WO2022168268A1 - Processing path information generation method - Google Patents

Processing path information generation method Download PDF

Info

Publication number
WO2022168268A1
WO2022168268A1 PCT/JP2021/004346 JP2021004346W WO2022168268A1 WO 2022168268 A1 WO2022168268 A1 WO 2022168268A1 JP 2021004346 W JP2021004346 W JP 2021004346W WO 2022168268 A1 WO2022168268 A1 WO 2022168268A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
machining
path information
processing
machining path
Prior art date
Application number
PCT/JP2021/004346
Other languages
French (fr)
Japanese (ja)
Inventor
和樹 上野
元英 石川
浩一 安葉
慧 関口
アツコ 増田
ふみ香 志岐
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2021/004346 priority Critical patent/WO2022168268A1/en
Publication of WO2022168268A1 publication Critical patent/WO2022168268A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing

Definitions

  • the present invention for example, relates to the technical field of machining path information generation methods capable of generating machining paths for shaping an object.
  • Patent Document 1 An example of a processing system that shapes an object is described in Patent Document 1.
  • One of the technical challenges of such processing systems is to reduce defects in the shaped objects.
  • processing path information for modeling an object by a 3D printer is generated, and based on the processing path information, the 3D printer models the object. Determining whether or not a void that is a defect occurs in the object in a case, and if it is determined that the void that is a defect occurs in the object, information about the void is provided together with model information based on the 3D model data. and displaying.
  • processing path information for modeling an object by a 3D printer is generated, and based on the processing path information, the 3D printer models the object. Determining whether or not a void that is a defect occurs in the object in a case where it is determined that the void that is a defect occurs in the object, and information about the void together with model information based on the machining path information when it is determined that the void that is a defect occurs in the object. and displaying.
  • processing path information for modeling an object by a 3D printer is generated; and based on the processing path information, the 3D printer models the object. and modifying the machining path information when it is determined that the object will have a gap. .
  • FIG. 1 is a block diagram showing the configuration of the processing system of this embodiment.
  • FIG. 2 is a cross-sectional view showing the structure of the processing apparatus of this embodiment.
  • FIG. 3 is a system configuration diagram showing the system configuration of the processing apparatus of this embodiment.
  • FIGS. 4A to 4E is a cross-sectional view showing a state in which a certain region on the workpiece is irradiated with the shaping light and the shaping material is supplied.
  • FIGS. 5(a) to 5(c) is a cross-sectional view showing the process of forming a three-dimensional structure.
  • FIG. 6 is a block diagram showing the configuration of the machining path generation device of this embodiment.
  • FIG. 7 is a flow chart showing the flow of operations performed by the machining path generation device.
  • FIG. 1 is a block diagram showing the configuration of the processing system of this embodiment.
  • FIG. 2 is a cross-sectional view showing the structure of the processing apparatus of this embodiment.
  • FIG. 3 is a system configuration diagram
  • FIG. 8(a) is a perspective view showing an example of a three-dimensional structure formed by a processing apparatus, and FIG. 8(b) shows a model for forming the three-dimensional structure shown in FIG. 8(a).
  • 8(c) is a plan view showing a processing path for forming the plurality of structural layers shown in FIG. 8(b);
  • FIG. 9(a) is a plan view showing partial machining paths extending along the X-axis direction, and
  • FIG. 9(b) is a modeled object formed based on the partial machining paths shown in FIG. 9(a). It is a sectional view showing.
  • FIG. 9(a) is a perspective view showing an example of a three-dimensional structure formed by a processing apparatus
  • FIG. 8(b) shows a model for forming the three-dimensional structure shown in FIG. 8(a).
  • 8(c) is a plan view showing a processing path for forming the plurality of structural layers shown in FIG. 8(b);
  • FIG. 10 schematically shows a modeled object formed based on a plurality of partial machining passes adjacent to each other at relatively narrow intervals, together with the plurality of partial machining passes.
  • FIG. 11 schematically shows a modeled object that is formed based on a plurality of partial machining passes adjacent to each other at relatively wide intervals, together with the plurality of partial machining passes.
  • FIG. 12 schematically shows a modeled object in which a plurality of openings are formed, together with a plurality of partial processing passes for forming the modeled object.
  • FIG. 13 schematically shows a modeled object with a plurality of openings, along with a plurality of partial processing passes for forming the modeled object.
  • FIG. 14 schematically shows a modeled object with a plurality of openings, along with a plurality of partial processing passes for forming the modeled object.
  • FIG. 15 schematically shows a modeled object that is formed based on a plurality of partial machining paths that intersect each other, together with the plurality of partial machining paths.
  • FIG. 16 shows an example of the display screen of the display device.
  • FIG. 17 shows an example of the display screen of the display device.
  • FIG. 18 shows an example of the display screen of the display device.
  • FIG. 19 schematically shows modified machining path information together with a modeled object that is shaped based on the modified machining path information.
  • FIG. 20 schematically shows corrected machining path information together with a modeled object that is shaped based on the corrected machining path information.
  • FIG. 21 shows an example of a display screen of a display device.
  • FIG. 22 is a block diagram showing the configuration of the processing system in the first modified example.
  • FIG. 23 is a flow chart showing the flow of operations performed by the processing system in the first modified example.
  • FIG. 24 is a block diagram showing the configuration of a machining path generation device in the second modified example.
  • FIG. 25 is a block diagram showing the configuration of a processing device in the third modified example.
  • FIG. 26 is a flow chart showing the flow of operations performed by the processing system in the third modified example.
  • Embodiments of a machining path information generation method, a machining information generation method, an information processing device, a computer program, and a recording medium will be described below with reference to the drawings.
  • Embodiments of a machining path information generating method, a machining information generating method, an information processing apparatus, a computer program, and a recording medium will be described below using the machining system SYS.
  • FIG. 1 is a block diagram showing the overall configuration of the machining system SYS.
  • the machining system SYS comprises a machining device 1 and a machining path generation device 2 .
  • the machining device 1 and the machining path generation device 2 can communicate via a communication network 3 including at least one of a wired communication network and a wireless communication network.
  • the processing device 1 is a device capable of modeling (in other words, forming) a three-dimensional structure ST, which is an object having a size in any three-dimensional direction. That is, the processing device 1 is a device capable of performing a processing operation (modeling operation) for molding the three-dimensional structure ST. For this reason, the processing device 1 may be called a modeling device. Similarly, the processing system SYS may be referred to as a modeling system.
  • the machining path generation device 2 is a device (for example, an information processing device) capable of generating machining path information PI, which is control information for the processing device 1 to shape the three-dimensional structure ST.
  • the machining pass information PI will be described in detail later.
  • the machining path generation device 2 transmits (that is, outputs) the generated machining path information PI to the processing device 1 via the communication network 3 .
  • the processing device 1 receives (that is, acquires) the processing path information PI transmitted from the processing path generation device 2 via the communication network 3 .
  • the processing device 1 performs a processing operation for forming the three-dimensional structure ST based on the acquired processing path information PI.
  • FIG. 2 is a cross-sectional view showing an example of the structure of the processing device 1 of this embodiment.
  • FIG. 3 is a system configuration diagram showing an example of the system configuration of the processing apparatus 1 of this embodiment.
  • each of the X-axis direction and the Y-axis direction is the horizontal direction (that is, a predetermined direction in the horizontal plane), and the Z-axis direction is the vertical direction (that is, the direction perpendicular to the horizontal plane). and substantially in the vertical direction or the gravitational direction).
  • the directions of rotation (in other words, tilt directions) about the X-, Y-, and Z-axes are referred to as the .theta.X direction, the .theta.Y direction, and the .theta.Z direction, respectively.
  • the Z-axis direction may be the direction of gravity.
  • the XY plane may be set horizontally.
  • the processing device 1 is capable of performing processing operations for modeling (that is, forming) the three-dimensional structure ST.
  • the three-dimensional structure ST is a three-dimensional object that has dimensions in all three-dimensional directions (for example, an object that has dimensions in the X-axis, Y-axis, and Z-axis directions).
  • the processing apparatus 1 can form a three-dimensional structure ST on a workpiece W that serves as a base (that is, a base material) for forming the three-dimensional structure ST.
  • the work W is a stage 131 to be described later
  • the processing device 1 can form the three-dimensional structure ST on the stage 131 .
  • the processing device 1 may be capable of forming the three-dimensional structure ST on the existing structure.
  • the processing device 1 may form the three-dimensional structure ST integrated with the existing structure (that is, the work W).
  • the operation of modeling the three-dimensional structure ST integrated with the existing structure may be considered equivalent to the operation of adding a new structure to the existing structure.
  • the existing structure may be, for example, a defective part requiring repair.
  • the processing device 1 may form the three-dimensional structure ST on the repair required item so as to fill the defective portion of the repair required item.
  • the processing device 1 may form a three-dimensional structure ST separable from the existing structure.
  • FIG. 2 shows an example in which the work W is an existing structure held by the stage 131 . Also, the description will be made below using an example in which the work W is an existing structure held by the stage 131 .
  • the processing apparatus 1 is an apparatus capable of forming the three-dimensional structure ST by performing additional processing (additional modeling) conforming to the laser build-up welding method.
  • the processing device 1 can also be said to be a 3D printer that forms an object using a layered manufacturing technique.
  • the layered manufacturing technology may also be referred to as rapid prototyping, rapid manufacturing, or additive manufacturing.
  • Laser Overlay Welding includes Direct Metal Deposition, Direct Energy Deposition, Laser Cladding, Laser Engineered Net Shaping, Direct Light Fabrication, Laser Consolidation, Shape ⁇ Deposition manufacturing, wire-feed laser deposition, gas through wire, laser powder fusion, laser metal forming, selective laser powder remelting, laser direct casting, It may also be referred to as laser powder deposition, laser additive manufacturing, laser rapid forming.
  • the processing device 1 forms a three-dimensional structure ST by processing the modeling material M with the processing light EL.
  • the modeling material M is a material that can be melted by irradiation with processing light EL having a predetermined intensity or more.
  • a modeling material M for example, at least one of a metallic material and a resinous material can be used.
  • the modeling material M other materials different from the metallic material and the resinous material may be used.
  • the building material M is a powdery or granular material. That is, the modeling material M is a granular material. However, the modeling material M does not have to be granular.
  • the modeling material M at least one of a wire-like modeling material and a gaseous modeling material may be used.
  • a housing 16 In order to form the three-dimensional structure ST, as shown in FIGS. , a housing 16 , a control device 17 , and a communication device 18 . At least part of each of the processing unit 12 and the stage unit 13 is accommodated within the chamber space 163 IN inside the housing 16 .
  • the material supply source 11 supplies the modeling material M to the processing unit 12 .
  • the material supply source 11 supplies a desired amount of modeling material M according to the required amount so that the required amount of modeling material M is supplied to the processing unit 12 per unit time in order to model the three-dimensional structure ST. Supply material M.
  • the processing unit 12 processes the modeling material M supplied from the material supply source 11 to model the three-dimensional structure ST.
  • the processing unit 12 includes a processing head 121 and a head drive system 122 to form the three-dimensional structure ST.
  • the processing head 121 includes an irradiation optical system 1211 capable of emitting processing light EL, and a material nozzle 1212 capable of supplying the modeling material M.
  • the machining head 121 and the head drive system 122 are accommodated within the chamber space 163IN.
  • at least a part of the processing head 121 and the head driving system 122 may be arranged in an external space 164OUT, which is a space outside the housing 16 .
  • the external space 164OUT may be a space that an operator of the processing apparatus 1 can enter.
  • the irradiation optical system 1211 is an optical system (for example, a condensing optical system) for emitting the processing light EL. Specifically, the irradiation optical system 1211 is optically connected to the light source 14 that emits the processing light EL via an optical transmission member 141 such as an optical fiber or a light pipe. The irradiation optical system 211 emits processing light EL propagating from the light source 14 via the light transmission member 141 . The irradiation optical system 1211 emits processing light EL downward (that is, to the -Z side) from the irradiation optical system 1211 . A stage 131 is arranged below the irradiation optical system 1211 .
  • the irradiation optical system 1211 irradiates the work W with the processing light EL, which is an energy beam. Specifically, the irradiation optical system 1211 processes the target irradiation area EA set on the workpiece W or in the vicinity of the workpiece W as an area irradiated (typically, condensed) with the processing light EL. Light EL can be irradiated.
  • the state of the irradiation optical system 1211 can be switched between a state in which the target irradiation area EA is irradiated with the processing light EL and a state in which the target irradiation area EA is not irradiated with the processing light EL under the control of the control device 17. is.
  • the direction of the processing light EL emitted from the irradiation optical system 1211 is not limited to directly below (that is, coinciding with the -Z-axis direction). good too.
  • the material nozzle 1212 supplies (for example, injects, jets, ejects, or sprays) the modeling material M from the supply outlet.
  • the material nozzle 1212 is physically connected to the material supply source 11 which is the supply source of the modeling material M via the supply pipe 111 and the mixing device 112 .
  • the material nozzle 1212 supplies the modeling material M supplied from the material supply source 11 through the supply pipe 111 and the mixing device 112 .
  • the material nozzle 1212 may pump the modeling material M supplied from the material supply source 11 through the supply pipe 111 .
  • the modeling material M from the material supply source 11 and the gas for transportation (that is, pressure-fed gas, for example, an inert gas such as nitrogen or argon) are mixed in the mixing device 112 and then passed through the supply pipe 111. may be pumped to the material nozzle 1212 via.
  • the material nozzle 1212 supplies the modeling material M with the gas for conveyance.
  • a purge gas supplied from the gas supply device 15 is used as the carrier gas.
  • gas supplied from a gas supply device different from the gas supply device 15 may be used as the transport gas.
  • the material nozzle 1212 is drawn in a tubular shape in FIG. 2, the shape of the material nozzle 1212 is not limited to this shape.
  • the material nozzle 1212 supplies the modeling material M downward (that is, to the ⁇ Z side) from the material nozzle 1212 .
  • a stage 131 is arranged below the material nozzle 1212 .
  • the material nozzle 1212 supplies the modeling material M toward the work W or the vicinity of the work W.
  • the traveling direction of the modeling material M supplied from the material nozzle 1212 is a direction inclined by a predetermined angle (an acute angle as an example) with respect to the Z-axis direction. good.
  • the material nozzle 1212 supplies the modeling material M to the target irradiation area EA where the irradiation optical system 1211 irradiates the processing light EL. Therefore, the target supply area MA set on or near the work W as the area where the material nozzle 1212 supplies the modeling material M matches (or at least partially overlaps) the target irradiation area EA. ), the material nozzle 1212 and the irradiation optics 1211 are aligned. In addition, the material nozzle 1212 may supply the modeling material M to the molten pool MP (see FIG. 4 and the like described later) formed by the processing light EL emitted from the irradiation optical system 1211 .
  • the material nozzle 1212 does not have to supply the modeling material M to the molten pool MP.
  • the processing system SYS may melt the modeling material M from the material nozzle 1212 before it reaches the workpiece W by the irradiation optical system 1211, and attach the molten modeling material M to the workpiece W. .
  • the head drive system 122 moves (that is, moves) the processing head 121 .
  • the head drive system 122 moves the processing head 121 along at least one of the X axis, Y axis, Z axis, ⁇ X direction, ⁇ Y direction, and ⁇ Z direction, for example.
  • the head drive system 122 moves the processing head 121
  • the relative positions of the processing head 121 and the stage 131 and the workpiece W placed on the stage 131 change.
  • the target irradiation area EA and the target supply area MA and the molten pool MP
  • the stage unit 13 has a stage 131 .
  • the stage 131 is housed in the chamber space 163IN.
  • a workpiece W can be placed on the stage 131 .
  • the stage 131 may be capable of holding the work W placed on the stage 131 .
  • the stage 131 may have at least one of a mechanical chuck, an electrostatic chuck, a vacuum chuck, and the like to hold the work W.
  • the stage 131 may not be able to hold the work W placed on the stage 131 .
  • the workpiece W may be placed on the stage 131 without clamping.
  • the stage drive system 132 moves the stage 131 .
  • the stage drive system 132 moves the stage 131 along at least one of the X-axis, Y-axis, Z-axis, ⁇ X direction, ⁇ Y direction, and ⁇ Z direction.
  • the stage drive system 132 moves the stage 131, the relative position between the processing head 121 and the stage 131 (and the workpiece W placed on the stage 131) changes.
  • the target irradiation area EA and the target supply area MA (furthermore, the molten pool MP) move relative to the workpiece W.
  • the light source 14 emits, for example, at least one of infrared light, visible light, and ultraviolet light as processing light EL.
  • the processing light EL may include a plurality of pulsed lights (that is, a plurality of pulsed beams).
  • the processing light EL may include continuous light (CW: Continuous Wave).
  • the processing light EL may be laser light.
  • the light source 14 may include a laser light source (for example, a semiconductor laser such as a laser diode (LD).
  • the laser light source may be a fiber laser, a CO2 laser, a YAG laser, an excimer laser, or the like) However, the processing light EL may not be laser light.
  • the light source 14 may include at least one of an arbitrary light source (for example, an LED (Light Emitting Diode), a discharge lamp, etc.).
  • the irradiation optical system 1211 is optically connected to the light source 14 via an optical transmission member 141 including at least one of an optical fiber and a light pipe. emits the processing light EL propagating from the light source 14 via the light transmission member 141 .
  • the gas supply device 15 is a supply source of purge gas for purging the chamber space 163IN.
  • the purge gas contains inert gas. Examples of inert gas include at least one of nitrogen gas and argon gas.
  • the gas supply device 15 is connected to the chamber space 163 IN via a supply port 162 formed in a partition member 161 of the housing 16 and a supply pipe 151 connecting the gas supply device 15 and the supply port 162 .
  • the gas supply device 15 supplies purge gas to the chamber space 163 IN through the supply pipe 151 and the supply port 162 . As a result, the chamber space 163IN becomes a space purged with the purge gas.
  • the purge gas supplied to the chamber space 163IN may be discharged from a discharge port (not shown) formed in the partition member 161 .
  • the gas supply device 15 may be a cylinder containing an inert gas.
  • the inert gas is nitrogen gas
  • the gas supply device 15 may be a nitrogen gas generator that generates nitrogen gas using the atmosphere as a raw material.
  • the gas supply device 15 may supply purge gas to the mixing device 112 to which the modeling material M from the material supply source 11 is supplied in addition to the chamber space 163IN.
  • the gas supply device 15 may be connected to the mixing device 112 via a supply pipe 152 that connects the gas supply device 15 and the mixing device 112 .
  • the gas supply device 15 supplies purge gas to the mixing device 112 via the supply pipe 152 .
  • the molding material M from the material supply source 11 is supplied through the supply pipe 111 toward the material nozzle 1212 (specifically , pumped).
  • the material nozzle 1212 will supply the building material M together with the purge gas for pumping the building material M from the supply outlet.
  • the housing 16 is a housing device that houses at least a part of each of the processing unit 12 and the stage unit 13 in a chamber space 163IN that is an internal space of the housing 16 .
  • the housing 16 includes a partition member 161 that defines a chamber space 163IN.
  • the partition member 161 is a member that separates the chamber space 163 IN and the external space 164 OUT of the housing 16 . In this case, the space surrounded by the partition member 161 becomes the chamber space 163IN.
  • the partition member 161 may be provided with a door that can be opened and closed. This door may be opened when the workpiece W is placed on the stage 131 . The door may be opened when the workpiece W and/or the three-dimensional structure ST is taken out from the stage 131. The door may be closed during periods when machining operations are being performed.
  • An observation window (not shown) for visually recognizing the chamber space 163IN from the external space 164OUT of the housing 16 may be formed in the partition member 161 .
  • the control device 17 controls the operation of the processing device 1.
  • the control device 17 may control the operation of the processing device 1 to shape the three-dimensional structure ST based on the processing path information PI transmitted from the processing path generation device 2 .
  • the control device 17 may include, for example, an arithmetic device and a storage device.
  • the computing device may include, for example, at least one of a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit).
  • a storage device may include, for example, memory.
  • the control device 17 functions as a device that controls the operation of the processing device 1 as the arithmetic device executes a computer program.
  • This computer program is a computer program for causing the arithmetic device to perform (that is, to execute) an operation to be performed by the control device 17, which will be described later. That is, this computer program is a computer program for causing the control device 17 to function so as to cause the processing device 1 to perform the operation described later.
  • the computer program executed by the arithmetic device may be recorded in a storage device (that is, a recording medium) included in the control device 17, or may be stored in the control device 17 or may be externally attached to the control device 17. It may be recorded on a medium (for example, hard disk or semiconductor memory). Alternatively, the arithmetic device 21 may download the computer program to be executed from a device external to the control device 17 via the communication device 18 .
  • a storage device that is, a recording medium
  • the arithmetic device 21 may download the computer program to be executed from a device external to the control device 17 via the communication device 18 .
  • the control device 17 does not have to be provided inside the processing device 1 .
  • the control device 17 may be provided outside the processing device 1 as a server such as a cloud server.
  • the control device 17 may be integrated with the machining path generation device 2 .
  • the control device 17 and the processing device 1 may be connected by a wired and/or wireless network (for example, the communication network 4, or a data bus and/or communication line).
  • a wired network a network using a serial bus interface represented by at least one of IEEE1394, RS-232x, RS-422, RS-423, RS-485 and USB may be used.
  • a network using a parallel bus interface may be used as the wired network.
  • a network using an Ethernet (registered trademark) interface represented by at least one of 10BASE-T, 100BASE-TX, and 1000BASE-T may be used.
  • a network using radio waves may be used as the wireless network.
  • An example of a network using radio waves is a network conforming to IEEE802.1x (for example, at least one of wireless LAN and Bluetooth (registered trademark)).
  • a network using infrared rays may be used as the wireless network.
  • a network using optical communication may be used as the wireless network.
  • the control device 17 and the processing device 1 may be configured to be able to transmit and receive various information via the communication network 3 or the like.
  • control device 17 may be capable of transmitting information such as commands and control parameters to the processing device 1 via the communication network 3 or the like.
  • the communication device 18 included in the processing device 1 may function as a receiving device that receives information such as commands and control parameters from the control device 17 via the communication network 3 or the like.
  • the communication device 18 included in the processing apparatus 1 may function as a transmission device that transmits information such as commands and control parameters to the control device 17 via the communication network 3 or the like.
  • a first control device that performs part of the processing performed by the control device 17 is provided inside the processing device 1, while a second control device that performs another part of the processing performed by the control device 17 is provided.
  • the control device may be provided outside the processing device 1 .
  • part of the processing performed by the control device 17 may be performed by the machining path generation device 2 .
  • the control device 17 may use AI (artificial intelligence) to control the processing system SYS.
  • AI artificial intelligence
  • the control device 17 may execute a computer program to implement logical functional blocks using AI (artificial intelligence) within the control device 17 .
  • AI in the present embodiment may mean a learnable or learned computational model (hereinafter referred to as "learning model").
  • An example of a learning model is a computational model including a neural network.
  • a learning model may be learned (ie, constructed) by machine learning.
  • Recording media for recording computer programs executed by the control device 17 include CD-ROMs, CD-Rs, CD-RWs, flexible disks, MOs, DVD-ROMs, DVD-RAMs, DVD-Rs, DVD+Rs, and DVDs.
  • optical discs such as RW, DVD+RW and Blu-ray (registered trademark)
  • magnetic media such as magnetic tapes
  • magneto-optical discs semiconductor memories such as USB memories
  • the recording medium may include a device capable of recording a computer program (for example, a general-purpose device or a dedicated device in which the computer program is implemented in at least one form of software, firmware, etc.).
  • each process and function included in the computer program may be realized by a logical processing block realized in the control device 17 by the control device 17 (that is, computer) executing the computer program, It may be implemented by hardware such as a predetermined gate array (FPGA, ASIC) provided in the control device 17, or a mixture of logical processing blocks and partial hardware modules that implement some hardware elements. It can be implemented in the form of
  • the communication device 18 can communicate with the machining path generation device 2 via the communication network 3.
  • the communication device 18 can receive the machining path information PI generated by the machining path generation device 2 from the machining path generation device 2 .
  • processing apparatus 1 performs processing operations (additional processing operations in the present embodiment) for modeling the three-dimensional structure ST. For this reason, below, processing operation is explained as operation which processing device 1 performs.
  • the processing apparatus 1 performs processing operations for forming the three-dimensional structure ST by performing additional processing on the workpiece W.
  • FIG. Specifically, the processing apparatus 1 forms the three-dimensional structure ST using a laser build-up welding method. Therefore, the processing apparatus 1 may form the three-dimensional structure ST by performing an existing additional processing operation based on the laser build-up welding method.
  • An example of the processing operation for forming the three-dimensional structure ST using the laser build-up welding method will be briefly described below.
  • the processing apparatus 1 sequentially forms, for example, a plurality of layered partial structures (hereinafter referred to as "structural layers") SL arranged along the Z-axis direction.
  • structural layers layered partial structures
  • the processing apparatus 1 sequentially forms a plurality of structural layers SL obtained by slicing the three-dimensional structure ST along the Z-axis direction one by one.
  • a three-dimensional structure ST which is a laminated structure in which a plurality of structural layers SL are laminated, is formed.
  • the flow of operations for modeling the three-dimensional structure ST by sequentially modeling the plurality of structural layers SL one by one will be described below.
  • the processing apparatus 1 controls the processing head so that the target irradiation area EA is set in a desired area on the modeling surface MS corresponding to the surface of the workpiece W or the surface of the structural layer SL that has been modeled. At least one of 121 and stage 131 is moved. After that, the processing apparatus 1 irradiates the target irradiation area EA with the processing light EL from the irradiation optical system 1211 . At this time, the condensing surface on which the processing light EL is condensed in the Z-axis direction may coincide with the modeling surface MS.
  • the condensing surface may be off the modeling surface MS in the Z-axis direction.
  • a molten pool that is, a pool of metal or the like melted by the processing light EL
  • the processing device 1 supplies the modeling material M from the material nozzle 1212 under the control of the control device 17 .
  • the modeling material M is supplied to the molten pool MP.
  • the modeling material M supplied to the molten pool MP is melted by the processing light EL irradiated to the molten pool MP.
  • the modeling material M supplied from the material nozzle 1212 may be melted by the processing light EL before reaching the molten pool MP, and the molten modeling material M may be supplied to the molten pool MP.
  • the modeling material M melted in the molten pool MP is cooled and solidified (that is, solidified).
  • solidified that is, solidified
  • the processing apparatus 1 performs a series of operations including forming the molten pool MP by irradiating the processing light EL, supplying the modeling material M to the molten pool MP, melting the supplied modeling material M, and solidifying the molten modeling material M. is repeated while moving the machining head 121 along at least one of the X-axis direction and the Y-axis direction with respect to the modeling surface MS, as shown in FIG. 4(d). At this time, the processing device 1 irradiates the processing light EL to a region on the modeling surface MS where the object is desired to be modeled, but does not irradiate a region on the modeling surface MS where the object is not desired to be modeled with the processing light EL.
  • the processing apparatus 1 moves the target irradiation area EA along the predetermined movement path on the modeling surface MS, and irradiates the processing light EL on the modeling surface MS at a timing corresponding to the distribution of the area where the object is desired to be modeled. to irradiate.
  • the movement path of the target irradiation area EA on the modeling surface MS (particularly, the movement path of the irradiation position irradiated with the processing light EL) is the machining path P (in other words, the tool path, shown in FIG. 8C described later). reference).
  • the machining pass information PI may include information on this machining pass P. FIG. Therefore, based on the processing path information PI, the processing apparatus 1 moves the target irradiation area EA along a predetermined movement path on the modeling surface MS, and adjusts the distribution of the area where the object is desired to be modeled.
  • the molding surface MS is irradiated with the processing light EL at the timing.
  • the processing path P is the processing position where the processing device 1 performs the additional processing on the modeling surface MS (that is, the processing performed by the processing device 1).
  • position and may mean a movement path of a modeling position where the processing apparatus 1 models a modeled object.
  • the molten pool MP also moves on the molding surface MS along the movement path corresponding to the movement path of the target irradiation area EA.
  • the molten pool MP is sequentially formed in a portion irradiated with the processing light EL in the area along the moving path of the target irradiation area EA on the modeling surface MS.
  • a structure layer SL corresponding to a modeled object which is an aggregate of the modeling material M solidified after being melted, is modeled on the modeling surface MS.
  • the structural layer SL corresponds to an assembly of objects formed on the modeling surface MS in a pattern corresponding to the moving path of the molten pool MP (that is, in a plan view, the structure layer SL has a shape corresponding to the moving path of the molten pool MP).
  • a structural layer SL) having a shape is formed.
  • the processing apparatus 1 supplies the modeling material M to the target irradiation area EA, and also supplies the processing light with an intensity that cannot form the molten pool MP.
  • the target irradiation area EA may be irradiated with EL.
  • the processing device 1 repeatedly performs the operation for forming such a structure layer SL under the control of the control device 17 based on the processing pass information PI. Specifically, first, the processing apparatus 1 performs an operation for forming the first structural layer SL#1 on the forming surface MS corresponding to the surface of the work W, according to the processing path information PI (particularly, the structural layer information on the machining pass P for modeling SL#1). As a result, the structural layer SL#1 is modeled on the modeling surface MS as shown in FIG. 5(a). After that, the processing apparatus 1 sets the surface (that is, the upper surface) of the structural layer SL#1 as a new modeling surface MS, and forms the second structural layer SL#2 on the new modeling surface MS. do.
  • the controller 17 In order to shape the structural layer SL#2, the controller 17 first activates at least one of the head drive system 122 and the stage drive system 132 so that the processing head 121 moves along the Z-axis with respect to the stage 131. Control. Specifically, the control device 17 controls at least one of the head drive system 122 and the stage drive system 132 to set the target irradiation area EA to the surface of the structure layer SL#1 (that is, the new modeling surface MS).
  • the processing head 121 is moved toward the +Z side and/or the stage 131 is moved toward the -Z side so that
  • the processing apparatus 1 performs processing path information PI (in particular, information on the processing path P corresponding to the structure layer SL#2) in the same operation as the operation for modeling the structure layer SL#1.
  • the structural layer SL#2 is formed on the structural layer SL#1.
  • the structural layer SL#2 is formed as shown in FIG. 5(b).
  • similar operations are repeated until all structural layers SL constituting the three-dimensional structure ST to be modeled on the workpiece W are modeled.
  • FIG. 5(c) a three-dimensional structure ST is formed by a laminated structure in which a plurality of structural layers SL are laminated.
  • FIG. 6 is a block diagram showing the configuration of the machining path generation device 2. As shown in FIG.
  • the machining path generation device 2 includes an arithmetic device 21, a storage device 22, and a communication device 23. Furthermore, the machining path generation device 2 may comprise an input device 24 and a display device 25 . However, the machining path generation device 2 does not have to include at least one of the input device 24 and the display device 25 . Arithmetic device 21 , storage device 22 , communication device 23 , input device 24 , and display device 25 may be connected via data bus 26 .
  • the computing device 21 includes, for example, at least one of a CPU and a GPU. Arithmetic device 21 reads a computer program. For example, arithmetic device 21 may read a computer program stored in storage device 22 . For example, the computing device 21 may read a computer program stored in a computer-readable non-temporary recording medium using a recording medium reading device (not shown). The computing device 21 may acquire (that is, download or read) a computer program from a device (not shown) arranged outside the machining path generation device 2 via the communication device 23 . Arithmetic device 21 executes the read computer program.
  • a logical functional block for executing the operation for example, the operation of generating machining path information PI
  • the arithmetic device 21 can function as a controller for realizing logical functional blocks for executing the operations that the machining path generation device 2 should perform.
  • FIG. 6 shows an example of logical functional blocks implemented within the arithmetic unit 21 to generate the machining path information PI.
  • the arithmetic unit 21 includes a path generation unit 211, which may be called a generation device, a defect determination unit 212, which may be called a determination device, and a display control device.
  • a good display control unit 213 and a path correction unit 214, which may be called a correction device, are implemented.
  • the operations of the path generation unit 211, the defect determination unit 212, the display control unit 213, and the path correction unit 214 will be described in detail later, but the outline thereof will be briefly described here.
  • the path generation unit 211 generates processing path information PI for forming the three-dimensional structure ST based on 3D model data representing a 3D model (three-dimensional model) of the three-dimensional structure ST to be formed by the processing apparatus 1.
  • the defect determination unit 212 determines whether or not a defect will occur in the three-dimensional structure ST when the processing apparatus 1 forms the three-dimensional structure ST based on the processing path information PI generated by the path generation unit 211. do.
  • the display control unit 213 controls the display device 25 to display information about the defect when the defect determination unit 212 determines that the three-dimensional structure ST has a defect.
  • the path correction section 214 corrects the machining path information PI generated by the path generation section 211 based on the determination result of the defect determination section 212 . Typically, the path correction section 214 corrects the machining path information PI generated by the path generation section 211 when the defect determination section 212 determines that a defect occurs in the three-dimensional structure ST.
  • part of the logical functional blocks realized within the arithmetic device 21 for generating the machining path information PI may be realized by AI (artificial intelligence).
  • AI artificial intelligence
  • some of the logical functional blocks implemented in the arithmetic unit 21 to generate the machining path information PI may be functional blocks using AI (artificial intelligence).
  • the path generation unit 211 may generate the machining path information PI using AI.
  • the defect determination unit 212 may determine whether or not a defect occurs in the three-dimensional structure ST by using AI.
  • the display control unit 213 may use AI to control the display device 25 to display information about defects.
  • the path correction unit 214 may correct the machining path information PI by using AI.
  • the storage device 22 can store desired data.
  • the storage device 22 may temporarily store computer programs executed by the arithmetic device 21 .
  • the storage device 22 may temporarily store data temporarily used by the arithmetic device 21 while the arithmetic device 21 is executing a computer program.
  • the storage device 22 may store data that the machining path generation device 2 saves over a long period of time.
  • the storage device 22 may include at least one of RAM (Random Access Memory), ROM (Read Only Memory), hard disk device, magneto-optical disk device, SSD (Solid State Drive), and disk array device. good. That is, the storage device 22 may include non-transitory recording media.
  • the communication device 23 can communicate with the processing device 1 via the communication network 3. In this embodiment, the communication device 23 can transmit the machining path information PI generated by the path generation unit 211 to the processing device 1 .
  • the input device 24 is a device that receives input of information to the machining path generation device 2 from outside the machining path generation device 2 .
  • the input device 24 may include an operation device (for example, at least one of a keyboard, a mouse, and a touch panel) that can be operated by the operator of the machining path generation device 2 .
  • the input device 24 may include a reading device capable of reading information recorded as data on a recording medium that can be externally attached to the machining path generation device 2 .
  • input device 24 may include a communication device capable of receiving information over a communication network.
  • the communication device 23 may be used as the input device 24 .
  • the display device 25 is a device capable of outputting information as an image. That is, the display device 25 is a device capable of displaying an image representing information to be output. In this embodiment, the display device 25 displays information about the defect when the defect determination unit 212 determines that the three-dimensional structure ST has a defect.
  • FIG. 7 is a flow chart showing the flow of operations performed by the machining path generation device 2 .
  • the operation to be performed by the machining path generation device 2 for example, the operation to generate the machining path information PI
  • the flowchart shown in FIG. 7 are performed by these logical functional blocks. Therefore, the flowchart shown in FIG. 7 may be regarded as showing the flow of information processing realized by the computer program (that is, software) executed by the machining path generation device 2 .
  • the path generation unit 211 acquires 3D model data representing a 3D model (three-dimensional model) of the three-dimensional structure ST to be modeled by the processing device 1 (step S11).
  • the path generation unit 211 may acquire 3D model data input to the machining path generation device 2 via the input device 24 .
  • the path generation unit 211 may acquire (for example, receive) 3D model data from a device external to the machining path generation device 2 via the communication device 23 .
  • the path generation unit 211 converts measurement data of a three-dimensional object measured by at least one of a measuring device (not shown) provided in the processing system SYS and a three-dimensional shape measuring machine provided separately from the processing system SYS to a 3D model. It may be acquired as data.
  • the format of the 3D model data may be any format.
  • the path generation unit 211 may acquire 3D model data conforming to the STL (Standard Triangulated Language) file format.
  • the path generation unit 211 may acquire 3D model data conforming to the STEP (Standard for Exchange of Product Model Data) file format.
  • the path generation unit 211 may acquire 3D model data conforming to the IGES (Initial Graphics Exchange Specification) file format.
  • the path generation unit 211 may acquire 3D model data conforming to the DWG file format.
  • the path generation unit 211 may acquire 3D model data conforming to the DXF (Drawing Exchange Format) file format.
  • the path generation unit 211 may acquire 3D model data conforming to the VRML (Virtual Reality Modeling Language) file format.
  • the path generation unit 211 may acquire 3D model data conforming to the ISO10303 file format.
  • the path generation unit 211 After that, the path generation unit 211 generates processing path information PI for molding the three-dimensional structure ST by the processing device 1 based on the 3D model data acquired in step S11 (step S12). That is, the path generation unit 211 generates processing path information PI for controlling the processing device 1 to form the three-dimensional structure ST based on the 3D model data acquired in step S11 (step S12). .
  • An example of the machining pass information PI will be described below with reference to FIGS. 8(a) to 8(c).
  • FIG. 8(a) shows an example of a three-dimensional structure ST formed by the processing device 1.
  • FIG. 8A the three-dimensional structure ST shown in FIG. 8(a) will be referred to as "three-dimensional structure ST8".
  • the three-dimensional structure ST8 includes a plate-like bottom member ST8a along the XY plane and a plate-like wall member ST8b extending from the bottom member ST8a along the Z-axis direction. I'm in.
  • the processing apparatus 1 shapes the three-dimensional structure ST8 shown in FIG. 8A, as described above, the processing apparatus 1 moves the three-dimensional structure ST8 along the Z axis direction A plurality of structural layers SL obtained by slicing are formed one by one.
  • the processing apparatus 1 sequentially shapes the structural layers SL#1 to SL#n (where n is the total number of structural layers SL forming the three-dimensional structure ST8). To go.
  • n is the total number of structural layers SL forming the three-dimensional structure ST8.
  • the path generation unit 211 may generate processing path information PI including a plurality of unit processing path information PIu for forming the plurality of structural layers SL by the processing device 1 .
  • the path generation unit 211 generates unit processing path information PIu#1 for forming the structure layer SL#1 by the processing device 1 and processing path information PIu#1 for forming the structure layer SL#2 by the processing device 1.
  • Machining pass information PI may be generated that includes information PI#2, .
  • the processing pass information may include information on the processing pass P corresponding to the movement path of the target irradiation area EA on the modeling surface MS (in particular, the movement path of the irradiation position irradiated with the processing light EL).
  • the pass generation unit 211 may generate processing pass information PI including information on a plurality of processing passes P for respectively modeling a plurality of structural layers SL.
  • the path generation unit 211 generates unit processing path information PIu#1 including information about the processing path P#1 for forming the structure layer SL#1, and the structure Unit processing pass information PIu#2 including information regarding processing pass P#2 for forming layer SL#2, . . . , including information regarding processing pass P#n for forming structure layer SL#n Machining pass information PI including unit machining pass information PIu#n may be generated.
  • the pass generation unit 211 In order to generate machining pass information PI including a plurality of unit machining pass information PIu for respectively forming a plurality of structure layers SL from 3D model data, the pass generation unit 211 generates the 3D model indicated by the 3D model data. By performing the slicing process, a plurality of pieces of slice data representing 3D models of the plurality of structural layers SL are generated. After that, the pass generation unit 211 may generate processing pass information PI including a plurality of unit processing pass information PIu for respectively modeling the plurality of structural layers SL based on the plurality of slice data. Software that generates slice data in this way may generally be referred to as slice software. Therefore, the computer program (that is, software) executed by the arithmetic device 21 of the machining path generation device 2 may function as slicing software.
  • the path generation unit 211 may generate machining path information PI indicating machining paths P that can be classified in units of partial machining paths Pp corresponding to part of the movement path of the target irradiation area EA.
  • the machining pass P may include a plurality of partial machining passes P, or may include a single partial machining pass P.
  • the path generation unit 211 generates at least one of a partial machining path PpX linearly extending along the X axis and a partial machining path PpY linearly extending along the Y axis. Machining pass information PI may be generated that indicates the machining pass P that includes.
  • the path generation unit 211 may generate machining path information PI indicating a machining path P including a partial machining path Pp extending along a direction intersecting the X-axis and the Y-axis.
  • the path generation unit 211 may generate machining path information PI indicating a machining path P including a curved partial machining path Pp.
  • the path generation unit 211 may generate the processing path information PI based on information about the molding accuracy (modeling accuracy) of the processing device 1 in addition to the 3D model data.
  • the information on modeling accuracy may include information on line width w.
  • the line width w is the width ( That is, the size in a second direction that intersects the first direction). For example, when the processing apparatus 1 irradiates the modeling surface MS with the processing light EL based on the partial processing path Pp extending along the X-axis direction as shown in FIG. It may mean the width in the Y-axis direction of the modeled object formed on the modeling surface MS as shown in (b).
  • the path generation unit 211 may generate the machining path information PI such that the lower limit value of the interval between two adjacent partial machining paths Pp is large.
  • the line width w (or any parameter that defines the modeling accuracy) may be specified by the operator of the processing device 1 or the operator of the machining path generation device 2 . Alternatively, a prespecified line width w may be used.
  • the defect determination unit 212 determines whether the formed three-dimensional structure ST has It is determined whether or not a defect occurs (step S13).
  • the processing device 1 does not have to actually shape the three-dimensional structure ST based on the processing path information PI generated at step S12.
  • the defect determination unit 212 may determine whether or not a defect occurs in the three-dimensional structure ST based on the machining path information PI. That is, the defect determination unit 212 determines whether a defect occurs in the three-dimensional structure ST before the processing apparatus 1 actually forms the three-dimensional structure ST based on the processing path information PI generated in step S12. is determined (step S13).
  • Defects that occur in the three-dimensional structure ST may include any phenomenon that is undesirable to occur in the three-dimensional structure ST that has been shaped.
  • the voids include voids (in other words, cavities) that are generated because at least part of the portion that should originally be filled with the solidified modeling material M is not filled with the solidified modeling material M. good.
  • the processing apparatus 1 shapes the three-dimensional structure ST using the processing path information PI generated in FIG. may include differences in the actual state of the three-dimensional structure ST.
  • the pass generation unit 211 generates processing pass information PI including a plurality of unit processing pass information PIu#1 to PIu#n for modeling the plurality of structural layers SL#1 to SL#n,
  • the processing apparatus 1 models the plurality of structural layers SL#1 to SL#n based on the plurality of unit processing pass information PIu#1 to PIu#n.
  • the defect determination unit 212 may determine whether or not voids are generated in the plurality of structural layers SL#1 to SL#n based on the plurality of unit machining pass information PIu#1 to PIu#n. good.
  • the defect determination unit 212 determines whether or not a gap is generated in the structure layer SL#1 based on the unit processing pass information PIu#1, and determines whether or not the structure layer SL#1 is formed based on the unit processing pass information PIu#2. It is also possible to determine whether or not a gap occurs in #2, . In other words, the defect determination unit 212 may divide the three-dimensional structure ST into a plurality of structure layers SL#1 to SL#n and determine whether or not a void is generated in each structure layer SL. Alternatively, the defect determination unit 212 may determine whether or not voids are generated in the three-dimensional structure ST without dividing the three-dimensional structure ST into the plurality of structure layers SL#1 to SL#n.
  • the path generation unit 211 may determine whether or not voids are generated in the three-dimensional structure ST based on parameters calculated from the machining path information PI.
  • An example of a parameter calculated from the machining pass information PI is the interval D between two adjacent partial machining passes Pp included in the machining pass information PI.
  • Another example of parameters calculated from the machining pass information PI is the intersection amount C of two partial machining passes Pp that are included in the machining pass information PI and intersect each other.
  • FIG. 10 shows a cross section of a model BO10 wider than the line width w.
  • the path generation unit 211 selects the object BO10 as the processing path P for forming the object BO10, as shown in the lower part of FIG. Machining path information PI is generated that indicates a plurality of partial machining paths Pp linearly extending along the extending direction and adjacent to each other.
  • FIG. 10 shows a cross section of a model BO10 wider than the line width w.
  • the path generation unit 211 selects the object BO10 as the processing path P for forming the object BO10, as shown in the lower part of FIG. Machining path information PI is generated that indicates a plurality of partial machining paths Pp linearly extending along the extending direction and adjacent to each other.
  • the defect determination unit 212 may determine that a gap is generated in the three-dimensional structure ST when the interval D between two adjacent partial processing passes Pp is larger than the threshold TH1. In particular, the defect determination unit 212 determines that the three-dimensional structure ST It may be determined that a void occurs in Note that the interval D may be set to an arbitrary value by the operator of the path generation device 2 (or the operator of the processing device 1).
  • the line width w may be used as the threshold TH1. This is because, as shown in FIG. 11, if the distance D between two adjacent partial processing passes Pp is equal to or less than the line width w, two shapes are formed based on the two adjacent partial processing passes Pp. This is because there is a low possibility that things will leave. However, depending on the specifications of the processing device 1 or the environment in which the processing device 1 is used, the processing device 1 may not always be able to form a modeled object having the same width as the line width w. For example, the processing device 1 may form a modeled object having a width narrower or wider than the line width w. Therefore, the threshold TH1 may be a value different from the line width w.
  • the threshold value TH1 the state in which the two objects respectively formed based on the two adjacent partial machining passes Pp are separated, and the state in which the two objects formed respectively based on the two adjacent partial machining passes Pp are not separated. Any value that can distinguish the state from the distance D between two adjacent partial machining passes Pp may be used. Note that the threshold TH1 may be set to an arbitrary value by the operator of the path generation device 2 (or the operator of the processing device 1).
  • FIGS. 12 to 14 a second specific example of the operation of determining whether or not a gap is generated in the three-dimensional structure ST based on the interval D between two adjacent partial machining passes Pp.
  • the upper part of FIG. 12 shows the upper surface and cross section of the modeled object BO12 in which a plurality of openings BO121 having a desired shape (circular in the example shown in FIG. 12) are formed in plan view.
  • the path generation unit 211 generates a machining path P for molding the object BO12 in a curved shape along the contour of the opening BO121 (in the example shown in FIG. 12, a circular path P).
  • machining pass information PI indicating a partial machining pass Pp#1 extending linearly and a partial machining pass Pp#2 extending linearly for forming the object around the opening BO121.
  • the distance D between two adjacent partial processing passes Pp#1 is smaller than the threshold TH2
  • the distance between the two adjacent partial machining passes Pp#1 is set to , as shown in the upper part of FIG.
  • the path generation unit 211 under the condition that the interval D between the two adjacent partial machining passes Pp#1 is smaller than the threshold value TH2, the path generation unit 211 generates the two adjacent partial machining passes Pp
  • the machining pass information PI is generated so that the partial machining pass Pp#2' is not set during #1.
  • the upper part of FIG. 14 shows that the partial machining pass Pp#2' is not set during #1.
  • the defect determination unit 212 may determine that a gap is generated in the three-dimensional structure ST when the interval D between two adjacent partial processing passes Pp is smaller than the threshold TH2. In particular, the defect determination unit 212 determines that a gap is generated in the three-dimensional structure ST when the interval D between two adjacent partial machining paths Pp extending along the contours of the two openings is smaller than the threshold TH2. You can judge.
  • the line width w may be used as the threshold TH2. This is because, as shown in FIGS. 13 and 14, if the distance D between two adjacent partial processing paths Pp that extend along the contours of two openings is greater than or equal to the line width w, then This is because a modeled object having a width equal to or larger than the line width w can be modeled, and the modeled object does not enter the two openings. However, depending on the specifications of the processing device 1 or the environment in which the processing device 1 is used, the processing device 1 may not always be able to form a modeled object having the same width as the line width w. For example, the processing device 1 may form a modeled object having a width narrower or wider than the line width w.
  • the threshold TH2 may be a value different from the line width w.
  • the threshold value TH2 a state in which a gap is formed (or the shape of the two openings is disturbed) between the two openings of the object that is formed based on two partial processing paths Pp that extend along the contour of the opening and are adjacent to each other. and a state in which no gap is formed between two openings (or the shapes of the two openings are not disturbed) in a modeled object formed based on two adjacent partial processing paths Pp. Any value distinguishable from the spacing D between paths Pp may be used.
  • the threshold TH2 may be set to an arbitrary value by the operator of the path generation device 2 (or the operator of the processing device 1).
  • the intersection amount C of the two intersecting partial machining paths Pp means the intersection amount (in other words, overlapping amount) of the two objects BO15 that are respectively formed by the two intersecting partial machining paths Pp.
  • the defect determination unit 212 may determine that a gap is generated in the three-dimensional structure ST when the intersection amount of the two intersecting partial processing paths Pp is smaller than the threshold TH3.
  • Zero may be used as the threshold TH3. This is because, as shown in FIG. 15, if the intersection amount C of the two intersecting partial machining paths Pp is greater than zero, the two objects formed based on the two intersecting partial machining paths Pp are separated from each other. because it never happens.
  • the processing device 1 may not always be able to form a modeled object having the same width as the line width w. For example, the processing device 1 may form a modeled object having a width narrower or wider than the line width w. Therefore, the threshold TH3 may be a value different from zero.
  • the two objects respectively formed based on the two intersecting partial processing paths Pp are separated, and the two objects formed based on the two intersecting partial processing paths Pp are not separated. Any value that can distinguish the state from the intersection amount C of the two intersecting partial machining paths Pp may be used.
  • At least one of the thresholds TH1 to TH3 may be variable. For example, at least one of the thresholds TH1 to TH3 may be specified or changed by the operator of the processing device 1. For example, at least one of the thresholds TH1 to TH3 may be specified or changed by the operator of the machining path generation device 2. However, at least one of the thresholds TH1 to TH3 may be a fixed value.
  • the defect determination unit 212 calculates the interval D between two adjacent partial machining passes Pp based on the machining pass information PI, and compares the calculated interval D with at least one of the threshold values TH1 and TH2. It may be determined whether or not a void is generated in the three-dimensional structure ST. Similarly, the defect determination unit 212 calculates the intersection amount C of the two intersecting partial machining paths Pp based on the machining path information PI, and compares the calculated intersection amount C with the threshold value TH3. It may be determined whether or not a gap is generated in the structure ST.
  • the defect determination unit 212 estimates the state of the modeled object to be formed based on two adjacent partial processing passes Pp based on the machining pass information PI, and based on the estimated state of the modeled object, determines the three-dimensional It may be determined whether or not a gap is generated in the structure ST.
  • the 3D model data acquired in step S11 of FIG. 7 indicates an ideal state of the three-dimensional structure ST to be modeled by the processing device 1.
  • the state of the three-dimensional structure ST estimated by the defect determination unit 212 indicates the actual state of the three-dimensional structure ST that is estimated to be shaped based on the machining path information PI.
  • An example of the state of the three-dimensional structure ST is the cross-sectional area of the three-dimensional structure ST in the direction along the modeling surface MS.
  • the defect determination unit 212 may generate information about the defect (hereinafter referred to as "defect information").
  • the defect information may be used as information displayed by the display device 25 under the control of the display control section 213, as will be detailed later. Therefore, since the defect information will be described in detail when describing the operation of displaying the defect information under the control of the display control unit 213, detailed description thereof will be omitted here.
  • the defect determination unit 212 may generate defect information based on the machining pass information PI without determining whether or not a defect occurs in the three-dimensional structure ST.
  • the display control unit 213 controls the display device 25 so as to display information (that is, defect information) about defects (voids in this embodiment) occurring in the three-dimensional structure ST (step S14).
  • the display control unit 213 controls the display device 25 to display defect information when it is determined in step S13 that the three-dimensional structure ST has a defect.
  • the display control unit 213 does not have to control the display device 25 to display the defect information when it is not determined in step S13 that the three-dimensional structure ST has a defect.
  • the display control unit 213 controls that even if the processing apparatus 1 models the three-dimensional structure ST based on the processing path information generated in step S12, no defect will occur in the three-dimensional structure ST to be modeled.
  • the display device 25 may be controlled to display information for notifying the operator of the machining path generation device 2 (or the operator of the processing device 1).
  • the defect information indicates that the processing apparatus 1 forms the three-dimensional structure ST based on the processing path information generated in step S12, and the operator of the processing path generation apparatus 2 that a defect occurs in the three-dimensional structure ST to be formed. (or the operator of the processing apparatus 1) may include information for notification.
  • defect information may include a text message for notifying that a defect occurs in the three-dimensional structure ST.
  • the defect information may include information on the state of defects occurring in the three-dimensional structure ST.
  • the defect status may include at least one of defect type, defect size, defect location, and defect shape.
  • the state of the defect i.e., the state of the void
  • the size of the void e.g., at least one of the X, Y, and Z directions.
  • the size of the void in one direction the size of the void in one direction
  • the location of the void e.g., the location of the void in at least one of the X, Y, and Z directions
  • shape of the void e.g., the shape of the void. good.
  • the display control unit 213 may control the display device 25 so as to display the defect information together with the model information regarding the three-dimensional structure ST. For example, as shown in FIGS. 16 and 17 showing display examples of defect information, the display control unit 213 displays 3
  • the display device 25 may be controlled to display a display object 92 indicating defects (voids) occurring in the dimensional structure ST.
  • the display control unit 213 may control the display device 25 to display the display object 92 over the display object 91 .
  • the display object 92 may also be referred to as a defect object or void object.
  • the display object 91 (that is, model information) is typically image information indicating the shape of the three-dimensional structure ST.
  • the display object 92 is image information distinguishable from the display object 91 displayed at a position where a defect occurs in the three-dimensional structure ST indicated by the display object 91 .
  • the display object 92 may be regarded as indicating not only the location of the defect, but also the size and shape of the defect.
  • FIG. 16 shows an example in which the model of the three-dimensional structure ST indicated by the display object 91 is a 2D model (two-dimensional model).
  • the display object 91 may indicate, for example, a section of the three-dimensional structure ST (for example, a section of the structure layer SL).
  • the display object 92 may indicate, for example, a defect that occurs within the cross-section of the three-dimensional structure ST.
  • the display object 92 may two-dimensionally indicate defects that occur within the three-dimensional structure ST.
  • FIG. 17 shows an example in which the model of the three-dimensional structure ST indicated by the display object 91 is a 3D model.
  • the display object 91 may, for example, stereoscopically represent the three-dimensional structure ST.
  • the display object 92 may indicate, for example, defects that occur within the three-dimensional structure ST.
  • the display object 92 may three-dimensionally represent defects occurring within the three-dimensional structure ST.
  • the display control unit 213 changes the state of the display device 25 into a 2D display state in which a display object 91 representing a 2D model of the three-dimensional structure ST and defect information (for example, a display object 92) is displayed, and a display state of the three-dimensional structure ST.
  • a 3D display state may be toggled between displaying defect information (eg, display object 92) along with display object 91 representing the 3D model.
  • the display control unit 213 may switch the state of the display device 25 between the 2D display state and the 3D display state based on the instruction of the operator of the machining path generation device 2 (or the operator of the processing device 1). good.
  • the display control unit 213 controls the display device to display the display object 91 based on the 3D model data acquired in step S11 of FIG. 7 (that is, the model information of the three-dimensional structure ST displayed on the display device 25). 25 may be controlled. In this case, the display control unit 213 may generate a display object 91 representing the 3D model indicated by the 3D model data as image information, and control the display device 25 to display the generated display object 91 . Alternatively, the display control unit 213 converts the 3D model indicated by the 3D model data into a 2D model to generate the display object 91 indicating the 2D model of the 3D structure ST as image information, and displays the generated display object 91 as image information. The display device 25 may be controlled to display.
  • the display control unit 213 may display the display object 91 based on the machining path information PI generated in step S12 of FIG. 7 (that is, the model information of the three-dimensional structure ST displayed on the display device 25).
  • the display device 25 may be controlled.
  • the display control unit 213 simulates the operation of the processing apparatus 1 to form the three-dimensional structure ST based on the machining pass information PI, thereby
  • a display device for estimating a model (for example, a 3D model or a 2D model) of the three-dimensional structure ST that is estimated to be formed by the processing device 1 and displaying a display object 91 showing the estimated model as image information. 25 may be controlled.
  • the defect determination unit 212 determines the model of the estimated three-dimensional structure ST Based on this model, it may be determined whether or not a defect occurs in the three-dimensional structure ST.
  • the defect determination unit 212 may determine whether or not a defect occurs in the three-dimensional structure ST based on the display object 91 (that is, image information) representing the estimated model as image information.
  • the display control unit 213 displays a display object for changing the determination condition used when determining whether or not a defect occurs in the three-dimensional structure ST.
  • the display device 25 may be controlled.
  • the display control unit 213 controls the operator (or The display device 25 may be controlled so as to display an operation object 93 that can be operated by the operator of the processing apparatus 1 .
  • FIG. 18 shows an example in which a slide bar for quantitatively specifying the determination condition is used as the operation object 93.
  • any display object capable of changing the determination condition typically In practice, a GUI (Graphical User Interface) may be used.
  • An example of the determination condition is a threshold (for example, at least one of the thresholds TH1 to TH3 described above) that is compared with the parameter calculated from the machining path information PI.
  • a threshold for example, at least one of the thresholds TH1 to TH2 described above
  • the display control unit 215 displays a display object (for example, an operation object 93 shown in FIG. 18) specifying the line width w as a display object for changing at least one of the thresholds TH1 to TH2.
  • the display device 25 may be controlled. In this case, it may be substantially considered that the line width w is used as the determination condition.
  • the defect determination unit 212 may re-determine whether or not a defect occurs in the three-dimensional structure ST based on the changed determination condition. Furthermore, when the determination condition is changed, the display control unit 213 causes the display device 25 to display defect information according to the latest determination result by the defect determination unit 212 based on the changed determination condition. may be controlled. In this case, the operator can change the determination condition while confirming the defect information updated in accordance with the change of the determination condition.
  • changing the determination condition is substantially equivalent to changing the modeling accuracy of the processing apparatus 1 and changing the modeling time.
  • the operator may change the line width w (that is, modeling accuracy and modeling time) so that the state of defects occurring in the three-dimensional structure ST becomes acceptable to the operator.
  • the line width w increases, voids are more likely to occur in the three-dimensional structure ST. This is because, as the line width w becomes thicker, the forming accuracy of the processing apparatus 1 becomes rougher. Therefore, as the line width w designated by the operator becomes thicker, the three-dimensional structure ST becomes more likely to have voids, but the modeling time becomes shorter.
  • the line width w specified by the operator becomes narrower, the three-dimensional structure ST becomes less likely to have voids, but the modeling time becomes longer. Under such circumstances, the operator checks the defect information and the like displayed on the display device 25, and tries to balance the condition of the voids generated in the three-dimensional structure ST (that is, the modeling accuracy) and the modeling time. , the line width w may be specified. Alternatively, while confirming the defect information displayed on the display device 25, the operator may give priority to shortening the modeling time over reducing the voids generated in the three-dimensional structure ST (that is, improving the modeling accuracy). , the line width w may be specified.
  • the operator may give priority to reducing the voids generated in the three-dimensional structure ST (that is, improving the modeling accuracy) rather than shortening the modeling time.
  • the line width w may be specified.
  • the path generation section 211 may calculate the time (modeling time) required to model the three-dimensional structure ST based on the machining path information PI.
  • the calculated modeling time may be displayed on the display device 25 as a display object 94 indicating the calculated modeling time under the control of the display control unit 213, as shown in FIG.
  • the path correction unit 214 determines whether or not it is necessary to correct the machining path information PI generated in step S12 (step S15). For example, when the operator of the machining path generation device 2 (or the operator of the processing device 1) desires to correct the machining path information PI, the path correction unit 214 needs to correct the machining pass information PI. It may be determined that there is For example, if the operator of the machining path generation device 2 (or the operator of the processing device 1) does not wish to correct the machining pass information PI, the path correction unit 214 needs to correct the machining pass information PI.
  • the path correction section 214 may determine that the machining path information PI needs to be corrected. For example, when it is determined in step S13 that no defect will occur in the three-dimensional structure ST, the path correction section 214 may determine that there is no need to correct the machining path information PI. For example, the path correction unit 214 determines that the machining path information PI needs to be corrected when the ratio of the space (for example, void) where the defect occurs to the volume of the three-dimensional structure ST exceeds the allowable ratio. may For example, the path correction unit 214 determines that there is no need to correct the machining path information PI when the ratio of the space (for example, void) where the defect occurs to the volume of the three-dimensional structure ST does not exceed the allowable ratio. You may
  • the path correction unit 214 corrects the machining pass information generated in step S12 (step S16).
  • the path correction unit 214 may correct the machining path information based on the determination result in step S13 (that is, the determination result as to whether or not a defect will occur in the three-dimensional structure ST).
  • the path correction unit 214 may correct the processing path information PI so that defects expected to occur in the three-dimensional structure ST will not occur during actual modeling.
  • the pass correction unit 214 may correct the machining pass information PI so that defects do not occur in the three-dimensional structure ST.
  • the path correction unit 214 compares defects expected to occur in the three-dimensional structure ST to be formed based on the machining path information PI before correction, and compares the defects to the machining path information PI after correction.
  • the machining path information PI may be corrected so that defects expected to occur in the three-dimensional structure ST to be modeled based on the machining path information PI are reduced.
  • the pass correction unit 214 may correct the machining pass information PI so as to reduce defects expected to occur in the three-dimensional structure ST.
  • the path correction unit 214 modifies the machining path information PI so as to add at least one new partial machining path Pp between two adjacent partial machining paths Pp. You can fix it. In other words, the path correction unit 214 adds a new partial processing path Pp for forming a modeled object (particularly, a modeled object for filling the gap) in a gap expected to occur in the three-dimensional structure ST. Alternatively, the machining pass information PI may be corrected.
  • the path correction unit 214 creates at least one new portion between two adjacent partial machining passes Pp (partial machining pass Pp#1 in FIG. 20), as shown in FIG.
  • the machining pass information PI may be modified so as to add a machining pass Pp (partial machining pass Pp#3 in FIG. 20).
  • the path correction unit 214 adds a new partial processing path Pp for forming a modeled object (particularly, a modeled object for filling the gap) in a gap expected to occur in the three-dimensional structure ST.
  • the machining pass information PI may be corrected.
  • the path correction unit 214 determines that the line width w corresponding to the partial machining pass Pp#3 added between the adjacent two partial machining passes Pp#1 is equal to the partial machining pass Pp other than the partial machining pass Pp#3.
  • the machining pass information PI may be corrected so as to be thinner than the line width w corresponding to .
  • the path correction unit 214 sets the line width w corresponding to the partial machining paths Pp#1 and Pp#2 to the first width w1, and sets the line width w corresponding to the partial machining path Pp#3 to the first width w1.
  • the machining pass information PI may be corrected so as to have a second width w2 narrower than the width w1.
  • the path correction unit 214 may change the shape of the three-dimensional structure ST so as to eliminate voids.
  • the path correction section 214 may change the shape of the three-dimensional structure ST so that the distance D between the two openings BO121 is widened.
  • the path correction unit 214 can secure a space for adding the partial machining pass Pp#3 between the two partial machining passes Pp#1 for respectively forming the two openings BO121.
  • the path correction unit 214 may change the shape of the three-dimensional structure ST so that the two openings BO121 have smaller diameters.
  • the path correction unit 214 performs partial machining pass Pp#1 between the two partial machining passes Pp#1 for forming the two openings BO121. Space can be reserved for adding Pp#3.
  • the modifying unit 214 may modify the machining pass information PI so as to change the line width w.
  • changing the line width w is substantially equivalent to changing the state of voids generated in the three-dimensional structure ST, changing the modeling accuracy of the processing apparatus 1, and changing the modeling time.
  • the display control unit 213 causes the operator to specify the priority between the reduction of voids generated in the three-dimensional structure ST (that is, the improvement of modeling accuracy) and the shortening of the modeling time.
  • Display device 25 may be controlled to display display object 95 .
  • the path correction unit 214 may specify (change) the line width w based on the operation result of the display object 95 .
  • the path correction unit 214 may specify the line width w such that the line width w is the first line width.
  • the path correction unit 214 adjusts the machining path under the constraint that the lower limit value of the interval between two adjacent partial machining paths Pp is the first lower limit value corresponding to the first line width.
  • Information PI may be modified.
  • the path correction unit 214 may specify the line width w such that the line width w is the second line width (where the second line width is thinner than the first line width).
  • the pass correction unit 214 sets the lower limit value of the interval between two adjacent partial machining passes Pp to the second lower limit value according to the second line width (however, the second lower limit value is the second lower limit value). 1), the machining pass information PI may be corrected.
  • the interval between two adjacent partial machining passes Pp is typically shorter than in the modeling time priority mode. That is, in the modeling time priority mode, the interval between two adjacent partial machining passes Pp is typically longer than in the modeling accuracy priority mode.
  • the path generation unit 211 sets the line width w to a third line width (where the third line width is thinner than the first line width and thicker than the second line width).
  • a line width w may be specified.
  • the pass correction unit 214 sets the lower limit value of the interval between two adjacent partial machining passes Pp to the third lower limit value according to the third line width (however, the third lower limit value corresponds to the third line width).
  • the machining pass information PI may be corrected under the constraint condition that it is less than the lower limit of 1 and greater than the second lower limit.
  • the path correction unit 214 may correct the machining path information PI so that the intersection amount C is equal to or greater than the threshold TH3.
  • the path correction unit 214 may extend (that is, lengthen) at least one of the two intersecting partial machining paths Pp to correct the machining path information PI so that the intersection amount C becomes equal to or greater than the threshold TH3. good.
  • the machining path generation device 2 uses the machining path information PI corrected in step S16 to perform the operations after step S13. That is, when the processing apparatus 1 models the three-dimensional structure ST based on the modified machining path information PI in step S16, the defect determination unit 212 determines whether a defect occurs in the modeled three-dimensional structure ST. (Step S13). Further, the display control unit 213 controls the display device 25 so as to display information (that is, defect information) regarding defects (voids in this embodiment) occurring in the three-dimensional structure ST (step S14).
  • the path correction unit 214 determines whether or not it is necessary to further correct the machining path information PI corrected in step S16 (step S15). However, the machining path generation device 2 does not have to perform the operations after step S13 using the machining path information PI corrected in step S16.
  • step S15 if it is determined that there is no need to modify the machining pass information PI (step S15: No), the path correction unit 214 corrects the machining pass information generated in step S12. No need to fix.
  • the machining path generation device 2 outputs the machining path information PI generated in step S12 to the processing device 1 (step S17).
  • the machining pass generation device 2 outputs the machining pass information PI corrected in step S16 to the processing device 1 (step S17).
  • the processing device 1 shapes the three-dimensional structure ST based on the processing path information PI output from the processing path generation device 2 .
  • the processing path generation device 2 generates the three-dimensional structure ST based on the processing path information PI. It is possible to determine whether or not a defect will occur in the three-dimensional structure ST. Furthermore, the machining path generator 2 can display information about defects. Therefore, the operator of the machining path generation device 2 (or the operator of the machining device 1) can grasp defects that are expected to occur in the three-dimensional structure ST. As a result, the operator of the machining path generation device 2 (or the operator of the machining device 1) can take desired countermeasures against defects. For example, the operator of the machining path generation device 2 (or the operator of the processing device 1) can take desired measures to form the three-dimensional structure ST with fewer defects. Therefore, the processing apparatus 1 can form the three-dimensional structure ST with reduced defects.
  • the machining path generation device 2 can correct the machining path information PI based on the determination result as to whether or not a defect occurs in the three-dimensional structure ST.
  • the machining path generation device 2 can generate machining path information PI capable of reducing defects occurring in the three-dimensional structure ST formed by the processing device 1 by correcting the machining path information PI. . Therefore, even if the operator of the machining path generation device 2 (or the operator of the processing device 1) does not take special measures against defects, the defects occurring in the three-dimensional structure ST formed by the processing device 1 are reduced. . That is, the processing apparatus 1 can form the three-dimensional structure ST with reduced defects.
  • FIG. 22 is a block diagram showing the configuration of the machining system SYS in the first modified example.
  • the processing system SYS in the first modified example is referred to as a processing system SYSa.
  • the machining system SYSa of the first modified example differs from the machining system SYS described above in that it further includes a measuring device 4a.
  • Other features of the processing system SYSa may be the same as other features of the processing system SYS.
  • the measuring device 4a can measure the three-dimensional structure ST formed by the processing device 1.
  • the measuring device 4a can measure the internal structure of the three-dimensional structure ST.
  • An example of such a measuring device 4a is a CT (Computed Tomography) measuring device.
  • the measuring device 4a and the machining path generation device 2 can communicate via a communication network 5a including at least one of a wired communication network and a wireless communication network.
  • the communication network 5a may be the same as the communication network 3. FIG.
  • FIG. 23 is a flow chart showing the operation flow of the machining system SYSa in the first modified example.
  • the path generation unit 211 of the machining path generation device 2 generates a 3D model (three-dimensional model) of the three-dimensional structure ST to be formed by the processing device 1.
  • Data is acquired (step S11), and machining pass information PI is generated based on the 3D model data (step S12).
  • the machining path generation device 2 outputs the machining path information PI generated in step S12 to the processing device 1 (step S17).
  • the machining path generation device 2 determines whether or not a defect occurs in the three-dimensional structure ST based on the machining path information PI (step S13), the defect information may be displayed (step S14 in FIG. 7), and the machining path information PI may be corrected (step S16 in FIG. 7).
  • the processing device 1 forms the three-dimensional structure ST based on the processing path information PI output in step S17 (step S21a).
  • the measuring device 4a measures the three-dimensional structure ST formed in step S21a (step S22a).
  • the measurement device 4a outputs measurement information indicating the measurement result of the three-dimensional structure ST to the machining path generation device 2 via the communication network 5a (step S23a).
  • the defect determination unit 212 of the machining path generation device 2 determines whether a defect (for example, a void) occurs in the three-dimensional structure ST formed by the processing device 1 in step S21a. It is determined whether or not there is (step S13a). That is, in the first modification, the processing path generation device 2 causes the processing device 1 to actually shape the three-dimensional structure ST based on the processing path information PI generated in step S12. It is determined whether or not a defect actually occurs in the modeled three-dimensional structure ST.
  • a defect for example, a void
  • the display control unit 213 of the machining path generation device 2 controls the display device 25 so as to display the defect information (step S14).
  • the display control unit 213 controls the display device 25 so as to display defect information when it is determined in step S13a that the three-dimensional structure ST has a defect.
  • the path correction unit 214 of the machining path generation device 2 performs step S12 based on the determination result in step S13a (that is, the determination result as to whether or not the three-dimensional structure ST has a defect).
  • the machining pass information PI generated in step S15 to step S16 is corrected.
  • the machining path generation device 2 outputs the machining path information PI corrected in step S16 to the machining device 1 (step S17).
  • the processing device 1 forms the three-dimensional structure ST to be formed next based on the processing path information PI output from the processing path generation device 2 (step S24a). That is, in the first modification, when the processing device 1 sequentially shapes a plurality of three-dimensional structures ST of the same type, the first three-dimensional structure ST that is first shaped by the processing device 1 has a defect. If so, the machining path information PI for forming the second and subsequent three-dimensional structures ST is corrected. Therefore, the machining path generation device 2 can generate machining path information PI capable of reducing defects that occur in the second and subsequent three-dimensional structures ST. That is, the processing apparatus 1 can form the three-dimensional structure ST with reduced defects.
  • FIG. 24 is a block diagram showing the configuration of a machining path generation device 2b in the second modified example.
  • the machining path generation device 2b in the second modification differs from the machining path generation device 2 described above in that a learning unit 215b as a logical functional block realized in the arithmetic unit 21 is It differs in that it is further equipped.
  • Other features of the machining path generator 2 b may be the same as other features of the machining path generator 2 .
  • the learning unit 215b learns the relationship between the determination result of the defect determination unit 212, the information (for example, 3D model data) on the three-dimensional structure ST to be modeled by the processing apparatus 1, and the processing path information PI.
  • the judgment result of the defect judging unit 212 is used in the judging operation (that is, estimating) for judging (that is, estimating) whether or not a defect occurs in the three-dimensional structure ST before the processing apparatus 1 actually forms the three-dimensional structure ST. 7 step S13) may be included.
  • the determination result of the defect determination unit 212 is used in the determination operation (step S13a in FIG. 23) of determining whether or not a defect actually occurs in the three-dimensional structure ST after the processing apparatus 1 actually forms the three-dimensional structure ST.
  • the determination operation of determining whether or not a defect actually occurs in the three-dimensional structure ST after the processing device 1 has actually formed the three-dimensional structure ST may be performed by measuring the three-dimensional structure ST by the measuring device 4a.
  • the measurement result of the three-dimensional structure ST by the measurement device 4 a may be used as the determination result of the defect determination unit 212 because the determination is performed based on the result.
  • the learning unit 215b may learn the tendency of machining path information in which defects are likely to occur by learning the relationship between the determination result of the defect determination unit 212, the information on the three-dimensional structure ST, and the machining path information PI.
  • the learning unit 215b may learn the tendency of machining path information in which defects are unlikely to occur by learning the relationship between the determination result of the defect determination unit 212, the information on the three-dimensional structure ST, and the machining path information PI.
  • big data including a large amount of the determination result of the defect determination unit 212, the information about the three-dimensional structure ST, and the machining path information PI may be provided.
  • the learning unit 215b learns the relationship between the determination result of the defect determination unit 212, the information on the three-dimensional structure ST, and the machining path information PI, thereby learning the tendency of the shape of the three-dimensional structure ST in which defects are likely to occur.
  • the learning unit 215b learns the relationship between the determination result of the defect determination unit 212, the information on the three-dimensional structure ST, and the machining path information PI, thereby learning the tendency of the shape of the three-dimensional structure ST in which defects are unlikely to occur.
  • the defect determination unit 212 may correct the machining path information PI based on the learning result so that defects occurring in the three-dimensional structure ST are reduced (ideally, eliminated).
  • the machining path generation device 2b can further reduce defects occurring in the three-dimensional structure ST, compared to the case where the machining path information PI is corrected without the path correction unit 214 referring to the learning result. , can be generated. That is, the processing apparatus 1 can form the three-dimensional structure ST with further reduced defects.
  • the learning result by the learning unit 215b may be referred to by the path correction unit 214 when the path correction unit 214 corrects the machining pass information PI.
  • the path correction unit 214 may correct the machining path information PI based on the learning result so that defects occurring in the three-dimensional structure ST are reduced (ideally, they are eliminated).
  • the machining path generation device 2b can further reduce defects occurring in the three-dimensional structure ST, compared to the case where the machining path information PI is corrected without the path correction unit 214 referring to the learning result. , can be generated. That is, the processing apparatus 1 can form the three-dimensional structure ST with further reduced defects.
  • the learning result by the learning unit 215b may be referred to by the defect determination unit 212 when the defect determination unit 212 determines whether or not a defect occurs in the three-dimensional structure ST.
  • the defect determination unit 212 can more accurately determine whether or not a defect occurs in the three-dimensional structure ST.
  • the path correction unit 214 uses the judgment result of the defect judgment unit 212 and the machining
  • the learning model used by the path correction unit 214 may be learned by using information (for example, 3D model data) on the three-dimensional structure ST to be modeled by the apparatus 1 and the processing path information PI as teacher data. .
  • the path correction unit 214 may use a learning model that outputs corrected machining path information when 3D model data, machining path information, and the determination result of the defect determination unit 212 are input. .
  • the teacher data used for the learning of the path correction unit 214 are the 3D model data and the machining path information PI, and the three-dimensional structure ST which is modeled using at least one of the 3D model data and the machining path information PI.
  • the learning of the learning model has already been explained.
  • the learning process of the system for correcting the machining path information PI is constructed by the learning unit 215b.
  • the learning process may be performed by machine learning, in which features are defined by humans, or by deep learning, in which features are extracted from learning data by artificial intelligence. Learning by deep learning may include learning using the structure of a neural network.
  • the operation of the path correction unit 214 correcting the machining pass information PI may be considered substantially equivalent to the operation of the path correction unit 214 generating new machining pass information PI. Therefore, the path generation unit 211 that generates the processing path information PI may also refer to the learning result of the learning unit 215b when generating the processing path information PI, like the path correction unit 214 does.
  • the learning unit 215b uses the determination result of the defect determination unit 212 and the The learning model used by the path generation unit 211 may be learned by using information (for example, 3D model data) about the three-dimensional structure ST to be processed and the machining path information PI as teacher data.
  • the learning model used by the path generation unit 211 and the learning model used by the path correction unit 214 may be prepared separately. Alternatively, a common learning model used by the path generation unit 211 and the path correction unit 214 may be prepared.
  • the defect determination unit 212 determines whether or not a defect occurs in the three-dimensional structure ST by using a learnable learning model (that is, AI)
  • the learning unit 215b performs defect determination.
  • the determination result of the unit 212 information (for example, 3D model data) on the three-dimensional structure ST to be modeled by the processing apparatus 1, and processing path information PI as teacher data
  • the learning used by the defect determination unit 212 Model training may be performed.
  • the defect determination unit 212 may use a learning model that outputs a determination result as to whether or not a defect occurs in the three-dimensional structure ST when 3D model data and machining path information are input. good.
  • the teacher data used for learning of the defect determination unit 212 are 3D model data and machining path information PI, and defects in the three-dimensional structure ST formed using the 3D model data and machining path information PI.
  • a plurality (typically, a large amount) of data sets including correct labels indicating presence/absence may be included.
  • the learning process of a system for determining whether or not a defect occurs in the three-dimensional structure ST is constructed by the learning unit 215b.
  • the learning process may be performed by machine learning, in which features are defined by humans, or by deep learning, in which features are extracted from learning data by artificial intelligence. Learning by deep learning may include learning using the structure of a neural network.
  • the learning model learned (constructed) in the learning process may be stored in the processing system SYS as an arithmetic model.
  • the arithmetic device 21 for example, CPU
  • the processing system SYS uses this arithmetic model to determine whether or not a defect occurs in the three-dimensional structure ST.
  • the learning model may be stored in an external device (for example, a server such as a cloud server) of the processing system SYS.
  • the processing system SYS includes data necessary for determining whether or not a defect occurs in the three-dimensional structure ST (for example, information on the three-dimensional structure ST (for example, 3D model data) and processing path information PI ) to an external device, and the external device may determine whether or not a defect occurs in the three-dimensional structure ST.
  • the external device may be arranged within the same area as the factory where the processing system SYS is installed, or may be arranged at a different location.
  • the country in which the processing system SYS is located may be the same as or different from the country in which the external device is located.
  • the processing system SYSb has the learning section 215b.
  • an external device for example, a server such as a cloud server
  • the learning unit 215b of an external device learns (that is, constructs) a learning model, and the learned learning model is implemented in the processing system SYSb (for example, the path generation device 2b).
  • FIG. 25 is a block diagram showing the configuration of a processing device 1c in the third modified example.
  • the processing device 1c differs from the processing device 1 described above in that it includes a measuring device 14c.
  • Other features of processing device 1c may be the same as other features of processing device 1 .
  • the measuring device 14c can measure the modeling surface MS during at least part of the modeling period during which the processing device 1c is modeling the three-dimensional structure ST.
  • the measuring device 4c can measure the molten pool MP formed on the modeling surface MS during at least part of the modeling period.
  • An example of such a measuring device 14c is a measuring device capable of optically measuring the modeling surface MS (in particular, the molten pool MP formed on the modeling surface MS). Capable of imaging the modeling surface MS (in particular, the molten pool MP formed on the modeling surface MS) as an example of a measuring device capable of optically measuring the modeling surface MS (particularly, the molten pool MP formed on the modeling surface MS) imaging device.
  • FIG. 26 is a flow chart showing the operation flow of the processing system SYSc in the third modification.
  • the path generation unit 211 of the machining path generation device 2 generates a 3D model (three-dimensional model) of the three-dimensional structure ST to be formed by the processing device 1c.
  • Data is acquired (step S11), and machining pass information PI is generated based on the 3D model data (step S12).
  • the machining path generation device 2 outputs the machining path information PI generated in step S12 to the processing device 1c (step S17).
  • the machining path generation device 2 determines whether or not a defect occurs in the three-dimensional structure ST based on the machining path information PI (step S13), the defect information may be displayed (step S14 in FIG. 7), and the machining path information PI may be corrected (step S16 in FIG. 7).
  • the processing device 1c starts molding the three-dimensional structure ST based on the processing path information PI output in step S17 (step S31c).
  • the measuring device 14c controls the modeling surface MS (particularly, modeling A molten pool MP) formed on the surface MS is measured (step S32c).
  • the processing device 1c outputs measurement information indicating the measurement result of the modeling surface MS (in particular, the molten pool MP formed on the modeling surface MS) by the measuring device 14c to the machining path generation device 2 via the communication network 3. (step S33c).
  • the defect determination unit 212 of the machining path generation device 2 determines whether a defect (for example, a void) has occurred in the three-dimensional structure ST formed by the processing device 1 based on the measurement information output in step S33c. It is determined whether or not (step S13c). That is, in the third modification, the machining path generation device 2 determines whether or not the three-dimensional structure ST has a defect during at least a part of the modeling period during which the processing device 1c shapes the three-dimensional structure ST. judge.
  • a defect for example, a void
  • the defect determination unit 212 calculates the size of the molten pool MP based on the measurement information, and based on the calculated size of the molten pool MP, if a defect (for example, void) occurs in the three-dimensional structure ST, It may be determined whether there is For example, when the processing apparatus 1 forms a modeled object with a certain line width w, a molten pool MP having a size corresponding to the set line width w is formed on the modeling surface MS. That is, ideally, the size of the molten pool MP formed on the modeling surface MS should match the target size according to the set line width w.
  • a defect for example, void
  • the defect determination unit 212 may determine that the three-dimensional structure ST has a defect when the size of the molten pool MP is smaller than the target size. Alternatively, the defect determination unit 212 may determine that the three-dimensional structure ST has a defect when the size of the molten pool MP is smaller than the target size by a certain amount or more.
  • the display control unit 213 of the machining path generation device 2 controls the display device 25 so as to display the defect information (step S14). That is, in the third modification, the machining path generation device 2 displays the defect information during at least part of the modeling period during which the processing device 1c is modeling the three-dimensional structure ST. Typically, the display control unit 213 controls the display device 25 to display defect information when it is determined in step S13c that the three-dimensional structure ST has a defect. Further, if necessary, the path correction unit 214 of the machining path generation device 2 performs step S12 based on the determination result in step S13c (that is, the determination result as to whether or not the three-dimensional structure ST has a defect).
  • the machining pass information PI generated in step S15 to step S16 is corrected. That is, in the third modification, the machining path generation device 2 corrects the machining path information PI during at least part of the modeling period during which the processing device 1c is modeling the three-dimensional structure ST. After that, the machining path generation device 2 outputs the machining path information PI corrected in step S16 to the machining device 1c (step S17).
  • the processing device 1c forms the three-dimensional structure ST based on the processing path information PI output from the processing path generation device 2 (step S34c). For example, as described above, the processing device 1c forms the three-dimensional structure ST by sequentially forming a plurality of structural layers SL.
  • the molten pool MP is measured during the period in which the k-th structural layer SL is formed (where k is a variable representing an integer equal to or greater than 1 and equal to or less than the total number of structural layers SL), and the measurement of the molten pool MP is performed.
  • the processing device 1c may shape the k+1th and subsequent structural layers SL based on the corrected machining pass information PI.
  • the modified processing path information PI is used to form the k+1-th and subsequent structural layers.
  • the processing device 1c can form the three-dimensional structure ST with reduced defects.
  • the machining path generation device 2 generates a defect in the kth structural layer SL formed by the processing device 1. occurs, the processing pass information PI for forming the k+1-th and subsequent structural layers SL may be corrected.
  • the machining path generation device 2 generates the machining path information PI for forming the three-dimensional structure ST by the processing device 1 .
  • the machining path generation device 2 may generate arbitrary machining information that is control information for forming the three-dimensional structure ST by the machining device 1 and that is control information different from the machining path information.
  • the defect determination unit 212 determines that a defect occurs in the three-dimensional structure ST when the processing apparatus 1 forms the three-dimensional structure ST based on the processing information generated by the path generation unit 211. It may be determined whether The path correction section 214 may correct the processing information generated by the path generation section 211 based on the determination result of the defect determination section 212 .
  • the machining path generation device 2 performs the path generation operation (step S12 in FIG. 7) for generating the machining path information PI, and the defect determination operation (step S13 in FIG. 7) for determining whether or not a defect occurs. Then, a defect display operation (step S14 in FIG. 7) for displaying information about the defect and a path correction operation (step S16 in FIG. 7) for correcting the machining path information PI are performed.
  • the machining path generation device 2 does not have to perform at least one of the path generation operation, the defect determination operation, the defect display operation, and the path correction operation. For example, the machining path generation device 2 may not perform the path generation operation.
  • an external path generation device different from the machining path generation device 2 may perform the path generation operation. At least one of a defect determination operation, a defect display operation, and a path correction operation may be performed. For example, the machining path generation device 2 may not perform the defect determination operation. In this case, an external defect determination device different from the machining path generation device 2 may perform the defect determination operation. It may be output to the device, or at least one of the defect display operation and the path correction operation may be performed based on the determination result of an external defect determination device. For example, the machining path generation device 2 does not have to perform the defect display operation.
  • an external defect display device different from the machining path generation device 2 may perform the defect display operation, or the machining path generation device 2 outputs the result of the defect determination operation to the external defect display device. good too.
  • the machining path generation device 2 does not have to perform the path correction operation.
  • an external path correction device different from the machining path generation device 2 may perform the path correction operation. At least one of the results may be output to an external path modification device.
  • the processing device 1 melts the modeling material M by irradiating the modeling material M with the processing light EL.
  • the processing apparatus 1 may melt the modeling material M by irradiating the modeling material M with an arbitrary energy beam.
  • arbitrary energy beams include at least one of charged particle beams and electromagnetic waves.
  • charged particle beams include at least one of electron beams and ion beams.
  • the processing device 1 forms the three-dimensional structure ST by performing additional processing based on the laser build-up welding method.
  • the processing apparatus 1 may model the three-dimensional structure ST by performing additional processing conforming to other methods capable of shaping the three-dimensional structure ST.
  • other methods that can form the three-dimensional structure ST include a powder bed fusion method such as selective laser sintering (SLS), a binder jetting method (binder jetting method: Binder Jetting), material jetting method (Material Jetting method: Material Jetting), stereolithography, and laser metal fusion method (LMF: Laser Metal Fusion).
  • the processing apparatus 1 may model the three-dimensional structure ST by performing machining in addition to or instead of performing at least one of additional processing and removal processing.
  • the machining path generation device 2 provides machining information for forming the three-dimensional structure ST by the machining device 1 (e.g. corresponding processing path) is generated (step S12 in FIG. 7), it is determined whether or not a defect occurs in the three-dimensional structure ST based on the processing information (step S13 in FIG. 7), and information on the defect is generated. is displayed (step S14 in FIG. 7), and the machining path information PI may be corrected (step S16 in FIG. 7).
  • the processing device 1 may perform arbitrary processing on the workpiece W.
  • the machining path generation device 2 provides machining information (for example, machining information on the machining path corresponding to the movement path of the machining position where the apparatus 1 performs machining (step S12 in FIG. 7), and when the machining apparatus 1 processes the workpiece W based on the machining information, After determining whether or not a defect occurs (step S13 in FIG. 7), information on the defect may be displayed (step S14 in FIG. 7) and the processing information may be corrected (step S16 in FIG. 7).
  • [Appendix 2] generating processing path information for modeling an object with a 3D printer based on the 3D model data; Determining whether or not voids, which are defects, will occur in the object when the object is modeled by the 3D printer, based on the processing path information; and displaying information about the void together with model information based on the machining pass information when it is determined that the void, which is a defect, occurs in the object.
  • the machining path information generating method according to any one of appendices 1 to 6, wherein the gap includes a gap formed in the object.
  • [Appendix 8] Determining whether or not a gap is generated in the object includes determining that the gap is generated in the object when the distance is greater than a first threshold. .
  • Determining whether or not a void is formed in the object includes determining that the void is formed in the object when the distance is less than a second threshold.
  • the described machining path information generation method [Appendix 12] 12. The machining path information generating method according to appendix 11, wherein each of the two movement paths extends in a curved line or in a circular shape. [Appendix 13] 13. The machining pass information generating method according to appendix 11 or 12, wherein the second threshold is variable. [Appendix 14] Determining whether or not a gap is generated in the object is based on the amount of intersection of the two intersecting movement paths included in the machining path information, and when the object is shaped based on the two movement paths. 14. The machining path information generating method according to any one of appendices 5 to 13, including determining whether or not the gap is generated at least partially. [Appendix 15] 15.
  • Appendix 16 16.
  • the air gap includes the difference in the actual state of the modeled object from the ideal state of the modeled object, assuming that the 3D printer models the object using the processing path information. 18.
  • Appendix 19 19.
  • the machining path information generating method according to any one of appendices 1 to 18, wherein the gap includes a gap formed in the object.
  • Displaying information about the voids along with the model information includes: a first display process for superimposing and displaying a first gap object indicating the position of the gap generated in the object on a first display object indicating the 3D model of the object; a second display process of superimposing a second display object indicating the cross section of the object on a second gap object indicating the position of the gap generated in the cross section of the object, and displaying at least one of these.
  • the machining path information generating method according to any one of 19 to 19.
  • the machining path information generating method includes switching between the first display process and the second display process.
  • Determining whether or not a gap is generated in the object is performed by comparing a parameter calculated from the machining path information with a predetermined threshold to determine whether or not the void is generated in the object. including Displaying information about the void includes displaying an operation object that can be operated to change the threshold, and using the threshold after the change when the threshold is changed using the operation object. 22.
  • the machining path information generating method according to appendix 20 or 21, wherein the first or second gap object indicating the position of the gap determined to occur in the object is displayed. [Appendix 23] 23.
  • the machining pass information generation method according to any one of appendices 1 to 22, further comprising correcting the machining pass information based on a determination result as to whether or not a gap is generated in the object.
  • Appendix 24 generating processing path information for modeling an object with a 3D printer based on the 3D model data; Determining whether or not a void will occur in the object when the 3D printer models the object based on the processing path information; and modifying the machining path information when it is determined that a gap is generated in the object.
  • the 3D printer shapes the object using the modified machining pass information
  • the 3D printer shapes the object using the uncorrected machining pass information. 25.
  • the processing path information includes information indicating a movement route of the modeling position by the 3D printer, Modifying the machining path includes modifying the machining path information such that at least one new movement path is added between two adjacent movement paths included in the machining path information. 26.
  • the processing path information includes information indicating a movement route of the modeling position by the 3D printer, Correcting the machining path includes correcting the machining path information such that an intersection amount of two intersecting movement paths included in the machining path information is equal to or greater than a predetermined threshold.
  • the machining path information generating method according to any one of the items.
  • Correcting the machining path includes correcting the machining path information so as to give priority to the modeling accuracy of the object over shortening the modeling time required to model the object; 28.
  • the processing path information includes information indicating a movement route of the modeling position by the 3D printer, modifying the machining path information so as to give priority to the molding accuracy over shortening the molding time, and the interval between two adjacent movement paths included in the modified machining path information is not modified. 29.
  • the processing path information includes information indicating a movement route of the modeling position by the 3D printer, Correcting the machining path information so as to give priority to shortening the modeling time over the modeling accuracy means that the interval between two adjacent movement paths included in the corrected machining path information is corrected. 30.
  • the method of generating machining path information according to appendix 28 or 29, comprising modifying the machining path information so that the distance between the two movement paths included in the machining path information that does not exist is longer than the interval between the two movement paths.
  • Appendix 31 machine-learning a relationship between a determination result as to whether or not a gap is formed in the object, object information about the object, and the machining path information; 31.
  • Appendix 32 performing a measurement process for measuring the processed object, which is the object actually formed by the 3D printer, using the processing path information; performing machine learning on the relationship between the result of the measurement process, the object information about the object, and the machining path information; 32.
  • Determining whether or not a void occurs in the object includes determining whether or not the void occurs in the object during at least part of a modeling period in which the 3D printer is modeling the object. , 33.
  • the machining pass information generation method according to any one of appendices 23 to 32, wherein correcting the machining pass information includes correcting the machining pass information during at least part of the modeling period.
  • the 3D printer forms the object by forming a molten pool, Determining whether the void will form in the object includes determining whether the void will form in the object based on information about the size of the weld pool during at least a portion of the shaping period. 33.
  • [Appendix 35] generating processing path information for modeling an object with a 3D printer based on the 3D model data; Determining whether or not a void will occur in the object when the 3D printer models the object based on the processing path information; and displaying information about the void when it is determined that the void is generated in the object.
  • [Appendix 36] generating processing path information for modeling an object with a 3D printer based on the 3D model data; generating information about voids generated in the object when the 3D printer models the object based on the processing path information; and displaying information about the void.
  • [Appendix 37] generating processing information for molding an object by a processing device based on the model data; Determining, based on the processing information, whether or not defects will occur when the processing device models the object; and displaying information about the defect when it is determined that the defect will occur.
  • [Appendix 38] generating processing information for molding an object by a processing device based on the model data; generating information about defects when the processing device models the object based on the processing information; and displaying information about the defect.
  • [Appendix 39] generating processing information for molding an object by a processing device based on the model data; Determining, based on the processing information, whether or not defects will occur when the processing device models the object; and modifying the processing information when it is determined that the object has a void.
  • [Appendix 40] a control device that determines, based on processing information for controlling the processing device, whether or not defects will occur when the processing device forms an object; and a display device that displays information about the defect when the control device determines that the defect occurs.
  • [Appendix 41] a control device that generates information about defects when the processing device forms an object based on processing information for controlling the processing device; and a display device that displays information about the defect generated by the control device.
  • [Appendix 42] a determination device that determines whether or not defects will occur when the processing device models an object based on processing information for controlling the processing device; and a correction device that corrects the processing information when the control device determines that the defect will occur.
  • [Appendix 43] Determining whether or not a defect will occur when the processing device forms an object based on processing information for controlling the processing device; and displaying information about the defect when it is determined that the defect will occur.
  • [Appendix 44] generating information about defects when the processing device models an object based on processing information for controlling the processing device; and displaying information about the defects.
  • [Appendix 45] Determining whether or not a defect will occur when the processing device forms an object based on processing information for controlling the processing device; and modifying the processing information when it is determined that the defect will occur.
  • Appendix 47 A computer program that causes a computer to execute the processing information generating method according to any one of appendices 37 to 39.
  • Appendix 48 A computer program that causes a computer to execute the processing information generating method according to any one of appendices 43 to 45.
  • Appendix 49 49. A recording medium on which the computer program according to any one of appendices 46 to 48 is recorded.
  • the present invention is not limited to the above-described embodiments, and can be modified as appropriate within a range that does not contradict the gist or idea of the invention that can be read from the scope of claims and the entire specification.
  • a generation method, a processing information generation method, an information processing device, a computer program, and a recording medium are also included in the technical scope of the present invention.

Abstract

This processing path information generation method comprises: generating processing path information for manufacturing an object with a 3D printer, on the basis of 3D model data; determining, on the basis of the processing path information, whether or not a gap which is a defect will occur in the object when the 3D printer manufactures the object; and displaying model information based on the 3D model data and information relating to the gap when it is determined that a gap which is a defect will occur in the object.

Description

加工パス情報生成方法Machining path information generation method
 本発明は、例えば、物体を造形するための加工パスを生成可能な加工パス情報生成方法の技術分野に関する。 The present invention, for example, relates to the technical field of machining path information generation methods capable of generating machining paths for shaping an object.
 物体を造形する加工システムの一例が、特許文献1に記載されている。このような加工システムの技術的課題の一つとして、造形した物体に生ずる欠陥を低減することがあげられる。 An example of a processing system that shapes an object is described in Patent Document 1. One of the technical challenges of such processing systems is to reduce defects in the shaped objects.
米国特許出願公開第2019/0168499号U.S. Patent Application Publication No. 2019/0168499
 第1の態様によれば、3Dモデルデータに基づいて、3Dプリンタにより物体を造形するための加工パス情報を生成することと、前記加工パス情報に基づいて、前記3Dプリンタが前記物体を造形した場合に前記物体に欠陥である空隙が生ずるか否かを判定することと、前記物体に欠陥である空隙が生ずると判定された場合に、前記3Dモデルデータに基づくモデル情報とともに前記空隙に関する情報を表示することとを含む加工パス情報生成方法が提供される。 According to the first aspect, based on 3D model data, processing path information for modeling an object by a 3D printer is generated, and based on the processing path information, the 3D printer models the object. Determining whether or not a void that is a defect occurs in the object in a case, and if it is determined that the void that is a defect occurs in the object, information about the void is provided together with model information based on the 3D model data. and displaying.
 第2の態様によれば、3Dモデルデータに基づいて、3Dプリンタにより物体を造形するための加工パス情報を生成することと、前記加工パス情報に基づいて、前記3Dプリンタが前記物体を造形した場合に前記物体に欠陥である空隙が生ずるか否かを判定することと、前記物体に欠陥である空隙が生ずると判定された場合に、前記加工パス情報に基づくモデル情報とともに前記空隙に関する情報を表示することとを含む加工パス情報生成方法が提供される。 According to the second aspect, based on 3D model data, processing path information for modeling an object by a 3D printer is generated, and based on the processing path information, the 3D printer models the object. Determining whether or not a void that is a defect occurs in the object in a case where it is determined that the void that is a defect occurs in the object, and information about the void together with model information based on the machining path information when it is determined that the void that is a defect occurs in the object. and displaying.
 第3の態様によれば、3Dモデルデータに基づいて、3Dプリンタにより物体を造形するための加工パス情報を生成することと、前記加工パス情報に基づいて、前記3Dプリンタが前記物体を造形した場合に前記物体に空隙が生ずるか否かを判定することと、前記物体に空隙が生ずると判定された場合に、前記加工パス情報を修正することとを含む加工パス情報生成方法が提供される。 According to a third aspect, based on 3D model data, processing path information for modeling an object by a 3D printer is generated; and based on the processing path information, the 3D printer models the object. and modifying the machining path information when it is determined that the object will have a gap. .
 本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。 The action and other benefits of the present invention will be made clear from the following description of the embodiment.
図1は、本実施形態の加工システムの構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of the processing system of this embodiment. 図2は、本実施形態の加工装置の構造を示す断面図である。FIG. 2 is a cross-sectional view showing the structure of the processing apparatus of this embodiment. 図3は、本実施形態の加工装置のシステム構成を示すシステム構成図である。FIG. 3 is a system configuration diagram showing the system configuration of the processing apparatus of this embodiment. 図4(a)から図4(e)のそれぞれは、ワーク上のある領域に造形光を照射し且つ造形材料を供給した場合の様子を示す断面図である。Each of FIGS. 4A to 4E is a cross-sectional view showing a state in which a certain region on the workpiece is irradiated with the shaping light and the shaping material is supplied. 図5(a)から図5(c)のそれぞれは、3次元構造物を造形する過程を示す断面図である。Each of FIGS. 5(a) to 5(c) is a cross-sectional view showing the process of forming a three-dimensional structure. 図6は、本実施形態の加工パス生成装置の構成を示すブロック図である。FIG. 6 is a block diagram showing the configuration of the machining path generation device of this embodiment. 図7は、加工パス生成装置が行う動作の流れを示すフローチャートである。FIG. 7 is a flow chart showing the flow of operations performed by the machining path generation device. 図8(a)は、加工装置によって造形される3次元構造物の一例を示す斜視図であり、図8(b)は、図8(a)に示す3次元構造物を造形するために造形される複数の構造層を示す断面図であり、図8(c)は、図8(b)に示す複数の構造層を造形するための加工パスを示す平面図である。FIG. 8(a) is a perspective view showing an example of a three-dimensional structure formed by a processing apparatus, and FIG. 8(b) shows a model for forming the three-dimensional structure shown in FIG. 8(a). 8(c) is a plan view showing a processing path for forming the plurality of structural layers shown in FIG. 8(b); FIG. 図9(a)は、X軸方向に沿って延びる部分加工パスを示す平面図であり、図9(b)は、図9(a)に示す部分加工パスに基づいて造形される造形物を示す断面図である。9(a) is a plan view showing partial machining paths extending along the X-axis direction, and FIG. 9(b) is a modeled object formed based on the partial machining paths shown in FIG. 9(a). It is a sectional view showing. 図10は、相対的に狭い間隔で隣接する複数の部分加工パスに基づいて造形される造形物を、複数の部分加工パスと共に模式的に示す。FIG. 10 schematically shows a modeled object formed based on a plurality of partial machining passes adjacent to each other at relatively narrow intervals, together with the plurality of partial machining passes. 図11は、相対的に広い間隔で隣接する複数の部分加工パスに基づいて造形される造形物を、複数の部分加工パスと共に模式的に示す。FIG. 11 schematically shows a modeled object that is formed based on a plurality of partial machining passes adjacent to each other at relatively wide intervals, together with the plurality of partial machining passes. 図12は、複数の開口が形成された造形物を、当該造形物を造形するための複数の部分加工パスと共に模式的に示す。FIG. 12 schematically shows a modeled object in which a plurality of openings are formed, together with a plurality of partial processing passes for forming the modeled object. 図13は、複数の開口が形成された造形物を、当該造形物を造形するための複数の部分加工パスと共に模式的に示す。FIG. 13 schematically shows a modeled object with a plurality of openings, along with a plurality of partial processing passes for forming the modeled object. 図14は、複数の開口が形成された造形物を、当該造形物を造形するための複数の部分加工パスと共に模式的に示す。FIG. 14 schematically shows a modeled object with a plurality of openings, along with a plurality of partial processing passes for forming the modeled object. 図15は、互いに交差する複数の部分加工パスに基づいて造形される造形物を、複数の部分加工パスと共に模式的に示す。FIG. 15 schematically shows a modeled object that is formed based on a plurality of partial machining paths that intersect each other, together with the plurality of partial machining paths. 図16は、表示装置の表示画面の一例を示す。FIG. 16 shows an example of the display screen of the display device. 図17は、表示装置の表示画面の一例を示す。FIG. 17 shows an example of the display screen of the display device. 図18は、表示装置の表示画面の一例を示す。FIG. 18 shows an example of the display screen of the display device. 図19は、修正された加工パス情報を、修正された加工パス情報に基づいて造形される造形物と共に模式的に示す。FIG. 19 schematically shows modified machining path information together with a modeled object that is shaped based on the modified machining path information. 図20は、修正された加工パス情報を、修正された加工パス情報に基づいて造形される造形物と共に模式的に示す。FIG. 20 schematically shows corrected machining path information together with a modeled object that is shaped based on the corrected machining path information. 図21は、表示装置の表示画面の一例を示す。FIG. 21 shows an example of a display screen of a display device. 図22は、第1変形例における加工システムの構成を示すブロック図である。FIG. 22 is a block diagram showing the configuration of the processing system in the first modified example. 図23は、第1変形例における加工システムが行う動作の流れを示すフローチャートである。FIG. 23 is a flow chart showing the flow of operations performed by the processing system in the first modified example. 図24は、第2変形例における加工パス生成装置の構成を示すブロック図である。FIG. 24 is a block diagram showing the configuration of a machining path generation device in the second modified example. 図25は、第3変形例における加工装置の構成を示すブロック図である。FIG. 25 is a block diagram showing the configuration of a processing device in the third modified example. 図26は、第3変形例における加工システムが行う動作の流れを示すフローチャートである。FIG. 26 is a flow chart showing the flow of operations performed by the processing system in the third modified example.
 以下、図面を参照しながら、加工パス情報生成方法、加工情報生成方法、情報処理装置、コンピュータプログラム及び記録媒体の実施形態について説明する。以下では、加工システムSYSを用いて、加工パス情報生成方法、加工情報生成方法、情報処理装置、コンピュータプログラム及び記録媒体の実施形態の実施形態について説明する。 Embodiments of a machining path information generation method, a machining information generation method, an information processing device, a computer program, and a recording medium will be described below with reference to the drawings. Embodiments of a machining path information generating method, a machining information generating method, an information processing apparatus, a computer program, and a recording medium will be described below using the machining system SYS.
 (1)加工システムSYS
 はじめに、図1を参照しながら、加工システムSYSの全体構成の一例について説明する。図1は、加工システムSYSの全体構成を示すブロック図である。
(1) Machining system SYS
First, an example of the overall configuration of the machining system SYS will be described with reference to FIG. FIG. 1 is a block diagram showing the overall configuration of the machining system SYS.
 加工システムSYSは、加工装置1と、加工パス生成装置2とを備えている。加工装置1と加工パス生成装置2とは、有線の通信ネットワーク及び無線の通信ネットワークの少なくとも一つを含む通信ネットワーク3を介して通信可能である。 The machining system SYS comprises a machining device 1 and a machining path generation device 2 . The machining device 1 and the machining path generation device 2 can communicate via a communication network 3 including at least one of a wired communication network and a wireless communication network.
 加工装置1は、3次元方向のいずれの方向においても大きさ(サイズ)を持つ物体である3次元構造物STを造形(言い換えれば、形成)可能な装置である。つまり、加工装置1は、3次元構造物STを造形するための加工動作(造形動作)を行うことが可能な装置である。このため、加工装置1は、造形装置と称されてもよい。同様に、加工システムSYSは、造形システムと称されてもよい。 The processing device 1 is a device capable of modeling (in other words, forming) a three-dimensional structure ST, which is an object having a size in any three-dimensional direction. That is, the processing device 1 is a device capable of performing a processing operation (modeling operation) for molding the three-dimensional structure ST. For this reason, the processing device 1 may be called a modeling device. Similarly, the processing system SYS may be referred to as a modeling system.
 加工パス生成装置2は、加工装置1が3次元構造物STを造形するための制御情報である加工パス情報PIを生成可能な装置(例えば、情報処理装置)である。尚、加工パス情報PIについては、後に詳述する。加工パス生成装置2は、生成した加工パス情報PIを、通信ネットワーク3を介して加工装置1に送信(つまり、出力する)。加工装置1は、通信ネットワーク3を介して加工パス生成装置2から送信される加工パス情報PIを受信(つまり、取得する)。加工装置1は、取得した加工パス情報PIに基づいて、3次元構造物STを造形するための加工動作を行う。 The machining path generation device 2 is a device (for example, an information processing device) capable of generating machining path information PI, which is control information for the processing device 1 to shape the three-dimensional structure ST. The machining pass information PI will be described in detail later. The machining path generation device 2 transmits (that is, outputs) the generated machining path information PI to the processing device 1 via the communication network 3 . The processing device 1 receives (that is, acquires) the processing path information PI transmitted from the processing path generation device 2 via the communication network 3 . The processing device 1 performs a processing operation for forming the three-dimensional structure ST based on the acquired processing path information PI.
 (2)加工装置1
 続いて、加工システムSYSが備える加工装置1について更に説明する。
(2) Processing device 1
Next, the processing device 1 included in the processing system SYS will be further described.
 (2-1)加工装置1の構成
 初めに、図2及び図3を参照しながら、加工装置1の構成について説明する。図2は、本実施形態の加工装置1の構造の一例を示す断面図である。図3は、本実施形態の加工装置1のシステム構成の一例を示すシステム構成図である。
(2-1) Configuration of Processing Apparatus 1 First, the configuration of the processing apparatus 1 will be described with reference to FIGS. 2 and 3. FIG. FIG. 2 is a cross-sectional view showing an example of the structure of the processing device 1 of this embodiment. FIG. 3 is a system configuration diagram showing an example of the system configuration of the processing apparatus 1 of this embodiment.
 以下の説明では、互いに直交するX軸、Y軸及びZ軸から定義されるXYZ直交座標系を用いて、加工装置1を構成する各種構成要素の位置関係について説明する。尚、以下の説明では、説明の便宜上、X軸方向及びY軸方向のそれぞれが水平方向(つまり、水平面内の所定方向)であり、Z軸方向が鉛直方向(つまり、水平面に直交する方向であり、実質的には上下方向或いは重力方向)であるものとする。また、X軸、Y軸及びZ軸周りの回転方向(言い換えれば、傾斜方向)を、それぞれ、θX方向、θY方向及びθZ方向と称する。ここで、Z軸方向を重力方向としてもよい。また、XY平面を水平方向としてもよい。 In the following description, the positional relationship of various components that make up the processing apparatus 1 will be described using an XYZ orthogonal coordinate system defined by mutually orthogonal X, Y, and Z axes. In the following description, for convenience of explanation, each of the X-axis direction and the Y-axis direction is the horizontal direction (that is, a predetermined direction in the horizontal plane), and the Z-axis direction is the vertical direction (that is, the direction perpendicular to the horizontal plane). and substantially in the vertical direction or the gravitational direction). Further, the directions of rotation (in other words, tilt directions) about the X-, Y-, and Z-axes are referred to as the .theta.X direction, the .theta.Y direction, and the .theta.Z direction, respectively. Here, the Z-axis direction may be the direction of gravity. Also, the XY plane may be set horizontally.
 加工装置1は、3次元構造物STを造形する(つまり、形成する)ための加工動作を行うことが可能である。3次元構造物STは、3次元方向のいずれの方向においても大きさを持つ3次元の物体(例えば、X軸方向、Y軸方向及びZ軸方向において大きさを持つ物体)である。加工装置1は、3次元構造物STを形成するための基礎(つまり、母材)となるワークW上に、3次元構造物STを造形可能である。ワークWが後述するステージ131である場合には、加工装置1は、ステージ131上に、3次元構造物STを造形可能である。ワークWがステージ131に載置されている既存構造物である場合には、加工装置1は、既存構造物上に、3次元構造物STを造形可能であってもよい。この場合、加工装置1は、既存構造物(つまり、ワークW)と一体化された3次元構造物STを造形してもよい。既存構造物と一体化された3次元構造物STを造形する動作は、既存構造物に新たな構造物を付加する動作と等価とみなしてもよい。尚、既存構造物は、例えば欠損箇所がある要修理品であってもよい。加工装置1は、要修理品の欠損箇所を埋めるように、要修理品に3次元構造物STを造形してもよい。或いは、加工装置1は、既存構造物と分離可能な3次元構造物STを造形してもよい。尚、図2は、ワークWが、ステージ131によって保持されている既存構造物である例を示している。また、以下でも、ワークWがステージ131によって保持されている既存構造物である例を用いて説明を進める。 The processing device 1 is capable of performing processing operations for modeling (that is, forming) the three-dimensional structure ST. The three-dimensional structure ST is a three-dimensional object that has dimensions in all three-dimensional directions (for example, an object that has dimensions in the X-axis, Y-axis, and Z-axis directions). The processing apparatus 1 can form a three-dimensional structure ST on a workpiece W that serves as a base (that is, a base material) for forming the three-dimensional structure ST. When the work W is a stage 131 to be described later, the processing device 1 can form the three-dimensional structure ST on the stage 131 . When the work W is an existing structure placed on the stage 131, the processing device 1 may be capable of forming the three-dimensional structure ST on the existing structure. In this case, the processing device 1 may form the three-dimensional structure ST integrated with the existing structure (that is, the work W). The operation of modeling the three-dimensional structure ST integrated with the existing structure may be considered equivalent to the operation of adding a new structure to the existing structure. In addition, the existing structure may be, for example, a defective part requiring repair. The processing device 1 may form the three-dimensional structure ST on the repair required item so as to fill the defective portion of the repair required item. Alternatively, the processing device 1 may form a three-dimensional structure ST separable from the existing structure. Note that FIG. 2 shows an example in which the work W is an existing structure held by the stage 131 . Also, the description will be made below using an example in which the work W is an existing structure held by the stage 131 .
 本実施形態では、加工装置1が、レーザ肉盛溶接法に準拠した付加加工(付加造形)を行うことで3次元構造物STを造形可能な装置である例について説明する。この場合、加工装置1は、積層造形技術を用いて物体を形成する3Dプリンタであるとも言える。尚、積層造形技術は、ラピッドプロトタイピング(Rapid Prototyping)、ラピッドマニュファクチャリング(Rapid Manufacturing)、又は、アディティブマニュファクチャリング(Additive Manufacturing)とも称されてもよい。レーザ肉盛溶接法(LMD)は、ダイレクト・メタル・デポジション、ダイレクト・エナジー・デポジション、レーザクラッディング、レーザ・エンジニアード・ネット・シェイピング、ダイレクト・ライト・ファブリケーション、レーザ・コンソリデーション、シェイプ・デポジション・マニュファクチャリング、ワイヤ-フィード・レーザ・デポジション、ガス・スルー・ワイヤ、レーザ・パウダー・フージョン、レーザ・メタル・フォーミング、セレクティブ・レーザ・パウダー・リメルティング、レーザ・ダイレクト・キャスティング、レーザ・パウダー・デポジション、レーザ・アディティブ・マニュファクチャリング、レーザ・ラピッド・フォーミングと称されてもよい。 In this embodiment, an example will be described in which the processing apparatus 1 is an apparatus capable of forming the three-dimensional structure ST by performing additional processing (additional modeling) conforming to the laser build-up welding method. In this case, the processing device 1 can also be said to be a 3D printer that forms an object using a layered manufacturing technique. Note that the layered manufacturing technology may also be referred to as rapid prototyping, rapid manufacturing, or additive manufacturing. Laser Overlay Welding (LMD) includes Direct Metal Deposition, Direct Energy Deposition, Laser Cladding, Laser Engineered Net Shaping, Direct Light Fabrication, Laser Consolidation, Shape・Deposition manufacturing, wire-feed laser deposition, gas through wire, laser powder fusion, laser metal forming, selective laser powder remelting, laser direct casting, It may also be referred to as laser powder deposition, laser additive manufacturing, laser rapid forming.
 加工装置1は、造形材料Mを加工光ELで加工することで3次元構造物STを形成する。造形材料Mは、所定強度以上の加工光ELの照射によって溶融可能な材料である。このような造形材料Mとして、例えば、金属性の材料及び樹脂性の材料の少なくとも一方が使用可能である。但し、造形材料Mとして、金属性の材料及び樹脂性の材料とは異なるその他の材料が用いられてもよい。造形材料Mは、粉状の又は粒状の材料である。つまり、造形材料Mは、粉粒体である。但し、造形材料Mは、粉粒体でなくてもよい。例えば、造形材料Mとして、ワイヤ状の造形材料及びガス状の造形材料の少なくとも一方が用いられてもよい。 The processing device 1 forms a three-dimensional structure ST by processing the modeling material M with the processing light EL. The modeling material M is a material that can be melted by irradiation with processing light EL having a predetermined intensity or more. As such a modeling material M, for example, at least one of a metallic material and a resinous material can be used. However, as the modeling material M, other materials different from the metallic material and the resinous material may be used. The building material M is a powdery or granular material. That is, the modeling material M is a granular material. However, the modeling material M does not have to be granular. For example, as the modeling material M, at least one of a wire-like modeling material and a gaseous modeling material may be used.
 3次元構造物STを造形するために、加工装置1は、図2及び図3に示すように、材料供給源11と、加工ユニット12と、ステージユニット13と、光源14と、気体供給装置15と、筐体16と、制御装置17と、通信装置18とを備える。加工ユニット12とステージユニット13とのそれぞれの少なくとも一部は、筐体16の内部のチャンバ空間163IN内に収容されている。 In order to form the three-dimensional structure ST, as shown in FIGS. , a housing 16 , a control device 17 , and a communication device 18 . At least part of each of the processing unit 12 and the stage unit 13 is accommodated within the chamber space 163 IN inside the housing 16 .
 材料供給源11は、加工ユニット12に造形材料Mを供給する。材料供給源11は、3次元構造物STを造形するために単位時間あたりに必要とする分量の造形材料Mが加工ユニット12に供給されるように、当該必要な分量に応じた所望量の造形材料Mを供給する。 The material supply source 11 supplies the modeling material M to the processing unit 12 . The material supply source 11 supplies a desired amount of modeling material M according to the required amount so that the required amount of modeling material M is supplied to the processing unit 12 per unit time in order to model the three-dimensional structure ST. Supply material M.
 加工ユニット12は、材料供給源11から供給される造形材料Mを加工して3次元構造物STを造形する。3次元構造物STを造形するために、加工ユニット12は、加工ヘッド121と、ヘッド駆動系122とを備える。更に、加工ヘッド121は、加工光ELを射出可能な照射光学系1211と、造形材料Mを供給可能な材料ノズル1212とを備えている。加工ヘッド121と、ヘッド駆動系122とは、チャンバ空間163IN内に収容されている。但し、加工ヘッド121及びヘッド駆動系122の少なくとも一部が、筐体16の外部の空間である外部空間164OUTに配置されていてもよい。尚、外部空間164OUTは、加工装置1のオペレータが立ち入り可能な空間であってもよい。 The processing unit 12 processes the modeling material M supplied from the material supply source 11 to model the three-dimensional structure ST. The processing unit 12 includes a processing head 121 and a head drive system 122 to form the three-dimensional structure ST. Further, the processing head 121 includes an irradiation optical system 1211 capable of emitting processing light EL, and a material nozzle 1212 capable of supplying the modeling material M. The machining head 121 and the head drive system 122 are accommodated within the chamber space 163IN. However, at least a part of the processing head 121 and the head driving system 122 may be arranged in an external space 164OUT, which is a space outside the housing 16 . The external space 164OUT may be a space that an operator of the processing apparatus 1 can enter.
 照射光学系1211は、加工光ELを射出するための光学系(例えば、集光光学系)である。具体的には、照射光学系1211は、加工光ELを発する光源14と、光ファイバやライトパイプ等の光伝送部材141を介して光学的に接続されている。照射光学系211は、光伝送部材141を介して光源14から伝搬してくる加工光ELを射出する。照射光学系1211は、照射光学系1211から下方(つまり、-Z側)に向けて加工光ELを射出する。照射光学系1211の下方には、ステージ131が配置されている。ステージ131にワークWが載置されている場合には、照射光学系1211は、ワークWに向けてエネルギビームである加工光ELを照射する。具体的には、照射光学系1211は、加工光ELが照射される(典型的には、集光される)領域としてワークW上に又はワークWの近傍に設定される目標照射領域EAに加工光ELを照射可能である。更に、照射光学系1211の状態は、制御装置17の制御下で、目標照射領域EAに加工光ELを照射する状態と、目標照射領域EAに加工光ELを照射しない状態との間で切替可能である。尚、照射光学系1211から射出される加工光ELの方向は真下(つまり、-Z軸方向と一致)には限定されず、例えば、Z軸に対して所定の角度だけ傾いた方向であってもよい。 The irradiation optical system 1211 is an optical system (for example, a condensing optical system) for emitting the processing light EL. Specifically, the irradiation optical system 1211 is optically connected to the light source 14 that emits the processing light EL via an optical transmission member 141 such as an optical fiber or a light pipe. The irradiation optical system 211 emits processing light EL propagating from the light source 14 via the light transmission member 141 . The irradiation optical system 1211 emits processing light EL downward (that is, to the -Z side) from the irradiation optical system 1211 . A stage 131 is arranged below the irradiation optical system 1211 . When the work W is placed on the stage 131, the irradiation optical system 1211 irradiates the work W with the processing light EL, which is an energy beam. Specifically, the irradiation optical system 1211 processes the target irradiation area EA set on the workpiece W or in the vicinity of the workpiece W as an area irradiated (typically, condensed) with the processing light EL. Light EL can be irradiated. Furthermore, the state of the irradiation optical system 1211 can be switched between a state in which the target irradiation area EA is irradiated with the processing light EL and a state in which the target irradiation area EA is not irradiated with the processing light EL under the control of the control device 17. is. The direction of the processing light EL emitted from the irradiation optical system 1211 is not limited to directly below (that is, coinciding with the -Z-axis direction). good too.
 材料ノズル1212は、供給アウトレットから造形材料Mを供給する(例えば、射出する、噴射する、噴出する、又は、吹き付ける)。材料ノズル1212は、供給管111及び混合装置112を介して造形材料Mの供給源である材料供給源11と物理的に接続されている。材料ノズル1212は、供給管111及び混合装置112を介して材料供給源11から供給される造形材料Mを供給する。材料ノズル1212は、供給管111を介して材料供給源11から供給される造形材料Mを圧送してもよい。即ち、材料供給源11からの造形材料Mと搬送用の気体(つまり、圧送ガスであり、例えば、窒素やアルゴン等の不活性ガス)とは、混合装置112で混合された後に供給管111を介して材料ノズル1212に圧送されてもよい。その結果、材料ノズル1212は、搬送用の気体と共に造形材料Mを供給する。搬送用の気体として、例えば、気体供給装置15から供給されるパージガスが用いられる。但し、搬送用の気体として、気体供給装置15とは異なる気体供給装置から供給される気体が用いられてもよい。尚、図2において材料ノズル1212は、チューブ状に描かれているが、材料ノズル1212の形状は、この形状に限定されない。材料ノズル1212は、材料ノズル1212から下方(つまり、-Z側)に向けて造形材料Mを供給する。材料ノズル1212の下方には、ステージ131が配置されている。ステージ131にワークWが搭載されている場合には、材料ノズル1212は、ワークW又はワークWの近傍に向けて造形材料Mを供給する。尚、材料ノズル1212から供給される造形材料Mの進行方向はZ軸方向に対して所定の角度(一例として鋭角)だけ傾いた方向であるが、-Z側(つまり、真下)であってもよい。 The material nozzle 1212 supplies (for example, injects, jets, ejects, or sprays) the modeling material M from the supply outlet. The material nozzle 1212 is physically connected to the material supply source 11 which is the supply source of the modeling material M via the supply pipe 111 and the mixing device 112 . The material nozzle 1212 supplies the modeling material M supplied from the material supply source 11 through the supply pipe 111 and the mixing device 112 . The material nozzle 1212 may pump the modeling material M supplied from the material supply source 11 through the supply pipe 111 . That is, the modeling material M from the material supply source 11 and the gas for transportation (that is, pressure-fed gas, for example, an inert gas such as nitrogen or argon) are mixed in the mixing device 112 and then passed through the supply pipe 111. may be pumped to the material nozzle 1212 via. As a result, the material nozzle 1212 supplies the modeling material M with the gas for conveyance. For example, a purge gas supplied from the gas supply device 15 is used as the carrier gas. However, gas supplied from a gas supply device different from the gas supply device 15 may be used as the transport gas. In addition, although the material nozzle 1212 is drawn in a tubular shape in FIG. 2, the shape of the material nozzle 1212 is not limited to this shape. The material nozzle 1212 supplies the modeling material M downward (that is, to the −Z side) from the material nozzle 1212 . A stage 131 is arranged below the material nozzle 1212 . When the work W is mounted on the stage 131 , the material nozzle 1212 supplies the modeling material M toward the work W or the vicinity of the work W. Note that the traveling direction of the modeling material M supplied from the material nozzle 1212 is a direction inclined by a predetermined angle (an acute angle as an example) with respect to the Z-axis direction. good.
 本実施形態では、材料ノズル1212は、照射光学系1211が加工光ELを照射する目標照射領域EAに造形材料Mを供給する。このため、材料ノズル1212が造形材料Mを供給する領域としてワークW上に又はワークWの近傍に設定される目標供給領域MAが、目標照射領域EAと一致する(或いは、少なくとも部分的に重複する)ように、材料ノズル1212と照射光学系1211とが位置合わせされている。尚、材料ノズル1212は、照射光学系1211から射出された加工光ELによって形成される溶融池MP(後述する図4等参照)に造形材料Mを供給してもよい。但し、材料ノズル1212は、溶融池MPに造形材料Mを供給しなくてもよい。例えば、加工システムSYSは、材料ノズル1212からの造形材料MがワークWに到達する前に当該造形材料Mを照射光学系1211によって溶融させ、溶融した造形材料MをワークWに付着させてもよい。 In this embodiment, the material nozzle 1212 supplies the modeling material M to the target irradiation area EA where the irradiation optical system 1211 irradiates the processing light EL. Therefore, the target supply area MA set on or near the work W as the area where the material nozzle 1212 supplies the modeling material M matches (or at least partially overlaps) the target irradiation area EA. ), the material nozzle 1212 and the irradiation optics 1211 are aligned. In addition, the material nozzle 1212 may supply the modeling material M to the molten pool MP (see FIG. 4 and the like described later) formed by the processing light EL emitted from the irradiation optical system 1211 . However, the material nozzle 1212 does not have to supply the modeling material M to the molten pool MP. For example, the processing system SYS may melt the modeling material M from the material nozzle 1212 before it reaches the workpiece W by the irradiation optical system 1211, and attach the molten modeling material M to the workpiece W. .
 ヘッド駆動系122は、加工ヘッド121を移動させる(つまり、動かす)。ヘッド駆動系122は、例えば、X軸、Y軸、Z軸、θX方向、θY方向及びθZ方向の少なくとも一つに沿って加工ヘッド121を移動させる。ヘッド駆動系122が加工ヘッド121を移動させると、加工ヘッド121とステージ131及びステージ131に載置されたワークWのそれぞれとの相対位置が変わる。更に、加工ヘッド121とステージ131及びワークWのそれぞれとの相対位置が変わると、目標照射領域EA及び目標供給領域MA(更には、溶融池MP)がワークWに対して相対的に移動する。 The head drive system 122 moves (that is, moves) the processing head 121 . The head drive system 122 moves the processing head 121 along at least one of the X axis, Y axis, Z axis, θX direction, θY direction, and θZ direction, for example. When the head drive system 122 moves the processing head 121, the relative positions of the processing head 121 and the stage 131 and the workpiece W placed on the stage 131 change. Furthermore, when the relative positions of the processing head 121, the stage 131, and the work W change, the target irradiation area EA and the target supply area MA (and the molten pool MP) move relative to the work W.
 ステージユニット13は、ステージ131を備えている。ステージ131は、チャンバ空間163INに収容される。ステージ131には、ワークWが載置可能である。ステージ131は、ステージ131に載置されたワークWを保持可能であってもよい。この場合、ステージ131は、ワークWを保持するために、機械的なチャック、静電チャック及び真空吸着チャック等の少なくとも一つを備えていてもよい。或いは、ステージ131は、ステージ131に載置されたワークWを保持可能でなくてもよい。この場合、ワークWは、クランプレスでステージ131に載置されていてもよい。 The stage unit 13 has a stage 131 . The stage 131 is housed in the chamber space 163IN. A workpiece W can be placed on the stage 131 . The stage 131 may be capable of holding the work W placed on the stage 131 . In this case, the stage 131 may have at least one of a mechanical chuck, an electrostatic chuck, a vacuum chuck, and the like to hold the work W. Alternatively, the stage 131 may not be able to hold the work W placed on the stage 131 . In this case, the workpiece W may be placed on the stage 131 without clamping.
 ステージ駆動系132は、ステージ131を移動させる。ステージ駆動系132は、例えば、X軸、Y軸、Z軸、θX方向、θY方向及びθZ方向の少なくとも一つに沿ってステージ131を移動させる。ステージ駆動系132がステージ131を移動させると、加工ヘッド121とステージ131(更には、ステージ131に載置されたワークW)との相対位置が変わる。その結果、目標照射領域EA及び目標供給領域MA(更には、溶融池MP)がワークWに対して相対的に移動する。 The stage drive system 132 moves the stage 131 . The stage drive system 132, for example, moves the stage 131 along at least one of the X-axis, Y-axis, Z-axis, θX direction, θY direction, and θZ direction. When the stage drive system 132 moves the stage 131, the relative position between the processing head 121 and the stage 131 (and the workpiece W placed on the stage 131) changes. As a result, the target irradiation area EA and the target supply area MA (furthermore, the molten pool MP) move relative to the workpiece W.
 光源14は、例えば、赤外光、可視光及び紫外光のうちの少なくとも一つを、加工光ELとして射出する。但し、加工光ELとして、その他の種類の光が用いられてもよい。加工光ELは、複数のパルス光(つまり、複数のパルスビーム)を含んでいてもよい。加工光ELは、連続光(CW:Continuous Wave)を含んでいてもよい。加工光ELは、レーザ光であってもよい。この場合、光源14は、レーザ光源(例えば、レーザダイオード(LD:Laser Diode)等の半導体レーザを含んでいてもよい。レーザ光源は、ファイバ・レーザ、COレーザ、YAGレーザ及びエキシマレーザ等のうちの少なくとも一つを含んでいてもよい。但し、加工光ELは、レーザ光でなくてもよい。光源14は、任意の光源(例えば、LED(Light Emitting Diode)及び放電ランプ等の少なくとも一つ)を含んでいてもよい。照射光学系1211は、光源14と、光ファイバ及びライトパイプ等の少なくとも一つを含む光伝送部材141を介して光学的に接続されている。照射光学系1211は、光伝送部材141を介して光源14から伝搬してくる加工光ELを射出する。 The light source 14 emits, for example, at least one of infrared light, visible light, and ultraviolet light as processing light EL. However, other types of light may be used as the processing light EL. The processing light EL may include a plurality of pulsed lights (that is, a plurality of pulsed beams). The processing light EL may include continuous light (CW: Continuous Wave). The processing light EL may be laser light. In this case, the light source 14 may include a laser light source (for example, a semiconductor laser such as a laser diode (LD). The laser light source may be a fiber laser, a CO2 laser, a YAG laser, an excimer laser, or the like) However, the processing light EL may not be laser light.The light source 14 may include at least one of an arbitrary light source (for example, an LED (Light Emitting Diode), a discharge lamp, etc.). The irradiation optical system 1211 is optically connected to the light source 14 via an optical transmission member 141 including at least one of an optical fiber and a light pipe. emits the processing light EL propagating from the light source 14 via the light transmission member 141 .
 気体供給装置15は、チャンバ空間163INをパージするためのパージガスの供給源である。パージガスは、不活性ガスを含む。不活性ガスの一例として、窒素ガス及びアルゴンガスの少なくとも一方があげられる。気体供給装置15は、筐体16の隔壁部材161に形成された供給口162及び気体供給装置15と供給口162とを接続する供給管151を介して、チャンバ空間163INに接続されている。気体供給装置15は、供給管151及び供給口162を介して、チャンバ空間163INにパージガスを供給する。その結果、チャンバ空間163INは、パージガスによってパージされた空間となる。チャンバ空間163INに供給されたパージガスは、隔壁部材161に形成された不図示の排出口から排出されてもよい。尚、気体供給装置15は、不活性ガスが格納されたボンベであってもよい。不活性ガスが窒素ガスである場合には、気体供給装置15は、大気を原料として窒素ガスを発生する窒素ガス発生装置であってもよい。 The gas supply device 15 is a supply source of purge gas for purging the chamber space 163IN. The purge gas contains inert gas. Examples of inert gas include at least one of nitrogen gas and argon gas. The gas supply device 15 is connected to the chamber space 163 IN via a supply port 162 formed in a partition member 161 of the housing 16 and a supply pipe 151 connecting the gas supply device 15 and the supply port 162 . The gas supply device 15 supplies purge gas to the chamber space 163 IN through the supply pipe 151 and the supply port 162 . As a result, the chamber space 163IN becomes a space purged with the purge gas. The purge gas supplied to the chamber space 163IN may be discharged from a discharge port (not shown) formed in the partition member 161 . Incidentally, the gas supply device 15 may be a cylinder containing an inert gas. When the inert gas is nitrogen gas, the gas supply device 15 may be a nitrogen gas generator that generates nitrogen gas using the atmosphere as a raw material.
 気体供給装置15は、チャンバ空間163INに加えて材料供給源11からの造形材料Mが供給される混合装置112にパージガスを供給してもよい。具体的には、気体供給装置15は、気体供給装置15と混合装置112とを接続する供給管152を介して混合装置112と接続されていてもよい。その結果、気体供給装置15は、供給管152を介して、混合装置112にパージガスを供給する。この場合、材料供給源11からの造形材料Mは、供給管152を介して気体供給装置15から供給されたパージガスによって、供給管111内を通って材料ノズル1212に向けて供給(具体的には、圧送)されてもよい。この場合、材料ノズル1212は、供給アウトレットから、造形材料Mを圧送するためのパージガスと共に造形材料Mを供給することになる。 The gas supply device 15 may supply purge gas to the mixing device 112 to which the modeling material M from the material supply source 11 is supplied in addition to the chamber space 163IN. Specifically, the gas supply device 15 may be connected to the mixing device 112 via a supply pipe 152 that connects the gas supply device 15 and the mixing device 112 . As a result, the gas supply device 15 supplies purge gas to the mixing device 112 via the supply pipe 152 . In this case, the molding material M from the material supply source 11 is supplied through the supply pipe 111 toward the material nozzle 1212 (specifically , pumped). In this case, the material nozzle 1212 will supply the building material M together with the purge gas for pumping the building material M from the supply outlet.
 筐体16は、筐体16の内部空間であるチャンバ空間163INに少なくとも加工ユニット12及びステージユニット13のそれぞれの少なくとも一部を収容する収容装置である。筐体16は、チャンバ空間163INを規定する隔壁部材161を含む。隔壁部材161は、チャンバ空間163INと、筐体16の外部空間164OUTとを隔てる部材である。この場合、隔壁部材161によって囲まれた空間が、チャンバ空間163INとなる。尚、隔壁部材161には、開閉可能な扉が設けられていてもよい。この扉は、ワークWをステージ131に載置する際に開かれてもよい。扉は、ステージ131からワークW及び/又は3次元構造物STを取り出す際に開かれてもよい。扉は、加工動作が行われている期間中には閉じられていてもよい。なお、筐体16の外部空間164OUTからチャンバ空間163INを視認するための観察窓(不図示)が、隔壁部材161に形成されていてもよい。 The housing 16 is a housing device that houses at least a part of each of the processing unit 12 and the stage unit 13 in a chamber space 163IN that is an internal space of the housing 16 . The housing 16 includes a partition member 161 that defines a chamber space 163IN. The partition member 161 is a member that separates the chamber space 163 IN and the external space 164 OUT of the housing 16 . In this case, the space surrounded by the partition member 161 becomes the chamber space 163IN. In addition, the partition member 161 may be provided with a door that can be opened and closed. This door may be opened when the workpiece W is placed on the stage 131 . The door may be opened when the workpiece W and/or the three-dimensional structure ST is taken out from the stage 131. The door may be closed during periods when machining operations are being performed. An observation window (not shown) for visually recognizing the chamber space 163IN from the external space 164OUT of the housing 16 may be formed in the partition member 161 .
 制御装置17は、加工装置1の動作を制御する。例えば、制御装置17は、加工パス生成装置2から送信された加工パス情報PIに基づいて、3次元構造物STを造形するように加工装置1の動作を制御してもよい。 The control device 17 controls the operation of the processing device 1. For example, the control device 17 may control the operation of the processing device 1 to shape the three-dimensional structure ST based on the processing path information PI transmitted from the processing path generation device 2 .
 制御装置17は、例えば、演算装置と、記憶装置とを備えていてもよい。演算装置は、例えば、CPU(Central Processing Unit)及びGPU(Graphics Processing Unit)の少なくとも一方を含んでいてもよい。記憶装置は、例えば、メモリを含んでいてもよい。制御装置17は、演算装置がコンピュータプログラムを実行することで、加工装置1の動作を制御する装置として機能する。このコンピュータプログラムは、制御装置17が行うべき後述する動作を演算装置に行わせる(つまり、実行させる)ためのコンピュータプログラムである。つまり、このコンピュータプログラムは、加工装置1に後述する動作を行わせるように制御装置17を機能させるためのコンピュータプログラムである。演算装置が実行するコンピュータプログラムは、制御装置17が備える記憶装置(つまり、記録媒体)に記録されていてもよいし、制御装置17に内蔵された又は制御装置17に外付け可能な任意の記憶媒体(例えば、ハードディスクや半導体メモリ)に記録されていてもよい。或いは、演算装置21は、実行するべきコンピュータプログラムを、通信装置18を介して、制御装置17の外部の装置からダウンロードしてもよい。 The control device 17 may include, for example, an arithmetic device and a storage device. The computing device may include, for example, at least one of a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit). A storage device may include, for example, memory. The control device 17 functions as a device that controls the operation of the processing device 1 as the arithmetic device executes a computer program. This computer program is a computer program for causing the arithmetic device to perform (that is, to execute) an operation to be performed by the control device 17, which will be described later. That is, this computer program is a computer program for causing the control device 17 to function so as to cause the processing device 1 to perform the operation described later. The computer program executed by the arithmetic device may be recorded in a storage device (that is, a recording medium) included in the control device 17, or may be stored in the control device 17 or may be externally attached to the control device 17. It may be recorded on a medium (for example, hard disk or semiconductor memory). Alternatively, the arithmetic device 21 may download the computer program to be executed from a device external to the control device 17 via the communication device 18 .
 制御装置17は、加工装置1の内部に設けられていなくてもよい。例えば、制御装置17は、加工装置1外にクラウドサーバ等のサーバとして設けられていてもよい。例えば、制御装置17は、加工パス生成装置2と一体化されていてもよい。この場合、制御装置17と加工装置1とは、有線及び/又は無線のネットワーク(例えば、通信ネットワーク4、或いは、データバス及び/又は通信回線)で接続されていてもよい。有線のネットワークとして、例えばIEEE1394、RS-232x、RS-422、RS-423、RS-485及びUSBの少なくとも一つに代表されるシリアルバス方式のインタフェースを用いるネットワークが用いられてもよい。有線のネットワークとして、パラレルバス方式のインタフェースを用いるネットワークが用いられてもよい。有線のネットワークとして、10BASE-T、100BASE-TX及び1000BASE-Tの少なくとも一つに代表されるイーサネット(登録商標)に準拠したインタフェースを用いるネットワークが用いられてもよい。無線のネットワークとして、電波を用いたネットワークが用いられてもよい。電波を用いたネットワークの一例として、IEEE802.1xに準拠したネットワーク(例えば、無線LAN及びBluetooth(登録商標)の少なくとも一方)があげられる。無線のネットワークとして、赤外線を用いたネットワークが用いられてもよい。無線のネットワークとして、光通信を用いたネットワークが用いられてもよい。この場合、制御装置17と加工装置1とは通信ネットワーク3等を介して各種の情報の送受信が可能となるように構成されていてもよい。また、制御装置17は、通信ネットワーク3等を介して加工装置1にコマンドや制御パラメータ等の情報を送信可能であってもよい。加工装置1が備える通信装置18は、制御装置17からのコマンドや制御パラメータ等の情報を、通信ネットワーク3等を介して受信する受信装置として機能してもよい。加工装置1が備える通信装置18は、制御装置17に対してコマンドや制御パラメータ等の情報を、通信ネットワーク3等を介して送信する送信装置として機能してもよい。或いは、制御装置17が行う処理のうちの一部を行う第1制御装置が加工装置1の内部に設けられている一方で、制御装置17が行う処理のうちの他の一部を行う第2制御装置が加工装置1の外部に設けられていてもよい。例えば、制御装置17が行う処理のうちの一部が、加工パス生成装置2によって行われてもよい。 The control device 17 does not have to be provided inside the processing device 1 . For example, the control device 17 may be provided outside the processing device 1 as a server such as a cloud server. For example, the control device 17 may be integrated with the machining path generation device 2 . In this case, the control device 17 and the processing device 1 may be connected by a wired and/or wireless network (for example, the communication network 4, or a data bus and/or communication line). As a wired network, a network using a serial bus interface represented by at least one of IEEE1394, RS-232x, RS-422, RS-423, RS-485 and USB may be used. A network using a parallel bus interface may be used as the wired network. As a wired network, a network using an Ethernet (registered trademark) interface represented by at least one of 10BASE-T, 100BASE-TX, and 1000BASE-T may be used. A network using radio waves may be used as the wireless network. An example of a network using radio waves is a network conforming to IEEE802.1x (for example, at least one of wireless LAN and Bluetooth (registered trademark)). A network using infrared rays may be used as the wireless network. A network using optical communication may be used as the wireless network. In this case, the control device 17 and the processing device 1 may be configured to be able to transmit and receive various information via the communication network 3 or the like. Also, the control device 17 may be capable of transmitting information such as commands and control parameters to the processing device 1 via the communication network 3 or the like. The communication device 18 included in the processing device 1 may function as a receiving device that receives information such as commands and control parameters from the control device 17 via the communication network 3 or the like. The communication device 18 included in the processing apparatus 1 may function as a transmission device that transmits information such as commands and control parameters to the control device 17 via the communication network 3 or the like. Alternatively, a first control device that performs part of the processing performed by the control device 17 is provided inside the processing device 1, while a second control device that performs another part of the processing performed by the control device 17 is provided. The control device may be provided outside the processing device 1 . For example, part of the processing performed by the control device 17 may be performed by the machining path generation device 2 .
 制御装置17は、加工システムSYSを制御するために、AI(人工知能)を用いてもよい。つまり、制御装置17がコンピュータプログラムを実行することで、制御装置17内に、AI(人工知能)を利用する論理的な機能ブロックが実現されてもよい。尚、本実施形態における「AI」は、学習可能な又は学習済みの演算モデル(以降、“学習モデル”と称する)を意味していてもよい。学習モデルの一例として、ニューラルネットワークを含む演算モデルがあげられる。学習モデルは、機械学習によって学習されてもよい(つまり、構築されてもよい)。学習モデルは、深層学習によって学習されてもよい。学習モデルの学習は、例えば、ニューラルネットワークのパラメータの学習を含んでいてもよい。 The control device 17 may use AI (artificial intelligence) to control the processing system SYS. In other words, the control device 17 may execute a computer program to implement logical functional blocks using AI (artificial intelligence) within the control device 17 . Note that "AI" in the present embodiment may mean a learnable or learned computational model (hereinafter referred to as "learning model"). An example of a learning model is a computational model including a neural network. A learning model may be learned (ie, constructed) by machine learning. The learning model may be trained by deep learning. Learning a learning model may include, for example, learning parameters of a neural network.
 尚、制御装置17が実行するコンピュータプログラムを記録する記録媒体としては、CD-ROM、CD-R、CD-RWやフレキシブルディスク、MO、DVD-ROM、DVD-RAM、DVD-R、DVD+R、DVD-RW、DVD+RW及びBlu-ray(登録商標)等の光ディスク、磁気テープ等の磁気媒体、光磁気ディスク、USBメモリ等の半導体メモリ、及び、その他プログラムを格納可能な任意の媒体の少なくとも一つが用いられてもよい。記録媒体には、コンピュータプログラムを記録可能な機器(例えば、コンピュータプログラムがソフトウェア及びファームウェア等の少なくとも一方の形態で実行可能な状態に実装された汎用機器又は専用機器)が含まれていてもよい。更に、コンピュータプログラムに含まれる各処理や機能は、制御装置17(つまり、コンピュータ)がコンピュータプログラムを実行することで制御装置17内に実現される論理的な処理ブロックによって実現されてもよいし、制御装置17が備える所定のゲートアレイ(FPGA、ASIC)等のハードウェアによって実現されてもよいし、論理的な処理ブロックとハードウェアの一部の要素を実現する部分的ハードウェアモジュールとが混在する形式で実現してもよい。 Recording media for recording computer programs executed by the control device 17 include CD-ROMs, CD-Rs, CD-RWs, flexible disks, MOs, DVD-ROMs, DVD-RAMs, DVD-Rs, DVD+Rs, and DVDs. - At least one of optical discs such as RW, DVD+RW and Blu-ray (registered trademark), magnetic media such as magnetic tapes, magneto-optical discs, semiconductor memories such as USB memories, and other arbitrary media that can store programs may be The recording medium may include a device capable of recording a computer program (for example, a general-purpose device or a dedicated device in which the computer program is implemented in at least one form of software, firmware, etc.). Furthermore, each process and function included in the computer program may be realized by a logical processing block realized in the control device 17 by the control device 17 (that is, computer) executing the computer program, It may be implemented by hardware such as a predetermined gate array (FPGA, ASIC) provided in the control device 17, or a mixture of logical processing blocks and partial hardware modules that implement some hardware elements. It can be implemented in the form of
 通信装置18は、通信ネットワーク3を介して、加工パス生成装置2と通信可能である。本実施形態では、通信装置18は、加工パス生成装置2が生成した加工パス情報PIを加工パス生成装置2から受信可能である。 The communication device 18 can communicate with the machining path generation device 2 via the communication network 3. In this embodiment, the communication device 18 can receive the machining path information PI generated by the machining path generation device 2 from the machining path generation device 2 .
 (2-2)加工装置1が行う動作
 続いて、加工装置1が行う動作について説明する。上述したように、加工装置1は、3次元構造物STを造形するための加工動作(本実施形態では、付加加工動作)を行う。このため、以下では、加工装置1が行う動作として、加工動作について説明する。上述したように、加工装置1は、ワークWに対して付加加工を行うことで3次元構造物STを造形するための加工動作を行う。具体的には、加工装置1は、レーザ肉盛溶接法を用いて3次元構造物STを造形する。このため、加工装置1は、レーザ肉盛溶接法に準拠した既存の付加加工動作を行うことで、3次元構造物STを造形してもよい。以下、レーザ肉盛溶接法を用いて3次元構造物STを造形する加工動作の一例について簡単に説明する。
(2-2) Operations Performed by Processing Apparatus 1 Next, operations performed by the processing apparatus 1 will be described. As described above, the processing device 1 performs processing operations (additional processing operations in the present embodiment) for modeling the three-dimensional structure ST. For this reason, below, processing operation is explained as operation which processing device 1 performs. As described above, the processing apparatus 1 performs processing operations for forming the three-dimensional structure ST by performing additional processing on the workpiece W. FIG. Specifically, the processing apparatus 1 forms the three-dimensional structure ST using a laser build-up welding method. Therefore, the processing apparatus 1 may form the three-dimensional structure ST by performing an existing additional processing operation based on the laser build-up welding method. An example of the processing operation for forming the three-dimensional structure ST using the laser build-up welding method will be briefly described below.
 加工装置1は、3次元構造物STを造形するために、例えば、Z軸方向に沿って並ぶ複数の層状の部分構造物(以下、“構造層”と称する)SLを順に造形していく。例えば、加工装置1は、3次元構造物STをZ軸方向に沿って輪切りにすることで得られる複数の構造層SLを1層ずつ順に造形していく。その結果、複数の構造層SLが積層された積層構造体である3次元構造物STが造形される。以下、複数の構造層SLを1層ずつ順に造形していくことで3次元構造物STを造形する動作の流れについて説明する。 In order to form the three-dimensional structure ST, the processing apparatus 1 sequentially forms, for example, a plurality of layered partial structures (hereinafter referred to as "structural layers") SL arranged along the Z-axis direction. For example, the processing apparatus 1 sequentially forms a plurality of structural layers SL obtained by slicing the three-dimensional structure ST along the Z-axis direction one by one. As a result, a three-dimensional structure ST, which is a laminated structure in which a plurality of structural layers SL are laminated, is formed. The flow of operations for modeling the three-dimensional structure ST by sequentially modeling the plurality of structural layers SL one by one will be described below.
 まず、各構造層SLを造形する動作について図4(a)から図4(e)を参照して説明する。加工装置1は、制御装置17の制御下で、ワークWの表面又は造形済みの構造層SLの表面に相当する造形面MS上の所望領域に目標照射領域EAが設定されるように、加工ヘッド121及びステージ131の少なくとも一方を移動させる。その後、加工装置1は、目標照射領域EAに対して照射光学系1211から加工光ELを照射する。この際、Z軸方向において加工光ELが集光される集光面は、造形面MSに一致していてもよい。或いは、Z軸方向において集光面は、造形面MSから外れていてもよい。その結果、図4(a)に示すように、加工光ELが照射された造形面MS上に溶融池(つまり、加工光ELによって溶融した金属等のプール)MPが形成される。更に、加工装置1は、制御装置17の制御下で、材料ノズル1212から造形材料Mを供給する。その結果、溶融池MPに造形材料Mが供給される。溶融池MPに供給された造形材料Mは、溶融池MPに照射されている加工光ELによって溶融する。或いは、材料ノズル1212から供給された造形材料Mは、溶融池MPに到達する前に加工光ELによって溶融し、溶融した造形材料Mが溶融池MPに供給されてもよい。その後、加工ヘッド121及びステージ131の少なくとも一方の移動に伴って溶融池MPに加工光ELが照射されなくなると、溶融池MPにおいて溶融した造形材料Mは、冷却されて固化(つまり、凝固)する。その結果、図4(c)に示すように、固化した造形材料Mから構成される造形物が造形面MS上に堆積される。 First, the operation of modeling each structural layer SL will be described with reference to FIGS. 4(a) to 4(e). Under the control of the control device 17, the processing apparatus 1 controls the processing head so that the target irradiation area EA is set in a desired area on the modeling surface MS corresponding to the surface of the workpiece W or the surface of the structural layer SL that has been modeled. At least one of 121 and stage 131 is moved. After that, the processing apparatus 1 irradiates the target irradiation area EA with the processing light EL from the irradiation optical system 1211 . At this time, the condensing surface on which the processing light EL is condensed in the Z-axis direction may coincide with the modeling surface MS. Alternatively, the condensing surface may be off the modeling surface MS in the Z-axis direction. As a result, as shown in FIG. 4A, a molten pool (that is, a pool of metal or the like melted by the processing light EL) MP is formed on the modeling surface MS irradiated with the processing light EL. Furthermore, the processing device 1 supplies the modeling material M from the material nozzle 1212 under the control of the control device 17 . As a result, the modeling material M is supplied to the molten pool MP. The modeling material M supplied to the molten pool MP is melted by the processing light EL irradiated to the molten pool MP. Alternatively, the modeling material M supplied from the material nozzle 1212 may be melted by the processing light EL before reaching the molten pool MP, and the molten modeling material M may be supplied to the molten pool MP. After that, when at least one of the processing head 121 and the stage 131 moves and the processing light EL is no longer applied to the molten pool MP, the modeling material M melted in the molten pool MP is cooled and solidified (that is, solidified). . As a result, as shown in FIG. 4C, a modeled object composed of the solidified modeling material M is deposited on the modeling surface MS.
 加工装置1は、このような加工光ELの照射による溶融池MPの形成、溶融池MPへの造形材料Mの供給、供給された造形材料Mの溶融及び溶融した造形材料Mの固化を含む一連の造形処理を、図4(d)に示すように、造形面MSに対して加工ヘッド121を、X軸方向及びY軸方向の少なくとも一方に沿って移動させながら繰り返す。この際、加工装置1は、造形面MS上において造形物を造形したい領域に加工光ELを照射する一方で、造形面MS上において造形物を造形したくない領域に加工光ELを照射しない。つまり、加工装置1は、造形面MS上を所定の移動経路に沿って目標照射領域EAを移動させながら、造形物を造形したい領域の分布の態様に応じたタイミングで加工光ELを造形面MSに照射する。 The processing apparatus 1 performs a series of operations including forming the molten pool MP by irradiating the processing light EL, supplying the modeling material M to the molten pool MP, melting the supplied modeling material M, and solidifying the molten modeling material M. is repeated while moving the machining head 121 along at least one of the X-axis direction and the Y-axis direction with respect to the modeling surface MS, as shown in FIG. 4(d). At this time, the processing device 1 irradiates the processing light EL to a region on the modeling surface MS where the object is desired to be modeled, but does not irradiate a region on the modeling surface MS where the object is not desired to be modeled with the processing light EL. That is, the processing apparatus 1 moves the target irradiation area EA along the predetermined movement path on the modeling surface MS, and irradiates the processing light EL on the modeling surface MS at a timing corresponding to the distribution of the area where the object is desired to be modeled. to irradiate.
 造形面MS上での目標照射領域EAの移動経路(特に、加工光ELが照射される照射位置の移動経路)は、加工パスP(言い換えれば、ツールパスであり、後述する図8(c)参照)と称されてもよい。加工パス情報PIは、この加工パスPに関する情報を含んでいてもよい。このため、加工装置1は、加工パス情報PIに基づいて、造形面MS上を所定の移動経路に沿って目標照射領域EAを移動させながら、造形物を造形したい領域の分布の態様に応じたタイミングで加工光ELを造形面MSに照射する。尚、加工光ELが照射された位置において付加加工が行われるがゆえに、加工パスPは、造形面MS上で加工装置1が付加加工を行う加工位置(つまり、加工装置1によって加工される加工位置であり、加工装置1が造形物を造形する造形位置)の移動経路を意味していてもよい。 The movement path of the target irradiation area EA on the modeling surface MS (particularly, the movement path of the irradiation position irradiated with the processing light EL) is the machining path P (in other words, the tool path, shown in FIG. 8C described later). reference). The machining pass information PI may include information on this machining pass P. FIG. Therefore, based on the processing path information PI, the processing apparatus 1 moves the target irradiation area EA along a predetermined movement path on the modeling surface MS, and adjusts the distribution of the area where the object is desired to be modeled. The molding surface MS is irradiated with the processing light EL at the timing. Since the additional processing is performed at the position irradiated with the processing light EL, the processing path P is the processing position where the processing device 1 performs the additional processing on the modeling surface MS (that is, the processing performed by the processing device 1). position, and may mean a movement path of a modeling position where the processing apparatus 1 models a modeled object.
 その結果、溶融池MPもまた、目標照射領域EAの移動経路に応じた移動経路に沿って造形面MS上を移動することになる。具体的には、溶融池MPは、造形面MS上において、目標照射領域EAの移動経路に沿った領域のうち加工光ELが照射された部分に順次形成される。その結果、図4(e)に示すように、造形面MS上に、溶融した後に固化した造形材料Mの集合体である造形物に相当する構造層SLが造形される。つまり、溶融池MPの移動経路に応じたパターンで造形面MS上に造形された造形物の集合体に相当する構造層SL(つまり、平面視において、溶融池MPの移動経路に応じた形状を有する構造層SL)が造形される。尚、造形物を造形したくない領域に目標照射領域EAが設定されている場合、加工装置1は、加工光ELを目標照射領域EAに照射するとともに、造形材料Mの供給を停止してもよい。また、造形物を造形したくない領域に目標照射領域EAが設定されている場合に、加工装置1は、造形材料Mを目標照射領域EAに供給するとともに、溶融池MPができない強度の加工光ELを目標照射領域EAに照射してもよい。 As a result, the molten pool MP also moves on the molding surface MS along the movement path corresponding to the movement path of the target irradiation area EA. Specifically, the molten pool MP is sequentially formed in a portion irradiated with the processing light EL in the area along the moving path of the target irradiation area EA on the modeling surface MS. As a result, as shown in FIG. 4(e), a structure layer SL corresponding to a modeled object, which is an aggregate of the modeling material M solidified after being melted, is modeled on the modeling surface MS. In other words, the structural layer SL corresponds to an assembly of objects formed on the modeling surface MS in a pattern corresponding to the moving path of the molten pool MP (that is, in a plan view, the structure layer SL has a shape corresponding to the moving path of the molten pool MP). A structural layer SL) having a shape is formed. When the target irradiation area EA is set in an area in which the object is not desired to be molded, the processing apparatus 1 irradiates the target irradiation area EA with the processing light EL, and even if the supply of the molding material M is stopped. good. Further, when the target irradiation area EA is set in an area in which the object is not desired to be molded, the processing apparatus 1 supplies the modeling material M to the target irradiation area EA, and also supplies the processing light with an intensity that cannot form the molten pool MP. The target irradiation area EA may be irradiated with EL.
 加工装置1は、このような構造層SLを造形するための動作を、制御装置17の制御下で、加工パス情報PIに基づいて繰り返し行う。具体的には、まず、加工装置1は、ワークWの表面に相当する造形面MS上に1層目の構造層SL#1を造形するための動作を、加工パス情報PI(特に、構造層SL#1を造形するための加工パスPに関する情報)に基づいて行う。その結果、造形面MS上には、図5(a)に示すように、構造層SL#1が造形される。その後、加工装置1は、構造層SL#1の表面(つまり、上面)を新たな造形面MSに設定した上で、当該新たな造形面MS上に2層目の構造層SL#2を造形する。構造層SL#2を造形するために、制御装置17は、まず、ステージ131に対して加工ヘッド121がZ軸に沿って移動するように、ヘッド駆動系122及びステージ駆動系132の少なくとも一方を制御する。具体的には、制御装置17は、ヘッド駆動系122及びステージ駆動系132の少なくとも一方を制御して、目標照射領域EAが構造層SL#1の表面(つまり、新たな造形面MS)に設定されるように、+Z側に向かって加工ヘッド121を移動させる及び/又は-Z側に向かってステージ131を移動させる。その後、加工装置1は、制御装置17の制御下で、構造層SL#1を造形する動作と同様の動作で、加工パス情報PI(特に、構造層SL#2に対応する加工パスPに関する情報)に基づいて、構造層SL#1上に構造層SL#2を造形する。その結果、図5(b)に示すように、構造層SL#2が造形される。以降、同様の動作が、ワークW上に造形するべき3次元構造物STを構成する全ての構造層SLが造形されるまで繰り返される。その結果、図5(c)に示すように、複数の構造層SLが積層された積層構造物によって、3次元構造物STが造形される。 The processing device 1 repeatedly performs the operation for forming such a structure layer SL under the control of the control device 17 based on the processing pass information PI. Specifically, first, the processing apparatus 1 performs an operation for forming the first structural layer SL#1 on the forming surface MS corresponding to the surface of the work W, according to the processing path information PI (particularly, the structural layer information on the machining pass P for modeling SL#1). As a result, the structural layer SL#1 is modeled on the modeling surface MS as shown in FIG. 5(a). After that, the processing apparatus 1 sets the surface (that is, the upper surface) of the structural layer SL#1 as a new modeling surface MS, and forms the second structural layer SL#2 on the new modeling surface MS. do. In order to shape the structural layer SL#2, the controller 17 first activates at least one of the head drive system 122 and the stage drive system 132 so that the processing head 121 moves along the Z-axis with respect to the stage 131. Control. Specifically, the control device 17 controls at least one of the head drive system 122 and the stage drive system 132 to set the target irradiation area EA to the surface of the structure layer SL#1 (that is, the new modeling surface MS). The processing head 121 is moved toward the +Z side and/or the stage 131 is moved toward the -Z side so that After that, under the control of the control device 17, the processing apparatus 1 performs processing path information PI (in particular, information on the processing path P corresponding to the structure layer SL#2) in the same operation as the operation for modeling the structure layer SL#1. ), the structural layer SL#2 is formed on the structural layer SL#1. As a result, the structural layer SL#2 is formed as shown in FIG. 5(b). After that, similar operations are repeated until all structural layers SL constituting the three-dimensional structure ST to be modeled on the workpiece W are modeled. As a result, as shown in FIG. 5(c), a three-dimensional structure ST is formed by a laminated structure in which a plurality of structural layers SL are laminated.
 (3)加工パス生成装置2
 続いて、加工システムSYSが備える加工パス生成装置2について説明する。
(3) Machining path generation device 2
Next, the machining path generation device 2 provided in the machining system SYS will be described.
 (3-1)加工パス生成装置2の構成
 初めに、図6を参照しながら、加工パス生成装置2の構成について説明する。図6は、加工パス生成装置2の構成を示すブロック図である。
(3-1) Configuration of Machining Path Generation Device 2 First, the configuration of the machining path generation device 2 will be described with reference to FIG. FIG. 6 is a block diagram showing the configuration of the machining path generation device 2. As shown in FIG.
 図6に示すように、加工パス生成装置2は、演算装置21と、記憶装置22と、通信装置23とを備えている。更に、加工パス生成装置2は、入力装置24と、表示装置25とを備えていてもよい。但し、加工パス生成装置2は、入力装置24及び表示装置25の少なくとも一つを備えていなくてもよい。演算装置21と、記憶装置22と、通信装置23と、入力装置24と、表示装置25とは、データバス26を介して接続されていてもよい。 As shown in FIG. 6, the machining path generation device 2 includes an arithmetic device 21, a storage device 22, and a communication device 23. Furthermore, the machining path generation device 2 may comprise an input device 24 and a display device 25 . However, the machining path generation device 2 does not have to include at least one of the input device 24 and the display device 25 . Arithmetic device 21 , storage device 22 , communication device 23 , input device 24 , and display device 25 may be connected via data bus 26 .
 演算装置21は、例えば、CPU及びGPUの少なくとも一方を含む。演算装置21は、コンピュータプログラムを読み込む。例えば、演算装置21は、記憶装置22が記憶しているコンピュータプログラムを読み込んでもよい。例えば、演算装置21は、コンピュータで読み取り可能であって且つ一時的でない記録媒体が記憶しているコンピュータプログラムを、図示しない記録媒体読み取り装置を用いて読み込んでもよい。演算装置21は、通信装置23を介して、加工パス生成装置2の外部に配置される不図示の装置からコンピュータプログラムを取得してもよい(つまり、ダウンロードしてもよい又は読み込んでもよい)。演算装置21は、読み込んだコンピュータプログラムを実行する。その結果、演算装置21内には、加工パス生成装置2が行うべき動作(例えば、加工パス情報PIを生成する動作)を実行するための論理的な機能ブロックが実現される。つまり、演算装置21は、加工パス生成装置2が行うべき動作を実行するための論理的な機能ブロックを実現するためのコントローラとして機能可能である。 The computing device 21 includes, for example, at least one of a CPU and a GPU. Arithmetic device 21 reads a computer program. For example, arithmetic device 21 may read a computer program stored in storage device 22 . For example, the computing device 21 may read a computer program stored in a computer-readable non-temporary recording medium using a recording medium reading device (not shown). The computing device 21 may acquire (that is, download or read) a computer program from a device (not shown) arranged outside the machining path generation device 2 via the communication device 23 . Arithmetic device 21 executes the read computer program. As a result, a logical functional block for executing the operation (for example, the operation of generating machining path information PI) that the machining path generation device 2 should perform is realized in the arithmetic unit 21 . That is, the arithmetic device 21 can function as a controller for realizing logical functional blocks for executing the operations that the machining path generation device 2 should perform.
 図6には、加工パス情報PIを生成するために演算装置21内に実現される論理的な機能ブロックの一例が示されている。図4に示すように、演算装置21内には、生成装置と称されてもよいパス生成部211と、判定装置と称されてもよい欠陥判定部212と、表示制御装置と称されてもよい表示制御部213と、修正装置と称されてもよいパス修正部214とが実現される。尚、パス生成部211、欠陥判定部212、表示制御部213及びパス修正部214のそれぞれの動作については後に詳述するが、その概要についてここで簡単に説明する。パス生成部211は、加工装置1が造形するべき3次元構造物STの3Dモデル(3次元モデル)を示す3Dモデルデータに基づいて、3次元構造物STを造形するための加工パス情報PIを生成する。欠陥判定部212は、パス生成部211によって生成された加工パス情報PIに基づいて加工装置1が3次元構造物STを造形した場合に、3次元構造物STに欠陥が生ずるか否かを判定する。表示制御部213は、欠陥判定部212が3次元構造物STに欠陥が生ずると判定した場合に、欠陥に関する情報を表示するように表示装置25を制御する。パス修正部214は、欠陥判定部212の判定結果に基づいて、パス生成部211が生成した加工パス情報PIを修正する。典型的には、パス修正部214は、欠陥判定部212が3次元構造物STに欠陥が生ずると判定した場合に、パス生成部211が生成した加工パス情報PIを修正する。 FIG. 6 shows an example of logical functional blocks implemented within the arithmetic unit 21 to generate the machining path information PI. As shown in FIG. 4, the arithmetic unit 21 includes a path generation unit 211, which may be called a generation device, a defect determination unit 212, which may be called a determination device, and a display control device. A good display control unit 213 and a path correction unit 214, which may be called a correction device, are implemented. The operations of the path generation unit 211, the defect determination unit 212, the display control unit 213, and the path correction unit 214 will be described in detail later, but the outline thereof will be briefly described here. The path generation unit 211 generates processing path information PI for forming the three-dimensional structure ST based on 3D model data representing a 3D model (three-dimensional model) of the three-dimensional structure ST to be formed by the processing apparatus 1. Generate. The defect determination unit 212 determines whether or not a defect will occur in the three-dimensional structure ST when the processing apparatus 1 forms the three-dimensional structure ST based on the processing path information PI generated by the path generation unit 211. do. The display control unit 213 controls the display device 25 to display information about the defect when the defect determination unit 212 determines that the three-dimensional structure ST has a defect. The path correction section 214 corrects the machining path information PI generated by the path generation section 211 based on the determination result of the defect determination section 212 . Typically, the path correction section 214 corrects the machining path information PI generated by the path generation section 211 when the defect determination section 212 determines that a defect occurs in the three-dimensional structure ST.
 尚、加工パス情報PIを生成するために演算装置21内に実現される論理的な機能ブロックの一部は、AI(人工知能)によって実現されてもよい。つまり、加工パス情報PIを生成するために演算装置21内に実現される論理的な機能ブロックの一部は、AI(人工知能)を利用する機能ブロックであってもよい。例えば、パス生成部211は、AIを利用することで、加工パス情報PIを生成してもよい。欠陥判定部212は、AIを利用することで、3次元構造物STに欠陥が生ずるか否かを判定してもよい。表示制御部213は、AIを利用することで、欠陥に関する情報を表示するように表示装置25を制御してもよい。パス修正部214は、AIを利用することで、加工パス情報PIを修正してもよい。 It should be noted that part of the logical functional blocks realized within the arithmetic device 21 for generating the machining path information PI may be realized by AI (artificial intelligence). In other words, some of the logical functional blocks implemented in the arithmetic unit 21 to generate the machining path information PI may be functional blocks using AI (artificial intelligence). For example, the path generation unit 211 may generate the machining path information PI using AI. The defect determination unit 212 may determine whether or not a defect occurs in the three-dimensional structure ST by using AI. The display control unit 213 may use AI to control the display device 25 to display information about defects. The path correction unit 214 may correct the machining path information PI by using AI.
 記憶装置22は、所望のデータを記憶可能である。例えば、記憶装置22は、演算装置21が実行するコンピュータプログラムを一時的に記憶していてもよい。記憶装置22は、演算装置21がコンピュータプログラムを実行している際に演算装置21が一時的に使用するデータを一時的に記憶してもよい。記憶装置22は、加工パス生成装置2が長期的に保存するデータを記憶してもよい。尚、記憶装置22は、RAM(Random Access Memory)、ROM(Read Only Memory)、ハードディスク装置、光磁気ディスク装置、SSD(Solid State Drive)及びディスクアレイ装置のうちの少なくとも一つを含んでいてもよい。つまり、記憶装置22は、一時的でない記録媒体を含んでいてもよい。 The storage device 22 can store desired data. For example, the storage device 22 may temporarily store computer programs executed by the arithmetic device 21 . The storage device 22 may temporarily store data temporarily used by the arithmetic device 21 while the arithmetic device 21 is executing a computer program. The storage device 22 may store data that the machining path generation device 2 saves over a long period of time. The storage device 22 may include at least one of RAM (Random Access Memory), ROM (Read Only Memory), hard disk device, magneto-optical disk device, SSD (Solid State Drive), and disk array device. good. That is, the storage device 22 may include non-transitory recording media.
 通信装置23は、通信ネットワーク3を介して、加工装置1と通信可能である。本実施形態では、通信装置23は、パス生成部211が生成した加工パス情報PIを加工装置1に送信可能である。 The communication device 23 can communicate with the processing device 1 via the communication network 3. In this embodiment, the communication device 23 can transmit the machining path information PI generated by the path generation unit 211 to the processing device 1 .
 入力装置24は、加工パス生成装置2の外部からの加工パス生成装置2に対する情報の入力を受け付ける装置である。例えば、入力装置24は、加工パス生成装置2のオペレータが操作可能な操作装置(例えば、キーボード、マウス及びタッチパネルのうちの少なくとも一つ)を含んでいてもよい。例えば、入力装置24は、加工パス生成装置2に対して外付け可能な記録媒体にデータとして記録されている情報を読み取り可能な読取装置を含んでいてもよい。例えば、入力装置24は、通信ネットワークを介して情報を受信可能な通信装置を含んでいてもよい。尚、通信装置23が入力装置24として用いられてもよい。 The input device 24 is a device that receives input of information to the machining path generation device 2 from outside the machining path generation device 2 . For example, the input device 24 may include an operation device (for example, at least one of a keyboard, a mouse, and a touch panel) that can be operated by the operator of the machining path generation device 2 . For example, the input device 24 may include a reading device capable of reading information recorded as data on a recording medium that can be externally attached to the machining path generation device 2 . For example, input device 24 may include a communication device capable of receiving information over a communication network. Incidentally, the communication device 23 may be used as the input device 24 .
 表示装置25は、情報を画像として出力可能な装置である。つまり、表示装置25は、出力したい情報を示す画像を表示可能な装置である。本実施形態では、表示装置25は、欠陥判定部212が3次元構造物STに欠陥が生ずると判定した場合に、欠陥に関する情報を表示する。 The display device 25 is a device capable of outputting information as an image. That is, the display device 25 is a device capable of displaying an image representing information to be output. In this embodiment, the display device 25 displays information about the defect when the defect determination unit 212 determines that the three-dimensional structure ST has a defect.
 (3-2)加工パス生成装置2が行う動作
 続いて、図7を参照しながら、加工パス生成装置2が行う動作について説明する。図7は、加工パス生成装置2が行う動作の流れを示すフローチャートである。尚、上述したように、加工パス生成装置2の演算装置21がコンピュータプログラムを実行すると、演算装置21内には、加工パス生成装置2が行うべき動作(例えば、加工パス情報PIを生成する動作)を実行するための論理的な機能ブロックが実現される。図7に示すフローチャートが示す動作は、この論理的な機能ブロックによって行われる。このため、図7に示すフローチャートは、加工パス生成装置2が実行するコンピュータプログラム(つまり、ソフトウェア)によって実現される情報処理の流れを示しているとみなしてもよい。
(3-2) Operations Performed by Machining Path Generation Device 2 Subsequently, operations performed by the machining path generation device 2 will be described with reference to FIG. FIG. 7 is a flow chart showing the flow of operations performed by the machining path generation device 2 . As described above, when the arithmetic device 21 of the machining path generation device 2 executes the computer program, the operation to be performed by the machining path generation device 2 (for example, the operation to generate the machining path information PI) is stored in the arithmetic device 21. ) are implemented. The operations shown in the flowchart shown in FIG. 7 are performed by these logical functional blocks. Therefore, the flowchart shown in FIG. 7 may be regarded as showing the flow of information processing realized by the computer program (that is, software) executed by the machining path generation device 2 .
 図7に示すように、パス生成部211は、加工装置1が造形するべき3次元構造物STの3Dモデル(3次元モデル)を示す3Dモデルデータを取得する(ステップS11)。例えば、パス生成部211は、入力装置24を介して加工パス生成装置2に入力された3Dモデルデータを取得してもよい。パス生成部211は、通信装置23を介して加工パス生成装置2の外部の装置から3Dモデルデータを取得(例えば、受信)してもよい。パス生成部211は、加工システムSYS内に設けられた不図示の計測装置及び加工システムSYSとは別に設けられた3次元形状計測機の少なくとも一方で計測された立体物の計測データを、3Dモデルデータとして取得してもよい。 As shown in FIG. 7, the path generation unit 211 acquires 3D model data representing a 3D model (three-dimensional model) of the three-dimensional structure ST to be modeled by the processing device 1 (step S11). For example, the path generation unit 211 may acquire 3D model data input to the machining path generation device 2 via the input device 24 . The path generation unit 211 may acquire (for example, receive) 3D model data from a device external to the machining path generation device 2 via the communication device 23 . The path generation unit 211 converts measurement data of a three-dimensional object measured by at least one of a measuring device (not shown) provided in the processing system SYS and a three-dimensional shape measuring machine provided separately from the processing system SYS to a 3D model. It may be acquired as data.
 3Dモデルデータのフォーマットは、どのようなフォーマットであってもよい。例えば、パス生成部211は、STL(Standard Triangulated Language)ファイルフォーマットに準拠した3Dモデルデータを取得してもよい。例えば、パス生成部211は、STEP(Standard for Exchange of Product Model Data)ファイルフォーマットに準拠した3Dモデルデータを取得してもよい。例えば、パス生成部211は、IGES(Initial Graphics Exchange Specification)ファイルフォーマットに準拠した3Dモデルデータを取得してもよい。例えば、パス生成部211は、DWGファイルフォーマットに準拠した3Dモデルデータを取得してもよい。例えば、パス生成部211は、DXF(Drawing Exchange Format)ファイルフォーマットに準拠した3Dモデルデータを取得してもよい。例えば、パス生成部211は、VRML(Virtual Reality Modeling Language)ファイルフォーマットに準拠した3Dモデルデータを取得してもよい。例えば、パス生成部211は、ISO10303ファイルフォーマットに準拠した3Dモデルデータを取得してもよい。 The format of the 3D model data may be any format. For example, the path generation unit 211 may acquire 3D model data conforming to the STL (Standard Triangulated Language) file format. For example, the path generation unit 211 may acquire 3D model data conforming to the STEP (Standard for Exchange of Product Model Data) file format. For example, the path generation unit 211 may acquire 3D model data conforming to the IGES (Initial Graphics Exchange Specification) file format. For example, the path generation unit 211 may acquire 3D model data conforming to the DWG file format. For example, the path generation unit 211 may acquire 3D model data conforming to the DXF (Drawing Exchange Format) file format. For example, the path generation unit 211 may acquire 3D model data conforming to the VRML (Virtual Reality Modeling Language) file format. For example, the path generation unit 211 may acquire 3D model data conforming to the ISO10303 file format.
 その後、パス生成部211は、ステップS11で取得された3Dモデルデータに基づいて、加工装置1によって3次元構造物STを造形するための加工パス情報PIを生成する(ステップS12)。つまり、パス生成部211は、ステップS11で取得された3Dモデルデータに基づいて、3次元構造物STを造形するように加工装置1を制御するための加工パス情報PIを生成する(ステップS12)。以下、図8(a)から図8(c)を参照しながら、加工パス情報PIの一例について説明する。 After that, the path generation unit 211 generates processing path information PI for molding the three-dimensional structure ST by the processing device 1 based on the 3D model data acquired in step S11 (step S12). That is, the path generation unit 211 generates processing path information PI for controlling the processing device 1 to form the three-dimensional structure ST based on the 3D model data acquired in step S11 (step S12). . An example of the machining pass information PI will be described below with reference to FIGS. 8(a) to 8(c).
 図8(a)は、加工装置1によって造形される3次元構造物STの一例を示している。以降、図8(a)に示す3次元構造物STを、“3次元構造物ST8”と称する。図8(a)に示す例では、3次元構造物ST8は、XY平面に沿った板状の底部材ST8aと、底部材ST8aからZ軸方向に沿って延びる板状の壁部材ST8bとを含んでいる。このような図8(a)に示す3次元構造物ST8を加工装置1が造形する場合であっても、上述したように、加工装置1は、3次元構造物ST8をZ軸方向に沿って輪切りにすることで得られる複数の構造層SLを1層ずつ順に造形していく。つまり、図8(b)に示すように、加工装置1は、構造層SL#1からSL#n(尚、nは、3次元構造物ST8を構成する構造層SLの総数)を順に造形していく。尚、以下の説明では、説明の便宜上、底部材STaが構造層SL#1によって構成され、壁部材STbが構造層SL#2からSL#nによって構成される例について説明する。 FIG. 8(a) shows an example of a three-dimensional structure ST formed by the processing device 1. FIG. Hereinafter, the three-dimensional structure ST shown in FIG. 8(a) will be referred to as "three-dimensional structure ST8". In the example shown in FIG. 8A, the three-dimensional structure ST8 includes a plate-like bottom member ST8a along the XY plane and a plate-like wall member ST8b extending from the bottom member ST8a along the Z-axis direction. I'm in. Even when the processing apparatus 1 shapes the three-dimensional structure ST8 shown in FIG. 8A, as described above, the processing apparatus 1 moves the three-dimensional structure ST8 along the Z axis direction A plurality of structural layers SL obtained by slicing are formed one by one. That is, as shown in FIG. 8B, the processing apparatus 1 sequentially shapes the structural layers SL#1 to SL#n (where n is the total number of structural layers SL forming the three-dimensional structure ST8). To go. In the following description, for convenience of explanation, an example in which the bottom member STa is composed of the structural layer SL#1 and the wall member STb is composed of the structural layers SL#2 to SL#n will be described.
 この場合、パス生成部211は、加工装置1によって複数の構造層SLをそれぞれ造形するための複数の単位加工パス情報PIuを含む加工パス情報PIを生成してもよい。具体的には、パス生成部211は、加工装置1によって構造層SL#1を造形するための単位加工パス情報PIu#1と、加工装置1によって構造層SL#2を造形するための加工パス情報PI#2と、・・・、加工装置1によって構造層SL#nを造形するための加工パス情報PI#nとを含む加工パス情報PIを生成してもよい。例えば、加工パス情報が造形面MS上での目標照射領域EAの移動経路(特に、加工光ELが照射される照射位置の移動経路)に相当する加工パスPに関する情報を含んでいてもよいことは、上述したとおりである。この場合、パス生成部211は、複数の構造層SLをそれぞれ造形するための複数の加工パスPに関する情報を含む加工パス情報PIを生成してもよい。具体的には、パス生成部211は、図8(c)に示すように、構造層SL#1を造形するための加工パスP#1に関する情報を含む単位加工パス情報PIu#1と、構造層SL#2を造形するための加工パスP#2に関する情報を含む単位加工パス情報PIu#2と、・・・、構造層SL#nを造形するための加工パスP#nに関する情報を含む単位加工パス情報PIu#nとを含む加工パス情報PIを生成してもよい。 In this case, the path generation unit 211 may generate processing path information PI including a plurality of unit processing path information PIu for forming the plurality of structural layers SL by the processing device 1 . Specifically, the path generation unit 211 generates unit processing path information PIu#1 for forming the structure layer SL#1 by the processing device 1 and processing path information PIu#1 for forming the structure layer SL#2 by the processing device 1. Machining pass information PI may be generated that includes information PI#2, . For example, the processing pass information may include information on the processing pass P corresponding to the movement path of the target irradiation area EA on the modeling surface MS (in particular, the movement path of the irradiation position irradiated with the processing light EL). is as described above. In this case, the pass generation unit 211 may generate processing pass information PI including information on a plurality of processing passes P for respectively modeling a plurality of structural layers SL. Specifically, as shown in FIG. 8C, the path generation unit 211 generates unit processing path information PIu#1 including information about the processing path P#1 for forming the structure layer SL#1, and the structure Unit processing pass information PIu#2 including information regarding processing pass P#2 for forming layer SL#2, . . . , including information regarding processing pass P#n for forming structure layer SL#n Machining pass information PI including unit machining pass information PIu#n may be generated.
 3Dモデルデータから複数の構造層SLをそれぞれ造形するための複数の単位加工パス情報PIuを含む加工パス情報PIを生成するために、パス生成部211は、3Dモデルデータが示す3Dモデルに対してスライス処理を行うことで、複数の構造層SLの3Dモデルを夫々示す複数のスライスデータを生成する。その後、パス生成部211は、複数のスライスデータに基づいて、複数の構造層SLをそれぞれ造形するための複数の単位加工パス情報PIuを含む加工パス情報PIを生成してもよい。尚、このようにスライスデータを生成するソフトウェアは、一般的に、スライスソフトと称されてもよい。このため、加工パス生成装置2の演算装置21が実行するコンピュータプログラム(つまり、ソフトウェア)は、スライスソフトとして機能してもよい。 In order to generate machining pass information PI including a plurality of unit machining pass information PIu for respectively forming a plurality of structure layers SL from 3D model data, the pass generation unit 211 generates the 3D model indicated by the 3D model data. By performing the slicing process, a plurality of pieces of slice data representing 3D models of the plurality of structural layers SL are generated. After that, the pass generation unit 211 may generate processing pass information PI including a plurality of unit processing pass information PIu for respectively modeling the plurality of structural layers SL based on the plurality of slice data. Software that generates slice data in this way may generally be referred to as slice software. Therefore, the computer program (that is, software) executed by the arithmetic device 21 of the machining path generation device 2 may function as slicing software.
 パス生成部211は、目標照射領域EAの移動経路の一部に相当する部分加工パスPpの単位で区分可能な加工パスPを示す加工パス情報PIを生成してもよい。この場合、加工パスPは、複数の部分加工パスPを含んでいてもよいし、単一の部分加工パスPを含んでいてもよい。例えば、図8(c)に示すように、パス生成部211は、X軸に沿って直線状に延びる部分加工パスPpXとY軸に沿って直線状に延びる部分加工パスPpYとの少なくとも一方を含む加工パスPを示す加工パス情報PIを生成してもよい。但し、パス生成部211は、X軸及びY軸に交差する方向に沿って延びる部分加工パスPpを含む加工パスPを示す加工パス情報PIを生成してもよい。パス生成部211は、曲線状に延びる部分加工パスPpを含む加工パスPを示す加工パス情報PIを生成してもよい。 The path generation unit 211 may generate machining path information PI indicating machining paths P that can be classified in units of partial machining paths Pp corresponding to part of the movement path of the target irradiation area EA. In this case, the machining pass P may include a plurality of partial machining passes P, or may include a single partial machining pass P. For example, as shown in FIG. 8C, the path generation unit 211 generates at least one of a partial machining path PpX linearly extending along the X axis and a partial machining path PpY linearly extending along the Y axis. Machining pass information PI may be generated that indicates the machining pass P that includes. However, the path generation unit 211 may generate machining path information PI indicating a machining path P including a partial machining path Pp extending along a direction intersecting the X-axis and the Y-axis. The path generation unit 211 may generate machining path information PI indicating a machining path P including a curved partial machining path Pp.
 パス生成部211は、3Dモデルデータに基づくことに加えて、加工装置1の造形精度(造形精度)に関する情報に基づいて、加工パス情報PIを生成してもよい。造形精度に関する情報は、線幅wに関する情報を含んでいてもよい。線幅wは、第1の方向に沿って延びる部分加工パスPpに基づいて加工装置1が加工光ELを造形面MSに照射した場合に、造形面MS上に形成される造形物の幅(つまり、第1の方向に交差する第2の方向におけるサイズ)を意味していてもよい。例えば、図9(a)に示すようにX軸方向に沿って延びる部分加工パスPpに基づいて加工装置1が加工光ELを造形面MSに照射する場合には、線幅wは、図9(b)に示すように造形面MS上に形成される造形物のY軸方向における幅を意味していてもよい。加工装置1の造形精度が相対的に粗い(具体的には、線幅wが相対的に太い)場合には、加工装置1の造形精度が相対的に細かい(具体的には、線幅wが相対的に細い)場合と比較して、パス生成部211は、隣り合う二つの部分加工パスPpの間の間隔の下限値が大きくなるように、加工パス情報PIを生成してもよい。尚、線幅w(或いは、造形精度を規定する任意のパラメータ)は、加工装置1のオペレータによって指定されてもよいし、加工パス生成装置2のオペレータによって指定されてもよい。或いは、予め指定された線幅wが用いられてもよい。 The path generation unit 211 may generate the processing path information PI based on information about the molding accuracy (modeling accuracy) of the processing device 1 in addition to the 3D model data. The information on modeling accuracy may include information on line width w. The line width w is the width ( That is, the size in a second direction that intersects the first direction). For example, when the processing apparatus 1 irradiates the modeling surface MS with the processing light EL based on the partial processing path Pp extending along the X-axis direction as shown in FIG. It may mean the width in the Y-axis direction of the modeled object formed on the modeling surface MS as shown in (b). When the shaping accuracy of the processing device 1 is relatively coarse (specifically, the line width w is relatively thick), the shaping accuracy of the processing device 1 is relatively fine (specifically, the line width w is relatively thin), the path generation unit 211 may generate the machining path information PI such that the lower limit value of the interval between two adjacent partial machining paths Pp is large. Note that the line width w (or any parameter that defines the modeling accuracy) may be specified by the operator of the processing device 1 or the operator of the machining path generation device 2 . Alternatively, a prespecified line width w may be used.
 再び図7において、その後、欠陥判定部212は、ステップS12において生成された加工パス情報PIに基づいて加工装置1が3次元構造物STを造形した場合に、造形された3次元構造物STに欠陥が生ずるか否かを判定する(ステップS13)。尚、ステップS13の段階では、加工装置1は、ステップS12において生成された加工パス情報PIに基づいて3次元構造物STを実際に造形しなくてもよい。欠陥判定部212は、加工パス情報PIに基づいて、3次元構造物STに欠陥が生ずるか否かを判定すればよい。つまり、欠陥判定部212は、ステップS12において生成された加工パス情報PIに基づいて加工装置1が3次元構造物STを実際に造形する前に、3次元構造物STに欠陥が生ずるか否かを判定する(ステップS13)。 Referring back to FIG. 7, after that, when the processing apparatus 1 models the three-dimensional structure ST based on the processing path information PI generated in step S12, the defect determination unit 212 determines whether the formed three-dimensional structure ST has It is determined whether or not a defect occurs (step S13). At the stage of step S13, the processing device 1 does not have to actually shape the three-dimensional structure ST based on the processing path information PI generated at step S12. The defect determination unit 212 may determine whether or not a defect occurs in the three-dimensional structure ST based on the machining path information PI. That is, the defect determination unit 212 determines whether a defect occurs in the three-dimensional structure ST before the processing apparatus 1 actually forms the three-dimensional structure ST based on the processing path information PI generated in step S12. is determined (step S13).
 3次元構造物STに生ずる欠陥は、造形された3次元構造物STに生ずることが好ましくない任意の事象を含んでいてもよい。本実施形態では、欠陥の一例として、空隙が用いられる例について説明する。空隙は、固化した造形材料Mによって本来は充填されるべき部分の少なくとも一部が、固化した造形材料Mによって充填されていないことに起因して生ずる空隙(言い換えれば、空洞)を含んでいてもよい。空隙は、図12において生成された加工パス情報PIを用いて加工装置1が3次元構造物STを造形したと仮定した場合に、造形された3次元構造物STの理想的な状態に対する造形された3次元構造物STの実際の状態の差異を含んでいてもよい。 Defects that occur in the three-dimensional structure ST may include any phenomenon that is undesirable to occur in the three-dimensional structure ST that has been shaped. In this embodiment, an example in which voids are used as an example of defects will be described. The voids include voids (in other words, cavities) that are generated because at least part of the portion that should originally be filled with the solidified modeling material M is not filled with the solidified modeling material M. good. Assuming that the processing apparatus 1 shapes the three-dimensional structure ST using the processing path information PI generated in FIG. may include differences in the actual state of the three-dimensional structure ST.
 上述したように、パス生成部211は、複数の構造層SL#1からSL#nを造形するための複数の単位加工パス情報PIu#1からPIu#nを含む加工パス情報PIを生成し、加工装置1は、複数の単位加工パス情報PIu#1からPIu#nに基づいて複数の構造層SL#1からSL#nをそれぞれ造形する。この場合、欠陥判定部212は、複数の単位加工パス情報PIu#1からPIu#nに基づいて、複数の構造層SL#1からSL#nに空隙が生ずるか否かをそれぞれ判定してもよい。具体的には、欠陥判定部212は、単位加工パス情報PIu#1に基づいて構造層SL#1に空隙が生ずるか否かを判定し、単位加工パス情報PIu#2に基づいて構造層SL#2に空隙が生ずるか否かを判定し、・・・、単位加工パス情報PIu#nに基づいて構造層SL#nに空隙が生ずるか否かを判定してもよい。つまり、欠陥判定部212は、3次元構造物STを複数の構造層SL#1からSL#nに分割し、構造層SL毎に空隙が生ずるか否かを判定してもよい。或いは、欠陥判定部212は、3次元構造物STを複数の構造層SL#1からSL#nに分割することなく、3次元構造物STに空隙が生ずるか否かを判定してもよい。 As described above, the pass generation unit 211 generates processing pass information PI including a plurality of unit processing pass information PIu#1 to PIu#n for modeling the plurality of structural layers SL#1 to SL#n, The processing apparatus 1 models the plurality of structural layers SL#1 to SL#n based on the plurality of unit processing pass information PIu#1 to PIu#n. In this case, the defect determination unit 212 may determine whether or not voids are generated in the plurality of structural layers SL#1 to SL#n based on the plurality of unit machining pass information PIu#1 to PIu#n. good. Specifically, the defect determination unit 212 determines whether or not a gap is generated in the structure layer SL#1 based on the unit processing pass information PIu#1, and determines whether or not the structure layer SL#1 is formed based on the unit processing pass information PIu#2. It is also possible to determine whether or not a gap occurs in #2, . In other words, the defect determination unit 212 may divide the three-dimensional structure ST into a plurality of structure layers SL#1 to SL#n and determine whether or not a void is generated in each structure layer SL. Alternatively, the defect determination unit 212 may determine whether or not voids are generated in the three-dimensional structure ST without dividing the three-dimensional structure ST into the plurality of structure layers SL#1 to SL#n.
 パス生成部211は、加工パス情報PIから算出されるパラメータに基づいて、3次元構造物STに空隙が生ずるか否かを判定してもよい。加工パス情報PIから算出されるパラメータの一例として、加工パス情報PIに含まれ且つ互いに隣接する二つの部分加工パスPpの間の間隔Dがあげられる。加工パス情報PIから算出されるパラメータの他の一例として、加工パス情報PIに含まれ且つ互いに交差する二つの部分加工パスPpの交差量Cがあげられる。以下、隣接する二つの部分加工パスPpの間の間隔D又は交差する二つの部分加工パスPpの交差量Cに基づいて3次元構造物STに空隙が生ずるか否かを判定する動作の一例について、図10から図15を参照しながら説明する。 The path generation unit 211 may determine whether or not voids are generated in the three-dimensional structure ST based on parameters calculated from the machining path information PI. An example of a parameter calculated from the machining pass information PI is the interval D between two adjacent partial machining passes Pp included in the machining pass information PI. Another example of parameters calculated from the machining pass information PI is the intersection amount C of two partial machining passes Pp that are included in the machining pass information PI and intersect each other. An example of the operation of determining whether or not a gap is generated in the three-dimensional structure ST based on the distance D between two adjacent partial machining paths Pp or the intersection amount C of two intersecting partial machining paths Pp will be described below. , with reference to FIGS.
 まず、図10から図11を参照しながら、隣接する二つの部分加工パスPpの間の間隔Dに基づいて3次元構造物STに空隙が生ずるか否かを判定する動作の第1具体例について説明する。図10の上部は、線幅wよりも幅の広い造形物BO10の断面を示している。この場合、造形物BO10の幅が線幅wよりも広いがゆえに、パス生成部211は、図10の下部に示すように、造形物BO10を造形するための加工パスPとして、造形物BO10が延びる方向に沿って直線状に延び且つ互いに隣接する複数の部分加工パスPpを示す加工パス情報PIを生成する。ここで、図11に示すように、隣接する二つの部分加工パスPpの間の間隔Dが閾値TH1よりも大きくなると、隣接する二つの部分加工パスPpに基づいてそれぞれ造形される二つの造形物が互いに離れてしまう。つまり、線幅wよりも幅の広い単一の造形物BO10ではなく、線幅wと同じ幅を有する二つの造形物が造形されてしまう。この場合、二つの造形物の間の空間は、本来固化した造形材料Mによって充填されるべきであるにも関わらず、固化した造形材料Mによって充填されなくなってしまう。つまり、図11に示す加工パスPに基づいて造形される3次元構造物STには、空隙が生ずると推定される。このため、欠陥判定部212は、隣接する二つの部分加工パスPpの間の間隔Dが閾値TH1よりも大きい場合に、3次元構造物STに空隙が生ずると判定してもよい。特に、欠陥判定部212は、線幅wよりも幅の広い造形物を造形するための隣接する二つの部分加工パスPpの間の間隔Dが閾値TH1よりも大きい場合に、3次元構造物STに空隙が生ずると判定してもよい。尚、間隔Dは、パス生成装置2のオペレータ(或いは、加工装置1のオペレータ)によって任意の値に設定されてもよい。 First, with reference to FIGS. 10 to 11, a first specific example of the operation of determining whether or not a gap is generated in the three-dimensional structure ST based on the interval D between two adjacent partial machining passes Pp. explain. The upper part of FIG. 10 shows a cross section of a model BO10 wider than the line width w. In this case, since the width of the object BO10 is wider than the line width w, the path generation unit 211 selects the object BO10 as the processing path P for forming the object BO10, as shown in the lower part of FIG. Machining path information PI is generated that indicates a plurality of partial machining paths Pp linearly extending along the extending direction and adjacent to each other. Here, as shown in FIG. 11, when the distance D between two adjacent partial machining passes Pp becomes larger than a threshold value TH1, two shaped objects are formed based on the two adjacent partial machining passes Pp. move away from each other. In other words, instead of a single object BO10 wider than the line width w, two objects having the same width as the line width w are produced. In this case, the space between the two models is not filled with the solidified modeling material M even though it should be filled with the solidified modeling material M. That is, it is presumed that the three-dimensional structure ST formed based on the machining path P shown in FIG. 11 will have a void. For this reason, the defect determination unit 212 may determine that a gap is generated in the three-dimensional structure ST when the interval D between two adjacent partial processing passes Pp is larger than the threshold TH1. In particular, the defect determination unit 212 determines that the three-dimensional structure ST It may be determined that a void occurs in Note that the interval D may be set to an arbitrary value by the operator of the path generation device 2 (or the operator of the processing device 1).
 閾値TH1として、線幅wが用いられてもよい。なぜならば、図11に示すように、隣接する二つの部分加工パスPpの間の間隔Dが線幅w以下になれば、隣接する二つの部分加工パスPpに基づいてそれぞれ造形される二つの造形物が離れる可能性が低いからである。但し、加工装置1の仕様又は加工装置1の使用環境によっては、加工装置1が常に線幅wと同じ幅を有する造形物を造形することができるとは限らない。例えば、加工装置1は、線幅wよりも狭い又は太い幅を有する造形物を造形する可能性がある。このため、閾値TH1は、線幅wとは異なる値であってもよい。閾値TH1として、隣接する二つの部分加工パスPpに基づいてそれぞれ造形される二つの造形物が離れる状態と、隣接する二つの部分加工パスPpに基づいてそれぞれ造形される二つの造形物が離れない状態とを、隣接する二つの部分加工パスPpの間の間隔Dから区別可能な任意の値が用いられてもよい。尚、閾値TH1は、パス生成装置2のオペレータ(或いは、加工装置1のオペレータ)によって任意の値に設定されてもよい。 The line width w may be used as the threshold TH1. This is because, as shown in FIG. 11, if the distance D between two adjacent partial processing passes Pp is equal to or less than the line width w, two shapes are formed based on the two adjacent partial processing passes Pp. This is because there is a low possibility that things will leave. However, depending on the specifications of the processing device 1 or the environment in which the processing device 1 is used, the processing device 1 may not always be able to form a modeled object having the same width as the line width w. For example, the processing device 1 may form a modeled object having a width narrower or wider than the line width w. Therefore, the threshold TH1 may be a value different from the line width w. As the threshold value TH1, the state in which the two objects respectively formed based on the two adjacent partial machining passes Pp are separated, and the state in which the two objects formed respectively based on the two adjacent partial machining passes Pp are not separated. Any value that can distinguish the state from the distance D between two adjacent partial machining passes Pp may be used. Note that the threshold TH1 may be set to an arbitrary value by the operator of the path generation device 2 (or the operator of the processing device 1).
 続いて、図12から図14を参照しながら、隣接する二つの部分加工パスPpの間の間隔Dに基づいて3次元構造物STに空隙が生ずるか否かを判定する動作の第2具体例について説明する。図12の上部は、平面視において所望形状(図12に示す例では、円形)を有する複数の開口BO121が形成された造形物BO12の上面及び断面を示している。この場合、パス生成部211は、図12の下部に示すように、造形物BO12を造形するための加工パスPとして、開口BO121の輪郭に沿って曲線状に(図12に示す例では、円形状に)延びる部分加工パスPp#1と開口BO121の周囲の造形物を造形するための直線状に延びる部分加工パスPp#2とを示す加工パス情報PIを生成する。ここで、隣接する二つの部分加工パスPp#1の間の間隔Dが閾値TH2よりも小さい場合には、3次元構造物STに空隙が生ずる可能性がある。具体的には、図13の下部に示すように、隣接する二つの部分加工パスPp#1の間の間隔Dが閾値TH2よりも小さい状況下で隣接する二つの部分加工パスPp#1の間に部分加工パスPp#2(“部分加工パスPp#2’”と称する)が設定されると、図13の上部に示すように、部分加工パスPp#2’に基づいて造形される造形物が、開口BO121が形成されるべき空間に進入してしまう。その結果、開口BO121の形状が、理想的な形状とは異なる形状になってしまう。そこで、図14の下部に示すように、隣接する二つの部分加工パスPp#1の間の間隔Dが閾値TH2よりも小さい状況下では、パス生成部211は、隣接する二つの部分加工パスPp#1の間に部分加工パスPp#2’が設定されないように、加工パス情報PIを生成することになる。しかしながら、この場合には、図14の上部に示すように、隣接する二つの部分加工パスPp#1の間に部分加工パスPp#2’が設定されないがゆえに、二つの開口BO121の間の空間は、本来固化した造形材料Mによって充填されるべきであるにも関わらず、固化した造形材料Mによって充填されなくなってしまう。つまり、図14に示す加工パスPに基づいて造形される3次元構造物STには、空隙が生ずると推定される。このため、欠陥判定部212は、隣接する二つの部分加工パスPpの間の間隔Dが閾値TH2よりも小さい場合に、3次元構造物STに空隙が生ずると判定してもよい。特に、欠陥判定部212は、二つの開口の輪郭に沿って延び且つ隣接する二つの部分加工パスPpの間の間隔Dが閾値TH2よりも小さい場合に、3次元構造物STに空隙が生ずると判定してもよい。 Next, referring to FIGS. 12 to 14, a second specific example of the operation of determining whether or not a gap is generated in the three-dimensional structure ST based on the interval D between two adjacent partial machining passes Pp. will be explained. The upper part of FIG. 12 shows the upper surface and cross section of the modeled object BO12 in which a plurality of openings BO121 having a desired shape (circular in the example shown in FIG. 12) are formed in plan view. In this case, as shown in the lower part of FIG. 12, the path generation unit 211 generates a machining path P for molding the object BO12 in a curved shape along the contour of the opening BO121 (in the example shown in FIG. 12, a circular path P). machining pass information PI indicating a partial machining pass Pp#1 extending linearly and a partial machining pass Pp#2 extending linearly for forming the object around the opening BO121. Here, if the distance D between two adjacent partial processing passes Pp#1 is smaller than the threshold TH2, there is a possibility that a gap will occur in the three-dimensional structure ST. Specifically, as shown in the lower part of FIG. 13, when the distance D between the two adjacent partial machining passes Pp#1 is smaller than the threshold value TH2, the distance between the two adjacent partial machining passes Pp#1 When the partial machining pass Pp#2 (referred to as “partial machining pass Pp#2′”) is set to , as shown in the upper part of FIG. enters the space in which the opening BO121 should be formed. As a result, the shape of the opening BO121 becomes a shape different from the ideal shape. Therefore, as shown in the lower part of FIG. 14, under the condition that the interval D between the two adjacent partial machining passes Pp#1 is smaller than the threshold value TH2, the path generation unit 211 generates the two adjacent partial machining passes Pp The machining pass information PI is generated so that the partial machining pass Pp#2' is not set during #1. However, in this case, as shown in the upper part of FIG. 14, since the partial machining pass Pp#2' is not set between two adjacent partial machining passes Pp#1, the space between the two openings BO121 should be filled with the solidified modeling material M, but is no longer filled with the solidified modeling material M. That is, it is presumed that the three-dimensional structure ST formed based on the machining path P shown in FIG. 14 will have a void. For this reason, the defect determination unit 212 may determine that a gap is generated in the three-dimensional structure ST when the interval D between two adjacent partial processing passes Pp is smaller than the threshold TH2. In particular, the defect determination unit 212 determines that a gap is generated in the three-dimensional structure ST when the interval D between two adjacent partial machining paths Pp extending along the contours of the two openings is smaller than the threshold TH2. You can judge.
 閾値TH2として、線幅wが用いられてもよい。なぜならば、図13から図14に示すように、二つの開口の輪郭に沿って延び且つ隣接する二つの部分加工パスPpの間の間隔Dが線幅w以上になれば、二つの開口の間に線幅w以上の幅を有する造形物が造形可能であり、且つ、当該造形物が二つの開口に進入しないからである。但し、加工装置1の仕様又は加工装置1の使用環境によっては、加工装置1が常に線幅wと同じ幅を有する造形物を造形することができるとは限らない。例えば、加工装置1は、線幅wよりも狭い又は太い幅を有する造形物を造形する可能性がある。このため、閾値TH2は、線幅wとは異なる値であってもよい。閾値TH2として、開口の輪郭に沿って延び且つ隣接する二つの部分加工パスPpに基づいて造形される造形物の二つの開口の間に空隙ができる(或いは、二つの開口の形状が乱れる)状態と、隣接する二つの部分加工パスPpに基づいて造形される造形物の二つの開口の間に空隙ができない(或いは、二つの開口の形状が乱れない)状態とを、隣接する二つの部分加工パスPpの間の間隔Dから区別可能な任意の値が用いられてもよい。尚、閾値TH2は、パス生成装置2のオペレータ(或いは、加工装置1のオペレータ)によって任意の値に設定されてもよい。 The line width w may be used as the threshold TH2. This is because, as shown in FIGS. 13 and 14, if the distance D between two adjacent partial processing paths Pp that extend along the contours of two openings is greater than or equal to the line width w, then This is because a modeled object having a width equal to or larger than the line width w can be modeled, and the modeled object does not enter the two openings. However, depending on the specifications of the processing device 1 or the environment in which the processing device 1 is used, the processing device 1 may not always be able to form a modeled object having the same width as the line width w. For example, the processing device 1 may form a modeled object having a width narrower or wider than the line width w. Therefore, the threshold TH2 may be a value different from the line width w. As the threshold value TH2, a state in which a gap is formed (or the shape of the two openings is disturbed) between the two openings of the object that is formed based on two partial processing paths Pp that extend along the contour of the opening and are adjacent to each other. and a state in which no gap is formed between two openings (or the shapes of the two openings are not disturbed) in a modeled object formed based on two adjacent partial processing paths Pp. Any value distinguishable from the spacing D between paths Pp may be used. Note that the threshold TH2 may be set to an arbitrary value by the operator of the path generation device 2 (or the operator of the processing device 1).
 続いて、図15を参照しながら、交差する二つの部分加工パスPpの交差量Cに基づいて3次元構造物STに空隙が生ずるか否かを判定する動作の具体例について説明する。図15の上部は、交差する二つの部分加工パスPpを示しており、図15の下部は、交差する二つの部分加工パスPpによってそれぞれ造形される、交差する二つの造形物BO15を示している。本実施形態では、交差する二つの部分加工パスPpの交差量Cは、交差する二つの部分加工パスPpによってそれぞれ造形される二つの造形物BO15の交差量(言い換えれば、重なり量)を意味していてもよい。この場合、交差量Cが閾値TH3よりも小さい場合には、交差する二つの造形物が互いに離れてしまう可能性がある。この場合、二つの造形物の間の空間は、本来固化した造形材料Mによって充填されるべきであるにも関わらず、固化した造形材料Mによって充填されなくなってしまう。つまり、図15に示す加工パスPに基づいて造形される3次元構造物STには、空隙が生ずると推定される。このため、欠陥判定部212は、交差する二つの部分加工パスPpの交差量が閾値TH3よりも小さい場合に、3次元構造物STに空隙が生ずると判定してもよい。 Next, with reference to FIG. 15, a specific example of the operation of determining whether or not a gap is generated in the three-dimensional structure ST based on the intersection amount C of the two intersecting partial machining paths Pp will be described. The upper part of FIG. 15 shows two intersecting partial machining paths Pp, and the lower part of FIG. 15 shows two intersecting shaped objects BO15 respectively formed by the two intersecting partial machining paths Pp. . In the present embodiment, the intersection amount C of the two intersecting partial machining paths Pp means the intersection amount (in other words, overlapping amount) of the two objects BO15 that are respectively formed by the two intersecting partial machining paths Pp. may be In this case, when the intersection amount C is smaller than the threshold TH3, there is a possibility that the two intersecting shaped objects are separated from each other. In this case, the space between the two models is not filled with the solidified modeling material M even though it should be filled with the solidified modeling material M. That is, it is presumed that the three-dimensional structure ST formed based on the machining path P shown in FIG. 15 will have a void. For this reason, the defect determination unit 212 may determine that a gap is generated in the three-dimensional structure ST when the intersection amount of the two intersecting partial processing paths Pp is smaller than the threshold TH3.
 閾値TH3として、ゼロが用いられてもよい。なぜならば、図15に示すように、交差する二つの部分加工パスPpの交差量Cがゼロよりも大きければ、交差する二つの部分加工パスPpに基づいてそれぞれ造形される二つの造形物が離れることはないからである。但し、加工装置1の仕様又は加工装置1の使用環境によっては、加工装置1が常に線幅wと同じ幅を有する造形物を造形することができるとは限らない。例えば、加工装置1は、線幅wよりも狭い又は太い幅を有する造形物を造形する可能性がある。このため、閾値TH3は、ゼロとは異なる値であってもよい。閾値TH3として、交差する二つの部分加工パスPpに基づいてそれぞれ造形される二つの造形物が離れる状態と、交差する二つの部分加工パスPpに基づいてそれぞれ造形される二つの造形物が離れない状態とを、交差する二つの部分加工パスPpの交差量Cから区別可能な任意の値が用いられてもよい。 Zero may be used as the threshold TH3. This is because, as shown in FIG. 15, if the intersection amount C of the two intersecting partial machining paths Pp is greater than zero, the two objects formed based on the two intersecting partial machining paths Pp are separated from each other. because it never happens. However, depending on the specifications of the processing device 1 or the environment in which the processing device 1 is used, the processing device 1 may not always be able to form a modeled object having the same width as the line width w. For example, the processing device 1 may form a modeled object having a width narrower or wider than the line width w. Therefore, the threshold TH3 may be a value different from zero. As a threshold value TH3, the two objects respectively formed based on the two intersecting partial processing paths Pp are separated, and the two objects formed based on the two intersecting partial processing paths Pp are not separated. Any value that can distinguish the state from the intersection amount C of the two intersecting partial machining paths Pp may be used.
 閾値TH1からTH3の少なくとも一つは、可変であってもよい。例えば、閾値TH1からTH3の少なくとも一つは、加工装置1のオペレータによって指定又は変更されてもよい。例えば、閾値TH1からTH3の少なくとも一つは、加工パス生成装置2のオペレータによって指定又は変更されてもよい。但し、閾値TH1からTH3の少なくとも一つは、固定値であってもよい。 At least one of the thresholds TH1 to TH3 may be variable. For example, at least one of the thresholds TH1 to TH3 may be specified or changed by the operator of the processing device 1. For example, at least one of the thresholds TH1 to TH3 may be specified or changed by the operator of the machining path generation device 2. However, at least one of the thresholds TH1 to TH3 may be a fixed value.
 欠陥判定部212は、加工パス情報PIに基づいて、隣接する二つの部分加工パスPpの間の間隔Dを算出し、算出した間隔Dと閾値TH1及びTH2の少なくとも一方とを比較することで、3次元構造物STに空隙が生ずるか否かを判定してもよい。同様に、欠陥判定部212は、加工パス情報PIに基づいて、交差する二つの部分加工パスPpの交差量Cを算出し、算出した交差量Cと閾値TH3とを比較することで、3次元構造物STに空隙が生ずるか否かを判定してもよい。 The defect determination unit 212 calculates the interval D between two adjacent partial machining passes Pp based on the machining pass information PI, and compares the calculated interval D with at least one of the threshold values TH1 and TH2. It may be determined whether or not a void is generated in the three-dimensional structure ST. Similarly, the defect determination unit 212 calculates the intersection amount C of the two intersecting partial machining paths Pp based on the machining path information PI, and compares the calculated intersection amount C with the threshold value TH3. It may be determined whether or not a gap is generated in the structure ST.
 或いは、欠陥判定部212は、加工パス情報PIに基づいて、隣接する二つの部分加工パスPpに基づいて造形される造形物の状態を推定し、推定した造形物の状態に基づいて、3次元構造物STに空隙が生ずるか否かを判定してもよい。例えば、図7のステップS11で取得される3Dモデルデータは、加工装置1が造形するべき3次元構造物STの理想的な状態を示している。一方で、欠陥判定部212が推定した3次元構造物STの状態は、加工パス情報PIに基づいて造形されるであろうと推定される3次元構造物STの実際の状態を示している。このため、3Dモデルデータが示す3次元構造物STの理想的な状態と欠陥判定部212が推定した3次元構造物STの実際の状態との一致度が高ければ高いほど、3次元構造物STに空隙が生ずる可能性は低くなる。このため、3Dモデルデータが示す3次元構造物STの理想的な状態と欠陥判定部212が推定した3次元構造物STの実際の状態とを比較することで、3次元構造物STに空隙が生ずるか否かを判定してもよい。この場合、実質的には、3Dモデルデータが示す3次元構造物STの理想的な状態を示す指標値が、上述した閾値TH1からTH3の少なくとも一つとして用いられているとみなしてもよい。尚、3次元構造物STの状態の一例として、造形面MSに沿った方向における3次元構造物STの断面の面積があげられる。 Alternatively, the defect determination unit 212 estimates the state of the modeled object to be formed based on two adjacent partial processing passes Pp based on the machining pass information PI, and based on the estimated state of the modeled object, determines the three-dimensional It may be determined whether or not a gap is generated in the structure ST. For example, the 3D model data acquired in step S11 of FIG. 7 indicates an ideal state of the three-dimensional structure ST to be modeled by the processing device 1. FIG. On the other hand, the state of the three-dimensional structure ST estimated by the defect determination unit 212 indicates the actual state of the three-dimensional structure ST that is estimated to be shaped based on the machining path information PI. Therefore, the higher the degree of matching between the ideal state of the three-dimensional structure ST indicated by the 3D model data and the actual state of the three-dimensional structure ST estimated by the defect determination unit 212, the more the three-dimensional structure ST voids are less likely to occur. For this reason, by comparing the ideal state of the three-dimensional structure ST indicated by the 3D model data and the actual state of the three-dimensional structure ST estimated by the defect determination unit 212, it is possible to determine whether there are any gaps in the three-dimensional structure ST. You may judge whether it arises or not. In this case, it may be substantially considered that the index value indicating the ideal state of the three-dimensional structure ST indicated by the 3D model data is used as at least one of the thresholds TH1 to TH3 described above. An example of the state of the three-dimensional structure ST is the cross-sectional area of the three-dimensional structure ST in the direction along the modeling surface MS.
 欠陥判定部212は、3次元構造物STに欠陥が生ずると判定した場合には、欠陥に関する情報(以降、“欠陥情報”と称する)を生成してもよい。欠陥情報は、後に詳述するように、表示制御部213の制御下で表示装置25によって表示される情報として用いられてもよい。このため、欠陥情報については、表示制御部213の制御下で欠陥情報を表示する動作を説明する際に詳細に説明するため、ここでの詳細な説明は省略する。尚、欠陥判定部212は、3次元構造物STに欠陥が生ずるか否かを判定することなく、加工パス情報PIに基づいて欠陥情報を生成してもよい。 When the defect determination unit 212 determines that the three-dimensional structure ST has a defect, it may generate information about the defect (hereinafter referred to as "defect information"). The defect information may be used as information displayed by the display device 25 under the control of the display control section 213, as will be detailed later. Therefore, since the defect information will be described in detail when describing the operation of displaying the defect information under the control of the display control unit 213, detailed description thereof will be omitted here. Note that the defect determination unit 212 may generate defect information based on the machining pass information PI without determining whether or not a defect occurs in the three-dimensional structure ST.
 再び図7において、その後、表示制御部213は、3次元構造物STに生ずる欠陥(本実施形態では、空隙)に関する情報(つまり、欠陥情報)を表示するように、表示装置25を制御する(ステップS14)。典型的には、表示制御部213は、ステップS13において3次元構造物STに欠陥が生ずると判定された場合に、欠陥情報を表示するように、表示装置25を制御する。一方で、表示制御部213は、ステップS13において3次元構造物STに欠陥が生ずると判定されなかった場合には、欠陥情報を表示するように、表示装置25を制御しなくてもよい。この場合、表示制御部213は、ステップS12において生成された加工パス情報に基づいて加工装置1が3次元構造物STを造形したとしても、造形される3次元構造物STに欠陥が生じないことを加工パス生成装置2のオペレータ(或いは、加工装置1のオペレータ)に通知するための情報を表示するように、表示装置25を制御してもよい。 Referring back to FIG. 7, after that, the display control unit 213 controls the display device 25 so as to display information (that is, defect information) about defects (voids in this embodiment) occurring in the three-dimensional structure ST ( step S14). Typically, the display control unit 213 controls the display device 25 to display defect information when it is determined in step S13 that the three-dimensional structure ST has a defect. On the other hand, the display control unit 213 does not have to control the display device 25 to display the defect information when it is not determined in step S13 that the three-dimensional structure ST has a defect. In this case, the display control unit 213 controls that even if the processing apparatus 1 models the three-dimensional structure ST based on the processing path information generated in step S12, no defect will occur in the three-dimensional structure ST to be modeled. The display device 25 may be controlled to display information for notifying the operator of the machining path generation device 2 (or the operator of the processing device 1).
 欠陥情報は、ステップS12において生成された加工パス情報に基づいて加工装置1が3次元構造物STを造形すると、造形される3次元構造物STに欠陥が生ずることを加工パス生成装置2のオペレータ(或いは、加工装置1のオペレータ)に通知するための情報を含んでいてもよい。例えば、欠陥情報は、3次元構造物STに欠陥が生ずることを通知するためのテキストメッセージを含んでいてもよい。 The defect information indicates that the processing apparatus 1 forms the three-dimensional structure ST based on the processing path information generated in step S12, and the operator of the processing path generation apparatus 2 that a defect occurs in the three-dimensional structure ST to be formed. (or the operator of the processing apparatus 1) may include information for notification. For example, defect information may include a text message for notifying that a defect occurs in the three-dimensional structure ST.
 欠陥情報は、3次元構造物STに生ずる欠陥の状態に関する情報を含んでいてもよい。欠陥の状態は、欠陥の種類、欠陥のサイズ、欠陥の位置及び欠陥の形状のうちの少なくとも一つを含んでいてもよい。例えば、上述したように空隙が欠陥として用いられる場合には、欠陥の状態(つまり、空隙の状態)は、空隙のサイズ(例えば、X軸方向、Y軸方向及びZ軸方向のうちの少なくとも一つにおける空隙のサイズ)、空隙の位置(例えば、X軸方向、Y軸方向及びZ軸方向のうちの少なくとも一つにおける空隙の位置)及び空隙の形状のうちの少なくとも一つを含んでいてもよい。 The defect information may include information on the state of defects occurring in the three-dimensional structure ST. The defect status may include at least one of defect type, defect size, defect location, and defect shape. For example, when voids are used as defects as described above, the state of the defect (i.e., the state of the void) is the size of the void (e.g., at least one of the X, Y, and Z directions). the size of the void in one direction), the location of the void (e.g., the location of the void in at least one of the X, Y, and Z directions), and the shape of the void. good.
 表示制御部213は、3次元構造物STに関するモデル情報と共に欠陥情報を表示するように、表示装置25を制御してもよい。例えば、欠陥情報の表示例を示す図16及び図17に示すように、表示制御部213は、加工パス情報PIに基づいて造形される3次元構造物STのモデルを示す表示オブジェクト91と共に、3次元構造物STに生ずる欠陥(空隙)を示す表示オブジェクト92を表示するように、表示装置25を制御してもよい。典型的には、表示制御部213は、表示オブジェクト91に重ねて表示オブジェクト92を表示するように、表示装置25を制御してもよい。尚、表示オブジェクト92は、欠陥オブジェクト又は空隙オブジェクトと称されてもよい。 The display control unit 213 may control the display device 25 so as to display the defect information together with the model information regarding the three-dimensional structure ST. For example, as shown in FIGS. 16 and 17 showing display examples of defect information, the display control unit 213 displays 3 The display device 25 may be controlled to display a display object 92 indicating defects (voids) occurring in the dimensional structure ST. Typically, the display control unit 213 may control the display device 25 to display the display object 92 over the display object 91 . Note that the display object 92 may also be referred to as a defect object or void object.
 表示オブジェクト91(つまり、モデル情報)は、典型的には、3次元構造物STの形状を示す画像情報である。また、表示オブジェクト92は、表示オブジェクト91が示す3次元構造物ST内において欠陥が生ずる位置に表示される、表示オブジェクト91と区別可能な画像情報である。この場合、表示オブジェクト92は、欠陥が生ずる位置のみならず、欠陥のサイズ及び欠陥の形状をも示しているとみなしてもよい。 The display object 91 (that is, model information) is typically image information indicating the shape of the three-dimensional structure ST. Also, the display object 92 is image information distinguishable from the display object 91 displayed at a position where a defect occurs in the three-dimensional structure ST indicated by the display object 91 . In this case, the display object 92 may be regarded as indicating not only the location of the defect, but also the size and shape of the defect.
 図16は、表示オブジェクト91が示す3次元構造物STのモデルが2Dモデル(二次元モデル)である例を示している。この場合、表示オブジェクト91は、例えば、3次元構造物STの断面(例えば、構造層SLの断面)を示していてもよい。また、表示オブジェクト92は、例えば、3次元構造物STの断面内で生ずる欠陥を示していてもよい。つまり、表示オブジェクト92は、3次元構造物ST内で生ずる欠陥を2次元的に示していてもよい。 FIG. 16 shows an example in which the model of the three-dimensional structure ST indicated by the display object 91 is a 2D model (two-dimensional model). In this case, the display object 91 may indicate, for example, a section of the three-dimensional structure ST (for example, a section of the structure layer SL). Also, the display object 92 may indicate, for example, a defect that occurs within the cross-section of the three-dimensional structure ST. In other words, the display object 92 may two-dimensionally indicate defects that occur within the three-dimensional structure ST.
 一方で、図17は、表示オブジェクト91が示す3次元構造物STのモデルが3Dモデルである例を示している。この場合、表示オブジェクト91は、例えば、3次元構造物STを立体的に示していてもよい。また、表示オブジェクト92は、例えば、3次元構造物ST内で生ずる欠陥を示していてもよい。つまり、表示オブジェクト92は、3次元構造物ST内で生ずる欠陥を3次元的に示していてもよい。 On the other hand, FIG. 17 shows an example in which the model of the three-dimensional structure ST indicated by the display object 91 is a 3D model. In this case, the display object 91 may, for example, stereoscopically represent the three-dimensional structure ST. Also, the display object 92 may indicate, for example, defects that occur within the three-dimensional structure ST. In other words, the display object 92 may three-dimensionally represent defects occurring within the three-dimensional structure ST.
 表示制御部213は、表示装置25の状態を、3次元構造物STの2Dモデルを示す表示オブジェクト91と共に欠陥情報(例えば、表示オブジェクト92)を表示する2D表示状態と、3次元構造物STの3Dモデルを示す表示オブジェクト91と共に欠陥情報(例えば、表示オブジェクト92)を表示する3D表示状態との間で切り替えてもよい。例えば、表示制御部213は、加工パス生成装置2のオペレータ(或いは、加工装置1のオペレータ)の指示に基づいて、表示装置25の状態を2D表示状態と3D表示状態との間で切り替えてもよい。 The display control unit 213 changes the state of the display device 25 into a 2D display state in which a display object 91 representing a 2D model of the three-dimensional structure ST and defect information (for example, a display object 92) is displayed, and a display state of the three-dimensional structure ST. A 3D display state may be toggled between displaying defect information (eg, display object 92) along with display object 91 representing the 3D model. For example, the display control unit 213 may switch the state of the display device 25 between the 2D display state and the 3D display state based on the instruction of the operator of the machining path generation device 2 (or the operator of the processing device 1). good.
 表示制御部213は、図7のステップS11において取得された3Dモデルデータに基づく表示オブジェクト91(つまり、表示装置25に表示される3次元構造物STのモデル情報)を表示するように、表示装置25を制御してもよい。この場合、表示制御部213は、3Dモデルデータが示す3Dモデルを画像情報として示す表示オブジェクト91を生成し、生成した表示オブジェクト91を表示するように表示装置25を制御してもよい。或いは、表示制御部213は、3Dモデルデータが示す3Dモデルを2Dモデルに変換することで、3次元構造物STの2Dモデルを画像情報として示す表示オブジェクト91を生成し、生成した表示オブジェクト91を表示するように表示装置25を制御してもよい。 The display control unit 213 controls the display device to display the display object 91 based on the 3D model data acquired in step S11 of FIG. 7 (that is, the model information of the three-dimensional structure ST displayed on the display device 25). 25 may be controlled. In this case, the display control unit 213 may generate a display object 91 representing the 3D model indicated by the 3D model data as image information, and control the display device 25 to display the generated display object 91 . Alternatively, the display control unit 213 converts the 3D model indicated by the 3D model data into a 2D model to generate the display object 91 indicating the 2D model of the 3D structure ST as image information, and displays the generated display object 91 as image information. The display device 25 may be controlled to display.
 或いは、表示制御部213は、図7のステップS12において生成された加工パス情報PIに基づく表示オブジェクト91(つまり、表示装置25に表示される3次元構造物STのモデル情報)を表示するように、表示装置25を制御してもよい。この場合、表示制御部213は、加工パス情報PIに基づいて加工装置1が3次元構造物STを造形する動作を加工パス情報PIに基づいてシミュレートすることで、加工パス情報PIに基づいて加工装置1が造形するであろうと推定される3次元構造物STのモデル(例えば、3Dモデル又は2Dモデル)を推定し、推定したモデルを画像情報として示す表示オブジェクト91を表示するように表示装置25を制御してもよい。 Alternatively, the display control unit 213 may display the display object 91 based on the machining path information PI generated in step S12 of FIG. 7 (that is, the model information of the three-dimensional structure ST displayed on the display device 25). , the display device 25 may be controlled. In this case, the display control unit 213 simulates the operation of the processing apparatus 1 to form the three-dimensional structure ST based on the machining pass information PI, thereby A display device for estimating a model (for example, a 3D model or a 2D model) of the three-dimensional structure ST that is estimated to be formed by the processing device 1 and displaying a display object 91 showing the estimated model as image information. 25 may be controlled.
 尚、加工パス情報PIに基づいて加工装置1が造形するであろうと推定される3次元構造物STのモデルが推定される場合には、欠陥判定部212は、推定された3次元構造物STのモデルに基づいて、3次元構造物STに欠陥が生ずるか否かを判定してもよい。欠陥判定部212は、推定されたモデルを画像情報として表す表示オブジェクト91(つまり、画像情報)に基づいて、3次元構造物STに欠陥が生ずるか否かを判定してもよい。 When the model of the three-dimensional structure ST that is estimated to be formed by the processing apparatus 1 is estimated based on the processing path information PI, the defect determination unit 212 determines the model of the estimated three-dimensional structure ST Based on this model, it may be determined whether or not a defect occurs in the three-dimensional structure ST. The defect determination unit 212 may determine whether or not a defect occurs in the three-dimensional structure ST based on the display object 91 (that is, image information) representing the estimated model as image information.
 表示制御部213は、欠陥情報を表示することに加えて又は代えて、3次元構造物STに欠陥が生ずるか否かを判定する際に用いる判定条件を変更するための表示オブジェクトを表示するように、表示装置25を制御してもよい。例えば、表示制御部213は、図18に示すように、3次元構造物STに欠陥が生ずるか否かを判定する際に用いる判定条件を変更するために加工パス生成装置2のオペレータ(或いは、加工装置1のオペレータ)が操作可能な操作オブジェクト93を表示するように、表示装置25を制御してもよい。尚、図18は、操作オブジェクト93として、判定条件を定量的に指定するためのスライドバーが用いられる例を示しているが、操作オブジェクト93として、判定条件を変更可能な任意の表示オブジェクト(典型的には、GUI(Graphical User Interface)が用いられてもよい。 In addition to displaying the defect information, or instead of displaying the defect information, the display control unit 213 displays a display object for changing the determination condition used when determining whether or not a defect occurs in the three-dimensional structure ST. Alternatively, the display device 25 may be controlled. For example, as shown in FIG. 18, the display control unit 213 controls the operator (or The display device 25 may be controlled so as to display an operation object 93 that can be operated by the operator of the processing apparatus 1 . FIG. 18 shows an example in which a slide bar for quantitatively specifying the determination condition is used as the operation object 93. However, as the operation object 93, any display object capable of changing the determination condition (typically In practice, a GUI (Graphical User Interface) may be used.
 判定条件の一例として、加工パス情報PIから算出されるパラメータと比較される閾値(例えば、上述した閾値TH1からTH3の少なくとも一つ)があげられる。例えば、閾値TH1からTH2の少なくとも一つが線幅wに応じて決定されてもよいことは上述したとおりである。このため、表示制御部215は、閾値TH1からTH2の少なくとも一つを変更するための表示オブジェクトとして、線幅wを指定する表示オブジェクト(例えば、図18に示す操作オブジェクト93)を表示するように、表示装置25を制御してもよい。この場合、実質的には、線幅wが判定条件として用いられているとみなしてもよい。 An example of the determination condition is a threshold (for example, at least one of the thresholds TH1 to TH3 described above) that is compared with the parameter calculated from the machining path information PI. For example, as described above, at least one of the thresholds TH1 to TH2 may be determined according to the line width w. Therefore, the display control unit 215 displays a display object (for example, an operation object 93 shown in FIG. 18) specifying the line width w as a display object for changing at least one of the thresholds TH1 to TH2. , the display device 25 may be controlled. In this case, it may be substantially considered that the line width w is used as the determination condition.
 判定条件が変更された場合には、欠陥判定部212は、変更された判定条件に基づいて、3次元構造物STに欠陥が生ずるか否かを再度判定してもよい。更に、判定条件が変更された場合には、表示制御部213は、変更された判定条件に基づいた欠陥判定部212による最新の判定結果に応じた欠陥情報を表示するように、表示装置25を制御してもよい。この場合、オペレータは、判定条件の変更に合わせて更新される欠陥情報を確認しながら、判定条件を変更することができる。 When the determination condition is changed, the defect determination unit 212 may re-determine whether or not a defect occurs in the three-dimensional structure ST based on the changed determination condition. Furthermore, when the determination condition is changed, the display control unit 213 causes the display device 25 to display defect information according to the latest determination result by the defect determination unit 212 based on the changed determination condition. may be controlled. In this case, the operator can change the determination condition while confirming the defect information updated in accordance with the change of the determination condition.
 判定条件として線幅wが用いられる場合には、判定条件の変更(つまり、線幅wの変更)は、実質的に、加工装置1の造形精度の変更及び造形時間の変更と等価である。この場合、オペレータは、3次元構造物STに生ずる欠陥の状態が、自身が許容可能な状態となるように、線幅w(つまり、造形精度及び造形時間)を変更してもよい。一般的には、線幅wが太くなるほど、3次元構造物STには空隙が生じやすくなる。なぜならば、線幅wが太くなるほど、加工装置1による造形精度が粗くなるからである。従って、オペレータが指定する線幅wが太くなるほど、3次元構造物STには空隙が生じやすくなるものの、造形時間は短くなる。一方で、オペレータが指定する線幅wが細くなるほど、3次元構造物STには空隙が生じにくくなるものの、造形時間は長くなる。このような状況下で、オペレータは、表示装置25に表示される欠陥情報等を確認しながら、3次元構造物STに生ずる空隙の状態(つまり、造形精度)と造形時間との両立を図るように、線幅wを指定してもよい。或いは、オペレータは、表示装置25に表示される欠陥情報等を確認しながら、3次元構造物STに生ずる空隙の低減(つまり、造形精度の向上)よりも、造形時間の短縮を優先するように、線幅wを指定してもよい。或いは、オペレータは、表示装置25に表示される欠陥情報等を確認しながら、造形時間の短縮よりも、3次元構造物STに生ずる空隙の低減(つまり、造形精度の向上)を優先するように、線幅wを指定してもよい。 When the line width w is used as the determination condition, changing the determination condition (that is, changing the line width w) is substantially equivalent to changing the modeling accuracy of the processing apparatus 1 and changing the modeling time. In this case, the operator may change the line width w (that is, modeling accuracy and modeling time) so that the state of defects occurring in the three-dimensional structure ST becomes acceptable to the operator. In general, as the line width w increases, voids are more likely to occur in the three-dimensional structure ST. This is because, as the line width w becomes thicker, the forming accuracy of the processing apparatus 1 becomes rougher. Therefore, as the line width w designated by the operator becomes thicker, the three-dimensional structure ST becomes more likely to have voids, but the modeling time becomes shorter. On the other hand, as the line width w specified by the operator becomes narrower, the three-dimensional structure ST becomes less likely to have voids, but the modeling time becomes longer. Under such circumstances, the operator checks the defect information and the like displayed on the display device 25, and tries to balance the condition of the voids generated in the three-dimensional structure ST (that is, the modeling accuracy) and the modeling time. , the line width w may be specified. Alternatively, while confirming the defect information displayed on the display device 25, the operator may give priority to shortening the modeling time over reducing the voids generated in the three-dimensional structure ST (that is, improving the modeling accuracy). , the line width w may be specified. Alternatively, while confirming the defect information and the like displayed on the display device 25, the operator may give priority to reducing the voids generated in the three-dimensional structure ST (that is, improving the modeling accuracy) rather than shortening the modeling time. , the line width w may be specified.
 線幅wが指定された状況下で加工パス情報PIが生成されると、その時点で、加工パス情報PIに基づいて3次元構造物STを造形するために必要な時間(造形時間)が決まる。このため、パス生成部211は、加工パス情報PIに基づいて3次元構造物STを造形するために必要な時間(造形時間)を算出してもよい。算出された造形時間は、図18に示すように、表示制御部213の制御下で、算出された造形時間を示す表示オブジェクト94として、表示装置25に表示されてもよい。 When the machining pass information PI is generated under the condition that the line width w is specified, the time (modeling time) required to form the three-dimensional structure ST based on the machining pass information PI is determined at that time. . Therefore, the path generation section 211 may calculate the time (modeling time) required to model the three-dimensional structure ST based on the machining path information PI. The calculated modeling time may be displayed on the display device 25 as a display object 94 indicating the calculated modeling time under the control of the display control unit 213, as shown in FIG.
 再び図7において、その後、パス修正部214は、ステップS12において生成された加工パス情報PIを修正する必要があるか否かを判定する(ステップS15)。例えば、パス修正部214は、加工パス生成装置2のオペレータ(或いは、加工装置1のオペレータ)が加工パス情報PIを修正することを希望している場合には、加工パス情報PIを修正する必要があると判定してもよい。例えば、パス修正部214は、加工パス生成装置2のオペレータ(或いは、加工装置1のオペレータ)が加工パス情報PIを修正することを希望していない場合には、加工パス情報PIを修正する必要がないと判定してもよい。例えば、パス修正部214は、ステップS13において3次元構造物STに欠陥が生ずると判定された場合には、加工パス情報PIを修正する必要があると判定してもよい。例えば、パス修正部214は、ステップS13において3次元構造物STに欠陥が生ずることはないと判定された場合には、加工パス情報PIを修正する必要がないと判定してもよい。例えば、パス修正部214は、3次元構造物STの体積に対する欠陥が生ずる空間(例えば、空隙)が占める割合が許容割合を超える場合には、加工パス情報PIを修正する必要があると判定してもよい。例えば、パス修正部214は、3次元構造物STの体積に対する欠陥が生ずる空間(例えば、空隙)が占める割合が許容割合を超えない場合には、加工パス情報PIを修正する必要がないと判定してもよい。 Referring back to FIG. 7, the path correction unit 214 then determines whether or not it is necessary to correct the machining path information PI generated in step S12 (step S15). For example, when the operator of the machining path generation device 2 (or the operator of the processing device 1) desires to correct the machining path information PI, the path correction unit 214 needs to correct the machining pass information PI. It may be determined that there is For example, if the operator of the machining path generation device 2 (or the operator of the processing device 1) does not wish to correct the machining pass information PI, the path correction unit 214 needs to correct the machining pass information PI. It may be determined that there is no For example, when it is determined in step S13 that a defect will occur in the three-dimensional structure ST, the path correction section 214 may determine that the machining path information PI needs to be corrected. For example, when it is determined in step S13 that no defect will occur in the three-dimensional structure ST, the path correction section 214 may determine that there is no need to correct the machining path information PI. For example, the path correction unit 214 determines that the machining path information PI needs to be corrected when the ratio of the space (for example, void) where the defect occurs to the volume of the three-dimensional structure ST exceeds the allowable ratio. may For example, the path correction unit 214 determines that there is no need to correct the machining path information PI when the ratio of the space (for example, void) where the defect occurs to the volume of the three-dimensional structure ST does not exceed the allowable ratio. You may
 ステップS15における判定の結果、加工パス情報PIを修正する必要があると判定された場合には(ステップS15:Yes)、パス修正部214は、ステップS12において生成された加工パス情報を修正する(ステップS16)。この場合、パス修正部214は、ステップS13における判定結果(つまり、3次元構造物STに欠陥が生ずるか否かの判定結果)に基づいて、加工パス情報を修正してもよい。例えば、パス修正部214は、3次元構造物STに生ずると予想される欠陥が、実際の造形時には生じなくなるように、加工パス情報PIを修正してもよい。例えば、パス修正部214は、3次元構造物STに欠陥が生じなくなるように、加工パス情報PIを修正してもよい。例えば、パス修正部214は、修正される前の加工パス情報PIに基づいて造形される3次元構造物STに生ずると予想される欠陥と比較して、修正された後の加工パス情報PIに基づいて造形される3次元構造物STに生ずると予想される欠陥が少なくなるように、加工パス情報PIを修正してもよい。例えば、パス修正部214は、3次元構造物STに生ずると予想される欠陥を低減するように、加工パス情報PIを修正してもよい。 As a result of the determination in step S15, if it is determined that the machining pass information PI needs to be corrected (step S15: Yes), the path correction unit 214 corrects the machining pass information generated in step S12 ( step S16). In this case, the path correction unit 214 may correct the machining path information based on the determination result in step S13 (that is, the determination result as to whether or not a defect will occur in the three-dimensional structure ST). For example, the path correction unit 214 may correct the processing path information PI so that defects expected to occur in the three-dimensional structure ST will not occur during actual modeling. For example, the pass correction unit 214 may correct the machining pass information PI so that defects do not occur in the three-dimensional structure ST. For example, the path correction unit 214 compares defects expected to occur in the three-dimensional structure ST to be formed based on the machining path information PI before correction, and compares the defects to the machining path information PI after correction. The machining path information PI may be corrected so that defects expected to occur in the three-dimensional structure ST to be modeled based on the machining path information PI are reduced. For example, the pass correction unit 214 may correct the machining pass information PI so as to reduce defects expected to occur in the three-dimensional structure ST.
 一例として、例えば、隣接する二つの部分加工パスPpの間の間隔Dが閾値TH1よりも大きいことに起因して3次元構造物STに空隙(つまり、欠陥)が生ずると判定された場合には(図11参照)、パス修正部214は、図19に示すように、隣接する二つの部分加工パスPpの間に少なくとも一つの新たな部分加工パスPpを追加するように、加工パス情報PIを修正してもよい。つまり、パス修正部214は、3次元構造物STに生ずると予想される空隙に造形物(特に、空隙を充填するための造形物)を造形するための新たな部分加工パスPpを追加するように、加工パス情報PIを修正してもよい。 As an example, for example, when it is determined that a gap (that is, a defect) occurs in the three-dimensional structure ST due to the interval D between two adjacent partial processing passes Pp being larger than the threshold value TH1, (See FIG. 11), as shown in FIG. 19, the path correction unit 214 modifies the machining path information PI so as to add at least one new partial machining path Pp between two adjacent partial machining paths Pp. You can fix it. In other words, the path correction unit 214 adds a new partial processing path Pp for forming a modeled object (particularly, a modeled object for filling the gap) in a gap expected to occur in the three-dimensional structure ST. Alternatively, the machining pass information PI may be corrected.
 他の一例として、例えば、隣接する二つの部分加工パスPpの間の間隔Dが閾値TH2よりも小さいことに起因して3次元構造物STに空隙(つまり、欠陥)が生ずると判定された場合には(図14参照)、パス修正部214は、図20に示すように、隣接する二つの部分加工パスPp(図20では、部分加工パスPp#1)の間に少なくとも一つの新たな部分加工パスPp(図20では、部分加工パスPp#3)を追加するように、加工パス情報PIを修正してもよい。つまり、パス修正部214は、3次元構造物STに生ずると予想される空隙に造形物(特に、空隙を充填するための造形物)を造形するための新たな部分加工パスPpを追加するように、加工パス情報PIを修正してもよい。 As another example, for example, when it is determined that a gap (that is, a defect) occurs in the three-dimensional structure ST due to the interval D between two adjacent partial processing passes Pp being smaller than the threshold TH2. (see FIG. 14), the path correction unit 214 creates at least one new portion between two adjacent partial machining passes Pp (partial machining pass Pp#1 in FIG. 20), as shown in FIG. The machining pass information PI may be modified so as to add a machining pass Pp (partial machining pass Pp#3 in FIG. 20). In other words, the path correction unit 214 adds a new partial processing path Pp for forming a modeled object (particularly, a modeled object for filling the gap) in a gap expected to occur in the three-dimensional structure ST. Alternatively, the machining pass information PI may be corrected.
 但し、単に新たな部分加工パスPpを追加するだけでは、図13を参照しながら説明したように、隣接する二つの部分加工パスPp#1によって形成される二つの開口BO121の形状が理想的な形状とは異なる形状になってしまう可能性がある。そこで、パス修正部214は、隣接する二つの部分加工パスPp#1の間に追加される部分加工パスPp#3に対応する線幅wが、部分加工パスPp#3以外の部分加工パスPpに対応する線幅wよりも細くなるように、加工パス情報PIを修正してもよい。例えば、パス修正部214は、部分加工パスPp#1及びPp#2に対応する線幅wが、第1の幅w1となり、部分加工パスPp#3に対応する線幅wが、第1の幅w1よりも細い第2の幅w2となるように、加工パス情報PIを修正してもよい。その結果、隣接する二つの部分加工パスPp#1の間においてより高精度な造形が行われるため、隣接する二つの部分加工パスPp#1によって形成される二つの開口BO121の形状が理想的な形状とは異なる形状になる可能性は低くなる。 However, if a new partial machining pass Pp is simply added, as described with reference to FIG. There is a possibility that the shape will be different from the shape. Therefore, the path correction unit 214 determines that the line width w corresponding to the partial machining pass Pp#3 added between the adjacent two partial machining passes Pp#1 is equal to the partial machining pass Pp other than the partial machining pass Pp#3. The machining pass information PI may be corrected so as to be thinner than the line width w corresponding to . For example, the path correction unit 214 sets the line width w corresponding to the partial machining paths Pp#1 and Pp#2 to the first width w1, and sets the line width w corresponding to the partial machining path Pp#3 to the first width w1. The machining pass information PI may be corrected so as to have a second width w2 narrower than the width w1. As a result, more accurate modeling is performed between the two adjacent partial machining passes Pp#1, so the shape of the two openings BO121 formed by the two adjacent partial machining passes Pp#1 is ideal. It is less likely to have a different shape than the shape.
 パス修正部214は、加工パス情報PIを修正する際に、空隙をなくすように3次元構造物STの形状を変更してもよい。例えば、図20に示す例では、パス修正部214は、二つの開口BO121の間の間隔Dが広くなるように、3次元構造物STの形状を変更してもよい。その結果、パス修正部214は、二つの開口BO121をそれぞれ造形するための二つの部分加工パスPp#1の間に、部分加工パスPp#3を追加するスペースを確保することができる。或いは、パス修正部214は、二つの開口BO121の径が小さくなるように、3次元構造物STの形状を変更してもよい。この場合も、二つの開口BO121の間の間隔Dが広くなるがゆえに、パス修正部214は、二つの開口BO121をそれぞれ造形するための二つの部分加工パスPp#1の間に、部分加工パスPp#3を追加するスペースを確保することができる。 When correcting the machining pass information PI, the path correction unit 214 may change the shape of the three-dimensional structure ST so as to eliminate voids. For example, in the example shown in FIG. 20, the path correction section 214 may change the shape of the three-dimensional structure ST so that the distance D between the two openings BO121 is widened. As a result, the path correction unit 214 can secure a space for adding the partial machining pass Pp#3 between the two partial machining passes Pp#1 for respectively forming the two openings BO121. Alternatively, the path correction unit 214 may change the shape of the three-dimensional structure ST so that the two openings BO121 have smaller diameters. In this case as well, since the distance D between the two openings BO121 is widened, the path correction unit 214 performs partial machining pass Pp#1 between the two partial machining passes Pp#1 for forming the two openings BO121. Space can be reserved for adding Pp#3.
 尚、隣接する二つの部分加工パスPpの間の間隔Dが閾値TH2よりも小さいことに起因して3次元構造物STに空隙(つまり、欠陥)が生ずると判定された場合に限らず、パス修正部214は、線幅wを変更するように加工パス情報PIを修正してもよい。例えば、上述したように、線幅wの変更は、実質的に、3次元構造物STに生ずる空隙の状態の変更、加工装置1の造形精度の変更及び造形時間の変更と等価である。この場合、図21に示すように、表示制御部213は、3次元構造物STに生ずる空隙の低減(つまり、造形精度の向上)と造形時間の短縮との優先度をオペレータに指定させるための表示オブジェクト95を表示するように、表示装置25を制御してもよい。パス修正部214は、表示オブジェクト95の操作結果に基づいて線幅wを指定(変更)してもよい。例えば、オペレータが造形時間優先モード(つまり、3次元構造物STに生ずる空隙の低減(つまり、造形精度の向上)よりも造形時間の短縮を優先するモード)を選択した場合には、パス修正部214は、線幅wが第1の線幅となるように線幅wを指定してもよい。この場合、パス修正部214は、隣り合う二つの部分加工パスPpの間の間隔の下限値が、第1の線幅に応じた第1の下限値になるという制約条件の下で、加工パス情報PIを修正してもよい。例えば、オペレータが造形精度優先モード(つまり、造形時間の短縮よりも3次元構造物STに生ずる空隙の低減(つまり、造形精度の向上)を優先するモード)を選択した場合には、パス修正部214は、線幅wが第2の線幅(但し、第2の線幅は、第1の線幅よりも細い)となるように線幅wを指定してもよい。言い換えれば、パス修正部214は、隣り合う二つの部分加工パスPpの間の間隔の下限値が、第2の線幅に応じた第2の下限値(但し、第2の下限値は、第1の下限値よりも小さい)になるという制約条件の下で、加工パス情報PIを修正してもよい。その結果、造形精度優先モードでは、造形時間優先モードと比較して、典型的には、隣り合う二つの部分加工パスPpの間の間隔が短くなる。つまり、造形時間優先モードでは、造形精度優先モードと比較して、典型的には、隣り合う二つの部分加工パスPpの間の間隔が長くなる。例えば、オペレータが両立モード(つまり、造形時間の短縮と3次元構造物STに生ずる空隙の低減(つまり、造形精度の向上)とを両立するモード)を選択した場合には、パス生成部211(或いは、欠陥判定部212)は、線幅wが第3の線幅(但し、第3の線幅は、第1の線幅よりも細く且つ第2の線幅よりも太い)となるように線幅wを指定してもよい。言い換えれば、パス修正部214は、隣り合う二つの部分加工パスPpの間の間隔の下限値が、第3の線幅に応じた第3の下限値(但し、第3の下限値は、第1の下限値よりも小さく、且つ、第2の下限値よりも大きい)になるという制約条件の下で、加工パス情報PIを修正してもよい。 Note that this is not limited to the case where it is determined that a gap (that is, defect) occurs in the three-dimensional structure ST due to the interval D between two adjacent partial machining passes Pp being smaller than the threshold value TH2. The modifying unit 214 may modify the machining pass information PI so as to change the line width w. For example, as described above, changing the line width w is substantially equivalent to changing the state of voids generated in the three-dimensional structure ST, changing the modeling accuracy of the processing apparatus 1, and changing the modeling time. In this case, as shown in FIG. 21, the display control unit 213 causes the operator to specify the priority between the reduction of voids generated in the three-dimensional structure ST (that is, the improvement of modeling accuracy) and the shortening of the modeling time. Display device 25 may be controlled to display display object 95 . The path correction unit 214 may specify (change) the line width w based on the operation result of the display object 95 . For example, when the operator selects a modeling time priority mode (that is, a mode that prioritizes shortening of the modeling time over reduction of voids occurring in the three-dimensional structure ST (that is, improvement of modeling accuracy)), the path correction unit 214 may specify the line width w such that the line width w is the first line width. In this case, the path correction unit 214 adjusts the machining path under the constraint that the lower limit value of the interval between two adjacent partial machining paths Pp is the first lower limit value corresponding to the first line width. Information PI may be modified. For example, when the operator selects a molding accuracy priority mode (that is, a mode that prioritizes reduction of voids generated in the three-dimensional structure ST (that is, improvement of molding accuracy) over shortening of the molding time), the path correction unit 214 may specify the line width w such that the line width w is the second line width (where the second line width is thinner than the first line width). In other words, the pass correction unit 214 sets the lower limit value of the interval between two adjacent partial machining passes Pp to the second lower limit value according to the second line width (however, the second lower limit value is the second lower limit value). 1), the machining pass information PI may be corrected. As a result, in the modeling accuracy priority mode, the interval between two adjacent partial machining passes Pp is typically shorter than in the modeling time priority mode. That is, in the modeling time priority mode, the interval between two adjacent partial machining passes Pp is typically longer than in the modeling accuracy priority mode. For example, when the operator selects a compatible mode (that is, a mode that achieves both a reduction in modeling time and a reduction in voids occurring in the three-dimensional structure ST (that is, improvement in modeling accuracy)), the path generation unit 211 ( Alternatively, the defect determination unit 212) sets the line width w to a third line width (where the third line width is thinner than the first line width and thicker than the second line width). A line width w may be specified. In other words, the pass correction unit 214 sets the lower limit value of the interval between two adjacent partial machining passes Pp to the third lower limit value according to the third line width (however, the third lower limit value corresponds to the third line width). The machining pass information PI may be corrected under the constraint condition that it is less than the lower limit of 1 and greater than the second lower limit.
 他の一例として、交差する二つの部分加工パスPpの交差量Cが閾値TH3よりも小さいことに起因して3次元構造物STに空隙(つまり、欠陥)が生ずると判定された場合には(図15参照)、パス修正部214は、交差量Cが閾値TH3以上になるように、加工パス情報PIを修正してもよい。例えば、パス修正部214は、交差する二つの部分加工パスPpの少なくとも一方を延ばす(つまり、長くする)ことで交差量Cが閾値TH3以上になるように、加工パス情報PIを修正してもよい。 As another example, when it is determined that a void (that is, a defect) occurs in the three-dimensional structure ST due to the intersection amount C of two intersecting partial machining paths Pp being smaller than the threshold TH3 ( 15), the path correction unit 214 may correct the machining path information PI so that the intersection amount C is equal to or greater than the threshold TH3. For example, the path correction unit 214 may extend (that is, lengthen) at least one of the two intersecting partial machining paths Pp to correct the machining path information PI so that the intersection amount C becomes equal to or greater than the threshold TH3. good.
 再び図7において、ステップS16において加工パス情報PIが修正された場合には、加工パス生成装置2は、ステップS16において修正された加工パス情報PIを用いて、ステップS13以降の動作を行う。つまり、欠陥判定部212は、ステップS16において修正された加工パス情報PIに基づいて加工装置1が3次元構造物STを造形した場合に、造形された3次元構造物STに欠陥が生ずるか否かを判定する(ステップS13)。更に、表示制御部213は、3次元構造物STに生ずる欠陥(本実施形態では、空隙)に関する情報(つまり、欠陥情報)を表示するように、表示装置25を制御する(ステップS14)。更に、パス修正部214は、ステップS16において修正された加工パス情報PIを更に修正する必要があるか否かを判定する(ステップS15)。但し、加工パス生成装置2は、ステップS16において修正された加工パス情報PIを用いて、ステップS13以降の動作を行わなくてもよい。 In FIG. 7 again, when the machining path information PI is corrected in step S16, the machining path generation device 2 uses the machining path information PI corrected in step S16 to perform the operations after step S13. That is, when the processing apparatus 1 models the three-dimensional structure ST based on the modified machining path information PI in step S16, the defect determination unit 212 determines whether a defect occurs in the modeled three-dimensional structure ST. (Step S13). Further, the display control unit 213 controls the display device 25 so as to display information (that is, defect information) regarding defects (voids in this embodiment) occurring in the three-dimensional structure ST (step S14). Furthermore, the path correction unit 214 determines whether or not it is necessary to further correct the machining path information PI corrected in step S16 (step S15). However, the machining path generation device 2 does not have to perform the operations after step S13 using the machining path information PI corrected in step S16.
 他方で、ステップS15における判定の結果、加工パス情報PIを修正する必要がないと判定された場合には(ステップS15:No)、パス修正部214は、ステップS12において生成された加工パス情報を修正しなくてもよい。 On the other hand, as a result of the determination in step S15, if it is determined that there is no need to modify the machining pass information PI (step S15: No), the path correction unit 214 corrects the machining pass information generated in step S12. No need to fix.
 その後、加工パス生成装置2は、ステップS12において生成された加工パス情報PIを加工装置1に出力する(ステップS17)。或いは、ステップS16において加工パス情報PIが修正された場合には、加工パス生成装置2は、ステップS16において修正された加工パス情報PIを加工装置1に出力する(ステップS17)。その後、加工装置1は、加工パス生成装置2から出力される加工パス情報PIに基づいて、3次元構造物STを造形する。 After that, the machining path generation device 2 outputs the machining path information PI generated in step S12 to the processing device 1 (step S17). Alternatively, when the machining pass information PI is corrected in step S16, the machining pass generation device 2 outputs the machining pass information PI corrected in step S16 to the processing device 1 (step S17). After that, the processing device 1 shapes the three-dimensional structure ST based on the processing path information PI output from the processing path generation device 2 .
 (4)加工システムSYSの効果
 以上説明したように、本実施形態の加工システムSYSでは、加工パス生成装置2は、加工パス情報PIに基づいて加工装置1が3次元構造物STを造形した場合に3次元構造物STに欠陥が生ずるか否かを判定することができる。更に、加工パス生成装置2は、欠陥に関する情報を表示することができる。このため、加工パス生成装置2のオペレータ(或いは、加工装置1のオペレータ)は、3次元構造物STに生ずると予想される欠陥を把握することができる。その結果、加工パス生成装置2のオペレータ(或いは、加工装置1のオペレータ)は、欠陥に対する所望の対策をとることができる。例えば、加工パス生成装置2のオペレータ(或いは、加工装置1のオペレータ)は、欠陥が少なくなるように3次元構造物STを造形するための所望の対策をとることができる。このため、加工装置1は、欠陥が低減された3次元構造物STを造形することができる。
(4) Effect of Processing System SYS As described above, in the processing system SYS of the present embodiment, the processing path generation device 2 generates the three-dimensional structure ST based on the processing path information PI. It is possible to determine whether or not a defect will occur in the three-dimensional structure ST. Furthermore, the machining path generator 2 can display information about defects. Therefore, the operator of the machining path generation device 2 (or the operator of the machining device 1) can grasp defects that are expected to occur in the three-dimensional structure ST. As a result, the operator of the machining path generation device 2 (or the operator of the machining device 1) can take desired countermeasures against defects. For example, the operator of the machining path generation device 2 (or the operator of the processing device 1) can take desired measures to form the three-dimensional structure ST with fewer defects. Therefore, the processing apparatus 1 can form the three-dimensional structure ST with reduced defects.
 また、加工パス生成装置2は、3次元構造物STに欠陥が生ずるか否かの判定結果に基づいて、加工パス情報PIを修正することができる。例えば、加工パス生成装置2は、加工パス情報PIを修正することで、加工装置1が造形した3次元構造物STに生ずる欠陥を低減することが可能な加工パス情報PIを生成することができる。このため、加工パス生成装置2のオペレータ(或いは、加工装置1のオペレータ)が欠陥に対する特段の対策をとらなかったとしても、加工装置1が造形した3次元構造物STに生ずる欠陥が低減される。つまり、加工装置1は、欠陥が低減された3次元構造物STを造形することができる。 Also, the machining path generation device 2 can correct the machining path information PI based on the determination result as to whether or not a defect occurs in the three-dimensional structure ST. For example, the machining path generation device 2 can generate machining path information PI capable of reducing defects occurring in the three-dimensional structure ST formed by the processing device 1 by correcting the machining path information PI. . Therefore, even if the operator of the machining path generation device 2 (or the operator of the processing device 1) does not take special measures against defects, the defects occurring in the three-dimensional structure ST formed by the processing device 1 are reduced. . That is, the processing apparatus 1 can form the three-dimensional structure ST with reduced defects.
 (5)変形例
 続いて、加工システムSYSの変形例について説明する。尚、既に説明済みの構成要件については、同一の参照符号を付することでその詳細な説明を省略する。また、既に説明済みの動作については、同一のステップ番号を付することでその詳細な説明を省略する。
(5) Modification Next, a modification of the machining system SYS will be described. Constituent elements that have already been explained are denoted by the same reference numerals, and detailed explanation thereof will be omitted. Also, the operations that have already been explained are given the same step numbers, and the detailed explanation thereof will be omitted.
 (5-1)第1変形例
 初めに、図22を参照しながら、第1変形例における加工システムSYSについて説明する。図22は、第1変形例における加工システムSYSの構成を示すブロック図である。尚、以下の説明では、第1変形例における加工システムSYSを、加工システムSYSaと称する。
(5-1) First Modified Example First , the machining system SYS in the first modified example will be described with reference to FIG. FIG. 22 is a block diagram showing the configuration of the machining system SYS in the first modified example. In addition, in the following description, the processing system SYS in the first modified example is referred to as a processing system SYSa.
 図22に示すように、第1変形例の加工システムSYSaは、上述した加工システムSYSと比較して、計測装置4aを更に備えているという点で異なる。加工システムSYSaのその他の特徴は、加工システムSYSのその他の特徴と同一であってもよい。 As shown in FIG. 22, the machining system SYSa of the first modified example differs from the machining system SYS described above in that it further includes a measuring device 4a. Other features of the processing system SYSa may be the same as other features of the processing system SYS.
 計測装置4aは、加工装置1によって造形された3次元構造物STを計測可能である。特に、計測装置4aは、3次元構造物STの内部構造を計測可能である。このような計測装置4aの一例として、CT(Computed Tomography)計測装置があげられる。 The measuring device 4a can measure the three-dimensional structure ST formed by the processing device 1. In particular, the measuring device 4a can measure the internal structure of the three-dimensional structure ST. An example of such a measuring device 4a is a CT (Computed Tomography) measuring device.
 計測装置4aと加工パス生成装置2とは、有線の通信ネットワーク及び無線の通信ネットワークの少なくとも一つを含む通信ネットワーク5aを介して通信可能である。尚、通信ネットワーク5aは、通信ネットワーク3と同一であってもよい。 The measuring device 4a and the machining path generation device 2 can communicate via a communication network 5a including at least one of a wired communication network and a wireless communication network. The communication network 5a may be the same as the communication network 3. FIG.
 続いて、図23を参照しながら、第1変形例における加工システムSYSaの動作について説明する。図23は、第1変形例における加工システムSYSaの動作の流れを示すフローチャートである。 Next, the operation of the machining system SYSa in the first modified example will be described with reference to FIG. FIG. 23 is a flow chart showing the operation flow of the machining system SYSa in the first modified example.
 図23に示すように、第1変形例においても、加工パス生成装置2のパス生成部211は、加工装置1が造形するべき3次元構造物STの3Dモデル(3次元モデル)を示す3Dモデルデータを取得し(ステップS11)、3Dモデルデータに基づいて加工パス情報PIを生成する(ステップS12)。その後、加工パス生成装置2は、ステップS12において生成された加工パス情報PIを加工装置1に出力する(ステップS17)。尚、加工パス生成装置2は、加工パス情報PIを加工装置1に出力する前に、加工パス情報PIに基づいて3次元構造物STに欠陥が生ずるか否かを判定し(図7のステップS13)、欠陥情報を表示し(図7のステップS14)、加工パス情報PIを修正してもよい(図7のステップS16)。 As shown in FIG. 23, also in the first modification, the path generation unit 211 of the machining path generation device 2 generates a 3D model (three-dimensional model) of the three-dimensional structure ST to be formed by the processing device 1. Data is acquired (step S11), and machining pass information PI is generated based on the 3D model data (step S12). After that, the machining path generation device 2 outputs the machining path information PI generated in step S12 to the processing device 1 (step S17). Before outputting the machining path information PI to the processing apparatus 1, the machining path generation device 2 determines whether or not a defect occurs in the three-dimensional structure ST based on the machining path information PI (step S13), the defect information may be displayed (step S14 in FIG. 7), and the machining path information PI may be corrected (step S16 in FIG. 7).
 その後、加工装置1は、ステップS17において出力された加工パス情報PIに基づいて、3次元構造物STを造形する(ステップS21a)。その後、計測装置4aは、ステップS21aにおいて造形された3次元構造物STを計測する(ステップS22a)。その後、計測装置4aは、3次元構造物STの計測結果を示す計測情報を、通信ネットワーク5aを介して加工パス生成装置2に出力する(ステップS23a)。 After that, the processing device 1 forms the three-dimensional structure ST based on the processing path information PI output in step S17 (step S21a). After that, the measuring device 4a measures the three-dimensional structure ST formed in step S21a (step S22a). After that, the measurement device 4a outputs measurement information indicating the measurement result of the three-dimensional structure ST to the machining path generation device 2 via the communication network 5a (step S23a).
 その後、加工パス生成装置2の欠陥判定部212は、ステップS23aにおいて出力された計測情報に基づいて、ステップS21aにおいて加工装置1が造形した3次元構造物STに欠陥(例えば、空隙)が生じているか否かを判定する(ステップS13a)。つまり、第1変形例では、加工パス生成装置2は、ステップS12において生成された加工パス情報PIに基づいて加工装置1が3次元構造物STを実際に造形した後に、加工装置1が実際に造形した3次元構造物STに実際に欠陥が生じているか否かを判定する。 After that, based on the measurement information output in step S23a, the defect determination unit 212 of the machining path generation device 2 determines whether a defect (for example, a void) occurs in the three-dimensional structure ST formed by the processing device 1 in step S21a. It is determined whether or not there is (step S13a). That is, in the first modification, the processing path generation device 2 causes the processing device 1 to actually shape the three-dimensional structure ST based on the processing path information PI generated in step S12. It is determined whether or not a defect actually occurs in the modeled three-dimensional structure ST.
 その後、加工パス生成装置2の表示制御部213は、欠陥情報を表示するように、表示装置25を制御する(ステップS14)。典型的には、表示制御部213は、ステップS13aにおいて3次元構造物STに欠陥が生じていると判定された場合に、欠陥情報を表示するように、表示装置25を制御する。更に、加工パス生成装置2のパス修正部214は、必要であれば、ステップS13aにおける判定結果(つまり、3次元構造物STに欠陥が生じているか否かの判定結果)に基づいて、ステップS12において生成された加工パス情報PIを修正する(ステップS15からステップS16)。その後、加工パス生成装置2は、ステップS16において修正された加工パス情報PIを加工装置1に出力する(ステップS17)。 After that, the display control unit 213 of the machining path generation device 2 controls the display device 25 so as to display the defect information (step S14). Typically, the display control unit 213 controls the display device 25 so as to display defect information when it is determined in step S13a that the three-dimensional structure ST has a defect. Further, if necessary, the path correction unit 214 of the machining path generation device 2 performs step S12 based on the determination result in step S13a (that is, the determination result as to whether or not the three-dimensional structure ST has a defect). The machining pass information PI generated in step S15 to step S16 is corrected. Thereafter, the machining path generation device 2 outputs the machining path information PI corrected in step S16 to the machining device 1 (step S17).
 その後、加工装置1は、加工パス生成装置2から出力される加工パス情報PIに基づいて、次に造形するべき3次元構造物STを造形する(ステップS24a)。つまり、第1変形例では、加工装置1が複数の同じ種類の3次元構造物STを順に造形する場合において、加工装置1が最初に造形した一つ目の3次元構造物STに欠陥が生じている場合には、二つ目以降の3次元構造物STを造形するための加工パス情報PIが修正される。このため、加工パス生成装置2は、二つ目以降の3次元構造物STに生ずる欠陥を低減することが可能な加工パス情報PIを生成することができる。つまり、加工装置1は、欠陥が低減された3次元構造物STを造形することができる。 After that, the processing device 1 forms the three-dimensional structure ST to be formed next based on the processing path information PI output from the processing path generation device 2 (step S24a). That is, in the first modification, when the processing device 1 sequentially shapes a plurality of three-dimensional structures ST of the same type, the first three-dimensional structure ST that is first shaped by the processing device 1 has a defect. If so, the machining path information PI for forming the second and subsequent three-dimensional structures ST is corrected. Therefore, the machining path generation device 2 can generate machining path information PI capable of reducing defects that occur in the second and subsequent three-dimensional structures ST. That is, the processing apparatus 1 can form the three-dimensional structure ST with reduced defects.
 (5-2)第2変形例
 続いて、第2変形例における加工システムSYSについて説明する。尚、以下の説明では、第2変形例における加工システムSYSを、加工システムSYSbと称する。加工システムSYSbは、加工システムSYS及びSYSaの少なくとも一つと比較して、加工パス生成装置2に代えて、加工パス生成装置2bを備えているという点で異なる。加工システムSYSbのその他の特徴は、加工システムSYS及びSYSaの少なくとも一つのその他の特徴と同一であってもよい。このため、以下、図24を参照しながら、第2変形例における加工パス生成装置2bの構成について説明する。図24は、第2変形例における加工パス生成装置2bの構成を示すブロック図である。
(5-2) Second Modification Next, a machining system SYS in a second modification will be described. Incidentally, in the following description, the processing system SYS in the second modified example is referred to as a processing system SYSb. The machining system SYSb differs from at least one of the machining systems SYS and SYSa in that it includes a machining path generation device 2b instead of the machining path generation device 2 . Other features of processing system SYSb may be identical to other features of at least one of processing systems SYS and SYSa. Therefore, the configuration of the machining path generation device 2b in the second modified example will be described below with reference to FIG. FIG. 24 is a block diagram showing the configuration of a machining path generation device 2b in the second modified example.
 図24に示すように、第2変形例における加工パス生成装置2bは、上述した加工パス生成装置2と比較して、演算装置21内に実現される論理的な機能ブロックとしての学習部215bを更に備えているという点で異なる。加工パス生成装置2bのその他の特徴は、加工パス生成装置2のその他の特徴と同一であってもよい。 As shown in FIG. 24, the machining path generation device 2b in the second modification differs from the machining path generation device 2 described above in that a learning unit 215b as a logical functional block realized in the arithmetic unit 21 is It differs in that it is further equipped. Other features of the machining path generator 2 b may be the same as other features of the machining path generator 2 .
 学習部215bは、欠陥判定部212の判定結果と、加工装置1が造形するべき3次元構造物STに関する情報(例えば、3Dモデルデータ)と、加工パス情報PIの間の関係を学習する。欠陥判定部212の判定結果は、加工装置1が3次元構造物STを実際に造形する前に3次元構造物STに欠陥が生ずるか否かを判定する(つまり、推定する)判定動作(図7のステップS13)の結果を含んでいてもよい。欠陥判定部212の判定結果は、加工装置1が3次元構造物STを実際に造形した後に3次元構造物STに実際に欠陥が生じているか否かを判定する判定動作(図23のステップS13a)の結果を含んでいてもよい。或いは、加工装置1が3次元構造物STを実際に造形した後に3次元構造物STに実際に欠陥が生じているか否かを判定する判定動作が、計測装置4aによる3次元構造物STの計測結果に基づいて行われるがゆえに、計測装置4aによる3次元構造物STの計測結果が、欠陥判定部212の判定結果として用いられてもよい。 The learning unit 215b learns the relationship between the determination result of the defect determination unit 212, the information (for example, 3D model data) on the three-dimensional structure ST to be modeled by the processing apparatus 1, and the processing path information PI. The judgment result of the defect judging unit 212 is used in the judging operation (that is, estimating) for judging (that is, estimating) whether or not a defect occurs in the three-dimensional structure ST before the processing apparatus 1 actually forms the three-dimensional structure ST. 7 step S13) may be included. The determination result of the defect determination unit 212 is used in the determination operation (step S13a in FIG. 23) of determining whether or not a defect actually occurs in the three-dimensional structure ST after the processing apparatus 1 actually forms the three-dimensional structure ST. ) may contain the results of Alternatively, the determination operation of determining whether or not a defect actually occurs in the three-dimensional structure ST after the processing device 1 has actually formed the three-dimensional structure ST may be performed by measuring the three-dimensional structure ST by the measuring device 4a. The measurement result of the three-dimensional structure ST by the measurement device 4 a may be used as the determination result of the defect determination unit 212 because the determination is performed based on the result.
 学習部215bは、欠陥判定部212の判定結果と3次元構造物STに関する情報と加工パス情報PIとの関係を学習することで、欠陥が生じやすい加工パス情報の傾向を学習してもよい。学習部215bは、欠陥判定部212の判定結果と3次元構造物STに関する情報と加工パス情報PIとの関係を学習することで、欠陥が生じにくい加工パス情報の傾向を学習してもよい。この場合、学習効率を向上させるために、欠陥判定部212の判定結果と3次元構造物STに関する情報と加工パス情報PIとを大量に含むビックデータが容易されてもよい。学習部215bは、欠陥判定部212の判定結果と3次元構造物STに関する情報と加工パス情報PIとの関係を学習することで、欠陥が生じやすい3次元構造物STの形状の傾向を学習してもよい。学習部215bは、欠陥判定部212の判定結果と3次元構造物STに関する情報と加工パス情報PIとの関係を学習することで、欠陥が生じにくい3次元構造物STの形状の傾向を学習してもよい。 The learning unit 215b may learn the tendency of machining path information in which defects are likely to occur by learning the relationship between the determination result of the defect determination unit 212, the information on the three-dimensional structure ST, and the machining path information PI. The learning unit 215b may learn the tendency of machining path information in which defects are unlikely to occur by learning the relationship between the determination result of the defect determination unit 212, the information on the three-dimensional structure ST, and the machining path information PI. In this case, in order to improve the learning efficiency, big data including a large amount of the determination result of the defect determination unit 212, the information about the three-dimensional structure ST, and the machining path information PI may be provided. The learning unit 215b learns the relationship between the determination result of the defect determination unit 212, the information on the three-dimensional structure ST, and the machining path information PI, thereby learning the tendency of the shape of the three-dimensional structure ST in which defects are likely to occur. may The learning unit 215b learns the relationship between the determination result of the defect determination unit 212, the information on the three-dimensional structure ST, and the machining path information PI, thereby learning the tendency of the shape of the three-dimensional structure ST in which defects are unlikely to occur. may
 例えば、欠陥判定部212は、学習結果に基づいて、3次元構造物STに生ずる欠陥が少なくなる(理想的には、なくなる)ように加工パス情報PIを修正してもよい。この場合、パス修正部214が学習結果を参照することなく加工パス情報PIが修正される場合と比較して、加工パス生成装置2bは、3次元構造物STに生ずる欠陥をより一層低減することが可能な加工パス情報PIを生成することができる。つまり、加工装置1は、欠陥がより一層低減された3次元構造物STを造形することができる。 For example, the defect determination unit 212 may correct the machining path information PI based on the learning result so that defects occurring in the three-dimensional structure ST are reduced (ideally, eliminated). In this case, the machining path generation device 2b can further reduce defects occurring in the three-dimensional structure ST, compared to the case where the machining path information PI is corrected without the path correction unit 214 referring to the learning result. , can be generated. That is, the processing apparatus 1 can form the three-dimensional structure ST with further reduced defects.
 学習部215bによる学習結果は、パス修正部214が加工パス情報PIを修正する際にパス修正部214によって参照されてもよい。例えば、パス修正部214は、学習結果に基づいて、3次元構造物STに生ずる欠陥が少なくなる(理想的には、なくなる)ように加工パス情報PIを修正してもよい。この場合、パス修正部214が学習結果を参照することなく加工パス情報PIが修正される場合と比較して、加工パス生成装置2bは、3次元構造物STに生ずる欠陥をより一層低減することが可能な加工パス情報PIを生成することができる。つまり、加工装置1は、欠陥がより一層低減された3次元構造物STを造形することができる。 The learning result by the learning unit 215b may be referred to by the path correction unit 214 when the path correction unit 214 corrects the machining pass information PI. For example, the path correction unit 214 may correct the machining path information PI based on the learning result so that defects occurring in the three-dimensional structure ST are reduced (ideally, they are eliminated). In this case, the machining path generation device 2b can further reduce defects occurring in the three-dimensional structure ST, compared to the case where the machining path information PI is corrected without the path correction unit 214 referring to the learning result. , can be generated. That is, the processing apparatus 1 can form the three-dimensional structure ST with further reduced defects.
 学習部215bによる学習結果は、欠陥判定部212が3次元構造物STに欠陥が生ずるか否かを判定するする際に欠陥判定部212によって参照されてもよい。この場合、欠陥判定部212は、3次元構造物STに欠陥が生ずるか否かをより高精度に判定することができる。 The learning result by the learning unit 215b may be referred to by the defect determination unit 212 when the defect determination unit 212 determines whether or not a defect occurs in the three-dimensional structure ST. In this case, the defect determination unit 212 can more accurately determine whether or not a defect occurs in the three-dimensional structure ST.
 上述したようにパス修正部214が学習可能な学習モデル(つまり、AI)を利用することで加工パス情報PIを修正する場合には、学習部215bは、欠陥判定部212の判定結果と、加工装置1が造形するべき3次元構造物STに関する情報(例えば、3Dモデルデータ)と、加工パス情報PIとを教師データとして用いることで、パス修正部214が用いる学習モデルの学習を行ってもよい。具体的には、パス修正部214は、3Dモデルデータ、加工パス情報及び欠陥判定部212の判定結果が入力された場合に、修正済みの加工パス情報を出力する学習モデルを利用してもよい。この場合、パス修正部214の学習のために用いられる教師データは、3Dモデルデータ及び加工パス情報PIと、3Dモデルデータ及び加工パス情報PIの少なくとも一方を用いて造形される3次元構造物STにおける欠陥の有無を示す正解ラベルとを含むデータセットを複数(典型的には、大量に)含んでいてもよい。尚、学習モデルの学習については、既に説明済みである。この場合、学習部215bにより、加工パス情報PIを修正するシステムの学習プロセスが構築されるとみなしてもよい。学習プロセスは、人間が特徴を定義する機械学習で学習させてもよいし、人工知能が学習データから特徴を抽出する深層学習(ディープラーニング)を利用して学習してもよい。ディープラーニングによる学習は、ニューラルネットワークの構造を利用した学習を含んでもよい。 As described above, when the path correction unit 214 corrects the machining path information PI by using a learning model (that is, AI) that can be learned, the learning unit 215b uses the judgment result of the defect judgment unit 212 and the machining The learning model used by the path correction unit 214 may be learned by using information (for example, 3D model data) on the three-dimensional structure ST to be modeled by the apparatus 1 and the processing path information PI as teacher data. . Specifically, the path correction unit 214 may use a learning model that outputs corrected machining path information when 3D model data, machining path information, and the determination result of the defect determination unit 212 are input. . In this case, the teacher data used for the learning of the path correction unit 214 are the 3D model data and the machining path information PI, and the three-dimensional structure ST which is modeled using at least one of the 3D model data and the machining path information PI. A plurality (typically, a large amount) of data sets including correct labels indicating the presence or absence of defects in . The learning of the learning model has already been explained. In this case, it may be considered that the learning process of the system for correcting the machining path information PI is constructed by the learning unit 215b. The learning process may be performed by machine learning, in which features are defined by humans, or by deep learning, in which features are extracted from learning data by artificial intelligence. Learning by deep learning may include learning using the structure of a neural network.
 尚、パス修正部214が加工パス情報PIを修正する動作は、実質的には、パス修正部214が新たな加工パス情報PIを生成する動作と等価であるとみなしてもよい。このため、加工パス情報PIを生成するパス生成部211もまた、パス修正部214と同様に、加工パス情報PIを生成する際に学習部215bによる学習結果を参照してもよい。パス生成部211が学習可能な学習モデル(つまり、AI)を利用することで加工パス情報PIを生成する場合には、学習部215bは、欠陥判定部212の判定結果と、加工装置1が造形するべき3次元構造物STに関する情報(例えば、3Dモデルデータ)と、加工パス情報PIとを教師データとして用いることで、パス生成部211が用いる学習モデルの学習を行ってもよい。尚、パス生成部211が用いる学習モデルと、パス修正部214が用いる学習モデルとが別個に用意されていてもよい。或いは、パス生成部211及びパス修正部214が用いる共通の学習モデルが用意されていてもよい。 It should be noted that the operation of the path correction unit 214 correcting the machining pass information PI may be considered substantially equivalent to the operation of the path correction unit 214 generating new machining pass information PI. Therefore, the path generation unit 211 that generates the processing path information PI may also refer to the learning result of the learning unit 215b when generating the processing path information PI, like the path correction unit 214 does. When the path generation unit 211 generates the machining path information PI by using a learning model (that is, AI) that can be learned, the learning unit 215b uses the determination result of the defect determination unit 212 and the The learning model used by the path generation unit 211 may be learned by using information (for example, 3D model data) about the three-dimensional structure ST to be processed and the machining path information PI as teacher data. The learning model used by the path generation unit 211 and the learning model used by the path correction unit 214 may be prepared separately. Alternatively, a common learning model used by the path generation unit 211 and the path correction unit 214 may be prepared.
 上述したように欠陥判定部212が学習可能な学習モデル(つまり、AI)を利用することで3次元構造物STに欠陥が生ずるか否かを判定する場合には、学習部215bは、欠陥判定部212の判定結果と、加工装置1が造形するべき3次元構造物STに関する情報(例えば、3Dモデルデータ)と、加工パス情報PIとを教師データとして用いることで、欠陥判定部212が用いる学習モデルの学習を行ってもよい。具体的には、欠陥判定部212は、3Dモデルデータ及び加工パス情報が入力された場合に、3次元構造物STに欠陥が生ずるか否かの判定結果を出力する学習モデルを利用してもよい。この場合、欠陥判定部212の学習のために用いられる教師データは、3Dモデルデータ及び加工パス情報PIと、3Dモデルデータ及び加工パス情報PIを用いて造形される3次元構造物STにおける欠陥の有無を示す正解ラベルとを含むデータセットを複数(典型的には、大量に)含んでいてもよい。この場合、学習部215bにより、3次元構造物STに欠陥が生ずるか否かを判定するシステムの学習プロセスが構築されるとみなしてもよい。学習プロセスは、人間が特徴を定義する機械学習で学習させてもよいし、人工知能が学習データから特徴を抽出する深層学習(ディープラーニング)を利用して学習してもよい。ディープラーニングによる学習は、ニューラルネットワークの構造を利用した学習を含んでもよい。 As described above, when the defect determination unit 212 determines whether or not a defect occurs in the three-dimensional structure ST by using a learnable learning model (that is, AI), the learning unit 215b performs defect determination. By using the determination result of the unit 212, information (for example, 3D model data) on the three-dimensional structure ST to be modeled by the processing apparatus 1, and processing path information PI as teacher data, the learning used by the defect determination unit 212 Model training may be performed. Specifically, the defect determination unit 212 may use a learning model that outputs a determination result as to whether or not a defect occurs in the three-dimensional structure ST when 3D model data and machining path information are input. good. In this case, the teacher data used for learning of the defect determination unit 212 are 3D model data and machining path information PI, and defects in the three-dimensional structure ST formed using the 3D model data and machining path information PI. A plurality (typically, a large amount) of data sets including correct labels indicating presence/absence may be included. In this case, it may be considered that the learning process of a system for determining whether or not a defect occurs in the three-dimensional structure ST is constructed by the learning unit 215b. The learning process may be performed by machine learning, in which features are defined by humans, or by deep learning, in which features are extracted from learning data by artificial intelligence. Learning by deep learning may include learning using the structure of a neural network.
 学習プロセスで学習(構築)された学習モデルは、演算モデルとして加工システムSYS内に格納されていてもよい。この場合、典型的には、加工システムSYSが備える演算装置21(例えば、CPU)がこの演算モデルを用いて、3次元構造物STに欠陥が生ずるか否かを判定する。但し、加工システムSYSの外部の装置(例えば、クラウドサーバ等のサーバ)に学習モデルが格納されていてもよい。この場合、加工システムSYSは、3次元構造物STに欠陥が生ずるか否かを判定するために必要なデータ(例えば、3次元構造物STに関する情報(例えば、3Dモデルデータ)及び加工パス情報PI)を外部の装置に送信し、外部の装置が3次元構造物STに欠陥が生ずるか否かを判定してもよい。外部の装置は、加工システムSYSが設置される工場と同じ領域内に配置されてもよいし、別の場所に配されていてもよい。加工システムSYSが配置される国と、外部の装置が配置される国とは、同一であってもよいし、異なっていてもよい。 The learning model learned (constructed) in the learning process may be stored in the processing system SYS as an arithmetic model. In this case, typically, the arithmetic device 21 (for example, CPU) provided in the processing system SYS uses this arithmetic model to determine whether or not a defect occurs in the three-dimensional structure ST. However, the learning model may be stored in an external device (for example, a server such as a cloud server) of the processing system SYS. In this case, the processing system SYS includes data necessary for determining whether or not a defect occurs in the three-dimensional structure ST (for example, information on the three-dimensional structure ST (for example, 3D model data) and processing path information PI ) to an external device, and the external device may determine whether or not a defect occurs in the three-dimensional structure ST. The external device may be arranged within the same area as the factory where the processing system SYS is installed, or may be arranged at a different location. The country in which the processing system SYS is located may be the same as or different from the country in which the external device is located.
 尚、上述した説明では、加工システムSYSbが学習部215bを備えている。しかしながら、加工システムSYSbの外部の装置(例えば、クラウドサーバ等のサーバ)が学習部215bを備えていてもよい。この場合、外部の装置(例えば、クラウドサーバ等のサーバ)の学習部215bが学習モデルを学習(つまり、構築)し、学習済みの学習モデルが加工システムSYSb(例えば、パス生成装置2b)に実装されてもよい。 In the above description, the processing system SYSb has the learning section 215b. However, an external device (for example, a server such as a cloud server) of the processing system SYSb may include the learning unit 215b. In this case, the learning unit 215b of an external device (for example, a server such as a cloud server) learns (that is, constructs) a learning model, and the learned learning model is implemented in the processing system SYSb (for example, the path generation device 2b). may be
 (5-3)第3変形例
 続いて、第3変形例における加工システムSYSについて説明する。尚、以下の説明では、第3変形例における加工システムSYSを、加工システムSYScと称する。加工システムSYScは、加工システムSYS、SYSa及びSYSbの少なくとも一つと比較して、加工装置1に代えて、加工装置1cを備えているという点で異なる。加工システムSYScのその他の特徴は、加工システムSYS、SYSa及びSYSbの少なくとも一つのその他の特徴と同一であってもよい。このため、以下、図25を参照しながら、第3変形例における加工装置1cの構成について説明する。図25は、第3変形例における加工装置1cの構成を示すブロック図である。
(5-3) Third Modification Next, a machining system SYS in a third modification will be described. Incidentally, in the following description, the processing system SYS in the third modified example is referred to as a processing system SYSc. The processing system SYSc is different from at least one of the processing systems SYS, SYSa and SYSb in that the processing device 1c is replaced with the processing device 1c. Other features of processing system SYSc may be identical to other features of at least one of processing systems SYS, SYSa and SYSb. Therefore, the configuration of the processing device 1c in the third modification will be described below with reference to FIG. FIG. 25 is a block diagram showing the configuration of a processing device 1c in the third modified example.
 図25に示すように、加工装置1cは、上述した加工装置1と比較して、計測装置14cを備えているという点で異なる。加工装置1cのその他の特徴は、加工装置1のその他の特徴と同一であってもよい。 As shown in FIG. 25, the processing device 1c differs from the processing device 1 described above in that it includes a measuring device 14c. Other features of processing device 1c may be the same as other features of processing device 1 .
 計測装置14cの少なくとも一部は、筐体16の内部のチャンバ空間163IN内に収容されている。計測装置14cは、加工装置1cが3次元構造物STを造形している造形期間の少なくとも一部において、造形面MSを計測可能である。特に、計測装置4cは、造形期間の少なくとも一部において、造形面MSに形成される溶融池MPを計測可能である。このような計測装置14cの一例として、造形面MS(特に、造形面MSに形成される溶融池MP)を光学的に計測可能な計測装置があげられる。造形面MS(特に、造形面MSに形成される溶融池MP)を光学的に計測可能な計測装置の一例として、造形面MS(特に、造形面MSに形成される溶融池MP)を撮像可能な撮像装置があげられる。 At least part of the measuring device 14c is accommodated within the chamber space 163IN inside the housing 16. The measuring device 14c can measure the modeling surface MS during at least part of the modeling period during which the processing device 1c is modeling the three-dimensional structure ST. In particular, the measuring device 4c can measure the molten pool MP formed on the modeling surface MS during at least part of the modeling period. An example of such a measuring device 14c is a measuring device capable of optically measuring the modeling surface MS (in particular, the molten pool MP formed on the modeling surface MS). Capable of imaging the modeling surface MS (in particular, the molten pool MP formed on the modeling surface MS) as an example of a measuring device capable of optically measuring the modeling surface MS (particularly, the molten pool MP formed on the modeling surface MS) imaging device.
 続いて、図26を参照しながら、第3変形例における加工システムSYScの動作について説明する。図26は、第3変形例における加工システムSYScの動作の流れを示すフローチャートである。 Next, the operation of the processing system SYSc in the third modified example will be described with reference to FIG. FIG. 26 is a flow chart showing the operation flow of the processing system SYSc in the third modification.
 図26に示すように、第3変形例においても、加工パス生成装置2のパス生成部211は、加工装置1cが造形するべき3次元構造物STの3Dモデル(3次元モデル)を示す3Dモデルデータを取得し(ステップS11)、3Dモデルデータに基づいて加工パス情報PIを生成する(ステップS12)。その後、加工パス生成装置2は、ステップS12において生成された加工パス情報PIを加工装置1cに出力する(ステップS17)。尚、加工パス生成装置2は、加工パス情報PIを加工装置1cに出力する前に、加工パス情報PIに基づいて3次元構造物STに欠陥が生ずるか否かを判定し(図7のステップS13)、欠陥情報を表示し(図7のステップS14)、加工パス情報PIを修正してもよい(図7のステップS16)。 As shown in FIG. 26, also in the third modification, the path generation unit 211 of the machining path generation device 2 generates a 3D model (three-dimensional model) of the three-dimensional structure ST to be formed by the processing device 1c. Data is acquired (step S11), and machining pass information PI is generated based on the 3D model data (step S12). After that, the machining path generation device 2 outputs the machining path information PI generated in step S12 to the processing device 1c (step S17). Before outputting the machining path information PI to the processing apparatus 1c, the machining path generation device 2 determines whether or not a defect occurs in the three-dimensional structure ST based on the machining path information PI (step S13), the defect information may be displayed (step S14 in FIG. 7), and the machining path information PI may be corrected (step S16 in FIG. 7).
 その後、加工装置1cは、ステップS17において出力された加工パス情報PIに基づいて、3次元構造物STの造形を開始する(ステップS31c)。加工装置1cが3次元構造物STの造形を開始した後に、計測装置14cは、加工装置1cが3次元構造物STを造形している造形期間の少なくとも一部において、造形面MS(特に、造形面MSに形成される溶融池MP)を計測する(ステップS32c)。その後、加工装置1cは、計測装置14cによる造形面MS(特に、造形面MSに形成される溶融池MP)の計測結果を示す計測情報を、通信ネットワーク3を介して加工パス生成装置2に出力する(ステップS33c)。 After that, the processing device 1c starts molding the three-dimensional structure ST based on the processing path information PI output in step S17 (step S31c). After the processing device 1c starts modeling the three-dimensional structure ST, the measuring device 14c controls the modeling surface MS (particularly, modeling A molten pool MP) formed on the surface MS is measured (step S32c). After that, the processing device 1c outputs measurement information indicating the measurement result of the modeling surface MS (in particular, the molten pool MP formed on the modeling surface MS) by the measuring device 14c to the machining path generation device 2 via the communication network 3. (step S33c).
 その後、加工パス生成装置2の欠陥判定部212は、ステップS33cにおいて出力された計測情報に基づいて、加工装置1が造形している3次元構造物STに欠陥(例えば、空隙)が生じているか否かを判定する(ステップS13c)。つまり、第3変形例では、加工パス生成装置2は、加工装置1cが3次元構造物STを造形している造形期間の少なくとも一部において、3次元構造物STに欠陥が生じているか否かを判定する。 After that, the defect determination unit 212 of the machining path generation device 2 determines whether a defect (for example, a void) has occurred in the three-dimensional structure ST formed by the processing device 1 based on the measurement information output in step S33c. It is determined whether or not (step S13c). That is, in the third modification, the machining path generation device 2 determines whether or not the three-dimensional structure ST has a defect during at least a part of the modeling period during which the processing device 1c shapes the three-dimensional structure ST. judge.
 ステップS13cでは、欠陥判定部212は、計測情報に基づいて溶融池MPのサイズを算出し、算出した溶融池MPのサイズに基づいて、3次元構造物STに欠陥(例えば、空隙)が生じているか否かを判定してもよい。例えば、加工装置1がある線幅wで造形物を造形する場合には、造形面MSには、設定された線幅wに応じたサイズを有する溶融池MPが形成される。つまり、理想的には、造形面MSに形成される溶融池MPのサイズは、設定された線幅wに応じた目標サイズと一致するはずである。一方で、造形面MSに形成される溶融池MPのサイズが目標サイズと一致していない場合には、造形面MSに形成される造形物の幅は、設定された線幅wとは異なる幅となる可能性がある。特に、溶融池MPのサイズが目標サイズよりも小さい場合には、造形面MSに形成される造形物の幅は、設定された線幅wよりも狭くなる。その結果、造形物から構成される3次元構造物STに欠陥(例えば、空隙)が生ずる可能性がある。このため、欠陥判定部212は、溶融池MPのサイズが目標サイズよりも小さい場合に、3次元構造物STに欠陥が生じていると判定してもよい。或いは、欠陥判定部212は、溶融池MPのサイズが目標サイズよりも一定量以上小さい場合に、3次元構造物STに欠陥が生じていると判定してもよい。 In step S13c, the defect determination unit 212 calculates the size of the molten pool MP based on the measurement information, and based on the calculated size of the molten pool MP, if a defect (for example, void) occurs in the three-dimensional structure ST, It may be determined whether there is For example, when the processing apparatus 1 forms a modeled object with a certain line width w, a molten pool MP having a size corresponding to the set line width w is formed on the modeling surface MS. That is, ideally, the size of the molten pool MP formed on the modeling surface MS should match the target size according to the set line width w. On the other hand, when the size of the molten pool MP formed on the modeling surface MS does not match the target size, the width of the object formed on the modeling surface MS is different from the set line width w. may become. In particular, when the size of the molten pool MP is smaller than the target size, the width of the model formed on the modeling surface MS is narrower than the set line width w. As a result, defects (for example, voids) may occur in the three-dimensional structure ST composed of the modeled object. Therefore, the defect determination unit 212 may determine that the three-dimensional structure ST has a defect when the size of the molten pool MP is smaller than the target size. Alternatively, the defect determination unit 212 may determine that the three-dimensional structure ST has a defect when the size of the molten pool MP is smaller than the target size by a certain amount or more.
 その後、加工パス生成装置2の表示制御部213は、欠陥情報を表示するように、表示装置25を制御する(ステップS14)。つまり、第3変形例では、加工パス生成装置2は、加工装置1cが3次元構造物STを造形している造形期間の少なくとも一部において、欠陥情報を表示する。典型的には、表示制御部213は、ステップS13cにおいて3次元構造物STに欠陥が生じていると判定された場合に、欠陥情報を表示するように、表示装置25を制御する。更に、加工パス生成装置2のパス修正部214は、必要であれば、ステップS13cにおける判定結果(つまり、3次元構造物STに欠陥が生じているか否かの判定結果)に基づいて、ステップS12において生成された加工パス情報PIを修正する(ステップS15からステップS16)。つまり、第3変形例では、加工パス生成装置2は、加工装置1cが3次元構造物STを造形している造形期間の少なくとも一部において、加工パス情報PIを修正する。その後、加工パス生成装置2は、ステップS16において修正された加工パス情報PIを加工装置1cに出力する(ステップS17)。 After that, the display control unit 213 of the machining path generation device 2 controls the display device 25 so as to display the defect information (step S14). That is, in the third modification, the machining path generation device 2 displays the defect information during at least part of the modeling period during which the processing device 1c is modeling the three-dimensional structure ST. Typically, the display control unit 213 controls the display device 25 to display defect information when it is determined in step S13c that the three-dimensional structure ST has a defect. Further, if necessary, the path correction unit 214 of the machining path generation device 2 performs step S12 based on the determination result in step S13c (that is, the determination result as to whether or not the three-dimensional structure ST has a defect). The machining pass information PI generated in step S15 to step S16 is corrected. That is, in the third modification, the machining path generation device 2 corrects the machining path information PI during at least part of the modeling period during which the processing device 1c is modeling the three-dimensional structure ST. After that, the machining path generation device 2 outputs the machining path information PI corrected in step S16 to the machining device 1c (step S17).
 その後、加工装置1cは、加工パス生成装置2から出力される加工パス情報PIに基づいて、3次元構造物STを造形する(ステップS34c)。例えば、上述したように、加工装置1cは、複数の構造層SLを順に造形することで、3次元構造物STを造形する。ここで、k(但し、kは、1以上且つ構造層SLの総数以下の整数を示す変数)番目の構造層SLを造形している期間中に溶融池MPが計測され且つ溶融池MPの計測結果に基づいて加工パス情報PIが修正された場合には、加工装置1cは、修正された加工パス情報PIに基づいて、k+1番目以降の構造層SLを造形してもよい。つまり、第3変形例では、加工装置1が造形したk番目の構造層SLに欠陥が生じている場合には、k+1番目以降の構造層を造形するために、修正された加工パス情報PIを用いてもよい。その結果、加工装置1cは、欠陥が低減された3次元構造物STを造形することができる。尚、k+1番目以降の構造層を造形するために修正された加工パス情報PIが用いられることを考慮すれば、加工パス生成装置2は、加工装置1が造形したk番目の構造層SLに欠陥が生じている場合には、k+1番目以降の構造層SLを造形するための加工パス情報PIを修正してもよい。 After that, the processing device 1c forms the three-dimensional structure ST based on the processing path information PI output from the processing path generation device 2 (step S34c). For example, as described above, the processing device 1c forms the three-dimensional structure ST by sequentially forming a plurality of structural layers SL. Here, the molten pool MP is measured during the period in which the k-th structural layer SL is formed (where k is a variable representing an integer equal to or greater than 1 and equal to or less than the total number of structural layers SL), and the measurement of the molten pool MP is performed. When the machining pass information PI is corrected based on the result, the processing device 1c may shape the k+1th and subsequent structural layers SL based on the corrected machining pass information PI. That is, in the third modification, when a defect occurs in the k-th structural layer SL formed by the processing apparatus 1, the modified processing path information PI is used to form the k+1-th and subsequent structural layers. may be used. As a result, the processing device 1c can form the three-dimensional structure ST with reduced defects. Considering that the modified machining pass information PI is used to form the k+1th and subsequent structural layers, the machining path generation device 2 generates a defect in the kth structural layer SL formed by the processing device 1. occurs, the processing pass information PI for forming the k+1-th and subsequent structural layers SL may be corrected.
 (5-4)その他の変形例
 上述した説明では、加工パス生成装置2は、加工装置1によって3次元構造物STを造形するための加工パス情報PIを生成している。しかしながら、加工パス生成装置2は、加工装置1によって3次元構造物STを造形するための制御情報であって且つ加工パス情報とは異なる制御情報である任意の加工情報を生成してもよい。この場合であっても、欠陥判定部212は、パス生成部211によって生成された加工情報に基づいて加工装置1が3次元構造物STを造形した場合に、3次元構造物STに欠陥が生ずるか否かを判定してもよい。パス修正部214は、欠陥判定部212の判定結果に基づいて、パス生成部211が生成した加工情報を修正してもよい。
(5-4) Other Modifications In the above description, the machining path generation device 2 generates the machining path information PI for forming the three-dimensional structure ST by the processing device 1 . However, the machining path generation device 2 may generate arbitrary machining information that is control information for forming the three-dimensional structure ST by the machining device 1 and that is control information different from the machining path information. Even in this case, the defect determination unit 212 determines that a defect occurs in the three-dimensional structure ST when the processing apparatus 1 forms the three-dimensional structure ST based on the processing information generated by the path generation unit 211. It may be determined whether The path correction section 214 may correct the processing information generated by the path generation section 211 based on the determination result of the defect determination section 212 .
 上述した説明では、加工パス生成装置2は、加工パス情報PIを生成するパス生成動作(図7のステップS12)と、欠陥が生ずるか否かを判定する欠陥判定動作(図7のステップS13)と、欠陥に関する情報を表示する欠陥表示動作(図7のステップS14)、加工パス情報PIを修正するパス修正動作(図7のステップS16)とを行っている。しかしながら、加工パス生成装置2は、パス生成動作、欠陥判定動作、欠陥表示動作及びパス修正動作のうちの少なくとも一つを行わなくてもよい。例えば、加工パス生成装置2は、パス生成動作を行わなくてもよい。この場合、加工パス生成装置2とは異なる外部のパス生成装置が、パス生成動作を行ってもよいし、加工パス生成装置2は、外部のパス生成装置が生成した加工パス情報に基づいて、欠陥判定動作、欠陥表示動作及びパス修正動作のうちの少なくとも一つを行ってもよい。例えば、加工パス生成装置2は、欠陥判定動作を行わなくてもよい。この場合、加工パス生成装置2とは異なる外部の欠陥判定装置が、欠陥判定動作を行ってもよいし、加工パス生成装置2は、パス生成動作によって生成された加工パス情報を外部の欠陥判定装置に出力してもよいし、外部の欠陥判定装置による判定結果に基づいて、欠陥表示動作及びパス修正動作のうちの少なくとも一つを行ってもよい。例えば、加工パス生成装置2は、欠陥表示動作を行わなくてもよい。この場合、加工パス生成装置2とは異なる外部の欠陥表示装置が、欠陥表示動作を行ってもよいし、加工パス生成装置2は、欠陥判定動作の結果を外部の欠陥表示装置に出力してもよい。例えば、加工パス生成装置2は、パス修正動作を行わなくてもよい。この場合、加工パス生成装置2とは異なる外部のパス修正装置が、パス修正動作を行ってもよいし、加工パス生成装置2は、パス生成動作によって生成された加工パス情報及び欠陥判定動作の結果の少なくとも一方を外部のパス修正装置に出力してもよい。 In the above description, the machining path generation device 2 performs the path generation operation (step S12 in FIG. 7) for generating the machining path information PI, and the defect determination operation (step S13 in FIG. 7) for determining whether or not a defect occurs. Then, a defect display operation (step S14 in FIG. 7) for displaying information about the defect and a path correction operation (step S16 in FIG. 7) for correcting the machining path information PI are performed. However, the machining path generation device 2 does not have to perform at least one of the path generation operation, the defect determination operation, the defect display operation, and the path correction operation. For example, the machining path generation device 2 may not perform the path generation operation. In this case, an external path generation device different from the machining path generation device 2 may perform the path generation operation. At least one of a defect determination operation, a defect display operation, and a path correction operation may be performed. For example, the machining path generation device 2 may not perform the defect determination operation. In this case, an external defect determination device different from the machining path generation device 2 may perform the defect determination operation. It may be output to the device, or at least one of the defect display operation and the path correction operation may be performed based on the determination result of an external defect determination device. For example, the machining path generation device 2 does not have to perform the defect display operation. In this case, an external defect display device different from the machining path generation device 2 may perform the defect display operation, or the machining path generation device 2 outputs the result of the defect determination operation to the external defect display device. good too. For example, the machining path generation device 2 does not have to perform the path correction operation. In this case, an external path correction device different from the machining path generation device 2 may perform the path correction operation. At least one of the results may be output to an external path modification device.
 上述した説明では、加工装置1は、造形材料Mに加工光ELを照射することで、造形材料Mを溶融させている。しかしながら、加工装置1は、任意のエネルギビームを造形材料Mに照射することで、造形材料Mを溶融させてもよい。任意のエネルギビームの一例として、荷電粒子ビーム及び電磁波等の少なくとも一つがあげられる。荷電粒子ビームの一例として、電子ビーム及びイオンビーム等の少なくとも一つがあげられる。 In the above description, the processing device 1 melts the modeling material M by irradiating the modeling material M with the processing light EL. However, the processing apparatus 1 may melt the modeling material M by irradiating the modeling material M with an arbitrary energy beam. Examples of arbitrary energy beams include at least one of charged particle beams and electromagnetic waves. Examples of charged particle beams include at least one of electron beams and ion beams.
 上述した説明では、加工装置1は、レーザ肉盛溶接法に基づく付加加工を行うことで、3次元構造物STを造形している。しかしながら、加工装置1は、3次元構造物STを造形可能なその他の方式に準拠した付加加工を行うことで、3次元構造物STを造形してもよい。3次元構造物STを造形可能なその他の方式の一例として、粉末焼結積層造形法(SLS:Selective Laser Sintering)等の粉末床溶融結合法(Powder Bed Fusion)、結合材噴射法(バインダージェッティング方式:Binder Jetting)、材料噴射法(マテリアルジェッティング方式:Material Jetting)、光造形法及びレーザメタルフュージョン法(LMF:Laser Metal Fusion)のうちの少なくとも一つがあげられる。3次元構造物STを造形可能なその他の方式の一例として、PBF(Powder或いは、加工装置1は、付加加工を行うことに加えて又は代えて、除去加工を行うことで、3次元構造物STを造形してもよい。加工装置1は、付加加工及び除去加工の少なくとも一つを行うことに加えて又は代えて、機械加工を行うことで、3次元構造物STを造形してもよい。この場合であっても、加工パス生成装置2は、加工装置1により3次元構造物STを造形するための加工情報(例えば、加工装置1が除去加工又は機械加工を行う加工位置の移動経路に相当する加工パスに関する情報)を生成し(図7のステップS12)、加工情報に基づいて3次元構造物STに欠陥が生ずるか否かを判定し(図7のステップS13)と、欠陥に関する情報を表示し(図7のステップS14)、加工パス情報PIを修正してもよい(図7のステップS16)。 In the above description, the processing device 1 forms the three-dimensional structure ST by performing additional processing based on the laser build-up welding method. However, the processing apparatus 1 may model the three-dimensional structure ST by performing additional processing conforming to other methods capable of shaping the three-dimensional structure ST. Examples of other methods that can form the three-dimensional structure ST include a powder bed fusion method such as selective laser sintering (SLS), a binder jetting method (binder jetting method: Binder Jetting), material jetting method (Material Jetting method: Material Jetting), stereolithography, and laser metal fusion method (LMF: Laser Metal Fusion). As an example of another method capable of forming the three-dimensional structure ST, PBF (Powder) or the processing device 1 performs removal processing in addition to or instead of performing additional processing, thereby forming the three-dimensional structure ST The processing apparatus 1 may model the three-dimensional structure ST by performing machining in addition to or instead of performing at least one of additional processing and removal processing. Even in this case, the machining path generation device 2 provides machining information for forming the three-dimensional structure ST by the machining device 1 (e.g. corresponding processing path) is generated (step S12 in FIG. 7), it is determined whether or not a defect occurs in the three-dimensional structure ST based on the processing information (step S13 in FIG. 7), and information on the defect is generated. is displayed (step S14 in FIG. 7), and the machining path information PI may be corrected (step S16 in FIG. 7).
 或いは、加工装置1は、ワークWに対して任意の加工を行ってもよい。この場合であっても、加工パス生成装置2は、加工後のワークWの3Dモデルを示す3Dモデルデータに基づいて、任意の加工を行うように加工装置1を制御する加工情報(例えば、加工装置1が加工を行う加工位置の移動経路に相当する加工パスに関する情報)を生成し(図7のステップS12)、加工情報に基づいて加工装置1がワークWを加工した場合に、ワークWに欠陥が生ずるか否かを判定し(図7のステップS13)と、欠陥に関する情報を表示し(図7のステップS14)、加工情報を修正してもよい(図7のステップS16)。 Alternatively, the processing device 1 may perform arbitrary processing on the workpiece W. Even in this case, the machining path generation device 2 provides machining information (for example, machining information on the machining path corresponding to the movement path of the machining position where the apparatus 1 performs machining (step S12 in FIG. 7), and when the machining apparatus 1 processes the workpiece W based on the machining information, After determining whether or not a defect occurs (step S13 in FIG. 7), information on the defect may be displayed (step S14 in FIG. 7) and the processing information may be corrected (step S16 in FIG. 7).
 (6)付記
 以上説明した実施形態に関して、更に以下の付記を開示する。
[付記1]
 3Dモデルデータに基づいて、3Dプリンタにより物体を造形するための加工パス情報を生成することと、
 前記加工パス情報に基づいて、前記3Dプリンタが前記物体を造形した場合に前記物体に欠陥である空隙が生ずるか否かを判定することと、
 前記物体に欠陥である空隙が生ずると判定された場合に、前記3Dモデルデータに基づくモデル情報とともに前記空隙に関する情報を表示することと
 を含む加工パス情報生成方法。
[付記2]
 3Dモデルデータに基づいて、3Dプリンタにより物体を造形するための加工パス情報を生成することと、
 前記加工パス情報に基づいて、前記3Dプリンタが前記物体を造形した場合に前記物体に欠陥である空隙が生ずるか否かを判定することと、
 前記物体に欠陥である空隙が生ずると判定された場合に、前記加工パス情報に基づくモデル情報とともに前記空隙に関する情報を表示することと
 を含む加工パス情報生成方法。
[付記3]
 前記モデル情報は、前記3Dモデルデータが示す3Dモデルの形状を表す画像情報である
 付記1に記載の加工パス情報生成方法。
[付記4]
 前記モデル情報は、前記加工パス情報に基づいて、前記3Dプリンタが行う造形をシミュレートして得られる画像情報である
 付記2に記載の加工パス情報生成方法。
[付記5]
 前記加工パス情報は、前記3Dプリンタによる造形位置の移動経路を示す情報を含む
 付記1から4のいずれか一項に記載の加工パス情報生成方法。
[付記6]
 前記物体に空隙が生ずるか否かを判定することは、前記加工パス情報に含まれる隣接する二つの移動経路の間の間隔に基づいて、前記二つの移動経路に基づいて造形する場合の前記物体の少なくとも一部に前記空隙が生ずるか否かを判定することを含む
 付記5に記載の加工パス情報生成方法。
[付記7]
 前記空隙は、前記物体に形成される空隙を含む
 付記1から6のいずれか一項に記載の加工パス情報生成方法。
[付記8]
 前記物体に空隙が生ずるか否かを判定することは、前記間隔が第1閾値よりも大きい場合に、前記物体に前記空隙が生ずると判定することを含む
 付記6に記載の加工パス情報生成方法。
[付記9]
 前記二つの移動経路のそれぞれは、直線状に延びている
 付記8に記載の加工パス情報生成方法。
[付記10]
 前記第1閾値は、可変である
 付記8又は9に記載の加工パス情報生成方法。
[付記11]
 前記物体に空隙が生ずるか否かを判定することは、前記間隔が第2閾値よりも小さい場合に、前記物体に前記空隙が生ずると判定することを含む
 付記5から10のいずれか一項に記載の加工パス情報生成方法。
[付記12]
 前記二つの移動経路のそれぞれは、曲線状に又は円形状に延びている
 付記11に記載の加工パス情報生成方法。
[付記13]
 前記第2閾値は、可変である
 付記11又は12に記載の加工パス情報生成方法。
[付記14]
 前記物体に空隙が生ずるか否かを判定することは、前記加工パス情報に含まれる交差する二つの移動経路の交差量に基づいて、前記二つの移動経路に基づいて造形する場合の前記物体の少なくとも一部に前記空隙が生ずるか否かを判定することを含む
 付記5から13のいずれか一項に記載の加工パス情報生成方法。
[付記15]
 前記二つの移動経路のそれぞれは、直線状に延びている
 付記14に記載の加工パス情報生成方法。
[付記16]
 前記物体に空隙が生ずるか否かを判定することは、前記交差量が第3閾値よりも小さい場合に、前記物体に前記空隙が生ずると判定する
 付記14又は15に記載の加工パス情報生成方法。
[付記17]
 前記第3閾値は、可変である
 付記16に記載の加工パス情報生成方法。
[付記18]
 前記空隙は、前記加工パス情報を用いて前記3Dプリンタが前記物体を造形したと仮定した場合に、造形された前記物体の理想的な状態に対する前記造形された物体の実際の状態の差異を含む
 付記1から17のいずれか一項に記載の加工パス情報生成方法。
[付記19]
 前記空隙は、前記物体に形成される空隙を含む
 付記1から18のいずれか一項に記載の加工パス情報生成方法。
[付記20]
 前記モデル情報と共に前記空隙に関する情報を表示することは、
 前記物体の3Dモデルを示す第1表示オブジェクトに、前記物体に生ずる前記空隙の位置を示す第1空隙オブジェクトを重ねて表示する第1表示処理と、
 前記物体の断面を示す第2表示オブジェクトに、前記物体の前記断面に生ずる前記空隙の位置を示す第2空隙オブジェクトを重ねて表示する第2表示処理と
 の少なくとも一つを行うことを含む
 付記1から19のいずれか一項に記載の加工パス情報生成方法。
[付記21]
 前記空隙に関する情報を表示することは、前記第1表示処理と前記第2表示処理とを切り替えることを含む
 付記19に記載の加工パス情報生成方法。
[付記22]
 前記物体に空隙が生ずるか否かを判定することは、前記加工パス情報から算出されるパラメータと所定の閾値とを比較することで、前記物体に前記空隙が生ずるか否かを判定することを含み、
 前記空隙に関する情報を表示することは、前記閾値を変更するために操作可能な操作オブジェクトを表示することと、前記操作オブジェクトを用いて前記閾値が変更された場合に、変更後の前記閾値を用いて前記物体に生ずると判定された前記空隙の位置を示す前記第1又は第2空隙オブジェクトを表示する
 付記20又は21に記載の加工パス情報生成方法。
[付記23]
 前記物体に空隙が生ずるか否かの判定結果に基づいて、前記加工パス情報を修正することを更に含む
 付記1から22のいずれか一項に記載の加工パス情報生成方法。
[付記24]
 3Dモデルデータに基づいて、3Dプリンタにより物体を造形するための加工パス情報を生成することと、
 前記加工パス情報に基づいて、前記3Dプリンタが前記物体を造形した場合に前記物体に空隙が生ずるか否かを判定することと、
 前記物体に空隙が生ずると判定された場合に、前記加工パス情報を修正することと
 を含む加工パス情報生成方法。
[付記25]
 前記加工パス情報を修正することは、修正された前記加工パス情報を用いて前記3Dプリンタが前記物体を造形した場合に、修正されていない前記加工パス情報を用いて前記3Dプリンタが前記物体を造形した場合と比較して、前記物体に生ずる前記空隙が少なくなる又はなくなるように、前記加工パス情報を修正することを含む
 付記24に記載の加工パス情報生成方法。
[付記26]
 前記加工パス情報は、前記3Dプリンタによる造形位置の移動経路を示す情報を含み、
 前記加工パスを修正することは、前記加工パス情報に含まれる隣接する二つの移動経路の間に、少なくとも一つの新たな移動経路が追加されるように、前記加工パス情報を修正することを含む
 付記24又は25に記載の加工パス情報生成方法。
[付記27]
 前記加工パス情報は、前記3Dプリンタによる造形位置の移動経路を示す情報を含み、
 前記加工パスを修正することは、前記加工パス情報に含まれる交差する二つの移動経路の交差量が所定の閾値以上になるように、前記加工パス情報を修正することを含む
 付記24から26のいずれか一項に記載の加工パス情報生成方法。
[付記28]
 前記加工パスを修正することは、前記物体を造形するために必要な造形時間の短縮よりも、前記物体の造形精度を優先するように前記加工パス情報を修正することと、前記造形精度よりも前記造形時間を優先するように前記加工パス情報を修正することとを含む
 付記24から27のいずれか一項に記載の加工パス情報生成方法。
[付記29]
 前記加工パス情報は、前記3Dプリンタによる造形位置の移動経路を示す情報を含み、
 前記造形時間の短縮よりも前記造形精度を優先するように前記加工パス情報を修正すること、修正された前記加工パス情報に含まれる隣接する二つの移動経路の間の間隔が、修正されていない前記加工パス情報に含まれる前記二つの移動経路の間の間隔よりも短くなるように、前記加工パス情報を修正することを含む
 付記28に記載の加工パス情報生成方法。
[付記30]
 前記加工パス情報は、前記3Dプリンタによる造形位置の移動経路を示す情報を含み、
 前記造形精度よりも前記造形時間の短縮を優先するように前記加工パス情報を修正することは、修正された前記加工パス情報に含まれる隣接する二つの移動経路の間の間隔が、修正されていない前記加工パス情報に含まれる前記二つの移動経路の間の間隔よりも長くなるように、前記加工パス情報を修正することを含む
 付記28又は29に記載の加工パス情報生成方法。
[付記31]
 前記物体に空隙が生ずるか否かの判定結果と、前記物体に関する物体情報と、前記加工パス情報との間の関係を機械学習することを更に含み、
 前記加工パス情報を修正することは、前記関係の機械学習の結果に基づいて前記加工パス情報を修正することを含む
 付記23から30のいずれか一項に記載の加工パス情報生成方法。
[付記32]
 前記加工パス情報を用いて前記3Dプリンタが実際に造形した前記物体である加工済み物体を計測するための計測処理を行うことと、
 前記計測処理の結果と、前記物体に関する物体情報と、前記加工パス情報との関係を機械学習することと
 を更に含み、
 前記加工パス情報を修正することは、前記関係の機械学習の結果に基づいて前記加工パス情報を修正することを含む
 付記23から31のいずれか一項に記載の加工パス情報生成方法。
[付記33]
 前記物体に空隙が生ずるか否かを判定することは、前記3Dプリンタが前記物体を造形している造形期間の少なくとも一部において、前記物体に前記空隙が生ずるか否かを判定することを含み、
 前記加工パス情報を修正することは、前記造形期間の少なくとも一部において、前記加工パス情報を修正することを含む
 付記23から32のいずれか一項に記載の加工パス情報生成方法。
[付記34]
 前記3Dプリンタは、溶融池を形成することで、前記物体を造形し、
 前記物体に空隙が生ずるか否かを判定することは、前記造形期間の少なくとも一部において、前記溶融池のサイズに関する情報に基づいて前記物体に前記空隙が生ずるか否かを判定することを含む
 付記33に記載の加工パス情報生成方法。
[付記35]
 3Dモデルデータに基づいて、3Dプリンタにより物体を造形するための加工パス情報を生成することと、
 前記加工パス情報に基づいて、前記3Dプリンタが前記物体を造形した場合に前記物体に空隙が生ずるか否かを判定することと、
 前記物体に空隙が生ずると判定された場合に、前記空隙に関する情報を表示することと
 を含む加工パス情報生成方法。
[付記36]
 3Dモデルデータに基づいて、3Dプリンタにより物体を造形するための加工パス情報を生成することと、
 前記加工パス情報に基づいて、前記3Dプリンタが前記物体を造形した場合の前記物体に生ずる空隙に関する空隙に関する情報を生成することと、
 前記空隙に関する情報を表示することと
 を含む加工パス情報生成方法。
[付記37]
 モデルデータに基づいて、加工装置により物体を造形するための加工情報を生成することと、
 前記加工情報に基づいて、前記加工装置が前記物体を造形した場合に欠陥が生ずるか否かを判定することと、
 前記欠陥が生ずると判定された場合に、前記欠陥に関する情報を表示することと
 を含む加工情報生成方法。
[付記38]
 モデルデータに基づいて、加工装置により物体を造形するための加工情報を生成することと、
 前記加工情報に基づいて、前記加工装置が前記物体を造形した場合の欠陥に関する情報を生成することと、
 前記欠陥に関する情報を表示することと
 を含む加工情報生成方法。
[付記39]
 モデルデータに基づいて、加工装置により物体を造形するための加工情報を生成することと、
 前記加工情報に基づいて、前記加工装置が前記物体を造形した場合に欠陥が生ずるか否かを判定することと、
 前記物体に空隙が生ずると判定された場合に、前記加工情報を修正することと
 を含む加工情報生成方法。
[付記40]
 加工装置を制御するための加工情報に基づいて、前記加工装置が物体を造形した場合に欠陥が生ずるか否かを判定する制御装置と、
 前記制御装置により前記欠陥が生ずると判定された場合に、前記欠陥に関する情報を表示する表示装置と
 を備える情報処理装置。
[付記41]
 加工装置を制御するための加工情報に基づいて、前記加工装置が物体を造形した場合の欠陥に関する情報を生成する制御装置と、
 前記制御装置によって生成された前記欠陥に関する情報を表示する表示装置と
 を備える情報処理装置。
[付記42]
 加工装置を制御するための加工情報に基づいて、前記加工装置が物体を造形した場合に欠陥が生ずるか否かを判定する判定装置と、
 前記制御装置により前記欠陥が生ずると判定された場合に、前記加工情報を修正する修正装置と
 を備える情報処理装置。
[付記43]
 加工装置を制御するための加工情報に基づいて、前記加工装置が物体を造形した場合に欠陥が生ずるか否かを判定することと、
 前記欠陥が生ずると判定された場合に、前記欠陥に関する情報を表示することと
 を含む情報処理方法。
[付記44]
 加工装置を制御するための加工情報に基づいて、前記加工装置が物体を造形した場合の欠陥に関する情報を生成することと、
 前記欠陥に関する情報を表示することと
 を含む情報処理方法。
[付記45]
 加工装置を制御するための加工情報に基づいて、前記加工装置が物体を造形した場合に欠陥が生ずるか否かを判定することと、
 前記欠陥が生ずると判定された場合に、前記加工情報を修正することと
 を含む情報処理方法。
[付記46]
 付記1から36のいずれか一項に記載の加工パス情報生成方法をコンピュータに実行させるコンピュータプログラム。
[付記47]
 付記37から39のいずれか一項に記載の加工情報生成方法をコンピュータに実行させるコンピュータプログラム。
[付記48]
 付記43から45のいずれか一項に記載の加工情報生成方法をコンピュータに実行させるコンピュータプログラム。
[付記49]
 付記46から48のいずれか一項に記載のコンピュータプログラムが記録された記録媒体。
(6) Supplementary notes The following supplementary notes are disclosed with respect to the above-described embodiments.
[Appendix 1]
generating processing path information for modeling an object with a 3D printer based on the 3D model data;
Determining whether or not voids, which are defects, will occur in the object when the object is modeled by the 3D printer, based on the processing path information;
and displaying information about the void together with model information based on the 3D model data when it is determined that the void, which is a defect, occurs in the object.
[Appendix 2]
generating processing path information for modeling an object with a 3D printer based on the 3D model data;
Determining whether or not voids, which are defects, will occur in the object when the object is modeled by the 3D printer, based on the processing path information;
and displaying information about the void together with model information based on the machining pass information when it is determined that the void, which is a defect, occurs in the object.
[Appendix 3]
The machining path information generation method according to appendix 1, wherein the model information is image information representing a shape of the 3D model indicated by the 3D model data.
[Appendix 4]
The processing path information generating method according to appendix 2, wherein the model information is image information obtained by simulating modeling performed by the 3D printer based on the processing path information.
[Appendix 5]
5. The processing path information generation method according to any one of appendices 1 to 4, wherein the processing path information includes information indicating a movement route of a modeling position by the 3D printer.
[Appendix 6]
Determining whether a gap occurs in the object is based on the distance between two adjacent movement paths included in the machining path information, and the object when shaped based on the two movement paths. The machining path information generating method according to appendix 5, comprising determining whether or not the void occurs in at least a part of the.
[Appendix 7]
7. The machining path information generating method according to any one of appendices 1 to 6, wherein the gap includes a gap formed in the object.
[Appendix 8]
Determining whether or not a gap is generated in the object includes determining that the gap is generated in the object when the distance is greater than a first threshold. .
[Appendix 9]
The machining path information generating method according to appendix 8, wherein each of the two movement paths extends linearly.
[Appendix 10]
10. The machining path information generating method according to appendix 8 or 9, wherein the first threshold is variable.
[Appendix 11]
Determining whether or not a void is formed in the object includes determining that the void is formed in the object when the distance is less than a second threshold. The described machining path information generation method.
[Appendix 12]
12. The machining path information generating method according to appendix 11, wherein each of the two movement paths extends in a curved line or in a circular shape.
[Appendix 13]
13. The machining pass information generating method according to appendix 11 or 12, wherein the second threshold is variable.
[Appendix 14]
Determining whether or not a gap is generated in the object is based on the amount of intersection of the two intersecting movement paths included in the machining path information, and when the object is shaped based on the two movement paths. 14. The machining path information generating method according to any one of appendices 5 to 13, including determining whether or not the gap is generated at least partially.
[Appendix 15]
15. The machining path information generating method according to appendix 14, wherein each of the two movement paths extends linearly.
[Appendix 16]
16. The machining path information generating method according to appendix 14 or 15, wherein determining whether or not a gap is formed in the object determines that the gap is formed in the object when the intersection amount is smaller than a third threshold. .
[Appendix 17]
17. The machining path information generating method according to appendix 16, wherein the third threshold is variable.
[Appendix 18]
The air gap includes the difference in the actual state of the modeled object from the ideal state of the modeled object, assuming that the 3D printer models the object using the processing path information. 18. The machining path information generation method according to any one of appendices 1 to 17.
[Appendix 19]
19. The machining path information generating method according to any one of appendices 1 to 18, wherein the gap includes a gap formed in the object.
[Appendix 20]
Displaying information about the voids along with the model information includes:
a first display process for superimposing and displaying a first gap object indicating the position of the gap generated in the object on a first display object indicating the 3D model of the object;
a second display process of superimposing a second display object indicating the cross section of the object on a second gap object indicating the position of the gap generated in the cross section of the object, and displaying at least one of these. 20. The machining path information generating method according to any one of 19 to 19.
[Appendix 21]
20. The machining path information generating method according to appendix 19, wherein displaying the information about the void includes switching between the first display process and the second display process.
[Appendix 22]
Determining whether or not a gap is generated in the object is performed by comparing a parameter calculated from the machining path information with a predetermined threshold to determine whether or not the void is generated in the object. including
Displaying information about the void includes displaying an operation object that can be operated to change the threshold, and using the threshold after the change when the threshold is changed using the operation object. 22. The machining path information generating method according to appendix 20 or 21, wherein the first or second gap object indicating the position of the gap determined to occur in the object is displayed.
[Appendix 23]
23. The machining pass information generation method according to any one of appendices 1 to 22, further comprising correcting the machining pass information based on a determination result as to whether or not a gap is generated in the object.
[Appendix 24]
generating processing path information for modeling an object with a 3D printer based on the 3D model data;
Determining whether or not a void will occur in the object when the 3D printer models the object based on the processing path information;
and modifying the machining path information when it is determined that a gap is generated in the object.
[Appendix 25]
When the 3D printer shapes the object using the modified machining pass information, the 3D printer shapes the object using the uncorrected machining pass information. 25. The method of generating machining path information according to appendix 24, including modifying the machining path information so that the voids generated in the object are reduced or eliminated compared to when the object is shaped.
[Appendix 26]
The processing path information includes information indicating a movement route of the modeling position by the 3D printer,
Modifying the machining path includes modifying the machining path information such that at least one new movement path is added between two adjacent movement paths included in the machining path information. 26. The machining path information generating method according to appendix 24 or 25.
[Appendix 27]
The processing path information includes information indicating a movement route of the modeling position by the 3D printer,
Correcting the machining path includes correcting the machining path information such that an intersection amount of two intersecting movement paths included in the machining path information is equal to or greater than a predetermined threshold. The machining path information generating method according to any one of the items.
[Appendix 28]
Correcting the machining path includes correcting the machining path information so as to give priority to the modeling accuracy of the object over shortening the modeling time required to model the object; 28. The method of generating machining pass information according to any one of appendices 24 to 27, comprising modifying the machining pass information so as to give priority to the modeling time.
[Appendix 29]
The processing path information includes information indicating a movement route of the modeling position by the 3D printer,
modifying the machining path information so as to give priority to the molding accuracy over shortening the molding time, and the interval between two adjacent movement paths included in the modified machining path information is not modified. 29. The method of generating machining pass information according to appendix 28, including correcting the machining pass information so as to be shorter than the interval between the two movement paths included in the machining pass information.
[Appendix 30]
The processing path information includes information indicating a movement route of the modeling position by the 3D printer,
Correcting the machining path information so as to give priority to shortening the modeling time over the modeling accuracy means that the interval between two adjacent movement paths included in the corrected machining path information is corrected. 30. The method of generating machining path information according to appendix 28 or 29, comprising modifying the machining path information so that the distance between the two movement paths included in the machining path information that does not exist is longer than the interval between the two movement paths.
[Appendix 31]
machine-learning a relationship between a determination result as to whether or not a gap is formed in the object, object information about the object, and the machining path information;
31. The method of generating machining pass information according to any one of Appendices 23 to 30, wherein modifying the machining pass information includes modifying the machining pass information based on machine learning results of the relationship.
[Appendix 32]
performing a measurement process for measuring the processed object, which is the object actually formed by the 3D printer, using the processing path information;
performing machine learning on the relationship between the result of the measurement process, the object information about the object, and the machining path information;
32. The method of generating machining pass information according to any one of Appendices 23 to 31, wherein modifying the machining pass information includes modifying the machining pass information based on machine learning results of the relationship.
[Appendix 33]
Determining whether or not a void occurs in the object includes determining whether or not the void occurs in the object during at least part of a modeling period in which the 3D printer is modeling the object. ,
33. The machining pass information generation method according to any one of appendices 23 to 32, wherein correcting the machining pass information includes correcting the machining pass information during at least part of the modeling period.
[Appendix 34]
The 3D printer forms the object by forming a molten pool,
Determining whether the void will form in the object includes determining whether the void will form in the object based on information about the size of the weld pool during at least a portion of the shaping period. 33. A machining path information generating method according to appendix 33.
[Appendix 35]
generating processing path information for modeling an object with a 3D printer based on the 3D model data;
Determining whether or not a void will occur in the object when the 3D printer models the object based on the processing path information;
and displaying information about the void when it is determined that the void is generated in the object.
[Appendix 36]
generating processing path information for modeling an object with a 3D printer based on the 3D model data;
generating information about voids generated in the object when the 3D printer models the object based on the processing path information;
and displaying information about the void.
[Appendix 37]
generating processing information for molding an object by a processing device based on the model data;
Determining, based on the processing information, whether or not defects will occur when the processing device models the object;
and displaying information about the defect when it is determined that the defect will occur.
[Appendix 38]
generating processing information for molding an object by a processing device based on the model data;
generating information about defects when the processing device models the object based on the processing information;
and displaying information about the defect.
[Appendix 39]
generating processing information for molding an object by a processing device based on the model data;
Determining, based on the processing information, whether or not defects will occur when the processing device models the object;
and modifying the processing information when it is determined that the object has a void.
[Appendix 40]
a control device that determines, based on processing information for controlling the processing device, whether or not defects will occur when the processing device forms an object;
and a display device that displays information about the defect when the control device determines that the defect occurs.
[Appendix 41]
a control device that generates information about defects when the processing device forms an object based on processing information for controlling the processing device;
and a display device that displays information about the defect generated by the control device.
[Appendix 42]
a determination device that determines whether or not defects will occur when the processing device models an object based on processing information for controlling the processing device;
and a correction device that corrects the processing information when the control device determines that the defect will occur.
[Appendix 43]
Determining whether or not a defect will occur when the processing device forms an object based on processing information for controlling the processing device;
and displaying information about the defect when it is determined that the defect will occur.
[Appendix 44]
generating information about defects when the processing device models an object based on processing information for controlling the processing device;
and displaying information about the defects.
[Appendix 45]
Determining whether or not a defect will occur when the processing device forms an object based on processing information for controlling the processing device;
and modifying the processing information when it is determined that the defect will occur.
[Appendix 46]
37. A computer program that causes a computer to execute the machining path information generation method according to any one of appendices 1 to 36.
[Appendix 47]
A computer program that causes a computer to execute the processing information generating method according to any one of appendices 37 to 39.
[Appendix 48]
A computer program that causes a computer to execute the processing information generating method according to any one of appendices 43 to 45.
[Appendix 49]
49. A recording medium on which the computer program according to any one of appendices 46 to 48 is recorded.
 上述の各実施形態の構成要件の少なくとも一部は、上述の各実施形態の構成要件の少なくとも他の一部と適宜組み合わせることができる。上述の各実施形態の構成要件のうちの一部が用いられなくてもよい。また、法令で許容される限りにおいて、上述の各実施形態で引用した全ての公開公報及び米国特許の開示を援用して本文の記載の一部とする。 At least part of the constituent elements of each embodiment described above can be appropriately combined with at least another part of the constituent elements of each embodiment described above. Some of the constituent requirements of each of the above-described embodiments may not be used. Further, to the extent permitted by law, the disclosures of all publications and US patents cited in each of the above embodiments are incorporated herein by reference.
 本発明は、上述した実施例に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う加工パス情報生成方法、加工情報生成方法、情報処理装置、コンピュータプログラム及び記録媒体もまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiments, and can be modified as appropriate within a range that does not contradict the gist or idea of the invention that can be read from the scope of claims and the entire specification. A generation method, a processing information generation method, an information processing device, a computer program, and a recording medium are also included in the technical scope of the present invention.
 SYS 加工システム
 1 加工装置
 2 パス生成装置
 21 演算装置
 211 パス生成部
 212 欠陥判定部
 213 表示制御部
 214 パス修正部
 25 表示装置
 W ワーク
 PI 加工パス情報
SYS machining system 1 machining device 2 path generation device 21 arithmetic device 211 path generation unit 212 defect determination unit 213 display control unit 214 path correction unit 25 display device W work PI machining path information

Claims (34)

  1.  3Dモデルデータに基づいて、3Dプリンタにより物体を造形するための加工パス情報を生成することと、
     前記加工パス情報に基づいて、前記3Dプリンタが前記物体を造形した場合に前記物体に欠陥である空隙が生ずるか否かを判定することと、
     前記物体に欠陥である空隙が生ずると判定された場合に、前記3Dモデルデータに基づくモデル情報とともに前記空隙に関する情報を表示することと
     を含む加工パス情報生成方法。
    generating processing path information for modeling an object with a 3D printer based on the 3D model data;
    Determining whether or not voids, which are defects, will occur in the object when the object is modeled by the 3D printer, based on the processing path information;
    and displaying information about the void together with model information based on the 3D model data when it is determined that the void, which is a defect, occurs in the object.
  2.  3Dモデルデータに基づいて、3Dプリンタにより物体を造形するための加工パス情報を生成することと、
     前記加工パス情報に基づいて、前記3Dプリンタが前記物体を造形した場合に前記物体に欠陥である空隙が生ずるか否かを判定することと、
     前記物体に欠陥である空隙が生ずると判定された場合に、前記加工パス情報に基づくモデル情報とともに前記空隙に関する情報を表示することと
     を含む加工パス情報生成方法。
    generating processing path information for modeling an object with a 3D printer based on the 3D model data;
    Determining whether or not voids, which are defects, will occur in the object when the object is modeled by the 3D printer, based on the processing path information;
    and displaying information about the void together with model information based on the machining pass information when it is determined that the void, which is a defect, occurs in the object.
  3.  前記モデル情報は、前記3Dモデルデータが示す3Dモデルの形状を表す画像情報である
     請求項1に記載の加工パス情報生成方法。
    The machining path information generation method according to claim 1, wherein the model information is image information representing a shape of the 3D model indicated by the 3D model data.
  4.  前記モデル情報は、前記加工パス情報に基づいて、前記3Dプリンタが行う造形をシミュレートして得られる画像情報である
     請求項2に記載の加工パス情報生成方法。
    The processing path information generating method according to claim 2, wherein the model information is image information obtained by simulating modeling performed by the 3D printer based on the processing path information.
  5.  前記加工パス情報は、前記3Dプリンタによる造形位置の移動経路を示す情報を含む
     請求項1から4のいずれか一項に記載の加工パス情報生成方法。
    The machining pass information generation method according to any one of claims 1 to 4, wherein the machining pass information includes information indicating a movement route of a modeling position by the 3D printer.
  6.  前記物体に空隙が生ずるか否かを判定することは、前記加工パス情報に含まれる隣接する二つの移動経路の間の間隔に基づいて、前記二つの移動経路に基づいて造形する場合の前記物体の少なくとも一部に前記空隙が生ずるか否かを判定することを含む
     請求項5に記載の加工パス情報生成方法。
    Determining whether a gap occurs in the object is based on the distance between two adjacent movement paths included in the machining path information, and the object when shaped based on the two movement paths. 6. The machining path information generation method according to claim 5, comprising determining whether or not the void occurs in at least a part of the.
  7.  前記空隙は、前記物体に形成される空隙を含む
     請求項1から6のいずれか一項に記載の加工パス情報生成方法。
    The machining path information generation method according to any one of claims 1 to 6, wherein the void includes a void formed in the object.
  8.  前記物体に空隙が生ずるか否かを判定することは、前記間隔が第1閾値よりも大きい場合に、前記物体に前記空隙が生ずると判定することを含む
     請求項6に記載の加工パス情報生成方法。
    7. The machining path information generation according to claim 6, wherein determining whether or not a gap is formed in the object includes determining that the gap is formed in the object when the distance is greater than a first threshold. Method.
  9.  前記二つの移動経路のそれぞれは、直線状に延びている
     請求項8に記載の加工パス情報生成方法。
    The machining path information generation method according to claim 8, wherein each of the two movement paths extends linearly.
  10.  前記第1閾値は、可変である
     請求項8又は9に記載の加工パス情報生成方法。
    The machining path information generation method according to claim 8 or 9, wherein the first threshold is variable.
  11.  前記物体に空隙が生ずるか否かを判定することは、前記間隔が第2閾値よりも小さい場合に、前記物体に前記空隙が生ずると判定することを含む
     請求項5から10のいずれか一項に記載の加工パス情報生成方法。
    11. Any one of claims 5 to 10, wherein determining whether or not a void occurs in the object includes determining that the void occurs in the object when the distance is less than a second threshold. The machining path information generation method described in .
  12.  前記二つの移動経路のそれぞれは、曲線状に又は円形状に延びている
     請求項11に記載の加工パス情報生成方法。
    12. The machining path information generating method according to claim 11, wherein each of said two movement paths extends in a curved line or in a circular shape.
  13.  前記第2閾値は、可変である
     請求項11又は12に記載の加工パス情報生成方法。
    The machining path information generation method according to claim 11 or 12, wherein the second threshold is variable.
  14.  前記物体に空隙が生ずるか否かを判定することは、前記加工パス情報に含まれる交差する二つの移動経路の交差量に基づいて、前記二つの移動経路に基づいて造形する場合の前記物体の少なくとも一部に前記空隙が生ずるか否かを判定することを含む
     請求項5から13のいずれか一項に記載の加工パス情報生成方法。
    Determining whether or not a gap is generated in the object is based on the amount of intersection of the two intersecting movement paths included in the machining path information, and when the object is shaped based on the two movement paths. 14. The machining path information generation method according to any one of claims 5 to 13, further comprising determining whether or not the gap is generated at least partially.
  15.  前記二つの移動経路のそれぞれは、直線状に延びている
     請求項14に記載の加工パス情報生成方法。
    15. The machining path information generating method according to claim 14, wherein each of said two moving paths extends linearly.
  16.  前記物体に空隙が生ずるか否かを判定することは、前記交差量が第3閾値よりも小さい場合に、前記物体に前記空隙が生ずると判定する
     請求項14又は15に記載の加工パス情報生成方法。
    16. The machining path information generation according to claim 14 or 15, wherein determining whether or not a gap is generated in said object includes determining that said gap is generated in said object when said intersection amount is smaller than a third threshold. Method.
  17.  前記第3閾値は、可変である
     請求項16に記載の加工パス情報生成方法。
    The machining path information generation method according to claim 16, wherein the third threshold is variable.
  18.  前記空隙は、前記加工パス情報を用いて前記3Dプリンタが前記物体を造形したと仮定した場合に、造形された前記物体の理想的な状態に対する前記造形された物体の実際の状態の差異を含む
     請求項1から17のいずれか一項に記載の加工パス情報生成方法。
    The air gap includes the difference in the actual state of the modeled object from the ideal state of the modeled object, assuming that the 3D printer models the object using the processing path information. The machining path information generation method according to any one of claims 1 to 17.
  19.  前記空隙は、前記物体に形成される空隙を含む
     請求項1から18のいずれか一項に記載の加工パス情報生成方法。
    The machining path information generation method according to any one of claims 1 to 18, wherein the void includes a void formed in the object.
  20.  前記モデル情報と共に前記空隙に関する情報を表示することは、
     前記物体の3Dモデルを示す第1表示オブジェクトに、前記物体に生ずる前記空隙の位置を示す第1空隙オブジェクトを重ねて表示する第1表示処理と、
     前記物体の断面を示す第2表示オブジェクトに、前記物体の前記断面に生ずる前記空隙の位置を示す第2空隙オブジェクトを重ねて表示する第2表示処理と
     の少なくとも一つを行うことを含む
     請求項1から19のいずれか一項に記載の加工パス情報生成方法。
    Displaying information about the voids along with the model information includes:
    a first display process for superimposing and displaying a first gap object indicating the position of the gap generated in the object on a first display object indicating the 3D model of the object;
    performing at least one of: a second display process for superimposing a second gap object indicating the position of the gap generated in the cross section of the object on a second display object indicating the cross section of the object; 20. The machining path information generating method according to any one of 1 to 19.
  21.  前記空隙に関する情報を表示することは、前記第1表示処理と前記第2表示処理とを切り替えることを含む
     請求項19に記載の加工パス情報生成方法。
    20. The machining path information generating method according to claim 19, wherein displaying the information about the void includes switching between the first display process and the second display process.
  22.  前記物体に空隙が生ずるか否かを判定することは、前記加工パス情報から算出されるパラメータと所定の閾値とを比較することで、前記物体に前記空隙が生ずるか否かを判定することを含み、
     前記空隙に関する情報を表示することは、前記閾値を変更するために操作可能な操作オブジェクトを表示することと、前記操作オブジェクトを用いて前記閾値が変更された場合に、変更後の前記閾値を用いて前記物体に生ずると判定された前記空隙の位置を示す前記第1又は第2空隙オブジェクトを表示する
     請求項20又は21に記載の加工パス情報生成方法。
    Determining whether or not a gap is generated in the object is performed by comparing a parameter calculated from the machining path information with a predetermined threshold to determine whether or not the void is generated in the object. including
    Displaying information about the void includes displaying an operation object that can be operated to change the threshold, and using the threshold after the change when the threshold is changed using the operation object. 22. The method of generating machining path information according to claim 20, further comprising displaying the first or second void object indicating the position of the void determined to occur in the object.
  23.  前記物体に空隙が生ずるか否かの判定結果に基づいて、前記加工パス情報を修正することを更に含む
     請求項1から22のいずれか一項に記載の加工パス情報生成方法。
    23. The machining pass information generation method according to any one of claims 1 to 22, further comprising correcting the machining pass information based on a determination result as to whether or not a gap is generated in the object.
  24.  3Dモデルデータに基づいて、3Dプリンタにより物体を造形するための加工パス情報を生成することと、
     前記加工パス情報に基づいて、前記3Dプリンタが前記物体を造形した場合に前記物体に空隙が生ずるか否かを判定することと、
     前記物体に空隙が生ずると判定された場合に、前記加工パス情報を修正することと
     を含む加工パス情報生成方法。
    generating processing path information for modeling an object with a 3D printer based on the 3D model data;
    Determining whether or not a void will occur in the object when the 3D printer models the object based on the processing path information;
    and modifying the machining path information when it is determined that a gap is generated in the object.
  25.  前記加工パス情報を修正することは、修正された前記加工パス情報を用いて前記3Dプリンタが前記物体を造形した場合に、修正されていない前記加工パス情報を用いて前記3Dプリンタが前記物体を造形した場合と比較して、前記物体に生ずる前記空隙が少なくなる又はなくなるように、前記加工パス情報を修正することを含む
     請求項24に記載の加工パス情報生成方法。
    When the 3D printer shapes the object using the modified machining pass information, the 3D printer shapes the object using the uncorrected machining pass information. 25. The method of claim 24, comprising modifying the machining path information such that the voids are reduced or eliminated in the object as compared to when the object is molded.
  26.  前記加工パス情報は、前記3Dプリンタによる造形位置の移動経路を示す情報を含み、
     前記加工パスを修正することは、前記加工パス情報に含まれる隣接する二つの移動経路の間に、少なくとも一つの新たな移動経路が追加されるように、前記加工パス情報を修正することを含む
     請求項24又は25に記載の加工パス情報生成方法。
    The processing path information includes information indicating a movement route of the modeling position by the 3D printer,
    Modifying the machining path includes modifying the machining path information such that at least one new movement path is added between two adjacent movement paths included in the machining path information. The machining path information generating method according to claim 24 or 25.
  27.  前記加工パス情報は、前記3Dプリンタによる造形位置の移動経路を示す情報を含み、
     前記加工パスを修正することは、前記加工パス情報に含まれる交差する二つの移動経路の交差量が所定の閾値以上になるように、前記加工パス情報を修正することを含む
     請求項24から26のいずれか一項に記載の加工パス情報生成方法。
    The processing path information includes information indicating a movement route of the modeling position by the 3D printer,
    27. Modifying the machining path includes correcting the machining path information such that an intersection amount of two intersecting movement paths included in the machining path information is greater than or equal to a predetermined threshold. The machining path information generating method according to any one of 1.
  28.  前記加工パスを修正することは、前記物体を造形するために必要な造形時間の短縮よりも、前記物体の造形精度を優先するように前記加工パス情報を修正することと、前記造形精度よりも前記造形時間を優先するように前記加工パス情報を修正することとを含む
     請求項24から27のいずれか一項に記載の加工パス情報生成方法。
    Correcting the machining path includes correcting the machining path information so as to give priority to the modeling accuracy of the object over shortening the modeling time required to model the object; 28. The method of generating machining pass information according to any one of claims 24 to 27, comprising modifying the machining pass information so as to prioritize the modeling time.
  29.  前記加工パス情報は、前記3Dプリンタによる造形位置の移動経路を示す情報を含み、
     前記造形時間の短縮よりも前記造形精度を優先するように前記加工パス情報を修正すること、修正された前記加工パス情報に含まれる隣接する二つの移動経路の間の間隔が、修正されていない前記加工パス情報に含まれる前記二つの移動経路の間の間隔よりも短くなるように、前記加工パス情報を修正することを含む
     請求項28に記載の加工パス情報生成方法。
    The processing path information includes information indicating a movement route of the modeling position by the 3D printer,
    modifying the machining path information so as to give priority to the molding accuracy over shortening the molding time, and the interval between two adjacent movement paths included in the modified machining path information is not modified. 29. The method of generating machining pass information according to claim 28, further comprising correcting the machining pass information so as to be shorter than the interval between the two movement paths included in the machining pass information.
  30.  前記加工パス情報は、前記3Dプリンタによる造形位置の移動経路を示す情報を含み、
     前記造形精度よりも前記造形時間の短縮を優先するように前記加工パス情報を修正することは、修正された前記加工パス情報に含まれる隣接する二つの移動経路の間の間隔が、修正されていない前記加工パス情報に含まれる前記二つの移動経路の間の間隔よりも長くなるように、前記加工パス情報を修正することを含む
     請求項28又は29に記載の加工パス情報生成方法。
    The processing path information includes information indicating a movement route of the modeling position by the 3D printer,
    Correcting the machining path information so as to give priority to shortening the modeling time over the modeling accuracy means that the interval between two adjacent movement paths included in the corrected machining path information is corrected. 30. The method of generating machining path information according to claim 28 or 29, further comprising correcting the machining path information so as to be longer than the interval between the two movement paths included in the machining path information that does not exist.
  31.  前記物体に空隙が生ずるか否かの判定結果と、前記物体に関する物体情報と、前記加工パス情報との間の関係を機械学習することを更に含み、
     前記加工パス情報を修正することは、前記関係の機械学習の結果に基づいて前記加工パス情報を修正することを含む
     請求項23から30のいずれか一項に記載の加工パス情報生成方法。
    machine-learning a relationship between a determination result as to whether or not a gap is formed in the object, object information about the object, and the machining path information;
    31. The method of generating machining pass information according to any one of claims 23 to 30, wherein modifying the machining pass information comprises modifying the machining pass information based on machine learning results of the relationship.
  32.  前記加工パス情報を用いて前記3Dプリンタが実際に造形した前記物体である加工済み物体を計測するための計測処理を行うことと、
     前記計測処理の結果と、前記物体に関する物体情報と、前記加工パス情報との関係を機械学習することと
     を更に含み、
     前記加工パス情報を修正することは、前記関係の機械学習の結果に基づいて前記加工パス情報を修正することを含む
     請求項23から31のいずれか一項に記載の加工パス情報生成方法。
    performing a measurement process for measuring the processed object, which is the object actually formed by the 3D printer, using the processing path information;
    performing machine learning on the relationship between the result of the measurement process, the object information about the object, and the machining path information;
    32. The method of generating machining pass information according to any one of claims 23 to 31, wherein modifying the machining pass information comprises modifying the machining pass information based on machine learning results of the relationship.
  33.  前記物体に空隙が生ずるか否かを判定することは、前記3Dプリンタが前記物体を造形している造形期間の少なくとも一部において、前記物体に前記空隙が生ずるか否かを判定することを含み、
     前記加工パス情報を修正することは、前記造形期間の少なくとも一部において、前記加工パス情報を修正することを含む
     請求項23から32のいずれか一項に記載の加工パス情報生成方法。
    Determining whether or not a void occurs in the object includes determining whether or not the void occurs in the object during at least part of a modeling period in which the 3D printer is modeling the object. ,
    The machining pass information generation method according to any one of claims 23 to 32, wherein correcting the machining pass information includes correcting the machining pass information during at least part of the modeling period.
  34.  前記3Dプリンタは、溶融池を形成することで、前記物体を造形し、
     前記物体に空隙が生ずるか否かを判定することは、前記造形期間の少なくとも一部において、前記溶融池のサイズに関する情報に基づいて前記物体に前記空隙が生ずるか否かを判定することを含む
     請求項33に記載の加工パス情報生成方法。
    The 3D printer forms the object by forming a molten pool,
    Determining whether the void will form in the object includes determining whether the void will form in the object based on information about the size of the weld pool during at least a portion of the shaping period. The machining path information generation method according to claim 33.
PCT/JP2021/004346 2021-02-05 2021-02-05 Processing path information generation method WO2022168268A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/004346 WO2022168268A1 (en) 2021-02-05 2021-02-05 Processing path information generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/004346 WO2022168268A1 (en) 2021-02-05 2021-02-05 Processing path information generation method

Publications (1)

Publication Number Publication Date
WO2022168268A1 true WO2022168268A1 (en) 2022-08-11

Family

ID=82742136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004346 WO2022168268A1 (en) 2021-02-05 2021-02-05 Processing path information generation method

Country Status (1)

Country Link
WO (1) WO2022168268A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015199197A (en) * 2014-04-04 2015-11-12 株式会社松浦機械製作所 Three-dimensional object molding device and production method of three-dimensional object
JP2017087718A (en) * 2015-11-02 2017-05-25 株式会社リコー Molding treatment system, molding treatment device, molding treatment method, and program
JP2019025761A (en) * 2017-07-28 2019-02-21 コニカミノルタ株式会社 Modeling method, modeling system, and modeling control program
JP2020519762A (en) * 2017-05-10 2020-07-02 モナッシュ ユニバーシティ Method and system for quality assurance and control of additive manufacturing processes
JP2020530070A (en) * 2017-08-01 2020-10-15 シグマ ラボズ,インコーポレイテッド Systems and methods for measuring radiant thermal energy during additional manufacturing operations

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015199197A (en) * 2014-04-04 2015-11-12 株式会社松浦機械製作所 Three-dimensional object molding device and production method of three-dimensional object
JP2017087718A (en) * 2015-11-02 2017-05-25 株式会社リコー Molding treatment system, molding treatment device, molding treatment method, and program
JP2020519762A (en) * 2017-05-10 2020-07-02 モナッシュ ユニバーシティ Method and system for quality assurance and control of additive manufacturing processes
JP2019025761A (en) * 2017-07-28 2019-02-21 コニカミノルタ株式会社 Modeling method, modeling system, and modeling control program
JP2020530070A (en) * 2017-08-01 2020-10-15 シグマ ラボズ,インコーポレイテッド Systems and methods for measuring radiant thermal energy during additional manufacturing operations

Similar Documents

Publication Publication Date Title
US9573323B2 (en) Method for generating and building support structures with deposition-based digital manufacturing systems
US8050786B2 (en) Method for building three-dimensional objects with thin wall regions
US11850661B2 (en) Method of segmenting object to be manufactured by energy input parameter and passing energy beam across segments
WO2022163148A1 (en) Processing system
WO2022018853A1 (en) Processing system
WO2022168268A1 (en) Processing path information generation method
CN111655455A (en) Processing device, processing method, computer program, recording medium, and control device
WO2022157914A1 (en) Processing method
WO2022074745A1 (en) Data generation method, molding acceptance method, data generation device, display device, molding method, computer program, and recording medium
JP2021088736A (en) Quality prediction system
WO2021171371A1 (en) Processing system
WO2023058087A1 (en) Data generation method, manufacturing method, processing method, data generation device, computer program, recording medium, and display method
JP2022185291A (en) Molding device and molding method, and, processing device and processing method
US20240123508A1 (en) Processing system
WO2021019644A1 (en) Processing system, processing method, controller, computer program, recording medium, and processing apparatus
WO2023242983A1 (en) Processing control information generation method, processing method, and model generation method
US20240075557A1 (en) Build system
WO2022201346A1 (en) Molding device and molding method
WO2023042387A1 (en) Information processing device, measuring system, molding system, information processing method, molding method, and information output device
WO2022254648A1 (en) Shaping apparatus and shaping method
JP2022115799A (en) Processing system
CN116323153A (en) Data generation method, modeling method, data generation device, display device, modeling method, computer program, and storage medium
WO2023042341A1 (en) Fabrication system
CN111670110B (en) Machining system, machining method, computer program, recording medium, and control device
JP7418547B2 (en) Control method for numerical control equipment and additive manufacturing equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP