121 and the work W is shorter than the distance between the optical member 2111 and the work W. Since the work W is held by the stage 31, the material nozzle 212 may be arranged so that the nozzle member 2121 is closer to the stage 31 than the optical member 2111.
  • the material nozzle 212 may be arranged so that the distance between the nozzle member 2121 and the stage 31 is shorter than the distance between the injection unit 213 and the stage 31.
  • the head drive system 22 moves the processing head 21.
  • the head drive system 22 moves the processing head 21 within the chamber space 63IN, for example.
  • the head drive system 22 moves the machining head 21 along at least one of the X-axis, the Y-axis, and the Z-axis.
  • each of the irradiation region EA and the supply region MA moves on the work W along at least one of the X-axis and the Y-axis.
  • the head drive system 22 may move the machining head 21 along at least one rotation direction in the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction in addition to at least one of the X-axis, the Y-axis, and the Z-axis. .. In other words, the head drive system 22 may rotate the machining head 21 around at least one of the X-axis, Y-axis, and Z-axis. The head drive system 22 may change the posture of the processing head 21 around at least one of the X-axis, the Y-axis, and the Z-axis.
  • the head drive system 22 includes an actuator such as a motor, for example.
  • the irradiation optical system 211 and the material nozzle 212 may be moved separately.
  • the head drive system 22 may be capable of adjusting at least one of the position of the injection unit 213, the direction of the injection unit 213, the position of the nozzle member 2121, and the direction of the nozzle member 2121.
  • the irradiation region EA where the irradiation optical system 211 irradiates the processing light EL and the supply region MA where the material nozzle 212 supplies the modeling material M can be controlled separately.
  • the stage device 3 includes a stage 31.
  • the stage 31 is housed in the chamber space 63IN.
  • the stage 31 can support the work W.
  • the state of "the stage 31 supporting the work W" here may mean a state in which the work W is directly or indirectly supported by the stage 31.
  • the stage 31 may be able to hold the work W. That is, the stage 31 may support the work W by holding the work W. Alternatively, the stage 31 does not have to be able to hold the work W.
  • the work W may be placed on the stage 31. That is, the stage 31 may support the work W placed on the stage 31. At this time, the work W may be mounted on the stage 31 without being clamped.
  • the "stage 31 supporting the work W" state in the present embodiment may also include a state in which the stage 31 holds the work W and a state in which the work W is placed on the stage 31. Since the stage 31 is housed in the chamber space 63IN, the work W supported by the stage 31 is also housed in the chamber space 63IN. Further, the stage 31 can release the held work W when the work W is held.
  • the irradiation optical system 211 described above irradiates the processed beam PL at least during a period in which the stage 31 supports the work W. Further, the material nozzle 212 described above supplies the modeling material M during at least a part of the period in which the stage 31 supports the work W.
  • a part of the modeling material M supplied by the material nozzle 212 may be scattered or spilled from the surface of the work W to the outside of the work W (for example, around the stage 31). Therefore, the processing system SYS1 may be provided with a recovery device for recovering the scattered or spilled modeling material M around the stage 31.
  • the stage 31 may be provided with a mechanical chuck, a vacuum suction chuck, or the like in order to hold the work W.
  • the stage 31 may be movable by a stage drive system (not shown).
  • the stage drive system may move the stage 31 within the chamber space 63IN, for example.
  • the stage drive system may move the stage 31 along at least one of the X-axis, the Y-axis, and the Z-axis.
  • the irradiation region EA moves on the work W along at least one of the X-axis and the Y-axis.
  • the stage drive system may move the stage 31 along at least one rotation direction in the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction in addition to at least one of the X-axis, the Y-axis, and the Z-axis.
  • the stage drive system 31 includes an actuator such as a motor, for example.
  • the processing device 2 does not have to include the head drive system 22.
  • the light source 4 emits, for example, at least one of infrared light and ultraviolet light as processed light EL.
  • the processed light EL light of other wavelengths, for example, light having a wavelength in the visible region may be used.
  • the processing light EL is a laser beam.
  • the light source 4 may include a laser light source such as a semiconductor laser. Examples of the laser light source include at least one such as a laser diode (LD: Laser Diode), a fiber laser, a CO 2 laser, a YAG laser, and an excimer laser.
  • the processing light EL does not have to be a laser beam, and the light source 4 may include an arbitrary light source (for example, at least one such as an LED (Light Emitting Side) and a discharge lamp).
  • the gas supply device 5 is a supply source of purge gas for purging the chamber space 631IN.
  • the purge gas contains an inert gas.
  • An example of the inert gas is nitrogen gas or argon gas.
  • the gas supply device 5 supplies purge gas to the chamber space 63IN. As a result, the chamber space 63IN becomes a space purged by the purge gas.
  • the gas supply device 5 may be a cylinder in which an inert gas such as nitrogen gas or argon gas is stored. When the inert gas is nitrogen gas, the gas supply device 5 may be a nitrogen gas generator that generates nitrogen gas from the atmosphere as a raw material.
  • the housing 6 is a storage device that accommodates at least a part of each of the processing device 2 and the stage device 3 in the chamber space 63IN, which is the internal space of the housing 6.
  • the housing 6 includes a partition member 61 that defines a chamber space 63IN.
  • the partition member 61 is a member that separates the chamber space 63IN from the external space 64OUT of the housing 6.
  • the partition member 61 faces the chamber space 63IN via its inner wall 611, and faces the outer space 64OUT through its outer wall 612. In this case, the space surrounded by the partition member 61 (more specifically, the space surrounded by the inner wall 611 of the partition member 61) becomes the chamber space 63IN.
  • the partition member 61 may be provided with a door that can be opened and closed. This door may be opened when the work W is placed on the stage 31 and when the work W and / or the modeled object is taken out from the stage 31, and may be closed during the modeling.
  • the control device 7 controls the operation of the processing system SYS1.
  • the control device 7 may include, for example, a CPU (Central Processing Unit) (or a GPU (Graphics Processing Unit) in addition to or in place of the CPU) and a memory.
  • the control device 7 functions as a device that controls the operation of the machining system SYS1 by the CPU executing a computer program.
  • This computer program is a computer program for causing the control device 7 (for example, the CPU) to perform (that is, execute) the operation described later to be performed by the control device 7. That is, this computer program is a computer program for making the control device 7 function so that the processing system SYS1 performs the operation described later.
  • the computer program executed by the CPU may be recorded in a memory (that is, a recording medium) included in the control device 7, or may be an arbitrary storage medium built in the control device 7 or externally attached to the control device 7 (that is, a recording medium). For example, it may be recorded on a hard disk or a semiconductor memory). Alternatively, the CPU may download the computer program to be executed from a device external to the control device 7 via the network interface.
  • a memory that is, a recording medium
  • the CPU may download the computer program to be executed from a device external to the control device 7 via the network interface.
  • the control device 7 may control the injection mode of the processed light EL by the irradiation optical system 211.
  • the injection mode may include, for example, at least one of the intensity of the processing light EL and the injection timing of the processing light EL.
  • the injection mode may include, for example, the ratio of the length of the emission time of the pulsed light to the emission period of the pulsed light (so-called duty ratio).
  • the injection mode may include, for example, the length of the emission time of the pulsed light itself or the emission cycle itself.
  • the control device 7 may control the movement mode of the processing head 21 by the head drive system 22.
  • the movement mode may include, for example, at least one of a movement amount, a movement speed, a movement direction, and a movement timing.
  • the control device 7 may control the supply mode of the modeling material M by the material supply device 1.
  • the supply mode of the modeling material M by the material nozzle 212 is mainly determined by the supply mode of the modeling material M by the material supply device 1. Therefore, controlling the supply mode of the modeling material M by the material supply device 1 can be regarded as equivalent to controlling the supply mode of the modeling material M by the material nozzle 212.
  • the supply mode may include, for example, at least one of a supply amount (particularly, a supply amount per unit time) and a supply timing.
  • the control device 7 does not have to be provided inside the processing system SYS1.
  • the control device 7 may be provided outside the processing system SYS1 as a server or the like.
  • the control device 7 and the processing system SYS1 may be connected by a wired and / or wireless network (or a data bus and / or a communication line).
  • a wired network for example, a network using a serial bus type interface represented by at least one of IEEE1394, RS-232x, RS-422, RS-423, RS-485 and USB may be used.
  • a network using a parallel bus interface may be used.
  • a network using an Ethernet (registered trademark) compliant interface represented by at least one of 10BASE-T, 100BASE-TX and 1000BASE-T may be used.
  • a network using radio waves may be used.
  • An example of a network using radio waves is a network conforming to IEEE802.1x (for example, at least one of wireless LAN and Bluetooth®).
  • a network using infrared rays may be used.
  • a network using optical communication may be used.
  • the control device 7 and the processing system SYS1 may be configured so that various types of information can be transmitted and received via the network. Further, the control device 7 may be able to transmit information such as commands and control parameters to the processing system SYS1 via the network.
  • the processing system SYS1 may include a receiving device that receives information such as commands and control parameters from the control device 7 via the network.
  • a part of the control device 7 may be provided inside the processing system SYS1 and a part of the control device 7 may be provided outside the processing system SYS1.
  • Recording media for recording computer programs executed by the CPU include CD-ROMs, CD-Rs, CD-RWs, flexible disks, MOs, DVD-ROMs, DVD-RAMs, DVD-Rs, DVD + Rs, and DVD-RWs. , DVD + RW and Blu-ray (registered trademark) and other optical discs, magnetic tape and other magnetic media, magneto-optical disks, USB memory and other semiconductor memories, and any other medium that can store programs. May be good.
  • the recording medium may include a device capable of recording a computer program (for example, a general-purpose device or a dedicated device in which the computer program is implemented in at least one form such as software and firmware).
  • each process or function included in the computer program may be realized by a logical processing block realized in the control device 7 by the control device 7 (that is, a computer) executing the computer program. It may be realized by hardware such as a predetermined gate array (FPGA, ASIC) included in the control device 7, or a mixture of a logical processing block and a partial hardware module that realizes a part of the hardware. It may be realized in the form of.
  • FPGA predetermined gate array
  • the detection device 8 is a device (for example, a sensor) capable of detecting (acquiring) information regarding the relative positional relationship between two different objects. More specifically, the detection device 8 is a device capable of detecting (acquiring) information regarding the relative positional relationship between the detection target and the approaching target that can move relative to the detection target. The detection device 8 is a device capable of detecting (acquiring) information regarding the relative positional relationship between the detection target and the approaching object that may approach the detection target. Since the structure of the detection device 8 will be described in detail later with reference to FIGS. 3 to 10, detailed description here will be omitted.
  • Information on the relative positional relationship between two different objects may include information on the degree of proximity of two different objects.
  • the detection device 8 may be a device that can detect (acquire) information on the degree of proximity of two different objects. More specifically, the detection device 8 may be a device that can detect (acquire) information on the degree of approach between the detection target and the approach target that can move relative to the detection target. The detection device 8 may be a device that can detect (acquire) information on the degree of approach between the detection target and the approaching object that may approach the detection target.
  • Information on the relative positional relationship between two different objects is whether or not either the detection object or the approaching object exists in a certain range determined according to either the detecting object or the approaching object.
  • the detection device 8 can use information for determining whether or not an approaching object exists in a certain range determined according to the detection object (for example, a range of a certain distance or less from the detection object). It may be a device that can detect (acquire).
  • the detection device 8 can use information for determining whether or not the detection object exists in a certain range determined according to the approaching object (for example, a range of a certain distance or less from the approaching object). It may be a device that can detect (acquire).
  • the detection device 8 may detect (acquire) information regarding the distance between the detection target object and the approaching target object.
  • the detection device 8 may detect (acquire) information regarding the contact between the detection object and the approaching object. For example, the detection device 8 may detect information regarding the presence or absence of contact between the detection object and the approaching object.
  • the detection result of the detection device 8 is output to the control device 7.
  • the control device 7 controls the relative position between the detection target object and the approaching target object based on the detection result of the detection device 8.
  • the control device 7 determines whether or not a predetermined approach condition regarding the degree of approach between the detection target object and the approach target object is satisfied based on the detection result (acquisition result) by the detection device 8. ..
  • the approach condition may include a condition that the detection target and the approach target are in contact with each other.
  • the approach condition may include a condition that the distance between the detection target and the approach target is less than the permissible value even though the detection target and the approach target are not in contact with each other. That is, the approach condition is that the detection target and the approach target are not in contact with each other.
  • the detection target and the approach target are so close to each other that the distance between the detection target and the approach target is less than the allowable value. It may include the condition that it exists.
  • control device 7 determines that the approach condition is satisfied, it is caused by an abnormality caused by the contact between the detection target object and the approach target object (or due to the approach between the detection target object and the approach target object).
  • the relative position or relative posture of the detected object and the approaching object is controlled so as to suppress the occurrence of the abnormalities (the same shall apply hereinafter).
  • the control device 7 typically has a relative position or relative position between the detection object and the approaching object so as to avoid the occurrence of an abnormality due to the contact between the detection object and the approaching object. Control posture.
  • An example of an abnormality that may occur due to contact between a detection object and an approaching object is an abnormality that occurs in at least one of the detection object and the approaching object.
  • Examples of abnormalities that occur in the detection target include at least one of damage to the detection target, destruction of the detection target, failure of the detection target, and misalignment of the detection target from the normal position.
  • Examples of abnormalities that occur in the approaching object include at least one of damage to the approaching object, destruction of the approaching object, failure of the approaching object, and misalignment of the approaching object from the normal position.
  • the control device 7 determines the relative position or the relative posture of the detection target and the approaching object so as to avoid contact between the detection target and the approaching object. You may control it. In this case, since the contact between the detection target and the approaching object is avoided, no abnormality occurs due to the contact between the detection target and the approaching object.
  • the control device 7 changes the relative position or the relative posture of the detection object and the approaching object so that the detection object and the approaching object approach each other. You may limit the operation of.
  • the control device 7 changes the relative position or the relative posture of the detection target and the approach target so that the detection target and the approach target approach each other. The operation for doing so may be prohibited. In this case, since the detection target and the approaching object do not come closer to each other, the contact between the detection target and the approaching object becomes larger than the case where the detection target and the approaching object come closer to each other. The resulting abnormality is less likely to occur. That is, the possibility of an abnormality caused by the contact between the detection target object and the approaching target object is reduced.
  • the detection target is detected before the detection target and the approaching object come into contact with each other. Since further access between the object and the approaching object is restricted, no abnormality occurs due to contact between the detection object and the approaching object.
  • the detection object and the approaching object are further changed while the detection object and the approaching object are in contact with each other. The approach is restricted.
  • the force applied from the detection target to the approaching object and / the approaching target increases, which may lead to damage to the detection object and / or the approaching object.
  • the operation of restricting the operation for changing the relative position or the relative posture of the detection object and the approaching object so that the detection object and the approaching object approach each other is the operation of restricting the detection object and the approaching object. It can be regarded as equivalent to the operation of controlling the relative position or the relative posture of the detected object and the approaching object so that they do not approach each other.
  • the relative position or relative position between the detection target and the approach target is avoided so that the detection target and the approach target are avoided from further approaching.
  • the posture may be controlled.
  • the detection target and the approach target are for the same reason as in the case where the operation for changing the relative position of the detection target and the approach target is restricted so that the detection target and the approach target are close to each other.
  • the abnormality caused by the contact between the detection object and the approaching object is less likely to occur. If further approach between the detection object and the approaching object is avoided in a state where the detection object and the approaching object are not in contact with each other, the detection object and the approaching object do not come into contact with each other.
  • the operation of controlling the relative position or the relative posture of the detection target and the approaching object so as to avoid further approach between the detection target and the approaching object is performed on the detection target and the approaching object. It can be said that this is a specific example of an operation of controlling the relative position between the detection target object and the approaching target object so as to avoid contact with the object. Further, if further approach between the detection object and the approaching object is avoided, the detection object and the approaching object do not approach each other. Therefore, the operation of controlling the relative position of the detection target and the approaching object so as to avoid further approach between the detection target and the approaching object is such that the detection target and the approaching object approach each other. It can be said that this is a specific example of an operation of limiting the operation for changing the relative position or the relative posture of the detection object and the approaching object.
  • the control device 7 controls the relative position or the relative posture of the detection object and the approaching object so that the detection object and the approaching object are separated from each other when the approach condition is satisfied. May be good.
  • an abnormality caused by contact between the detection target and the approaching object is less likely to occur as compared with the case where the detection target and the approaching object are not separated from each other.
  • the detection target is detected before the detection target and the approaching object come into contact with each other. Since the object and the approaching object are separated from each other, no abnormality occurs due to the contact between the detection object and the approaching object.
  • the detecting object and the approaching object that are in contact are separated from each other. For this reason, the contact between the detection target and the approaching object is caused as compared with the case where the detection target and the approaching object continue to be in contact with each other (furthermore, the detection target and the approaching object are further approached). Abnormality is less likely to occur.
  • the operation of controlling the relative position or the relative posture of the detection object and the approaching object so that the detection object and the approaching object are separated from each other avoids the contact between the detection object and the approaching object.
  • this is a specific example of an operation of controlling the relative position or the relative posture of the detected object and the approaching object so as to be performed. Further, when the detection target and the approach target are separated from each other, the detection target and the approach target do not approach each other. Therefore, the operation of controlling the relative position or the relative posture of the detection target and the approaching object so that the detection target and the approaching object are separated from each other causes the detection target and the approaching object to approach each other. It can be said that this is a specific example of an operation of limiting the operation for changing the relative position or the relative posture of the detected object and the approaching object.
  • the control device 7 maintains the relative position or the relative posture of the detection target and the approach target at the time when the approach condition is satisfied (that is, relative).
  • the relative position between the detection object and the approaching object may be controlled so that the position is not changed).
  • the detection target and the approach target are for the same reason as in the case where the operation for changing the relative position of the detection target and the approach target is restricted so that the detection target and the approach target are close to each other.
  • an abnormality caused by the contact between the detection target and the approaching object is less likely to occur.
  • the operation of controlling the relative position between the detection target and the approaching object so as to maintain the relative position between the detection target and the approaching object avoids the contact between the detection target and the approaching object.
  • it can be said that it is a specific example of the operation of controlling the relative position or the relative posture of the detected object and the approaching object. Further, if the relative position or the relative posture of the detection object and the approaching object is maintained, the detection object and the approaching object do not approach each other.
  • the operation of controlling the relative position or the relative posture of the detection target and the approaching object so that the relative position between the detection target and the approaching object is maintained is performed between the detection target and the approaching object. It can be said that this is a specific example of an operation of limiting the operation for changing the relative position or the relative posture of the detected object and the approaching object so that the two are close to each other.
  • the control device 7 may stop the operation of the position change device capable of changing the relative position between the detection target object and the approach target object.
  • the detection target is the processing head 21, as will be described later
  • the head drive system 22 can change the relative position between the processing head 21 which is the detection target and the approaching object.
  • the control device 7 may stop the operation of the head drive system 22 when the approach condition is satisfied.
  • the operation of the position changing device is performed for the same reason as in the case where the operation for changing the relative position of the detected object and the approaching object is restricted so that the detection object and the approaching object are close to each other.
  • the operation of stopping the operation of the position changing device is an operation of controlling the relative position between the detection object and the approaching object so as to avoid contact between the detection object and the approaching object, and an operation of controlling the relative position between the detection object and the approaching object. It can be said that it is a specific example of each of the operations of limiting the operation for changing the relative position of the detected object and the approaching object so that the object and the approaching object approach each other.
  • the head drive system 22 which is an example of the position changing device, moves the machining head 21 along at least one of the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction, in other words, when the posture of the machining head 21 is changed.
  • the head drive system 22 can change the relative posture of the processing head 21 which is the detection target and the approaching target. Similar to the above, the control device 7 may stop the operation of the head drive system 22 when the approach condition is satisfied.
  • the position changing device Compared to the case where the operation is not stopped (in particular, the position changing device operates so that the detected object and the approaching object are closer to each other), an abnormality occurs due to the contact between the detected object and the approaching object. It becomes difficult.
  • the operation of stopping the operation of the position changing device is an operation of controlling the relative posture of the detection object and the approaching object so as to avoid contact between the detection object and the approaching object, and an operation of detecting. It can be said that this is a specific example of each of the actions of limiting the action for changing the relative postures of the detected object and the approaching object so that the object and the approaching object come close to each other.
  • the detection device 8 may be a device capable of acquiring relative position information of two different objects (detection object and approaching object).
  • the relative position information of two different objects may include information about the distance or distance between the two different objects. Further, the relative position information of two different objects may include information on whether or not the other object (approaching object) exists within a certain range from one object (detection object). .. Further, the relative position information of two different objects may include information regarding the position of one object (detection object) and the position of the other object (approaching object). Further, the relative position information of two different objects may include information on the contact between one object (detection object) and the other object (approaching object).
  • control device 7 controls two different objects (detection object and approaching object) when the distance or distance between the two different objects (detection object and approaching object) is within a predetermined distance or interval.
  • the operation may be stopped, or control may be performed so that two different objects (detection object and approaching object) move away from each other.
  • control device 7 operates two different objects (detection object and approach object) when the other object (approaching object) exists within a certain range from one object (detection object). May be controlled so that the two different objects (detection object and approaching object) move away from each other.
  • control device 7 has two different objects (detection object and approach object) when the position of one object (detection object) and the position of the other object (approach object) have a specific relationship.
  • the operation of the object) may be stopped, or control may be performed so that two different objects (detection object and approaching object) move away from each other.
  • the control device 7 stops the operation of two different objects (detection object and approach object) when one object (detection object) and the other object (approach object) come into contact with each other. Or, control may be performed so that two different objects (detection object and approaching object) move away from each other.
  • the detection device 8 may be a device capable of measuring (acquiring) the distance between two different objects (detection object and approaching object).
  • the processing head 21 (that is, at least a part of the processing apparatus 2) can be mentioned. This is because, as described above, the processing head 21 can be moved by the head drive system 22.
  • the detection device 8 may detect information on the positional relationship between the machining head 21 and an approaching object that may approach the machining head 21.
  • a work W is an example of an approaching object that may approach the machining head 21 when the machining head 21 is moving. In this case, the detection device 8 may detect information regarding the positional relationship between the machining head 21 and the work W.
  • a stage 31 is another example of an approaching object that may approach the machining head 21 in a situation where the machining head 21 is moving. In this case, the detection device 8 may detect information regarding the positional relationship between the processing head 21 and the stage 31.
  • the relative position information of the two different objects (detection object and approaching object) described above includes information on the relative posture relationship between the two different objects (detection object and approaching object). You may be.
  • the material nozzle 212 included in the processing head 21 is arranged at a position closer to at least one of the work W and the stage 31 than the irradiation optical system 211 included in the processing head 21.
  • the material nozzle 212 can be said to be one of the members closest to at least one of the work W and the stage 31 among the members constituting the processing head 21 (further, the processing apparatus 2). Therefore, the material nozzle 212 is more likely to come into contact with at least one of the work W and the stage 31 than the irradiation optical system 211.
  • the detection device 8 may detect information regarding the positional relationship between the material nozzle 212 and at least one of the work W and the stage 31.
  • the detection device 8 may detect information regarding the positional relationship between the nozzle member 2121 of the material nozzle 212 and at least one of the work W and the stage 31.
  • the description will proceed with reference to an example in which the detection device 8 detects information regarding the positional relationship between the material nozzle 212 (particularly, the nozzle member 2121) and the work W.
  • the control device 7 suppresses the occurrence of an abnormality caused by the contact between the material nozzle 212 and the work W.
  • the relative position between the material nozzle 212 and the work W is controlled. Specifically, the relative position between the material nozzle 212 and the work W is changed by the head drive system 22 that can move the processing head 21 including the material nozzle 212. Therefore, the head drive system 22 controls the relative position between the material nozzle 212 and the work W so as to suppress the occurrence of an abnormality caused by the contact between the material nozzle 212 and the work W under the control of the control device 7. Will be done.
  • the control device 7 controls the relative position between the material nozzle 212 and the work W so that the machining operation for forming the three-dimensional structure ST is performed while the material nozzle 212 is away from the work W. You may.
  • the control device 7 performs a machining operation for forming the three-dimensional structure ST in a state where the nozzle member 2121 of the material nozzle 212 (particularly, the supply outlet 2131 at the tip thereof) is separated from the work W.
  • the relative position between the material nozzle 212 and the work W may be controlled.
  • the control device 7 controls the relative position between the material nozzle 212 and the work W so as to suppress the occurrence of an abnormality caused by the contact between the material nozzle 212 and the work W by controlling the stage drive system. You may.
  • the processing system SYSTEM has the first detection device 8a, the second detection device 8b, the third detection device 8c, the fourth detection device 8d, and the fifth detection device 8e as the detection device 8. And at least one of the sixth detection devices 8f may be used. Therefore, in the following, the structures of the first detection device 8a to the sixth detection device 8f will be described in order.
  • FIG. 3 is a schematic view showing the structure of the first detection device 8a.
  • FIG. 4A and FIG. 4B is a schematic diagram showing a detection principle by the first detection device 8a.
  • At least a part of the first detection device 8a is arranged in the material nozzle 212 which is the detection target. More specifically, at least a part of the first detection device 8a is arranged on the nozzle member 2121 of the material nozzle 212.
  • the iron core 81a and the coil 83a, which will be described later, constituting the first detection device 8a are arranged in the material nozzle 212. Therefore, at least a part of the first detection device 8a moves in accordance with the movement of the material nozzle 212. In other words, at least a part of the first detection device 8a moves with the material nozzle 212.
  • the first detection device 8a is a proximity sensor. Therefore, the first detection device 8a can detect (acquire) information on the positional relationship between the first detection device 8a and the work W without contacting the work W which is an approaching object. Specifically, the first detection device 8a can detect whether or not the work W exists in a certain range from the first detection device 8a without contacting the work W which is an approaching object. it can. Further, since the first detection device 8a is arranged on the material nozzle 212, the closer the first detection device 8a is to the work W, the closer the material nozzle 212 also approaches the work W.
  • the operation of detecting (acquiring) the information regarding the positional relationship between the first detection device 8a and the work W can be regarded as equivalent to the operation of detecting (acquiring) the information regarding the positional relationship between the material nozzle 212 and the work W. .. That is, the first detection device 8a can detect information regarding the positional relationship between the material nozzle 212 and the work W. Specifically, the first detection device 8a can detect whether or not the work W exists in a certain range from the material nozzle 212. In this case, as an approach condition, a condition that the material nozzle 212 and the work W are not in contact with each other and the distance between the material nozzle 212 and the work W is less than an allowable value may be used.
  • the permissible value may be set to a constant value in advance, or may be set to a value according to the moving speed of the processing head 21, for example. As an example, when the moving speed of the machining head is slow, the permissible value may be set small, and when the moving speed is fast, the permissible value may be set large. Further, this permissible value may be variable regardless of the moving speed of the processing head 21.
  • the first detection device 8a When the first detection device 8a is a proximity sensor, the first detection device 8a provides information on the positional relationship between the material nozzle 212 and the work W in a state where the material nozzle 212 and the work W are not in contact with each other. Is detected (acquired). The first detection device 8a detects (acquires) information regarding the positional relationship between the material nozzle 212 and the work W during a period in which the material nozzle 212 and the work W are not in contact with each other. In this case, the first detection device 8a is arranged at a position where information regarding the positional relationship between the material nozzle 212 and the work W can be detected (acquired) when the material nozzle 212 and the work W are not in contact with each other. Will be done.
  • the first detection device 8a may be arranged at the position closest to the work W side (that is, the stage 31 side) of the nozzle members 2121.
  • the first detection device 8a may detect the presence or absence of contact between the material nozzle 212 and the work W.
  • the first detection device 8a detects the presence or absence of contact between the material nozzle 212 and the work W, a condition that the material nozzle 212 and the work W are in contact with each other may be used as an approach condition.
  • the type of proximity sensor used as the first detection device 8a is not particularly limited.
  • an inductive proximity sensor may be used as the first detection device 8a.
  • a capacitance type proximity sensor may be used as the first detection device 8a.
  • a magnetic proximity sensor may be used as the first detection device 8a.
  • FIG. 3 shows an example in which an inductive proximity sensor is used as the first detection device 8a.
  • the first detection device 8a includes an iron core 81a, a support member 82a, a coil 83a, and a detection circuit 84a.
  • the iron core 81a is fixed to the material nozzle 212 via the support member 82a.
  • FIG. 3 shows an example in which an inductive proximity sensor is used as the first detection device 8a.
  • the first detection device 8a includes an iron core 81a, a support member 82a, a coil 83a, and a detection circuit 84a.
  • the iron core 81a is fixed to the material nozzle 212 via the support member 82a
  • the iron core 81a is fixed to the outer surface of the material nozzle 212 via the support member 82a.
  • the coil 83a is wound around an iron core.
  • a current is supplied to the coil 83a from the detection circuit 84a.
  • a magnetic field is generated from the coil 83a.
  • the work W is induced by electromagnetic induction.
  • An eddy current is generated in.
  • the impedance of the coil 83a changes due to the eddy current.
  • the detection circuit 84a detects information on the positional relationship between the material nozzle 212 and the work W by detecting this change in impedance.
  • the inductive proximity sensor shown in FIG. 3 When the inductive proximity sensor shown in FIG. 3 is used as the first detection device 8a, if no eddy current flows through the work W, the first detection device 8a has a positional relationship between the material nozzle 212 and the work W. Information about is difficult to detect. Therefore, in this case, a work made of a metal material (particularly, a conductor material) is used as the work W so that an eddy current flows.
  • the modeling material M supplied from the material nozzle 212 is also a metal material
  • the modeling material M from the material nozzle 212 may affect the impedance of the coil 83a.
  • the detection circuit 84a may detect a change from the impedance in a state where the work W is located within a range not affected by the magnetic field from the coil 83a.
  • the first detection device 8a is arranged on the material nozzle 212.
  • the first detection device 8a may be arranged at a position different from that of the material nozzle 212.
  • the first detection device 8a may be arranged on the work W or the stage 31.
  • the first detection device 8a when the inductive proximity sensor is used as the first detection device 8a, the first detection device 8a includes an iron core 81a. However, the first detection device 8a does not have to include the iron core 81a. Even in this case, the first detection device 8a can detect the degree of proximity between the material nozzle 212 and the work W as long as the coil 83a is provided.
  • FIG. 5 is a schematic view showing the structure of the second detection device 8b.
  • the same components as the components included in the first detection device 8a described above are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the coil 83a is wound around the iron core 81a in that the coil 83a is wound around the material nozzle 212 (particularly, the nozzle member 2121). It is different from the detection device 8a. That is, in the second detection device 8b, the material nozzle 212 (particularly, the nozzle member 2121) used as a member for supplying the modeling material M is also used as the iron core 81. Therefore, the second detection device 8b does not have to include the iron core 81a. Further, the second detection device 8b may not include a support member 82a for fixing the iron core 81a to the material nozzle 212. However, in this case, the material nozzle 212 (particularly, the nozzle member 2121) is made of a metal material (particularly, a conductor material). Other features of the second detection device 8b may be the same as those of the first detection device 8a.
  • FIGS. 6 to 7. are schematic views showing the structure of the third detection device 8c.
  • the third detection device 8c detects information on the contact state between the material nozzle 212 (particularly, the nozzle member 2121, the same applies hereinafter) and the work W as information on the positional relationship between the first detection device 8a and the work W (the same applies hereinafter). get. More specifically, the third detection device 8c detects information regarding the presence or absence of contact between the material nozzle 212 and the work W. For example, the third detection device 8c may electrically detect the presence or absence of contact between the material nozzle 212 and the work W. For example, the third detection device 8c may magnetically detect the presence or absence of contact between the material nozzle 212 and the work W.
  • the third detection device 8c electrically detects the presence or absence of contact between the material nozzle 212 and the work W. Specifically, in the example shown in FIG. 6, the third detection device 8c detects the presence / absence of electrical continuity between the material nozzle 212 and the work W to determine the presence / absence of contact between the material nozzle 212 and the work W. To detect. In this case, the third detection device 8c detects information on the state of electrical continuity between the material nozzle 212 and the work W as information on the positional relationship between the material nozzle 212 and the work W. However, when the third detection device 8c detects the presence or absence of electrical continuity between the material nozzle 212 and the work W, each of the material nozzle 212 and the work W is composed of a metal material (particularly, a conductor material). ..
  • the third detection device 8c includes wiring 81c, wiring 82c, and a detection circuit 83c.
  • the wiring 81c is electrically connected to the material nozzle 212.
  • the wiring 82c is electrically connected to the work W. Either one of the wirings 81c and 82c may be electrically connected to the electrical ground of the processing system SYS1. Either one of the wirings 81c and 82c may be grounded.
  • the detection circuit 83c detects whether or not an electrically closed circuit is formed via the wirings 81c and 82c, and thus whether or not the material nozzle 212 and the work W are in contact with each other (that is, whether or not there is electrical continuity).
  • the detection circuit 83c can detect the presence or absence of contact between the material nozzle 212 and the work W by detecting whether or not an electrically closed circuit is formed via the wirings 81c and 82c. ..
  • the wiring 82c may be electrically connected to the stage 31 holding the work W.
  • the detection circuit 83c can detect the presence or absence of contact between the material nozzle 212 and the work W.
  • electrical contacts connected to the wiring 82c may be provided at one or more positions on the upper surface of the stage 31.
  • the material nozzle 212 is physically connected to the material supply device 1 which is a supply source of the modeling material M via a pipe or the like (not shown). If this pipe is made of metal, the detection circuit 83c may erroneously detect the presence or absence of contact between the material nozzle 212 and the work W due to the influence of the pipe. For example, when the wiring 82 connected to the work W is connected to the ground of the machining system SYS1 and the pipe connected to the material nozzle 212 is also connected to the ground of the machining SYS1, the material nozzle 212 and the work It can be said that W is in a state of being substantially electrically conductive via the pipe.
  • the detection circuit 83c may erroneously detect that the closed circuit is formed through the wirings 81c and 82c even though the material nozzle 212 and the work W are not in contact with each other. Therefore, even if the material nozzle 212 (particularly, the portion of the material nozzle 212 that is electrically connected to the wiring 81c) is electrically insulated from the pipe that connects the material nozzle 212 and the material supply device 1. Good. When detecting the presence or absence of contact between the pipe and the work W, the pipe and the material nozzle 212 (particularly, the portion of the material nozzle 212 that is electrically connected to the wiring 81c) are electrically connected. May be good.
  • FIG. 8 is a schematic view showing the structure of the fourth detection device 8d.
  • the same components as the components included in the third detection device 8c described above are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the fourth detection device 8d makes contact between the material nozzle 212 and the work W in that it detects information regarding the contact state between the contact member 84d arranged on the material nozzle 212 and the work W. It is different from the third detection device 8c that detects information about. That is, the fourth detection device 8d detects information on the relative positional relationship between the material nozzle 212 and the work W when a part of the fourth detection device 8d comes into contact with the work W. Other features of the fourth detection device 8d may be the same as those of the third detection device 8c.
  • the contact member 84d is a metal member.
  • the wiring 81c is electrically connected to the contact member 84d.
  • the contact member 84d is fixed to the material nozzle 212 via the support member 85d.
  • the contact member 84d may be aligned with respect to the material nozzle 212 so that the contact member 84d and the work W come into contact with each other when the material nozzle 212 and the work W come into contact with each other.
  • the contact member 84d may be aligned with respect to the material nozzle 212 so that the material nozzle 212 and the contact member 84d come into contact with the work W at the same time.
  • the contact member 84d may be aligned with respect to the material nozzle 212 so that the contact member 84d and the work W come into contact with each other before the material nozzle 212 and the work W come into contact with each other.
  • FIG. 8 shows an example in which the contact member 84d is aligned with respect to the material nozzle 212 so that the contact member 84d and the work W come into contact with each other before the material nozzle 212 and the work W come into contact with each other.
  • the fourth detection device 8d detects the presence or absence of contact between the contact member 84d and the work W.
