WO2020192765A1 - 基于带宽部分的终端节能方法 - Google Patents

基于带宽部分的终端节能方法 Download PDF

Info

Publication number
WO2020192765A1
WO2020192765A1 PCT/CN2020/081732 CN2020081732W WO2020192765A1 WO 2020192765 A1 WO2020192765 A1 WO 2020192765A1 CN 2020081732 W CN2020081732 W CN 2020081732W WO 2020192765 A1 WO2020192765 A1 WO 2020192765A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
configuration
bwp
terminal
dci
Prior art date
Application number
PCT/CN2020/081732
Other languages
English (en)
French (fr)
Inventor
杨拓
胡丽洁
王飞
王启星
刘光毅
李男
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Priority to US17/598,700 priority Critical patent/US20220150883A1/en
Priority to CA3135075A priority patent/CA3135075A1/en
Priority to SG11202110764UA priority patent/SG11202110764UA/en
Priority to AU2020246764A priority patent/AU2020246764B2/en
Priority to EP20776437.4A priority patent/EP3944693B1/en
Priority to JP2021557449A priority patent/JP7299335B2/ja
Publication of WO2020192765A1 publication Critical patent/WO2020192765A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • H04W52/0258Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity controlling an operation mode according to history or models of usage information, e.g. activity schedule or time of day
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present disclosure relate to the field of communication technologies, and in particular to a method and device for energy saving of a terminal based on a bandwidth part (BWP).
  • BWP bandwidth part
  • the 5G New Air Interface (NR) system needs to support enhanced mobile broadband (eMBB), large-scale machine communication (mMTC) and ultra-high reliability and low latency communication (uRLLC) deployment solutions.
  • eMBB enhanced mobile broadband
  • mMTC large-scale machine communication
  • uRLLC ultra-high reliability and low latency communication
  • the International Telecommunications Union (ITU) has identified eight key functions of 5G, namely, the user experience data rate reaches 100Mbps, the delay is 1 millisecond, and the connection density can support 1 million devices per square kilometer.
  • the release 15 version of the 5G New Radio (NR) standard focuses on eMBB and uRLLC deployment solutions.
  • Narrowband Internet of Things (NB-IoT) 5G does not have a special design for mMTC deployment. Therefore, the 5G standard design in related technologies may encounter some problems when providing large-scale connection services.
  • a Bandwidth Part (BWP) mechanism is introduced in the 5G standard, allowing the terminal to be configured to work on a subset less than the system bandwidth.
  • BWP Bandwidth Part
  • the initial uplink BWP and the initial downlink BWP in system information block 1, where the initial uplink (UL) BWP is used for the terminal to initiate random access, and the initial downlink (DL) BWP is used for the terminal to receive paging messages and other system message.
  • NR supports configuring multiple BWPs for a UE, and high-level signaling configures a set of downlink BWP and a set of uplink BWP for the terminal.
  • the number of BWPs that the network can configure for the terminal is determined by the capabilities reported by the terminal. For example, for low-capacity terminals, it supports up to 2 downlink BWPs and 2 uplink BWPs on each carrier. For high-capacity terminals, it supports A maximum of 4 downlink BWPs and 4 uplink BWPs are configured on each carrier.
  • the NR supports switching between BWPs based on radio resource control (RRC) signaling, downlink control information (DCI) signaling, and timers.
  • RRC radio resource control
  • DCI downlink control information
  • terminal energy-saving can be carried out in terms of time domain, antenna domain, and physical downlink control channel (PDCCH) detection.
  • PDCCH physical downlink control channel
  • time slot offset value k0 is 0, which is a simultaneous slot
  • the terminal must buffer some PDSCH symbols in each time slot, but if the offset value k0 of the DCI to PDSCH time slot configured for the terminal on the network side is greater than 0, that is, when scheduling across time slots, the terminal can first Perform PDCCH detection, and start buffering PDSCH only if it is judged that there is a scheduling of the terminal, which avoids unnecessary PDSCH buffering and can save energy.
  • the terminal can use a smaller number of MIMO layers or antennas for data reception or transmission, which can save energy.
  • MIMO multiple input multiple output
  • PDCCH detection if the base station can indicate the dynamic change of the terminal search space detection period, it can reduce the opportunity for the terminal to detect the PDCCH to achieve energy saving.
  • these parameters related to terminal energy consumption will be configured in each downlink BWP or uplink BWP, such as the time domain resource allocation table of PDSCH (including the configuration of DCI to PDSCH time slot offset value k0), PUSCH The time domain resource allocation table (including the configuration of DCI to PUSCH slot offset value k2), the detection period of the search space, etc., but there is only one configuration parameter in a BWP.
  • the above-mentioned parameters related to terminal energy consumption such as the number of antennas used, are currently not configured with signaling.
  • One purpose of the embodiments of the present disclosure is to provide a method and device for energy saving of a terminal based on a bandwidth part, which can quickly realize the conversion of terminal energy saving parameters by switching between different states of the BWP.
  • the embodiments of the present disclosure provide a terminal energy saving method based on the bandwidth part, which is applied to network equipment, and includes:
  • the embodiment of the present disclosure also provides a terminal energy saving method based on the bandwidth part, which is applied to the terminal and includes:
  • a first downlink control information DCI that carries a first information field sent by a network device, where the first information field is used to indicate one of at least two configuration states or configuration indexes of the first parameter, and the first The parameter is a configuration parameter associated with the activated BWP of the terminal, and the activated BWP includes activated uplink BWP or activated downlink BWP.
  • the embodiments of the present disclosure provide another terminal energy saving method based on the bandwidth part, which is applied to network equipment, including:
  • Activating BWP includes activating upstream BWP or activating downstream BWP;
  • the M BWPs support configuration as the first parameter group of T groups, the parameter values of the corresponding first parameters in different first parameter groups are not completely the same, and at least two BWPs support configuration as the same first parameter group
  • the at least two BWPs both support the configuration of a second parameter group with a parameter value of a second parameter that is not completely the same, where M is an integer greater than or equal to 2, and T is an integer less than M;
  • the first parameter group includes frequency domain location information, bandwidth configuration information, subcarrier spacing configuration information, and cyclic prefix configuration information of the BWP;
  • the second parameter group is other configuration parameters associated with the BWP that do not include the first parameter group.
  • the embodiments of the present disclosure provide another terminal energy saving method based on the bandwidth part, which is applied to the terminal, including:
  • the activating BWP includes activating an uplink BWP or activating a downlink BWP;
  • the M BWPs support configuration as the first parameter group of T groups, the parameter values of the corresponding first parameters in different first parameter groups are not completely the same, and at least two BWPs support configuration as the same first parameter group
  • the at least two BWPs both support the configuration of a second parameter group with a parameter value of a second parameter that is not completely the same, where M is an integer greater than or equal to 2, and T is an integer less than M;
  • the first parameter group includes frequency domain location information, bandwidth configuration information, subcarrier spacing configuration information, and cyclic prefix configuration information of the BWP.
  • the second parameter group is other configuration parameters associated with the BWP that do not include the first parameter group.
  • the embodiment of the present disclosure also provides a network device, including:
  • the transceiver is configured to send a first downlink control information DCI carrying a first information field to the terminal, where the first information field is used to indicate one of at least two configuration states or configuration indexes of the first parameter, so
  • the first parameter is a configuration parameter associated with the activated BWP of the terminal, and the activated BWP includes activating an uplink BWP or activating a downlink BWP.
  • the embodiment of the present disclosure also provides a terminal, including:
  • the transceiver is configured to receive a first downlink control information DCI carrying a first information field from a network device, where the first information field is used to indicate one of at least two configuration states or configuration indexes of the first parameter
  • the first parameter is a configuration parameter associated with the activated BWP of the terminal, and the activated BWP includes activating an uplink BWP or activating a downlink BWP.
  • the embodiment of the present disclosure also provides another network device, including:
  • the transceiver is configured to send to the terminal a DCI carrying a BWP indicating the activation of the terminal, where the activated BWP is the maximum M BWP reported by the terminal that it can be adapted through DCI or a timer
  • the activating BWP includes activating an uplink BWP or activating a downlink BWP;
  • the M BWPs support configuration as the first parameter group of T groups, the parameter values of the corresponding first parameters in different first parameter groups are not completely the same, and at least two BWPs support configuration as the same first parameter group
  • the at least two BWPs both support the configuration of a second parameter group with a parameter value of a second parameter that is not completely the same, where M is an integer greater than or equal to 2, and T is an integer less than M;
  • the first parameter group includes frequency domain location information, bandwidth configuration information, subcarrier spacing configuration information, and cyclic prefix configuration information of the BWP;
  • the second parameter group is other configuration parameters associated with the BWP that do not include the first parameter group.
  • the embodiment of the present disclosure also provides another terminal, including:
  • the transceiver is configured to receive a DCI sent by a network device that carries an activated BWP for indicating the terminal, where the activated BWP is a maximum of M supported by the terminal that can be adapted through the DCI or timer One of the BWPs, where the activating BWP includes activating an uplink BWP or activating a downlink BWP;
  • the M BWPs support configuration as the first parameter group of T groups, the parameter values of the corresponding first parameters in different first parameter groups are not completely the same, and at least two BWPs support configuration as the same first parameter group
  • the at least two BWPs both support the configuration of a second parameter group with a parameter value of a second parameter that is not completely the same, where M is an integer greater than or equal to 2, and T is an integer less than M;
  • the first parameter group includes frequency domain location information, bandwidth configuration information, subcarrier spacing configuration information, and cyclic prefix configuration information of the BWP.
  • the second parameter group is other configuration parameters associated with the BWP that do not include the first parameter group.
  • the embodiments of the present disclosure also provide a communication device, including: a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • a communication device including: a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • the embodiments of the present disclosure also provide a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, the steps of the method described above are implemented.
  • the bandwidth-based terminal energy saving method and device can realize that a BWP has at least two configuration states or configuration indexes, and configures one of the at least two configuration states or configuration indexes through the first information domain.
  • the terminal can determine the configuration state or configuration index of the activated BWP based on the first information domain, and realize the fast switching of the configuration parameters of the activated BWP, so that the fast switching of the terminal can be realized through the fast switching between the different states of the BWP Energy saving.
  • the embodiments of the present disclosure are based on the currently supported DCI-based BWP handover framework, which has little impact on the architecture in the related technology, does not require additional signaling, and has the advantage of low implementation cost.
  • FIG. 1 is a schematic diagram of an application scenario of a terminal energy saving method based on a bandwidth part in an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a terminal energy saving method based on a bandwidth part according to an embodiment of the present disclosure
  • FIG. 3 is another flowchart of a terminal energy saving method based on a bandwidth part provided by an embodiment of the present disclosure
  • FIG. 4 is a flowchart of a terminal energy saving method based on a bandwidth part according to another embodiment of the present disclosure
  • FIG. 5 is another flowchart of a terminal energy saving method based on a bandwidth part according to another embodiment of the present disclosure
  • FIG. 6 is one of the structural diagrams of a network device according to an embodiment of the disclosure.
  • FIG. 7 is the second structural diagram of a network device according to an embodiment of the disclosure.
  • FIG. 8 is one of the structural diagrams of the terminal of the embodiment of the disclosure.
  • FIG. 9 is the second structural diagram of a terminal according to an embodiment of the disclosure.
  • FIG. 10 is a structural diagram of a network device according to another embodiment of the disclosure.
  • FIG. 11 is a structural diagram of a terminal according to another embodiment of the disclosure.
  • LTE Long Time Evolution
  • LTE-A Long Time Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the terms “system” and “network” are often used interchangeably.
  • the CDMA system can implement radio technologies such as CDMA2000 and Universal Terrestrial Radio Access (UTRA).
  • UTRA includes Wideband Code Division Multiple Access (WCDMA) and other CDMA variants.
  • the TDMA system can implement radio technologies such as the Global System for Mobile Communication (GSM).
  • OFDMA system can realize such as UltraMobile Broadband (UMB), Evolved UTRA (Evolution-UTRA, E-UTRA), IEEE802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE802.20, Flash-OFDM, etc. Radio technology.
  • UMB UltraMobile Broadband
  • Evolved UTRA Evolved UTRA
  • E-UTRA Evolved UTRA
  • IEEE802.11 Wi-Fi
  • WiMAX IEEE 802.16
  • IEEE802.20 Flash-OFDM
  • Flash-OFDM Flash-OFDM
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization named "3rd Generation Partnership Project” (3GPP).
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2" (3GPP2).
  • the technology described in this article can be used for the systems and radio technologies mentioned above as well as other systems and radio technologies.
  • the following description describes the NR system for exemplary purposes, and NR terminology is used in most of the description below, although these techniques can also be applied to applications other than NR system applications.
  • the wireless communication system includes a terminal 11 and a base station 12.
  • the terminal 11 may also be referred to as a user terminal or a user equipment (UE), and the terminal 11 may be a mobile phone, a tablet (Personal Computer), a laptop (Laptop Computer), or a personal digital assistant (Personal Digital Assistant).
  • PDA mobile Internet device
  • MID mobile Internet Device
  • Wearable Device wearable device
  • vehicle-mounted equipment it should be noted that the specific type of terminal 11 is not limited in the embodiments of the present disclosure .
  • the base station 12 may be various base stations and/or core network elements.
  • the above-mentioned base stations may be 5G and later base stations (for example: gNB, 5G NR NB, etc.), or base stations in other communication systems (for example: eNB, WLAN access point, or other access points, etc.), where the base station 12 can be called Node B, Evolved Node B, Access Point, Base Transceiver Station (BTS), Radio Base Station, Radio Transceiver , Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node or some other appropriate term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical vocabulary. It should be noted that in the embodiments of the present disclosure, only the base station in the NR system is taken as an example. However, the specific type of base station is not limited.
  • the base station 12 may communicate with the terminal 11 under the control of the base station controller.
  • the base station controller may be a part of a core network or some base stations. Some base stations can communicate control information or user data with the core network through the backhaul. In some examples, some of these base stations may directly or indirectly communicate with each other through a backhaul link, which may be a wired or wireless communication link.
  • the wireless communication system can support operations on multiple carriers (waveform signals of different frequencies). Multi-carrier transmitters can simultaneously transmit modulated signals on these multiple carriers. For example, each communication link may be a multi-carrier signal modulated according to various radio technologies. Each modulated signal can be sent on a different carrier and can carry control information (for example, reference signals, control channels, etc.), overhead information, data, and so on.
  • the base station 12 can wirelessly communicate with the terminal 11 via one or more access point antennas. Each base station can provide communication coverage for its corresponding coverage area. The coverage area of an access point can be divided into sectors that constitute only a part of the coverage area.
  • the wireless communication system may include different types of base stations (for example, macro base stations, micro base stations, or pico base stations).
  • the base station can also utilize different radio technologies, such as cellular or WLAN radio access technologies.
  • the base stations can be associated with the same or different access networks or operator deployments.
  • the coverage areas of different base stations may overlap.
  • the communication link in the wireless communication system may include an uplink for carrying uplink (UL) transmission (for example, from the terminal 11 to the base station 12), or for carrying downlink (DL) transmission (For example, from the base station 12 to the terminal 11) downlink.
  • UL transmission may also be referred to as reverse link transmission
  • DL transmission may also be referred to as forward link transmission.
  • Downlink transmission can use licensed frequency bands, unlicensed frequency bands, or both.
  • uplink transmission can be performed using licensed frequency bands, unlicensed frequency bands, or both.
  • the network equipment in the embodiments of the present disclosure may be implemented by the base station (access network node) in FIG. 1, or by the core network node, or by the access network node and the core network node.
  • the terminal energy saving method based on the bandwidth part provided by the embodiment of the present disclosure, when applied to a network device, such as a base station, includes:
  • Step 21 Send a first DCI carrying a first information field to the terminal, where the first information field is used to indicate one of at least two configuration states or configuration indexes of the first parameter, and the first parameter
  • the activated BWP includes activated uplink BWP or activated downlink BWP.
  • the first DCI may be any of the following DCIs:
  • the first DCI may also be a new DCI format, such as a custom DCI.
  • the embodiment of the present disclosure does not specifically limit the format of the first DCI.
  • the first parameter usually includes multiple parameters, and the first parameter includes at least two configuration states or configuration indexes, and each configuration state or configuration index corresponds to a set of parameter values of the multiple parameters.
  • the first information field may be a field with a predetermined bit length, and a configuration state or configuration index of the first parameter corresponds to a value of the first information field. In this way, the value of the first information field can be used to determine The configuration state or configuration index of the first parameter, so as to obtain the specific parameter value of each parameter in the first parameter.
  • the embodiment of the present disclosure can realize that a BWP has at least two configuration states or configuration indexes, and configures one of the at least two configuration states or configuration indexes to the terminal through the first information domain, so that the terminal can be based on all
  • the first information domain determines the configuration state or configuration index of the activated BWP, and realizes the fast switching of the configuration parameters of the activated BWP, so that the fast energy saving of the terminal can be realized through the fast switching between different states of the BWP.
  • the embodiment of the present disclosure can realize the switching of the configuration state/configuration index of the first parameter based on the first information field in step 21 above, and quickly realize the terminal energy-saving. Conversion of parameters.
  • the first parameter in the embodiment of the present disclosure may include one or more of the following parameters:
  • PDSCH time domain resource allocation (pdsch-TimeDomainAllocationList);
  • PUSCH time domain resource allocation (pusch-TimeDomainAllocationList);
  • the network device may also determine the value of the first information domain in the first DCI according to the determined target configuration state or target configuration index of the first parameter of the terminal to activate the BWP.
  • determining the target configuration state or target configuration index of the first parameter for activating the BWP can be specifically set according to actual application scenarios, which is not specifically limited in the embodiment of the present disclosure.
  • the network device and the terminal side need to obtain the parameter value of each parameter in the first parameter under each configuration state or configuration index in advance.
  • the parameter value of each parameter in the first parameter under each configuration state or configuration index may be defined in advance by the standard.
  • the terminal may be pre-configured by the network device.
  • the network device of the embodiment of the present disclosure may also configure the first terminal for the terminal through high-level signaling (such as RRC signaling).
  • RRC signaling such as RRC signaling.
  • At least two parameter values of at least one parameter in the first parameter may be configured with a BWP-related information element (IE) for the parameter value of the at least one parameter in the first parameter.
  • IE BWP-related information element
  • each parameter in the first parameter may be configured through an information element (IE) related to a physical channel, and the physical channel includes the following channels At least one of: PDCCH, PUCCH, PDSCH and PUSCH.
  • IE information element
  • the embodiment of the present disclosure may indicate the configuration status or configuration index of the configuration parameters associated with the activated BWP of the terminal in step 21, and at the same time indicate the activated BWP of the terminal.
  • the The first DCI may also carry a second information field for indicating activation of the BWP of the terminal.
  • the embodiment of the present disclosure may also indicate the activation of the BWP of the terminal through another signaling message, for example, send a second DCI different from the first DCI to the terminal, and the second DCI is carried to indicate the terminal
  • the second DCI can be sent before the first DCI or after the first DCI, which is not specifically limited in the embodiment of the present disclosure.
  • the above describes the terminal energy saving method based on the bandwidth part of the embodiment of the present disclosure from the network device side, and the following further describes it from the terminal side.
  • the terminal energy saving method based on the bandwidth part provided by the embodiment of the present disclosure, when applied to the terminal includes:
  • Step 31 Receive a first DCI carrying a first information field from a network device, where the first information field is used to indicate one of at least two configuration states or configuration indexes of the first parameter, and the first parameter
  • the activated BWP includes activated uplink BWP or activated downlink BWP.
  • the terminal may receive the first DCI sent by the network device, and obtain the configuration state or configuration index of the first parameter associated with the activated BWP from the first DCI, so as to realize the rapid switching of the configuration parameters of the activated BWP, and then the BWP Switching between different states realizes rapid conversion of energy-saving parameters of the terminal. For example, the terminal can quickly switch to a more energy-saving parameter value of the first parameter, thereby realizing rapid energy-saving of the terminal.
  • the first parameter may include at least one of the following parameters:
  • PDSCH time domain resource allocation (pdsch-TimeDomainAllocationList);
  • PUSCH time domain resource allocation (pusch-TimeDomainAllocationList);
  • the terminal may perform the following judgment and processing: if the target configuration state or target configuration index indicated by the first information field of the first DCI If the current configuration state or current configuration index of the first parameter associated with the activated BWP of the terminal is different, the relevant configuration information of the first parameter is set according to the target configuration state or target configuration index; if the same, Then, the first DCI can be ignored (or directly discarded).
  • each configuration state or each configuration index of the first parameter corresponds to a value of the first information field.
  • the network device and the terminal side need to obtain the parameter value of each parameter in the first parameter under each configuration state or configuration index in advance.
  • the parameter value of each parameter in the first parameter under each configuration state or configuration index may be defined in advance by the standard.
  • the terminal may receive the configuration state/configuration index of the first parameter pre-configured by the network device and the parameter value of each parameter under each configuration state/configuration index, for example, before step 31 above
  • the terminal may also receive at least two parameter values of at least one of the first parameters configured by the network device through high-layer signaling, wherein each parameter value is respectively related to a configuration state or configuration index United.
  • the at least two parameter values of at least one of the first parameters are configured through BWP-related information elements (IE).
  • the terminal can perform configuration according to the received BWP-related information elements (IE).
  • the configuration state/configuration index of the first parameter and the parameter value of each parameter under each configuration state/configuration index are learned.
  • at least two parameter values of at least one of the first parameters are configured through information elements related to a physical channel, and the physical channel includes at least one of the following channels: PDCCH, PUCCH, PDSCH, and PUSCH
  • the terminal may learn the configuration state/configuration index of the first parameter and the parameter value of each parameter under each configuration state/configuration index according to the information element (IE) related to each physical channel.
  • IE information element
  • the embodiment of the present disclosure may simultaneously carry a second information field for indicating the activated BWP of the terminal in the first DCI, so as to indicate the activated BWP and the activated BWP of the terminal in one DCI.
  • the associated configuration parameters may also receive a second DCI that carries a third information field used to indicate the activated BWP of the terminal from the network device, so as to obtain the activated BWP and the communication with the terminal through different DCIs. Activate the configuration parameters associated with the BWP.
  • the terminal may also report the BWP capability parameter of the terminal to the network device.
  • the BWP capability parameter is used to indicate whether the terminal supports DCI or timer processing.
  • the network device configures a downlink BWP#1 for the terminal.
  • the configuration information includes a frequency domain position bandwidth of 20MHz, a subcarrier spacing of 30kHz, a normal cyclic prefix (CP), and a first parameter associated with BWP#1.
  • the first parameter includes two configuration states, that is, the state or index is 0 and the state or index is 1.
  • the parameter configuration value of the configuration state #0 of the first parameter includes: the minimum value of the slot offset value of DCI and its scheduled PDSCH is equal to 0, and the minimum value of the slot offset value of DCI and its scheduled PUSCH is equal to 0 ,
  • the maximum transmission rank is equal to 4, and the detection period of the search space is 5 time slots, etc.
  • the configuration value of the first parameter configuration state #1 includes: the minimum value of the slot offset value of DCI and its scheduled PDSCH is equal to 2, the maximum transmission rank is equal to 2, the detection period of the search space is 10 slots, etc. .
  • the network device sends a DCI to the terminal.
  • the DCI indicates that the active downlink BWP of the terminal is downlink BWP#1, and the value of the first information field in the DCI is 1, indicating the first parameter configuration state used by the terminal on the downlink BWP#1 Or index 1.
  • the terminal After receiving the DCI, the terminal works on the downlink BWP#1, and configures the configuration information of state #1 according to the first parameter.
  • the minimum value of the time slot offset value including the DCI and its scheduled PDSCH is equal to 2, and the maximum The transmission rank is equal to 2, and the detection period of the search space is 10 time slots for PDCCH detection and reception, PDSCH reception, etc.
  • the indication of the configuration status of the activated BWP and the first parameter is performed in the same DCI.
  • the configuration status of the activated BWP and the first parameter can also be indicated in different DCIs.
  • the configuration status of the first parameter is performed through the first DCI, and the BWP planning indication is performed through the second DCI. No longer.
  • the network side configures a downlink BWP#1 for the terminal.
  • the configuration information includes a frequency domain position bandwidth of 20MHz, a subcarrier spacing of 30kHz, a normal CP, and configuration parameters of PDSCH and PDCCH associated with BWP#1.
  • the configuration parameters of the PDSCH include part of the configuration parameters of the first parameter: the minimum value and maximum transmission rank of the time slot offset value of the DCI and its scheduled PDSCH.
  • the DCI configured by the high-level signaling for the terminal and the time slot offset parameter of the PDSCH scheduled by the terminal include two configuration states, that is, the state or index is 0 and the state or index is 1, and the configuration corresponding to the state or index is 0
  • the parameter is that the minimum value of the slot offset value of the DCI and its scheduled PDSCH is equal to 0, and the configuration parameter corresponding to the state or index of 1 is that the minimum value of the slot offset value of the DCI and its scheduled PDSCH is equal to 2.
  • the maximum transmission rank configured by high-level signaling for the terminal includes two configuration states, that is, the state or index is 0 and the state or index is 1.
  • the configuration parameter corresponding to the state or index of 0 is that the maximum transmission rank is equal to 4.
  • the configuration parameter corresponding to the state or index of 1 is that the maximum transmission rank is equal to 8.
  • the configuration of the PDCCH includes a part of the configuration parameter of the first parameter: the detection period of the search space.
  • the detection period of a certain search space configured by high-level signaling for the terminal includes two configuration states, that is, the state or index is 0 and the state or index is 1, where the configuration parameter corresponding to the state or index of 0 is the detection of the search space
  • the period is 5 time slots
  • the configuration parameter corresponding to the state or index of 1 is the detection period of the search space is 10 time slots.
  • the network side sends a DCI to the terminal.
  • the DCI indicates that the active downlink BWP of the terminal is downlink BWP#1, and the value of the first DCI field of the DCI type is 1, indicating the first parameter configuration state used by the terminal on the downlink BWP#1 Or index 1.
  • the terminal After receiving the DCI, the terminal works on the downlink BWP#1, and configures the configuration information of state #1 according to the first parameter.
  • the minimum value of the time slot offset value including the DCI and its scheduled PDSCH is equal to 2, and the maximum The transmission rank is equal to 8, and the detection period of the search space is 10 time slots for PDCCH detection and reception, PDSCH reception, etc.
  • Example 3 introduces a specific implementation of terminal capability reporting.
  • the ability of the terminal to report the BWP is to support the adaptation of up to two BWPs through DCI or timers.
  • the two BWPs can be configured with multiple BWPs in addition to frequency domain position and bandwidth configuration information, subcarrier spacing configuration information, and cyclic prefix configuration information. Set of other parameters.
  • the network equipment can configure the downlink BWP#1 for the terminal, the bandwidth is 100MHz, the subcarrier interval is 30kHz, and the normal CP, but two sets of other parameters can be configured.
  • the first set of parameters is the offset value of the time slot between DCI and its scheduled PDSCH
  • the minimum value is equal to 0
  • the detection period of the search space is 5 time slots
  • the second set of parameters is that the minimum value of the time slot offset value of the DCI and its scheduled PDSCH is equal to 2
  • the detection period of the search space is 10 time slots.
  • the network side configures downlink BWP#2 for the terminal, the bandwidth is 20MHz, the subcarrier interval is 30kHz, normal CP but two sets of other parameters can be configured, the first set of parameters is the minimum time slot offset value of DCI and its scheduled PDSCH Equal to 0, the detection period of the search space is 5 time slots, the second set of parameters is that the minimum value of the time slot offset between DCI and its scheduled PDSCH is equal to 2, and the detection period of the search space is 10 time slots.
  • a BWP-based terminal energy saving method when applied to a network device, includes:
  • Step 41 Send to the terminal a DCI carrying a BWP indicating the activation of the terminal, where the activated BWP is one of the maximum M BWPs reported by the terminal that can be adapted through the DCI or timer Activating the BWP includes activating an uplink BWP or activating a downlink BWP.
  • the M BWPs support configuration as the first parameter group of T groups, the parameter values of the corresponding first parameters in different first parameter groups are not completely the same, and at least two BWPs support configuration as the same first parameter group
  • the at least two BWPs both support the configuration of a second parameter group with a parameter value of a second parameter that is not completely the same, where M is an integer greater than or equal to 2, and T is an integer less than M;
  • the first parameter group includes frequency domain location information, bandwidth configuration information, subcarrier spacing configuration information, and cyclic prefix configuration information of the BWP;
  • the embodiments of the present disclosure can realize that different BWPs have the first parameter group with exactly the same value, and at the same time, also have the parameter value of the second parameter that is not exactly the same, so that different BWPs can be used to achieve rapid second parameters. Conversion, and then realize the fast conversion of terminal energy saving parameter configuration.
  • At least two BWPs support a second parameter group configured to have a parameter value of a second parameter that is not exactly the same. It may be that the types of the second parameters of these BWPs are not exactly the same, or the types of the second parameters are completely different. The same but the parameter values are not exactly the same, etc.
  • the network device may also receive the BWP capability parameter of the terminal reported by the terminal, where the BWP capability parameter is used to indicate that the terminal supports adaptable through DCI or timer At most M BWPs.
  • the M BWPs support configuration as the first parameter group of T groups, the parameter values of the corresponding first parameters in different first parameter groups are not completely the same, and at least two BWPs support configuration as the same first parameter group
  • the at least two BWPs both support the configuration of a second parameter group with a parameter value of a second parameter that is not completely the same, where M is an integer greater than or equal to 2, and T is an integer less than M;
  • the first parameter group includes frequency domain location information, bandwidth configuration information, subcarrier spacing configuration information, and cyclic prefix configuration information of the BWP.
  • the second parameter group is other configuration parameters associated with the BWP that do not include the first parameter group.
  • the second parameter group may include one or more of the following parameters:
  • PDSCH time domain resource allocation (pdsch-TimeDomainAllocationList);
  • PUSCH time domain resource allocation (pusch-TimeDomainAllocationList);
  • a BWP-based terminal energy saving method provided by an embodiment of the present disclosure, when applied to a terminal, includes:
  • Step 51 Receive a DCI sent by the network device that carries the activated BWP of the terminal, where the activated BWP is one of the maximum M BWPs reported by the terminal that can be adapted through the DCI or timer
  • the activating BWP includes activating an uplink BWP or activating a downlink BWP.
  • the M BWPs support configuration as the first parameter group of T groups, the parameter values of the corresponding first parameters in different first parameter groups are not completely the same, and at least two BWPs support configuration as the same first parameter group
  • the at least two BWPs both support the configuration of a second parameter group with a parameter value of a second parameter that is not completely the same, where M is an integer greater than or equal to 2, and T is an integer less than M;
  • the first parameter group includes frequency domain location information, bandwidth configuration information, subcarrier spacing configuration information, and cyclic prefix configuration information of the BWP.
  • the second parameter group is other configuration parameters associated with the BWP that do not include the first parameter group.
  • the embodiments of the present disclosure can realize that different BWPs have the first parameter group with exactly the same value, and at the same time, also have the parameter value of the second parameter that is not exactly the same, so that different BWPs can be used to achieve rapid second parameters. Conversion, and then realize the fast conversion of terminal energy saving parameter configuration.
  • the terminal may also report the BWP capability parameter of the terminal to the network device, where the BWP capability parameter is used to indicate whether the terminal supports the DCI or timing The maximum M BWPs adapted by the processor;
  • the M BWPs support configuration as the first parameter group of T groups, the parameter values of the corresponding first parameters in different first parameter groups are not completely the same, and at least two BWPs support configuration as the same first parameter group
  • the at least two BWPs both support the configuration of a second parameter group with a parameter value of a second parameter that is not completely the same, where M is an integer greater than or equal to 2, and T is an integer less than M;
  • the first parameter group includes frequency domain location information, bandwidth configuration information, subcarrier spacing configuration information, and cyclic prefix configuration information of the BWP.
  • the second parameter group is other configuration parameters associated with the BWP that do not include the first parameter group.
  • the second parameter group may include one or more of the following parameters:
  • PDSCH time domain resource allocation (pdsch-TimeDomainAllocationList);
  • PUSCH time domain resource allocation (pusch-TimeDomainAllocationList);
  • the ability of the terminal to report the BWP is to support the adaptation of up to 4 BWPs through DCI or timers, of which 4 BWPs have only 2 types of frequency domain location and bandwidth configuration information, subcarrier spacing configuration information, and cyclic prefix configuration information, all having the same frequency domain
  • the two BWPs of location and bandwidth configuration information, subcarrier spacing configuration information, and cyclic prefix configuration information can be configured with different other parameters. Therefore, the network side can configure the downlink BWP#1 for the terminal, the bandwidth is 100MHz, the subcarrier spacing is 30kHz, the normal CP, and the other parameters are DCI and its scheduled PDSCH.
  • the minimum value of the time slot offset is equal to 0.
  • Search space detection The period is 5 time slots; configure downlink BWP#2, bandwidth is 100MHz, normal CP, subcarrier spacing is 30kHz, other parameters are DCI and its scheduled PDSCH.
  • the minimum value of the time slot offset is equal to 2
  • the search space The detection period is 10 time slots; configure downlink BWP#3, bandwidth is 20MHz, subcarrier spacing is 30kHz, normal CP, but other parameters are DCI and the minimum time slot offset value of its scheduled PDSCH is equal to 0, search
  • the space detection cycle is 5 time slots; configure downlink BWP#4, bandwidth is 20MHz, subcarrier spacing is 30kHz, normal CP, other parameters are DCI and the minimum time slot offset value of its scheduled PDSCH is equal to 2.
  • the detection period of the search space is 10 time slots.
  • the embodiment of the present disclosure provides a network device as shown in FIG. 6. Please refer to FIG. 6, an embodiment of the present disclosure provides a network device 60, including:
  • the transceiver 62 is configured to send a first downlink control information DCI carrying a first information field to the terminal, where the first information field is used to indicate one of at least two configuration states or configuration indexes of the first parameter,
  • the first parameter is a configuration parameter associated with the activated BWP of the terminal, and the activated BWP includes activating an uplink BWP or activating a downlink BWP.
  • the first parameter includes at least one of the following parameters:
  • PDSCH time domain resource allocation (pdsch-TimeDomainAllocationList);
  • PUSCH time domain resource allocation (pusch-TimeDomainAllocationList);
  • the network equipment further includes:
  • the processor 61 is configured to determine the first information field in the first DCI according to the determined target configuration state or target configuration index of the first parameter of the activated BWP of the terminal before sending the first DCI Each configuration state or each configuration index of the first parameter corresponds to a value of the first information domain.
  • the transceiver is further configured to configure at least two parameter values of at least one of the first parameters for the terminal through high-layer signaling before sending the first DCI, where each The parameter value is respectively associated with one of the configuration states or configuration indexes.
  • At least two parameter values of at least one of the first parameters are configured through BWP-related information elements; or,
  • At least two parameter values of at least one of the first parameters are configured through information elements related to a physical channel, and the physical channel includes at least one of the following channels: PDCCH, PUCCH, PDSCH, and PUSCH.
  • the first DCI also carries a second information field used to instruct the terminal to activate the BWP;
  • the transceiver is further configured to send a second DCI carrying a third information field for indicating activation of the BWP of the terminal to the terminal.
  • an embodiment of the present disclosure provides another schematic structural diagram of a network device 700, including: a processor 701, a transceiver 702, a memory 703, and a bus interface, where:
  • the transceiver 702 is configured to send a first downlink control information DCI carrying a first information field to the terminal, where the first information field is used to indicate at least two configuration states or configuration indexes of the first parameter One, the first parameter is a configuration parameter associated with the activated BWP of the terminal, and the activated BWP includes activation of an uplink BWP or activation of a downlink BWP.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 701 and various circuits of the memory represented by the memory 703 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 702 may be a plurality of elements, that is, include a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the processor 701 is responsible for managing the bus architecture and general processing, and the memory 703 can store data used by the processor 701 when performing operations.
  • the processor 701 is configured to read a program in a memory, and execute the following process: before sending the first DCI, according to the determined target configuration state of the first parameter of the terminal to activate the BWP Or a target configuration index to determine the value of the first information field in the first DCI, wherein each configuration state or each configuration index of the first parameter corresponds to one of the first information fields Value.
  • the transceiver is further configured to configure at least two parameter values of at least one of the first parameters for the terminal through high-layer signaling before sending the first DCI, where each The parameter value is respectively associated with one of the configuration states or configuration indexes.
  • At least two parameter values of at least one of the first parameters are configured through BWP-related information elements; or,
  • At least two parameter values of at least one of the first parameters are configured through information elements related to a physical channel, and the physical channel includes at least one of the following channels: PDCCH, PUCCH, PDSCH, and PUSCH.
  • the first DCI also carries a second information field used to instruct the terminal to activate the BWP;
  • the transceiver is further configured to send a second DCI carrying a third information field for indicating activation of the BWP of the terminal to the terminal.
  • an embodiment of the present disclosure provides a terminal shown in FIG. 8.
  • a terminal 80 including:
  • the transceiver 82 is configured to receive a first downlink control information DCI carrying a first information field sent by a network device, where the first information field is used to indicate at least two configuration states of the first parameter or one of the configuration indexes One, the first parameter is a configuration parameter associated with the activated BWP of the terminal, and the activated BWP includes activation of an uplink BWP or activation of a downlink BWP.
  • the first parameter includes at least one of the following parameters:
  • PDSCH time domain resource allocation (pdsch-TimeDomainAllocationList);
  • PUSCH time domain resource allocation (pusch-TimeDomainAllocationList);
  • the terminal further includes:
  • the processor 81 is configured to, after receiving the first DCI, if the terminal receives the target configuration state or target configuration index indicated by the first information field of the first DCI, it is related to the active BWP of the terminal If the current configuration state or current configuration index of the associated first parameter is different, the related configuration information of the first parameter is set according to the target configuration state or target configuration index.
  • each configuration state or each configuration index of the first parameter corresponds to a value of the first information domain.
  • the transceiver is further configured to, before receiving the first DCI, receive at least two parameter values of at least one of the first parameters configured by the network device through higher layer signaling, where: Each parameter value is respectively associated with a configuration state or configuration index.
  • At least two parameter values of at least one of the first parameters are configured through BWP-related information elements; or,
  • At least two parameter values of at least one of the first parameters are configured through information elements related to a physical channel, and the physical channel includes at least one of the following channels: PDCCH, PUCCH, PDSCH, and PUSCH.
  • the first DCI also carries a second information field used to instruct the terminal to activate the BWP;
  • the transceiver is further configured to receive a second DCI sent by a network device and carrying a third information field used to instruct the terminal to activate the BWP.
  • the transceiver is further configured to report the BWP capability parameter of the terminal to the network device before receiving the first DCI, where the BWP capability parameter is used to indicate whether the terminal supports passing DCI or timing
  • the device adapts up to N BWPs, where each BWP supports the configuration of a frequency domain location and bandwidth configuration information, a subcarrier spacing configuration information, a cyclic prefix configuration information, and at least one of the first parameters At least two parameter values of a parameter, where N is an integer greater than or equal to 2.
  • the terminal 900 includes a processor 901, a transceiver 902, a memory 903, a user interface 906, and a bus interface.
  • the terminal 900 further includes: a computer program stored in the memory 903 and capable of running on the processor 901.
  • the transceiver 902 is configured to receive a first downlink control information DCI carrying a first information field sent by a network device, where the first information field is used to indicate at least two configuration states or configuration indexes of the first parameter
  • the first parameter is a configuration parameter associated with the activated BWP of the terminal, and the activated BWP includes activating an uplink BWP or activating a downlink BWP.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 901 and various circuits of the memory represented by the memory 903 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 902 may be a plurality of elements, that is, include a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 906 may also be an interface capable of externally connecting internally required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 901 is responsible for managing the bus architecture and general processing, and the memory 903 can store data used by the processor 901 when performing operations.
  • the processor 901 is configured to read a program in a memory, and perform the following process: after receiving the first DCI, if the terminal receives a first information field indication of the first DCI If the target configuration state or target configuration index is different from the current configuration state or current configuration index of the first parameter associated with the activated BWP of the terminal, the first parameter is set according to the target configuration state or target configuration index Related configuration information.
  • Each configuration state or each configuration index of the first parameter corresponds to a value of the first information domain.
  • the transceiver is further configured to receive at least two parameter values of at least one of the first parameters configured by the network device through high-layer signaling, wherein each parameter value is associated with one of the The configuration status or configuration index is associated.
  • At least two parameter values of at least one of the first parameters are configured through BWP-related information elements; or,
  • At least two parameter values of at least one of the first parameters are configured through information elements related to a physical channel, and the physical channel includes at least one of the following channels: PDCCH, PUCCH, PDSCH, and PUSCH.
  • the first DCI also carries a second information field used to instruct the terminal to activate the BWP;
  • the method further includes:
  • the transceiver is further configured to receive a second DCI sent by a network device and carrying a third information field used to instruct the terminal to activate the BWP.
  • the transceiver is further configured to report the BWP capability parameter of the terminal to the network device before receiving the first DCI, where the BWP capability parameter is used to indicate whether the terminal supports passing DCI or timing
  • the device adapts up to N BWPs, where each BWP supports the configuration of a frequency domain location and bandwidth configuration information, a subcarrier spacing configuration information, a cyclic prefix configuration information, and at least one of the first parameters At least two parameter values of a parameter, where N is an integer greater than or equal to 2.
  • the embodiment of the present disclosure provides a network device as shown in FIG. 10. Please refer to FIG. 10, an embodiment of the present disclosure provides a schematic structural diagram of a network device 100, including:
  • the transceiver 101 is configured to send to the terminal a DCI carrying a BWP indicating activation of the terminal, where the activated BWP is the maximum M BWPs that the terminal supports and can be adapted through the DCI or timer.
  • the activating BWP includes activating an uplink BWP or activating a downlink BWP;
  • the M BWPs support configuration as the first parameter group of T groups, the parameter values of the corresponding first parameters in different first parameter groups are not completely the same, and at least two BWPs support configuration as the same first parameter group
  • the at least two BWPs both support the configuration of a second parameter group with a parameter value of a second parameter that is not completely the same, where M is an integer greater than or equal to 2, and T is an integer less than M;
  • the first parameter group includes frequency domain location information, bandwidth configuration information, subcarrier spacing configuration information, and cyclic prefix configuration information of the BWP;
  • the second parameter group is other configuration parameters associated with the BWP that do not include the first parameter group.
  • the transceiver is further configured to receive the BWP capability parameter of the terminal reported by the terminal before sending the DCI, where the BWP capability parameter is used to indicate the DCI or timer supported by the terminal At most M BWPs to be adapted;
  • the M BWPs support configuration as the first parameter group of T groups, the parameter values of the corresponding first parameters in different first parameter groups are not completely the same, and at least two BWPs support configuration as the same first parameter group
  • the at least two BWPs both support the configuration of a second parameter group with a parameter value of a second parameter that is not completely the same, where M is an integer greater than or equal to 2, and T is an integer less than M;
  • the first parameter group includes frequency domain location information, bandwidth configuration information, subcarrier spacing configuration information, and cyclic prefix configuration information of the BWP.
  • the second parameter group is other configuration parameters associated with the BWP that do not include the first parameter group.
  • an embodiment of the present disclosure provides a terminal shown in FIG. 11. Please refer to FIG. 11, an embodiment of the present disclosure provides a schematic structural diagram of a terminal 110, including:
  • the transceiver 111 is configured to receive a DCI sent by a network device that carries an activated BWP indicating the terminal, where the activated BWP is the maximum M that the terminal supports and can be adapted through DCI or a timer.
  • the activating BWP includes activating an uplink BWP or activating a downlink BWP;
  • the M BWPs support configuration as the first parameter group of T groups, the parameter values of the corresponding first parameters in different first parameter groups are not completely the same, and at least two BWPs support configuration as the same first parameter group
  • the at least two BWPs both support the configuration of a second parameter group with a parameter value of a second parameter that is not completely the same, where M is an integer greater than or equal to 2, and T is an integer less than M;
  • the first parameter group includes frequency domain location information, bandwidth configuration information, subcarrier spacing configuration information, and cyclic prefix configuration information of the BWP.
  • the second parameter group is other configuration parameters associated with the BWP that do not include the first parameter group.
  • the transceiver is further configured to report the BWP capability parameter of the terminal to the network device before receiving the DCI, where the BWP capability parameter is used to indicate whether the terminal supports the DCI or timer The maximum M BWPs for adaptation;
  • the M BWPs support configuration as the first parameter group of T groups, the parameter values of the corresponding first parameters in different first parameter groups are not completely the same, and at least two BWPs support configuration as the same first parameter group
  • the at least two BWPs both support the configuration of a second parameter group with a parameter value of a second parameter that is not completely the same, where M is an integer greater than or equal to 2, and T is an integer less than M;
  • the first parameter group includes frequency domain location information, bandwidth configuration information, subcarrier spacing configuration information, and cyclic prefix configuration information of the BWP.
  • the second parameter group is other configuration parameters associated with the BWP that do not include the first parameter group.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present disclosure.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present disclosure essentially or the part that contributes to the related technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including several
  • the instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

本公开提供了一种基于带宽部分的终端节能方法及设备,本公开实现一个BWP具有至少两个配置状态或配置索引,并通过第一信息域,将至少两个配置状态或配置索引中的一个配置给终端。

Description

基于带宽部分的终端节能方法
相关申请的交叉引用
本申请主张在2019年3月28日在中国提交的中国专利申请号No.201910243604.1的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及通信技术领域,具体涉及一种基于带宽部分(BWP,bandwithpart)的终端节能方法及设备。
背景技术
5G新空口(NR)系统需要支持增强型移动宽带(eMBB),大规模机器通信(mMTC)和超高可靠性低延迟通信(uRLLC)部署方案。国际电信联盟(ITU)已经确定了5G的八个关键功能,即用户体验数据速率达到100Mbps,延迟为1毫秒,连接密度可以支持每平方公里100万个设备等。Release 15版本的5G新无线(NR)标准主要关注eMBB和uRLLC部署方案。为了给窄带物联网(NB-IoT)更多的市场空间和生命周期,5G没有针对mMTC部署方案的特殊设计。因此,相关技术中的5G标准设计在提供大规模连接服务时可能会遇到一些问题。
为了降低终端功耗,在5G标准中引入了带宽部分(Bandwidth Part,BWP)机制,允许终端配置为工作在小于系统带宽的子集上。在系统信息块1中定义初始上行链路BWP和初始下行链路BWP,其中初始上行(UL)BWP用于终端发起随机接入,并且初始下行(DL)BWP用于终端接收寻呼消息和其他系统信息。
目前NR支持为一个UE配置多个BWP,高层信令为终端配置一组下行BWP和一组上行BWP。网络侧可以为终端配置的BWP的数量,是由终端上报的能力决定的,例如,对于低能力终端,支持每个载波上最多配置2个下行BWP和2个上行BWP,对于高能力终端,支持每个载波上最多配置4个下行BWP和4个上行BWP。在NR中支持基于无线资源控制(RRC)信令、 下行控制信息(DCI)信令以及定时器的BWP之间的切换。
在R16版本的终端节能研究中,可以从时域、天线域、物理下行控制信道(PDCCH)检测等方面进行终端节能。比如在时域方面,可以通过放松终端的物理信道处理时间线进行节能,比如当网络侧为终端配置的DCI到物理下行共享信道(PDSCH)时隙偏移值k0为0,也即是同时隙调度时,终端必须在每一个时隙都将部分PDSCH符号缓存下来,但是如果网络侧为终端配置的DCI到PDSCH时隙偏移值k0大于0,也即是跨时隙调度时,终端可以先进行PDCCH检测,如果判断有该终端的调度,才开始缓存PDSCH,这样避免了不必要的PDSCH缓存,可以进行节能。在天线域方面,如果网络侧可以指示终端使用的多入多出(MIMO)层数或者天线数,终端就可以使用较少的MIMO层数或者天线数进行数据的接收或者发送可以实现终端节能。在PDCCH检测方面,如果基站可以指示终端搜索空间检测周期的动态变化,则可以减少终端检测PDCCH的机会来实现节能。
目前,这些与终端能耗相关的部分参数在每个下行BWP或者上行BWP中会被配置,比如PDSCH的时域资源分配表格(其中包括了DCI到PDSCH时隙偏移值k0的配置),PUSCH的时域资源分配表格(其中包括了DCI到PUSCH时隙偏移值k2的配置),搜索空间的检测周期等,但是在一个BWP中只会有一种配置参数。同时上述有关终端能耗的参数,比如使用的天线数,目前是没有配置信令的。
发明内容
本公开实施例的一个目的在于提供一种基于带宽部分的终端节能方法及设备,能够通过BWP不同状态之间的切换,快速实现终端节能参数的转换。
本公开实施例提供了一种基于带宽部分的终端节能方法,应用于网络设备,包括:
向终端发送一携带有第一信息域的第一下行控制信息DCI,所述第一信息域用于指示第一参数的至少两个配置状态或配置索引中的一个,所述第一参数为与所述终端的激活BWP相关联的配置参数,所述激活BWP包括激活上行BWP或激活下行BWP。
本公开实施例还提供了一种基于带宽部分的终端节能方法,应用于终端,包括:
接收网络设备发送的一携带有第一信息域的第一下行控制信息DCI,所述第一信息域用于指示第一参数的至少两个配置状态或配置索引中的一个,所述第一参数为与所述终端的激活BWP相关联的配置参数,所述激活BWP包括激活上行BWP或激活下行BWP。
本公开实施例提供了另一种基于带宽部分的终端节能方法,应用于网络设备,包括:
向终端发送一携带有用于指示所述终端的激活BWP的DCI,其中,所述激活BWP是所述终端上报其所支持可通过DCI或者定时器进行适应的最多M个BWP中的一个,所述激活BWP包括激活上行BWP或激活下行BWP;
其中,所述M个BWP支持配置为T组第一参数组,不同第一参数组中对应的第一参数的参数值不完全相同,且,在至少两个BWP支持配置为同一组第一参数组时,该至少两个BWP均支持配置具有不完全相同的第二参数的参数值的第二参数组,所述M为大于或等于2的整数,T为小于M的整数;
所述第一参数组包括BWP的频域位置信息、带宽配置信息、子载波间隔配置信息和循环前缀配置信息;
所述第二参数组为不包括第一参数组的其他与BWP相关联的配置参数。
本公开实施例提供了另一种基于带宽部分的终端节能方法,应用于终端,包括:
接收网络设备发送的一携带有用于指示所述终端的激活BWP的DCI,其中,所述激活BWP是所述终端上报其所支持可通过DCI或者定时器进行适应的最多M个BWP中的一个,所述激活BWP包括激活上行BWP或激活下行BWP;
其中,所述M个BWP支持配置为T组第一参数组,不同第一参数组中对应的第一参数的参数值不完全相同,且,在至少两个BWP支持配置为同一组第一参数组时,该至少两个BWP均支持配置具有不完全相同的第二参数的参数值的第二参数组,所述M为大于或等于2的整数,T为小于M的整数;
所述第一参数组包括BWP的频域位置信息、带宽配置信息、子载波间隔 配置信息和循环前缀配置信息。
所述第二参数组为不包括第一参数组的其他与BWP相关联的配置参数。
本公开实施例还提供了一种网络设备,包括:
收发机,用于向终端发送一携带有第一信息域的第一下行控制信息DCI,所述第一信息域用于指示第一参数的至少两个配置状态或配置索引中的一个,所述第一参数为与所述终端的激活BWP相关联的配置参数,所述激活BWP包括激活上行BWP或激活下行BWP。
本公开实施例还提供了一种终端,包括:
收发机,用于接收网络设备发送的一携带有第一信息域的第一下行控制信息DCI,所述第一信息域用于指示第一参数的至少两个配置状态或配置索引中的一个,所述第一参数为与所述终端的激活BWP相关联的配置参数,所述激活BWP包括激活上行BWP或激活下行BWP。
本公开实施例还提供了另一种网络设备,包括:
收发机,用于向终端发送一携带有用于指示所述终端的激活BWP的DCI,其中,所述激活BWP是所述终端上报其所支持可通过DCI或者定时器进行适应的最多M个BWP中的一个,所述激活BWP包括激活上行BWP或激活下行BWP;
其中,所述M个BWP支持配置为T组第一参数组,不同第一参数组中对应的第一参数的参数值不完全相同,且,在至少两个BWP支持配置为同一组第一参数组时,该至少两个BWP均支持配置具有不完全相同的第二参数的参数值的第二参数组,所述M为大于或等于2的整数,T为小于M的整数;
所述第一参数组包括BWP的频域位置信息、带宽配置信息、子载波间隔配置信息和循环前缀配置信息;
所述第二参数组为不包括第一参数组的其他与BWP相关联的配置参数。
本公开实施例还提供了另一种终端,包括:
收发机,用于接收网络设备发送的一携带有用于指示所述终端的激活BWP的DCI,其中,所述激活BWP是所述终端上报其所支持可通过DCI或者定时器进行适应的最多M个BWP中的一个,所述激活BWP包括激活上 行BWP或激活下行BWP;
其中,所述M个BWP支持配置为T组第一参数组,不同第一参数组中对应的第一参数的参数值不完全相同,且,在至少两个BWP支持配置为同一组第一参数组时,该至少两个BWP均支持配置具有不完全相同的第二参数的参数值的第二参数组,所述M为大于或等于2的整数,T为小于M的整数;
所述第一参数组包括BWP的频域位置信息、带宽配置信息、子载波间隔配置信息和循环前缀配置信息。
所述第二参数组为不包括第一参数组的其他与BWP相关联的配置参数。
本公开实施例还提供了一种通信设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时,实现如上所述的基于带宽部分的终端节能方法的步骤。
本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时,实现如上所述的方法的步骤。
本公开实施例提供的基于带宽部分的终端节能方法及设备,可以实现一个BWP具有至少两个配置状态或配置索引,并通过第一信息域,将至少两个配置状态或配置索引中的一个配置给终端,这样终端可以基于所述第一信息域,确定激活BWP的配置状态或配置索引,实现了激活BWP的配置参数的快速切换,从而可以通过BWP不同状态之间的快速切换实现终端的快速节能。另外,本公开实施例基于目前已经支持的基于DCI的BWP切换框架,对相关技术中的架构影响较小,不需要额外增加其他信令,具有实现成本低的优点。
附图说明
通过阅读下文可选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出可选实施方式的目的,而并不认为是对本公开的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本公开施例基于带宽部分的终端节能方法的一种应用场景示意图;
图2为本公开一实施例提供的基于带宽部分的终端节能方法的一种流程图;
图3为本公开一实施例提供的基于带宽部分的终端节能方法的又一种流程图;
图4为本公开另一实施例提供的基于带宽部分的终端节能方法的一种流程图;
图5为本公开另一实施例提供的基于带宽部分的终端节能方法的又一种流程图;
图6为本公开实施例的网络设备的结构图之一;
图7为本公开实施例的网络设备的结构图之二;
图8为本公开实施例的终端的结构图之一;
图9为本公开实施例的终端的结构图之二;
图10为本公开另一实施例的网络设备的结构图;
图11为本公开另一实施例的终端的结构图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
本文所描述的技术不限于长期演进型(Long Time Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,并且也可用于各种无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。术语“系统”和“网络”常被可互换地使用。CDMA系统可实现诸如CDMA2000、通用地面无线电接入(Universal Terrestrial Radio Access,UTRA)等无线电技术。UTRA包括宽带CDMA(Wideband Code Division Multiple Access,WCDMA)和其他CDMA变体。TDMA系统可实现诸如全球移动通信系统(Global System for Mobile Communication,GSM)之类的无线电技术。OFDMA系统可实现诸如超移动宽带(UltraMobile Broadband,UMB)、演进型UTRA(Evolution-UTRA,E-UTRA)、IEEE802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash-OFDM等无线电技术。UTRA和E-UTRA是通用移动电信系统(Universal Mobile Telecommunications System,UMTS)的部分。LTE和更高级的LTE(如LTE-A)是使用E-UTRA的新UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A以及GSM在来自名为“第三代伙伴项目”(3rd Generation Partnership Project,3GPP)的组织的文献中描述。CDMA2000和UMB在来自名为“第三代伙伴项目2”(3GPP2)的组织的文献中描述。本文所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了NR系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
请参见图1,图1示出本公开实施例可应用的一种无线通信系统的框图。 无线通信系统包括终端11和基站12。其中,终端11也可以称作用户终端或用户设备(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本公开实施例中并不限定终端11的具体类型。基站12可以是各种基站和/或核心网网元,其中,上述基站可以是5G及以后版本的基站(例如:gNB、5G NR NB等),或者其他通信系统中的基站(例如:eNB、WLAN接入点、或其他接入点等),其中,基站12可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本公开实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
基站12可在基站控制器的控制下与终端11通信,在各种示例中,基站控制器可以是核心网或某些基站的一部分。一些基站可通过回程与核心网进行控制信息或用户数据的通信。在一些示例中,这些基站中的一些可以通过回程链路直接或间接地彼此通信,回程链路可以是有线或无线通信链路。无线通信系统可支持多个载波(不同频率的波形信号)上的操作。多载波发射机能同时在这多个载波上传送经调制信号。例如,每条通信链路可以是根据各种无线电技术来调制的多载波信号。每个已调信号可在不同的载波上发送并且可携带控制信息(例如,参考信号、控制信道等)、开销信息、数据等。
基站12可经由一个或多个接入点天线与终端11进行无线通信。每个基站可以为各自相应的覆盖区域提供通信覆盖。接入点的覆盖区域可被划分成仅构成该覆盖区域的一部分的扇区。无线通信系统可包括不同类型的基站(例如宏基站、微基站、或微微基站)。基站也可利用不同的无线电技术,诸如蜂窝或WLAN无线电接入技术。基站可以与相同或不同的接入网或运营商部署相关联。不同基站的覆盖区域(包括相同或不同类型的基站的覆盖区域、利 用相同或不同无线电技术的覆盖区域、或属于相同或不同接入网的覆盖区域)可以交叠。
无线通信系统中的通信链路可包括用于承载上行链路(Uplink,UL)传输(例如,从终端11到基站12)的上行链路,或用于承载下行链路(Downlink,DL)传输(例如,从基站12到终端11)的下行链路。UL传输还可被称为反向链路传输,而DL传输还可被称为前向链路传输。下行链路传输可以使用授权频段、非授权频段或这两者来进行。类似地,上行链路传输可以使用有授权频段、非授权频段或这两者来进行。
需要说明的是,本公开实施例的网络设备可以由图1中的基站(接入网节点),还可以由核心网节点,或者是由接入网节点与核心网节点共同实现。
请参照图2,本公开实施例提供的基于带宽部分的终端节能方法,在应用于网络设备,如基站时,包括:
步骤21,向终端发送一携带有第一信息域的第一DCI,其中,所述第一信息域用于指示第一参数的至少两个配置状态或配置索引中的一个,所述第一参数为与所述终端的激活BWP相关联的配置参数,所述激活BWP包括激活上行BWP或激活下行BWP。
这里,具体的,所述第一DCI可以是以下任一DCI:
调度PUSCH或PDSCH的DCI格式0_0;
调度PUSCH或PDSCH的DCI格式0_1;
调度PUSCH或PDSCH的DCI格式1_0;
调度PUSCH或PDSCH的DCI格式1_1。
当然,第一DCI也可以是一种新的的DCI格式,如自定义的DCI。本公开实施例对第一DCI的格式不做具体限定。
这里,第一参数通常包括多个参数,第一参数包括有至少两个配置状态或配置索引,每种配置状态或配置索引对应于上述多个参数的一组参数值。第一信息域可以是具有预定比特长度的字段,第一参数的一种配置状态或配置索引,对应于第一信息域的一种取值,这样,可以通过第一信息域的取值,确定第一参数的配置状态或配置索引,从而获取第一参数中的各个参数的具体参数值。
通过以上步骤,本公开实施例可以实现一个BWP具有至少两个配置状态或配置索引,并通过第一信息域,将至少两个配置状态或配置索引中的一个配置给终端,这样终端可以基于所述第一信息域,确定激活BWP的配置状态或配置索引,实现了激活BWP的配置参数的快速切换,从而可以通过BWP不同状态之间的快速切换实现终端的快速节能。
具体的,上述第一参数的不同状态可以实现不同的节能状态,因此本公开实施例可以基于上述步骤21中的第一信息域实现第一参数的配置状态/配置索引的切换,快速实现终端节能参数的转换。
具体的,本公开实施例的所述第一参数,可以包括以下参数中的一种或多种:
DCI和该DCI调度的PDSCH的时隙偏移值k0的最小值;
DCI和该DCI调度的物理上行共享信道(PUSCH)的时隙偏移值k2的最小值;
PDSCH时域资源分配(pdsch-TimeDomainAllocationList);
PUSCH时域资源分配(pusch-TimeDomainAllocationList);
PDSCH的混合自动重传请求(HARQ)反馈定时k1的最小值;
传输秩数;
最大传输秩数(maxMIMO-Layers);
接收天线数;
发送天线数;
搜索空间的索引;
搜索空间的检测周期;
搜索空间的检测符号;以及
非连续接收(DRX)配置参数。
本公开实施例在上述步骤21之前,网络设备还可以根据所确定的所述终端的激活BWP的第一参数的目标配置状态或目标配置索引,确定所述第一DCI中的第一信息域的取值,其中,所述第一参数的每个配置状态或每个配置索引,分别对应于所述第一信息域的一个取值。具体的,确定激活BWP的第一参数的目标配置状态或目标配置索引,可以根据实际应用场景具体设 定,本公开实施例对此不做具体限定。
在本公开实施例中,网络设备和终端侧需要预先获得各个配置状态或配置索引下的第一参数中的各个参数的参数值。
作为一种实现方式,可以是标准预先定义好各个配置状态或配置索引下的第一参数中的各个参数的参数值。
作为另一种实现方式,可以由网络设备预先配置给终端,此时在上述步骤21之前,本公开实施例的网络设备还可以通过高层信令(如RRC信令)为终端配置所述第一参数中的至少一种参数的至少两个参数值,其中,每个参数值分别与一个所述配置状态或配置索引相关联。
具体的,所述第一参数中的至少一种参数的至少两个参数值,可以通过BWP相关的信息元素(IE)配置所述第一参数中的至少一种参数的参数值。
又或者,所述第一参数中的至少一种参数的至少两个参数值,可以通过物理信道相关的信息元素(IE)来分别配置第一参数中的各个参数,所述物理信道包括以下信道中的至少一个:PDCCH、PUCCH、PDSCH和PUSCH。
需要说明的是,本公开实施例可以在上述步骤21中指示与所述终端的激活BWP相关联的配置参数的配置状态或配置索引的同时,指示所述终端的激活BWP,此时,所述第一DCI中还可以携带有用于指示所述终端的激活BWP的第二信息域。当然,本公开实施例也可以通过另外的信令消息指示所述终端的激活BWP,例如,向终端发送不同于第一DCI的第二DCI,在该第二DCI中携带用于指示所述终端的激活BWP的第三信息域,第二DCI可以在第一DCI之前发送,也可以在第一DCI之后发送,本公开实施例对此不做具体限定。
以上从网络设备侧介绍了本公开实施例的基于带宽部分的终端节能方法,下面进一步从终端侧进行说明。
请参照图3,本公开实施例提供的基于带宽部分的终端节能方法,在应用于终端时包括:
步骤31,接收网络设备发送的一携带有第一信息域的第一DCI,所述第一信息域用于指示第一参数的至少两个配置状态或配置索引中的一个,所述第一参数为与所述终端的激活BWP相关联的配置参数,所述激活BWP包括 激活上行BWP或激活下行BWP。
这里,终端可以接收网络设备发送的第一DCI,从第一DCI中获取与激活BWP相关联的第一参数的配置状态或配置索引,实现了激活BWP的配置参数的快速切换,进而可以通过BWP不同状态之间的切换实现终端的节能参数的快速转换,例如终端可以快速切换到一个更为节能的第一参数的参数值下,从而实现终端的快速节能。
具体的,所述第一参数可以包括以下参数中的至少一种:
DCI和该DCI调度的物理下行共享信道PDSCH的时隙偏移值k0的最小值;
DCI和该DCI调度的物理上行共享信道PUSCH的时隙偏移值k2的最小值;
PDSCH时域资源分配(pdsch-TimeDomainAllocationList);
PUSCH时域资源分配(pusch-TimeDomainAllocationList);
PDSCH的混合自动重传请求HARQ反馈定时k1的最小值;
传输秩数;
最大传输秩数(maxMIMO-Layers);
接收天线数;
发送天线数;
搜索空间的索引;
搜索空间的检测周期;
搜索空间的检测符号;以及
非连续接收DRX配置参数。
这里,以上方法中,所述终端在接收到步骤31中的所述第一DCI之后,可以执行以下判断及处理:如果所述第一DCI的第一信息域指示的目标配置状态或者目标配置索引,与所述终端的与激活BWP相关联的第一参数的当前配置状态或者当前配置索引不同,则根据所述目标配置状态或目标配置索引设置所述第一参数的相关配置信息;如果相同,则可以忽略(或直接丢弃)所述第一DCI。
可选的,本公开实施例中,所述第一参数的每个配置状态或每个配置索 引,分别对应于所述第一信息域的一个取值。
在本公开实施例中,网络设备和终端侧需要预先获得各个配置状态或配置索引下的第一参数中的各个参数的参数值。作为一种实现方式,可以是标准预先定义好各个配置状态或配置索引下的第一参数中的各个参数的参数值。作为另一种实现方式,可以是终端接收网络设备预先配置的所述第一参数的配置状态/配置索引以及在各个配置状态/配置索引下的各个参数的参数值,例如,在上述步骤31之前,所述终端还可以接收网络设备通过高层信令配置的所述第一参数中的至少一种参数的至少两个参数值,其中,每个参数值分别与一个所述配置状态或配置索引相关联。
具体的,所述第一参数中的至少一种参数的至少两个参数值,通过BWP相关的信息元素(IE)进行配置,此时终端可以根据接收到的BWP相关的信息元素(IE)来获知所述第一参数的配置状态/配置索引以及在各个配置状态/配置索引下的各个参数的参数值。又或者,所述第一参数中的至少一种参数的至少两个参数值,通过物理信道相关的信息元素进行配置,所述物理信道包括以下信道中的至少一个:PDCCH、PUCCH、PDSCH和PUSCH,此时,所述终端可以根据上述各个物理信道相关的信息元素(IE)来获知所述第一参数的配置状态/配置索引以及在各个配置状态/配置索引下的各个参数的参数值。
作为一种可选方式,本公开实施例可以在第一DCI中同时携带用于指示所述终端的激活BWP的第二信息域,以在一个DCI中指示激活BWP以及与所述终端的激活BWP相关联的配置参数。作为另一替换方式,终端还可以接收网络设备发送的一携带有用于指示所述终端的激活BWP的第三信息域的第二DCI,从而通过不同的DCI分别获取激活BWP以及与所述终端的激活BWP相关联的配置参数。
另外,本公开实施例中,所述终端在上述步骤31之前,还可以向网络设备上报所述终端的BWP能力参数,所述BWP能力参数用于指示所述终端是否支持通过DCI或者定时器进行最多N个BWP的适应,其中每个所述BWP均支持配置一种频域位置(如频域的起止位置)和带宽配置信息(如带宽大小)、一种子载波间隔配置信息、一种循环前缀配置信息,以及所述第一参数 中至少一种参数的至少两个参数值,所述N为大于或等于2的整数。
以上介绍了本公开实施例的基于带宽部分BWP的终端节能方法。下面进一步通过若干示例对以上实施例做进一步的说明。
示例1:
网络设备为终端配置一个下行BWP#1,配置信息包括频域位置带宽20MHz,子载波间隔30kHz,正常循环前缀(CP),同时配置与BWP#1关联的第一参数。其中第一参数包含两种配置状态,也即是状态或者索引为0和状态或者索引为1。其中第一参数的配置状态#0的参数配置值包括:DCI和其调度的PDSCH的时隙偏移值的最小值等于0,DCI和其调度的PUSCH的时隙偏移值的最小值等于0,最大传输秩数等于4,搜索空间的检测周期为5个时隙等。第一参数的配置状态#1的参数配置值包括:DCI和其调度的PDSCH的时隙偏移值的最小值等于2,最大传输秩数等于2,搜索空间的检测周期为10个时隙等。
网络设备向终端发送一个DCI,DCI中指示终端的激活下行BWP是下行BWP#1,同时该DCI中第一信息域的值为1,指示终端在下行BWP#1上使用的第一参数配置状态或索引1。
终端在接收到该DCI之后,就工作在下行BWP#1上,同时根据第一参数配置状态#1的配置信息,包括DCI和其调度的PDSCH的时隙偏移值的最小值等于2,最大传输秩数等于2,搜索空间的检测周期为10个时隙进行PDCCH的检测接收,PDSCH的接收等。
需要说明的是,以上示例1中是在同一个DCI中进行激活BWP和第一参数的配置状态的指示。本公开实施例还可以在不同DCI中分别进行激活BWP和第一参数的配置状态的指示,例如,通过第一DCI进行第一参数的配置状态,通过第二DCI进行计划BWP的指示,此次不再赘述。
示例2:
网络侧为终端配置一个下行BWP#1,配置信息包括频域位置带宽20MHz,子载波间隔30kHz,正常CP,同时配置与BWP#1关联的PDSCH、PDCCH的配置参数。
其中PDSCH的配置参数中包括第一参数的部分配置参数:DCI和其调度 的PDSCH的时隙偏移值的最小值和最大传输秩数。高层信令为终端配置的DCI和其调度的PDSCH的时隙偏移值参数包含两种配置状态,也即是状态或者索引为0和状态或者索引为1,其中状态或者索引为0对应的配置参数为DCI和其调度的PDSCH的时隙偏移值的最小值等于0,状态或者索引为1对应的配置参数为DCI和其调度的PDSCH的时隙偏移值的最小值等于2。高层信令为终端配置的最大传输秩数包含两种配置状态,也即是状态或者索引为0和状态或者索引为1,其中状态或者索引为0对应的配置参数为最大传输秩数等于4,状态或者索引为1对应的配置参数为最大传输秩数等于8。
其中PDCCH的配置中包括第一参数的部分配置参数:搜索空间的检测周期。高层信令为终端配置的某个搜索空间的检测周期包含两种配置状态,也即是状态或者索引为0和状态或者索引为1,其中状态或者索引为0对应的配置参数为搜索空间的检测周期为5个时隙,状态或者索引为1对应的配置参数为搜索空间的检测周期为10个时隙。
网络侧为终端发送一个DCI,DCI中指示终端的激活下行BWP是下行BWP#1,同时该DCI种第一DCI域的值为1,指示终端在下行BWP#1上使用的第一参数配置状态或索引1。
终端在接收到该DCI之后,就工作在下行BWP#1上,同时根据第一参数配置状态#1的配置信息,包括DCI和其调度的PDSCH的时隙偏移值的最小值等于2,最大传输秩数等于8,搜索空间的检测周期为10个时隙进行PDCCH的检测接收,PDSCH的接收等。
示例3:
示例3介绍了终端能力上报的一种具体实现。
终端上报BWP能力为支持通过DCI或者定时器进行最多2个BWP的适应,其中所述2个BWP除了频域位置和带宽配置信息、子载波间隔配置信息、循环前缀配置信息之外可以分别配置多套其他参数。网络设备可以为终端配置下行BWP#1,带宽是100MHz,子载波间隔是30kHz,正常CP,但是可以配置两套其他参数,第一套参数为DCI和其调度的PDSCH的时隙偏移值的最小值等于0,搜索空间的检测周期是5个时隙,第二套参数为DCI和其调度的PDSCH的时隙偏移值的最小值等于2,搜索空间的检测周期是10个时 隙。网络侧为终端配置下行BWP#2,带宽是20MHz,子载波间隔是30kHz,正常CP但是可以配置两套其他参数,第一套参数为DCI和其调度的PDSCH的时隙偏移值的最小值等于0,搜索空间的检测周期是5个时隙,第二套参数为DCI和其调度的PDSCH的时隙偏移值的最小值等于2,搜索空间的检测周期是10个时隙。
接下来将继续介绍本公开实施例的基于带宽部分BWP的终端节能方法的另一实施例。
请参照图4,本公开实施例提供的一种基于BWP的终端节能方法,在应用于网络设备时,包括:
步骤41,向终端发送一携带有用于指示所述终端的激活BWP的DCI,其中,所述激活BWP是所述终端上报其所支持可通过DCI或者定时器进行适应的最多M个BWP中的一个,所述激活BWP包括激活上行BWP或激活下行BWP。
其中,所述M个BWP支持配置为T组第一参数组,不同第一参数组中对应的第一参数的参数值不完全相同,且,在至少两个BWP支持配置为同一组第一参数组时,该至少两个BWP均支持配置具有不完全相同的第二参数的参数值的第二参数组,所述M为大于或等于2的整数,T为小于M的整数;
所述第一参数组包括BWP的频域位置信息、带宽配置信息、子载波间隔配置信息和循环前缀配置信息;
通过以上步骤,本公开实施例可以实现不同BWP具有完全相同取值的第一参数组,同时还具有不完全相同的第二参数的参数值,从而可以利用不同的BWP,实现第二参数的快速转换,进而实现终端节能参数配置的快速转换。
这里,至少两个BWP支持配置为具有不完全相同的第二参数的参数值的第二参数组,可以是这些BWP各自的第二参数的种类不完全相同,也可以是第二参数的种类完全相同但参数值不完全相同,等等。
另外,本公开实施例在上述步骤41之前,网络设备还可以接收终端上报的所述终端的BWP能力参数,所述BWP能力参数用于指示所述终端支持的可通过DCI或者定时器进行适应的最多M个BWP。
其中,所述M个BWP支持配置为T组第一参数组,不同第一参数组中 对应的第一参数的参数值不完全相同,且,在至少两个BWP支持配置为同一组第一参数组时,该至少两个BWP均支持配置具有不完全相同的第二参数的参数值的第二参数组,所述M为大于或等于2的整数,T为小于M的整数;
所述第一参数组包括BWP的频域位置信息、带宽配置信息、子载波间隔配置信息和循环前缀配置信息。
所述第二参数组为不包括第一参数组的其他与BWP相关联的配置参数。例如,第二参数组可以包括以下参数中的一种或多种:
DCI和该DCI调度的PDSCH的时隙偏移值k0的最小值;
DCI和该DCI调度的物理上行共享信道(PUSCH)的时隙偏移值k2的最小值;
PDSCH时域资源分配(pdsch-TimeDomainAllocationList);
PUSCH时域资源分配(pusch-TimeDomainAllocationList);
PDSCH的混合自动重传请求(HARQ)反馈定时k1的最小值;
传输秩数;
最大传输秩数(maxMIMO-Layers);
接收天线数;
发送天线数;
搜索空间的索引;
搜索空间的检测周期;
搜索空间的检测符号;以及
非连续接收(DRX)配置参数。
请参照图5,本公开实施例提供的一种基于BWP的终端节能方法,在应用于终端时,包括:
步骤51,接收网络设备发送的一携带有用于指示所述终端的激活BWP的DCI,其中,所述激活BWP是所述终端上报其所支持可通过DCI或者定时器进行适应的最多M个BWP中的一个,所述激活BWP包括激活上行BWP或激活下行BWP。
其中,所述M个BWP支持配置为T组第一参数组,不同第一参数组中对应的第一参数的参数值不完全相同,且,在至少两个BWP支持配置为同一 组第一参数组时,该至少两个BWP均支持配置具有不完全相同的第二参数的参数值的第二参数组,所述M为大于或等于2的整数,T为小于M的整数;
所述第一参数组包括BWP的频域位置信息、带宽配置信息、子载波间隔配置信息和循环前缀配置信息。
所述第二参数组为不包括第一参数组的其他与BWP相关联的配置参数。
通过以上步骤,本公开实施例可以实现不同BWP具有完全相同取值的第一参数组,同时还具有不完全相同的第二参数的参数值,从而可以利用不同的BWP,实现第二参数的快速转换,进而实现终端节能参数配置的快速转换。
可选的,在接收步骤51中的所述DCI之前,所述终端还可以向网络设备上报所述终端的BWP能力参数,所述BWP能力参数用于指示所述终端是否支持可通过DCI或者定时器进行适应的所述最多M个BWP;
其中,所述M个BWP支持配置为T组第一参数组,不同第一参数组中对应的第一参数的参数值不完全相同,且,在至少两个BWP支持配置为同一组第一参数组时,该至少两个BWP均支持配置具有不完全相同的第二参数的参数值的第二参数组,所述M为大于或等于2的整数,T为小于M的整数;
所述第一参数组包括BWP的频域位置信息、带宽配置信息、子载波间隔配置信息和循环前缀配置信息。
所述第二参数组为不包括第一参数组的其他与BWP相关联的配置参数。例如,第二参数组可以包括以下参数中的一种或多种:
DCI和该DCI调度的PDSCH的时隙偏移值k0的最小值;
DCI和该DCI调度的物理上行共享信道(PUSCH)的时隙偏移值k2的最小值;
PDSCH时域资源分配(pdsch-TimeDomainAllocationList);
PUSCH时域资源分配(pusch-TimeDomainAllocationList);
PDSCH的混合自动重传请求(HARQ)反馈定时k1的最小值;
传输秩数;
最大传输秩数(maxMIMO-Layers);
接收天线数;
发送天线数;
搜索空间的索引;
搜索空间的检测周期;
搜索空间的检测符号;以及
非连续接收(DRX)配置参数。
下面进一步给出以上实施例一个示例。
示例4
终端上报BWP能力为支持通过DCI或者定时器进行最多4个BWP的适应,其中4个BWP只有2种的频域位置和带宽配置信息、子载波间隔配置信息、循环前缀配置信息,拥有相同频域位置和带宽配置信息、子载波间隔配置信息、循环前缀配置信息的2个BWP可以配置不同的其他参数。网络侧因此可以为终端配置下行BWP#1,带宽是100MHz,子载波间隔是30kHz,正常CP,其他参数为DCI和其调度的PDSCH的时隙偏移值的最小值等于0,搜索空间的检测周期是5个时隙;配置下行BWP#2,带宽是100MHz,正常CP,子载波间隔是30kHz,其他参数为DCI和其调度的PDSCH的时隙偏移值的最小值等于2,搜索空间的检测周期是10个时隙;配置下行BWP#3,带宽是20MHz,子载波间隔是30kHz,正常CP,但其他参数为DCI和其调度的PDSCH的时隙偏移值的最小值等于0,搜索空间的检测周期是5个时隙;配置下行BWP#4,带宽是20MHz,子载波间隔是30kHz,正常CP,其他参数为DCI和其调度的PDSCH的时隙偏移值的最小值等于2,搜索空间的检测周期是10个时隙。
以上介绍了本公开实施例的各种方法。下面将进一步提供实施上述方法的装置。
本公开实施例提供了图6所示的一种网络设备。请参考图6,本公开实施例提供了网络设备60,包括:
收发机62,用于向终端发送一携带有第一信息域的第一下行控制信息DCI,所述第一信息域用于指示第一参数的至少两个配置状态或配置索引中的一个,所述第一参数为与所述终端的激活BWP相关联的配置参数,所述激活BWP包括激活上行BWP或激活下行BWP。
可选的,所述第一参数包括以下参数中的至少一种:
DCI和该DCI调度的PDSCH的时隙偏移值k0的最小值;
DCI和该DCI调度的物理上行共享信道(PUSCH)的时隙偏移值k2的最小值;
PDSCH时域资源分配(pdsch-TimeDomainAllocationList);
PUSCH时域资源分配(pusch-TimeDomainAllocationList);
PDSCH的混合自动重传请求(HARQ)反馈定时k1的最小值;
传输秩数;
最大传输秩数(maxMIMO-Layers);
接收天线数;
发送天线数;
搜索空间的索引;
搜索空间的检测周期;
搜索空间的检测符号;以及
非连续接收(DRX)配置参数。
可选的,所述网络设备还包括:
处理器61,用于在发送所述第一DCI之前,根据所确定的所述终端的激活BWP的第一参数的目标配置状态或目标配置索引,确定所述第一DCI中的第一信息域的取值,其中,所述第一参数的每个配置状态或每个配置索引,分别对应于所述第一信息域的一个取值。
可选的,所述收发机,还用于在发送所述第一DCI之前,通过高层信令为终端配置所述第一参数中的至少一种参数的至少两个参数值,其中,每个参数值分别与一个所述配置状态或配置索引相关联。
可选的,所述第一参数中的至少一种参数的至少两个参数值,通过BWP相关的信息元素进行配置;或者,
所述第一参数中的至少一种参数的至少两个参数值,通过物理信道相关的信息元素进行配置,所述物理信道包括以下信道中的至少一个:PDCCH、PUCCH、PDSCH和PUSCH。
可选的,所述第一DCI中还携带有用于指示所述终端的激活BWP的第二信息域;
或者,
所述收发机,还用于向终端发送一携带有用于指示所述终端的激活BWP的第三信息域的第二DCI。
请参考图7,本公开实施例提供了网络设备700的另一结构示意图,包括:处理器701、收发机702、存储器703和总线接口,其中:
所述收发机702,用于向终端发送一携带有第一信息域的第一下行控制信息DCI,所述第一信息域用于指示第一参数的至少两个配置状态或配置索引中的一个,所述第一参数为与所述终端的激活BWP相关联的配置参数,所述激活BWP包括激活上行BWP或激活下行BWP。
在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器701代表的一个或多个处理器和存储器703代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机702可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器701负责管理总线架构和通常的处理,存储器703可以存储处理器701在执行操作时所使用的数据。
可选的,所述处理器701,用于读取存储器中的程序,执行下列过程:在发送所述第一DCI之前,根据所确定的所述终端的激活BWP的第一参数的目标配置状态或目标配置索引,确定所述第一DCI中的第一信息域的取值,其中,所述第一参数的每个配置状态或每个配置索引,分别对应于所述第一信息域的一个取值。
可选的,所述收发机,还用于在发送所述第一DCI之前,通过高层信令为终端配置所述第一参数中的至少一种参数的至少两个参数值,其中,每个参数值分别与一个所述配置状态或配置索引相关联。
可选的,所述第一参数中的至少一种参数的至少两个参数值,通过BWP相关的信息元素进行配置;或者,
所述第一参数中的至少一种参数的至少两个参数值,通过物理信道相关的信息元素进行配置,所述物理信道包括以下信道中的至少一个:PDCCH、 PUCCH、PDSCH和PUSCH。
可选的,所述第一DCI中还携带有用于指示所述终端的激活BWP的第二信息域;
或者,
所述收发机,还用于向终端发送一携带有用于指示所述终端的激活BWP的第三信息域的第二DCI。
本公开实施例提供了图8所示的一种终端。请参考图8,本公开实施例提供了终端80,包括:
收发机82,用于接收网络设备发送的一携带有第一信息域的第一下行控制信息DCI,所述第一信息域用于指示第一参数的至少两个配置状态或配置索引中的一个,所述第一参数为与所述终端的激活BWP相关联的配置参数,所述激活BWP包括激活上行BWP或激活下行BWP。
可选的,所述第一参数包括以下参数中的至少一种:
DCI和该DCI调度的PDSCH的时隙偏移值k0的最小值;
DCI和该DCI调度的物理上行共享信道(PUSCH)的时隙偏移值k2的最小值;
PDSCH时域资源分配(pdsch-TimeDomainAllocationList);
PUSCH时域资源分配(pusch-TimeDomainAllocationList);
PDSCH的混合自动重传请求(HARQ)反馈定时k1的最小值;
传输秩数;
最大传输秩数(maxMIMO-Layers);
接收天线数;
发送天线数;
搜索空间的索引;
搜索空间的检测周期;
搜索空间的检测符号;以及
非连续接收(DRX)配置参数。
可选的,所述终端还包括:
处理器81,用于在接收所述第一DCI之后,若所述终端接收到所述第一 DCI的第一信息域指示的目标配置状态或者目标配置索引,与所述终端的与激活BWP相关联的第一参数的当前配置状态或者当前配置索引不同,则根据所述目标配置状态或目标配置索引设置所述第一参数的相关配置信息。
可选的,所述第一参数的每个配置状态或每个配置索引,分别对应于所述第一信息域的一个取值。
可选的,所述收发机,还用于在接收所述第一DCI之前,接收网络设备通过高层信令配置的所述第一参数中的至少一种参数的至少两个参数值,其中,每个参数值分别与一个所述配置状态或配置索引相关联。
可选的,
所述第一参数中的至少一种参数的至少两个参数值,通过BWP相关的信息元素进行配置;或者,
所述第一参数中的至少一种参数的至少两个参数值,通过物理信道相关的信息元素进行配置,所述物理信道包括以下信道中的至少一个:PDCCH、PUCCH、PDSCH和PUSCH。
可选的,所述第一DCI中还携带有用于指示所述终端的激活BWP的第二信息域;
或者,
所述收发机,还用于接收网络设备发送的一携带有用于指示所述终端的激活BWP的第三信息域的第二DCI。
可选的,所述收发机,还用于在接收所述第一DCI之前,向网络设备上报所述终端的BWP能力参数,所述BWP能力参数用于指示所述终端是否支持通过DCI或者定时器进行最多N个BWP的适应,其中每个所述BWP均支持配置一种频域位置和带宽配置信息、一种子载波间隔配置信息、一种循环前缀配置信息,以及所述第一参数中至少一种参数的至少两个参数值,所述N为大于或等于2的整数。
请参照图9,本公开实施例提供的终端的另一种结构示意图,该终端900包括:处理器901、收发机902、存储器903、用户接口906和总线接口。
在本公开实施例中,终端900还包括:存储在存储器上903并可在处理器901上运行的计算机程序。
所述收发机902,用于接收网络设备发送的一携带有第一信息域的第一下行控制信息DCI,所述第一信息域用于指示第一参数的至少两个配置状态或配置索引中的一个,所述第一参数为与所述终端的激活BWP相关联的配置参数,所述激活BWP包括激活上行BWP或激活下行BWP。
在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器901代表的一个或多个处理器和存储器903代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机902可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口906还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器901负责管理总线架构和通常的处理,存储器903可以存储处理器901在执行操作时所使用的数据。
可选的,所述处理器901,用于读取存储器中的程序,执行下列过程:在接收所述第一DCI之后,若所述终端接收到所述第一DCI的第一信息域指示的目标配置状态或者目标配置索引,与所述终端的与激活BWP相关联的第一参数的当前配置状态或者当前配置索引不同,则根据所述目标配置状态或目标配置索引设置所述第一参数的相关配置信息。
所述第一参数的每个配置状态或每个配置索引,分别对应于所述第一信息域的一个取值。
可选的,所述收发机,还用于接收网络设备通过高层信令配置的所述第一参数中的至少一种参数的至少两个参数值,其中,每个参数值分别与一个所述配置状态或配置索引相关联。
可选的,所述第一参数中的至少一种参数的至少两个参数值,通过BWP相关的信息元素进行配置;或者,
所述第一参数中的至少一种参数的至少两个参数值,通过物理信道相关的信息元素进行配置,所述物理信道包括以下信道中的至少一个:PDCCH、 PUCCH、PDSCH和PUSCH。
可选的,所述第一DCI中还携带有用于指示所述终端的激活BWP的第二信息域;
或者所述方法还包括:
所述收发机,还用于接收网络设备发送的一携带有用于指示所述终端的激活BWP的第三信息域的第二DCI。
可选的,所述收发机,还用于在接收所述第一DCI之前,向网络设备上报所述终端的BWP能力参数,所述BWP能力参数用于指示所述终端是否支持通过DCI或者定时器进行最多N个BWP的适应,其中每个所述BWP均支持配置一种频域位置和带宽配置信息、一种子载波间隔配置信息、一种循环前缀配置信息,以及所述第一参数中至少一种参数的至少两个参数值,所述N为大于或等于2的整数。
本公开实施例提供了图10所示的一种网络设备。请参考图10,本公开实施例提供了网络设备100的一结构示意图,包括:
收发机101,用于向终端发送一携带有用于指示所述终端的激活BWP的DCI,其中,所述激活BWP是所述终端上报其所支持可通过DCI或者定时器进行适应的最多M个BWP中的一个,所述激活BWP包括激活上行BWP或激活下行BWP;
其中,所述M个BWP支持配置为T组第一参数组,不同第一参数组中对应的第一参数的参数值不完全相同,且,在至少两个BWP支持配置为同一组第一参数组时,该至少两个BWP均支持配置具有不完全相同的第二参数的参数值的第二参数组,所述M为大于或等于2的整数,T为小于M的整数;
所述第一参数组包括BWP的频域位置信息、带宽配置信息、子载波间隔配置信息和循环前缀配置信息;
所述第二参数组为不包括第一参数组的其他与BWP相关联的配置参数。
可选的,所述收发机,还用于在发送所述DCI之前,接收终端上报的所述终端的BWP能力参数,所述BWP能力参数用于指示所述终端支持的可通过DCI或者定时器进行适应的最多M个BWP;
其中,所述M个BWP支持配置为T组第一参数组,不同第一参数组中 对应的第一参数的参数值不完全相同,且,在至少两个BWP支持配置为同一组第一参数组时,该至少两个BWP均支持配置具有不完全相同的第二参数的参数值的第二参数组,所述M为大于或等于2的整数,T为小于M的整数;
所述第一参数组包括BWP的频域位置信息、带宽配置信息、子载波间隔配置信息和循环前缀配置信息。
所述第二参数组为不包括第一参数组的其他与BWP相关联的配置参数。
本公开实施例提供了图11所示的一种终端。请参考图11,本公开实施例提供了终端110的一结构示意图,包括:
收发机111,用于接收网络设备发送的一携带有用于指示所述终端的激活BWP的DCI,其中,所述激活BWP是所述终端上报其所支持可通过DCI或者定时器进行适应的最多M个BWP中的一个,所述激活BWP包括激活上行BWP或激活下行BWP;
其中,所述M个BWP支持配置为T组第一参数组,不同第一参数组中对应的第一参数的参数值不完全相同,且,在至少两个BWP支持配置为同一组第一参数组时,该至少两个BWP均支持配置具有不完全相同的第二参数的参数值的第二参数组,所述M为大于或等于2的整数,T为小于M的整数;
所述第一参数组包括BWP的频域位置信息、带宽配置信息、子载波间隔配置信息和循环前缀配置信息。
所述第二参数组为不包括第一参数组的其他与BWP相关联的配置参数。
可选的,所述收发机,还用于在接收所述DCI之前,向网络设备上报所述终端的BWP能力参数,所述BWP能力参数用于指示所述终端是否支持可通过DCI或者定时器进行适应的所述最多M个BWP;
其中,所述M个BWP支持配置为T组第一参数组,不同第一参数组中对应的第一参数的参数值不完全相同,且,在至少两个BWP支持配置为同一组第一参数组时,该至少两个BWP均支持配置具有不完全相同的第二参数的参数值的第二参数组,所述M为大于或等于2的整数,T为小于M的整数;
所述第一参数组包括BWP的频域位置信息、带宽配置信息、子载波间隔配置信息和循环前缀配置信息。
所述第二参数组为不包括第一参数组的其他与BWP相关联的配置参数。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本公开实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储 程序代码的介质。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (38)

  1. 一种基于带宽部分BWP的终端节能方法,应用于网络设备,包括:
    向终端发送一携带有第一信息域的第一下行控制信息DCI,所述第一信息域用于指示第一参数的至少两个配置状态或配置索引中的一个,所述第一参数为与所述终端的激活BWP相关联的配置参数,所述激活BWP包括激活上行BWP或激活下行BWP。
  2. 如权利要求1所述的方法,其中,所述第一参数包括以下参数中的至少一种:
    DCI和该DCI调度的物理下行共享信道PDSCH的时隙偏移值的最小值;
    DCI和该DCI调度的物理上行共享信道PUSCH的时隙偏移值的最小值;
    PDSCH时域资源分配;
    PUSCH时域资源分配;
    PDSCH的混合自动重传请求HARQ反馈定时的最小值;
    传输秩数;
    最大传输秩数;
    接收天线数;
    发送天线数;
    搜索空间的索引;
    搜索空间的检测周期;
    搜索空间的检测符号;以及
    非连续接收DRX配置参数。
  3. 如权利要求1所述的方法,其中,在发送所述第一DCI之前,还包括:
    根据所确定的所述终端的激活BWP的第一参数的目标配置状态或目标配置索引,确定所述第一DCI中的第一信息域的取值,其中,所述第一参数的每个配置状态或每个配置索引,分别对应于所述第一信息域的一个取值。
  4. 如权利要求1所述的方法,其中,在发送所述第一DCI之前,还包括:
    通过高层信令为终端配置所述第一参数中的至少一种参数的至少两个参数值,其中,每个参数值分别与一个所述配置状态或配置索引相关联。
  5. 如权利要求4所述的方法,其中,
    所述第一参数中的至少一种参数的至少两个参数值,通过BWP相关的信息元素进行配置;或者,
    所述第一参数中的至少一种参数的至少两个参数值,通过物理信道相关的信息元素进行配置,所述物理信道包括以下信道中的至少一个:PDCCH、PUCCH、PDSCH和PUSCH。
  6. 如权利要求1至5任一项所述的方法,其中,
    所述第一DCI中还携带有用于指示所述终端的激活BWP的第二信息域;
    或者,
    向终端发送一携带有用于指示所述终端的激活BWP的第三信息域的第二DCI。
  7. 一种基于带宽部分BWP的终端节能方法,应用于终端,包括:
    接收网络设备发送的一携带有第一信息域的第一下行控制信息DCI,所述第一信息域用于指示第一参数的至少两个配置状态或配置索引中的一个,所述第一参数为与所述终端的激活BWP相关联的配置参数,所述激活BWP包括激活上行BWP或激活下行BWP。
  8. 如权利要求7所述的方法,其中,所述第一参数包括以下参数中的至少一种:
    DCI和该DCI调度的物理下行共享信道PDSCH的时隙偏移值的最小值;
    DCI和该DCI调度的物理上行共享信道PUSCH的时隙偏移值的最小值;
    PDSCH时域资源分配;
    PUSCH时域资源分配;
    PDSCH的混合自动重传请求HARQ反馈定时的最小值;
    传输秩数;
    最大传输秩数;
    接收天线数;
    发送天线数;
    搜索空间的索引;
    搜索空间的检测周期;
    搜索空间的检测符号;以及
    非连续接收DRX配置参数。
  9. 如权利要求7所述的方法,其中,在接收所述第一DCI之后,还包括:
    若所述终端接收到所述第一DCI的第一信息域指示的目标配置状态或者目标配置索引,与所述终端的与激活BWP相关联的第一参数的当前配置状态或者当前配置索引不同,则根据所述目标配置状态或目标配置索引设置所述第一参数的相关配置信息。
  10. 如权利要求7所述的方法,其中,所述第一参数的每个配置状态或每个配置索引,分别对应于所述第一信息域的一个取值。
  11. 如权利要求7所述的方法,其中,在接收所述第一DCI之前,还包括:
    接收网络设备通过高层信令配置的所述第一参数中的至少一种参数的至少两个参数值,其中,每个参数值分别与一个所述配置状态或配置索引相关联。
  12. 如权利要求11所述的方法,其中,
    所述第一参数中的至少一种参数的至少两个参数值,通过BWP相关的信息元素进行配置;或者,
    所述第一参数中的至少一种参数的至少两个参数值,通过物理信道相关的信息元素进行配置,所述物理信道包括以下信道中的至少一个:PDCCH、PUCCH、PDSCH和PUSCH。
  13. 如权利要求7至12任一项所述的方法,其中,
    所述第一DCI中还携带有用于指示所述终端的激活BWP的第二信息域;
    或者所述方法还包括:
    接收网络设备发送的一携带有用于指示所述终端的激活BWP的第三信息域的第二DCI。
  14. 如权利要求7至12任一项所述的方法,其中,在接收所述第一DCI之前,还包括:
    向网络设备上报所述终端的BWP能力参数,所述BWP能力参数用于指示所述终端是否支持通过DCI或者定时器进行最多N个BWP的适应,其中 每个所述BWP均支持配置一种频域位置和带宽配置信息、一种子载波间隔配置信息、一种循环前缀配置信息,以及所述第一参数中至少一种参数的至少两个参数值,所述N为大于或等于2的整数。
  15. 一种基于带宽部分BWP的终端节能方法,应用于网络设备,包括:
    向终端发送一携带有用于指示所述终端的激活BWP的DCI,其中,所述激活BWP是所述终端上报其所支持可通过DCI或者定时器进行适应的最多M个BWP中的一个,所述激活BWP包括激活上行BWP或激活下行BWP;
    其中,所述M个BWP支持配置为T组第一参数组,不同第一参数组中对应的第一参数的参数值不完全相同,且,在至少两个BWP支持配置为同一组第一参数组时,该至少两个BWP均支持配置具有不完全相同的第二参数的参数值的第二参数组,所述M为大于或等于2的整数,T为小于M的整数;
    所述第一参数组包括BWP的频域位置信息、带宽配置信息、子载波间隔配置信息和循环前缀配置信息;
    所述第二参数组为不包括第一参数组的其他与BWP相关联的配置参数。
  16. 如权利要求15所述的方法,其中,在发送所述DCI之前,还包括:
    接收终端上报的所述终端的BWP能力参数,所述BWP能力参数用于指示所述终端支持的可通过DCI或者定时器进行适应的最多M个BWP;
    其中,所述M个BWP支持配置为T组第一参数组,不同第一参数组中对应的第一参数的参数值不完全相同,且,在至少两个BWP支持配置为同一组第一参数组时,该至少两个BWP均支持配置具有不完全相同的第二参数的参数值的第二参数组,所述M为大于或等于2的整数,T为小于M的整数;
    所述第一参数组包括BWP的频域位置信息、带宽配置信息、子载波间隔配置信息和循环前缀配置信息。
    所述第二参数组为不包括第一参数组的其他与BWP相关联的配置参数。
  17. 一种基于带宽部分BWP的终端节能方法,应用于终端,包括:
    接收网络设备发送的一携带有用于指示所述终端的激活BWP的DCI,其中,所述激活BWP是所述终端上报其所支持可通过DCI或者定时器进行适应的最多M个BWP中的一个,所述激活BWP包括激活上行BWP或激活下 行BWP;
    其中,所述M个BWP支持配置为T组第一参数组,不同第一参数组中对应的第一参数的参数值不完全相同,且,在至少两个BWP支持配置为同一组第一参数组时,该至少两个BWP均支持配置具有不完全相同的第二参数的参数值的第二参数组,所述M为大于或等于2的整数,T为小于M的整数;
    所述第一参数组包括BWP的频域位置信息、带宽配置信息、子载波间隔配置信息和循环前缀配置信息。
    所述第二参数组为不包括第一参数组的其他与BWP相关联的配置参数。
  18. 如权利要求17所述的方法,其中,在接收所述DCI之前,还包括:
    向网络设备上报所述终端的BWP能力参数,所述BWP能力参数用于指示所述终端是否支持可通过DCI或者定时器进行适应的所述最多M个BWP;
    其中,所述M个BWP支持配置为T组第一参数组,不同第一参数组中对应的第一参数的参数值不完全相同,且,在至少两个BWP支持配置为同一组第一参数组时,该至少两个BWP均支持配置具有不完全相同的第二参数的参数值的第二参数组,所述M为大于或等于2的整数,T为小于M的整数;
    所述第一参数组包括BWP的频域位置信息、带宽配置信息、子载波间隔配置信息和循环前缀配置信息。
    所述第二参数组为不包括第一参数组的其他与BWP相关联的配置参数。
  19. 一种网络设备,包括:
    收发机,用于向终端发送一携带有第一信息域的第一下行控制信息DCI,所述第一信息域用于指示第一参数的至少两个配置状态或配置索引中的一个,所述第一参数为与所述终端的激活BWP相关联的配置参数,所述激活BWP包括激活上行BWP或激活下行BWP。
  20. 如权利要求19所述的网络设备,其中,所述第一参数包括以下参数中的至少一种:
    DCI和该DCI调度的物理下行共享信道PDSCH的时隙偏移值的最小值;
    DCI和该DCI调度的物理上行共享信道PUSCH的时隙偏移值的最小值;
    PDSCH时域资源分配;
    PUSCH时域资源分配;
    PDSCH的混合自动重传请求HARQ反馈定时的最小值;
    传输秩数;
    最大传输秩数;
    接收天线数;
    发送天线数;
    搜索空间的索引;
    搜索空间的检测周期;
    搜索空间的检测符号;以及
    非连续接收DRX配置参数。
  21. 如权利要求19所述的网络设备,还包括:
    处理器,用于在发送所述第一DCI之前,根据所确定的所述终端的激活BWP的第一参数的目标配置状态或目标配置索引,确定所述第一DCI中的第一信息域的取值,其中,所述第一参数的每个配置状态或每个配置索引,分别对应于所述第一信息域的一个取值。
  22. 如权利要求19所述的网络设备,其中,
    所述收发机,还用于在发送所述第一DCI之前,通过高层信令为终端配置所述第一参数中的至少一种参数的至少两个参数值,其中,每个参数值分别与一个所述配置状态或配置索引相关联。
  23. 如权利要求22所述的网络设备,其中,
    所述第一参数中的至少一种参数的至少两个参数值,通过BWP相关的信息元素进行配置;或者,
    所述第一参数中的至少一种参数的至少两个参数值,通过物理信道相关的信息元素进行配置,所述物理信道包括以下信道中的至少一个:PDCCH、PUCCH、PDSCH和PUSCH。
  24. 如权利要求19至23任一项所述的网络设备,其中,
    所述第一DCI中还携带有用于指示所述终端的激活BWP的第二信息域;
    或者,
    所述收发机,还用于向终端发送一携带有用于指示所述终端的激活BWP的第三信息域的第二DCI。
  25. 一种终端,包括:
    收发机,用于接收网络设备发送的一携带有第一信息域的第一下行控制信息DCI,所述第一信息域用于指示第一参数的至少两个配置状态或配置索引中的一个,所述第一参数为与所述终端的激活BWP相关联的配置参数,所述激活BWP包括激活上行BWP或激活下行BWP。
  26. 如权利要求25所述的终端,其中,所述第一参数包括以下参数中的至少一种:
    DCI和该DCI调度的物理下行共享信道PDSCH的时隙偏移值的最小值;
    DCI和该DCI调度的物理上行共享信道PUSCH的时隙偏移值的最小值;
    PDSCH时域资源分配;
    PUSCH时域资源分配;
    PDSCH的混合自动重传请求HARQ反馈定时的最小值;
    传输秩数;
    最大传输秩数;
    接收天线数;
    发送天线数;
    搜索空间的索引;
    搜索空间的检测周期;
    搜索空间的检测符号;以及
    非连续接收DRX配置参数。
  27. 如权利要求25所述的终端,还包括:
    处理器,用于在接收所述第一DCI之后,若所述终端接收到所述第一DCI的第一信息域指示的目标配置状态或者目标配置索引,与所述终端的与激活BWP相关联的第一参数的当前配置状态或者当前配置索引不同,则根据所述目标配置状态或目标配置索引设置所述第一参数的相关配置信息。
  28. 如权利要求25所述的终端,其中,所述第一参数的每个配置状态或每个配置索引,分别对应于所述第一信息域的一个取值。
  29. 如权利要求25所述的终端,其中,
    所述收发机,还用于在接收所述第一DCI之前,接收网络设备通过高层 信令配置的所述第一参数中的至少一种参数的至少两个参数值,其中,每个参数值分别与一个所述配置状态或配置索引相关联。
  30. 如权利要求29所述的终端,其中,
    所述第一参数中的至少一种参数的至少两个参数值,通过BWP相关的信息元素进行配置;或者,
    所述第一参数中的至少一种参数的至少两个参数值,通过物理信道相关的信息元素进行配置,所述物理信道包括以下信道中的至少一个:PDCCH、PUCCH、PDSCH和PUSCH。
  31. 如权利要求25至30任一项所述的终端,其中,
    所述第一DCI中还携带有用于指示所述终端的激活BWP的第二信息域;
    或者,
    所述收发机,还用于接收网络设备发送的一携带有用于指示所述终端的激活BWP的第三信息域的第二DCI。
  32. 如权利要求25至30任一项所述的终端,其中,
    所述收发机,还用于在接收所述第一DCI之前,向网络设备上报所述终端的BWP能力参数,所述BWP能力参数用于指示所述终端是否支持通过DCI或者定时器进行最多N个BWP的适应,其中每个所述BWP均支持配置一种频域位置和带宽配置信息、一种子载波间隔配置信息、一种循环前缀配置信息,以及所述第一参数中至少一种参数的至少两个参数值,所述N为大于或等于2的整数。
  33. 一种网络设备,包括:
    收发机,用于向终端发送一携带有用于指示所述终端的激活BWP的DCI,其中,所述激活BWP是所述终端上报其所支持可通过DCI或者定时器进行适应的最多M个BWP中的一个,所述激活BWP包括激活上行BWP或激活下行BWP;
    其中,所述M个BWP支持配置为T组第一参数组,不同第一参数组中对应的第一参数的参数值不完全相同,且,在至少两个BWP支持配置为同一组第一参数组时,该至少两个BWP均支持配置具有不完全相同的第二参数的参数值的第二参数组,所述M为大于或等于2的整数,T为小于M的整数;
    所述第一参数组包括BWP的频域位置信息、带宽配置信息、子载波间隔配置信息和循环前缀配置信息;
    所述第二参数组为不包括第一参数组的其他与BWP相关联的配置参数。
  34. 如权利要求22所述的网络设备,其中,
    所述收发机,还用于在发送所述DCI之前,接收终端上报的所述终端的BWP能力参数,所述BWP能力参数用于指示所述终端支持的可通过DCI或者定时器进行适应的最多M个BWP;
    其中,所述M个BWP支持配置为T组第一参数组,不同第一参数组中对应的第一参数的参数值不完全相同,且,在至少两个BWP支持配置为同一组第一参数组时,该至少两个BWP均支持配置具有不完全相同的第二参数的参数值的第二参数组,所述M为大于或等于2的整数,T为小于M的整数;
    所述第一参数组包括BWP的频域位置信息、带宽配置信息、子载波间隔配置信息和循环前缀配置信息。
    所述第二参数组为不包括第一参数组的其他与BWP相关联的配置参数。
  35. 一种终端,包括:
    收发机,用于接收网络设备发送的一携带有用于指示所述终端的激活BWP的DCI,其中,所述激活BWP是所述终端上报其所支持可通过DCI或者定时器进行适应的最多M个BWP中的一个,所述激活BWP包括激活上行BWP或激活下行BWP;
    其中,所述M个BWP支持配置为T组第一参数组,不同第一参数组中对应的第一参数的参数值不完全相同,且,在至少两个BWP支持配置为同一组第一参数组时,该至少两个BWP均支持配置具有不完全相同的第二参数的参数值的第二参数组,所述M为大于或等于2的整数,T为小于M的整数;
    所述第一参数组包括BWP的频域位置信息、带宽配置信息、子载波间隔配置信息和循环前缀配置信息。
    所述第二参数组为不包括第一参数组的其他与BWP相关联的配置参数。
  36. 如权利要求25所述的终端,其中,
    所述收发机,还用于在接收所述DCI之前,向网络设备上报所述终端的BWP能力参数,所述BWP能力参数用于指示所述终端是否支持可通过DCI 或者定时器进行适应的所述最多M个BWP;
    其中,所述M个BWP支持配置为T组第一参数组,不同第一参数组中对应的第一参数的参数值不完全相同,且,在至少两个BWP支持配置为同一组第一参数组时,该至少两个BWP均支持配置具有不完全相同的第二参数的参数值的第二参数组,所述M为大于或等于2的整数,T为小于M的整数;
    所述第一参数组包括BWP的频域位置信息、带宽配置信息、子载波间隔配置信息和循环前缀配置信息。
    所述第二参数组为不包括第一参数组的其他与BWP相关联的配置参数。
  37. 一种通信设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时,实现如权利要求1至18中任一项所述的方法的步骤。
  38. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时,实现如权利要求1至18中任一项所述的方法的步骤。
PCT/CN2020/081732 2019-03-28 2020-03-27 基于带宽部分的终端节能方法 WO2020192765A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/598,700 US20220150883A1 (en) 2019-03-28 2020-03-27 Terminal energy saving method based on bandwidth part
CA3135075A CA3135075A1 (en) 2019-03-28 2020-03-27 Terminal energy saving method based on bandwidth part
SG11202110764UA SG11202110764UA (en) 2019-03-28 2020-03-27 Terminal energy saving method based on bandwidth part
AU2020246764A AU2020246764B2 (en) 2019-03-28 2020-03-27 Terminal energy saving method based on bandwidth part
EP20776437.4A EP3944693B1 (en) 2019-03-28 2020-03-27 Terminal energy saving method based on bandwidth part
JP2021557449A JP7299335B2 (ja) 2019-03-28 2020-03-27 帯域幅部分に基づく端末の省エネ方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910243604.1 2019-03-28
CN201910243604.1A CN111757473B (zh) 2019-03-28 2019-03-28 一种基于带宽部分的终端节能方法

Publications (1)

Publication Number Publication Date
WO2020192765A1 true WO2020192765A1 (zh) 2020-10-01

Family

ID=72610209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081732 WO2020192765A1 (zh) 2019-03-28 2020-03-27 基于带宽部分的终端节能方法

Country Status (8)

Country Link
US (1) US20220150883A1 (zh)
EP (1) EP3944693B1 (zh)
JP (1) JP7299335B2 (zh)
CN (1) CN111757473B (zh)
AU (1) AU2020246764B2 (zh)
CA (1) CA3135075A1 (zh)
SG (1) SG11202110764UA (zh)
WO (1) WO2020192765A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102656023B1 (ko) * 2019-04-02 2024-04-08 지티이 코포레이션 슬롯 오프셋 정보 관리를 위한 시스템 및 방법
CN116326054A (zh) * 2020-10-08 2023-06-23 苹果公司 基于子载波间隔的新无线电(nr)中的接收和传输
EP4207900A4 (en) * 2020-10-15 2023-10-25 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND APPARATUS
CN114629611A (zh) * 2020-12-14 2022-06-14 展讯通信(上海)有限公司 Dci检测方法及装置、存储介质、用户设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180343154A1 (en) * 2017-05-26 2018-11-29 Kt Corporation Method and apparatus for scheduling data channel in new radio
CN109392174A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 一种资源配置方法及设备
CN109391985A (zh) * 2017-08-11 2019-02-26 维沃移动通信有限公司 一种资源配置方法、终端及基站
CN109511171A (zh) * 2017-09-15 2019-03-22 华为技术有限公司 一种通信方法及设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109152023B (zh) * 2017-06-16 2021-02-12 华为技术有限公司 资源分配的方法、网络设备和终端设备
CN109391935B (zh) * 2017-08-11 2021-01-08 维沃移动通信有限公司 一种带宽部分的配置方法、网络设备及终端
US10912041B2 (en) 2017-08-11 2021-02-02 Lg Electronics Inc. Method for triggering a power headroom reporting in wireless communication system and a device therefor
WO2020013623A1 (en) * 2018-07-13 2020-01-16 Lg Electronics Inc. Method and apparatus for reducing user equipment power consumption in wireless communication system
US20200128427A1 (en) * 2018-10-19 2020-04-23 Mediatek Inc. Adaptation Framework for UE Power Saving
US11937183B2 (en) * 2018-10-19 2024-03-19 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for monitoring power-saving signal
US11483767B2 (en) * 2019-02-15 2022-10-25 Mediatek Inc. Cross-slot scheduling for power saving in mobile communications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180343154A1 (en) * 2017-05-26 2018-11-29 Kt Corporation Method and apparatus for scheduling data channel in new radio
CN109392174A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 一种资源配置方法及设备
CN109391985A (zh) * 2017-08-11 2019-02-26 维沃移动通信有限公司 一种资源配置方法、终端及基站
CN109511171A (zh) * 2017-09-15 2019-03-22 华为技术有限公司 一种通信方法及设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3944693A4 *
SONY: "Adaptive power saving techniques based on UE power consumption characteristics", 3GPP TSG RAN WG1 MEETING #95, R1-1812749, 16 November 2018 (2018-11-16), XP051554707, DOI: 20200512171546A *

Also Published As

Publication number Publication date
CN111757473B (zh) 2023-05-09
CN111757473A (zh) 2020-10-09
US20220150883A1 (en) 2022-05-12
CA3135075A1 (en) 2020-10-01
EP3944693A4 (en) 2022-05-25
EP3944693B1 (en) 2024-03-20
JP2022528076A (ja) 2022-06-08
AU2020246764B2 (en) 2023-01-12
EP3944693A1 (en) 2022-01-26
JP7299335B2 (ja) 2023-06-27
SG11202110764UA (en) 2021-10-28
AU2020246764A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
KR102628230B1 (ko) 하이브리드 자동 반복 요구-확인 응답 코드북 전송 방법 및 기기
US20210392658A1 (en) Method for reducing serving cell interruption due to prose operation
WO2020192765A1 (zh) 基于带宽部分的终端节能方法
US10021705B2 (en) Carrier measurements for multi-carrier devices
US9949297B2 (en) Terminal device, base station apparatus, communication system, communication method, and integrated circuit
EP3840479B1 (en) Signaling message synchronization
US9832762B2 (en) Terminal apparatus, base station apparatus, communication system, notification method, and integrated circuit
WO2020220929A1 (zh) 物理下行控制信道的监听方法、装置及设备
WO2019214383A1 (zh) 准共址信息的配置方法、网络设备及用户设备
US10321502B2 (en) Terminal device, base station apparatus, communication system, communication control method, and integrated circuit
WO2019223458A1 (zh) 配置物理下行控制信道时域检测位置的方法及设备
JP2019525608A (ja) 上りdmrsの伝送位置を動的に決定するための方法及び装置
WO2020042981A1 (zh) 空间相关信息的指示方法和设备
WO2020221130A1 (zh) 节能参数的发送方法、接收方法及设备
CN113261385B (zh) 无线通信中的灵活下行链路控制信号监测
CN112291850A (zh) 一种终端配置方法、终端及基站
JPWO2018143353A1 (ja) ユーザ装置及び無線通信方法
WO2020026352A1 (ja) ユーザ端末
WO2021143825A1 (zh) 重复传输的方法、终端及基站
WO2021233430A1 (zh) 物理上行控制信道资源的配置方法及设备
CN111031603B (zh) 物理下行控制信道的配置、接收和发送方法以及设备
CN116671153A (zh) 终端、通信方法以及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776437

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021557449

Country of ref document: JP

Kind code of ref document: A

Ref document number: 3135075

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020776437

Country of ref document: EP

Effective date: 20211021

ENP Entry into the national phase

Ref document number: 2020246764

Country of ref document: AU

Date of ref document: 20200327

Kind code of ref document: A