  • the principle that the fourth detection device 8d detects the presence or absence of contact between the contact member 84d and the work W is the same as the principle that the third detection device 8c detects the presence or absence of contact between the material nozzle 212 and the work W. You may. That is, the fourth detection device 8d detects whether or not an electrically closed circuit is formed via the wiring 81c connected to the contact member 84d and the wiring 82c connected to the work W, thereby making contact. The presence or absence of contact between the member 84d and the work W may be detected.
  • the control device 7 specifies whether or not the material nozzle 212 and the work W are so close (or, in some cases, already in contact with each other) that the contact member 84d and the work W are in contact with each other. be able to.
  • the condition that the material nozzle 212 and the work W are close to each other (or, in some cases, already in contact with each other) so that the contact member 84d and the work W are in contact with each other is used as the above-mentioned approach condition.
  • You may. That is, the condition that the contact member 84d and the work W are in contact with each other may be used as the above-mentioned approach condition.
  • the contact member 84d is singular, but the fourth detection device may have a plurality of contact members 84d.
  • FIG. 8 is a schematic view showing the structure of the fifth detection device 8e.
  • the fifth detection device 8e optically detects information regarding the positional relationship between the material nozzle 212 and the work W. Specifically, the fifth detection device 8e detects information regarding the positional relationship between the material nozzle 212 and the work W using the detection light ML.
  • the fifth detection device 8e includes a light transmission system 81e and a light receiving system 82e in order to detect information regarding the positional relationship between the material nozzle 212 and the work W using the detection light ML.
  • Each of the light transmitting system 81e and the light receiving system 82e is arranged on the processing head 21. Therefore, the positional relationship between the processing head 21, the light transmitting system 81e, and the light receiving system 82e is fixed regardless of the movement of the processing head 21. That is, the positional relationship between each of the irradiation optical system 211 and the material nozzle 212 and each of the light transmission system 81e and the light receiving system 82e is fixed regardless of the movement of the processing head 21.
  • the light transmission system 81e emits the detection light ML.
  • the light transmission system 81e emits the detection light ML toward the work W.
  • the irradiation region LA of the detection light ML on the surface of the work W (for example, the modeling surface MS) is separated from the irradiation region EA of the processing light EL on the surface of the work W (for example, the modeling surface MS). , Aligned with the irradiation optical system 211.
  • the irradiation optical system 211 so that the irradiation region LA of the detection light ML is located at a position separated from the irradiation region EA of the processing light EL along at least one of the X-axis direction and the Y-axis direction. Aligned with.
  • the irradiation optical system 211 is located so that the irradiation region LA is located in front of the irradiation region EA along the moving direction of the processed light EL on the surface of the work W (for example, the modeling surface MS). It may be aligned with respect to.
  • the light transmission system 81e is attached to the irradiation optical system 211 so that the irradiation region LA is located behind the irradiation region EA along the moving direction of the processed light EL on the surface of the work W (for example, the modeling surface MS). It may be aligned with respect to it. Further, a plurality of irradiation region LAs of the detection light ML may be provided, and the irradiation region LA may be positioned in front of and behind the irradiation region EA along the moving direction of the processing light EL. In this case, there may be a plurality of fifth detection devices 8e. When there are a plurality of irradiation region LAs of the detection light ML, the plurality of irradiation region LAs may be switched and used according to the moving direction of the processing light EL.
  • the light receiving system 82e receives the detection light ML from the work W (that is, the detection light EL reflected by the work W). That is, the light receiving system 82e receives the detection light ML via the work W. The light receiving system 82e receives the detection light ML from the irradiation region LA. The light receiving result by the light receiving system 82e is output to the control device 7.
  • the control device 7 calculates the position of the irradiation region LA in the Z-axis direction based on the light receiving result by the light receiving system 82e. That is, the control device 7 calculates the position of the work W in the Z-axis direction (particularly, the position of the surface of the work W in the Z-axis direction) based on the light receiving result by the light receiving system 82e.
  • the information regarding the position of the work W in the Z-axis direction calculated based on the light receiving result by the light receiving system 82e is processed. It contains information about the position of the work W with respect to the head 21 in the Z-axis direction.
  • control device 7 obtains information on the relative positional relationship between the machining head 21 and the work W based on the information on the position of the work W in the Z-axis direction calculated based on the light receiving result by the light receiving system 82e. Can be calculated. As a result, the control device 7 can calculate information regarding the relative positional relationship between the material nozzle 212 and the work W.
  • FIG. 10 is a schematic view showing the structure of the sixth detection device 8f.
  • the sixth detection device 8f optically detects information regarding the positional relationship between the material nozzle 212 and the work W.
  • the sixth detection device 8f optically detects the information regarding the positional relationship between the material nozzle 212 and the work W by a method different from that of the fifth detection device 8e.
  • the sixth detection device 8f includes a camera (that is, an image pickup device) 81f.
  • the camera 81f captures the material nozzle 212.
  • the camera 81f images the nozzle member 2121 of the material nozzle 212 (particularly, the supply outlet 2123 at its tip).
  • the camera 81f is aligned with respect to the material nozzle 212 so that the imaging range 81f of the camera 81f includes at least a portion of the nozzle member 2121 (particularly, the supply outlet 2123 at the tip of the nozzle member 2121). There is. Further, the camera 81f captures the work W in addition to the material nozzle 212. Therefore, the camera 81f is aligned with respect to the material nozzle 212 so that the imaging range 81f of the camera 81f includes at least a part of the work W.
  • the image capture result of the camera 81f (that is, the image captured by the camera 81f) is output to the control device 7.
  • the control device 7 calculates information on the positional relationship between the material nozzle 212 and the work W based on the image captured by the camera 81f. As described above, the camera 81f captures both the material nozzle 212 and the work W. Therefore, the control device 7 can calculate information regarding the positional relationship between the material nozzle 212 and the work W by analyzing the image captured by the camera 81f.
  • the camera 81f as an example of the sixth detection device 8f may image the work W without imaging the nozzle member 2121.
  • the camera 81f may image the three-dimensional structure ST formed on the work W.
  • the control device 7 determines whether or not the dimensions of the three-dimensional structure ST are as designed, or whether or not there is an abnormality in the modeling process. Good. If the control device 7 is not (for example, if the dimensions of the three-dimensional structure ST are not as designed or there is an abnormality in the modeling process), the control device 7 may output warning information and stop the operation of the machining system SYS1. You may.
  • a plurality of sixth detection devices 8f may be provided.
  • a plurality of sixth detection devices 8f may be arranged so that the work W can be imaged from different directions.
  • each of the first detection device 8a to the sixth detection device 8f described above is only a specific example of the detection device 8. Therefore, it goes without saying that any detection device having a structure different from that of the first detection device 8a to the eighth detection device 8f may be used as the detection device 8.
  • a distance sensor capable of measuring the distance between the material nozzle 212 and the work W may be used as the detection device 8.
  • the distance sensor is arranged on the material nozzle 212, it may be arranged on a member (for example, work W or stage 31) different from the material nozzle 212.
  • a contact sensor capable of detecting the presence or absence of contact with an object may be used as the detection device 8.
  • the contact sensor is arranged on the material nozzle 212, but may be arranged on a member (for example, work W or stage 31) different from the material nozzle 212.
  • each of the first detection device 8a to the sixth detection device 8f described above has information on the distance between the material nozzle 212 and the work W, information on the positional relationship between the material nozzle 212 and the work W, or the material.
  • information on the distance between the material nozzle 212 and the 3D model ST, the material nozzle 212 and the 3D model Information on the positional relationship with the ST, or information on the degree of proximity between the material nozzle 212 and the three-dimensional modeled object ST may be detected (acquired).
  • the processing system SYS1 forms the three-dimensional structure ST on the work W based on the three-dimensional model data (for example, CAD (Computer Aided Design) data) of the three-dimensional structure ST to be formed.
  • the three-dimensional model data at least the measurement data of the three-dimensional object measured by the measuring device (not shown) provided in the processing system SYS1 and the measurement data of the three-dimensional shape measuring machine provided separately from the processing system SYS1.
  • One may be used.
  • An example of a three-dimensional shape measuring machine is a contact-type three-dimensional coordinate measuring machine having a probe that can move with respect to the work W and can contact the work W.
  • An example of a three-dimensional shape measuring machine is a non-contact type three-dimensional measuring machine.
  • a non-contact type 3D measuring machine As an example of a non-contact type 3D measuring machine, a pattern projection type 3D measuring machine, an optical cutting type 3D measuring machine, a time of flight type 3D measuring machine, and a moiretopography type 3D measuring machine , At least one of a holographic interference type three-dimensional measuring machine, a CT (Computed Tomography) type three-dimensional measuring machine, and an MRI (Magnetic resonance imaging) type three-dimensional measuring machine.
  • the three-dimensional model data includes, for example, STL (Stareo Lithografy) format, VRML (Virtual Reality Modeling Language) format, AMF (Adaptive Manufacturing File Format), and IGES (Initial Technology) IGES (Initial Technology) format.
  • the Automotive Manufactures-Surfaces Interface) format, HP / GL (Hewlett-Packard Graphics Language) format, bitmap format and the like can be used.
  • the processing system SYS1 sequentially forms, for example, a plurality of layered partial structures (hereinafter referred to as "structural layers") SLs arranged along the Z-axis direction.
  • structural layers layered partial structures
  • the processing system SYS1 sequentially forms a plurality of structural layers SL obtained by cutting the three-dimensional structure ST into round slices along the Z-axis direction.
  • the three-dimensional structure ST which is a laminated structure in which a plurality of structural layers SL are laminated, is formed.
  • the flow of the operation of forming the three-dimensional structure ST by forming the plurality of structural layers SL one by one in order will be described.
  • each structural layer SL Under the control of the control device 7, the processing system SYS1 sets an irradiation region EA in a desired region on the modeling surface MS corresponding to the surface of the work W or the surface of the formed structural layer SL, and the irradiation region EA is set with respect to the irradiation region EA.
  • the processing light EL is irradiated from the irradiation optical system 211.
  • the region occupied by the processed light EL emitted from the irradiation optical system 211 on the modeling surface MS may be referred to as an irradiation region EA.
  • the focus position (that is, the condensing position) of the processed light EL coincides with the modeling surface MS.
  • the molten pool (that is, the pool of metal melted by the processing light EL) MP is formed in the desired region on the modeling surface MS by the processing light EL emitted from the irradiation optical system 211. It is formed.
  • the processing system SYS1 sets a supply region MA in a desired region on the modeling surface MS under the control of the control device 7, and supplies the modeling material M to the supply region MA from the material nozzle 212.
  • the processing system SYS1 supplies the modeling material M from the material nozzle 212 to the molten pool MP.
  • the modeling material M supplied to the molten pool MP melts.
  • the processing light EL is not irradiated to the molten pool MP as the processing head 21 moves, the modeling material M melted in the molten pool MP is cooled and solidified (that is, solidified).
  • the solidified modeling material M is deposited on the modeling surface MS. That is, a modeled object is formed by the deposit of the solidified modeling material M.
  • a series of modeling processes including formation of the molten pool MP by irradiation with such processing light EL, supply of the modeling material M to the molten pool MP, melting of the supplied modeling material M, and solidification of the molten modeling material M can be performed.
  • the processing head 21 is repeatedly moved relative to the modeling surface MS along the XY plane. That is, when the processing head 21 moves relative to the modeling surface MS, the irradiation region EA also moves relative to the modeling surface MS. Therefore, a series of modeling processes is repeated while moving the irradiation region EA relative to the modeling surface MS along the XY plane (that is, in the two-dimensional plane).
  • the processed light EL is selectively irradiated to the irradiation region EA set in the region where the modeled object is to be formed on the modeled surface MS, but it is not desired to form the modeled object on the modeled surface MS.
  • the irradiation area EA set in the area is not selectively irradiated (it can be said that the irradiation area EA is not set in the area where the modeled object is not desired to be formed). That is, the processing system SYS1 moves the irradiation region EA along the predetermined movement locus on the modeling surface MS, and transfers the processing light EL to the modeling surface MS at a timing according to the distribution mode of the region where the modeled object is to be formed. Irradiate.
  • the mode of distribution of the region where the modeled object is to be formed may be referred to as a distribution pattern or a pattern of the structural layer SL.
  • the molten pool MP also moves on the modeling surface MS along the movement locus according to the movement locus of the irradiation region EA.
  • the molten pool MP is sequentially formed on the modeling surface MS in the portion of the region along the movement locus of the irradiation region EA that is irradiated with the processing light EL.
  • the supply region MA also moves on the modeling surface MS along the movement locus according to the movement locus of the irradiation region EA. Become.
  • a structural layer SL corresponding to an aggregate of the modeled objects made of the solidified modeling material M is formed on the modeling surface MS. That is, the structural layer SL corresponding to the aggregate of the shaped objects formed on the modeling surface MS in the pattern corresponding to the moving locus of the molten pool MP (that is, the shape corresponding to the moving locus of the molten pool MP in a plan view).
  • the structural layer SL) to have is formed.
  • the modeling material M is supplied to the irradiation region EL, and the irradiation region EL is irradiated with the processing light EL having a strength that does not allow the molten pool MP. You may.
  • the irradiation area EA is moved with respect to the modeling surface MS, but the modeling surface MS may be moved with respect to the irradiation area EA.
  • the processing system SYS1 repeatedly performs the operation for forming such a structural layer SL under the control of the control device 7 based on the three-dimensional model data. Specifically, first, the three-dimensional model data is sliced at a stacking pitch to create slice data. It should be noted that data obtained by partially modifying this slice data according to the characteristics of the processing system SYS1 may be used. The processing system SYS1 performs the operation for forming the first structural layer SL # 1 on the modeling surface MS corresponding to the surface of the work W, that is, the three-dimensional model data corresponding to the structural layer SL # 1, that is, the structural layer. This is performed based on the slice data corresponding to SL # 1.
  • the processing system SYS1 uses information on the tool path which is the locus of the irradiation region EA (supply region MA) passing through the region where the structural layer SL # 1 exists in the slice data corresponding to the structural layer SL # 1. May be operated. As a result, the structural layer SL # 1 is formed on the modeling surface MS as shown in FIG. 12A. After that, the processing system SYS1 sets the surface (that is, the upper surface) of the structural layer SL # 1 on the new modeling surface MS, and then forms the second structural layer SL # 2 on the new modeling surface MS. To do. In order to form the structural layer SL # 2, the control device 7 first controls the head drive system 22 so that the machining head 21 moves along the Z axis.
  • the control device 7 controls the head drive system 22 so that the irradiation region EA and the supply region MA are set on the surface of the structural layer SL # 1 (that is, the new modeling surface MS).
  • the machining head 21 is moved toward the + Z side.
  • the focus position of the processing light EL coincides with the new modeling surface MS.
  • the processing system SYS1 operates on the structural layer SL # 1 based on the slice data corresponding to the structural layer SL # 2 in the same operation as the operation of forming the structural layer SL # 1 under the control of the control device 7.
  • the structural layer SL # 2 is formed on the surface.
  • the structural layer SL # 2 is formed as shown in FIG. 12 (b).
  • the same operation is repeated until all the structural layers SL constituting the three-dimensional structure ST to be formed on the work W are formed.
  • the three-dimensional structure ST is formed by the laminated structure in which a plurality of structural layers SL are laminated.
  • the material nozzle 212 when a predetermined approach condition regarding the degree of approach between the material nozzle 212 (or an arbitrary detection object) and the work W (or an arbitrary approach object) is satisfied, the material nozzle 212 The relative position of the material nozzle 212 and the work W can be controlled so as to suppress the occurrence of an abnormality caused by the contact between the material nozzle and the work W. Therefore, the occurrence of an abnormality caused by the contact between the material nozzle 212 and the work W is appropriately suppressed. As a result, the machining system SYS1 can appropriately perform additional machining on the work W.
  • machining system SYS2 the machining system SYS of the second embodiment
  • the processing system SYS2 of the second embodiment is different from the processing system SYS1 of the first embodiment described above in that the shape of the material nozzle 212 (particularly, the outer shape of the nozzle member 2121) is different.
  • Other features of the processing system SYS2 may be the same as the processing system SYS1. Therefore, in the following, the nozzle member 2121e included in the processing system SYS2 of the second embodiment will be described with reference to FIG.
  • FIG. 13 is a cross-sectional view showing the structure of the nozzle member 2121e included in the processing system SYS2 of the second embodiment.
  • the nozzle member 2121e includes a main body member 21211e, a tip member 21212e, and a connecting member 21213e.
  • the main body member 21211e is a member fixed to the main body of the processing head 21 directly or via another member.
  • the tip member 21212e is a member located on the ⁇ Z side of the main body member 21211e in the direction in which the nozzle member 2121e extends (in the Z-axis direction in the example shown in FIG. 13).
  • the tip member 21212e is a member arranged at a position closer to the stage 31 than the main body member 21211e.
  • the tip member 21212e is a member arranged at a position closer to the work W held by the stage 31 than the main body member 21211e.
  • the tip member 21212e is a member that comes into contact with the work W before the main body member 21211e when the nozzle member 2121e and the work W come into contact with each other.
  • the tip member 21212e is a member that first comes into contact with the work W when the nozzle member 2121e and the work W come into contact with each other.
  • the connecting member 21213e is a member that connects the main body member 21211e and the tip member 21212e.
  • the connecting member 21213e is a member located on the ⁇ Z side of the main body member 21211e in the direction in which the nozzle member 2121e extends.
  • the connecting member 21213e is a member located on the + Z side of the tip member 21212e in the direction in which the nozzle member 2121e extends.
  • a supply pipe 21251e is formed inside the main body member 2121e along the direction in which the nozzle member 2121e extends.
  • a supply pipe 21252e is formed inside the tip member 2122e.
  • a supply pipe 21253e is formed inside the connecting member 2123e.
  • the supply pipe 21251e is connected to the supply pipe 21253e.
  • the supply pipe 21253e is connected to the supply pipe 21252e. Therefore, the supply pipes 21251e to 21253e form a series of supply pipes 2125e.
  • the modeling material M supplied from the material supply device 1 is supplied to the work W from the nozzle member 2121e via the supply pipe 2125e via the supply outlet 2123. Therefore, the pipe connecting the material supply device 1 and the nozzle member 2121e (that is, the pipe for supplying the modeling material M) is connected to the supply pipe 2125e (particularly, the supply pipe 21251e of the main body member 2151e).
  • the connecting member 21213e is a member that forms a notch 2124e between the main body member 21211e and the tip member 21212e.
  • the connecting member 21213e is the dimensions of the main body member 21211e and the tip member 21212e (for example, the dimensions in the direction in which the nozzle member 2121e intersects in the extending direction, and in the example shown in FIG. Includes parts with dimensions smaller than (dimensions in the direction). This portion constitutes the notch 2124e.
  • the notch 2124e may be referred to as a notch or a dent.
  • This notch 21214e is mainly used to separate the tip member 21212e from the main body member 21211e when an external force is applied to the tip member 21212e.
  • FIGS. 14 (a) to 14 (c) a state in which the tip member 21212e separates from the main body member 21211e when an external force is applied to the tip member 2122e will be described.
  • 14 (a) to 14 (c) are cross-sectional views showing how the tip member 21212e separates from the main body member 21211e when an external force is applied to the tip member 21212e.
  • the connecting member 21213e is deformed (typically plastically deformed). Further, when the degree of deformation of the connecting member 21213e exceeds the permissible amount due to the continuous application of an external force from the work W to the connecting member 21213e via the tip member 21212e, the connecting member 21213e breaks as shown in FIG. 14C. To do. As a result, the tip member 21212e connected to the main body member 21211e via the connecting member 21213e is separated from the main body member 21211e.
  • the tip member 21212e is separated from the main body member 21211e due to the external force applied to the tip member 21212e. Therefore, even if the nozzle member 2121e and the work W (or an arbitrary approaching object) come into contact with each other, the tip member 21212e is separated so that the nozzle member 2121e is in a state of being in contact with the work W. It changes to a state where it is not in contact with the work W.
  • the nozzle changes from a state in which it is in contact with the work W to a state in which it is not in contact with the work W. Therefore, as compared with the case where the tip member 21212e is not separated, there is a high possibility that the occurrence of an abnormality caused by the contact between the nozzle member 2121e and the work W can be suppressed. In particular, there is a high possibility that the occurrence of damage to the work W or the modeled object can be suppressed.
  • the processing system SYS2 does not have to include the detection device 8.
  • the processing system SYS2 does not have to control the relative position between the material nozzle 212 (or an arbitrary detection object) and the work W (or an arbitrary approach object) based on the detection result of the detection device 8. .. That is, the processing system SYS2 suppresses the occurrence of an abnormality caused by the contact between the material nozzle 212 (or an arbitrary detection object) and the work W (or an arbitrary approaching object) with the material nozzle 212 and the work. It is not necessary to control the relative position with W.
  • the material nozzle 212 is used as an example of the object to be detected.
  • the object to be detected may be an object different from the material nozzle 212.
  • the irradiation optical system 211 may be a detection target.
  • the detection device 8 may detect the relative positional relationship between the irradiation optical system 211 and the work W (or any other approaching object).
  • the processing system SYS1 establishes the irradiation optical system 211 and the work W (or other) when a predetermined approach condition regarding the degree of proximity between the irradiation optical system 211 and the work W (or any other approach object) is satisfied.
  • the relative position of the irradiation optical system 211 and the work W (or any other approaching object) may be controlled so as to suppress the occurrence of anomalies caused by contact with the arbitrary approaching object). ..
  • the irradiation optical system 211 includes an optical member 2111 and a holding member 2112.
  • the optical member 2111 may be a detection target.
  • the detection device 8 may detect the relative positional relationship between the optical member 2111 and the work W (or any other approaching object).
  • the processing system SYS1 establishes the optical member 2111 and the work W (or any other arbitrary object) when a predetermined approach condition regarding the degree of proximity between the optical member 2111 and the work W (or any other object of approach) is satisfied.
  • the relative position of the optical member 2111 and the work W (or any other approaching object) may be controlled so as to suppress the occurrence of an abnormality caused by the contact with the approaching object).
  • the holding member 2112 when the holding member 2112 is arranged closer to the work W than the optical member 2111, the holding member 2112 may be the object to be detected.
  • the detection device 8 may detect the relative positional relationship between the holding member 2112 and the work W (or any other approaching object).
  • the processing system SYS1 establishes the holding member 2112 and the work W (or any other optional object) when a predetermined approach condition regarding the degree of approach between the holding member 2112 and the work W (or any other object to be approached) is satisfied.
  • the relative position of the holding member 2112 and the work W (or any other approaching object) may be controlled so as to suppress the occurrence of an abnormality caused by the contact with the approaching object).
  • the holding member 2112 when the holding member 2112 and a part of the nozzle member 2121 are also used and the holding member 2112 is provided with the supply outlet 2123, the holding member 2112 is closer to the holding member 2112 than the supply outlet 2123.
  • the holding member 2112 may be the object to be detected.
  • each of the work W and the stage 31 is used as an example of the approaching object.
  • the approaching object may be an object different from the work W and the stage 31.
  • a member arranged around at least one of the work W and the stage 31 may be an approaching object.
  • the housing 6 (for example, the partition member 61) may be an object to be approached.
  • the processing device 2 melts the modeling material M by irradiating the modeling material M with the processing light EL.
  • the processing apparatus 2 may melt the modeling material M by irradiating the modeling material M with an arbitrary energy beam.
  • the processing device 2 may include a beam irradiation device capable of irradiating an arbitrary energy beam in addition to or in place of the irradiation optical system 211.
  • Any energy beam includes, but is not limited to, a charged particle beam such as an electron beam, an ion beam, or an electromagnetic wave.
  • the processing system SYS can form the three-dimensional structure ST by the laser overlay welding method.
  • the processing system SYS can form the three-dimensional structure ST from the modeling material M by another method capable of forming the three-dimensional structure ST by irradiating the modeling material M with the processing light EL (or an arbitrary energy beam). It may be formed.
  • Other methods include, for example, a powder bed melting bonding method (Power Bed Fusion) such as a powder sintering laminated molding method (SLS: Selective Laser Sintering), a binder jetting method (Binder Jetting), or a laser metal fusion method (LMF:). Laser Metal Fusion) can be mentioned.
  • the processing system SYS may use an arbitrary method for additional processing, which is different from the method capable of forming the three-dimensional structure ST by irradiating the modeling material M with the processing light EL (or an arbitrary energy beam).
  • the three-dimensional structure ST may be formed.
  • the processing system SYS forms the three-dimensional structure ST by supplying the modeling material M from the material nozzle 212 toward the irradiation region EA where the irradiation optical system 211 irradiates the processing light EL. ..
  • the processing system SYS may form the three-dimensional structure ST by supplying the modeling material M from the material nozzle 212 without irradiating the processing light EL from the irradiation optical system 211.
  • the processing system SYS melts the modeling material M on the modeling surface MS by spraying the modeling material M onto the modeling surface MS from the material nozzle 212, and solidifies the melted modeling material M.
  • the dimensional structure ST may be formed.
  • the processing system SYS melts the modeling material M on the modeling surface MS and solidifies the molten modeling material M by blowing a gas containing the modeling material M onto the modeling surface MS from the material nozzle 212 at an ultra-high speed.
  • the three-dimensional structure ST may be formed.
  • the processing system SYS melts the modeling material M on the modeling surface MS by spraying the heated modeling material M onto the modeling surface MS from the material nozzle 212, and solidifies the molten modeling material M.
  • the three-dimensional structure ST may be formed.
  • the processing system SYS (particularly, the processing head 21) does not have to include the irradiation optical system 211. Good.
  • the processing system SYS performs a removal processing capable of removing at least a part of the object by irradiating an object such as a work W with a processing light EL (or an arbitrary energy beam) in addition to or instead of the additional processing. You may.
  • the processing system SYS irradiates an object such as a work W with processing light EL (or an arbitrary energy beam) in addition to or in place of at least one of addition processing and removal processing to mark at least a part of the object. Marking processing capable of forming (for example, letters, numbers or figures) may be performed. Even in this case, the above-mentioned effects can be enjoyed.
  • a processing device that performs processing operations using an energy beam, A detection device that detects the degree of proximity of an object and a target member that is at least a part of the processing device, and A position changing device for changing the relative position between the object and the target member is provided.
  • the position changing device is a processing system that changes the relative position so as to avoid contact between the object and the target member when a predetermined approach condition regarding the degree of approach is satisfied.
  • Appendix 2 A processing device that performs processing operations using an energy beam, A detection device that detects the degree of proximity of an object and a target member that is at least a part of the processing device, and A position changing device for changing the relative position between the object and the target member is provided.
  • the position changing device is a processing system that limits an operation for changing the relative position in a direction in which the object and the target member approach each other when a predetermined approach condition regarding the degree of approach is satisfied.
  • Appendix 3 The processing system according to Appendix 1 or 2, wherein the approach condition includes a contact condition that the object and the target member come into contact with each other.
  • the approach condition is that although the object and the supply device are not in contact with each other, the object and the target member are so close to each other that the distance between the object and the target member is less than a predetermined value.
  • the processing system according to any one of Appendix 1 to 3, which includes contact conditions.
  • [Appendix 5] The processing according to any one of Appendix 1 to 4, wherein the position changing device changes the relative position so as to avoid further approaching the object and the target member when the approach condition is satisfied. system.
  • the position changing device changes the relative position so that the object and the target member are separated from each other when the approach condition is satisfied.
  • the position changing device is relative so as to reduce the possibility that an abnormal state of the object and / or the processing device occurs due to a collision between the object and the target member when the approach condition is satisfied.
  • Appendix 12 The processing system according to any one of Appendix 1 to 11, wherein at least a part of the processing apparatus is also used as at least a part of the detection apparatus.
  • Appendix 13 The processing system according to any one of Appendix 1 to 12, wherein at least a part of the target member is also used as at least a part of the detection device.
  • a processing device that performs processing operations using an energy beam, A detection device for detecting the degree of proximity between an object and a target member which is at least a part of the processing device is provided. A processing system in which at least a part of the target member is also used as at least a part of the detection device.
  • the detector includes a coil and an iron core. The processing system according to any one of Appendix 12 to 14, wherein at least a part of the target member is also used as the iron core.
  • Appendix 16 The processing system according to Appendix 15, wherein the coil is wound around at least a part of the target member that is also used as the iron core.
  • [Appendix 21] The processing system according to Appendix 20, wherein the target member includes at least a part of the supply device.
  • [Appendix 22] The processing system according to any one of Appendix 1 to 21, wherein the detection device can detect the presence or absence of contact between the object and the target member as the degree of approach.
  • [Appendix 23] The processing system according to any one of Appendix 1 to 22, wherein the detection device can detect an index value relating to a distance between the object and the target member as the degree of approach.
  • [Appendix 24] The processing system according to Appendix 23, wherein the detection device can detect an index value related to the distance during a period in which the object and the target member are not in contact with each other.
  • [Appendix 25] The processing system according to any one of Supplementary note 1 to 24, wherein the detection device detects the degree of proximity between the object and the target member without contacting the object.
  • [Appendix 26] The processing system according to Appendix 25, wherein the detection device includes a proximity sensor.
  • Appendix 27] The processing system according to any one of Appendix 1 to 26, wherein the detection device is arranged on the target member.
  • Appendix 28] The processing system according to any one of Appendix 1 to 27, wherein the detection device optically detects the position of the object.
  • the detection device images the object.
  • the processing apparatus irradiates the object to be processed with the energy beam to perform the processing operation on the object to be processed.
  • the irradiation device irradiates the object to be processed with the energy beam to perform the processing operation on the object to be processed. Further equipped with a mounting device on which the object to be processed is mounted, The processing system according to any one of Supplementary note 1 to 32, wherein the object includes the above-described device.
  • the target member includes a fixing member fixed to the processing apparatus, a non-fixing member not fixed to the processing apparatus, and a connecting member connecting the fixing member and the non-fixing member. The processing system according to any one of the above.
  • a processing device that performs processing operations using an energy beam, A position changing device for changing the relative position between the object and the target member which is at least a part of the processing device is provided.
  • the target member is a processing system including a fixing member fixed to the processing apparatus, a non-fixing member not fixed to the processing apparatus, and a connecting member connecting the fixing member and the non-fixing member.
  • Appendix 36 The processing system according to Appendix 34 or 35, wherein the connecting member forms a notch between the fixed member and the non-fixed member.
  • the connecting member can be broken due to stress applied to the connecting member from the outside of the target member via the non-fixing member.
  • a processing device that performs processing operations using an energy beam, A detection device that detects the degree of proximity of an object and a target member that is at least a part of the processing device, and A position changing device that changes the relative position between the object and the target member, When a predetermined approach condition regarding the degree of approach is satisfied, a control signal for controlling the position change device is received so as to perform the relative position change operation for avoiding contact between the object and the target member.
  • a processing system equipped with a receiver.
  • a processing device that performs processing operations using an energy beam, A detection device that detects the degree of proximity of an object and a target member that is at least a part of the processing device, and A position changing device that changes the relative position between the object and the target member, When a predetermined approach condition regarding the degree of approach is satisfied, a control signal for prohibiting execution of an operation for changing the relative position of the object and the target member in a direction in which the object and the target member approach each other is transmitted.
  • Appendix 42 In a processing system that performs additional processing on an object A powder supply member that supplies powder to the object from the powder supply port, A sensor for acquiring relative position information between the powder supply member and the object is provided.
  • the member provided with the powder supply port extends in the first direction and includes a first portion and a second portion of the first portion located on the first direction side.
  • Appendix 43 A processing method for processing an object to be processed by using the processing system according to any one of Appendix 1 to 42.
  • [Appendix 44] Detecting the degree of proximity between an object and a target member, which is at least a part of the processing equipment, A processing method including changing the relative position between the object and the target member so as to avoid contact between the object and the target member when a predetermined approach condition regarding the degree of approach is satisfied.
  • [Appendix 45] Detecting the degree of proximity between an object and a target member, which is at least a part of the processing equipment, When a predetermined approach condition regarding the degree of approach is satisfied, it is prohibited to execute an operation for changing the relative position of the object and the target member in a direction in which the object and the target member approach each other. Processing method including.
  • [Appendix 46] In a processing method in which an object is processed using an energy beam, Supplying powder to the object from the powder supply port Irradiating the object with the energy beam and A processing method including acquiring relative position information between a member provided with the powder supply port and the object.
  • [Appendix 47] In a processing method in which an object is processed using an energy beam, Supplying powder to the object from the powder supply port Irradiating the object with the energy beam and Including the acquisition of relative position information between the member provided with the powder supply port and the object.
  • the member provided with the powder supply port extends in the first direction and includes a first portion and a second portion of the first portion located on the first direction side.
  • Appendix 49 In the processing method of performing additional processing on an object Supplying powder to the object from the powder supply port Including the acquisition of relative position information between the member provided with the powder supply port and the object.
  • the member provided with the powder supply port extends in the first direction and includes a first portion and a second portion of the first portion located on the first direction side.
  • Appendix 50 A computer program that causes a computer to execute the processing method according to any one of Appendix 43 to 49.
  • Appendix 51 Detecting the degree of proximity between an object and a target member, which is at least a part of the processing equipment, When a predetermined approach condition regarding the degree of approach is satisfied, the computer is provided with a processing method including changing the relative position between the object and the target member so as to avoid contact between the object and the target member. A computer program to run.
  • Appendix 52 Detecting the degree of proximity between an object and a target member, which is at least a part of the processing equipment, When a predetermined approach condition regarding the degree of approach is satisfied, it is prohibited to execute an operation for changing the relative position of the object and the target member in a direction in which the object and the target member approach each other.
  • a computer program that causes a computer to execute the processing method including it.
  • Appendix 53 A recording medium on which the computer program according to any one of Appendix 50 to 52 is recorded.
  • a processing device that performs a processing operation using an energy beam, a detection device that detects the degree of proximity between an object and a target member that is at least a part of the processing device, and a relative position between the object and the target member.
  • a control device that controls a machining system including a position changing device to be changed.
  • a control device that controls the position changing device so as to perform the relative position changing operation for avoiding contact between the object and the target member when a predetermined approach condition regarding the degree of approach is satisfied.
  • a processing device that performs a processing operation using an energy beam, a detection device that detects the degree of proximity between an object and a target member that is at least a part of the processing device, and a relative position between the object and the target member.
  • a control device that controls a machining system including a position changing device to be changed. When a predetermined approach condition regarding the degree of approach is satisfied, control is performed to prohibit execution of an operation for changing the relative position of the object and the target member in a direction in which the object and the target member approach each other. Control device.
  • a control device that controls a processing system that processes an object using an energy beam
  • the processing system is a relative of a powder supply member that supplies powder to the object from a powder supply port, an irradiation optical system that irradiates the object with an energy beam, and the powder supply member and the object. It is provided with a sensor for acquiring various position information and a position change device for changing the positional relationship between the object and the member.
  • the control device is a control device that controls a change operation of the positional relationship by the position change device by using an output from the sensor.
  • a control device that controls a processing system that processes an object using an energy beam
  • the processing system is a relative of a powder supply member that supplies powder to the object from a powder supply port, an irradiation optical system that irradiates the object with the energy beam, and the powder supply member and the object.
  • a sensor for acquiring various position information and a position change device for changing the positional relationship between the object and the member are provided.
  • the member provided with the powder supply port extends in the first direction and includes a first portion and a second portion of the first portion located on the first direction side. The dimensions of the second portion along the second direction intersecting the first direction are smaller than the dimensions of the first portion along the second direction.
  • the control device is a control device that controls a change operation of the positional relationship by the position change device by using an output from the sensor.
  • the present invention is not limited to the above-described embodiment, and can be appropriately modified within the scope of claims and within a range not contrary to the gist or idea of the invention that can be read from the entire specification, and a processing system accompanied by such modification. Processing methods, computer programs, recording media, receiving devices and control devices are also included in the technical scope of the present invention.
  • SYSTEM processing system 1 Material supply device 2 Processing device 21 Processing head 211 Irradiation optical system 212 Material nozzle 22 Head drive system 31 Stage W work M Modeling material SL Structural layer MS Modeling surface EA Irradiation area MA Supply area MP Molten pond EL processing light

Abstract

A processing system that uses an energy beam to carry out a processing operation on an object, equipped with: a powder supply member for supplying a powder to the object from a powder supply opening; an irradiation optical system for irradiating the object with an energy beam; and a sensor for acquiring relative position information for the power supply member and the object.

Description

加工システムProcessing system
 本発明は、例えば、加工動作を行うための加工システムの技術分野に関する。 The present invention relates to, for example, the technical field of a processing system for performing a processing operation.
 特許文献1には、粉状の材料をエネルギビームで溶融した後に、溶融した材料を固化させることで造形物を形成する加工動作を行う加工システムが記載されている。このような加工システムでは、加工動作を行うために用いられる部材と他の物体との接触に起因した異常の発生を抑制することが技術的課題となる。 Patent Document 1 describes a processing system that performs a processing operation of forming a modeled object by melting a powdery material with an energy beam and then solidifying the melted material. In such a processing system, it is a technical problem to suppress the occurrence of an abnormality caused by contact between a member used for performing a processing operation and another object.
米国特許出願公開第2017/014909号明細書U.S. Patent Application Publication No. 2017/014909
 第1の態様によれば、エネルギビームを用いて物体に対して加工動作を行う加工システムにおいて、前記物体に粉体供給口から粉体を供給する粉体供給部材と、前記エネルギビームを前記物体に照射する照射光学系と、前記粉体供給部材と前記物体との相対的な位置情報を取得するセンサと備える加工システムが提供される。 According to the first aspect, in a processing system that performs a processing operation on an object using an energy beam, a powder supply member that supplies powder to the object from a powder supply port and the energy beam are used for the object. A processing system including an irradiation optical system for irradiating an object and a sensor for acquiring relative position information between the powder supply member and the object is provided.
 第2の態様によれば、エネルギビームを用いて物体の加工動作を行う加工システムにおいて、粉体供給口から前記物体に粉体を供給する粉体供給部材と、前記エネルギビームを前記物体に照射する照射光学系と、前記粉体供給部材と前記物体との相対的な位置情報を取得するセンサとを備え、前記粉体供給口が設けられた部材は、第1方向に伸びており、第1部分と、前記第1部分の前記第1方向側に位置する第2部分とを備え、前記第1方向と交差する第2方向に沿った前記第2部分の寸法は、前記第2方向に沿った前記第1部分の寸法よりも小さい加工システムが提供される。 According to the second aspect, in a processing system that processes an object using an energy beam, a powder supply member that supplies powder to the object from a powder supply port and the energy beam irradiate the object. The member provided with the irradiation optical system and the sensor for acquiring the relative position information between the powder supply member and the object, and the powder supply port is provided, extends in the first direction and has a first position. The dimension of the second part along the second direction intersecting with the first direction, including one part and the second part located on the first direction side of the first part, is in the second direction. A machining system that is smaller than the size of the first portion along the line is provided.
 本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。 The actions and other gains of the present invention will be clarified from the embodiments described below.
図1は、第1実施形態の加工システムの構造を示す断面図である。FIG. 1 is a cross-sectional view showing the structure of the processing system of the first embodiment. 図2は、第1実施形態の加工システムのシステム構成を示すシステム構成図である。FIG. 2 is a system configuration diagram showing a system configuration of the processing system of the first embodiment. 図3は、第1の検出装置の構造を示す模式図である。FIG. 3 is a schematic view showing the structure of the first detection device. 図4(a)及び図4(b)のそれぞれは、第1の検出装置による検出原理を示す模式図である。Each of FIG. 4A and FIG. 4B is a schematic diagram showing a detection principle by the first detection device. 図5は、第2の検出装置の構造を示す模式図である。FIG. 5 is a schematic view showing the structure of the second detection device. 図6は、第3の検出装置の構造を示す模式図である。FIG. 6 is a schematic view showing the structure of the third detection device. 図7は、第3の検出装置の構造を示す模式図である。FIG. 7 is a schematic view showing the structure of the third detection device. 図8は、第4の検出装置の構造を示す模式図である。FIG. 8 is a schematic view showing the structure of the fourth detection device. 図9は、第5の検出装置の構造を示す模式図である。FIG. 9 is a schematic view showing the structure of the fifth detection device. 図10は、第6の検出装置の構造を示す模式図である。FIG. 10 is a schematic view showing the structure of the sixth detection device. 図11(a)から図11(e)のそれぞれは、ワーク上のある領域において光を照射し且つ造形材料を供給した場合の様子を示す断面図である。Each of FIGS. 11 (a) to 11 (e) is a cross-sectional view showing a state in which light is irradiated and a modeling material is supplied in a certain region on the work. 図12(a)から図12(c)のそれぞれは、3次元構造物を形成する過程を示す断面図である。Each of FIGS. 12 (a) to 12 (c) is a cross-sectional view showing a process of forming a three-dimensional structure. 図13は、第2実施形態の加工システムが備えるノズル部材の構造を示す断面図である。FIG. 13 is a cross-sectional view showing the structure of the nozzle member included in the processing system of the second embodiment. 図14(a)から図14(c)のそれぞれは、先端部材に応力が加わった際に先端部材が本体部材から分離する様子を示す断面図である。Each of FIGS. 14 (a) to 14 (c) is a cross-sectional view showing how the tip member separates from the main body member when stress is applied to the tip member. 図15は、ノズル部材の変形例を示す模式図である。FIG. 15 is a schematic view showing a modified example of the nozzle member.
 以下、図面を参照しながら、加工システムの実施形態について説明する。以下では、物体の一例であるワークWに付加加工を行う加工システムSYSを用いて、加工システムの実施形態を説明する。特に、以下では、レーザ肉盛溶接法(LMD:Laser Metal Deposition)に基づく付加加工を行う加工システムSYSを用いて、加工システムの実施形態を説明する。レーザ肉盛溶接法に基づく付加加工は、ワークWに供給した造形材料Mを加工光ELで溶融することで、ワークWと一体化された又はワークWから分離可能な3次元構造物STを形成する付加加工である。尚、レーザ肉盛溶接法(LMD)は、ダイレクト・メタル・デポジション、ディレクテッド・エナジー・デポジション、レーザクラッディング、レーザ・エンジニアード・ネット・シェイピング、ダイレクト・ライト・ファブリケーション、レーザ・コンソリデーション、シェイプ・デポジション・マニュファクチャリング、ワイヤ-フィード・レーザ・デポジション、ガス・スルー・ワイヤ、レーザ・パウダー・フージョン、レーザ・メタル・フォーミング、セレクティブ・レーザ・パウダー・リメルティング、レーザ・ダイレクト・キャスティング、レーザ・パウダー・デポジション、レーザ・アディティブ・マニュファクチャリング、レーザ・ラピッド・フォーミングと称してもよい。 Hereinafter, embodiments of the processing system will be described with reference to the drawings. Hereinafter, an embodiment of the processing system will be described using the processing system SYS that performs additional processing on the work W, which is an example of an object. In particular, in the following, an embodiment of the processing system will be described using the processing system SYS that performs additional processing based on the laser overlay welding method (LMD: Laser Metal Deposition). In the addition processing based on the laser overlay welding method, the modeling material M supplied to the work W is melted by the processing light EL to form a three-dimensional structure ST integrated with or separable from the work W. It is an additional process to be performed. The laser overlay welding method (LMD) includes direct metal deposition, directed energy deposition, laser cladding, laser engineered net shaping, direct light fabrication, and laser consolidation. Foundation, Shape Deposition Manufacturing, Wire-Feed Laser Deposition, Gas Through Wire, Laser Powder Fusion, Laser Metal Forming, Selective Laser Powder Remelting, Laser Direct -It may also be called casting, laser powder deposition, laser additive manufacturing, or laser rapid forming.
 また、以下の説明では、互いに直交するX軸、Y軸及びZ軸から定義されるXYZ直交座標系を用いて、加工システムSYSを構成する各種構成要素の位置関係について説明する。尚、以下の説明では、説明の便宜上、X軸方向及びY軸方向のそれぞれが水平方向(つまり、水平面内の所定方向)であり、Z軸方向が鉛直方向(つまり、水平面に直交する方向であり、実質的には上下方向)であるものとする。また、X軸、Y軸及びZ軸周りの回転方向(言い換えれば、傾斜方向)を、それぞれ、θX方向、θY方向及びθZ方向と称する。ここで、Z軸方向を重力方向としてもよい。また、XY平面を水平方向としてもよい。 Further, in the following description, the positional relationship of various components constituting the processing system SYS will be described using the XYZ Cartesian coordinate system defined from the X-axis, the Y-axis, and the Z-axis which are orthogonal to each other. In the following description, for convenience of explanation, each of the X-axis direction and the Y-axis direction is a horizontal direction (that is, a predetermined direction in the horizontal plane), and the Z-axis direction is a vertical direction (that is, a direction orthogonal to the horizontal plane). Yes, in effect, in the vertical direction). Further, the rotation directions (in other words, the inclination direction) around the X-axis, the Y-axis, and the Z-axis are referred to as the θX direction, the θY direction, and the θZ direction, respectively. Here, the Z-axis direction may be the direction of gravity. Further, the XY plane may be horizontal.
 (1)第1実施形態の加工システムSYS1
 初めに、第1実施形態の加工システムSYS(以降、第1実施形態の加工システムSYSを、“加工システムSYS1”と称する)について説明する。
(1) Machining system SYS1 of the first embodiment
First, the machining system SYS of the first embodiment (hereinafter, the machining system SYS of the first embodiment will be referred to as "machining system SYS1") will be described.
 (1-1)第1実施形態の加工システムSYS1の構造
 初めに、図1及び図2を参照しながら、第1実施形態の加工システムSYS1の構造について説明する。図1は、第1実施形態の加工システムSYS1の構造の一例を示す断面図である。図2は、第1実施形態の加工システムSYS1のシステム構成の一例を示すシステム構成図である。
(1-1) Structure of the Machining System SYSTEM of the First Embodiment First, the structure of the machining system SYS1 of the first embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a cross-sectional view showing an example of the structure of the processing system SYS1 of the first embodiment. FIG. 2 is a system configuration diagram showing an example of the system configuration of the processing system SYS1 of the first embodiment.
 加工システムSYS1は、3次元構造物ST(つまり、3次元方向のいずれの方向においても大きさを持つ3次元の物体であり、立体物)を形成可能である。加工システムSYS1は、3次元構造物STを形成するための基礎となるワークW上に、3次元構造物STを形成可能である。加工システムSYS1は、ワークWに付加加工を行うことで、3次元構造物STを形成可能である。ワークWが後述するステージ31である場合には、加工システムSYS1は、ステージ31上に、3次元構造物STを形成可能である。ワークWがステージ31によって保持されている(或いは、ステージ31に載置されている)既存構造物である場合には、加工システムSYS1は、既存構造物上に、3次元構造物STを形成可能である。この場合、加工システムSYS1は、既存構造物と一体化された3次元構造物STを形成してもよい。既存構造物と一体化された3次元構造物STを形成する動作は、既存構造物に新たな構造物を付加する動作と等価である。或いは、加工システムSYS1は、既存構造物と分離可能な3次元構造物STを形成してもよい。尚、図1は、ワークWが、ステージ31によって保持されている既存構造物である例を示している。また、以下でも、ワークWがステージ31によって保持されている既存構造物である例を用いて説明を進める。 The processing system SYS1 can form a three-dimensional structure ST (that is, a three-dimensional object having a size in any of the three-dimensional directions and a three-dimensional object). The processing system SYS1 can form the three-dimensional structure ST on the work W that is the basis for forming the three-dimensional structure ST. The processing system SYS1 can form a three-dimensional structure ST by performing additional processing on the work W. When the work W is the stage 31, which will be described later, the machining system SYS1 can form the three-dimensional structure ST on the stage 31. When the work W is an existing structure held by the stage 31 (or placed on the stage 31), the processing system SYS1 can form the three-dimensional structure ST on the existing structure. Is. In this case, the processing system SYS1 may form a three-dimensional structure ST integrated with the existing structure. The operation of forming the three-dimensional structure ST integrated with the existing structure is equivalent to the operation of adding a new structure to the existing structure. Alternatively, the processing system SYS1 may form a three-dimensional structure ST separable from the existing structure. Note that FIG. 1 shows an example in which the work W is an existing structure held by the stage 31. Further, in the following, the description will proceed with reference to an example in which the work W is an existing structure held by the stage 31.
 上述したように、加工システムSYS1は、レーザ肉盛溶接法により3次元構造物STを形成可能である。つまり、加工システムSYS1は、積層造形技術を用いて物体を形成する3Dプリンタであるとも言える。尚、積層造形技術は、ラピッドプロトタイピング(Rapid Prototyping)、ラピッドマニュファクチャリング(Rapid Manufacturing)、又は、アディティブマニュファクチャリング(Additive Manufacturing)とも称される。 As described above, the processing system SYS1 can form the three-dimensional structure ST by the laser overlay welding method. That is, it can be said that the processing system SYS1 is a 3D printer that forms an object by using the laminated modeling technique. The laminated modeling technique is also referred to as rapid prototyping, rapid manufacturing, or additive manufacturing.
 3次元構造物STを形成するために、加工システムSYS1は、図1及び図2に示すように、材料供給装置1と、加工装置2と、ステージ装置3と、光源4と、ガス供給装置5と、筐体6と、制御装置7と、検出装置8とを備える。加工装置2とステージ装置3とのそれぞれの少なくとも一部は、筐体6の内部のチャンバ空間63IN内に収容されている。 In order to form the three-dimensional structure ST, the processing system SYS1 has a material supply device 1, a processing device 2, a stage device 3, a light source 4, and a gas supply device 5, as shown in FIGS. 1 and 2. , A housing 6, a control device 7, and a detection device 8. At least a part of each of the processing device 2 and the stage device 3 is housed in the chamber space 63IN inside the housing 6.
 材料供給装置1は、加工装置2に造形材料Mを供給する。材料供給装置1は、加工装置2が3次元構造物STを形成するために単位時間あたりに必要とする分量の造形材料Mが加工装置2に供給されるように、当該必要な分量に応じた所望量の造形材料Mを供給する。 The material supply device 1 supplies the modeling material M to the processing device 2. The material supply device 1 corresponds to the required amount so that the modeling material M required per unit time for the processing device 2 to form the three-dimensional structure ST is supplied to the processing device 2. A desired amount of modeling material M is supplied.
 造形材料Mは、所定強度以上の加工光ELの照射によって溶融可能な材料である。このような造形材料Mとして、例えば、金属材料及び樹脂材料の少なくとも一方が使用可能である。但し、造形材料Mとして、金属材料及び樹脂材料とは異なるその他の材料が用いられてもよい。造形材料Mは、粉状の材料である。つまり、造形材料Mは、粉体である。粉体は、粉状の材料に加えて、粒状の材料を含んでいてもよい。造形材料Mは、例えば、90マイクロメートル±40マイクロメートルの範囲に収まる粒径の粉体を含んでいてもよい。造形材料Mを構成する粉体の平均粒径は、例えば、75マイクロメートルであってもよいし、その他のサイズであってもよい。但し、造形材料Mは、粉体でなくてもよく、例えばワイヤ状の造形材料やガス状の造形材料が用いられてもよい。尚、加工システムSYS1は、造形材料Mを荷電粒子線等のエネルギビームで加工して造形物を形成してもよい。 The modeling material M is a material that can be melted by irradiation with a processing light EL having a predetermined intensity or higher. As such a modeling material M, for example, at least one of a metal material and a resin material can be used. However, as the modeling material M, other materials different from the metal material and the resin material may be used. The modeling material M is a powdery material. That is, the modeling material M is a powder. The powder may contain a granular material in addition to the powdery material. The modeling material M may contain, for example, a powder having a particle size within the range of 90 micrometers ± 40 micrometers. The average particle size of the powder constituting the modeling material M may be, for example, 75 micrometers or any other size. However, the modeling material M does not have to be powder, and for example, a wire-shaped modeling material or a gaseous modeling material may be used. The processing system SYS1 may process the modeling material M with an energy beam such as a charged particle beam to form a modeled object.
 加工装置2は、材料供給装置1から供給される造形材料Mを用いて3次元構造物STを形成する。造形材料Mを用いて3次元構造物STを形成するために、加工装置2は、加工ヘッド21と、ヘッド駆動系22とを備える。更に、加工ヘッド21は、照射光学系211と、材料ノズル(つまり造形材料Mを供給する供給系)212とを備えている。加工ヘッド21と、ヘッド駆動系22とは、チャンバ空間63IN内に収容されている。但し、加工ヘッド21及び/又はヘッド駆動系22の少なくとも一部が、筐体6の外部の空間である外部空間64OUTに配置されていてもよい。尚、外部空間64OUTは、加工システムSYS1のオペレータが立ち入り可能な空間であってもよい。 The processing device 2 forms the three-dimensional structure ST using the modeling material M supplied from the material supply device 1. In order to form the three-dimensional structure ST using the modeling material M, the processing apparatus 2 includes a processing head 21 and a head drive system 22. Further, the processing head 21 includes an irradiation optical system 211 and a material nozzle (that is, a supply system for supplying the modeling material M) 212. The processing head 21 and the head drive system 22 are housed in the chamber space 63IN. However, at least a part of the processing head 21 and / or the head drive system 22 may be arranged in the external space 64OUT, which is the space outside the housing 6. The external space 64OUT may be a space accessible to the operator of the processing system SYS1.
 照射光学系211は、加工光ELを射出するための光学系(例えば、集光光学系)である。加工光ELを発する光源4と、光ファイバやライトパイプ等の不図示の光伝送部材を介して光学的に接続されている。照射光学系211は、光伝送部材を介して光源4から伝搬してくる加工光ELを射出する。照射光学系211は、加工光ELがチャンバ空間63INを進むように加工光ELを射出する。照射光学系211は、照射光学系211から下方(つまり、-Z側)に向けて加工光ELを照射する。照射光学系211の下方には、ステージ31が配置されている。ステージ31にワークWが載置されている場合には、照射光学系211は、ワークWに向けて加工光ELを照射する。具体的には、照射光学系211は、加工光ELが照射される(典型的には、集光される)領域としてワークW上に設定される照射領域EAに加工光ELを照射可能である。更に、照射光学系211の状態は、制御装置7の制御下で、照射領域EAに加工光ELを照射する状態と、照射領域EAに加工光ELを照射しない状態との間で切替可能である。尚、照射光学系211から射出される加工光ELの方向は真下(つまり、-Z軸方向と一致)には限定されず、例えば、Z軸に対して所定の角度だけ傾いた方向であってもよい。 The irradiation optical system 211 is an optical system (for example, a condensing optical system) for emitting processed light EL. It is optically connected to the light source 4 that emits the processed light EL via an optical transmission member (not shown) such as an optical fiber or a light pipe. The irradiation optical system 211 emits processed light EL propagating from the light source 4 via the optical transmission member. The irradiation optical system 211 emits the processing light EL so that the processing light EL advances in the chamber space 63IN. The irradiation optical system 211 irradiates the processed light EL downward (that is, the −Z side) from the irradiation optical system 211. A stage 31 is arranged below the irradiation optical system 211. When the work W is placed on the stage 31, the irradiation optical system 211 irradiates the work W with the processing light EL. Specifically, the irradiation optical system 211 can irradiate the irradiation area EA set on the work W as the area where the processing light EL is irradiated (typically, the light is focused). .. Further, the state of the irradiation optical system 211 can be switched between a state in which the irradiation area EA is irradiated with the processing light EL and a state in which the irradiation area EA is not irradiated with the processing light EL under the control of the control device 7. .. The direction of the processed light EL emitted from the irradiation optical system 211 is not limited to directly below (that is, coincident with the −Z axis direction), and is, for example, a direction inclined by a predetermined angle with respect to the Z axis. May be good.
 照射光学系211は、加工光ELの光路に沿って最もワークW側(つまり、ステージ側)に位置する光学部材2111を備える。最もワークW側に位置する光学部材2111を終端光学部材又は最終光学部材と称してもよい。照射光学系211は、光学部材2111を介して加工光ELをワークWに照射する。照射光学系211は更に、光学部材2111を保持する保持部材2112を備える。保持部材2112は、光学部材2111を保持可能な位置に配置される。例えば、保持部材2112は、光学部材2111の周囲に配置されていてもよい。例えば、保持部材2112は、光学部材2111を介した加工光ELの光路の周囲に配置されていてもよい。光学部材2111は、保持部材2112よりもワークW側に配置される。但し、保持部材2112が、光学部材2111よりもワークW側に配置されていてもよい。 The irradiation optical system 211 includes an optical member 2111 located closest to the work W side (that is, the stage side) along the optical path of the processed light EL. The optical member 2111 located closest to the work W side may be referred to as a terminal optical member or a final optical member. The irradiation optical system 211 irradiates the work W with the processing light EL via the optical member 2111. The irradiation optical system 211 further includes a holding member 2112 that holds the optical member 2111. The holding member 2112 is arranged at a position where the optical member 2111 can be held. For example, the holding member 2112 may be arranged around the optical member 2111. For example, the holding member 2112 may be arranged around the optical path of the processed optical EL via the optical member 2111. The optical member 2111 is arranged on the work W side with respect to the holding member 2112. However, the holding member 2112 may be arranged on the work W side with respect to the optical member 2111.
 材料ノズル212は、造形材料Mを供給するノズル部材2121を備える。ノズル部材2121は、一の方向に延びる部材である。例えば、ノズル部材2121は、内部に造形材料Mが通過するための一の方向に延びた中空空間が形成された筒状の部材である。材料ノズル212は、ノズル部材2121を保持する保持部材2122を備える。但し、材料ノズル212は、保持部材2122を備えていなくてもよい。材料ノズル212は、ノズル部材2121に形成された供給アウトレット2123から造形材料Mを供給する(例えば、噴射する、噴出する、又は、吹き付ける)。材料ノズル212は、造形材料Mの供給源である材料供給装置1と、不図示のパイプ等を介して物理的に接続されている。材料ノズル212は、パイプを介して材料供給装置1から供給される造形材料Mを供給する。材料ノズル212は、パイプを介して材料供給装置1から供給される造形材料Mを圧送してもよい。即ち、材料供給装置1からの造形材料Mと搬送用の気体(例えば、窒素やアルゴン等の不活性ガス)とを混合してパイプを介して材料ノズル212に圧送してもよい。この場合、搬送用の気体として、例えば、ガス供給装置5から供給されるパージガスが用いられてもよい。尚、図1において材料ノズル212は、チューブ状に描かれているが、材料ノズル212の形状は、この形状に限定されない。材料ノズル212は、チャンバ空間63INに向けて造形材料Mを供給する。材料ノズル212は、材料ノズル212から下方(つまり、-Z側)に向けて造形材料Mを供給する。材料ノズル212の下方には、ステージ31が配置されている。ステージ31にワークWが搭載されている場合には、材料ノズル212は、ワークWに向けて造形材料Mを供給する。尚、材料ノズル212から供給される造形材料Mの進行方向はZ軸方向に対して所定の角度(一例として鋭角)だけ傾いた方向であるが、-Z側(つまり、真下)であってもよい。 The material nozzle 212 includes a nozzle member 2121 that supplies the modeling material M. The nozzle member 2121 is a member extending in one direction. For example, the nozzle member 2121 is a tubular member in which a hollow space extending in one direction for the modeling material M to pass through is formed. The material nozzle 212 includes a holding member 2122 that holds the nozzle member 2121. However, the material nozzle 212 does not have to include the holding member 2122. The material nozzle 212 supplies the modeling material M from the supply outlet 2123 formed on the nozzle member 2121 (for example, spraying, ejecting, or spraying). The material nozzle 212 is physically connected to the material supply device 1 which is a supply source of the modeling material M via a pipe (not shown) or the like. The material nozzle 212 supplies the modeling material M supplied from the material supply device 1 via the pipe. The material nozzle 212 may pump the modeling material M supplied from the material supply device 1 via a pipe. That is, the modeling material M from the material supply device 1 and a gas for transportation (for example, an inert gas such as nitrogen or argon) may be mixed and pumped to the material nozzle 212 via a pipe. In this case, for example, the purge gas supplied from the gas supply device 5 may be used as the transport gas. Although the material nozzle 212 is drawn in a tubular shape in FIG. 1, the shape of the material nozzle 212 is not limited to this shape. The material nozzle 212 supplies the modeling material M toward the chamber space 63IN. The material nozzle 212 supplies the modeling material M downward (that is, the −Z side) from the material nozzle 212. A stage 31 is arranged below the material nozzle 212. When the work W is mounted on the stage 31, the material nozzle 212 supplies the modeling material M toward the work W. The traveling direction of the modeling material M supplied from the material nozzle 212 is a direction inclined by a predetermined angle (an acute angle as an example) with respect to the Z-axis direction, but even if it is on the −Z side (that is, directly below). Good.
 第1実施形態では、材料ノズル212は、照射光学系211が加工光ELを照射する照射領域EAに向けて造形材料Mを供給するように、照射光学系211に対して位置合わせされている。つまり、材料ノズル212が造形材料Mを供給する領域としてワークW上に設定される供給領域MAと照射領域EAとが一致する(或いは、少なくとも部分的に重複する)ように、材料ノズル212と照射光学系211とが位置合わせされている。尚、照射光学系211から射出された加工光ELによって形成される溶融池MPに、材料ノズル212が造形材料Mを供給するように位置合わせされていてもよい。 In the first embodiment, the material nozzle 212 is aligned with the irradiation optical system 211 so that the irradiation optical system 211 supplies the modeling material M toward the irradiation region EA on which the processing light EL is irradiated. That is, the material nozzle 212 and the irradiation region 212 are irradiated so that the supply region MA and the irradiation region EA set on the work W as the region for supplying the modeling material M coincide with (or at least partially overlap) the material nozzle 212. The optical system 211 is aligned. The material nozzle 212 may be aligned so as to supply the modeling material M to the molten pool MP formed by the processing light EL emitted from the irradiation optical system 211.
 照射光学系211は、直進性に優れた加工光ELをワークWに向けて照射する。このため、照射光学系211とワークWとの間の距離の大小に関わらず、照射光学系211は、ワークWの表面上の所望位置に加工光ELを照射することができる。一方で、材料ノズル212は、物理的な大きさを有する造形材料MをワークWに向けて供給する。この場合、材料Mは、チャンバ空間63IN内の状態(例えば、気流の状態)及び/又は重力の影響を受ける。より具体的には、材料ノズル212とワークWとの間における造形材料Mの供給経路は、チャンバ空間63IN内の状態(例えば、気流の状態)及び/又は重力の影響を受けて変動する可能性がある。このため、材料ノズル212とワークWとの間の距離によっては、材料ノズル212は、ワークWの表面上の所望位置に造形材料Mを供給することができなくなる可能性がある。典型的には、材料ノズル212とワークWとの間の距離が大きくなればなるほど、材料ノズル212は、ワークWの表面上の所望位置に造形材料Mを供給することができなくなる可能性が高くなる。そこで、第1実施形態では、図1に示すように、材料ノズル212は、材料ノズル212とワークWとの間の距離が相対的に短くなるように配置されてもよい。例えば、材料ノズル212は、照射光学系211の光学部材2111よりも材料ノズル212のノズル部材2121(特に、供給口2123)の方がワークWに近くなるように配置されてもよい。例えば、材料ノズル212は、光学部材2111とワークWとの間の距離よりもノズル部材2121とワークWとの間の距離の方が短くなるように配置されてもよい。ワークWがステージ31によって保持されているため、材料ノズル212は、光学部材2111よりもノズル部材2121の方がステージ31に近くなるように配置されてもよい。例えば、材料ノズル212は、射出部213とステージ31との間の距離よりもノズル部材2121とステージ31との間の距離の方が短くなるように配置されてもよい。 The irradiation optical system 211 irradiates the work W with a processed light EL having excellent straightness. Therefore, the irradiation optical system 211 can irradiate the processing light EL at a desired position on the surface of the work W regardless of the size of the distance between the irradiation optical system 211 and the work W. On the other hand, the material nozzle 212 supplies the modeling material M having a physical size toward the work W. In this case, the material M is affected by the state within the chamber space 63IN (eg, the state of airflow) and / or gravity. More specifically, the supply path of the modeling material M between the material nozzle 212 and the work W may fluctuate under the influence of the state (for example, the airflow state) and / or gravity in the chamber space 63IN. There is. Therefore, depending on the distance between the material nozzle 212 and the work W, the material nozzle 212 may not be able to supply the modeling material M to a desired position on the surface of the work W. Typically, the greater the distance between the material nozzle 212 and the work W, the more likely it is that the material nozzle 212 will not be able to supply the modeling material M to the desired position on the surface of the work W. Become. Therefore, in the first embodiment, as shown in FIG. 1, the material nozzle 212 may be arranged so that the distance between the material nozzle 212 and the work W is relatively short. For example, the material nozzle 212 may be arranged so that the nozzle member 2121 (particularly, the supply port 2123) of the material nozzle 212 is closer to the work W than the optical member 2111 of the irradiation optical system 211. For example, the material nozzle 212 may be arranged so that the distance between the nozzle member 2121 and the work W is shorter than the distance between the optical member 2111 and the work W. Since the work W is held by the stage 31, the material nozzle 212 may be arranged so that the nozzle member 2121 is closer to the stage 31 than the optical member 2111. For example, the material nozzle 212 may be arranged so that the distance between the nozzle member 2121 and the stage 31 is shorter than the distance between the injection unit 213 and the stage 31.
 ヘッド駆動系22は、加工ヘッド21を移動させる。ヘッド駆動系22は、例えば、チャンバ空間63IN内で加工ヘッド21を移動させる。ヘッド駆動系22は、X軸、Y軸及びZ軸の少なくとも一つに沿って加工ヘッド21を移動させる。加工ヘッド21がX軸及びY軸の少なくとも一方に沿って移動すると、照射領域EA及び供給領域MAのそれぞれは、ワークW上をX軸及びY軸の少なくとも一方に沿って移動する。更に、ヘッド駆動系22は、X軸、Y軸及びZ軸の少なくとも一つに加えて、θX方向、θY方向及びθZ方向の少なくとも一つの回転方向に沿って加工ヘッド21を移動させてもよい。言い換えると、ヘッド駆動系22は、X軸、Y軸及びZ軸の少なくとも一つの軸回りに加工ヘッド21を回転させてもよい。ヘッド駆動系22は、X軸、Y軸及びZ軸の少なくとも一つの軸回りに加工ヘッド21の姿勢を変えてもよい。ヘッド駆動系22は、例えば、モータ等のアクチュエータを含む。 The head drive system 22 moves the processing head 21. The head drive system 22 moves the processing head 21 within the chamber space 63IN, for example. The head drive system 22 moves the machining head 21 along at least one of the X-axis, the Y-axis, and the Z-axis. When the processing head 21 moves along at least one of the X-axis and the Y-axis, each of the irradiation region EA and the supply region MA moves on the work W along at least one of the X-axis and the Y-axis. Further, the head drive system 22 may move the machining head 21 along at least one rotation direction in the θX direction, the θY direction, and the θZ direction in addition to at least one of the X-axis, the Y-axis, and the Z-axis. .. In other words, the head drive system 22 may rotate the machining head 21 around at least one of the X-axis, Y-axis, and Z-axis. The head drive system 22 may change the posture of the processing head 21 around at least one of the X-axis, the Y-axis, and the Z-axis. The head drive system 22 includes an actuator such as a motor, for example.
 尚、ヘッド駆動系22は、照射光学系211と材料ノズル212とを別々に移動させてもよい。具体的には、例えば、ヘッド駆動系22は、射出部213の位置、射出部213の向き、ノズル部材2121の位置及びノズル部材2121の向きの少なくとも一つを調整可能であってもよい。この場合、照射光学系211が加工光ELを照射する照射領域EAと、材料ノズル212が造形材料Mを供給する供給領域MAとが別々に制御可能となる。 In the head drive system 22, the irradiation optical system 211 and the material nozzle 212 may be moved separately. Specifically, for example, the head drive system 22 may be capable of adjusting at least one of the position of the injection unit 213, the direction of the injection unit 213, the position of the nozzle member 2121, and the direction of the nozzle member 2121. In this case, the irradiation region EA where the irradiation optical system 211 irradiates the processing light EL and the supply region MA where the material nozzle 212 supplies the modeling material M can be controlled separately.
 ステージ装置3は、ステージ31を備えている。ステージ31は、チャンバ空間63INに収容される。ステージ31は、ワークWを支持可能である。尚、ここで言う「ステージ31がワークWを支持する」状態は、ワークWがステージ31によって直接的に又は間接的に支えられている状態を意味していてもよい。ステージ31は、ワークWを保持可能であってもよい。つまり、ステージ31は、ワークWを保持することでワークWを支持してもよい。或いは、ステージ31は、ワークWを保持可能でなくてもよい。この場合、ワークWは、ステージ31に載置されていてもよい。つまり、ステージ31は、ステージ31に載置されたワークWを支持してもよい。このとき、ワークWは、クランプレスでステージ31に載置されていてもよい。従って、本実施形態における「ステージ31がワークWを支持する」状態は、ステージ31がワークWを保持する状態及びワークWがステージ31に載置される状態をも含んでいてもよい。ステージ31がチャンバ空間63INに収容されるため、ステージ31が支持するワークWもまた、チャンバ空間63INに収容される。更に、ステージ31は、ワークWが保持されている場合には、保持したワークWをリリース可能である。上述した照射光学系211は、ステージ31がワークWを支持している期間の少なくとも一部において加工ビームPLを照射する。更に、上述した材料ノズル212は、ステージ31がワークWを支持している期間の少なくとも一部において造形材料Mを供給する。尚、材料ノズル212が供給した造形材料Mの一部は、ワークWの表面からワークWの外部へと(例えば、ステージ31の周囲へと)散乱する又はこぼれ落ちる可能性がある。このため、加工システムSYS1は、ステージ31の周囲に、散乱した又はこぼれ落ちた造形材料Mを回収する回収装置を備えていてもよい。尚、ステージ31は、ワークWを保持するために、機械的なチャックや真空吸着チャック等を備えていてもよい。 The stage device 3 includes a stage 31. The stage 31 is housed in the chamber space 63IN. The stage 31 can support the work W. The state of "the stage 31 supporting the work W" here may mean a state in which the work W is directly or indirectly supported by the stage 31. The stage 31 may be able to hold the work W. That is, the stage 31 may support the work W by holding the work W. Alternatively, the stage 31 does not have to be able to hold the work W. In this case, the work W may be placed on the stage 31. That is, the stage 31 may support the work W placed on the stage 31. At this time, the work W may be mounted on the stage 31 without being clamped. Therefore, the "stage 31 supporting the work W" state in the present embodiment may also include a state in which the stage 31 holds the work W and a state in which the work W is placed on the stage 31. Since the stage 31 is housed in the chamber space 63IN, the work W supported by the stage 31 is also housed in the chamber space 63IN. Further, the stage 31 can release the held work W when the work W is held. The irradiation optical system 211 described above irradiates the processed beam PL at least during a period in which the stage 31 supports the work W. Further, the material nozzle 212 described above supplies the modeling material M during at least a part of the period in which the stage 31 supports the work W. A part of the modeling material M supplied by the material nozzle 212 may be scattered or spilled from the surface of the work W to the outside of the work W (for example, around the stage 31). Therefore, the processing system SYS1 may be provided with a recovery device for recovering the scattered or spilled modeling material M around the stage 31. The stage 31 may be provided with a mechanical chuck, a vacuum suction chuck, or the like in order to hold the work W.
 ステージ31は、不図示のステージ駆動系によって移動可能であってもよい。この場合、ステージ駆動系は、例えば、チャンバ空間63IN内でステージ31を移動させてもよい。ステージ駆動系は、X軸、Y軸及びZ軸の少なくとも一つに沿ってステージ31を移動させてもよい。ステージ31がX軸及びY軸の少なくとも一方に沿って移動すると、照射領域EAは、ワークW上をX軸及びY軸の少なくとも一方に沿って移動する。更に、ステージ駆動系は、X軸、Y軸及びZ軸の少なくとも一つに加えて、θX方向、θY方向及びθZ方向の少なくとも一つの回転方向に沿ってステージ31を移動させてもよい。ステージ駆動系31は、例えば、モータ等のアクチュエータを含む。ステージ装置3がステージ駆動系を備えている場合には、加工装置2は、ヘッド駆動系22を備えていなくてもよい。 The stage 31 may be movable by a stage drive system (not shown). In this case, the stage drive system may move the stage 31 within the chamber space 63IN, for example. The stage drive system may move the stage 31 along at least one of the X-axis, the Y-axis, and the Z-axis. When the stage 31 moves along at least one of the X-axis and the Y-axis, the irradiation region EA moves on the work W along at least one of the X-axis and the Y-axis. Further, the stage drive system may move the stage 31 along at least one rotation direction in the θX direction, the θY direction, and the θZ direction in addition to at least one of the X-axis, the Y-axis, and the Z-axis. The stage drive system 31 includes an actuator such as a motor, for example. When the stage device 3 includes a stage drive system, the processing device 2 does not have to include the head drive system 22.
 光源4は、例えば、赤外光及び紫外光のうちの少なくとも一つを、加工光ELとして射出する。但し、加工光ELとして、その他の波長の光、例えば可視域の波長の光が用いられてもよい。加工光ELは、レーザ光である。この場合、光源4は、半導体レーザ等のレーザ光源を含んでいてもよい。レーザ光源の一例としては、レーザダイオード(LD:Laser Diode)、ファイバ・レーザ、COレーザ、YAGレーザ及びエキシマレーザ等の少なくとも一つがあげられる。但し、加工光ELはレーザ光でなくてもよいし、光源4は任意の光源(例えば、LED(Light Emitting Diode)及び放電ランプ等の少なくとも一つ)を含んでいてもよい。 The light source 4 emits, for example, at least one of infrared light and ultraviolet light as processed light EL. However, as the processed light EL, light of other wavelengths, for example, light having a wavelength in the visible region may be used. The processing light EL is a laser beam. In this case, the light source 4 may include a laser light source such as a semiconductor laser. Examples of the laser light source include at least one such as a laser diode (LD: Laser Diode), a fiber laser, a CO 2 laser, a YAG laser, and an excimer laser. However, the processing light EL does not have to be a laser beam, and the light source 4 may include an arbitrary light source (for example, at least one such as an LED (Light Emitting Side) and a discharge lamp).
 ガス供給装置5は、チャンバ空間631INをパージするためのパージガスの供給源である。パージガスは、不活性ガスを含む。不活性ガスの一例として、窒素ガス又はアルゴンガスがあげられる。ガス供給装置5は、チャンバ空間63INにパージガスを供給する。その結果、チャンバ空間63INは、パージガスによってパージされた空間となる。尚、ガス供給装置5は、窒素ガスやアルゴンガス等の不活性ガスが格納されたボンベであってもよい。不活性ガスが窒素ガスである場合には、ガス供給装置5は、大気を原料として窒素ガスを発生する窒素ガス発生装置であってもよい。 The gas supply device 5 is a supply source of purge gas for purging the chamber space 631IN. The purge gas contains an inert gas. An example of the inert gas is nitrogen gas or argon gas. The gas supply device 5 supplies purge gas to the chamber space 63IN. As a result, the chamber space 63IN becomes a space purged by the purge gas. The gas supply device 5 may be a cylinder in which an inert gas such as nitrogen gas or argon gas is stored. When the inert gas is nitrogen gas, the gas supply device 5 may be a nitrogen gas generator that generates nitrogen gas from the atmosphere as a raw material.
 筐体6は、筐体6の内部空間であるチャンバ空間63INに少なくとも加工装置2及びステージ装置3のそれぞれの少なくとも一部を収容する収容装置である。筐体6は、チャンバ空間63INを規定する隔壁部材61を含む。隔壁部材61は、チャンバ空間63INと、筐体6の外部空間64OUTとを隔てる部材である。隔壁部材61は、その内壁611を介してチャンバ空間63INに面し、その外壁612を介して外部空間64OUTに面する。この場合、隔壁部材61によって囲まれた空間(より具体的には、隔壁部材61の内壁611によって囲まれた空間)が、チャンバ空間63INとなる。尚、隔壁部材61には、開閉可能な扉が設けられていてもよい。この扉は、ワークWをステージ31に載置する際、およびステージ31からワークWおよび/または造形物を取り出す際に開かれ、且つ造形中には閉じられていてもよい。 The housing 6 is a storage device that accommodates at least a part of each of the processing device 2 and the stage device 3 in the chamber space 63IN, which is the internal space of the housing 6. The housing 6 includes a partition member 61 that defines a chamber space 63IN. The partition member 61 is a member that separates the chamber space 63IN from the external space 64OUT of the housing 6. The partition member 61 faces the chamber space 63IN via its inner wall 611, and faces the outer space 64OUT through its outer wall 612. In this case, the space surrounded by the partition member 61 (more specifically, the space surrounded by the inner wall 611 of the partition member 61) becomes the chamber space 63IN. The partition member 61 may be provided with a door that can be opened and closed. This door may be opened when the work W is placed on the stage 31 and when the work W and / or the modeled object is taken out from the stage 31, and may be closed during the modeling.
 制御装置7は、加工システムSYS1の動作を制御する。制御装置7は、例えば、CPU(Central Processing Unit)(或いは、CPUに加えて又は代えてGPU(Graphics Processing Unit))と、メモリとを含んでいてもよい。制御装置7は、CPUがコンピュータプログラムを実行することで、加工システムSYS1の動作を制御する装置として機能する。このコンピュータプログラムは、制御装置7が行うべき後述する動作を制御装置7(例えば、CPU)に行わせる(つまり、実行させる)ためのコンピュータプログラムである。つまり、このコンピュータプログラムは、加工システムSYS1に後述する動作を行わせるように制御装置7を機能させるためのコンピュータプログラムである。CPUが実行するコンピュータプログラムは、制御装置7が備えるメモリ(つまり、記録媒体)に記録されていてもよいし、制御装置7に内蔵された又は制御装置7に外付け可能な任意の記憶媒体(例えば、ハードディスクや半導体メモリ)に記録されていてもよい。或いは、CPUは、実行するべきコンピュータプログラムを、ネットワークインタフェースを介して、制御装置7の外部の装置からダウンロードしてもよい。 The control device 7 controls the operation of the processing system SYS1. The control device 7 may include, for example, a CPU (Central Processing Unit) (or a GPU (Graphics Processing Unit) in addition to or in place of the CPU) and a memory. The control device 7 functions as a device that controls the operation of the machining system SYS1 by the CPU executing a computer program. This computer program is a computer program for causing the control device 7 (for example, the CPU) to perform (that is, execute) the operation described later to be performed by the control device 7. That is, this computer program is a computer program for making the control device 7 function so that the processing system SYS1 performs the operation described later. The computer program executed by the CPU may be recorded in a memory (that is, a recording medium) included in the control device 7, or may be an arbitrary storage medium built in the control device 7 or externally attached to the control device 7 (that is, a recording medium). For example, it may be recorded on a hard disk or a semiconductor memory). Alternatively, the CPU may download the computer program to be executed from a device external to the control device 7 via the network interface.
 例えば、制御装置7は、照射光学系211による加工光ELの射出態様を制御してもよい。射出態様は、例えば、加工光ELの強度及び加工光ELの射出タイミングの少なくとも一方を含んでいてもよい。加工光ELがパルス光である場合には、射出態様は、例えば、パルス光の発光時間の長さとパルス光の発光周期との比(いわゆる、デューティ比)を含んでいてもよい。また、射出態様は、例えば、パルス光の発光時間の長さそのものや、発光周期そのものを含んでいてもよい。更に、制御装置7は、ヘッド駆動系22による加工ヘッド21の移動態様を制御してもよい。移動態様は、例えば、移動量、移動速度、移動方向及び移動タイミングの少なくとも一つを含んでいてもよい。更に、制御装置7は、材料供給装置1による造形材料Mの供給態様を制御してもよい。材料ノズル212による造形材料Mの供給態様は、主として、材料供給装置1による造形材料Mの供給態様によって定まる。このため、材料供給装置1による造形材料Mの供給態様を制御することは、材料ノズル212による造形材料Mの供給態様を制御することと等価とみなせる。供給態様は、例えば、供給量(特に、単位時間当たりの供給量)及び供給タイミングの少なくとも一方を含んでいてもよい。 For example, the control device 7 may control the injection mode of the processed light EL by the irradiation optical system 211. The injection mode may include, for example, at least one of the intensity of the processing light EL and the injection timing of the processing light EL. When the processing light EL is pulsed light, the injection mode may include, for example, the ratio of the length of the emission time of the pulsed light to the emission period of the pulsed light (so-called duty ratio). Further, the injection mode may include, for example, the length of the emission time of the pulsed light itself or the emission cycle itself. Further, the control device 7 may control the movement mode of the processing head 21 by the head drive system 22. The movement mode may include, for example, at least one of a movement amount, a movement speed, a movement direction, and a movement timing. Further, the control device 7 may control the supply mode of the modeling material M by the material supply device 1. The supply mode of the modeling material M by the material nozzle 212 is mainly determined by the supply mode of the modeling material M by the material supply device 1. Therefore, controlling the supply mode of the modeling material M by the material supply device 1 can be regarded as equivalent to controlling the supply mode of the modeling material M by the material nozzle 212. The supply mode may include, for example, at least one of a supply amount (particularly, a supply amount per unit time) and a supply timing.
 制御装置7は、加工システムSYS1の内部に設けられていなくてもよく、例えば、加工システムSYS1外にサーバ等として設けられていてもよい。この場合、制御装置7と加工システムSYS1とは、有線及び/又は無線のネットワーク(或いは、データバス及び/又は通信回線)で接続されていてもよい。有線のネットワークとして、例えばIEEE1394、RS-232x、RS-422、RS-423、RS-485及びUSBの少なくとも一つに代表されるシリアルバス方式のインタフェースを用いるネットワークが用いられてもよい。有線のネットワークとして、パラレルバス方式のインタフェースを用いるネットワークが用いられてもよい。有線のネットワークとして、10BASE-T、100BASE-TX及び1000BASE-Tの少なくとも一つに代表されるイーサネット(登録商標)に準拠したインタフェースを用いるネットワークが用いられてもよい。無線のネットワークとして、電波を用いたネットワークが用いられてもよい。電波を用いたネットワークの一例として、IEEE802.1xに準拠したネットワーク(例えば、無線LAN及びBluetooth(登録商標)の少なくとも一方)があげられる。無線のネットワークとして、赤外線を用いたネットワークが用いられてもよい。無線のネットワークとして、光通信を用いたネットワークが用いられてもよい。この場合、制御装置7と加工システムSYS1とはネットワークを介して各種の情報の送受信が可能となるように構成されていてもよい。また、制御装置7は、ネットワークを介して加工システムSYS1にコマンドや制御パラメータ等の情報を送信可能であってもよい。加工システムSYS1は、制御装置7からのコマンドや制御パラメータ等の情報を、上記ネットワークを介して受信する受信装置を備えていてもよい。 The control device 7 does not have to be provided inside the processing system SYS1. For example, the control device 7 may be provided outside the processing system SYS1 as a server or the like. In this case, the control device 7 and the processing system SYS1 may be connected by a wired and / or wireless network (or a data bus and / or a communication line). As the wired network, for example, a network using a serial bus type interface represented by at least one of IEEE1394, RS-232x, RS-422, RS-423, RS-485 and USB may be used. As the wired network, a network using a parallel bus interface may be used. As a wired network, a network using an Ethernet (registered trademark) compliant interface represented by at least one of 10BASE-T, 100BASE-TX and 1000BASE-T may be used. As the wireless network, a network using radio waves may be used. An example of a network using radio waves is a network conforming to IEEE802.1x (for example, at least one of wireless LAN and Bluetooth®). As the wireless network, a network using infrared rays may be used. As the wireless network, a network using optical communication may be used. In this case, the control device 7 and the processing system SYS1 may be configured so that various types of information can be transmitted and received via the network. Further, the control device 7 may be able to transmit information such as commands and control parameters to the processing system SYS1 via the network. The processing system SYS1 may include a receiving device that receives information such as commands and control parameters from the control device 7 via the network.
 尚、制御装置7は、一部が加工システムSYS1の内部に設けられ、他の一部が加工システムSYS1の外部に設けられていてもよい。 A part of the control device 7 may be provided inside the processing system SYS1 and a part of the control device 7 may be provided outside the processing system SYS1.
 尚、CPUが実行するコンピュータプログラムを記録する記録媒体としては、CD-ROM、CD-R、CD-RWやフレキシブルディスク、MO、DVD-ROM、DVD-RAM、DVD-R、DVD+R、DVD-RW、DVD+RW及びBlu-ray(登録商標)等の光ディスク、磁気テープ等の磁気媒体、光磁気ディスク、USBメモリ等の半導体メモリ、及び、その他プログラムを格納可能な任意の媒体の少なくとも一つが用いられてもよい。記録媒体には、コンピュータプログラムを記録可能な機器(例えば、コンピュータプログラムがソフトウェア及びファームウェア等の少なくとも一方の形態で実行可能な状態に実装された汎用機器又は専用機器)が含まれていてもよい。更に、コンピュータプログラムに含まれる各処理や機能は、制御装置7(つまり、コンピュータ)がコンピュータプログラムを実行することで制御装置7内に実現される論理的な処理ブロックによって実現されてもよいし、制御装置7が備える所定のゲートアレイ(FPGA、ASIC)等のハードウェアによって実現されてもよいし、論理的な処理ブロックとハードウェアの一部の要素を実現する部分的ハードウェアモジュールとが混在する形式で実現してもよい。 Recording media for recording computer programs executed by the CPU include CD-ROMs, CD-Rs, CD-RWs, flexible disks, MOs, DVD-ROMs, DVD-RAMs, DVD-Rs, DVD + Rs, and DVD-RWs. , DVD + RW and Blu-ray (registered trademark) and other optical discs, magnetic tape and other magnetic media, magneto-optical disks, USB memory and other semiconductor memories, and any other medium that can store programs. May be good. The recording medium may include a device capable of recording a computer program (for example, a general-purpose device or a dedicated device in which the computer program is implemented in at least one form such as software and firmware). Further, each process or function included in the computer program may be realized by a logical processing block realized in the control device 7 by the control device 7 (that is, a computer) executing the computer program. It may be realized by hardware such as a predetermined gate array (FPGA, ASIC) included in the control device 7, or a mixture of a logical processing block and a partial hardware module that realizes a part of the hardware. It may be realized in the form of.
 検出装置8は、異なる二つの物体の相対的な位置関係に関する情報を検出可能(取得可能)な装置(例えば、センサ)である。より具体的には、検出装置8は、検出対象物と当該検出対象物に対して相対移動可能な接近対象物との相対的な位置関係に関する情報を検出可能(取得可能)な装置である。検出装置8は、検出対象物と当該検出対象物に対して接近する可能性がある接近対象物との相対的な位置関係に関する情報を検出可能(取得可能)な装置である。尚、検出装置8の構造については、図3から図10を参照しながら後に詳述するため、ここでの詳細な説明は省略する。 The detection device 8 is a device (for example, a sensor) capable of detecting (acquiring) information regarding the relative positional relationship between two different objects. More specifically, the detection device 8 is a device capable of detecting (acquiring) information regarding the relative positional relationship between the detection target and the approaching target that can move relative to the detection target. The detection device 8 is a device capable of detecting (acquiring) information regarding the relative positional relationship between the detection target and the approaching object that may approach the detection target. Since the structure of the detection device 8 will be described in detail later with reference to FIGS. 3 to 10, detailed description here will be omitted.
 異なる二つの物体の相対的な位置関係に関する情報は、異なる二つの物体の接近度合いに関する情報を含んでいてもよい。この場合、検出装置8は、異なる二つの物体の接近度合いに関する情報を検出可能(取得可能)な装置であってもよい。より具体的には、検出装置8は、検出対象物と当該検出対象物に対して相対移動可能な接近対象物との接近度合いに関する情報を検出可能(取得可能)な装置であってもよい。検出装置8は、検出対象物と当該検出対象物に対して接近する可能性がある接近対象物との接近度合いに関する情報を検出可能(取得可能)な装置であってもよい。 Information on the relative positional relationship between two different objects may include information on the degree of proximity of two different objects. In this case, the detection device 8 may be a device that can detect (acquire) information on the degree of proximity of two different objects. More specifically, the detection device 8 may be a device that can detect (acquire) information on the degree of approach between the detection target and the approach target that can move relative to the detection target. The detection device 8 may be a device that can detect (acquire) information on the degree of approach between the detection target and the approaching object that may approach the detection target.
 異なる二つの物体の相対的な位置関係に関する情報は、検出対象物及び接近対象物のいずれか一方に応じて定まる一定の範囲に検出対象物及び接近対象物のいずれか他方が存在するか否かを判定するために利用可能な情報を含んでいてもよい。例えば、検出装置8は、検出対象物に応じて定まる一定の範囲(例えば、検出対象物から一定の距離以下の範囲)に接近対象物が存在するか否かを判定するために利用可能な情報を検出可能(取得可能)な装置であってもよい。例えば、検出装置8は、接近対象物に応じて定まる一定の範囲(例えば、接近対象物から一定の距離以下の範囲)に検出対象物が存在するか否かを判定するために利用可能な情報を検出可能(取得可能)な装置であってもよい。 Information on the relative positional relationship between two different objects is whether or not either the detection object or the approaching object exists in a certain range determined according to either the detecting object or the approaching object. May include information that can be used to determine. For example, the detection device 8 can use information for determining whether or not an approaching object exists in a certain range determined according to the detection object (for example, a range of a certain distance or less from the detection object). It may be a device that can detect (acquire). For example, the detection device 8 can use information for determining whether or not the detection object exists in a certain range determined according to the approaching object (for example, a range of a certain distance or less from the approaching object). It may be a device that can detect (acquire).
 検出対象物と接近対象物とが互いに接近すればするほど、検出対象物と接近対象物との間の距離が短くなる。検出対象物と接近対象物とが互いに離れれば離れるほど、検出対象物と接近対象物との間の距離が長くなる。このため、検出装置8は、検出対象物と接近対象物との間の距離に関する情報を検出(取得)してもよい。 The closer the detection target and the approaching target are to each other, the shorter the distance between the detecting target and the approaching target. The farther the detection object and the approaching object are from each other, the longer the distance between the detecting object and the approaching object becomes. Therefore, the detection device 8 may detect (acquire) information regarding the distance between the detection target object and the approaching target object.
 検出対象物と接近対象物とが互いに接近すると、あるタイミングで検出対象物と接近対象物とが接触する可能性がある。このため、検出装置8は、検出対象物と接近対象物との接触に関する情報を検出(取得)してもよい。例えば、検出装置8は、検出対象物と接近対象物との接触の有無に関する情報を検出してもよい。 When the detection target and the approaching target approach each other, there is a possibility that the detection target and the approaching target come into contact with each other at a certain timing. Therefore, the detection device 8 may detect (acquire) information regarding the contact between the detection object and the approaching object. For example, the detection device 8 may detect information regarding the presence or absence of contact between the detection object and the approaching object.
 検出装置8の検出結果は、制御装置7に出力される。制御装置7は、検出装置8の検出結果に基づいて、検出対象物と接近対象物との相対位置を制御する。 The detection result of the detection device 8 is output to the control device 7. The control device 7 controls the relative position between the detection target object and the approaching target object based on the detection result of the detection device 8.
 具体的には、制御装置7は、検出装置8による検出結果(取得結果)に基づいて、検出対象物と接近対象物との接近度合いに関する所定の接近条件が成立しているか否かを判定する。接近条件は、検出対象物と接近対象物とが接触しているという条件を含んでいてもよい。接近条件は、検出対象物と接近対象物とが接触していないものの検出対象物と接近対象物との間の距離が許容値未満になるという条件を含んでいてもよい。つまり、接近条件は、検出対象物と接近対象物とが接触していないもの検出対象物と接近対象物との間の距離が許容値未満になるほど検出対象物と接近対象物とが接近しているという条件を含んでいてもよい。 Specifically, the control device 7 determines whether or not a predetermined approach condition regarding the degree of approach between the detection target object and the approach target object is satisfied based on the detection result (acquisition result) by the detection device 8. .. The approach condition may include a condition that the detection target and the approach target are in contact with each other. The approach condition may include a condition that the distance between the detection target and the approach target is less than the permissible value even though the detection target and the approach target are not in contact with each other. That is, the approach condition is that the detection target and the approach target are not in contact with each other. The detection target and the approach target are so close to each other that the distance between the detection target and the approach target is less than the allowable value. It may include the condition that it exists.
 更に、制御装置7は、接近条件が成立していると判定した場合には、検出対象物と接近対象物との接触に起因した異常(或いは、検出対象物と接近対象物との接近に起因した異常、以下同じ)の発生を抑制するように、検出対象物と接近対象物との相対位置又は相対的な姿勢を制御する。この場合、典型的には、制御装置7は、検出対象物と接近対象物との接触に起因した異常の発生を回避するように、検出対象物と接近対象物との相対位置又は相対的な姿勢を制御する。検出対象物と接近対象物との接触に起因して発生しかねない異常の一例として、検出対象物及び接近対象物の少なくとも一方に生ずる異常があげられる。検出対象物に生ずる異常の一例として、検出対象物の破損、検出対象物の破壊、検出対象物の故障及び検出対象物の正常位置からの位置ずれの少なくとも一つがあげられる。接近対象物に生ずる異常の一例として、接近対象物の破損、接近対象物の破壊、接近対象物の故障及び接近対象物の正常位置からの位置ずれの少なくとも一つがあげられる。 Further, when the control device 7 determines that the approach condition is satisfied, it is caused by an abnormality caused by the contact between the detection target object and the approach target object (or due to the approach between the detection target object and the approach target object). The relative position or relative posture of the detected object and the approaching object is controlled so as to suppress the occurrence of the abnormalities (the same shall apply hereinafter). In this case, the control device 7 typically has a relative position or relative position between the detection object and the approaching object so as to avoid the occurrence of an abnormality due to the contact between the detection object and the approaching object. Control posture. An example of an abnormality that may occur due to contact between a detection object and an approaching object is an abnormality that occurs in at least one of the detection object and the approaching object. Examples of abnormalities that occur in the detection target include at least one of damage to the detection target, destruction of the detection target, failure of the detection target, and misalignment of the detection target from the normal position. Examples of abnormalities that occur in the approaching object include at least one of damage to the approaching object, destruction of the approaching object, failure of the approaching object, and misalignment of the approaching object from the normal position.
 一例として、制御装置7は、接近条件が成立した場合には、検出対象物と接近対象物との接触が回避されるように検出対象物と接近対象物との相対位置又は相対的な姿勢を制御してもよい。この場合、検出対象物と接近対象物との接触が回避されるがゆえに、検出対象物と接近対象物との接触に起因して異常が発生することはない。 As an example, when the approach condition is satisfied, the control device 7 determines the relative position or the relative posture of the detection target and the approaching object so as to avoid contact between the detection target and the approaching object. You may control it. In this case, since the contact between the detection target and the approaching object is avoided, no abnormality occurs due to the contact between the detection target and the approaching object.
 一例として、制御装置7は、接近条件が成立した場合には、検出対象物と接近対象物とが互いに近づくように検出対象物と接近対象物との相対位置又は相対的な姿勢を変更するための動作を制限してもよい。典型的には、制御装置7は、接近条件が成立した場合には、検出対象物と接近対象物とが互いに近づくように検出対象物と接近対象物との相対位置又は相対的な姿勢を変更するための動作を禁止してもよい。この場合、検出対象物と接近対象物とが更に接近することがないがゆえに、検出対象物と接近対象物とが更に接近する場合と比較して、検出対象物と接近対象物との接触に起因した異常が発生しにくくなる。つまり、検出対象物と接近対象物との接触に起因した異常が発生する可能性が低減される。具体的には、例えば、検出対象物と接近対象物との間の距離が許容値未満になるという接近条件が用いられる場合には、検出対象物と接近対象物とが接触する前に検出対象物と接近対象物との更なる接近が制限されるがゆえに、検出対象物と接近対象物との接触に起因して異常が発生することはない。或いは、例えば、検出対象物と接近対象物とが接触しているという接近条件が用いられる場合には、検出対象物と接近対象物とが接触した状態において検出対象物と接近対象物との更なる接近が制限される。ここで、仮に、検出対象物と接近対象物とが接触した状態において検出対象物と接近対象物との更なる接近が許容されると、検出対象物から接近対象物に加わる力及び/接近対象物から検出対象物に加わる力が増加して、検出対象物及び/又は接近対象物の破損等につながりかねない。しかるに、第1実施形態では、検出対象物と接近対象物との更なる接近が制限されるがゆえに、検出対象物と接近対象物との接触に起因した異常が発生しにくくなる。尚、検出対象物と接近対象物とが互いに近づくように検出対象物と接近対象物との相対位置又は相対的な姿勢を変更するための動作を制限する動作は、検出対象物と接近対象物とが互いに近づかないように検出対象物と接近対象物との相対位置又は相対的な姿勢を制御する動作と等価とみなせる。 As an example, when the approach condition is satisfied, the control device 7 changes the relative position or the relative posture of the detection object and the approaching object so that the detection object and the approaching object approach each other. You may limit the operation of. Typically, when the approach condition is satisfied, the control device 7 changes the relative position or the relative posture of the detection target and the approach target so that the detection target and the approach target approach each other. The operation for doing so may be prohibited. In this case, since the detection target and the approaching object do not come closer to each other, the contact between the detection target and the approaching object becomes larger than the case where the detection target and the approaching object come closer to each other. The resulting abnormality is less likely to occur. That is, the possibility of an abnormality caused by the contact between the detection target object and the approaching target object is reduced. Specifically, for example, when an approach condition is used in which the distance between the detection target and the approaching object is less than the allowable value, the detection target is detected before the detection target and the approaching object come into contact with each other. Since further access between the object and the approaching object is restricted, no abnormality occurs due to contact between the detection object and the approaching object. Alternatively, for example, when the approach condition that the detection object and the approaching object are in contact with each other is used, the detection object and the approaching object are further changed while the detection object and the approaching object are in contact with each other. The approach is restricted. Here, if the detection target and the approaching object are in contact with each other and the detection target and the approaching object are allowed to approach further, the force applied from the detection target to the approaching object and / the approaching target The force applied from the object to the detection object increases, which may lead to damage to the detection object and / or the approaching object. However, in the first embodiment, since the further approach between the detection object and the approaching object is restricted, the abnormality caused by the contact between the detection object and the approaching object is less likely to occur. The operation of restricting the operation for changing the relative position or the relative posture of the detection object and the approaching object so that the detection object and the approaching object approach each other is the operation of restricting the detection object and the approaching object. It can be regarded as equivalent to the operation of controlling the relative position or the relative posture of the detected object and the approaching object so that they do not approach each other.
 一例として、制御装置7は、接近条件が成立した場合には、検出対象物と接近対象物との更なる接近が回避されるように検出対象物と接近対象物との相対位置又は相対的な姿勢を制御してもよい。この場合、検出対象物と接近対象物とが互いに近づくように検出対象物と接近対象物との相対位置を変更するための動作が制限される場合と同様の理由から、検出対象物と接近対象物との更なる接近が回避されない場合と比較して、検出対象物と接近対象物との接触に起因した異常が発生しにくくなる。尚、検出対象物と接近対象物とが接触していない状態において検出対象物と接近対象物との更なる接近が回避されると、検出対象物と接近対象物とが接触することはない。このため、検出対象物と接近対象物との更なる接近が回避されるように検出対象物と接近対象物との相対位置又は相対的な姿勢を制御する動作は、検出対象物と接近対象物との接触が回避されるように検出対象物と接近対象物との相対位置を制御する動作の一具体例であるとも言える。更に、検出対象物と接近対象物との更なる接近が回避されると、検出対象物と接近対象物とが互いに近づくことはない。このため、検出対象物と接近対象物との更なる接近が回避されるように検出対象物と接近対象物との相対位置を制御する動作は、検出対象物と接近対象物とが互いに近づくように検出対象物と接近対象物との相対位置又は相対的な姿勢を変更するための動作を制限する動作の一具体例であるとも言える。 As an example, in the control device 7, when the approach condition is satisfied, the relative position or relative position between the detection target and the approach target is avoided so that the detection target and the approach target are avoided from further approaching. The posture may be controlled. In this case, the detection target and the approach target are for the same reason as in the case where the operation for changing the relative position of the detection target and the approach target is restricted so that the detection target and the approach target are close to each other. Compared with the case where further approach to the object is not avoided, the abnormality caused by the contact between the detection object and the approaching object is less likely to occur. If further approach between the detection object and the approaching object is avoided in a state where the detection object and the approaching object are not in contact with each other, the detection object and the approaching object do not come into contact with each other. Therefore, the operation of controlling the relative position or the relative posture of the detection target and the approaching object so as to avoid further approach between the detection target and the approaching object is performed on the detection target and the approaching object. It can be said that this is a specific example of an operation of controlling the relative position between the detection target object and the approaching target object so as to avoid contact with the object. Further, if further approach between the detection object and the approaching object is avoided, the detection object and the approaching object do not approach each other. Therefore, the operation of controlling the relative position of the detection target and the approaching object so as to avoid further approach between the detection target and the approaching object is such that the detection target and the approaching object approach each other. It can be said that this is a specific example of an operation of limiting the operation for changing the relative position or the relative posture of the detection object and the approaching object.
 一例として、制御装置7は、接近条件が成立した場合には、検出対象物と接近対象物とが互いに離れるように検出対象物と接近対象物との相対位置又は相対的な姿勢を制御してもよい。この場合、検出対象物と接近対象物とが互いに離れない場合と比較して、検出対象物と接近対象物との接触に起因した異常が発生しにくくなる。具体的には、例えば、検出対象物と接近対象物との間の距離が許容値未満になるという接近条件が用いられる場合には、検出対象物と接近対象物とが接触する前に検出対象物と接近対象物とが離れるがゆえに、検出対象物と接近対象物との接触に起因して異常が発生することはない。或いは、例えば、検出対象物と接近対象物とが接触しているという接近条件が用いられる場合には、接触していた検出対象物と接近対象物とが互いに離れることになる。このため、検出対象物と接近対象物とが接触し続ける(更には、検出対象物と接近対象物とが更に近づく)場合と比較して、検出対象物と接近対象物との接触に起因した異常が発生しにくくなる。尚、検出対象物と接近対象物とが互いに離れると、検出対象物と接近対象物との接触が回避される。このため、検出対象物と接近対象物とが互いに離れるように検出対象物と接近対象物との相対位置又は相対的な姿勢を制御する動作は、検出対象物と接近対象物との接触が回避されるように検出対象物と接近対象物との相対位置又は相対的な姿勢を制御する動作の一具体例であるとも言える。更に、検出対象物と接近対象物とが離れる場合には、検出対象物と接近対象物とが互いに近づくことはない。このため、検出対象物と接近対象物とが互いに離れるように検出対象物と接近対象物との相対位置又は相対的な姿勢を制御する動作は、検出対象物と接近対象物とが互いに近づくように検出対象物と接近対象物との相対位置又は相対的な姿勢を変更するための動作を制限する動作の一具体例であるとも言える。 As an example, the control device 7 controls the relative position or the relative posture of the detection object and the approaching object so that the detection object and the approaching object are separated from each other when the approach condition is satisfied. May be good. In this case, an abnormality caused by contact between the detection target and the approaching object is less likely to occur as compared with the case where the detection target and the approaching object are not separated from each other. Specifically, for example, when an approach condition is used in which the distance between the detection target and the approaching object is less than the allowable value, the detection target is detected before the detection target and the approaching object come into contact with each other. Since the object and the approaching object are separated from each other, no abnormality occurs due to the contact between the detection object and the approaching object. Alternatively, for example, when the approach condition that the detection object and the approaching object are in contact with each other is used, the detecting object and the approaching object that are in contact are separated from each other. For this reason, the contact between the detection target and the approaching object is caused as compared with the case where the detection target and the approaching object continue to be in contact with each other (furthermore, the detection target and the approaching object are further approached). Abnormality is less likely to occur. When the detection target and the approaching target are separated from each other, contact between the detection target and the approaching target is avoided. Therefore, the operation of controlling the relative position or the relative posture of the detection object and the approaching object so that the detection object and the approaching object are separated from each other avoids the contact between the detection object and the approaching object. It can be said that this is a specific example of an operation of controlling the relative position or the relative posture of the detected object and the approaching object so as to be performed. Further, when the detection target and the approach target are separated from each other, the detection target and the approach target do not approach each other. Therefore, the operation of controlling the relative position or the relative posture of the detection target and the approaching object so that the detection target and the approaching object are separated from each other causes the detection target and the approaching object to approach each other. It can be said that this is a specific example of an operation of limiting the operation for changing the relative position or the relative posture of the detected object and the approaching object.
 一例として、制御装置7は、接近条件が成立した場合には、接近条件が成立された時点での検出対象物と接近対象物との相対位置又は相対的な姿勢が維持される(つまり、相対位置が変更されない)ように検出対象物と接近対象物との相対位置を制御してもよい。この場合、検出対象物と接近対象物とが互いに近づくように検出対象物と接近対象物との相対位置を変更するための動作が制限される場合と同様の理由から、検出対象物と接近対象物との相対位置が維持されない(特に、検出対象物と接近対象物とが更に近づく)場合と比較して、検出対象物と接近対象物との接触に起因した異常が発生しにくくなる。尚、検出対象物と接近対象物とが接触していない状態において検出対象物と接近対象物と相対位置又は相対的な姿勢が維持されると、検出対象物と接近対象物とが接触することはない。このため、検出対象物と接近対象物との相対位置を維持するように検出対象物と接近対象物との相対位置を制御する動作は、検出対象物と接近対象物との接触が回避されるように検出対象物と接近対象物との相対位置又は相対的な姿勢を制御する動作の一具体例であるとも言える。更に、検出対象物と接近対象物との相対位置又は相対的な姿勢が維持されると、検出対象物と接近対象物とが互いに近づくことはない。このため、検出対象物と接近対象物との相対位置が維持されるように検出対象物と接近対象物との相対位置又は相対的な姿勢を制御する動作は、検出対象物と接近対象物とが互いに近づくように検出対象物と接近対象物との相対位置又は相対的な姿勢を変更するための動作を制限する動作の一具体例であるとも言える。 As an example, when the approach condition is satisfied, the control device 7 maintains the relative position or the relative posture of the detection target and the approach target at the time when the approach condition is satisfied (that is, relative). The relative position between the detection object and the approaching object may be controlled so that the position is not changed). In this case, the detection target and the approach target are for the same reason as in the case where the operation for changing the relative position of the detection target and the approach target is restricted so that the detection target and the approach target are close to each other. Compared with the case where the relative position with the object is not maintained (in particular, the detection target and the approaching object are closer to each other), an abnormality caused by the contact between the detection target and the approaching object is less likely to occur. If the relative position or the relative posture of the detection object and the approaching object is maintained in a state where the detection object and the approaching object are not in contact with each other, the detection object and the approaching object come into contact with each other. There is no. Therefore, the operation of controlling the relative position between the detection target and the approaching object so as to maintain the relative position between the detection target and the approaching object avoids the contact between the detection target and the approaching object. As described above, it can be said that it is a specific example of the operation of controlling the relative position or the relative posture of the detected object and the approaching object. Further, if the relative position or the relative posture of the detection object and the approaching object is maintained, the detection object and the approaching object do not approach each other. Therefore, the operation of controlling the relative position or the relative posture of the detection target and the approaching object so that the relative position between the detection target and the approaching object is maintained is performed between the detection target and the approaching object. It can be said that this is a specific example of an operation of limiting the operation for changing the relative position or the relative posture of the detected object and the approaching object so that the two are close to each other.
 一例として、制御装置7は、接近条件が成立した場合には、検出対象物と接近対象物との相対位置を変更可能な位置変更装置の動作を停止してもよい。例えば、後述するように検出対象物が加工ヘッド21である場合には、ヘッド駆動系22は、検出対象物たる加工ヘッド21と接近対象物との相対位置を変更可能である。この場合、制御装置7は、接近条件が成立した場合には、ヘッド駆動系22の動作を停止してもよい。その結果、検出対象物と接近対象物とが互いに近づくように検出対象物と接近対象物との相対位置を変更するための動作が制限される場合と同様の理由から、位置変更装置の動作が停止されない(特に、検出対象物と接近対象物とが更に近づくように位置変更装置が動作する)場合と比較して、検出対象物と接近対象物との接触に起因した異常が発生しにくくなる。尚、位置変更装置の動作が停止されると、検出対象物と接近対象物との更なる接近が回避される。このため、位置変更装置の動作を停止する動作は、検出対象物と接近対象物との接触が回避されるように検出対象物と接近対象物との相対位置を制御する動作、及び、検出対象物と接近対象物とが互いに近づくように検出対象物と接近対象物との相対位置を変更するための動作を制限する動作のそれぞれの一具体例であるとも言える。 As an example, when the approach condition is satisfied, the control device 7 may stop the operation of the position change device capable of changing the relative position between the detection target object and the approach target object. For example, when the detection target is the processing head 21, as will be described later, the head drive system 22 can change the relative position between the processing head 21 which is the detection target and the approaching object. In this case, the control device 7 may stop the operation of the head drive system 22 when the approach condition is satisfied. As a result, the operation of the position changing device is performed for the same reason as in the case where the operation for changing the relative position of the detected object and the approaching object is restricted so that the detection object and the approaching object are close to each other. Compared to the case where the detection target is not stopped (in particular, the position changing device operates so that the detection target and the approaching object are closer to each other), an abnormality caused by the contact between the detection target and the approaching target is less likely to occur. .. When the operation of the position changing device is stopped, further approach between the detection object and the approaching object is avoided. Therefore, the operation of stopping the operation of the position changing device is an operation of controlling the relative position between the detection object and the approaching object so as to avoid contact between the detection object and the approaching object, and an operation of controlling the relative position between the detection object and the approaching object. It can be said that it is a specific example of each of the operations of limiting the operation for changing the relative position of the detected object and the approaching object so that the object and the approaching object approach each other.
 尚、位置変更装置の一例であるヘッド駆動系22がθX方向、θY方向及びθZ方向の少なくとも一つに沿って加工ヘッド21を移動させる場合、言い換えると加工ヘッド21の姿勢を変更させる場合には、ヘッド駆動系22は、検出対象物たる加工ヘッド21と接近対象物との相対的な姿勢を変更可能である。上述と同様に、制御装置7は、接近条件が成立した場合には、ヘッド駆動系22の動作を停止してもよい。その結果、検出対象物と接近対象物とが互いに近づくように検出対象物と接近対象物との相対的な姿勢を変更するための動作が制限される場合と同様の理由から、位置変更装置の動作が停止されない(特に、検出対象物と接近対象物とが更に近づくように位置変更装置が動作する)場合と比較して、検出対象物と接近対象物との接触に起因した異常が発生しにくくなる。尚、位置変更装置の動作を停止する動作は、検出対象物と接近対象物との接触が回避されるように検出対象物と接近対象物との相対的な姿勢を制御する動作、及び、検出対象物と接近対象物とが互いに近づくように検出対象物と接近対象物との相対的な姿勢を変更するための動作を制限する動作のそれぞれの一具体例であるとも言える。 When the head drive system 22, which is an example of the position changing device, moves the machining head 21 along at least one of the θX direction, the θY direction, and the θZ direction, in other words, when the posture of the machining head 21 is changed. The head drive system 22 can change the relative posture of the processing head 21 which is the detection target and the approaching target. Similar to the above, the control device 7 may stop the operation of the head drive system 22 when the approach condition is satisfied. As a result, for the same reason as when the operation for changing the relative posture of the detection object and the approaching object is restricted so that the detection object and the approaching object come close to each other, the position changing device Compared to the case where the operation is not stopped (in particular, the position changing device operates so that the detected object and the approaching object are closer to each other), an abnormality occurs due to the contact between the detected object and the approaching object. It becomes difficult. The operation of stopping the operation of the position changing device is an operation of controlling the relative posture of the detection object and the approaching object so as to avoid contact between the detection object and the approaching object, and an operation of detecting. It can be said that this is a specific example of each of the actions of limiting the action for changing the relative postures of the detected object and the approaching object so that the object and the approaching object come close to each other.
 また、検出装置8は、異なる二つの物体(検出対象物及び接近対象物)の相対的な位置情報を取得可能な装置であってもよい。異なる二つの物体の相対的な位置情報は、異なる二つの物体の距離や間隔に関する情報を含んでいてもよい。また、異なる二つの物体の相対的な位置情報は、一方の物体(検出対象物)から一定の範囲内に他方の物体(接近対象物)が存在するか否かに関する情報を含んでいてもよい。また、異なる二つの物体の相対的な位置情報は、一方の物体(検出対象物)の位置と他方の物体(接近対象物)の位置とに関する情報を含んでいてもよい。また、異なる二つの物体の相対的な位置情報は、一方の物体(検出対象物)と他方の物体(接近対象物)との接触に関する情報を含んでいてもよい。例えば、制御装置7は、異なる二つの物体(検出対象物及び接近対象物)の距離又は間隔が所定の距離又は間隔以内となったときに、異なる二つの物体(検出対象物及び接近対象物)の動作を停止させるようにするか、異なる二つの物体(検出対象物及び接近対象物)が互いに離れるような動作をさせるようにする制御を行ってもよい。また、制御装置7は、一方の物体(検出対象物)から一定の範囲内に他方の物体(接近対象物)が存在するときに、異なる二つの物体(検出対象物及び接近対象物)の動作を停止させるようにするか、異なる二つの物体(検出対象物及び接近対象物)が互いに離れるような動作をさせるようにする制御を行ってもよい。また、制御装置7は、一方の物体(検出対象物)の位置と他方の物体(接近対象物)の位置とが特定の関係になったときに、異なる二つの物体(検出対象物及び接近対象物)の動作を停止させるようにするか、異なる二つの物体(検出対象物及び接近対象物)が互いに離れるような動作をさせるようにする制御を行ってもよい。また、制御装置7は、一方の物体(検出対象物)と他方の物体(接近対象物)とが接触したときに、異なる二つの物体(検出対象物及び接近対象物)の動作を停止させるようにするか、異なる二つの物体(検出対象物及び接近対象物)が互いに離れるような動作をさせるようにする制御を行ってもよい。 Further, the detection device 8 may be a device capable of acquiring relative position information of two different objects (detection object and approaching object). The relative position information of two different objects may include information about the distance or distance between the two different objects. Further, the relative position information of two different objects may include information on whether or not the other object (approaching object) exists within a certain range from one object (detection object). .. Further, the relative position information of two different objects may include information regarding the position of one object (detection object) and the position of the other object (approaching object). Further, the relative position information of two different objects may include information on the contact between one object (detection object) and the other object (approaching object). For example, the control device 7 controls two different objects (detection object and approaching object) when the distance or distance between the two different objects (detection object and approaching object) is within a predetermined distance or interval. The operation may be stopped, or control may be performed so that two different objects (detection object and approaching object) move away from each other. Further, the control device 7 operates two different objects (detection object and approach object) when the other object (approaching object) exists within a certain range from one object (detection object). May be controlled so that the two different objects (detection object and approaching object) move away from each other. Further, the control device 7 has two different objects (detection object and approach object) when the position of one object (detection object) and the position of the other object (approach object) have a specific relationship. The operation of the object) may be stopped, or control may be performed so that two different objects (detection object and approaching object) move away from each other. Further, the control device 7 stops the operation of two different objects (detection object and approach object) when one object (detection object) and the other object (approach object) come into contact with each other. Or, control may be performed so that two different objects (detection object and approaching object) move away from each other.
 また、検出装置8は、異なる二つの物体(検出対象物及び接近対象物)の間の距離を計測可能(取得可能)な装置であってもよい。 Further, the detection device 8 may be a device capable of measuring (acquiring) the distance between two different objects (detection object and approaching object).
 さて、検出対象物の一例として、加工ヘッド21(つまり、加工装置2の少なくとも一部)があげられる。なぜならば、上述したように、加工ヘッド21は、ヘッド駆動系22によって移動可能であるからである。この場合、検出装置8は、加工ヘッド21と、当該加工ヘッド21に接近する可能性がある接近対象物との位置関係に関する情報を検出してもよい。加工ヘッド21が移動する状況下で加工ヘッド21に接近する可能性がある接近対象物の一例として、ワークWがあげられる。この場合、検出装置8は、加工ヘッド21とワークWとの位置関係に関する情報を検出してもよい。加工ヘッド21が移動する状況下で加工ヘッド21に接近する可能性がある接近対象物の他の一例として、ステージ31があげられる。この場合、検出装置8は、加工ヘッド21とステージ31との位置関係に関する情報を検出してもよい。 By the way, as an example of the object to be detected, the processing head 21 (that is, at least a part of the processing apparatus 2) can be mentioned. This is because, as described above, the processing head 21 can be moved by the head drive system 22. In this case, the detection device 8 may detect information on the positional relationship between the machining head 21 and an approaching object that may approach the machining head 21. A work W is an example of an approaching object that may approach the machining head 21 when the machining head 21 is moving. In this case, the detection device 8 may detect information regarding the positional relationship between the machining head 21 and the work W. A stage 31 is another example of an approaching object that may approach the machining head 21 in a situation where the machining head 21 is moving. In this case, the detection device 8 may detect information regarding the positional relationship between the processing head 21 and the stage 31.
 尚、加工ヘッド21がθX方向、θY方向及びθZ方向の少なくとも一つの回転方向に沿って移動する場合には、加工ヘッド21における回転中心から離れた部位と接近対象物との位置関係が変更されるため、上述した異なる二つの物体(検出対象物及び接近対象物)の相対的な位置情報は、異なる二つの物体(検出対象物及び接近対象物)の相対的な姿勢の関係に関する情報を含んでいてもよい。 When the machining head 21 moves along at least one rotation direction in the θX direction, the θY direction, and the θZ direction, the positional relationship between the portion of the machining head 21 away from the rotation center and the approaching object is changed. Therefore, the relative position information of the two different objects (detection object and approaching object) described above includes information on the relative posture relationship between the two different objects (detection object and approaching object). You may be.
 上述したように、加工ヘッド21が備える材料ノズル212は、加工ヘッド21が備える照射光学系211よりもワークW及びステージ31の少なくとも一方に近い位置に配置される。典型的には、材料ノズル212は、加工ヘッド21(更には、加工装置2)を構成する部材のうちワークW及びステージ31の少なくとも一方に最も近接する部材の一つであると言える。このため、材料ノズル212の方が、照射光学系211よりもワークW及びステージ31の少なくとも一方に接触しやすい。材料ノズル212がワークW及びステージ31の少なくとも一方に接触する可能性は、照射光学系211が及びステージ31の少なくとも一方に接触する可能性よりも高い。この場合、検出装置8は、材料ノズル212とワークW及びステージ31の少なくとも一方との位置関係に関する情報を検出してもよい。特に、検出装置8は、材料ノズル212のノズル部材2121とワークW及びステージ31の少なくとも一方との位置関係に関する情報を検出してもよい。尚、以下の説明では、説明の簡略化のために、検出装置8が材料ノズル212(特に、ノズル部材2121)とワークWとの位置関係に関する情報を検出する例を用いて説明を進める。 As described above, the material nozzle 212 included in the processing head 21 is arranged at a position closer to at least one of the work W and the stage 31 than the irradiation optical system 211 included in the processing head 21. Typically, the material nozzle 212 can be said to be one of the members closest to at least one of the work W and the stage 31 among the members constituting the processing head 21 (further, the processing apparatus 2). Therefore, the material nozzle 212 is more likely to come into contact with at least one of the work W and the stage 31 than the irradiation optical system 211. The possibility that the material nozzle 212 will contact at least one of the work W and the stage 31 is higher than the possibility that the irradiation optical system 211 will contact at least one of the work W and the stage 31. In this case, the detection device 8 may detect information regarding the positional relationship between the material nozzle 212 and at least one of the work W and the stage 31. In particular, the detection device 8 may detect information regarding the positional relationship between the nozzle member 2121 of the material nozzle 212 and at least one of the work W and the stage 31. In the following description, for simplification of the description, the description will proceed with reference to an example in which the detection device 8 detects information regarding the positional relationship between the material nozzle 212 (particularly, the nozzle member 2121) and the work W.
 検出装置8が材料ノズル212とワークWとの位置関係に関する情報を検出(取得)する場合には、制御装置7は、材料ノズル212とワークWとの接触に起因した異常の発生を抑制するように、材料ノズル212とワークWとの相対位置を制御する。具体的には、材料ノズル212とワークWとの相対位置は、材料ノズル212を備える加工ヘッド21を移動可能なヘッド駆動系22によって変更される。このため、ヘッド駆動系22は、制御装置7の制御下で、材料ノズル212とワークWとの接触に起因した異常の発生を抑制するように、材料ノズル212とワークWとの相対位置を制御することになる。 When the detection device 8 detects (acquires) information regarding the positional relationship between the material nozzle 212 and the work W, the control device 7 suppresses the occurrence of an abnormality caused by the contact between the material nozzle 212 and the work W. In addition, the relative position between the material nozzle 212 and the work W is controlled. Specifically, the relative position between the material nozzle 212 and the work W is changed by the head drive system 22 that can move the processing head 21 including the material nozzle 212. Therefore, the head drive system 22 controls the relative position between the material nozzle 212 and the work W so as to suppress the occurrence of an abnormality caused by the contact between the material nozzle 212 and the work W under the control of the control device 7. Will be done.
 この場合、制御装置7は、材料ノズル212がワークWから離れた状態で3次元構造物STを形成するための加工動作が行われるように、材料ノズル212とワークWとの相対位置を制御してもよい。特に、制御装置7は、材料ノズル212のノズル部材2121(特に、その先端の供給アウトレット2131)がワークWから離れた状態で3次元構造物STを形成するための加工動作が行われるように、材料ノズル212とワークWとの相対位置を制御してもよい。 In this case, the control device 7 controls the relative position between the material nozzle 212 and the work W so that the machining operation for forming the three-dimensional structure ST is performed while the material nozzle 212 is away from the work W. You may. In particular, the control device 7 performs a machining operation for forming the three-dimensional structure ST in a state where the nozzle member 2121 of the material nozzle 212 (particularly, the supply outlet 2131 at the tip thereof) is separated from the work W. The relative position between the material nozzle 212 and the work W may be controlled.
 尚、ステージ31が不図示のステージ駆動系によって移動可能である場合には、材料ノズル212とワークWとの相対位置は、ステージ駆動系によって変更される。このため、制御装置7は、ステージ駆動系を制御することで、材料ノズル212とワークWとの接触に起因した異常の発生を抑制するように、材料ノズル212とワークWとの相対位置を制御してもよい。 When the stage 31 is movable by a stage drive system (not shown), the relative position between the material nozzle 212 and the work W is changed by the stage drive system. Therefore, the control device 7 controls the relative position between the material nozzle 212 and the work W so as to suppress the occurrence of an abnormality caused by the contact between the material nozzle 212 and the work W by controlling the stage drive system. You may.
 (1-2)検出装置8の構造
 続いて、検出装置8の構造について説明する。第1実施形態では、加工システムSYS1は、検出装置8として、第1の検出装置8a、第2の検出装置8b、第3の検出装置8c、第4の検出装置8d、第5の検出装置8e及び第6の検出装置8fの少なくとも一つを用いてもよい。このため、以下では、第1の検出装置8aから第6の検出装置8fのそれぞれの構造について順に説明する。
(1-2) Structure of Detection Device 8 Next, the structure of the detection device 8 will be described. In the first embodiment, the processing system SYSTEM has the first detection device 8a, the second detection device 8b, the third detection device 8c, the fourth detection device 8d, and the fifth detection device 8e as the detection device 8. And at least one of the sixth detection devices 8f may be used. Therefore, in the following, the structures of the first detection device 8a to the sixth detection device 8f will be described in order.
 (1-2-1)第1の検出装置8aの構造
 はじめに、図3及び図4(a)から図4(b)を参照しながら、第1の検出装置8aの構造について説明する。図3は、第1の検出装置8aの構造を示す模式図である。図4(a)及び図4(b)のそれぞれは、第1の検出装置8aによる検出原理を示す模式図である。
(1-2-1) Structure of First Detection Device 8a First, the structure of the first detection device 8a will be described with reference to FIGS. 3 and 4 (a) to 4 (b). FIG. 3 is a schematic view showing the structure of the first detection device 8a. Each of FIG. 4A and FIG. 4B is a schematic diagram showing a detection principle by the first detection device 8a.
 図3に示すように、第1の検出装置8aの少なくとも一部は、検出対象物である材料ノズル212に配置されている。より具体的には、第1の検出装置8aの少なくとも一部は、材料ノズル212のノズル部材2121に配置されている。図3に示す例では、第1検出装置8aを構成する後述する鉄心81a及びコイル83aが材料ノズル212に配置されている。このため、第1の検出装置8aの少なくとも一部は、材料ノズル212の移動に合わせて移動する。言い換えると、第1の検出装置8aの少なくとも一部は、材料ノズル212と共に移動する。 As shown in FIG. 3, at least a part of the first detection device 8a is arranged in the material nozzle 212 which is the detection target. More specifically, at least a part of the first detection device 8a is arranged on the nozzle member 2121 of the material nozzle 212. In the example shown in FIG. 3, the iron core 81a and the coil 83a, which will be described later, constituting the first detection device 8a are arranged in the material nozzle 212. Therefore, at least a part of the first detection device 8a moves in accordance with the movement of the material nozzle 212. In other words, at least a part of the first detection device 8a moves with the material nozzle 212.
 第1の検出装置8aは、近接センサである。このため、第1の検出装置8aは、接近対象物であるワークWに接触することなく、第1の検出装置8aとワークWとの位置関係に関する情報を検出(取得)することができる。具体的には、第1の検出装置8aは、接近対象物であるワークWに接触することなく、第1の検出装置8aから一定の範囲にワークWが存在するか否かを検出することができる。更に、第1の検出装置8aが材料ノズル212に配置されているがゆえに、第1の検出装置8aがワークWに接近すればするほど、材料ノズル212もまたワークWに接近する。このため、第1の検出装置8aとワークWとの位置関係に関する情報を検出(取得)する動作は、材料ノズル212とワークWとの位置関係に関する情報を検出(取得)する動作と等価とみなせる。つまり、第1の検出装置8aは、材料ノズル212とワークWとの位置関係に関する情報を検出可能である。具体的には、第1の検出装置8aは、材料ノズル212から一定の範囲にワークWが存在するか否かを検出することができる。この場合、接近条件として、材料ノズル212とワークWとが接触していないもの材料ノズル212とワークWとの間の距離が許容値未満になるという条件が用いられてもよい。尚、この許容値は、予め一定の値に定められていてもよいし、例えば加工ヘッド21の移動速度に応じた値に定められていてもよい。一例として、加工ヘッドの移動速度が遅い場合には、許容値を小さく設定してもよく、移動速度が速い場合には、許容値を大きく設定してもよい。また、この許容値は、加工ヘッド21の移動速度にかかわらず可変であってもよい。 The first detection device 8a is a proximity sensor. Therefore, the first detection device 8a can detect (acquire) information on the positional relationship between the first detection device 8a and the work W without contacting the work W which is an approaching object. Specifically, the first detection device 8a can detect whether or not the work W exists in a certain range from the first detection device 8a without contacting the work W which is an approaching object. it can. Further, since the first detection device 8a is arranged on the material nozzle 212, the closer the first detection device 8a is to the work W, the closer the material nozzle 212 also approaches the work W. Therefore, the operation of detecting (acquiring) the information regarding the positional relationship between the first detection device 8a and the work W can be regarded as equivalent to the operation of detecting (acquiring) the information regarding the positional relationship between the material nozzle 212 and the work W. .. That is, the first detection device 8a can detect information regarding the positional relationship between the material nozzle 212 and the work W. Specifically, the first detection device 8a can detect whether or not the work W exists in a certain range from the material nozzle 212. In this case, as an approach condition, a condition that the material nozzle 212 and the work W are not in contact with each other and the distance between the material nozzle 212 and the work W is less than an allowable value may be used. The permissible value may be set to a constant value in advance, or may be set to a value according to the moving speed of the processing head 21, for example. As an example, when the moving speed of the machining head is slow, the permissible value may be set small, and when the moving speed is fast, the permissible value may be set large. Further, this permissible value may be variable regardless of the moving speed of the processing head 21.
 第1の検出装置8aが近接センサである場合には、第1の検出装置8aは、材料ノズル212とワークWとが接触していない状態において、材料ノズル212とワークWとの位置関係に関する情報を検出(取得)する。第1の検出装置8aは、材料ノズル212とワークWとが接触していない期間中に、材料ノズル212とワークWとの位置関係に関する情報を検出(取得)する。この場合、第1の検出装置8aは、材料ノズル212とワークWとが接触していない状態で材料ノズル212とワークWとの位置関係に関する情報を検出(取得)することが可能な位置に配置される。例えば、第1の検出装置8aの少なくとも一部(例えば、鉄心81a及びコイル83a)は、ノズル部材2121のうち最もワークW側(つまり、ステージ31側)の位置に配置されていてもよい。但し、第1の検出装置8aが近接センサである場合であっても、第1の検出装置8aは、材料ノズル212とワークWとの接触の有無を検出してもよい。第1の検出装置8aが材料ノズル212とワークWとの接触の有無を検出する場合には、接近条件として、材料ノズル212とワークWとが接触しているという条件が用いられてもよい。 When the first detection device 8a is a proximity sensor, the first detection device 8a provides information on the positional relationship between the material nozzle 212 and the work W in a state where the material nozzle 212 and the work W are not in contact with each other. Is detected (acquired). The first detection device 8a detects (acquires) information regarding the positional relationship between the material nozzle 212 and the work W during a period in which the material nozzle 212 and the work W are not in contact with each other. In this case, the first detection device 8a is arranged at a position where information regarding the positional relationship between the material nozzle 212 and the work W can be detected (acquired) when the material nozzle 212 and the work W are not in contact with each other. Will be done. For example, at least a part of the first detection device 8a (for example, the iron core 81a and the coil 83a) may be arranged at the position closest to the work W side (that is, the stage 31 side) of the nozzle members 2121. However, even when the first detection device 8a is a proximity sensor, the first detection device 8a may detect the presence or absence of contact between the material nozzle 212 and the work W. When the first detection device 8a detects the presence or absence of contact between the material nozzle 212 and the work W, a condition that the material nozzle 212 and the work W are in contact with each other may be used as an approach condition.
 第1の検出装置8aとして用いられる近接センサの種類は、特に限定されない。例えば、誘導型の近接センサが第1の検出装置8aとして用いられてもよい。例えば、静電容量型の近接センサが第1の検出装置8aとして用いられてもよい。例えば、磁気型の近接センサが第1の検出装置8aとして用いられてもよい。図3は、誘導型の近接センサが第1の検出装置8aとして用いられる例を示している。この場合、図3に示すように、第1の検出装置8aは、鉄心81aと、支持部材82aと、コイル83aと、検出回路84aとを備える。鉄心81aは、支持部材82aを介して材料ノズル212に固定される。図3に示す例では、鉄心81aは、支持部材82aを介して材料ノズル212の外面に固定される。コイル83aは、鉄心に巻かれている。コイル83aには、検出回路84aから電流が供給されている。その結果、図4(a)に示すように、コイル83aから磁界が発生する。コイル83aからの磁界の影響を受ける範囲にワークWが位置するほどに第1の検出装置8aとワークWとが近づく(つまり、材料ノズル212とワークWとが近づく)と、電磁誘導によってワークWに渦電流が発生する。その結果、渦電流によってコイル83aのインピーダンスが変化する。検出回路84aは、このインピーダンスの変化を検出することで、材料ノズル212とワークWとの位置関係に関する情報を検出する。 The type of proximity sensor used as the first detection device 8a is not particularly limited. For example, an inductive proximity sensor may be used as the first detection device 8a. For example, a capacitance type proximity sensor may be used as the first detection device 8a. For example, a magnetic proximity sensor may be used as the first detection device 8a. FIG. 3 shows an example in which an inductive proximity sensor is used as the first detection device 8a. In this case, as shown in FIG. 3, the first detection device 8a includes an iron core 81a, a support member 82a, a coil 83a, and a detection circuit 84a. The iron core 81a is fixed to the material nozzle 212 via the support member 82a. In the example shown in FIG. 3, the iron core 81a is fixed to the outer surface of the material nozzle 212 via the support member 82a. The coil 83a is wound around an iron core. A current is supplied to the coil 83a from the detection circuit 84a. As a result, as shown in FIG. 4A, a magnetic field is generated from the coil 83a. When the first detection device 8a and the work W are so close to each other that the work W is located in the range affected by the magnetic field from the coil 83a (that is, the material nozzle 212 and the work W are close to each other), the work W is induced by electromagnetic induction. An eddy current is generated in. As a result, the impedance of the coil 83a changes due to the eddy current. The detection circuit 84a detects information on the positional relationship between the material nozzle 212 and the work W by detecting this change in impedance.
 図3に示す誘導型の近接センサが第1の検出装置8aとして用いられる場合には、ワークWに渦電流が流れなければ、第1検出装置8aは、材料ノズル212とワークWとの位置関係に関する情報を検出することが困難である。このため、この場合には、渦電流が流れるように金属材料(特に、導体材料)から構成されるワークが、ワークWとして用いられる。 When the inductive proximity sensor shown in FIG. 3 is used as the first detection device 8a, if no eddy current flows through the work W, the first detection device 8a has a positional relationship between the material nozzle 212 and the work W. Information about is difficult to detect. Therefore, in this case, a work made of a metal material (particularly, a conductor material) is used as the work W so that an eddy current flows.
 尚、材料ノズル212から供給される造形材料Mも金属材料であるため、この材料ノズル212からの造形材料Mによってコイル83aのインピーダンスに影響を与える恐れがある。このときには、コイル83aからの磁界の影響を受けない範囲にワークWが位置する状態でのインピーダンスからの変化を検出回路84aが検出すればよい。 Since the modeling material M supplied from the material nozzle 212 is also a metal material, the modeling material M from the material nozzle 212 may affect the impedance of the coil 83a. At this time, the detection circuit 84a may detect a change from the impedance in a state where the work W is located within a range not affected by the magnetic field from the coil 83a.
 尚、上述した説明では、第1の検出装置8aは、材料ノズル212に配置されている。しかしながら、第1の検出装置8aは、材料ノズル212とは異なる位置に配置されてもよい。例えば、第1の検出装置8aは、ワークW又はステージ31に配置されていてもよい。 In the above description, the first detection device 8a is arranged on the material nozzle 212. However, the first detection device 8a may be arranged at a position different from that of the material nozzle 212. For example, the first detection device 8a may be arranged on the work W or the stage 31.
 また、上述した説明では、誘導型の近接センサが第1の検出装置8aとして用いられる場合には、第1の検出装置8aは、鉄心81aを備えている。しかしながら、第1の検出装置8aは、鉄心81aを備えていなくてもよい。この場合であっても、第1の検出装置8aは、コイル83aを備えている限りは、材料ノズル212とワークWとの接近度合いを検出することができる。 Further, in the above description, when the inductive proximity sensor is used as the first detection device 8a, the first detection device 8a includes an iron core 81a. However, the first detection device 8a does not have to include the iron core 81a. Even in this case, the first detection device 8a can detect the degree of proximity between the material nozzle 212 and the work W as long as the coil 83a is provided.
 (1-2-2)第2の検出装置8bの構造
 続いて、図5を参照しながら、第2の検出装置8bの構造について説明する。図5は、第2の検出装置8bの構造を示す模式図である。尚、上述した第1の検出装置8aが備える構成要素と同一の構成要素については、同一の参照符号を付してその詳細な説明を省略する。
(1-2-2) Structure of Second Detection Device 8b Subsequently, the structure of the second detection device 8b will be described with reference to FIG. FIG. 5 is a schematic view showing the structure of the second detection device 8b. The same components as the components included in the first detection device 8a described above are designated by the same reference numerals, and detailed description thereof will be omitted.
 図5に示すように、第2の検出装置8bは、材料ノズル212(特に、ノズル部材2121)にコイル83aが巻かれているという点で、鉄心81aにコイル83aが巻かれている第1の検出装置8aとは異なる。つまり、第2の検出装置8bは、造形材料Mを供給するための部材として用いられる材料ノズル212(特に、ノズル部材2121)を、鉄心81として兼用している。従って、第2の検出装置8bは、鉄心81aを備えていなくてもよい。更に、第2の検出装置8bは、鉄心81aを材料ノズル212に固定するための支持部材82aを備えていなくてもよい。但し、この場合には、材料ノズル212(特に、ノズル部材2121)は、金属材料(特に、導体材料)から構成される。第2の検出装置8bのその他の特徴は、第1の検出装置8aと同一であってもよい。 As shown in FIG. 5, in the second detection device 8b, the coil 83a is wound around the iron core 81a in that the coil 83a is wound around the material nozzle 212 (particularly, the nozzle member 2121). It is different from the detection device 8a. That is, in the second detection device 8b, the material nozzle 212 (particularly, the nozzle member 2121) used as a member for supplying the modeling material M is also used as the iron core 81. Therefore, the second detection device 8b does not have to include the iron core 81a. Further, the second detection device 8b may not include a support member 82a for fixing the iron core 81a to the material nozzle 212. However, in this case, the material nozzle 212 (particularly, the nozzle member 2121) is made of a metal material (particularly, a conductor material). Other features of the second detection device 8b may be the same as those of the first detection device 8a.
 (1-2-3)第3の検出装置8cの構造
 続いて、図6から図7を参照しながら、第3の検出装置8cの構造について説明する。図6及び図7は、第3の検出装置8cの構造を示す模式図である。
(1-2-3) Structure of Third Detection Device 8c Subsequently, the structure of the third detection device 8c will be described with reference to FIGS. 6 to 7. 6 and 7 are schematic views showing the structure of the third detection device 8c.
 第3の検出装置8cは、第1の検出装置8aとワークWとの位置関係に関する情報として、材料ノズル212(特に、ノズル部材2121、以下同じ)とワークWとの接触状態に関する情報を検出(取得)する。より具体的には、第3の検出装置8cは、材料ノズル212とワークWとの接触の有無に関する情報を検出する。例えば、第3の検出装置8cは、材料ノズル212とワークWとの接触の有無を電気的に検出してもよい。例えば、第3の検出装置8cは、材料ノズル212とワークWとの接触の有無を磁気的に検出してもよい。 The third detection device 8c detects information on the contact state between the material nozzle 212 (particularly, the nozzle member 2121, the same applies hereinafter) and the work W as information on the positional relationship between the first detection device 8a and the work W (the same applies hereinafter). get. More specifically, the third detection device 8c detects information regarding the presence or absence of contact between the material nozzle 212 and the work W. For example, the third detection device 8c may electrically detect the presence or absence of contact between the material nozzle 212 and the work W. For example, the third detection device 8c may magnetically detect the presence or absence of contact between the material nozzle 212 and the work W.
 図6に示す例では、第3の検出装置8cは、材料ノズル212とワークWとの接触の有無を電気的に検出する。具体的には、図6に示す例では、第3の検出装置8cは、材料ノズル212とワークWと電気的導通の有無を検出することで、材料ノズル212とワークWとの接触の有無を検出する。この場合、第3の検出装置8cは、材料ノズル212とワークWとの位置関係に関する情報として、材料ノズル212とワークWと電気的導通の状態に関する情報を検出する。但し、第3の検出装置8cが材料ノズル212とワークWと電気的導通の有無を検出する場合には、材料ノズル212及びワークWのそれぞれは、金属材料(特に、導体材料)から構成される。 In the example shown in FIG. 6, the third detection device 8c electrically detects the presence or absence of contact between the material nozzle 212 and the work W. Specifically, in the example shown in FIG. 6, the third detection device 8c detects the presence / absence of electrical continuity between the material nozzle 212 and the work W to determine the presence / absence of contact between the material nozzle 212 and the work W. To detect. In this case, the third detection device 8c detects information on the state of electrical continuity between the material nozzle 212 and the work W as information on the positional relationship between the material nozzle 212 and the work W. However, when the third detection device 8c detects the presence or absence of electrical continuity between the material nozzle 212 and the work W, each of the material nozzle 212 and the work W is composed of a metal material (particularly, a conductor material). ..
 材料ノズル212とワークWと電気的導通の有無を検出するために、第3の検出装置8cは、配線81cと、配線82cと、検出回路83cとを備えている。配線81cは、材料ノズル212と電気的に接続されている。配線82cは、ワークWと電気的に接続されている。配線81c及び82cのいずれか一方は、加工システムSYS1の電気的なグラウンドと電気的に接続されていてもよい。配線81c及び82cのいずれか一方は、接地されていてもよい。検出回路83cは、配線81c及び82cを介して電気的な閉回路が形成されているか否かを検出することで、材料ノズル212とワークWとの接触の有無(つまり、電気的導通の有無)を検出する。具体的には、材料ノズル212とワークWとが接触していない場合には、図6に示すように、配線81c及び82cを介して電気的な閉回路が形成されることはない。一方で、材料ノズル212とワークWとが接触している場合には、図7に示すように、配線81c、配線82c、材料ノズル212及びワークWを介して電気的な閉回路が形成される。このため、検出回路83cは、配線81c及び82cを介して電気的な閉回路が形成されているか否かを検出することで、材料ノズル212とワークWとの接触の有無を検出することができる。 In order to detect the presence or absence of electrical continuity between the material nozzle 212 and the work W, the third detection device 8c includes wiring 81c, wiring 82c, and a detection circuit 83c. The wiring 81c is electrically connected to the material nozzle 212. The wiring 82c is electrically connected to the work W. Either one of the wirings 81c and 82c may be electrically connected to the electrical ground of the processing system SYS1. Either one of the wirings 81c and 82c may be grounded. The detection circuit 83c detects whether or not an electrically closed circuit is formed via the wirings 81c and 82c, and thus whether or not the material nozzle 212 and the work W are in contact with each other (that is, whether or not there is electrical continuity). Is detected. Specifically, when the material nozzle 212 and the work W are not in contact with each other, as shown in FIG. 6, an electrically closed circuit is not formed via the wirings 81c and 82c. On the other hand, when the material nozzle 212 and the work W are in contact with each other, as shown in FIG. 7, an electrically closed circuit is formed via the wiring 81c, the wiring 82c, the material nozzle 212, and the work W. .. Therefore, the detection circuit 83c can detect the presence or absence of contact between the material nozzle 212 and the work W by detecting whether or not an electrically closed circuit is formed via the wirings 81c and 82c. ..
 尚、ステージ31が金属材料(特に、導体材料)から構成されている場合には、配線82cは、ワークWを保持するステージ31と電気的に接続されていてもよい。この場合、材料ノズル212とワークWとが接触すると、配線81c、配線82c、材料ノズル212、ワークW及びステージ31を介して電気的な閉回路が形成される。このため、配線82cがステージ31と電気的に接続されている場合であっても、検出回路83cは、材料ノズル212とワークWとの接触の有無を検出することができる。尚、ステージ31が金属材料から構成されていない場合には、ステージ31の上面の1以上の箇所に、配線82cと接続される電気接点を設けてもよい。 When the stage 31 is made of a metal material (particularly, a conductor material), the wiring 82c may be electrically connected to the stage 31 holding the work W. In this case, when the material nozzle 212 and the work W come into contact with each other, an electrically closed circuit is formed via the wiring 81c, the wiring 82c, the material nozzle 212, the work W, and the stage 31. Therefore, even when the wiring 82c is electrically connected to the stage 31, the detection circuit 83c can detect the presence or absence of contact between the material nozzle 212 and the work W. When the stage 31 is not made of a metal material, electrical contacts connected to the wiring 82c may be provided at one or more positions on the upper surface of the stage 31.
 また、上述したように、材料ノズル212は、造形材料Mの供給源である材料供給装置1と、不図示のパイプ等を介して物理的に接続されている。このパイプが金属製である場合には、当該パイプの影響を受けて、検出回路83cが、材料ノズル212とワークWとの接触の有無を誤検出してしまう可能性がある。例えば、ワークWに接続される配線82が加工システムSYS1のグラウンドに接続されており且つ材料ノズル212に接続されるパイプもまた加工SYS1のグラウンドに接続されている場合には、材料ノズル212とワークWとは、パイプを介して実質的には電気的に導通した状態にあると言える。その結果、検出回路83cは、材料ノズル212とワークWとが接触していないにも関わらず、配線81c及び82cを介して閉回路が形成されたと誤検出してしまう可能性がある。このため、材料ノズル212(特に、材料ノズル212のうち配線81cと電気的に接続されている部分)は、材料ノズル212と材料供給装置1とを接続するパイプと電気的に絶縁されていてもよい。尚、パイプとワークWとの接触の有無を検出する場合には、当該パイプと材料ノズル212(特に、材料ノズル212のうち配線81cと電気的に接続されている部分)とは導通していてもよい。 Further, as described above, the material nozzle 212 is physically connected to the material supply device 1 which is a supply source of the modeling material M via a pipe or the like (not shown). If this pipe is made of metal, the detection circuit 83c may erroneously detect the presence or absence of contact between the material nozzle 212 and the work W due to the influence of the pipe. For example, when the wiring 82 connected to the work W is connected to the ground of the machining system SYS1 and the pipe connected to the material nozzle 212 is also connected to the ground of the machining SYS1, the material nozzle 212 and the work It can be said that W is in a state of being substantially electrically conductive via the pipe. As a result, the detection circuit 83c may erroneously detect that the closed circuit is formed through the wirings 81c and 82c even though the material nozzle 212 and the work W are not in contact with each other. Therefore, even if the material nozzle 212 (particularly, the portion of the material nozzle 212 that is electrically connected to the wiring 81c) is electrically insulated from the pipe that connects the material nozzle 212 and the material supply device 1. Good. When detecting the presence or absence of contact between the pipe and the work W, the pipe and the material nozzle 212 (particularly, the portion of the material nozzle 212 that is electrically connected to the wiring 81c) are electrically connected. May be good.
 (1-2-4)第4の検出装置8dの構造
 続いて、図8を参照しながら、第4の検出装置8dの構造について説明する。図8は、第4の検出装置8dの構造を示す模式図である。尚、上述した第3の検出装置8cが備える構成要素と同一の構成要素については、同一の参照符号を付してその詳細な説明を省略する。
(1-2-4) Structure of Fourth Detection Device 8d Subsequently, the structure of the fourth detection device 8d will be described with reference to FIG. FIG. 8 is a schematic view showing the structure of the fourth detection device 8d. The same components as the components included in the third detection device 8c described above are designated by the same reference numerals, and detailed description thereof will be omitted.
 図8に示すように、第4の検出装置8dは、材料ノズル212に配置された接触部材84dとワークWとの接触状態に関する情報を検出するという点で、材料ノズル212とワークWとの接触に関する情報を検出する第3の検出装置8cとは異なる。つまり、第4の検出装置8dは、第4の検出装置8dの一部がワークWに接触することで、材料ノズル212とワークWとの相対的な位置関係に関する情報を検出する。第4の検出装置8dのその他の特徴は、第3の検出装置8cと同一であってもよい。 As shown in FIG. 8, the fourth detection device 8d makes contact between the material nozzle 212 and the work W in that it detects information regarding the contact state between the contact member 84d arranged on the material nozzle 212 and the work W. It is different from the third detection device 8c that detects information about. That is, the fourth detection device 8d detects information on the relative positional relationship between the material nozzle 212 and the work W when a part of the fourth detection device 8d comes into contact with the work W. Other features of the fourth detection device 8d may be the same as those of the third detection device 8c.
 接触部材84dは、金属製の部材である。接触部材84dには、配線81cが電気的に接続されている。更に、接触部材84dは、支持部材85dを介して材料ノズル212に固定されている。接触部材84dは、材料ノズル212とワークWとが接触した時点で接触部材84dとワークWとが接触するように、材料ノズル212に対して位置合わせされていてもよい。接触部材84dは、材料ノズル212と接触部材84dとが同時にワークWと接触するように、材料ノズル212に対して位置合わせされていてもよい。接触部材84dは、材料ノズル212とワークWとが接触する前に接触部材84dとワークWとが接触するように、材料ノズル212に対して位置合わせされていてもよい。図8は、材料ノズル212とワークWとが接触する前に接触部材84dとワークWとが接触するように、接触部材84dが材料ノズル212に対して位置合わせされている例を示している。 The contact member 84d is a metal member. The wiring 81c is electrically connected to the contact member 84d. Further, the contact member 84d is fixed to the material nozzle 212 via the support member 85d. The contact member 84d may be aligned with respect to the material nozzle 212 so that the contact member 84d and the work W come into contact with each other when the material nozzle 212 and the work W come into contact with each other. The contact member 84d may be aligned with respect to the material nozzle 212 so that the material nozzle 212 and the contact member 84d come into contact with the work W at the same time. The contact member 84d may be aligned with respect to the material nozzle 212 so that the contact member 84d and the work W come into contact with each other before the material nozzle 212 and the work W come into contact with each other. FIG. 8 shows an example in which the contact member 84d is aligned with respect to the material nozzle 212 so that the contact member 84d and the work W come into contact with each other before the material nozzle 212 and the work W come into contact with each other.
 第4の検出装置8dは、接触部材84dとワークWとの接触の有無を検出する。第4の検出装置8dが接触部材84dとワークWとの接触の有無を検出する原理は、第3の検出装置8cが材料ノズル212とワークWとの接触の有無を検出する原理と同一であってもよい。つまり、第4の検出装置8dは、接触部材84dに接続された配線81c及びワークWに接続された配線82cを介して電気的な閉回路が形成されているか否かを検出することで、接触部材84dとワークWとの接触の有無を検出してもよい。その結果、制御装置7は、接触部材84dとワークWとが接触するほどに材料ノズル212とワークWとが接近している(或いは、場合によっては既に接触している)か否かを特定することができる。この場合、接触部材84dとワークWとが接触するほどに材料ノズル212とワークWとが接近している(或いは、場合によっては既に接触している)という条件が、上述した接近条件として用いられてもよい。つまり、接触部材84dとワークWとが接触するという条件が、上述した接近条件として用いられてもよい。尚、図8に示した例では、接触部材84dは単数であったが、第4の検出装置は、複数の接触部材84dを有していてもよい。 The fourth detection device 8d detects the presence or absence of contact between the contact member 84d and the work W. The principle that the fourth detection device 8d detects the presence or absence of contact between the contact member 84d and the work W is the same as the principle that the third detection device 8c detects the presence or absence of contact between the material nozzle 212 and the work W. You may. That is, the fourth detection device 8d detects whether or not an electrically closed circuit is formed via the wiring 81c connected to the contact member 84d and the wiring 82c connected to the work W, thereby making contact. The presence or absence of contact between the member 84d and the work W may be detected. As a result, the control device 7 specifies whether or not the material nozzle 212 and the work W are so close (or, in some cases, already in contact with each other) that the contact member 84d and the work W are in contact with each other. be able to. In this case, the condition that the material nozzle 212 and the work W are close to each other (or, in some cases, already in contact with each other) so that the contact member 84d and the work W are in contact with each other is used as the above-mentioned approach condition. You may. That is, the condition that the contact member 84d and the work W are in contact with each other may be used as the above-mentioned approach condition. In the example shown in FIG. 8, the contact member 84d is singular, but the fourth detection device may have a plurality of contact members 84d.
 (1-2-5)第5の検出装置8eの構造
 続いて、図9を参照しながら、第5の検出装置8eの構造について説明する。図8は、第5の検出装置8eの構造を示す模式図である。
(1-2-5) Structure of Fifth Detection Device 8e Subsequently, the structure of the fifth detection device 8e will be described with reference to FIG. 9. FIG. 8 is a schematic view showing the structure of the fifth detection device 8e.
 第5の検出装置8eは、材料ノズル212とワークWとの位置関係に関する情報を光学的に検出する。具体的には、第5の検出装置8eは、検出光MLを用いて材料ノズル212とワークWとの位置関係に関する情報を検出する。 The fifth detection device 8e optically detects information regarding the positional relationship between the material nozzle 212 and the work W. Specifically, the fifth detection device 8e detects information regarding the positional relationship between the material nozzle 212 and the work W using the detection light ML.
 検出光MLを用いて材料ノズル212とワークWとの位置関係に関する情報を検出するために、第5の検出装置8eは、送光系81eと、受光系82eとを備えている。送光系81e及び受光系82eのそれぞれは、加工ヘッド21に配置されている。従って、加工ヘッド21と送光系81e及び受光系82eのそれぞれとの位置関係は、加工ヘッド21の移動に関わらず固定される。つまり、照射光学系211及び材料ノズル212のそれぞれと送光系81e及び受光系82eのそれぞれとの位置関係は、加工ヘッド21の移動に関わらず固定される。 The fifth detection device 8e includes a light transmission system 81e and a light receiving system 82e in order to detect information regarding the positional relationship between the material nozzle 212 and the work W using the detection light ML. Each of the light transmitting system 81e and the light receiving system 82e is arranged on the processing head 21. Therefore, the positional relationship between the processing head 21, the light transmitting system 81e, and the light receiving system 82e is fixed regardless of the movement of the processing head 21. That is, the positional relationship between each of the irradiation optical system 211 and the material nozzle 212 and each of the light transmission system 81e and the light receiving system 82e is fixed regardless of the movement of the processing head 21.
 送光系81eは、検出光MLを射出する。送光系81eは、ワークWに向けて検出光MLを射出する。送光系81eは、ワークWの表面(例えば、造形面MS)における検出光MLの照射領域LAが、ワークWの表面(例えば、造形面MS)における加工光ELの照射領域EAから離れるように、照射光学系211に対して位置合わせされている。つまり、送光系81eは、検出光MLの照射領域LAが加工光ELの照射領域EAからX軸方向及びY軸方向の少なくとも一方に沿って離れた位置に位置するように、照射光学系211に対して位置合わせされている。この際、送光系81eは、ワークWの表面(例えば、造形面MS)における加工光ELの移動方向に沿って照射領域EAよりも前方に照射領域LAが位置するように、照射光学系211に対して位置合わせされていてもよい。或いは、送光系81eは、ワークWの表面(例えば、造形面MS)における加工光ELの移動方向に沿って照射領域EAよりも後方に照射領域LAが位置するように、照射光学系211に対して位置合わせされていてもよい。また、検出光MLの照射領域LAを複数設けて、加工光ELの移動方向に沿って照射領域EAよりも前方及び後方に照射領域LAを位置させてもよい。この場合、複数の第5の検出装置8eがあってもよい。尚、検出光MLの照射領域LAが複数存在する場合、加工光ELの移動方向に応じて複数の照射領域LAを切り換えて用いてもよい。 The light transmission system 81e emits the detection light ML. The light transmission system 81e emits the detection light ML toward the work W. In the light transmission system 81e, the irradiation region LA of the detection light ML on the surface of the work W (for example, the modeling surface MS) is separated from the irradiation region EA of the processing light EL on the surface of the work W (for example, the modeling surface MS). , Aligned with the irradiation optical system 211. That is, in the light transmission system 81e, the irradiation optical system 211 so that the irradiation region LA of the detection light ML is located at a position separated from the irradiation region EA of the processing light EL along at least one of the X-axis direction and the Y-axis direction. Aligned with. At this time, in the light transmission system 81e, the irradiation optical system 211 is located so that the irradiation region LA is located in front of the irradiation region EA along the moving direction of the processed light EL on the surface of the work W (for example, the modeling surface MS). It may be aligned with respect to. Alternatively, the light transmission system 81e is attached to the irradiation optical system 211 so that the irradiation region LA is located behind the irradiation region EA along the moving direction of the processed light EL on the surface of the work W (for example, the modeling surface MS). It may be aligned with respect to it. Further, a plurality of irradiation region LAs of the detection light ML may be provided, and the irradiation region LA may be positioned in front of and behind the irradiation region EA along the moving direction of the processing light EL. In this case, there may be a plurality of fifth detection devices 8e. When there are a plurality of irradiation region LAs of the detection light ML, the plurality of irradiation region LAs may be switched and used according to the moving direction of the processing light EL.
 受光系82eは、ワークWからの検出光ML(つまり、ワークWで反射した検出光EL)を受光する。つまり、受光系82eは、ワークWを介した検出光MLを受光する。受光系82eは、照射領域LAからの検出光MLを受光する。受光系82eによる受光結果は、制御装置7に出力される。 The light receiving system 82e receives the detection light ML from the work W (that is, the detection light EL reflected by the work W). That is, the light receiving system 82e receives the detection light ML via the work W. The light receiving system 82e receives the detection light ML from the irradiation region LA. The light receiving result by the light receiving system 82e is output to the control device 7.
 制御装置7は、受光系82eによる受光結果に基づいて、照射領域LAのZ軸方向における位置を算出する。つまり、制御装置7は、受光系82eによる受光結果に基づいて、ワークWのZ軸方向における位置(特に、ワークWの表面のZ軸方向における位置)を算出する。ここで、送光系81e及び受光系82eのそれぞれが加工ヘッド21に配置されているがゆえに、受光系82eによる受光結果に基づいて算出されるワークWのZ軸方向における位置に関する情報は、加工ヘッド21に対するワークWのZ軸方向における位置に関する情報を含んでいる。このため、制御装置7は、受光系82eによる受光結果に基づいて算出されるワークWのZ軸方向における位置に関する情報に基づいて、加工ヘッド21とワークWとの相対的な位置関係に関する情報を算出することができる。その結果、制御装置7は、材料ノズル212とワークWとの相対的な位置関係に関する情報を算出することができる。 The control device 7 calculates the position of the irradiation region LA in the Z-axis direction based on the light receiving result by the light receiving system 82e. That is, the control device 7 calculates the position of the work W in the Z-axis direction (particularly, the position of the surface of the work W in the Z-axis direction) based on the light receiving result by the light receiving system 82e. Here, since each of the light transmitting system 81e and the light receiving system 82e is arranged on the processing head 21, the information regarding the position of the work W in the Z-axis direction calculated based on the light receiving result by the light receiving system 82e is processed. It contains information about the position of the work W with respect to the head 21 in the Z-axis direction. Therefore, the control device 7 obtains information on the relative positional relationship between the machining head 21 and the work W based on the information on the position of the work W in the Z-axis direction calculated based on the light receiving result by the light receiving system 82e. Can be calculated. As a result, the control device 7 can calculate information regarding the relative positional relationship between the material nozzle 212 and the work W.
 (1-2-6)第6の検出装置8fの構造
 続いて、図10を参照しながら、第6の検出装置8fの構造について説明する。図10は、第6の検出装置8fの構造を示す模式図である。
(1-2-6) Structure of the Sixth Detection Device 8f Subsequently, the structure of the sixth detection device 8f will be described with reference to FIG. 10. FIG. 10 is a schematic view showing the structure of the sixth detection device 8f.
 第6の検出装置8fは、第5の検出装置8eと同様に、材料ノズル212とワークWとの位置関係に関する情報を光学的に検出する。但し、第6の検出装置8fは、第5の検出装置8eとは異なる方法で、材料ノズル212とワークWとの位置関係に関する情報を光学的に検出する。具体的には、第6の検出装置8fは、カメラ(つまり、撮像装置)81fを備えている。カメラ81fは、材料ノズル212を撮像する。特に、カメラ81fは、材料ノズル212のノズル部材2121(特に、その先端の供給アウトレット2123)を撮像する。このため、カメラ81fは、カメラ81fの撮像範囲81fにノズル部材2121の少なくとも一部(特に、ノズル部材2121の先端の供給アウトレット2123)が含まれるように、材料ノズル212に対して位置合わせされている。更に、カメラ81fは、材料ノズル212に加えて、ワークWを撮像する。このため、カメラ81fは、カメラ81fの撮像範囲81fにワークWの少なくとも一部が含まれるように、材料ノズル212に対して位置合わせされている。カメラ81fの撮像結果(つまり、カメラ81fが撮像した画像)は、制御装置7に出力される。 Similar to the fifth detection device 8e, the sixth detection device 8f optically detects information regarding the positional relationship between the material nozzle 212 and the work W. However, the sixth detection device 8f optically detects the information regarding the positional relationship between the material nozzle 212 and the work W by a method different from that of the fifth detection device 8e. Specifically, the sixth detection device 8f includes a camera (that is, an image pickup device) 81f. The camera 81f captures the material nozzle 212. In particular, the camera 81f images the nozzle member 2121 of the material nozzle 212 (particularly, the supply outlet 2123 at its tip). Therefore, the camera 81f is aligned with respect to the material nozzle 212 so that the imaging range 81f of the camera 81f includes at least a portion of the nozzle member 2121 (particularly, the supply outlet 2123 at the tip of the nozzle member 2121). There is. Further, the camera 81f captures the work W in addition to the material nozzle 212. Therefore, the camera 81f is aligned with respect to the material nozzle 212 so that the imaging range 81f of the camera 81f includes at least a part of the work W. The image capture result of the camera 81f (that is, the image captured by the camera 81f) is output to the control device 7.
 制御装置7は、カメラ81fが撮像した画像に基づいて、材料ノズル212とワークWとの位置関係に関する情報を算出する。上述したように、カメラ81fは、材料ノズル212とワークWとの双方を撮像する。このため、制御装置7は、カメラ81fが撮像した画像を解析することで、材料ノズル212とワークWとの位置関係に関する情報を算出することができる。 The control device 7 calculates information on the positional relationship between the material nozzle 212 and the work W based on the image captured by the camera 81f. As described above, the camera 81f captures both the material nozzle 212 and the work W. Therefore, the control device 7 can calculate information regarding the positional relationship between the material nozzle 212 and the work W by analyzing the image captured by the camera 81f.
 尚、第6の検出装置8fの一例としてのカメラ81fは、ノズル部材2121を撮像せずにワークWを撮像してもよい。カメラ81fがノズル部材2121を撮像する場合又はノズル2121を撮像しない場合において、カメラ81fはワークW上に形成される3次元構造物STを撮像してもよい。カメラ81fが3次元構造物STを撮像するとき、制御装置7は、3次元構造物STの寸法が設計値通りであるか否か、或いは造形プロセスに異常があるか否かを判断してもよい。制御装置7は、否の場合(例えば、3次元構造物STの寸法が設計値通りでない又は造形プロセスに異常がある場合)、警告情報を出力してもよく、加工システムSYS1の動作を停止させてもよい。 Note that the camera 81f as an example of the sixth detection device 8f may image the work W without imaging the nozzle member 2121. When the camera 81f images the nozzle member 2121 or does not image the nozzle 2121, the camera 81f may image the three-dimensional structure ST formed on the work W. When the camera 81f captures the three-dimensional structure ST, the control device 7 determines whether or not the dimensions of the three-dimensional structure ST are as designed, or whether or not there is an abnormality in the modeling process. Good. If the control device 7 is not (for example, if the dimensions of the three-dimensional structure ST are not as designed or there is an abnormality in the modeling process), the control device 7 may output warning information and stop the operation of the machining system SYS1. You may.
 また、複数の第6の検出装置8fが設けられていても良い。この場合、ワークWを互いに異なる方向から撮像できるように、複数の第6の検出装置8fを配置してもよい。 Further, a plurality of sixth detection devices 8f may be provided. In this case, a plurality of sixth detection devices 8f may be arranged so that the work W can be imaged from different directions.
 尚、上述した第1の検出装置8aから第6の検出装置8fのそれぞれは、検出装置8の一具体例に過ぎない。このため、第1の検出装置8aから第8の検出装置8fとは異なる構造を有する任意の検出装置が検出装置8として用いられてもよいことは言うまでもない。例えば、材料ノズル212とワークWとの間の距離を測定可能な距離センサが、検出装置8として用いられてもよい。このような距離センサの一例として、超音波、光又は電磁波を対象物に照射すると共に当該対象物で反射した超音波、光又は電磁波が戻ってくるまでの時間から対象物までの距離を測定可能なセンサがあげられる。距離センサは、材料ノズル212に配置されるが、材料ノズル212とは異なる部材(例えば、ワークW又はステージ31)に配置されてもよい。或いは、例えば、対象物との接触の有無を検出可能な接触センサが、検出装置8として用いられてもよい。この場合、接触センサは、材料ノズル212に配置されるが、材料ノズル212とは異なる部材(例えば、ワークW又はステージ31)に配置されてもよい。 It should be noted that each of the first detection device 8a to the sixth detection device 8f described above is only a specific example of the detection device 8. Therefore, it goes without saying that any detection device having a structure different from that of the first detection device 8a to the eighth detection device 8f may be used as the detection device 8. For example, a distance sensor capable of measuring the distance between the material nozzle 212 and the work W may be used as the detection device 8. As an example of such a distance sensor, it is possible to irradiate an object with ultrasonic waves, light or electromagnetic waves and measure the distance from the object from the time until the ultrasonic waves, light or electromagnetic waves reflected by the object return. Sensors can be mentioned. Although the distance sensor is arranged on the material nozzle 212, it may be arranged on a member (for example, work W or stage 31) different from the material nozzle 212. Alternatively, for example, a contact sensor capable of detecting the presence or absence of contact with an object may be used as the detection device 8. In this case, the contact sensor is arranged on the material nozzle 212, but may be arranged on a member (for example, work W or stage 31) different from the material nozzle 212.
 また、上述した第1の検出装置8aから第6の検出装置8fのそれぞれは、材料ノズル212とワークWとの間の距離の情報、材料ノズル212とワークWとの位置関係に関する情報、又は材料ノズル212とワークWと接近度合いに関する情報を検出(取得)することに加えて/又は代えて、材料ノズル212と3次元造形物STとの間の距離の情報、材料ノズル212と3次元造形物STとの位置関係に関する情報、又は材料ノズル212と3次元造形物STと接近度合いに関する情報を検出(取得)してもよい。 Further, each of the first detection device 8a to the sixth detection device 8f described above has information on the distance between the material nozzle 212 and the work W, information on the positional relationship between the material nozzle 212 and the work W, or the material. In addition to / or instead of detecting (acquiring) information about the nozzle 212 and the work W and the degree of proximity, information on the distance between the material nozzle 212 and the 3D model ST, the material nozzle 212 and the 3D model Information on the positional relationship with the ST, or information on the degree of proximity between the material nozzle 212 and the three-dimensional modeled object ST may be detected (acquired).
 (1-3)加工システムSYS1の加工動作
 続いて、加工システムSYS1による加工動作(つまり、3次元構造物STを形成するための動作)について説明する。上述したように、加工システムSYS1は、レーザ肉盛溶接法により3次元構造物STを形成する。このため、加工システムSYS1は、レーザ肉盛溶接法に準拠した既存の加工動作(この場合、造形動作)を行うことで、3次元構造物STを形成してもよい。以下、レーザ肉盛溶接法を用いて3次元構造物STを形成する加工動作の一例について簡単に説明する。
(1-3) Machining Operation of Machining System SYS1 Subsequently, the machining operation by the machining system SYS1 (that is, the operation for forming the three-dimensional structure ST) will be described. As described above, the processing system SYS1 forms the three-dimensional structure ST by the laser overlay welding method. Therefore, the machining system SYS1 may form the three-dimensional structure ST by performing an existing machining operation (in this case, a modeling operation) based on the laser overlay welding method. Hereinafter, an example of a processing operation for forming the three-dimensional structure ST by using the laser overlay welding method will be briefly described.
 加工システムSYS1は、形成するべき3次元構造物STの3次元モデルデータ(例えば、CAD(Computer Aided Design)データ)等に基づいて、ワークW上に3次元構造物STを形成する。3次元モデルデータとして、加工システムSYS1内に設けられた不図示の計測装置で計測された立体物の計測データ、及び、加工システムSYS1とは別に設けられた3次元形状計測機の計測データの少なくとも一方を用いてもよい。3次元形状計測機の一例として、ワークWに対して移動可能でワークWに接触可能なプローブを有する接触型の3次元座標測定機があげられる。3次元形状計測機の一例として、非接触型の3次元計測機があげられる。非接触型の3次元計測機の一例として、パターン投影方式の3次元計測機、光切断方式の3次元計測機、タイム・オブ・フライト方式の3次元計測機、モアレトポグラフィ方式の3次元計測機、ホログラフィック干渉方式の3次元計測機、CT(Computed Tomography)方式の3次元計測機、及び、MRI(Magnetic resonance imaging)方式の3次元計測機等の少なくとも一つがあげられる。尚、3次元モデルデータとしては、例えばSTL(Stereo Lithography)フォーマット、VRML(Virtual Reality Modeling Language)フォーマット、AMF(Additive Manufacturing File Format)、IGES(Initial Graphics Exchange Specification)フォーマット、VDA-FS(Association of German Automotive Manufactures-Surfaces Interface)フォーマット、HP/GL(Hewlett-Packard Graphics Language)フォーマット、ビットマップフォーマット等を用いることができる。 The processing system SYS1 forms the three-dimensional structure ST on the work W based on the three-dimensional model data (for example, CAD (Computer Aided Design) data) of the three-dimensional structure ST to be formed. As the three-dimensional model data, at least the measurement data of the three-dimensional object measured by the measuring device (not shown) provided in the processing system SYS1 and the measurement data of the three-dimensional shape measuring machine provided separately from the processing system SYS1. One may be used. An example of a three-dimensional shape measuring machine is a contact-type three-dimensional coordinate measuring machine having a probe that can move with respect to the work W and can contact the work W. An example of a three-dimensional shape measuring machine is a non-contact type three-dimensional measuring machine. As an example of a non-contact type 3D measuring machine, a pattern projection type 3D measuring machine, an optical cutting type 3D measuring machine, a time of flight type 3D measuring machine, and a moiretopography type 3D measuring machine , At least one of a holographic interference type three-dimensional measuring machine, a CT (Computed Tomography) type three-dimensional measuring machine, and an MRI (Magnetic resonance imaging) type three-dimensional measuring machine. The three-dimensional model data includes, for example, STL (Stareo Lithografy) format, VRML (Virtual Reality Modeling Language) format, AMF (Adaptive Manufacturing File Format), and IGES (Initial Technology) IGES (Initial Technology) format. The Automotive Manufactures-Surfaces Interface) format, HP / GL (Hewlett-Packard Graphics Language) format, bitmap format and the like can be used.
 加工システムSYS1は、3次元構造物STを形成するために、例えば、Z軸方向に沿って並ぶ複数の層状の部分構造物(以下、“構造層”と称する)SLを順に形成していく。例えば、加工システムSYS1は、3次元構造物STをZ軸方向に沿って輪切りにすることで得られる複数の構造層SLを1層ずつ順に形成していく。その結果、複数の構造層SLが積層された積層構造体である3次元構造物STが形成される。以下、複数の構造層SLを1層ずつ順に形成していくことで3次元構造物STを形成する動作の流れについて説明する。 In order to form the three-dimensional structure ST, the processing system SYS1 sequentially forms, for example, a plurality of layered partial structures (hereinafter referred to as "structural layers") SLs arranged along the Z-axis direction. For example, the processing system SYS1 sequentially forms a plurality of structural layers SL obtained by cutting the three-dimensional structure ST into round slices along the Z-axis direction. As a result, the three-dimensional structure ST, which is a laminated structure in which a plurality of structural layers SL are laminated, is formed. Hereinafter, the flow of the operation of forming the three-dimensional structure ST by forming the plurality of structural layers SL one by one in order will be described.
 まず、各構造層SLを形成する動作について図11(a)から図11(e)を参照して説明する。加工システムSYS1は、制御装置7の制御下で、ワークWの表面又は形成済みの構造層SLの表面に相当する造形面MS上の所望領域に照射領域EAを設定し、当該照射領域EAに対して照射光学系211から加工光ELを照射する。尚、照射光学系211から照射される加工光ELが造形面MS上に占める領域を照射領域EAと称してもよい。第1実施形態においては、加工光ELのフォーカス位置(つまり、集光位置)が造形面MSに一致している。その結果、図11(a)に示すように、照射光学系211から射出された加工光ELによって造形面MS上の所望領域に溶融池(つまり、加工光ELによって溶融した金属のプール)MPが形成される。更に、加工システムSYS1は、制御装置7の制御下で、造形面MS上の所望領域に供給領域MAを設定し、当該供給領域MAに対して材料ノズル212から造形材料Mを供給する。ここで、上述したように照射領域EAと供給領域MAとが一致しているため、供給領域MAは、溶融池MPが形成された領域に設定されている。このため、加工システムSYS1は、図11(b)に示すように、溶融池MPに対して、材料ノズル212から造形材料Mを供給する。その結果、溶融池MPに供給された造形材料Mが溶融する。加工ヘッド21の移動に伴って溶融池MPに加工光ELが照射されなくなると、溶融池MPにおいて溶融した造形材料Mは、冷却されて固化(つまり、凝固)する。その結果、図11(c)に示すように、固化した造形材料Mが造形面MS上に堆積される。つまり、固化した造形材料Mの堆積物による造形物が形成される。 First, the operation of forming each structural layer SL will be described with reference to FIGS. 11 (a) to 11 (e). Under the control of the control device 7, the processing system SYS1 sets an irradiation region EA in a desired region on the modeling surface MS corresponding to the surface of the work W or the surface of the formed structural layer SL, and the irradiation region EA is set with respect to the irradiation region EA. The processing light EL is irradiated from the irradiation optical system 211. The region occupied by the processed light EL emitted from the irradiation optical system 211 on the modeling surface MS may be referred to as an irradiation region EA. In the first embodiment, the focus position (that is, the condensing position) of the processed light EL coincides with the modeling surface MS. As a result, as shown in FIG. 11A, the molten pool (that is, the pool of metal melted by the processing light EL) MP is formed in the desired region on the modeling surface MS by the processing light EL emitted from the irradiation optical system 211. It is formed. Further, the processing system SYS1 sets a supply region MA in a desired region on the modeling surface MS under the control of the control device 7, and supplies the modeling material M to the supply region MA from the material nozzle 212. Here, since the irradiation region EA and the supply region MA coincide with each other as described above, the supply region MA is set to the region where the molten pool MP is formed. Therefore, as shown in FIG. 11B, the processing system SYS1 supplies the modeling material M from the material nozzle 212 to the molten pool MP. As a result, the modeling material M supplied to the molten pool MP melts. When the processing light EL is not irradiated to the molten pool MP as the processing head 21 moves, the modeling material M melted in the molten pool MP is cooled and solidified (that is, solidified). As a result, as shown in FIG. 11C, the solidified modeling material M is deposited on the modeling surface MS. That is, a modeled object is formed by the deposit of the solidified modeling material M.
 このような加工光ELの照射による溶融池MPの形成、溶融池MPへの造形材料Mの供給、供給された造形材料Mの溶融及び溶融した造形材料Mの固化を含む一連の造形処理が、図11(d)に示すように、造形面MSに対して加工ヘッド21をXY平面に沿って相対的に移動されながら繰り返される。つまり、造形面MSに対して加工ヘッド21が相対的に移動すると、造形面MSに対して照射領域EAもまた相対的に移動する。従って、一連の造形処理が、造形面MSに対して照射領域EAをXY平面に沿って(つまり、二次元平面内において)相対的に移動されながら繰り返される。この際、加工光ELは、造形面MS上において造形物を形成したい領域に設定された照射領域EAに対して選択的に照射される一方で、造形面MS上において造形物を形成したくない領域に設定された照射領域EAに対して選択的に照射されない(造形物を形成したくない領域には照射領域EAが設定されないとも言える)。つまり、加工システムSYS1は、造形面MS上を所定の移動軌跡に沿って照射領域EAを移動させながら、造形物を形成したい領域の分布の態様に応じたタイミングで加工光ELを造形面MSに照射する。尚、造形物を形成したい領域の分布の態様を分布パターンとも構造層SLのパターンとも称してもよい。その結果、溶融池MPもまた、照射領域EAの移動軌跡に応じた移動軌跡に沿って造形面MS上を移動することになる。具体的には、溶融池MPは、造形面MS上において、照射領域EAの移動軌跡に沿った領域のうち加工光ELが照射された部分に順次形成される。更に、上述したように照射領域EAと供給領域MAとが一致しているため、供給領域MAもまた、照射領域EAの移動軌跡に応じた移動軌跡に沿って造形面MS上を移動することになる。その結果、図11(e)に示すように、造形面MS上に、凝固した造形材料Mによる造形物の集合体に相当する構造層SLが形成される。つまり、溶融池MPの移動軌跡に応じたパターンで造形面MS上に形成された造形物の集合体に相当する構造層SL(つまり、平面視において、溶融池MPの移動軌跡に応じた形状を有する構造層SL)が形成される。なお、造形物を形成したくない領域に照射領域EAが設定されている場合、加工光ELを照射領域EAに照射するとともに、造形材料Mの供給を停止してもよい。また、造形物を形成したくない領域に照射領域EAが設定されている場合に、造形材料Mを照射領域ELに供給するとともに、溶融池MPができない強度の加工光ELを照射領域ELに照射してもよい。尚、上述した説明では、造形面MSに対して照射領域EAを移動させたが、照射領域EAに対して造形面MSを移動させてもよい。 A series of modeling processes including formation of the molten pool MP by irradiation with such processing light EL, supply of the modeling material M to the molten pool MP, melting of the supplied modeling material M, and solidification of the molten modeling material M can be performed. As shown in FIG. 11D, the processing head 21 is repeatedly moved relative to the modeling surface MS along the XY plane. That is, when the processing head 21 moves relative to the modeling surface MS, the irradiation region EA also moves relative to the modeling surface MS. Therefore, a series of modeling processes is repeated while moving the irradiation region EA relative to the modeling surface MS along the XY plane (that is, in the two-dimensional plane). At this time, the processed light EL is selectively irradiated to the irradiation region EA set in the region where the modeled object is to be formed on the modeled surface MS, but it is not desired to form the modeled object on the modeled surface MS. The irradiation area EA set in the area is not selectively irradiated (it can be said that the irradiation area EA is not set in the area where the modeled object is not desired to be formed). That is, the processing system SYS1 moves the irradiation region EA along the predetermined movement locus on the modeling surface MS, and transfers the processing light EL to the modeling surface MS at a timing according to the distribution mode of the region where the modeled object is to be formed. Irradiate. The mode of distribution of the region where the modeled object is to be formed may be referred to as a distribution pattern or a pattern of the structural layer SL. As a result, the molten pool MP also moves on the modeling surface MS along the movement locus according to the movement locus of the irradiation region EA. Specifically, the molten pool MP is sequentially formed on the modeling surface MS in the portion of the region along the movement locus of the irradiation region EA that is irradiated with the processing light EL. Further, since the irradiation region EA and the supply region MA coincide with each other as described above, the supply region MA also moves on the modeling surface MS along the movement locus according to the movement locus of the irradiation region EA. Become. As a result, as shown in FIG. 11E, a structural layer SL corresponding to an aggregate of the modeled objects made of the solidified modeling material M is formed on the modeling surface MS. That is, the structural layer SL corresponding to the aggregate of the shaped objects formed on the modeling surface MS in the pattern corresponding to the moving locus of the molten pool MP (that is, the shape corresponding to the moving locus of the molten pool MP in a plan view). The structural layer SL) to have is formed. When the irradiation region EA is set in the region where the modeled object is not to be formed, the processing light EL may be irradiated to the irradiation region EA and the supply of the modeling material M may be stopped. Further, when the irradiation region EA is set in the region where the modeled object is not to be formed, the modeling material M is supplied to the irradiation region EL, and the irradiation region EL is irradiated with the processing light EL having a strength that does not allow the molten pool MP. You may. In the above description, the irradiation area EA is moved with respect to the modeling surface MS, but the modeling surface MS may be moved with respect to the irradiation area EA.
 加工システムSYS1は、このような構造層SLを形成するための動作を、制御装置7の制御下で、3次元モデルデータに基づいて繰り返し行う。具体的には、まず、3次元モデルデータを積層ピッチでスライス処理してスライスデータを作成する。尚、加工システムSYS1の特性に応じてこのスライスデータを一部修正したデータを用いてもよい。加工システムSYS1は、ワークWの表面に相当する造形面MS上に1層目の構造層SL#1を形成するための動作を、構造層SL#1に対応する3次元モデルデータ、即ち構造層SL#1に対応するスライスデータに基づいて行う。例えば、加工システムSYS1は、構造層SL#1に対応するスライスデータのうち構造層SL#1が存在する領域を通過する、照射領域EA(供給領域MA)の軌跡であるツールパスに関する情報を用いて動作されてもよい。その結果、造形面MS上には、図12(a)に示すように、構造層SL#1が形成される。その後、加工システムSYS1は、構造層SL#1の表面(つまり、上面)を新たな造形面MSに設定した上で、当該新たな造形面MS上に2層目の構造層SL#2を形成する。構造層SL#2を形成するために、制御装置7は、まず、加工ヘッド21がZ軸に沿って移動するようにヘッド駆動系22を制御する。具体的には、制御装置7は、ヘッド駆動系22を制御して、照射領域EA及び供給領域MAが構造層SL#1の表面(つまり、新たな造形面MS)に設定されるように、+Z側に向かって加工ヘッド21を移動させる。これにより、加工光ELのフォーカス位置が新たな造形面MSに一致する。その後、加工システムSYS1は、制御装置7の制御下で、構造層SL#1を形成する動作と同様の動作で、構造層SL#2に対応するスライスデータに基づいて、構造層SL#1上に構造層SL#2を形成する。その結果、図12(b)に示すように、構造層SL#2が形成される。以降、同様の動作が、ワークW上に形成するべき3次元構造物STを構成する全ての構造層SLが形成されるまで繰り返される。その結果、図12(c)に示すように、複数の構造層SLが積層された積層構造物によって、3次元構造物STが形成される。 The processing system SYS1 repeatedly performs the operation for forming such a structural layer SL under the control of the control device 7 based on the three-dimensional model data. Specifically, first, the three-dimensional model data is sliced at a stacking pitch to create slice data. It should be noted that data obtained by partially modifying this slice data according to the characteristics of the processing system SYS1 may be used. The processing system SYS1 performs the operation for forming the first structural layer SL # 1 on the modeling surface MS corresponding to the surface of the work W, that is, the three-dimensional model data corresponding to the structural layer SL # 1, that is, the structural layer. This is performed based on the slice data corresponding to SL # 1. For example, the processing system SYS1 uses information on the tool path which is the locus of the irradiation region EA (supply region MA) passing through the region where the structural layer SL # 1 exists in the slice data corresponding to the structural layer SL # 1. May be operated. As a result, the structural layer SL # 1 is formed on the modeling surface MS as shown in FIG. 12A. After that, the processing system SYS1 sets the surface (that is, the upper surface) of the structural layer SL # 1 on the new modeling surface MS, and then forms the second structural layer SL # 2 on the new modeling surface MS. To do. In order to form the structural layer SL # 2, the control device 7 first controls the head drive system 22 so that the machining head 21 moves along the Z axis. Specifically, the control device 7 controls the head drive system 22 so that the irradiation region EA and the supply region MA are set on the surface of the structural layer SL # 1 (that is, the new modeling surface MS). The machining head 21 is moved toward the + Z side. As a result, the focus position of the processing light EL coincides with the new modeling surface MS. After that, the processing system SYS1 operates on the structural layer SL # 1 based on the slice data corresponding to the structural layer SL # 2 in the same operation as the operation of forming the structural layer SL # 1 under the control of the control device 7. The structural layer SL # 2 is formed on the surface. As a result, the structural layer SL # 2 is formed as shown in FIG. 12 (b). After that, the same operation is repeated until all the structural layers SL constituting the three-dimensional structure ST to be formed on the work W are formed. As a result, as shown in FIG. 12 (c), the three-dimensional structure ST is formed by the laminated structure in which a plurality of structural layers SL are laminated.
 (1-4)加工システムSYS1の技術的効果
 以上説明したように、第1実施形態の加工システムSYS1によれば、ワークWに対して適切に付加加工を行うことができる。また、加工システムSYS1は、検出装置8を備えているがゆえに、材料ノズル212(或いは、任意の検出対象物)とワークW(或いは、任意の接近対象物)との相対位置に関する情報を検出することができる。また、加工システムSYS1は、材料ノズル212(或いは、任意の検出対象物)とワークW(或いは、任意の接近対象物)との接近度合いに関する所定の接近条件が成立した場合には、材料ノズル212とワークWとの接触に起因した異常の発生を抑制するように、材料ノズル212とワークWとの相対位置を制御することができる。このため、材料ノズル212とワークWの接触に起因した異常の発生が適切に抑制される。その結果、加工システムSYS1は、ワークWに対して適切に付加加工を行うことができる。
(1-4) Technical Effects of Machining System SYS1 As described above, according to the machining system SYS1 of the first embodiment, additional machining can be appropriately performed on the work W. Further, since the processing system SYS1 includes the detection device 8, it detects information on the relative position between the material nozzle 212 (or an arbitrary detection object) and the work W (or an arbitrary approach object). be able to. Further, in the processing system SYS1, when a predetermined approach condition regarding the degree of approach between the material nozzle 212 (or an arbitrary detection object) and the work W (or an arbitrary approach object) is satisfied, the material nozzle 212 The relative position of the material nozzle 212 and the work W can be controlled so as to suppress the occurrence of an abnormality caused by the contact between the material nozzle and the work W. Therefore, the occurrence of an abnormality caused by the contact between the material nozzle 212 and the work W is appropriately suppressed. As a result, the machining system SYS1 can appropriately perform additional machining on the work W.
 (2)第2実施形態
 続いて、第2実施形態の加工システムSYS(以降、第2実施形態の加工システムSYSを、“加工システムSYS2”と称する)について説明する。第2実施形態の加工システムSYS2は、上述した第1実施形態の加工システムSYS1と比較して、材料ノズル212の形状(特に、ノズル部材2121の外形形状)が異なるという点で異なっている。加工システムSYS2のその他の特徴は、加工システムSYS1と同一であってもよい。このため、以下では、図13を参照しながら、第2実施形態の加工システムSYS2が備えるノズル部材2121eについて説明する。図13は、第2実施形態の加工システムSYS2が備えるノズル部材2121eの構造を示す断面図である。
(2) Second Embodiment Next, the machining system SYS of the second embodiment (hereinafter, the machining system SYS of the second embodiment will be referred to as "machining system SYS2") will be described. The processing system SYS2 of the second embodiment is different from the processing system SYS1 of the first embodiment described above in that the shape of the material nozzle 212 (particularly, the outer shape of the nozzle member 2121) is different. Other features of the processing system SYS2 may be the same as the processing system SYS1. Therefore, in the following, the nozzle member 2121e included in the processing system SYS2 of the second embodiment will be described with reference to FIG. FIG. 13 is a cross-sectional view showing the structure of the nozzle member 2121e included in the processing system SYS2 of the second embodiment.
 図13に示すように、ノズル部材2121eは、本体部材21211eと、先端部材21212eと、接続部材21213eとを備えている。本体部材21211eは、加工ヘッド21の本体に直接的に又は他の部材を介して固定される部材である。先端部材21212eは、ノズル部材2121eが延びる方向(図13に示す例では、Z軸方向)において本体部材21211eよりも-Z側に位置する部材である。先端部材21212eは、本体部材21211eよりもステージ31に近い位置に配置される部材である。先端部材21212eは、本体部材21211eよりもステージ31が保持するワークWに近い位置に配置される部材である。このため、先端部材21212eは、ノズル部材2121eとワークWとが接触した場合に、本体部材21211eよりも先にワークWに接触する部材である。典型的には、先端部材21212eは、ノズル部材2121eとワークWとが接触した場合にワークWに最初に接触する部材である。接続部材21213eは、本体部材21211eと先端部材21212eとを接続する部材である。接続部材21213eは、ノズル部材2121eが延びる方向において本体部材21211eよりも-Z側に位置する部材である。接続部材21213eは、ノズル部材2121eが延びる方向において先端部材21212eよりも+Z側に位置する部材である。 As shown in FIG. 13, the nozzle member 2121e includes a main body member 21211e, a tip member 21212e, and a connecting member 21213e. The main body member 21211e is a member fixed to the main body of the processing head 21 directly or via another member. The tip member 21212e is a member located on the −Z side of the main body member 21211e in the direction in which the nozzle member 2121e extends (in the Z-axis direction in the example shown in FIG. 13). The tip member 21212e is a member arranged at a position closer to the stage 31 than the main body member 21211e. The tip member 21212e is a member arranged at a position closer to the work W held by the stage 31 than the main body member 21211e. Therefore, the tip member 21212e is a member that comes into contact with the work W before the main body member 21211e when the nozzle member 2121e and the work W come into contact with each other. Typically, the tip member 21212e is a member that first comes into contact with the work W when the nozzle member 2121e and the work W come into contact with each other. The connecting member 21213e is a member that connects the main body member 21211e and the tip member 21212e. The connecting member 21213e is a member located on the −Z side of the main body member 21211e in the direction in which the nozzle member 2121e extends. The connecting member 21213e is a member located on the + Z side of the tip member 21212e in the direction in which the nozzle member 2121e extends.
 本体部材2121eの内部には、ノズル部材2121eが伸びる方向に沿って供給管21251eが形成されている。先端部材2122eの内部には、供給管21252eが形成されている。接続部材2123eの内部には、供給管21253eが形成されている。供給管21251eは、供給管21253eにつながっている。供給管21253eは、供給管21252eにつながっている。このため、供給管21251eから21253eは、一連の供給管2125eを構成する。材料供給装置1から供給される造形材料Mは、この供給管2125eを介してノズル部材2121eから供給アウトレット2123を介してワークWに供給される。このため、材料供給装置1とノズル部材2121eとを接続するパイプ(つまり、造形材料Mを供給するためのパイプ)は、供給管2125e(特に、本体部材2151eの供給管21251e)に接続される。 A supply pipe 21251e is formed inside the main body member 2121e along the direction in which the nozzle member 2121e extends. A supply pipe 21252e is formed inside the tip member 2122e. A supply pipe 21253e is formed inside the connecting member 2123e. The supply pipe 21251e is connected to the supply pipe 21253e. The supply pipe 21253e is connected to the supply pipe 21252e. Therefore, the supply pipes 21251e to 21253e form a series of supply pipes 2125e. The modeling material M supplied from the material supply device 1 is supplied to the work W from the nozzle member 2121e via the supply pipe 2125e via the supply outlet 2123. Therefore, the pipe connecting the material supply device 1 and the nozzle member 2121e (that is, the pipe for supplying the modeling material M) is connected to the supply pipe 2125e (particularly, the supply pipe 21251e of the main body member 2151e).
 第2実施形態のノズル部材2121eでは特に、接続部材21213eは、本体部材21211eと先端部材21212eとの間に切れ込み2124eを形成する部材である。具体的には、接続部材21213eは、本体部材21211e及び先端部材21212eのそれぞれの寸法(例えば、ノズル部材2121eが延びる方向に交差する方向における寸法であり、図11に示す例では、XY平面に沿った方向における寸法)よりも小さい寸法を有する部分を含む。この部分が、切れ込み2124eを構成する。尚、切れ込み2124eをノッチやくぼみと称してもよい。 In the nozzle member 2121e of the second embodiment, the connecting member 21213e is a member that forms a notch 2124e between the main body member 21211e and the tip member 21212e. Specifically, the connecting member 21213e is the dimensions of the main body member 21211e and the tip member 21212e (for example, the dimensions in the direction in which the nozzle member 2121e intersects in the extending direction, and in the example shown in FIG. Includes parts with dimensions smaller than (dimensions in the direction). This portion constitutes the notch 2124e. The notch 2124e may be referred to as a notch or a dent.
 この切れ込み21214eは、主として、先端部材21212eに外力が加わった際に先端部材21212eを本体部材21211eから分離するために用いられる。以下、図14(a)から図14(c)を参照しながら、先端部材2122eに外力が加わった際に先端部材21212eが本体部材21211eから分離する様子について説明する。図14(a)から図14(c)のそれぞれは、先端部材21212eに外力が加わった際に先端部材21212eが本体部材21211eから分離する様子を示す断面図である。 This notch 21214e is mainly used to separate the tip member 21212e from the main body member 21211e when an external force is applied to the tip member 21212e. Hereinafter, with reference to FIGS. 14 (a) to 14 (c), a state in which the tip member 21212e separates from the main body member 21211e when an external force is applied to the tip member 2122e will be described. 14 (a) to 14 (c) are cross-sectional views showing how the tip member 21212e separates from the main body member 21211e when an external force is applied to the tip member 21212e.
 図14(a)に示すように、ノズル部材2121eとワークWとが接触すると、ワークWから先端部材21212eに対して外力が加わる。或いは、ノズル部材2121eとワークWとは異なる他の部材(例えば、ステージ31)とが接触すると、ノズル部材2121eが接触した他の部材から先端部材21212eに対して外力が加わる。この力は、先端部材21212eを介して接続部材21213eにも伝わる。ここで、上述したように、接続部材21213eが切れ込み2124eを形成しているがゆえに、ワークWから先端部材21212eを介して接続部材21213eに加わった外力に起因して、図14(b)に示すように、接続部材21213eが変形(典型的には、塑性変形)する。更に、ワークWから先端部材21212eを介して接続部材21213eに外力が加わり続けたことによって接続部材21213eの変形度合いが許容量を超えると、図14(c)に示すように、接続部材21213eが破断する。その結果、接続部材21213eを介して本体部材21211eに接続されていた先端部材21212eは、本体部材21211eから分離される。 As shown in FIG. 14A, when the nozzle member 2121e and the work W come into contact with each other, an external force is applied from the work W to the tip member 21212e. Alternatively, when the nozzle member 2121e and another member different from the work W (for example, the stage 31) come into contact with each other, an external force is applied to the tip member 21212e from the other member with which the nozzle member 2121e comes into contact. This force is also transmitted to the connecting member 21213e via the tip member 21212e. Here, as described above, since the connecting member 21213e forms the notch 2124e, it is shown in FIG. 14B due to the external force applied from the work W to the connecting member 21213e via the tip member 21212e. As described above, the connecting member 21213e is deformed (typically plastically deformed). Further, when the degree of deformation of the connecting member 21213e exceeds the permissible amount due to the continuous application of an external force from the work W to the connecting member 21213e via the tip member 21212e, the connecting member 21213e breaks as shown in FIG. 14C. To do. As a result, the tip member 21212e connected to the main body member 21211e via the connecting member 21213e is separated from the main body member 21211e.
 このように、第2実施形態では、先端部材21212eに加わる外力に起因して先端部材21212eが本体部材21211eから分離される。従って、仮にノズル部材2121eとワークW(或いは、任意の接近対象物)とが接触したとしても、先端部材21212eが分離されることで、ノズル部材2121eの状態は、ワークWに接触した状態から、ワークWに接触していない状態に変化する。特に、ノズル部材2121eとワークW(或いは、任意の接近対象物)とが接触した後に第1実施形態で説明したノズル部材2121eとワークWとの相対位置の制御が行われなかったとしても、ノズル部材2121eの状態は、ワークWに接触した状態から、ワークWに接触していない状態に変化する。このため、先端部材21212eが分離されない場合と比較して、ノズル部材2121eとワークWとの接触に起因した異常の発生を抑制できる可能性が高くなる。特に、ワークWまたは造形物の損傷の発生を抑制できる可能性が高くなる。 As described above, in the second embodiment, the tip member 21212e is separated from the main body member 21211e due to the external force applied to the tip member 21212e. Therefore, even if the nozzle member 2121e and the work W (or an arbitrary approaching object) come into contact with each other, the tip member 21212e is separated so that the nozzle member 2121e is in a state of being in contact with the work W. It changes to a state where it is not in contact with the work W. In particular, even if the relative position of the nozzle member 2121e and the work W described in the first embodiment is not controlled after the nozzle member 2121e and the work W (or an arbitrary approaching object) come into contact with each other, the nozzle The state of the member 2121e changes from a state in which it is in contact with the work W to a state in which it is not in contact with the work W. Therefore, as compared with the case where the tip member 21212e is not separated, there is a high possibility that the occurrence of an abnormality caused by the contact between the nozzle member 2121e and the work W can be suppressed. In particular, there is a high possibility that the occurrence of damage to the work W or the modeled object can be suppressed.
 尚、加工システムSYS2は、検出装置8を備えていなくてもよい。加工システムSYS2は、検出装置8の検出結果に基づいて、材料ノズル212(或いは、任意の検出対象物)とワークW(或いは、任意の接近対象物)との相対位置を制御しなくてもよい。つまり、加工システムSYS2は、材料ノズル212(或いは、任意の検出対象物)とワークW(或いは、任意の接近対象物)との接触に起因した異常の発生を抑制するように材料ノズル212とワークWとの相対位置を制御しなくてもよい。 Note that the processing system SYS2 does not have to include the detection device 8. The processing system SYS2 does not have to control the relative position between the material nozzle 212 (or an arbitrary detection object) and the work W (or an arbitrary approach object) based on the detection result of the detection device 8. .. That is, the processing system SYS2 suppresses the occurrence of an abnormality caused by the contact between the material nozzle 212 (or an arbitrary detection object) and the work W (or an arbitrary approaching object) with the material nozzle 212 and the work. It is not necessary to control the relative position with W.
 (3)変形例
 上述した説明では、検出対象物の一例として材料ノズル212が用いられている。しかしながら、検出対象物は、材料ノズル212とは異なる物体であってもよい。例えば、照射光学系211が検出対象物であってもよい。特に、材料ノズル212よりも、照射光学系211の方がワークW及びステージ31の少なくとも一方に近い位置に配置される場合には、照射光学系211が検出対象物であってもよい。この場合、検出装置8は、照射光学系211とワークW(或いは、その他の任意の接近対象物)との相対的な位置関係を検出してもよい。加工システムSYS1は、照射光学系211とワークW(或いは、その他の任意の接近対象物)との接近度合いに関する所定の接近条件が成立した場合には、照射光学系211とワークW(或いは、その他の任意の接近対象物)との接触に起因した異常の発生を抑制するように、照射光学系211とワークW(或いは、その他の任意の接近対象物)との相対位置を制御してもよい。
(3) Modified Example In the above description, the material nozzle 212 is used as an example of the object to be detected. However, the object to be detected may be an object different from the material nozzle 212. For example, the irradiation optical system 211 may be a detection target. In particular, when the irradiation optical system 211 is arranged at a position closer to at least one of the work W and the stage 31 than the material nozzle 212, the irradiation optical system 211 may be a detection target. In this case, the detection device 8 may detect the relative positional relationship between the irradiation optical system 211 and the work W (or any other approaching object). The processing system SYS1 establishes the irradiation optical system 211 and the work W (or other) when a predetermined approach condition regarding the degree of proximity between the irradiation optical system 211 and the work W (or any other approach object) is satisfied. The relative position of the irradiation optical system 211 and the work W (or any other approaching object) may be controlled so as to suppress the occurrence of anomalies caused by contact with the arbitrary approaching object). ..
 上述したように、照射光学系211は、光学部材2111と保持部材2112とを備えている。光学部材2111が保持部材2112よりもワークW側に配置されている場合には、光学部材2111が検出対象物であってもよい。この場合、検出装置8は、光学部材2111とワークW(或いは、その他の任意の接近対象物)との相対的な位置関係を検出してもよい。加工システムSYS1は、光学部材2111とワークW(或いは、その他の任意の接近対象物)との接近度合いに関する所定の接近条件が成立した場合には、光学部材2111とワークW(或いは、その他の任意の接近対象物)との接触に起因した異常の発生を抑制するように光学部材2111とワークW(或いは、その他の任意の接近対象物)との相対位置を制御してもよい。或いは、保持部材2112が光学部材2111よりもワークW側に配置されている場合には、保持部材2112が検出対象物であってもよい。この場合、検出装置8は、保持部材2112とワークW(或いは、その他の任意の接近対象物)との相対的な位置関係を検出してもよい。加工システムSYS1は、保持部材2112とワークW(或いは、その他の任意の接近対象物)との接近度合いに関する所定の接近条件が成立した場合には、保持部材2112とワークW(或いは、その他の任意の接近対象物)との接触に起因した異常の発生を抑制するように保持部材2112とワークW(或いは、その他の任意の接近対象物)との相対位置を制御してもよい。 As described above, the irradiation optical system 211 includes an optical member 2111 and a holding member 2112. When the optical member 2111 is arranged on the work W side of the holding member 2112, the optical member 2111 may be a detection target. In this case, the detection device 8 may detect the relative positional relationship between the optical member 2111 and the work W (or any other approaching object). The processing system SYS1 establishes the optical member 2111 and the work W (or any other arbitrary object) when a predetermined approach condition regarding the degree of proximity between the optical member 2111 and the work W (or any other object of approach) is satisfied. The relative position of the optical member 2111 and the work W (or any other approaching object) may be controlled so as to suppress the occurrence of an abnormality caused by the contact with the approaching object). Alternatively, when the holding member 2112 is arranged closer to the work W than the optical member 2111, the holding member 2112 may be the object to be detected. In this case, the detection device 8 may detect the relative positional relationship between the holding member 2112 and the work W (or any other approaching object). The processing system SYS1 establishes the holding member 2112 and the work W (or any other optional object) when a predetermined approach condition regarding the degree of approach between the holding member 2112 and the work W (or any other object to be approached) is satisfied. The relative position of the holding member 2112 and the work W (or any other approaching object) may be controlled so as to suppress the occurrence of an abnormality caused by the contact with the approaching object).
 また、図15に示すように、保持部材2112とノズル部材2121の一部とが兼用されており、保持部材2112に供給アウトレット2123が設けられている場合、供給アウトレット2123よりも保持部材2112側に設けられているときには、保持部材2112が検出対象物であってもよい。 Further, as shown in FIG. 15, when the holding member 2112 and a part of the nozzle member 2121 are also used and the holding member 2112 is provided with the supply outlet 2123, the holding member 2112 is closer to the holding member 2112 than the supply outlet 2123. When provided, the holding member 2112 may be the object to be detected.
 上述した説明では、接近対象物の一例としてワークW及びステージ31のそれぞれが用いられている。しかしながら、接近対象物は、ワークW及びステージ31とは異なる物体であってもよい。例えば、ワークW及びステージ31の少なくとも一方の周囲に配置される部材が接近対象物であってもよい。例えば、筐体6(例えば、隔壁部材61)が接近対象物であってもよい。 In the above description, each of the work W and the stage 31 is used as an example of the approaching object. However, the approaching object may be an object different from the work W and the stage 31. For example, a member arranged around at least one of the work W and the stage 31 may be an approaching object. For example, the housing 6 (for example, the partition member 61) may be an object to be approached.
 上述した説明では、加工装置2は、造形材料Mに加工光ELを照射することで、造形材料Mを溶融させている。しかしながら、加工装置2は、任意のエネルギビームを造形材料Mに照射することで、造形材料Mを溶融させてもよい。この場合、加工装置2は、照射光学系211に加えて又は代えて、任意のエネルギビームを照射可能なビーム照射装置を備えていてもよい。任意のエネルギビームは、限定されないが、電子ビーム、イオンビーム等の荷電粒子ビーム又は電磁波を含む。 In the above description, the processing device 2 melts the modeling material M by irradiating the modeling material M with the processing light EL. However, the processing apparatus 2 may melt the modeling material M by irradiating the modeling material M with an arbitrary energy beam. In this case, the processing device 2 may include a beam irradiation device capable of irradiating an arbitrary energy beam in addition to or in place of the irradiation optical system 211. Any energy beam includes, but is not limited to, a charged particle beam such as an electron beam, an ion beam, or an electromagnetic wave.
 上述した説明では、加工システムSYSは、レーザ肉盛溶接法により3次元構造物STを形成可能である。しかしながら、加工システムSYSは、造形材料Mに加工光EL(或いは、任意のエネルギビーム)を照射することで3次元構造物STを形成可能なその他の方式により造形材料Mから3次元構造物STを形成してもよい。その他の方式として、例えば、粉末焼結積層造形法(SLS:Selective Laser Sintering)等の粉末床溶融結合法(Powder Bed Fusion)、結合材噴射法(Binder Jetting)又は、レーザメタルフュージョン法(LMF:Laser Metal Fusion)があげられる。或いは、加工システムSYSは、造形材料Mに加工光EL(或いは、任意のエネルギビーム)を照射することで3次元構造物STを形成可能な方式とは異なる、付加加工のための任意の方式により3次元構造物STを形成してもよい。 In the above description, the processing system SYS can form the three-dimensional structure ST by the laser overlay welding method. However, the processing system SYS can form the three-dimensional structure ST from the modeling material M by another method capable of forming the three-dimensional structure ST by irradiating the modeling material M with the processing light EL (or an arbitrary energy beam). It may be formed. Other methods include, for example, a powder bed melting bonding method (Power Bed Fusion) such as a powder sintering laminated molding method (SLS: Selective Laser Sintering), a binder jetting method (Binder Jetting), or a laser metal fusion method (LMF:). Laser Metal Fusion) can be mentioned. Alternatively, the processing system SYS may use an arbitrary method for additional processing, which is different from the method capable of forming the three-dimensional structure ST by irradiating the modeling material M with the processing light EL (or an arbitrary energy beam). The three-dimensional structure ST may be formed.
 上述した説明では、加工システムSYSは、照射光学系211が加工光ELを照射する照射領域EAに向けて材料ノズル212から造形材料Mを供給することで、3次元構造物STを形成している。しかしながら、加工システムSYSは、照射光学系211から加工光ELを照射することなく、材料ノズル212から造形材料Mを供給することで3次元構造物STを形成してもよい。例えば、加工システムSYSは、材料ノズル212から、造形面MSに対して造形材料Mを吹き付けることで、造形面MSにおいて造形材料Mを溶融させると共に、溶融した造形材料Mを固化させることで、3次元構造物STを形成してもよい。例えば、加工システムSYSは、材料ノズル212から造形面MSに対して造形材料Mを含む気体を超高速で吹き付けることで、造形面MSにおいて造形材料Mを溶融させると共に、溶融した造形材料Mを固化させることで、3次元構造物STを形成してもよい。例えば、加工システムSYSは、材料ノズル212から造形面MSに対して加熱した造形材料Mを吹き付けることで、造形面MSにおいて造形材料Mを溶融させると共に、溶融した造形材料Mを固化させることで、3次元構造物STを形成してもよい。このように照射光学系211から加工光ELを照射することなく3次元構造物STを形成する場合には、加工システムSYS(特に、加工ヘッド21)は、照射光学系211を備えていなくてもよい。 In the above description, the processing system SYS forms the three-dimensional structure ST by supplying the modeling material M from the material nozzle 212 toward the irradiation region EA where the irradiation optical system 211 irradiates the processing light EL. .. However, the processing system SYS may form the three-dimensional structure ST by supplying the modeling material M from the material nozzle 212 without irradiating the processing light EL from the irradiation optical system 211. For example, the processing system SYS melts the modeling material M on the modeling surface MS by spraying the modeling material M onto the modeling surface MS from the material nozzle 212, and solidifies the melted modeling material M. The dimensional structure ST may be formed. For example, the processing system SYS melts the modeling material M on the modeling surface MS and solidifies the molten modeling material M by blowing a gas containing the modeling material M onto the modeling surface MS from the material nozzle 212 at an ultra-high speed. By making it, the three-dimensional structure ST may be formed. For example, the processing system SYS melts the modeling material M on the modeling surface MS by spraying the heated modeling material M onto the modeling surface MS from the material nozzle 212, and solidifies the molten modeling material M. The three-dimensional structure ST may be formed. When the three-dimensional structure ST is formed without irradiating the processing light EL from the irradiation optical system 211 in this way, the processing system SYS (particularly, the processing head 21) does not have to include the irradiation optical system 211. Good.
 或いは、加工システムSYSは、付加加工に加えて又は代えて、ワークW等の物体に加工光EL(或いは、任意のエネルギビーム)を照射して物体の少なくとも一部を除去可能な除去加工を行ってもよい。或いは、加工システムSYSは、付加加工及び除去加工の少なくとも一方に加えて又は代えて、ワークW等の物体に加工光EL(或いは、任意のエネルギビーム)を照射して物体の少なくとも一部にマーク(例えば、文字、数字又は図形)を形成可能なマーキング加工を行ってもよい。この場合であっても、上述した効果が享受可能である。 Alternatively, the processing system SYS performs a removal processing capable of removing at least a part of the object by irradiating an object such as a work W with a processing light EL (or an arbitrary energy beam) in addition to or instead of the additional processing. You may. Alternatively, the processing system SYS irradiates an object such as a work W with processing light EL (or an arbitrary energy beam) in addition to or in place of at least one of addition processing and removal processing to mark at least a part of the object. Marking processing capable of forming (for example, letters, numbers or figures) may be performed. Even in this case, the above-mentioned effects can be enjoyed.
 (4)付記
 以上説明した実施形態に関して、更に以下の付記を開示する。
[付記1]
 エネルギビームを用いた加工動作を行う加工装置と、
 物体と前記加工装置のうちの少なくとも一部である対象部材との接近度合いを検出する検出装置と、
 前記物体と前記対象部材との相対位置を変更する位置変更装置と
 を備え、
 前記位置変更装置は、前記接近度合いに関する所定の接近条件が成立した場合に、前記物体と前記対象部材との接触を回避するように前記相対位置を変更する
 加工システム。
[付記2]
 エネルギビームを用いた加工動作を行う加工装置と、
 物体と前記加工装置のうちの少なくとも一部である対象部材との接近度合いを検出する検出装置と、
 前記物体と前記対象部材との相対位置を変更する位置変更装置と
 を備え、
 前記位置変更装置は、前記接近度合いに関する所定の接近条件が成立した場合に、前記物体と前記対象部材とが近づく方向に前記相対位置を変更するための動作を制限する
 加工システム。
[付記3]
 前記接近条件は、前記物体と前記対象部材とが接触するという接触条件を含む
 付記1又は2に記載の加工システム。
[付記4]
 前記接近条件は、前記物体と前記供給装置とが接触していないものの、前記物体と前記対象部材との間の距離が所定値未満になるほど前記物体と前記対象部材とが接近しているという非接触条件を含む
 付記1から3のいずれか一項に記載の加工システム。
[付記5]
 前記位置変更装置は、前記接近条件が成立した場合に、前記物体と前記対象部材との更なる接近を回避するように前記相対位置を変更する
 付記1から4のいずれか一項に記載の加工システム。
[付記6]
 前記位置変更装置は、前記接近条件が成立した場合に、前記物体と前記対象部材とが離れるように前記相対位置を変更する
 付記1から5のいずれか一項に記載の加工システム。
[付記7]
 前記位置変更装置は、前記接近条件が成立した場合に、前記物体と前記対象部材との相対位置が維持されるように前記相対位置を制御する
 付記1から6のいずれか一項に記載の加工システム。
[付記8]
 前記位置変更装置は、前記接近条件が成立した場合に、前記相対位置を変更しない
 付記1から7のいずれか一項に記載の加工システム。
[付記9]
 前記位置変更装置は、前記接近条件が成立した場合に動作を停止する
 付記1から8のいずれか一項に記載の加工システム。
[付記10]
 前記位置変更装置は、前記接近条件が成立した場合に、前記物体と前記対象部材との衝突に起因した前記物体及び/又は前記加工装置の異常状態の発生を防止するように前記相対位置を変更する
 付記1から9のいずれか一項に記載の加工システム。
[付記11]
 前記位置変更装置は、前記接近条件が成立した場合に、前記物体と前記対象部材との衝突に起因した前記物体及び/又は前記加工装置の異常状態が発生する可能性を低減するように前記相対位置を変更する
 付記1から10のいずれか一項に記載の加工システム。
[付記12]
 前記加工装置の少なくとも一部は、前記検出装置の少なくとも一部として兼用される
 付記1から11のいずれか一項に記載の加工システム。
[付記13]
 前記対象部材の少なくとも一部は、前記検出装置の少なくとも一部として兼用される
 付記1から12のいずれか一項に記載の加工システム。
[付記14]
 エネルギビームを用いた加工動作を行う加工装置と、
 物体と前記加工装置のうちの少なくとも一部である対象部材との接近度合いを検出する検出装置と
 を備え、
 前記対象部材の少なくとも一部は、前記検出装置の少なくとも一部として兼用される
 加工システム。
[付記15]
 前記検出装置は、コイルと鉄心とを含み、
 前記対象部材の少なくとも一部が前記鉄心として兼用される
 付記12から14のいずれか一項に記載の加工システム。
[付記16]
 前記コイルは、前記鉄心として兼用される前記対象部材の少なくとも一部に巻かれている
 付記15に記載の加工システム。
[付記17]
 前記検出装置は、前記コイルと前記鉄心とを含む誘導形近接センサを含む
 付記15又は16に記載の加工システム。
[付記18]
 前記対象部材は、金属部材である
 付記1から17のいずれか一項に記載の加工システム。
[付記19]
 前記対象部材は、前記加工装置のうちの前記物体に最も近接する部材を含む
 付記1から18のいずれか一項に記載の加工システム。
[付記20]
 前記加工装置は、エネルギビームを照射する照射装置と、前記エネルギビームの照射位置に材料を供給する供給装置とを備える
 付記1から19のいずれか一項に記載の加工システム。
[付記21]
 前記対象部材は、前記供給装置のうちの少なくとも一部を含む
 付記20に記載の加工システム。
[付記22]
 前記検出装置は、前記物体と前記対象部材との接触の有無を、前記接近度合いとして検出可能である
 付記1から21のいずれか一項に記載の加工システム。
[付記23]
 前記検出装置は、前記物体と前記対象部材との間の距離に関する指標値を、前記接近度合いとして検出可能である
 付記1から22のいずれか一項に記載の加工システム。
[付記24]
 前記検出装置は、前記物体と前記対象部材とが接触していない期間中に、前記距離に関する指標値を検出可能である
 付記23に記載の加工システム。
[付記25]
 前記検出装置は、前記物体に接触することなく前記物体と前記対象部材との接近度合いを検出する
 付記1から24のいずれか一項に記載の加工システム。
[付記26]
 前記検出装置は、近接センサを含む
 付記25に記載の加工システム。
[付記27]
 前記検出装置は、前記対象部材に配置される
 付記1から26のいずれか一項に記載の加工システム。
[付記28]
 前記検出装置は、前記物体の位置を光学的に検出する
 付記1から27のいずれか一項に記載の加工システム。
[付記29]
 前記検出装置は、前記物体の検出光を照射する送光系と、前記物体を介した前記検出光を受光する受光系とを備える
 付記28に記載の加工システム。
[付記30]
 前記検出装置は、前記物体を撮像する
 付記28に記載の加工システム。
[付記31]
 前記検出装置は、前記物体に接触して前記物体と前記対象部材との接近度合いを検出する
 付記1から30のいずれか一項に記載の加工システム。
[付記32]
 前記加工装置は、加工対象物に前記エネルギビームを照射して前記加工対象物に対する前記加工動作を行い、
 前記物体は、前記加工対象物を含む
 付記1から31のいずれか一項に記載の加工システム。
[付記33]
 前記照射装置は、加工対象物に前記エネルギビームを照射して前記加工対象物に対する前記加工動作を行い、
 前記加工対象物が載置される載置装置を更に備え、
 前記物体は、前記載置装置を含む
 付記1から32のいずれか一項に記載の加工システム。
[付記34]
 前記対象部材は、前記加工装置に固定された固定部材と、前記加工装置に固定されていない非固定部材と、前記固定部材と前記非固定部材とを接続する接続部材とを含む
 付記1から33のいずれか一項に記載の加工システム。
[付記35]
 エネルギビームを用いた加工動作を行う加工装置と、
 物体と前記加工装置のうちの少なくとも一部である対象部材との相対位置を変更する位置変更装置と
 を備え、
 前記対象部材は、前記加工装置に固定された固定部材と、前記加工装置に固定されていない非固定部材と、前記固定部材と前記非固定部材とを接続する接続部材とを含む
 加工システム。
[付記36]
 前記接続部材は、前記固定部材及び前記非固定部材の間に切れ込みを形成している
 付記34又は35に記載の加工システム。
[付記37]
 前記接続部材は、前記対象部材の外部から前記非固定部材を介して前記接続部材に加わる応力に起因して破断可能であり、
 前記接続部材の破断により、前記非固定部材が前記固定部材から分離可能である
 付記34から36のいずれか一項に記載の加工システム。
[付記38]
 前記応力は、前記物体と前記対象部材との接触に起因して前記物体から前記非固定部材を介して前記接続部材に加わる力を含む
 付記37に記載の加工システム。
[付記39]
 エネルギビームを用いた加工動作を行う加工装置と、
 物体と前記加工装置のうちの少なくとも一部である対象部材との接近度合いを検出する検出装置と、
 前記物体と前記対象部材との相対位置を変更する位置変更装置と、
 前記接近度合いに関する所定の接近条件が成立した場合に、前記物体と前記対象部材との接触を回避するための前記相対位置の変更動作を行うように前記位置変更装置を制御する制御信号を受信する受信装置と
 を備える加工システム。
[付記40]
 エネルギビームを用いた加工動作を行う加工装置と、
 物体と前記加工装置のうちの少なくとも一部である対象部材との接近度合いを検出する検出装置と、
 前記物体と前記対象部材との相対位置を変更する位置変更装置と、
 前記接近度合いに関する所定の接近条件が成立した場合に、前記物体と前記対象部材とが近づく方向に前記物体と前記対象部材との前記相対位置を変更するための動作の実行を禁止する制御信号を受信する受信装置と
 を備える加工システム。
[付記41]
 物体に付加加工を行う加工システムにおいて、
 前記物体に粉体供給口から粉体を供給する粉体供給部材と、
 前記粉体供給部材と前記物体との相対的な位置情報を取得するセンサと
を備える加工システム。
[付記42]
 物体に付加加工を行う加工システムにおいて、
 粉体供給口から前記物体に粉体を供給する粉体供給部材と、
 前記粉体供給部材と前記物体との相対的な位置情報を取得するセンサと
を備え、
 前記粉体供給口が設けられた部材は、第1方向に伸びており、第1部分と、前記第1部分の前記第1方向側に位置する第2部分とを備え、
 前記第1方向と交差する第2方向に沿った前記第2部分の寸法は、前記第2方向に沿った前記第1部分の寸法よりも小さい
 加工システム。
[付記43]
 付記1から42のいずれか一項に記載の加工システムを用いて加工対象物を加工する加工方法。
[付記44]
 物体と加工装置のうちの少なくとも一部である対象部材との接近度合いを検出することと、
 前記接近度合いに関する所定の接近条件が成立した場合に、前記物体と前記対象部材との接触を回避するように前記物体と前記対象部材との相対位置を変更することと
 を含む加工方法。
[付記45]
 物体と加工装置のうちの少なくとも一部である対象部材との接近度合いを検出することと、
 前記接近度合いに関する所定の接近条件が成立した場合に、前記物体と前記対象部材とが近づく方向に前記物体と前記対象部材との前記相対位置を変更するための動作の実行を禁止することと
 を含む加工方法。
[付記46]
 エネルギビームを用いて物体の加工動作を行う加工方法において、
 前記物体に粉体供給口から粉体を供給することと、
 前記エネルギビームを前記物体に照射することと、
 前記粉体供給口が設けられた部材と前記物体との相対的な位置情報を取得することと
を含む加工方法。
[付記47]
 エネルギビームを用いて物体の加工動作を行う加工方法において、
 粉体供給口から前記物体に粉体を供給することと、
 前記エネルギビームを前記物体に照射することと、
 前記粉体供給口が設けられた部材と前記物体との相対的な位置情報を取得することと
を含み、
 前記粉体供給口が設けられた部材は、第1方向に伸びており、第1部分と、前記第1部分の前記第1方向側に位置する第2部分とを備え、
 前記第1方向と交差する第2方向に沿った前記第2部分の寸法は、前記第2方向に沿った前記第1部分の寸法よりも小さい
 加工方法。
[付記48]
 物体に付加加工を行う加工方法において、
 前記物体に粉体供給口から粉体を供給することと、
 前記粉体供給口が設けられた部材と前記物体との相対的な位置情報を取得するセンサと
を備える加工方法。
[付記49]
 物体に付加加工を行う加工方法において、
 粉体供給口から前記物体に粉体を供給することと、
 前記粉体供給口が設けられた部材と前記物体との相対的な位置情報を取得することと
を含み、
 前記粉体供給口が設けられた部材は、第1方向に伸びており、第1部分と、前記第1部分の前記第1方向側に位置する第2部分とを備え、
 前記第1方向と交差する第2方向に沿った前記第2部分の寸法は、前記第2方向に沿った前記第1部分の寸法よりも小さい
 加工方法。
[付記50]
 付記43から49のいずれか一項に記載の加工方法をコンピュータに実行させるコンピュータプログラム。
[付記51]
 物体と加工装置のうちの少なくとも一部である対象部材との接近度合いを検出することと、
 前記接近度合いに関する所定の接近条件が成立した場合に、前記物体と前記対象部材との接触を回避するように前記物体と前記対象部材との相対位置を変更することと
 を含む加工方法をコンピュータに実行させるコンピュータプログラム。
[付記52]
 物体と加工装置のうちの少なくとも一部である対象部材との接近度合いを検出することと、
 前記接近度合いに関する所定の接近条件が成立した場合に、前記物体と前記対象部材とが近づく方向に前記物体と前記対象部材との前記相対位置を変更するための動作の実行を禁止することと
 を含む加工方法をコンピュータに実行させるコンピュータプログラム。
[付記53]
 付記50から52のいずれか一項に記載のコンピュータプログラムが記録された記録媒体。
[付記54]
 エネルギビームを用いた加工動作を行う加工装置と、物体と前記加工装置のうちの少なくとも一部である対象部材との接近度合いを検出する検出装置と、前記物体と前記対象部材との相対位置を変更する位置変更装置とを備える加工システムを制御する制御装置であって、
 前記接近度合いに関する所定の接近条件が成立した場合に、前記物体と前記対象部材との接触を回避するための前記相対位置の変更動作を行うように前記位置変更装置を制御する制御装置。
[付記55]
 エネルギビームを用いた加工動作を行う加工装置と、物体と前記加工装置のうちの少なくとも一部である対象部材との接近度合いを検出する検出装置と、前記物体と前記対象部材との相対位置を変更する位置変更装置とを備える加工システムを制御する制御装置であって、
 前記接近度合いに関する所定の接近条件が成立した場合に、前記物体と前記対象部材とが近づく方向に前記物体と前記対象部材との前記相対位置を変更するための動作の実行を禁止する制御を行う制御装置。
[付記56]
 エネルギビームを用いて物体の加工動作を行う加工システムを制御する制御装置において、
 前記加工システムは、前記物体に粉体供給口から粉体を供給する粉体供給部材と、前記エネルギビームを前記物体に照射する照射光学系と、前記粉体供給部材と前記物体との相対的な位置情報を取得するセンサと、前記物体と前記部材との位置関係を変更する位置変更装置とを備え、
 前記制御装置は、前記センサからの出力を用いて前記位置変更装置による前記位置関係の変更動作を制御する制御装置。
[付記57]
 エネルギビームを用いて物体の加工動作を行う加工システムを制御する制御装置において、
 前記加工システムは、粉体供給口から前記物体に粉体を供給する粉体供給部材と、前記エネルギビームを前記物体に照射する照射光学系と、前記粉体供給部材と前記物体との相対的な位置情報を取得するセンサと、前記物体と前記部材との位置関係を変更する位置変更装置とを備え、
 前記粉体供給口が設けられた部材は、第1方向に伸びており、第1部分と、前記第1部分の前記第1方向側に位置する第2部分とを備え、
 前記第1方向と交差する第2方向に沿った前記第2部分の寸法は、前記第2方向に沿った前記第1部分の寸法よりも小さく、
 前記制御装置は、前記センサからの出力を用いて前記位置変更装置による前記位置関係の変更動作を制御する制御装置。
(4) Additional notes The following additional notes will be further disclosed with respect to the embodiments described above.
[Appendix 1]
A processing device that performs processing operations using an energy beam,
A detection device that detects the degree of proximity of an object and a target member that is at least a part of the processing device, and
A position changing device for changing the relative position between the object and the target member is provided.
The position changing device is a processing system that changes the relative position so as to avoid contact between the object and the target member when a predetermined approach condition regarding the degree of approach is satisfied.
[Appendix 2]
A processing device that performs processing operations using an energy beam,
A detection device that detects the degree of proximity of an object and a target member that is at least a part of the processing device, and
A position changing device for changing the relative position between the object and the target member is provided.
The position changing device is a processing system that limits an operation for changing the relative position in a direction in which the object and the target member approach each other when a predetermined approach condition regarding the degree of approach is satisfied.
[Appendix 3]
The processing system according to Appendix 1 or 2, wherein the approach condition includes a contact condition that the object and the target member come into contact with each other.
[Appendix 4]
The approach condition is that although the object and the supply device are not in contact with each other, the object and the target member are so close to each other that the distance between the object and the target member is less than a predetermined value. The processing system according to any one of Appendix 1 to 3, which includes contact conditions.
[Appendix 5]
The processing according to any one of Appendix 1 to 4, wherein the position changing device changes the relative position so as to avoid further approaching the object and the target member when the approach condition is satisfied. system.
[Appendix 6]
The processing system according to any one of Supplementary note 1 to 5, wherein the position changing device changes the relative position so that the object and the target member are separated from each other when the approach condition is satisfied.
[Appendix 7]
The processing according to any one of Appendix 1 to 6, wherein the position changing device controls the relative position so that the relative position between the object and the target member is maintained when the approach condition is satisfied. system.
[Appendix 8]
The processing system according to any one of Appendix 1 to 7, wherein the position changing device does not change the relative position when the approach condition is satisfied.
[Appendix 9]
The processing system according to any one of Appendix 1 to 8, wherein the position changing device stops its operation when the approach condition is satisfied.
[Appendix 10]
When the approach condition is satisfied, the position changing device changes the relative position so as to prevent an abnormal state of the object and / or the processing device due to a collision between the object and the target member. The processing system according to any one of Appendix 1 to 9.
[Appendix 11]
The position changing device is relative so as to reduce the possibility that an abnormal state of the object and / or the processing device occurs due to a collision between the object and the target member when the approach condition is satisfied. The processing system according to any one of Appendix 1 to 10 for changing the position.
[Appendix 12]
The processing system according to any one of Appendix 1 to 11, wherein at least a part of the processing apparatus is also used as at least a part of the detection apparatus.
[Appendix 13]
The processing system according to any one of Appendix 1 to 12, wherein at least a part of the target member is also used as at least a part of the detection device.
[Appendix 14]
A processing device that performs processing operations using an energy beam,
A detection device for detecting the degree of proximity between an object and a target member which is at least a part of the processing device is provided.
A processing system in which at least a part of the target member is also used as at least a part of the detection device.
[Appendix 15]
The detector includes a coil and an iron core.
The processing system according to any one of Appendix 12 to 14, wherein at least a part of the target member is also used as the iron core.
[Appendix 16]
The processing system according to Appendix 15, wherein the coil is wound around at least a part of the target member that is also used as the iron core.
[Appendix 17]
The processing system according to Appendix 15 or 16, wherein the detection device includes an inductive proximity sensor including the coil and the iron core.
[Appendix 18]
The processing system according to any one of Appendix 1 to 17, wherein the target member is a metal member.
[Appendix 19]
The processing system according to any one of Appendix 1 to 18, wherein the target member includes a member of the processing apparatus closest to the object.
[Appendix 20]
The processing system according to any one of Appendix 1 to 19, wherein the processing device includes an irradiation device that irradiates an energy beam and a supply device that supplies a material to an irradiation position of the energy beam.
[Appendix 21]
The processing system according to Appendix 20, wherein the target member includes at least a part of the supply device.
[Appendix 22]
The processing system according to any one of Appendix 1 to 21, wherein the detection device can detect the presence or absence of contact between the object and the target member as the degree of approach.
[Appendix 23]
The processing system according to any one of Appendix 1 to 22, wherein the detection device can detect an index value relating to a distance between the object and the target member as the degree of approach.
[Appendix 24]
The processing system according to Appendix 23, wherein the detection device can detect an index value related to the distance during a period in which the object and the target member are not in contact with each other.
[Appendix 25]
The processing system according to any one of Supplementary note 1 to 24, wherein the detection device detects the degree of proximity between the object and the target member without contacting the object.
[Appendix 26]
The processing system according to Appendix 25, wherein the detection device includes a proximity sensor.
[Appendix 27]
The processing system according to any one of Appendix 1 to 26, wherein the detection device is arranged on the target member.
[Appendix 28]
The processing system according to any one of Appendix 1 to 27, wherein the detection device optically detects the position of the object.
[Appendix 29]
The processing system according to Appendix 28, wherein the detection device includes a light transmitting system that irradiates the detection light of the object and a light receiving system that receives the detection light through the object.
[Appendix 30]
The processing system according to Appendix 28, wherein the detection device images the object.
[Appendix 31]
The processing system according to any one of Appendix 1 to 30, wherein the detection device is in contact with the object and detects the degree of proximity between the object and the target member.
[Appendix 32]
The processing apparatus irradiates the object to be processed with the energy beam to perform the processing operation on the object to be processed.
The processing system according to any one of Appendix 1 to 31, wherein the object includes the object to be processed.
[Appendix 33]
The irradiation device irradiates the object to be processed with the energy beam to perform the processing operation on the object to be processed.
Further equipped with a mounting device on which the object to be processed is mounted,
The processing system according to any one of Supplementary note 1 to 32, wherein the object includes the above-described device.
[Appendix 34]
The target member includes a fixing member fixed to the processing apparatus, a non-fixing member not fixed to the processing apparatus, and a connecting member connecting the fixing member and the non-fixing member. The processing system according to any one of the above.
[Appendix 35]
A processing device that performs processing operations using an energy beam,
A position changing device for changing the relative position between the object and the target member which is at least a part of the processing device is provided.
The target member is a processing system including a fixing member fixed to the processing apparatus, a non-fixing member not fixed to the processing apparatus, and a connecting member connecting the fixing member and the non-fixing member.
[Appendix 36]
The processing system according to Appendix 34 or 35, wherein the connecting member forms a notch between the fixed member and the non-fixed member.
[Appendix 37]
The connecting member can be broken due to stress applied to the connecting member from the outside of the target member via the non-fixing member.
The processing system according to any one of Supplementary note 34 to 36, wherein the non-fixed member can be separated from the fixed member by breaking the connecting member.
[Appendix 38]
The processing system according to Appendix 37, wherein the stress includes a force applied from the object to the connecting member via the non-fixing member due to contact between the object and the target member.
[Appendix 39]
A processing device that performs processing operations using an energy beam,
A detection device that detects the degree of proximity of an object and a target member that is at least a part of the processing device, and
A position changing device that changes the relative position between the object and the target member,
When a predetermined approach condition regarding the degree of approach is satisfied, a control signal for controlling the position change device is received so as to perform the relative position change operation for avoiding contact between the object and the target member. A processing system equipped with a receiver.
[Appendix 40]
A processing device that performs processing operations using an energy beam,
A detection device that detects the degree of proximity of an object and a target member that is at least a part of the processing device, and
A position changing device that changes the relative position between the object and the target member,
When a predetermined approach condition regarding the degree of approach is satisfied, a control signal for prohibiting execution of an operation for changing the relative position of the object and the target member in a direction in which the object and the target member approach each other is transmitted. A processing system equipped with a receiving device for receiving.
[Appendix 41]
In a processing system that performs additional processing on an object
A powder supply member that supplies powder to the object from the powder supply port,
A processing system including a sensor that acquires relative position information between the powder supply member and the object.
[Appendix 42]
In a processing system that performs additional processing on an object
A powder supply member that supplies powder to the object from the powder supply port,
A sensor for acquiring relative position information between the powder supply member and the object is provided.
The member provided with the powder supply port extends in the first direction and includes a first portion and a second portion of the first portion located on the first direction side.
A processing system in which the dimensions of the second portion along a second direction intersecting the first direction are smaller than the dimensions of the first portion along the second direction.
[Appendix 43]
A processing method for processing an object to be processed by using the processing system according to any one of Appendix 1 to 42.
[Appendix 44]
Detecting the degree of proximity between an object and a target member, which is at least a part of the processing equipment,
A processing method including changing the relative position between the object and the target member so as to avoid contact between the object and the target member when a predetermined approach condition regarding the degree of approach is satisfied.
[Appendix 45]
Detecting the degree of proximity between an object and a target member, which is at least a part of the processing equipment,
When a predetermined approach condition regarding the degree of approach is satisfied, it is prohibited to execute an operation for changing the relative position of the object and the target member in a direction in which the object and the target member approach each other. Processing method including.
[Appendix 46]
In a processing method in which an object is processed using an energy beam,
Supplying powder to the object from the powder supply port
Irradiating the object with the energy beam and
A processing method including acquiring relative position information between a member provided with the powder supply port and the object.
[Appendix 47]
In a processing method in which an object is processed using an energy beam,
Supplying powder to the object from the powder supply port
Irradiating the object with the energy beam and
Including the acquisition of relative position information between the member provided with the powder supply port and the object.
The member provided with the powder supply port extends in the first direction and includes a first portion and a second portion of the first portion located on the first direction side.
A processing method in which the dimension of the second portion along the second direction intersecting the first direction is smaller than the dimension of the first portion along the second direction.
[Appendix 48]
In the processing method of performing additional processing on an object
Supplying powder to the object from the powder supply port
A processing method including a member provided with the powder supply port and a sensor for acquiring relative position information of the object.
[Appendix 49]
In the processing method of performing additional processing on an object
Supplying powder to the object from the powder supply port
Including the acquisition of relative position information between the member provided with the powder supply port and the object.
The member provided with the powder supply port extends in the first direction and includes a first portion and a second portion of the first portion located on the first direction side.
A processing method in which the dimension of the second portion along the second direction intersecting the first direction is smaller than the dimension of the first portion along the second direction.
[Appendix 50]
A computer program that causes a computer to execute the processing method according to any one of Appendix 43 to 49.
[Appendix 51]
Detecting the degree of proximity between an object and a target member, which is at least a part of the processing equipment,
When a predetermined approach condition regarding the degree of approach is satisfied, the computer is provided with a processing method including changing the relative position between the object and the target member so as to avoid contact between the object and the target member. A computer program to run.
[Appendix 52]
Detecting the degree of proximity between an object and a target member, which is at least a part of the processing equipment,
When a predetermined approach condition regarding the degree of approach is satisfied, it is prohibited to execute an operation for changing the relative position of the object and the target member in a direction in which the object and the target member approach each other. A computer program that causes a computer to execute the processing method including it.
[Appendix 53]
A recording medium on which the computer program according to any one of Appendix 50 to 52 is recorded.
[Appendix 54]
A processing device that performs a processing operation using an energy beam, a detection device that detects the degree of proximity between an object and a target member that is at least a part of the processing device, and a relative position between the object and the target member. A control device that controls a machining system including a position changing device to be changed.
A control device that controls the position changing device so as to perform the relative position changing operation for avoiding contact between the object and the target member when a predetermined approach condition regarding the degree of approach is satisfied.
[Appendix 55]
A processing device that performs a processing operation using an energy beam, a detection device that detects the degree of proximity between an object and a target member that is at least a part of the processing device, and a relative position between the object and the target member. A control device that controls a machining system including a position changing device to be changed.
When a predetermined approach condition regarding the degree of approach is satisfied, control is performed to prohibit execution of an operation for changing the relative position of the object and the target member in a direction in which the object and the target member approach each other. Control device.
[Appendix 56]
In a control device that controls a processing system that processes an object using an energy beam
The processing system is a relative of a powder supply member that supplies powder to the object from a powder supply port, an irradiation optical system that irradiates the object with an energy beam, and the powder supply member and the object. It is provided with a sensor for acquiring various position information and a position change device for changing the positional relationship between the object and the member.
The control device is a control device that controls a change operation of the positional relationship by the position change device by using an output from the sensor.
[Appendix 57]
In a control device that controls a processing system that processes an object using an energy beam
The processing system is a relative of a powder supply member that supplies powder to the object from a powder supply port, an irradiation optical system that irradiates the object with the energy beam, and the powder supply member and the object. A sensor for acquiring various position information and a position change device for changing the positional relationship between the object and the member are provided.
The member provided with the powder supply port extends in the first direction and includes a first portion and a second portion of the first portion located on the first direction side.
The dimensions of the second portion along the second direction intersecting the first direction are smaller than the dimensions of the first portion along the second direction.
The control device is a control device that controls a change operation of the positional relationship by the position change device by using an output from the sensor.
 上述の各実施形態の構成要件の少なくとも一部は、上述の各実施形態の構成要件の少なくとも他の一部と適宜組み合わせることができる。上述の各実施形態の構成要件のうちの一部が用いられなくてもよい。また、法令で許容される限りにおいて、上述の各実施形態で引用した全ての公開公報及び米国特許の開示を援用して本文の記載の一部とする。 At least a part of the constituent elements of each of the above-described embodiments can be appropriately combined with at least another part of the constituent requirements of each of the above-described embodiments. Some of the constituent requirements of each of the above embodiments may not be used. In addition, to the extent permitted by law, all publications cited in each of the above embodiments and disclosures of US patents shall be incorporated as part of the text.
 本発明は、上述した実施例に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う加工システム、加工方法、コンピュータプログラム、記録媒体、受信装置及び制御装置もまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiment, and can be appropriately modified within the scope of claims and within a range not contrary to the gist or idea of the invention that can be read from the entire specification, and a processing system accompanied by such modification. Processing methods, computer programs, recording media, receiving devices and control devices are also included in the technical scope of the present invention.
 SYS 加工システム
 1 材料供給装置
 2 加工装置
 21 加工ヘッド
 211 照射光学系
 212 材料ノズル
 22 ヘッド駆動系
 31 ステージ
 W ワーク
 M 造形材料
 SL 構造層
 MS 造形面
 EA 照射領域
 MA 供給領域
 MP 溶融池
 EL 加工光
SYSTEM processing system 1 Material supply device 2 Processing device 21 Processing head 211 Irradiation optical system 212 Material nozzle 22 Head drive system 31 Stage W work M Modeling material SL Structural layer MS Modeling surface EA Irradiation area MA Supply area MP Molten pond EL processing light

Claims (22)

  1.  エネルギビームを用いて物体に対して加工動作を行う加工システムにおいて、
     前記物体に粉体供給口から粉体を供給する粉体供給部材と、
     前記エネルギビームを前記物体に照射する照射光学系と、
     前記粉体供給部材と前記物体との相対的な位置情報を取得するセンサと
    を備える加工システム。
    In a machining system that performs machining operations on an object using an energy beam
    A powder supply member that supplies powder to the object from the powder supply port,
    An irradiation optical system that irradiates the object with the energy beam,
    A processing system including a sensor that acquires relative position information between the powder supply member and the object.
  2.  前記センサの少なくとも一部は、前記粉体供給部材の前記粉体供給口が形成された部材に設けられる
     請求項1に記載の加工システム。
    The processing system according to claim 1, wherein at least a part of the sensor is provided on a member of the powder supply member on which the powder supply port is formed.
  3.  前記粉体供給部材の前記粉体供給口が形成された部材は、前記センサの少なくとも一部を形成する
     請求項1に記載の加工システム。
    The processing system according to claim 1, wherein the member in which the powder supply port of the powder supply member is formed forms at least a part of the sensor.
  4.  前記粉体供給口が形成された部材は金属で形成され、
     前記センサは、前記粉体供給口が形成された部材の周囲に設けられたコイルを含む
     請求項3に記載の加工システム。
    The member on which the powder supply port is formed is made of metal.
    The processing system according to claim 3, wherein the sensor includes a coil provided around a member on which the powder supply port is formed.
  5.  前記粉体供給部材は、前記粉体供給口が形成された部材を備え、
     前記粉体供給口が形成された部材の最も前記物体側の位置に前記センサが設けられる
     請求項1又は2に記載の加工システム。
    The powder supply member includes a member on which the powder supply port is formed.
    The processing system according to claim 1 or 2, wherein the sensor is provided at the position closest to the object of the member on which the powder supply port is formed.
  6.  前記照射光学系は、前記照射光学系の光路に沿って最も前記物体側に位置する光学部材と、前記光学部材を保持する保持部材とを備え、
     前記センサは、前記光学部材および前記保持部材のうちの少なくとも一方と、前記物体との相対的な位置情報を取得する
     請求項1から5のいずれか一項に記載の加工システム。
    The irradiation optical system includes an optical member located closest to the object along the optical path of the irradiation optical system, and a holding member for holding the optical member.
    The processing system according to any one of claims 1 to 5, wherein the sensor acquires position information relative to at least one of the optical member and the holding member and the object.
  7.  エネルギビームを用いて物体の加工動作を行う加工システムにおいて、
     粉体供給口から前記物体に粉体を供給する粉体供給部材と、
     光路に沿って最も前記物体側に位置する光学部材と、前記光学部材を保持する保持部材とを備え、前記光学部材を介して前記エネルギビームを前記物体に照射する照射光学系と、
     前記光学部材および前記保持部材のうちの少なくとも一方の部材と、前記物体との相対的な位置情報を取得するセンサと
    を備える加工システム。
    In a processing system that processes an object using an energy beam
    A powder supply member that supplies powder to the object from the powder supply port,
    An irradiation optical system including an optical member located closest to the object along the optical path and a holding member for holding the optical member, and irradiating the object with the energy beam through the optical member.
    A processing system including at least one member of the optical member and the holding member, and a sensor that acquires position information relative to the object.
  8.  前記光学部材は、前記保持部材よりも前記物体側に設けられ、
     前記センサは、前記光学部材と前記物体との相対的な位置情報を取得する
     請求項6又は7に記載の加工システム。
    The optical member is provided on the object side of the holding member.
    The processing system according to claim 6 or 7, wherein the sensor acquires relative position information between the optical member and the object.
  9.  前記保持部材は、前記光学部材よりも前記物体側に設けられ、
     前記センサは、前記保持部材と前記物体との相対的な位置情報を取得する
     請求項6又は7に記載の加工システム。
    The holding member is provided on the object side of the optical member.
    The processing system according to claim 6 or 7, wherein the sensor acquires relative position information between the holding member and the object.
  10.  エネルギビームを用いて物体の加工動作を行う加工システムにおいて、
     粉体供給口から前記物体に粉体を供給する粉体供給部材と、
     前記エネルギビームを射出する最終光学部材と、前記最終光学部材から射出されるエネルギビームの光路の周囲に配置される部材とを備え、前記光学部材を介して前記エネルギビームを前記物体に照射する照射光学系と、
     前記光路の周囲に配置される部材と、前記物体との相対的な位置情報を取得するセンサと
    を備える加工システム。
    In a processing system that processes an object using an energy beam
    A powder supply member that supplies powder to the object from the powder supply port,
    Irradiation that includes a final optical member that emits the energy beam and a member that is arranged around the optical path of the energy beam emitted from the final optical member, and irradiates the object with the energy beam through the optical member. Optical system and
    A processing system including a member arranged around the optical path and a sensor that acquires position information relative to the object.
  11.  前記相対的な位置情報は、前記部材と前記物体との距離に関する情報を含む
     請求項1から12のいずれか一項に記載の加工システム。
    The processing system according to any one of claims 1 to 12, wherein the relative position information includes information regarding a distance between the member and the object.
  12.  前記相対的な位置情報は、前記部材と前記物体との接触に関する情報を含む
     請求項1から11のいずれか一項に記載の加工システム。
    The processing system according to any one of claims 1 to 11, wherein the relative position information includes information regarding contact between the member and the object.
  13.  前記接触に関するは、前記物体と前記部材との導通状態に関する情報を含む
     請求項12に記載の加工システム。
    The processing system according to claim 12, wherein the contact includes information on a conduction state between the object and the member.
  14.  前記物体と前記部材との位置関係を変更する位置変更装置と、
     前記センサの出力に基づいて、前記位置変更装置を制御する制御装置と
    をさらに備える請求項1から13のいずれか一項に記載の加工システム。
    A position changing device that changes the positional relationship between the object and the member,
    The processing system according to any one of claims 1 to 13, further comprising a control device for controlling the position changing device based on the output of the sensor.
  15.  前記制御装置は、前記部材と前記物体とが接触したときに、前記位置変更装置を停止させる請求項14に記載の加工システム。 The processing system according to claim 14, wherein the control device stops the position changing device when the member and the object come into contact with each other.
  16.  前記制御装置は、前記部材と前記物体との距離が所定距離よりも近いときに、前記位置変更装置を停止させる
    請求項14又は15に記載の加工システム。
    The processing system according to claim 14 or 15, wherein the control device stops the position changing device when the distance between the member and the object is shorter than a predetermined distance.
  17.  前記制御装置は、前記部材と前記物体との距離が所定距離よりも近いときに、前記物体と前記部材と近づかないように前記位置変更装置を制御する
     請求項14又は15に記載の加工システム。
    The processing system according to claim 14 or 15, wherein the control device controls the position changing device so that the object and the member do not come close to each other when the distance between the member and the object is shorter than a predetermined distance.
  18.  前記粉体供給部材の前記粉体供給口が前記物体から離れた状態で前記加工動作が行われる
     請求項1から17のいずれか一項に記載の加工システム。
    The processing system according to any one of claims 1 to 17, wherein the processing operation is performed in a state where the powder supply port of the powder supply member is away from the object.
  19.  前記粉体供給口が設けられた部材は、第1方向に延びており、第1部分と、前記第1部分の前記第1方向側に位置する第2部分とを備え、
     前記第1方向と交差する第2方向に沿った前記第2部分の寸法は、前記第2方向に沿った前記第1部分の寸法よりも小さい
     請求項1から18のいずれか一項に記載の加工システム。
    The member provided with the powder supply port extends in the first direction and includes a first portion and a second portion of the first portion located on the first direction side.
    The aspect of any one of claims 1 to 18, wherein the dimension of the second portion along the second direction intersecting the first direction is smaller than the dimension of the first portion along the second direction. Processing system.
  20.  エネルギビームを用いて物体の加工動作を行う加工システムにおいて、
     粉体供給口から前記物体に粉体を供給する粉体供給部材と、
     前記エネルギビームを前記物体に照射する照射光学系と、
     前記粉体供給部材と前記物体との相対的な位置情報を取得するセンサと
     を備え、
     前記粉体供給口が設けられた部材は、第1方向に延びており、第1部分と、前記第1部分の前記第1方向側に位置する第2部分とを備え、
     前記第1方向と交差する第2方向に沿った前記第2部分の寸法は、前記第2方向に沿った前記第1部分の寸法よりも小さい
     加工システム。
    In a processing system that processes an object using an energy beam
    A powder supply member that supplies powder to the object from the powder supply port,
    An irradiation optical system that irradiates the object with the energy beam,
    It is equipped with a sensor that acquires relative position information between the powder supply member and the object.
    The member provided with the powder supply port extends in the first direction and includes a first portion and a second portion of the first portion located on the first direction side.
    A processing system in which the dimensions of the second portion along a second direction intersecting the first direction are smaller than the dimensions of the first portion along the second direction.
  21.  前記粉体供給口が設けられた部材は、前記第2部分の前記第1方向側に位置する第3部分を備え、
     前記第1方向と交差する第2方向に沿った前記第2部分の寸法は、前記第2方向に沿った前記第3部分の寸法よりも小さい
     請求項19又は20に記載の加工システム。
    The member provided with the powder supply port includes a third portion of the second portion located on the first direction side.
    The processing system according to claim 19 or 20, wherein the dimension of the second portion along the second direction intersecting the first direction is smaller than the dimension of the third portion along the second direction.
  22.  前記加工動作は付加加工動作である
     請求項1から21のいずれか一項に記載の加工システム。
    The processing system according to any one of claims 1 to 21, wherein the processing operation is an additional processing operation.
PCT/JP2019/012482 2019-03-25 2019-03-25 Processing system WO2020194444A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/012482 WO2020194444A1 (en) 2019-03-25 2019-03-25 Processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/012482 WO2020194444A1 (en) 2019-03-25 2019-03-25 Processing system

Publications (1)

Publication Number Publication Date
WO2020194444A1 true WO2020194444A1 (en) 2020-10-01

Family

ID=72609292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012482 WO2020194444A1 (en) 2019-03-25 2019-03-25 Processing system

Country Status (1)

Country Link
WO (1) WO2020194444A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7374390B1 (en) 2023-02-08 2023-11-06 三菱電機株式会社 Defect estimation device, numerical control device, additive manufacturing device, and defect estimation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127194A (en) * 1984-07-16 1986-02-06 Mitsubishi Electric Corp Laser working machine
JPS62109888U (en) * 1985-12-27 1987-07-13
JPS63104796A (en) * 1986-10-21 1988-05-10 Mitsubishi Electric Corp Processing head of laser beam machine
JPH01157788A (en) * 1987-12-16 1989-06-21 Mitsubishi Electric Corp Working head collision preventing device for laser beam machine
JP2013119098A (en) * 2011-12-07 2013-06-17 Hitachi Ltd Laser beam build-up welding device and laser beam build-up welding method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127194A (en) * 1984-07-16 1986-02-06 Mitsubishi Electric Corp Laser working machine
JPS62109888U (en) * 1985-12-27 1987-07-13
JPS63104796A (en) * 1986-10-21 1988-05-10 Mitsubishi Electric Corp Processing head of laser beam machine
JPH01157788A (en) * 1987-12-16 1989-06-21 Mitsubishi Electric Corp Working head collision preventing device for laser beam machine
JP2013119098A (en) * 2011-12-07 2013-06-17 Hitachi Ltd Laser beam build-up welding device and laser beam build-up welding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7374390B1 (en) 2023-02-08 2023-11-06 三菱電機株式会社 Defect estimation device, numerical control device, additive manufacturing device, and defect estimation method

Similar Documents

Publication Publication Date Title
CN112867579B (en) Additive manufacturing apparatus and additive manufacturing method
JP2023065411A (en) Processing apparatus, processing method, computer program, recording medium and control device
EP3560635A1 (en) Additive manufacturing system with moveable sensors
CN111479651B (en) Processing device and processing method, molding device and molding method, computer program, and recording medium
WO2022163148A1 (en) Processing system
WO2020194444A1 (en) Processing system
WO2021149683A1 (en) Processing system
WO2022018853A1 (en) Processing system
CN114450584A (en) Stack molding system
JP7468614B2 (en) Processing System
JP7400803B2 (en) Processing system and processing method
WO2022157914A1 (en) Processing method
WO2021019644A1 (en) Processing system, processing method, controller, computer program, recording medium, and processing apparatus
JP7251484B2 (en) Machining system, machining method, computer program, recording medium and control device
CN113939394B (en) Modeling unit
WO2020194448A1 (en) Building system
WO2020194445A1 (en) Processing system
US20230158607A1 (en) Processing system
WO2019216228A1 (en) Molding system, and, molding method
EP4177001A1 (en) Processing system and optical device
JP7201064B2 (en) Processing equipment and processing method
WO2022168268A1 (en) Processing path information generation method
JP2022115799A (en) Processing system
CN116806191A (en) Shaping system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP