WO2020192546A1 - 一种蓝牙发射功率的控制方法以及终端设备 - Google Patents

一种蓝牙发射功率的控制方法以及终端设备 Download PDF

Info

Publication number
WO2020192546A1
WO2020192546A1 PCT/CN2020/080178 CN2020080178W WO2020192546A1 WO 2020192546 A1 WO2020192546 A1 WO 2020192546A1 CN 2020080178 W CN2020080178 W CN 2020080178W WO 2020192546 A1 WO2020192546 A1 WO 2020192546A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
transmission power
type
power
audio
Prior art date
Application number
PCT/CN2020/080178
Other languages
English (en)
French (fr)
Inventor
王良
朱仁飞
章亚
苏炯金
王同波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20779028.8A priority Critical patent/EP3920565B1/en
Priority to US17/440,941 priority patent/US20220124643A1/en
Publication of WO2020192546A1 publication Critical patent/WO2020192546A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/265TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account the quality of service QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/383TPC being performed in particular situations power control in peer-to-peer links
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0245Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal according to signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/267TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account the information rate

Definitions

  • This application relates to the field of data transmission, in particular to a power control method in the Bluetooth field.
  • Short-distance transmission technology is widely used because of its inherent characteristics, such as high transmission efficiency, practicality and simplicity, and high compatibility.
  • Data transmission field. Taking Bluetooth transmission as an example, due to technical capabilities, cost and power consumption considerations, the current terminal equipment on the market has a generally low transmit power, which is far from the agreement (for example, the maximum transmit power specified in the agreement is 20dBm).
  • the data transmission distance is short, and it is susceptible to interference from the same-frequency signal (such as Wi-Fi signal), resulting in poor real-time service experience such as audio.
  • the present application of the present invention provides a power control terminal device and method, which helps to save power consumption and allows users to have a better data transmission experience.
  • an embodiment of the present application provides a terminal device, which includes: one or more processors; a memory, multiple application programs, and one or more computer programs, wherein the one or more computers Programs are stored in the memory, and the one or more computer programs include instructions that, when executed by the terminal device, cause the terminal device to perform the following operations: the terminal device obtains the information of the opposite device Device type information; the terminal device determines the device type of the opposite device according to the device type information of the opposite device; when the device type is a non-preset device type, the terminal device uses the first transmission Power to send data to the opposite device; when the device type is the preset device type, the terminal device sends data to the opposite device at the second transmission power; wherein, the terminal device and The peer device establishes a Bluetooth connection, and the first transmission power is less than the second transmission power.
  • the terminal device when the terminal device determines that the peer device is a preset device type, the terminal device receives a first request from the peer device, and the first request is used to improve the terminal The transmission power of the device reaches the second transmission power; the terminal device responds to the first request, and the terminal device transmits data to the opposite device at the second transmission power.
  • the terminal device can realize dynamic power control based on the request of the opposite device.
  • the terminal device determines that the channel quality of the Bluetooth connection satisfies the first preset condition, and the terminal device uses the second transmit power Send data to the opposite device.
  • the first preset condition is that the parameter of the Bluetooth connection is lower than a first threshold value, and the parameter includes a retransmission rate or a signal reception strength value.
  • the above method can realize the dynamic power control of the terminal equipment autonomously.
  • the terminal device may increase the transmission power to the second transmission power through the power amplifier of the Wi-Fi radio frequency link.
  • the power range can be switched through the power amplifier in the WIFI transmission path.
  • the device type information includes COD (Class of Device) information or UUID (universally unique identifier, UUID) information of the peer device.
  • COD Class of Device
  • UUID universalally unique identifier
  • the device type of the peer device can be realized in multiple ways.
  • an embodiment of the present application provides a method, including: the terminal device obtains device type information of the opposite device; the terminal device determines the device type information of the opposite device The device type of the opposite device; when the device type is a non-preset device type, the terminal device sends data to the opposite device at the first transmission power; when the device type is the preset For the device type, the terminal device sends data to the opposite device at the second transmission power; wherein, the terminal device establishes a Bluetooth connection with the opposite device, and the first transmission power is less than the second transmission power. power.
  • the above method can meet different power consumption and user requirements by implementing different power control based on different devices.
  • the terminal device when the terminal device determines that the peer device is a preset device type, the terminal device receives a first request from the peer device, and the first request is used to improve the terminal The transmission power of the device reaches the second transmission power; the terminal device responds to the first request, and the terminal device transmits data to the opposite device at the second transmission power.
  • the above method can realize the dynamic power control of the terminal device based on the request of the peer device.
  • the terminal device determines that the channel quality of the Bluetooth connection satisfies the first preset condition, and the terminal device uses the second transmit power Send data to the opposite device.
  • the first preset condition is that the parameter of the Bluetooth connection is lower than a first threshold value, and the parameter includes a retransmission rate or a signal reception strength value.
  • the above method can realize the dynamic power control of the terminal equipment autonomously.
  • the terminal device may increase the transmission power to the second transmission power through the power amplifier of the Wi-Fi radio frequency link.
  • the power range can be switched through the power amplifier in the WIFI transmission path.
  • the device type information includes COD (Class of Device) information or UUID (universally unique identifier, UUID) information of the peer device
  • the above method can realize the device type of the opposite end device in multiple ways.
  • an embodiment of the present application provides a terminal device, including: one or more processors;
  • the terminal device is caused to perform the following operations: the terminal device obtains the device type information of the opposite device; the terminal device determines the device type of the opposite device according to the device type information of the opposite device; When the device type is an audio or video device type, the terminal device increases the transmission power to send data to the opposite device with the increased transmission power.
  • the terminal equipment can realize the power amplification control of the audio and video equipment to achieve a better music and video experience.
  • the terminal device when the device type is an audio or video device type, the terminal device receives a first request from the peer device, and the first request is used to increase the transmission power of the terminal device ;
  • the terminal device increases the transmission power to send data to the opposite device with the increased transmission power.
  • the terminal device can realize dynamic power control based on the request of the audio and video device.
  • the terminal device determines that the channel quality of the Bluetooth connection satisfies a first preset condition, and the first preset condition is the Bluetooth connection
  • the parameter of is lower than the first threshold, and the parameter includes a retransmission rate or a signal reception strength value; the terminal device increases the transmission power to send data to the audio or video device at the increased transmission power.
  • the above method can realize the dynamic power control of the terminal equipment autonomously.
  • the terminal device determines that the device type is an audio or video device type, and the terminal device determines that the channel quality of the Bluetooth connection meets the first With a preset condition, the terminal device determines that there is no (Voice over Wi-Fi) service or no Wi-Fi service key frame transmission and reception, and the terminal device increases the transmission power to send data to the audio or Video equipment.
  • the terminal device determines that there is no (Voice over Wi-Fi) service or no Wi-Fi service key frame transmission and reception, and the terminal device increases the transmission power to send data to the audio or Video equipment.
  • the above method can realize the coexistence of the Wi-Fi service and the Bluetooth service of the terminal device.
  • the device type information includes COD (Class of Device) information or UUID (universally unique identifier, UUID) information of the peer device.
  • COD Class of Device
  • UUID universalally unique identifier
  • the device type of the peer device can be realized in multiple ways.
  • the implementation of this application provides a method that includes: the terminal device obtains the device type information of the opposite device; the terminal device determines the device type of the opposite device according to the device type information of the opposite device When the device type is an audio or video device type, the terminal device increases the transmission power to send data to the opposite device with the increased transmission power.
  • the above method can realize the power amplification control of the audio and video equipment, so as to realize a better music and video experience.
  • the terminal device when the device type is an audio or video device type, the terminal device receives a first request from the peer device, and the first request is used to increase the transmission power of the terminal device ;
  • the terminal device In response to the first request, the terminal device increases the transmission power to send data to the opposite device at the increased transmission power.
  • the terminal device can realize dynamic power control based on the request of the audio and video device.
  • the terminal device determines that the channel quality of the Bluetooth connection satisfies a first preset condition, and the first preset condition is the Bluetooth connection
  • the parameter of is lower than the first threshold, and the parameter includes a retransmission rate or a signal reception strength value; the terminal device increases the transmission power to send data to the audio or video device at the increased transmission power.
  • the above method can realize the dynamic power control of the terminal equipment autonomously.
  • the terminal device determines that the device type is an audio or video device type, and the terminal device determines that the channel quality of the Bluetooth connection meets the first With a preset condition, the terminal device determines that there is no (Voice over Wi-Fi) service or no Wi-Fi service key frame transmission and reception, and the terminal device increases the transmission power to send data to the audio or Video equipment.
  • the terminal device determines that there is no (Voice over Wi-Fi) service or no Wi-Fi service key frame transmission and reception, and the terminal device increases the transmission power to send data to the audio or Video equipment.
  • the above method can realize the coexistence of the Wi-Fi service and the Bluetooth service of the terminal device.
  • the device type information includes COD (Class of Device) information or UUID (universally unique identifier, UUID) information of the peer device.
  • COD Class of Device
  • UUID universalally unique identifier
  • the device type of the peer device can be realized in multiple ways.
  • an embodiment of the present application provides a method including: the terminal device obtains device type information of the opposite device, and the terminal device determines the opposite device according to the device type information of the opposite device
  • the device type of the device is an audio or video device type, and receives a first request from the opposite terminal device, where the first request is used to increase the transmission power of the terminal device, and the terminal device according to the first request and the The current transmission power of the terminal device determines the increased transmission power, the current transmission power belongs to the first power gear, and when the increased transmission power belongs to the second power gear, switch the first power gear to The second power gear is used to send data to the peer device at the increased transmission power.
  • the above method can realize that the terminal device dynamically adjusts the output power based on different power levels.
  • the maximum transmit power in the first power gear is less than the maximum transmit power supported by the Bluetooth chip in the terminal device; the transmit power in the second power gear is greater than that in the terminal device The maximum transmit power supported by the Bluetooth chip.
  • the terminal device may further determine whether it is necessary to increase the power gear so as to send data to the opposite device with the increased transmission power.
  • the above-mentioned switching the first power gear to the second power gear includes: multiplexing a power amplifier in a WIFI transmission path, and the power amplifier in the WIFI transmission path is used to increase the The transmit power of the terminal device.
  • the power range can be switched through the power amplifier in the WIFI transmission path.
  • an embodiment of the present application further provides a chip, including: a processor, an interface, the interface is configured to receive and transmit code instructions to the processor, and the processor is configured to run the code
  • the instruction is executed by the method: obtaining the device type information of the opposite device, determining the device type of the opposite device according to the device type information of the opposite device, and determining that the device type of the opposite device is not a preset device type , Send data to the opposite device at the first transmission power; when the device type of the opposite device is a preset device type, send data to the opposite device at the second transmission power; wherein, the The chip establishes a Bluetooth connection with the peer device, and the first transmission power is less than the second transmission power.
  • an embodiment of the present application also provides a computer program product, a computer program product containing instructions, characterized in that, when the computer program product runs on a terminal device, the terminal device is caused to execute: obtain According to the device type information of the opposite device, the device type of the opposite device is determined according to the device type information of the opposite device, and when it is determined that the device type of the opposite device is not the preset device type, use the first transmit power Send data to the opposite device; when the device type of the opposite device is the preset device type, send data to the opposite device at the second transmission power; wherein, the chip and the opposite device The device establishes a Bluetooth connection, and the first transmit power is less than the second transmit power
  • an embodiment of the present application further provides a readable storage medium, including instructions, characterized in that, when the instructions are run on a terminal device, the terminal device is caused to perform the following: obtain the device type of the peer device Information, determine the device type of the opposite device according to the device type information of the opposite device, and when it is determined that the device type of the opposite device is not a preset device type, send data to the opposite device at the first transmission power When the device type of the opposite device is the preset device type, send data to the opposite device with the second transmission power; wherein, the chip establishes a Bluetooth connection with the opposite device, so The first transmission power is less than the second transmission power.
  • an embodiment of the present application also provides a method for use in a terminal device, including: acquiring device type information of the opposite device, and determining the opposite device according to the device type information of the opposite device The device type of the device.
  • the terminal device displays prompt information.
  • the prompt information is used to remind the user whether to receive or refuse to send data to the peer in high power mode.
  • the terminal device after receiving the user's receiving operation, the terminal device sends data to the peer device in a high power mode.
  • the above method can realize the increase of the transmission power according to the preset device type based on the user's selection.
  • FIG. 1 is a first schematic diagram of the structure of a terminal device 100 provided by this application;
  • FIG. 2 is a Bluetooth protocol framework of the terminal device 100 provided by this application;
  • FIG. 3 is a schematic diagram of data transmission of a terminal device 100 provided by this application.
  • FIG. 4 is a second schematic diagram of the structure of a terminal device 100 provided by this application.
  • FIG. 5 is a third schematic diagram of the structure of a terminal device 100 provided by this application.
  • FIG. 6 is a first schematic diagram of a Bluetooth power control provided by this application.
  • FIG. 7 is a second schematic diagram of a Bluetooth power control provided by this application.
  • FIG. 8 is a third schematic diagram of a Bluetooth power control provided by this application.
  • FIG. 9 is a fourth schematic diagram of a Bluetooth power control provided by this application.
  • FIG. 10 is a five schematic diagrams of a Bluetooth power control provided by this application.
  • FIG. 11 is a sixth schematic diagram of a Bluetooth power control provided by this application.
  • FIG. 12 is a seventh schematic diagram of a Bluetooth power control provided by this application.
  • FIG. 13 is a first user interface diagram of a Bluetooth power provided by this application.
  • FIG. 14 is a second user interface diagram of Bluetooth power provided by this application.
  • FIG. 15 is a third user interface diagram of Bluetooth power provided by this application.
  • FIG. 16 is a fourth user interface diagram of a Bluetooth power provided by this application.
  • FIG. 17 is a fifth user interface diagram of Bluetooth power provided by this application.
  • Figure 18 is a sixth user interface diagram of Bluetooth power provided by this application.
  • Figure 19 is a seventh user interface diagram of a Bluetooth power provided by this application.
  • FIG. 20 is an eighth user interface diagram of Bluetooth power provided by this application.
  • Figure 21 is a ninth user interface diagram of a Bluetooth power provided by this application.
  • the terminal devices mentioned in the embodiments of this application may be mobile phones, tablet computers, handheld computers, notebook computers, Ultra-mobile Personal Computers (UMPC), netbooks, cellular phones, and personal digital assistants (Personal Digital Assistants).
  • Assistant, PDA wearable devices (such as smart watches), augmented reality (AR) ⁇ virtual reality (VR) devices and other devices, the specific form of the device is not particularly limited in this embodiment.
  • the peer device also called a slave device
  • the peer device may be a mobile phone, a tablet computer, Handheld computers, notebook computers, Ultra-mobile Personal Computers (UMPC), netbooks, cellular phones, and personal digital assistants (PDAs), wearable devices (such as smart watches), augmented reality (augmented reality (AR) ⁇ virtual reality (VR) equipment, smart speakers, headsets, car equipment, mice, keyboards, printers, cameras, video cameras and other equipment.
  • augmented reality augmented reality (AR) ⁇ virtual reality (VR) equipment
  • smart speakers headsets, car equipment, mice, keyboards, printers, cameras, video cameras and other equipment.
  • AR augmented reality
  • VR virtual reality
  • the data transmission system can be understood to include the master device.
  • the master device and the slave device can be the same type of device, for example, the master device is a mobile phone, and the slave device can also be a mobile phone.
  • this application may refer to the master device as a terminal device and the slave device as a peer device.
  • Fig. 1 shows a schematic structural diagram of a terminal device 100. According to some embodiments of the present invention, one possibility is provided as the first schematic diagram.
  • the terminal device 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, and an antenna 2.
  • Mobile communication module 150 wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone jack 170D, sensor module 180, buttons 190, motor 191, indicator 192, camera 193, display screen 194, and Subscriber identification module (subscriber identification module, SIM) card interface 195, etc.
  • SIM Subscriber identification module
  • the sensor module 180 may include pressure sensor 180A, gyroscope sensor 180B, air pressure sensor 180C, magnetic sensor 180D, acceleration sensor 180E, distance sensor 180F, proximity light sensor 180G, fingerprint sensor 180H, temperature sensor 180J, touch sensor 180K, ambient light Sensor 180L, bone conduction sensor 180M, etc.
  • the structure illustrated in the embodiment of the present invention does not constitute a specific limitation on the terminal device 100.
  • the terminal device 100 may include more or fewer components than shown, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units.
  • the processor 110 may include an application processor (AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU), etc.
  • AP application processor
  • modem processor modem processor
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller video codec
  • digital signal processor digital signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • the different processing units may be independent devices or integrated in one or more processors.
  • the controller can generate operation control signals according to the instruction operation code and timing signals to complete the control of fetching and executing instructions.
  • a memory may also be provided in the processor 110 to store instructions and data.
  • the memory in the processor 110 is a cache memory.
  • the memory can store instructions or data that have just been used or recycled by the processor 110. If the processor 110 needs to use the instruction or data again, it can be directly called from the memory. Repeated accesses are avoided, the waiting time of the processor 110 is reduced, and the efficiency of the system is improved.
  • the processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, and a universal asynchronous transmitter (universal asynchronous transmitter) interface.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB Universal Serial Bus
  • the I2C interface is a two-way synchronous serial bus, including a serial data line (SDA) and a serial clock line (SCL).
  • the processor 110 may include multiple sets of I2C buses.
  • the processor 110 may be coupled to the touch sensor 180K, charger, flash, camera 193, etc. through different I2C bus interfaces.
  • the processor 110 may couple the touch sensor 180K through an I2C interface, so that the processor 110 and the touch sensor 180K communicate through an I2C bus interface to implement the touch function of the terminal device 100.
  • the I2S interface can be used for audio communication.
  • the processor 110 may include multiple sets of I2S buses.
  • the processor 110 may be coupled with the audio module 170 through an I2S bus to implement communication between the processor 110 and the audio module 170.
  • the audio module 170 may transmit audio signals to the wireless communication module 160 through an I2S interface, so as to realize the function of answering calls through a Bluetooth headset.
  • the PCM interface can also be used for audio communication to sample, quantize and encode analog signals.
  • the audio module 170 and the wireless communication module 160 may be coupled through a PCM bus interface.
  • the audio module 170 may also transmit audio signals to the wireless communication module 160 through the PCM interface, so as to realize the function of answering calls through the Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus can be a two-way communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • the UART interface is generally used to connect the processor 110 and the wireless communication module 160.
  • the processor 110 communicates with the Bluetooth module in the wireless communication module 160 through the UART interface to implement the Bluetooth function.
  • the audio module 170 may transmit audio signals to the wireless communication module 160 through a UART interface, so as to realize the function of playing music through a Bluetooth headset.
  • the MIPI interface can be used to connect the processor 110 with the display screen 194, the camera 193 and other peripheral devices.
  • the MIPI interface includes camera serial interface (camera serial interface, CSI), display serial interface (display serial interface, DSI), etc.
  • the processor 110 and the camera 193 communicate through a CSI interface to implement the shooting function of the terminal device 100.
  • the processor 110 and the display screen 194 communicate through a DSI interface to realize the display function of the terminal device 100.
  • the GPIO interface can be configured through software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface can be used to connect the processor 110 with the camera 193, the display screen 194, the wireless communication module 160, the audio module 170, the sensor module 180, and so on.
  • GPIO interface can also be configured as I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the USB interface 130 is an interface that complies with the USB standard specification, and specifically may be a Mini USB interface, a Micro USB interface, a USB Type C interface, and so on.
  • the USB interface 130 can be used to connect a charger to charge the terminal device 100, and can also be used to transfer data between the terminal device 100 and peripheral devices. It can also be used to connect headphones and play audio through the headphones. This interface can also be used to connect to other terminal devices, such as AR devices.
  • the interface connection relationship between the modules illustrated in the embodiment of the present invention is merely illustrative and does not constitute a structural limitation of the terminal device 100.
  • the terminal device 100 may also adopt different interface connection modes in the foregoing embodiments, or a combination of multiple interface connection modes.
  • the charging management module 140 is used to receive charging input from the charger.
  • the charger can be a wireless charger or a wired charger.
  • the charging management module 140 may receive the charging input of the wired charger through the USB interface 130.
  • the charging management module 140 may receive wireless charging input through the wireless charging coil of the terminal device 100. While the charging management module 140 charges the battery 142, it can also supply power to the terminal device through the power management module 141.
  • the power management module 141 is used to connect the battery 142, the charging management module 140 and the processor 110.
  • the power management module 141 receives input from the battery 142 and/or the charging management module 140, and supplies power to the processor 110, the internal memory 121, the display screen 194, the camera 193, and the wireless communication module 160.
  • the power management module 141 can also be used to monitor parameters such as battery capacity, battery cycle times, and battery health status (leakage, impedance).
  • the power management module 141 may also be provided in the processor 110.
  • the power management module 141 and the charging management module 140 may also be provided in the same device.
  • the wireless communication function of the terminal device 100 can be implemented by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor, and the baseband processor.
  • the antenna 1 and the antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in the terminal device 100 can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna can be used in combination with a tuning switch.
  • the mobile communication module 150 may provide a wireless communication solution including 2G/3G/4G/5G and the like applied to the terminal device 100.
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), etc.
  • the mobile communication module 150 can receive electromagnetic waves by the antenna 1, and perform processing such as filtering, amplifying and transmitting the received electromagnetic waves to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modem processor, and convert it into electromagnetic waves for radiation via the antenna 1.
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110.
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be provided in the same device.
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal. Then the demodulator transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low-frequency baseband signal is processed by the baseband processor and then passed to the application processor.
  • the application processor outputs a sound signal through an audio device (not limited to the speaker 170A, the receiver 170B, etc.), or displays an image or video through the display screen 194.
  • the modem processor may be an independent device.
  • the modem processor may be independent of the processor 110 and be provided in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide applications on the terminal device 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), bluetooth (BT), and global navigation satellites.
  • WLAN wireless local area networks
  • BT wireless fidelity
  • GNSS global navigation satellite system
  • FM frequency modulation
  • NFC near field communication technology
  • infrared technology infrared, IR
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2, frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110.
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110, perform frequency modulation, amplify it, and convert it into electromagnetic wave radiation via the antenna 2.
  • the antenna 1 of the terminal device 100 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the terminal device 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technologies may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time-division code division multiple access (TD-SCDMA), long term evolution (LTE), BT, GNSS, WLAN, NFC, FM, and/or IR technology, etc.
  • the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi -zenith satellite system, QZSS) and/or satellite-based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite-based augmentation systems
  • the terminal device 100 implements a display function through a GPU, a display screen 194, and an application processor.
  • the GPU is a microprocessor for image processing, connected to the display 194 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • the processor 110 may include one or more GPUs, which execute program instructions to generate or change display information.
  • the display screen 194 is used to display images, videos, etc.
  • the display screen 194 includes a display panel.
  • the display panel can adopt liquid crystal display (LCD), organic light-emitting diode (OLED), active-matrix organic light-emitting diode or active-matrix organic light-emitting diode (active-matrix organic light-emitting diode).
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • active-matrix organic light-emitting diode active-matrix organic light-emitting diode
  • AMOLED flexible light-emitting diode (FLED), Miniled, MicroLed, Micro-oLed, quantum dot light-emitting diode (QLED), etc.
  • the terminal device 100 may include one or N display screens 194, and N is a positive integer greater than one.
  • the terminal device 100 can implement a shooting function through an ISP, a camera 193, a video codec, a GPU, a display screen 194, and an application processor.
  • the ISP is used to process the data fed back from the camera 193. For example, when taking a picture, the shutter is opened, the light is transmitted to the photosensitive element of the camera through the lens, the light signal is converted into an electrical signal, and the photosensitive element of the camera transfers the electrical signal to the ISP for processing and is converted into an image visible to the naked eye.
  • ISP can also optimize the image noise, brightness, and skin color. ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be provided in the camera 193.
  • the camera 193 is used to capture still images or videos.
  • the object generates an optical image through the lens and projects it to the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then transmits the electrical signal to the ISP to convert it into a digital image signal.
  • ISP outputs digital image signals to DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other formats.
  • the terminal device 100 may include 1 or N cameras 193, and N is a positive integer greater than 1.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the terminal device 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the energy of the frequency point.
  • Video codecs are used to compress or decompress digital video.
  • the terminal device 100 may support one or more video codecs. In this way, the terminal device 100 can play or record videos in multiple encoding formats, such as: moving picture experts group (MPEG) 1, MPEG2, MPEG3, MPEG4, etc.
  • MPEG moving picture experts group
  • MPEG2 MPEG2, MPEG3, MPEG4, etc.
  • NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • the NPU can realize applications such as intelligent cognition of the terminal device 100, such as image recognition, face recognition, voice recognition, text understanding, and so on.
  • the external memory interface 120 may be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the terminal device 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to realize the data storage function. For example, save music, video and other files in an external memory card.
  • the internal memory 121 may be used to store computer executable program code, where the executable program code includes instructions.
  • the internal memory 121 may include a storage program area and a storage data area.
  • the storage program area can store an operating system, at least one application program (such as a sound playback function, an image playback function, etc.) required by at least one function.
  • the data storage area can store data (such as audio data, phone book, etc.) created during the use of the terminal device 100.
  • the internal memory 121 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, a universal flash storage (UFS), etc.
  • the processor 110 executes various functional applications and data processing of the terminal device 100 by running instructions stored in the internal memory 121 and/or instructions stored in a memory provided in the processor.
  • the terminal device 100 can implement audio functions through the audio module 170, the speaker 170A, the receiver 170B, the microphone 170C, the earphone interface 170D, and the application processor. For example, music playback, recording, etc.
  • the audio module 170 is used for converting digital audio information into an analog audio signal for output, and also for converting an analog audio input into a digital audio signal.
  • the audio module 170 can also be used to encode and decode audio signals.
  • the audio module 170 may be provided in the processor 110, or part of the functional modules of the audio module 170 may be provided in the processor 110.
  • the speaker 170A also called a “speaker” is used to convert audio electrical signals into sound signals.
  • the terminal device 100 can listen to music through the speaker 170A, or listen to a hands-free call.
  • the receiver 170B also called “earpiece” is used to convert audio electrical signals into sound signals.
  • the terminal device 100 answers a call or voice message, it can receive the voice by bringing the receiver 170B close to the human ear.
  • the microphone 170C also called “microphone”, “microphone”, is used to convert sound signals into electrical signals.
  • the user can approach the microphone 170C through the mouth to make a sound, and input the sound signal to the microphone 170C.
  • the terminal device 100 may be provided with at least one microphone 170C.
  • the terminal device 100 may be provided with two microphones 170C, which can implement noise reduction functions in addition to collecting sound signals.
  • the terminal device 100 may also be provided with three, four or more microphones 170C to collect sound signals, reduce noise, identify sound sources, and realize directional recording functions.
  • the earphone interface 170D is used to connect wired earphones.
  • the earphone interface 170D may be a USB interface 130, or a 3.5mm open mobile terminal platform (OMTP) standard interface, or a cellular telecommunications industry association (cellular telecommunications industry association of the USA, CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association
  • the pressure sensor 180A is used to sense the pressure signal and can convert the pressure signal into an electrical signal.
  • the pressure sensor 180A may be provided on the display screen 194. Pressure sensor 180A
  • the capacitive pressure sensor may include at least two parallel plates with conductive material.
  • the terminal device 100 determines the intensity of the pressure according to the change in capacitance.
  • the terminal device 100 detects the intensity of the touch operation according to the pressure sensor 180A.
  • the terminal device 100 may also calculate the touched position according to the detection signal of the pressure sensor 180A.
  • touch operations that act on the same touch location but have different touch operation strengths may correspond to different operation instructions.
  • the gyro sensor 180B may be used to determine the movement posture of the terminal device 100.
  • the angular velocity of the terminal device 100 around three axes ie, x, y, and z axes
  • the gyro sensor 180B can be used for image stabilization.
  • the gyroscope sensor 180B detects the shake angle of the terminal device 100, calculates the distance that the lens module needs to compensate according to the angle, and allows the lens to counteract the shake of the terminal device 100 through a reverse movement to achieve anti-shake.
  • the gyro sensor 180B can also be used for navigation and somatosensory game scenes.
  • the air pressure sensor 180C is used to measure air pressure.
  • the terminal device 100 calculates the altitude based on the air pressure value measured by the air pressure sensor 180C to assist positioning and navigation.
  • the magnetic sensor 180D includes a Hall sensor.
  • the terminal device 100 may use the magnetic sensor 180D to detect the opening and closing of the flip holster.
  • the terminal device 100 can detect the opening and closing of the flip according to the magnetic sensor 180D.
  • features such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 180E can detect the magnitude of the acceleration of the terminal device 100 in various directions (generally three-axis). When the terminal device 100 is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the posture of the terminal device, applied to horizontal and vertical screen switching, pedometer and other applications.
  • the terminal device 100 can measure the distance by infrared or laser. In some embodiments, when shooting a scene, the terminal device 100 may use the distance sensor 180F to measure the distance to achieve fast focusing.
  • the proximity light sensor 180G may include, for example, a light emitting diode (LED) and a light detector such as a photodiode.
  • the light emitting diode may be an infrared light emitting diode.
  • the terminal device 100 emits infrared light to the outside through the light emitting diode.
  • the terminal device 100 uses a photodiode to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it can be determined that there is an object near the terminal device 100. When insufficient reflected light is detected, the terminal device 100 can determine that there is no object near the terminal device 100.
  • the terminal device 100 can use the proximity light sensor 180G to detect that the user holds the terminal device 100 close to the ear to talk, so as to automatically turn off the screen to save power.
  • the proximity light sensor 180G can also be used in leather case mode, and the pocket mode will automatically unlock and lock the screen.
  • the ambient light sensor 180L is used to sense the brightness of the ambient light.
  • the terminal device 100 can adaptively adjust the brightness of the display screen 194 according to the perceived brightness of the ambient light.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the terminal device 100 is in a pocket to prevent accidental touch.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the terminal device 100 can use the collected fingerprint characteristics to realize fingerprint unlocking, access application locks, fingerprint photographs, fingerprint answering calls, etc.
  • the temperature sensor 180J is used to detect temperature.
  • the terminal device 100 uses the temperature detected by the temperature sensor 180J to execute a temperature processing strategy. For example, when the temperature reported by the temperature sensor 180J exceeds a threshold value, the terminal device 100 reduces the performance of the processor located near the temperature sensor 180J, so as to reduce power consumption and implement thermal protection.
  • the terminal device 100 when the temperature is lower than another threshold, the terminal device 100 heats the battery 142 to avoid abnormal shutdown of the terminal device 100 due to low temperature.
  • the terminal device 100 boosts the output voltage of the battery 142 to avoid abnormal shutdown caused by low temperature.
  • Touch sensor 180K also called “touch device”.
  • the touch sensor 180K may be disposed on the display screen 194, and the touch screen is composed of the touch sensor 180K and the display screen 194, which is also called a “touch screen”.
  • the touch sensor 180K is used to detect touch operations acting on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • the visual output related to the touch operation can be provided through the display screen 194.
  • the touch sensor 180K may also be disposed on the surface of the terminal device 100, which is different from the position of the display screen 194.
  • the bone conduction sensor 180M can acquire vibration signals.
  • the bone conduction sensor 180M can obtain the vibration signal of the vibrating bone mass of the human voice.
  • the bone conduction sensor 180M can also contact the human pulse and receive the blood pressure pulse signal.
  • the bone conduction sensor 180M may also be provided in the earphone, combined with the bone conduction earphone.
  • the audio module 170 can parse the voice signal based on the vibration signal of the vibrating bone block of the voice obtained by the bone conduction sensor 180M, and realize the voice function.
  • the application processor may analyze the heart rate information based on the blood pressure beat signal obtained by the bone conduction sensor 180M, and realize the heart rate detection function.
  • the button 190 includes a power button, a volume button, and so on.
  • the button 190 may be a mechanical button. It can also be a touch button.
  • the terminal device 100 may receive key input, and generate key signal input related to user settings and function control of the terminal device 100.
  • the motor 191 can generate vibration prompts.
  • the motor 191 can be used for incoming call vibration notification, and can also be used for touch vibration feedback.
  • touch operations applied to different applications can correspond to different vibration feedback effects.
  • Acting on touch operations in different areas of the display screen 194, the motor 191 can also correspond to different vibration feedback effects.
  • Different application scenarios for example: time reminding, receiving information, alarm clock, games, etc.
  • the touch vibration feedback effect can also support customization.
  • the indicator 192 may be an indicator light, which may be used to indicate the charging status, power change, or to indicate messages, missed calls, notifications, and so on.
  • the SIM card interface 195 is used to connect to the SIM card.
  • the SIM card can be inserted into the SIM card interface 195 or pulled out from the SIM card interface 195 to achieve contact and separation with the terminal device 100.
  • the terminal device 100 may support 1 or N SIM card interfaces, and N is a positive integer greater than 1.
  • the SIM card interface 195 can support Nano SIM cards, Micro SIM cards, SIM cards, etc.
  • the same SIM card interface 195 can insert multiple cards at the same time. The types of the multiple cards can be the same or different.
  • the SIM card interface 195 can also be compatible with different types of SIM cards.
  • the SIM card interface 195 may also be compatible with external memory cards.
  • the terminal device 100 interacts with the network through the SIM card to realize functions such as call and data communication.
  • the terminal device 100 uses an eSIM, that is, an embedded SIM card.
  • the eSIM card can be embedded in the terminal device 100 and cannot be separated from the terminal device 100.
  • an embodiment of the present application provides a Bluetooth protocol framework for a terminal device, including but not limited to a host (host) protocol stack, HCI (Host Controller Interface), and a controller (controller).
  • a host host
  • HCI Home Controller Interface
  • controller controller
  • the host protocol stack defines multiple applications (profiles) and core protocols (protocol) in the Bluetooth framework.
  • Each profile defines its own message format and application rules.
  • the profile is a Bluetooth service (Application).
  • the Bluetooth protocol has formulated specifications for various possible and universal application scenarios, such as A2DP (advanced audio distribution profile), HFP (hands-free profile), etc. Wait.
  • the core protocols include but are not limited to Bluetooth's basic service protocol SDP (Service Discover Protocol), logical link control and adaptation protocol L2CAP (Logical Link Control and Adaptation Protocol), etc.
  • SDP Service Discover Protocol
  • L2CAP Logical Link Control and Adaptation Protocol
  • the core protocol is indispensable in the Bluetooth protocol stack.
  • HCI provides a unified interface for the upper layer protocol to enter the link manager and a unified way to enter the baseband.
  • SIG Bluetooth Special Interest Group stipulates four physical bus methods to connect with hardware, namely four HCI transmission layers: USB, RS232, UART and PC card.
  • the controller defines the underlying hardware, including radio frequency (RF), baseband (BB), and link management (LM).
  • RF radio frequency
  • BB baseband
  • LM link management
  • the RF layer uses 2.4GHz unlicensed ISM band microwaves to filter and transmit data bit streams. It mainly defines the conditions that the Bluetooth transceiver needs to meet in this frequency band.
  • the baseband is responsible for frequency hopping and the transmission of Bluetooth data and information frames.
  • Link management is responsible for connecting, establishing and dismantling links and performing security control.
  • the LM (Link Manager) layer is the link management layer protocol of the Bluetooth protocol stack.
  • the LC (Link Control) layer is responsible for responding to upper-layer LM commands (such as executing LM commands for establishing data packet transmission links and maintaining links) during a batch of data packet transmission.
  • the method described in the embodiment of the present application may be implemented by the wireless communication module 160 of the terminal device 100 shown in FIG. 1, and specifically may be implemented by a Bluetooth module or a Bluetooth chip.
  • FIG. 3 shows a possible data transmission mode of the terminal device 100.
  • Figure 3 shows three typical opposite devices, such as a display device 200, an audio device 300, and a storage device 400.
  • the embodiment is only a list and does not limit it.
  • the terminal device 100 After the terminal device 100 is connected to the display device 200, it can send various data such as text, picture, video, and audio to the display device 200, and the display device 200 can play the aforementioned text, picture, and video after receiving it. , Audio and other data.
  • the audio device 300 can play music online.
  • the terminal device 100 may simultaneously send data such as text, pictures, video, and audio to multiple peer devices.
  • the display device, audio device, and storage device in this embodiment only represent terminal devices with display, audio playback, and storage functions.
  • a smart phone as an example, it can be a display device, an audio device, or It can be a storage device.
  • short-distance communication technology can be used.
  • the short-distance transmission technology described in the embodiments of this application includes but is not limited to: Zig-Bee, Bluetooth (Bluetooth), wireless broadband (Wi-Fi), ultra-wideband (UWB) And Near Field Communication (NFC), IrDA infrared connection technology, UWB (Ultra Wideband), Digital Enhanced Cordless Telecommunications (DECT) technology, etc.
  • packet loss rate, retransmission rate, received signal strength indicator (RSSI), delay, throughput rate, quality of service (Quality of Service, Qos), transmit power, and maximum transmit power can be used to indicate , Minimum transmit power, power range, etc. are used to measure transmission quality or link quality, and can also be other parameters used to measure data transmission quality.
  • RSSI received signal strength indicator
  • the RSSI may be greater than the preset threshold. This application is not limited.
  • the Bluetooth protocol described in the embodiments of this application can be either the classic Bluetooth (ER/BDR) protocol, the Bluetooth low energy (BLE) protocol, or different Bluetooth protocol versions (such as Bluetooth 3.0, 4.0, 5.0, etc.)
  • Bluetooth transmission technology is widely used in the field of data transmission due to its high transmission efficiency and ease of use.
  • SIG Bluetooth Special Interest Group
  • Table 1 Is the Bluetooth transmit power parameter table specified in the Bluetooth protocol:
  • the terminal equipment is divided into three levels according to the maximum output (transmission) power: 20dBm, 4dBm, 4 0dBm, and the maximum transmission power level (mode) can reach 20dBm.
  • the agreement also specifies the nominal output power and the minimum output power.
  • power control and other parameters For example, when the power level is 1, the maximum output power is 20 dBm, the minimum output power is 0 dBm, and the power control (the power range that the peer device is requested to increase or decrease) is 4 dBm to 20 dBm.
  • Bluetooth protocol e.g. Bluetooth protocol 5.0
  • the Bluetooth high power mode also known as high power mode, maximum output power mode, maximum transmission power mode, or maximum output power
  • the Bluetooth normal power mode also known as the normal mode, the normal output power mode, the normal transmit power mode, the normal output power
  • the Bluetooth low power mode also known as low power mode, minimum output power mode, minimum transmit power mode, minimum output power
  • the power levels of Bluetooth can also be divided into at least two, such as high-power mode and low-power mode; the power levels can also be divided into at least four, high-power mode, medium-high power mode, and medium-low power mode. And low power mode. This application does not limit the power level.
  • the power level can also be defined according to the power range.
  • the power output in the range of 1 dBm to 10 dBm can be defined as a low power mode, 10 dBm to 20 dBm as a high power mode, or 5 dBm to 10 dBm as a normal power mode.
  • the high power mode of the terminal equipment may be higher than 14dBm or higher than 12dBm.
  • the terminal device after the terminal device increases the transmission power, the terminal device can be considered to be in a high power mode or perform data services in a high power mode; similarly, after the terminal device reduces the transmission power, the terminal device can be considered to be in a low power mode. Or conduct data services in low-power mode.
  • a terminal device can connect to multiple peer devices, and establish a physical link with each peer device.
  • the terminal device can send data to the peer device in different power modes based on different physical links, such as the terminal device in Figure 3 100 can connect the display device 200 and the audio device 200 at the same time, that is, the terminal device 100 can suggest a first physical link with the display device 200 for data transmission; the terminal device 100 can establish a second physical link with the audio device 300, where, The terminal device transmits the data audio device 300 in a high power mode based on the second physical link.
  • At least one built-in power amplifier PA1 can be added to the Bluetooth chip. (Power Amplifier, PA), thereby increasing the transmitting power of terminal equipment and increasing the communication distance.
  • the maximum transmit power of Bluetooth is realized by cascading PA1 and IPA (built-in power amplifier). IPA is used as the input stage of PA1 to provide excitation signal to PA1.
  • the transmit power output by PA1 is the transmit power of Bluetooth. It can be understood that the power of PA1 is greater than IPA. The transmit power is increased to achieve the effect of increasing power.
  • At least one external PA2 can also be added to the radio frequency path, that is, outside the Bluetooth chip, so as to increase the transmission power of the product and increase the communication distance.
  • the principle is the same as the foregoing embodiment. It can be understood that the PA2 The power is greater than the transmit power of IPA.
  • FIG. 4 only exemplarily describes a way of increasing the radiation power by increasing the PA, but it is not a limitation of the present invention.
  • the Wi-Fi chip or the PA of the Wi-Fi functional unit can be reused to achieve the maximum Output Power.
  • Bluetooth can work in low power mode by default to save power consumption.
  • the transmission path of Bluetooth works on the independent RF (radio frequency) path of Bluetooth.
  • the RF path includes Bluetooth power amplifiers, filters and other radio frequency devices; according to the request of the peer device, Under the constraint conditions of high power usage, the power gear is switched to enable the high power mode, that is, the Bluetooth baseband is connected to the radio frequency path of Wi-Fi as shown in Figure 5, so as to achieve the effect of improving the output of high power.
  • the terminal device continues to be in the high-power mode for data transmission, it is undoubtedly that the power consumption is greatly increased and the quality of data transmission is often not so high in some scenarios.
  • the Bluetooth service it is dynamically adjusted according to the real-time status of the service.
  • the transmit power of Bluetooth achieves the goal of improving business performance while maintaining as low power consumption as possible.
  • whether the terminal device needs to increase or decrease the Bluetooth transmission power can be determined according to the type of service currently performed by the terminal device, and the service type may include Wi-Fi service, cellular data service, etc.; for example, when When the terminal equipment is performing cellular services (or only when performing Wi-Fi services), the power consumption is relatively large at this time.
  • Bluetooth can use a lower transmission power level, such as level 2 in Table 2, which is normal power mode.
  • level 2 in Table 2 which is normal power mode.
  • the lowest transmission power level can be adopted at this time, for example, level 3 in Table 2, that is, the low power mode.
  • the highest Bluetooth transmit power level can be used, for example, level 1 in Table 2, that is, high power mode, as shown in Table 2:
  • Power rating Power mode Wi-Fi business Cellular service 1 High power mode shut down shut down 2 Normal power mode switch on switch off) Off (on) 3 Low power mode Turn on Turn on
  • the high power mode can be used, which is not limited in the embodiment of this application.
  • the Bluetooth power mode can also be switched according to the current scene.
  • the business scene can be music scene, video scene, screen projection scene, phone scene, picture sharing scene, document sharing scene, etc., as shown in Table 3.
  • the music scene for example, listening to music through Bluetooth wireless headphones, because users have higher requirements on sound quality and time delay in the music scene, higher transmission power is required; in the picture sharing scene, for example, users use terminal equipment Send photos to the peer device. In this scenario, the transmission quality is relatively low. You can use normal power mode or low power mode to meet user needs, as shown in Table 3.
  • a graphical user interface can be provided for selection.
  • the user can set the normal mode in the screencasting scene. , Use high-power mode in the phone scene, etc.
  • the terminal device may determine whether to increase the Bluetooth transmit power in combination with the service type and the service scenario, that is, to determine the current service scenario under which service type is performed, thereby adjusting the Bluetooth power mode. As shown in Table 4:
  • Power rating Power mode Business scene business type 1 High power mode Audio and video scene Wi-Fi 2 Low power mode Picture sharing Wi-Fi
  • the terminal device can use high power mode to send data to the headset.
  • the terminal device can send data to the headset in a low power mode.
  • a graphical user interface can be provided for selection. For example, the user can set the screen In the scenario and Wi-Fi service, the normal mode is adopted, and in the telephone scenario and the cellular service, the low-power mode is adopted. Can be combined with more energy saving and better user experience.
  • the Bluetooth transmit power can be adjusted according to the type of the peer device.
  • the peer device when the user transmits music, for example, when the peer device is an audio device such as a speaker or earphone, , Requires high data transmission quality, delay, etc., so it is necessary for terminal equipment to perform high-power transmission to improve the quality of transmission data transmission, and in some other scenarios, such as terminal equipment in picture transmission or picture projection
  • the peer device when the peer device is a display or a memory device, the quality of data transmission is relatively low, so relatively low transmission power can be used.
  • the device type (Class of Device, CoD) of the peer device can be used to determine whether it is an audio device, and the terminal device can execute the inquiry process specified by the Bluetooth protocol when scanning the peripheral peer device. .
  • the terminal device can send an identity (ID) broadcast packet in the form of broadcast, and the neighboring peer device can reply with a response message (inquiry scan) after receiving the ID broadcast packet.
  • ID identity
  • the neighboring peer device can reply with a response message (inquiry scan) after receiving the ID broadcast packet.
  • ID broadcast packet e.g., a reply to the FHS packet, (Filesystem Hierarchy Standard (FHS)
  • FHS package carries the device COD type (Class of device) information of the peer device. Based on this information, it can be determined whether the queried device is an audio device or a preset device type.
  • a method for a terminal device to obtain the COD of a peer device is provided.
  • Step 601 After the terminal device turns on the Bluetooth function (for example, the user turns on the Bluetooth switch on the setting interface of the terminal device), the terminal device can query the peer device. For example, through the inquiry process of the Bluetooth protocol, multiple pairs in the surrounding range can be The end device sends an ID packet, and the ID packet includes some parameter information of the current terminal device, such as an identity, MAC address, IP address, and other parameters used to characterize the capabilities of the terminal device.
  • Step 602 After the peer device A and the peer device B receive the ID packet sent by the terminal device, for example, when the peer device is in the inquiry scan state, it can respond to the ID packet, for example, it can send an FHS packet.
  • the FHS packet can carry CoD information in the opposite device, that is, device type information.
  • CoD can be a device type specified in the Bluetooth protocol, as shown in Table 4:
  • Table 4 lists some major device types based on the Bluetooth standard protocol.
  • 5-digit identification bits can be used to identify the major device types, for example, 00001 to identify the computer type and 00010 to identify the telephone type. Refer to the Bluetooth standard for specific device types.
  • the above-mentioned main device types can also be subdivided into sub-categories. Taking the audio/video category as an example, as shown in Table 5, they can be divided into multiple sub-categories:
  • Table 5 lists some of the secondary categories in the audio and video categories.
  • 6-bit identification bits can be used to identify the secondary categories. For example, 000001 is used to identify wearable headset devices, and 000010 is used to identify hands-free devices. For details, see The Bluetooth protocol stipulates.
  • acquiring COD information of the peer device may include the primary device type or the secondary device type.
  • judging the device type of the peer device it can also be based on the primary device type or the secondary device type.
  • the response message of the peer device may carry COD information separately, and may also include: MAC address, IP address, device name, and other parameters used to characterize the capabilities of the peer device.
  • the terminal device may obtain the capability parameter of the peer device, for example, acquire the type or version number of the Bluetooth service (profile) supported by the peer device .
  • the terminal device can determine the device type of the peer device through the type of Bluetooth service supported by the peer device, for example, if the peer device supports the advanced audio distribution profile (A2DP) and/or hands-free protocol ( hands-free profile (HFP) service, you can determine that the peer device is an audio/video device.
  • A2DP advanced audio distribution profile
  • HFP hands-free protocol
  • Profile defines a Bluetooth-based application.
  • Each Profile specification mainly includes an interface for developers, message formats and standards (such as audio compression), components using Bluetooth protocol stacks, and so on.
  • Each profile corresponds to a UUID.
  • the concept of UUID in Bluetooth is similar to the concept of port in TCP/IP.
  • Each UUID runs a service, and the Bluetooth service can be identified by a universally unique identifier (UUID).
  • UUID universally unique identifier
  • the Bluetooth services identified by different UUIDs are different.
  • Each service has a universal, independent, and unique UUID corresponding to it. Common services are shown in Table 5 below:
  • UUID Bluetooth service A2DP_UUID A2DP (Advanced Audio Distribution Profile) HFP_UUID HFP (Hands-Free Profile)
  • A2DP_UUID represents the A2DP audio transmission model protocol.
  • A2DP defines the parameters and processes required to establish audio and video streams;
  • HFP_UUID represents the HFP hands-free protocol, which provides the basic functions required for communication between mobile phones and headsets.
  • the ID packet can be In response, for example, an FHS packet may be sent.
  • the FHS packet may carry CoD information in the peer device, and the FHS packet may also carry UUID information of a service supported by the peer device, for example, when the peer device When the A2DP service is supported, the FHS packet may carry A2DP_UUID, and further, the terminal device may determine the device type of the opposite device according to the UUID.
  • the terminal device can also interact with the peer device through the service discovery protocol (SDP) interaction, so that the terminal device can directly send Bluetooth to the Bluetooth chip of the peer device through its own Bluetooth chip.
  • SDP service discovery protocol
  • an embodiment of the present application provides a query for the supported service of the peer device through the SDP protocol.
  • Step 701 The terminal device sends an SDP request. For example, if the terminal device asks whether the opposite device supports the Hands-Free service, the opposite device can send an SDP_Service Search Attribute Request message, where the SDP_Service Search Attribute Request message can carry Hands-Free UUID;
  • Step 702 After receiving the request from the terminal device, the peer device can reply to the queried profile and version number, for example, reply to the UUID of Hands-Free and the version number of Hands-Free.
  • the UUID carried in the SDP_Service Search Attribute Request message may be random or in a preset order. For example, the UUID of Hands-Free may be carried first; when the peer device does not support the UUID When the Hands-Free service is time, you can send the SDP request again, and carry the UUID of A2DP, that is, the SDP process will query which services the peer device supports one by one. Furthermore, the terminal device determines the correctness based on the services supported by the peer device. The device type of the end device.
  • the service supported by the opposite device can be further determined.
  • the terminal device obtains the CoD information according to Peripheral devices can further be determined based on the service types that the peer device may support, such as Hands-Free or A2DP services.
  • the method shown in Figure 7 can be used to send SDP_Service Search Attribute Request message , The message carries the UUID of Hands-Free, when the peer device does not support the Hands-Free service; you can send the SDP request again, and carry the UUID of A2DP; thereby more accurately determine the device type of the peer device .
  • the type of the peer device is identified by identifying the CoD type of the peer device or the service type supported by the peer device, and the terminal device starts or turns on the high power mode.
  • the terminal device determines that the CoD type of the peer device is the (audio/video) type, specifically, it may be the wearable headset device (Wearable Headset Device) type
  • the terminal device can determine that the current user may be listening to music through a Bluetooth headset Therefore, the transmit power can be increased, and the terminal device can be in high power mode, so that users have a better user experience.
  • the terminal device when the terminal device determines that the peer device supports the A2DP service, the terminal device can determine that the peer device is a device related to audio services, so the transmission power can be increased, and the terminal device can be in high power mode, so that the user has better user experience.
  • the UUID mentioned in this application can be a basic UUID (128 bits) or a 16-bit UUID instead of a basic UUID.
  • a basic UUID structure can be BASE_UUID 00000000-0000-1000-8000 -00805F9B34FB;
  • the 16-bit UUID of the proxy basic UUID of the SDP service is 0x0001.
  • At least one physical link will be established, for example, it can be a connection-based asynchronous link (Asynchronous Connection-Oriented Link, ACL) link.
  • ACL Asynchronous Connection-Oriented Link
  • the terminal device can provide Each ACL is assigned a link number (for example, connection Handle number), and the terminal device can increase the transmit power according to the link number.
  • the transmission power can also be increased by identifying the identifier or mac address of the peer device.
  • the COD of the opposite device and the services supported by the opposite device can be identified to determine that the opposite device needs to turn on or off the high power mode of the terminal device.
  • the HCI name can be sent through the host, and the controller Perform the corresponding operation specifically.
  • an embodiment of the present application provides a method for turning on Bluetooth high power, which is specifically as follows:
  • Step 801 The terminal device obtains CoD information or UUID information of the opposite device.
  • the terminal device can obtain the UUID of the service supported by the opposite device through the inquiry process in the Bluetooth protocol or through the SDP process;
  • Step 802 The terminal device determines the device type of the opposite device, for example, the device type of the opposite device can be identified by the above method of identifying the COD of the opposite device and/or identifying the Bluetooth service supported by the opposite device;
  • Step 803 When the terminal device determines that the peer device is a device of a non-preset type, the terminal device determines not to enable the high power mode. Specifically, the terminal device may instruct the ACL to disable the high power mode through the controller.
  • the terminal device can set the default or initial power mode to the low power mode through the user interface.
  • the terminal device determines that the peer device is a non-preset device (such as a computer device), it can trigger the controller to indicate that ACL does not enable high power mode or maintain the original power mode or does not trigger any actions or commands;
  • Step 804 When the terminal device determines that the peer device is a preset device (for example, an audio device), the terminal device determines that it needs to be performed in a high power mode. Specifically, the terminal device can configure the HCI command to allow the ACL link to transmit high power.
  • a preset device for example, an audio device
  • Step 805 The terminal device enables the high power mode. Specifically, the controller may execute the HCI command to instruct the ACL link to enable high power.
  • the terminal device sends the data packet to the opposite device in a high power mode
  • step 805 the terminal device enables the high-power mode, and the terminal device can send data packets to the peer device in the low-power mode, because other preset conditions may also need to be met (for example, the channel quality meets the predetermined condition After that, the terminal device can send data packets to the peer device in high power mode.
  • step 803 may be before step 802, which is not limited in this application.
  • an embodiment of the present application also provides a method for a terminal device to turn on a high power mode, as shown in FIG. 9:
  • Step 901 After the terminal device is connected to the opposite device, it can send a data packet to the opposite device. Specifically, the data packet can be sent to the opposite device through the controller, and the data packet can be sent in a normal power mode or a low power mode.
  • the data packets in this application may be audio data, video data, files, and other data packets.
  • the data packets also include some control commands or parameters.
  • Step 902 After receiving the data packet, the peer device sends a response (for example, ACK) to the terminal device; in some embodiments, if the peer device does not receive the data packet or only receives part of the data packet, the peer device will It also sends a response message (such as NACK) to the terminal device; in some embodiments, it is possible that the peer device receives or does not have a data packet, and the peer device will not reply with a response, such as in the case of poor link quality or data loss in the case of.
  • a response for example, ACK
  • NACK response message
  • Step 903 The terminal device determines the current link quality.
  • the quality of the current data transmission link can be determined by parameters such as packet loss rate, number of retransmissions, retransmission rate, RSSI (Received Signal Strength Indicator) value, etc.
  • the link quality can be determined based on whether the peer device replies ACK or NACK. For example, when the link quality is good, the peer device can reply ACK after receiving the data packet; if the link In the case of poor quality, usually the peer device does not receive the data packet or part of the data packet, the peer device replies with the terminal device NACK or the peer device does not respond.
  • the current link quality can be determined based on the response of the opposite end device, so as to further determine whether to enable the high power mode. Specifically, the controller can report the link quality to the host.
  • Step 904 When the terminal device determines that the link quality meets the predetermined condition, the terminal device turns on the high power mode.
  • the predetermined condition can be that the packet loss rate is greater than a predetermined value, or the number of retransmissions is greater than a predetermined value or the retransmission rate is greater than a predetermined value, RSSI If it is less than a preset value, etc., it may also be that other parameters used to measure link quality in the embodiment of the present application meet the threshold condition.
  • the host may send an instruction to the controller to set the ACL link to enable the high power mode.
  • Step 905 The terminal device sets the ACL link to enable the high-power mode. Specifically, after the controller of the terminal device receives the command from the host to enable the ACL link, it replies with a response message to the host.
  • Step 906 After the terminal device (specifically the controller) sets the link to enable the high power mode, it can send a data packet to the opposite device in the high power mode.
  • the terminal device may also receive the ACK or NACK replies from the peer device to further determine whether it is necessary to continue to maintain the high power mode or adjust to the low power mode.
  • steps 907-912 are the same as the above-mentioned 1001-1006, and the detection can continue to detect the current link quality, so as to determine whether to switch to the normal power mode further. This embodiment will not be repeated.
  • peer devices In practical applications, there can be many different types of peer devices, and different types of peer devices have different quality requirements for data transmission. For example, some keyboards, mice, and other peer devices are usually used at close range. Equipment. For headsets, speakers, car equipment, etc., since music and calls are services with extremely high real-time requirements, and may be used in long-distance or sheltered scenes, high-power mode is required to improve long-distance or sheltered scenes Business stability.
  • the peer device can actively send a request to the terminal device according to the quality of data transmission, request the peer device to reduce or provide transmission power, or request the terminal device to enter the high transmission power mode or the low transmission power mode.
  • the terminal device can send data to the peer device.
  • the peer device detects that the link quality of the data transmission has deteriorated (Such as zooming out or blocking)
  • the peer device can send a request to the terminal device.
  • the sent request is LMP_Power_Control_req.
  • the request is used to request the terminal device to increase the transmission power.
  • the request can carry a request to increase the specific power. Order of magnitude, for example, increase the transmit power by 10% (one step up) or request an increase of 4dBm, request the terminal device to transmit with the maximum transmit power (max power), or increase the power transmission level;
  • some peer devices after some peer devices are connected to the terminal, they will immediately send a request to the terminal device, for example, directly sending LMP_Power_Control_req to the terminal device, so that the terminal device sends data packets in a high power mode.
  • the terminal device After receiving the request from the opposite device, the terminal device replies a response message to the opposite device, for example, can reply LMP_Power_Control_Res, and further, the terminal device increases the transmission power;
  • the peer device can also send a request message to the terminal device to reduce the transmission power of the terminal device, for example, request a 10% reduction in the transmission power, or request the terminal device to transmit data with the minimum transmission power, or reduce the power transmission grade.
  • the terminal device will decide whether to increase the transmission power after receiving the request from the opposite device to increase the transmission power. For example, the terminal device needs to obtain the maximum transmission power that the current terminal device can support. , And obtain the transmit power used by the current terminal device, and decide whether to increase the transmit power according to the maximum transmit power that can be supported and the currently used transmit power. For example, the maximum transmit power that the terminal device can support is 14dBm, the current transmit power used by the terminal device is 12dBm, and the peer device requests to increase the transmit power by 4dBm.
  • the terminal device may not increase the transmit power because it has Exceed the maximum transmit power that the terminal device can support; the terminal device can also increase up to 2dBm to reach the maximum output power that the terminal device can support.
  • the terminal device also needs to determine whether the current terminal supports the high-power mode; in some embodiments, the terminal device is receiving a request from the peer device, and the request is used to increase the transmission power of the terminal device, for example, To increase 4dBm, the terminal device also needs to determine whether the power level of the terminal device needs to be increased according to the current actual transmit power and the transmit power that needs to be increased. For example, the actual transmit power of the terminal device is 12dBm, and the peer device requests an increase of 4dBm.
  • the terminal device When the device defines a high power mode greater than 14dBm, the terminal device does not need to switch to high power mode at this time. If the terminal device defines a high power mode greater than or equal to 12dBm, the terminal device needs to switch to high power mode. In this case below, it can be understood that there are two gear modes in the terminal mode. For example, when it is greater than 14dBm, it can be defined as a high power mode.
  • the transmission power is increased (the actual transmission power is now plus the request of the peer device needs to be increased)
  • the transmission power range needs to be increased, for example, the method shown in FIG. 4 or FIG. 5 is adopted.
  • the mobile phone side high power mode can also be dynamically turned on according to the request of the opposite end, as shown in Figure 11:
  • Step 1101 The terminal device obtains the CoD information or UUID information of the peer device.
  • the terminal device can obtain it through the inquiry process in the Bluetooth protocol or through the SDP process, as shown in the methods described in Figure 6 and Figure 7;
  • Step 1102 The terminal device determines the device type of the opposite device.
  • the device type can be determined by identifying the COD type of the opposite device and the supported service type to determine its device type; in some embodiments, the opposite device can be The device type of is defined as high-power devices and low-power devices.
  • the audio type can be defined as high-power devices
  • the computer type can be defined as low-power devices.
  • the embodiments of this application are not limited, and can be based on manufacturer or user customization ;
  • the peer device may be divided into multiple power devices, such as high-power devices, medium-power devices, and low-power devices; as shown in Table 6:
  • the high-power device types in the above table can be customized for different types of devices according to users, and the specific device types can refer to the device type regulations or COD types in the above Bluetooth protocol.
  • the embodiments of the present application can be extended to depend on whether the type of the opposite terminal device is a predetermined device type, and if so, the terminal device can increase the transmission power or activate the high power mode.
  • Step 1103 If it is determined that the peer device is not a specified type of device, it does not need to be in the high power mode, then switch to the low power mode; if the current terminal device is already in the low power mode, continue to maintain the low power mode.
  • the initial mode can also be customized by the user, and the initial mode can be high power mode or low power mode by default.
  • Step 1104 If it is determined that the peer device is a specified type of device, the terminal device enables the high power mode. Specifically, the controller may enable high power for the ACL.
  • Step 1105 Receive a request to increase the transmission power of the opposite device, for example, it may be, for example, LMP_Power_Control_Req.
  • the request is used to request the opposite device to increase the transmission power.
  • the request may carry the order of magnitude of the request to increase the specific power, for example, , Increase the transmit power by 10% (one step up), or request the terminal device to transmit with the maximum transmit power (max power), or increase the power transmission level; generally speaking, the peer device can be based on the link parameters For example, the RSSI value is used to determine the link transmission quality.
  • the link parameter is lower than the preset threshold, the LMP_Power_Control_Req can be sent to the peer device.
  • Step 1106 The terminal device confirms whether the high power mode is reached after the power is increased; in some embodiments, the terminal device will decide whether to increase the transmission power after receiving the request of the peer device to increase the transmission power. For example, the terminal device needs to obtain the current The maximum transmission power that can be supported by the terminal device, and the current transmission power used by the terminal device is obtained, and whether to increase the transmission power is determined according to the maximum transmission power that can be supported and the current transmission power used. For example, the maximum transmit power that the terminal device can support is 14dBm, the current transmit power used by the terminal device is 12dBm, and the peer device requests to increase the transmit power by 4dBm.
  • the terminal device may not increase the transmit power because it has Exceed the maximum transmit power that the terminal device can support; the terminal device can also increase up to 2dBm to reach the maximum output power that the terminal device can support.
  • the terminal device receives a request from the terminal device. The request is used to increase the transmission power of the terminal device, for example, by 4dBm.
  • the terminal device also needs to increase the transmission power according to the current actual transmission power and the transmission power that needs to be increased. , To determine whether the power level of the terminal device needs to be increased. For example, the actual transmit power of the terminal device is 12dBm, and the peer device requests an increase of 4dBm. If the terminal device defines a high power mode greater than 14dBm, the terminal device does not need to switch at this time In the highest power mode, if the terminal device defines a high power mode greater than or equal to 12dBm, the terminal device needs to switch to the high power mode.
  • the terminal mode has two modes (high power mode and low power mode) ) Or two gears (high power gear and low power gear), for example, when it is greater than 14dBm, it can be defined as high power mode.
  • the increased transmit power the current actual transmit power plus the request of the peer device
  • the transmission power that needs to be increased is greater than 14 dBm
  • the transmission power range needs to be increased, for example, the method shown in FIG. 4 or FIG. 5 is adopted.
  • the transmitting power of the terminal device is within a certain range, for example, 0dBm to 14dBm. It can be considered that the maximum transmitting power of the Bluetooth chip is 14dBm. If the actual transmitting power of the current terminal device is 10dBm, While the peer device requests an increase of 5dBm or 50% of the transmit power, the terminal device determines that the current actual transmit power plus the transmit power requested by the peer device has exceeded the maximum transmit power of the Bluetooth chip. Further, you can use Figure 4 or Figure 4 The transmission power can be increased in the way 5, for example, it can reach 14-20dBm, then the terminal device can be in high power mode. In the high power mode, the terminal device adjusts the transmission power, for example, 15dBm, and sends data to the peer device at 15dBm.
  • Step 1107 After the terminal device meets the high power mode after being upgraded, the terminal device changes the transmit power mode and adjusts the current power mode to the high power mode. That is, the terminal device switches to the high power mode and uses the high power mode to send data packets to the peer device.
  • the terminal device when the terminal device is connected to the opposite device, it can obtain the CoD information and service type of the opposite device. When the terminal device is connected to the opposite device, it can Send data to the peer device in the default or initial power mode (such as low power mode).
  • the terminal device receives the peer device's request to change For power mode requests, such as increasing the transmission power, the terminal device responds and requests, and the terminal device sends data packets to the peer device in high power mode.
  • step 1108 Considering the influence of the Wi-Fi service on the Bluetooth service, it is possible to further determine whether to increase the transmission power according to the usage of the Wi-Fi service. For example, after receiving the request of the peer device to increase the transmission power, it can further determine whether the constraint condition of Wi-Fi coexistence is satisfied. For example, in some cases, the Bluetooth high power mode is achieved by multiplexing Wi-Fi as shown in Figure 4.
  • Bluetooth high-power mode will cause the Wi-Fi service to fail to send and receive data, for example, if the Wi-Fi service needs to perform key frame reception or transmission, or the current WiFi is used for VoWi-Fi (Voice Over Wi-F) and other real-time services, it is not necessary to switch to Bluetooth high power mode. Therefore, it is necessary to consider the coexistence of Bluetooth high power and Wi-Fi in this implementation.
  • Some peer devices immediately send an LMP Max Power request to the mobile phone after the ACL link is established, and will not send any power reduction request, causing the mobile phone to continue to be in a high power transmission state. Considering that this situation causes unnecessary waste of power consumption, so another solution does not rely on the request of the peer device, and the terminal device unilaterally decides whether to use the high power mode to send data. Specifically, the conditions for turning on high power in this method are no longer determined based on the request of the peer device. Instead, the terminal device determines whether it is based on the RSSI (Received Signal Strength Indicator) of the signal of the peer device, the number of retransmissions, and the packet loss rate. Use high power transmission. As shown in Figure 12:
  • RSSI Receiveived Signal Strength Indicator
  • Step 1201 The terminal device obtains CoD information or UUID information of the opposite device.
  • the terminal device can obtain the UUID of the service supported by the opposite device through the inquiry process in the Bluetooth protocol or through the SDP process;
  • Step 1202 The terminal device determines the device type of the opposite device.
  • the device type can be determined by identifying the COD type of the opposite device and the supported service type.
  • Step 1203 If it is determined that the peer device is not a specified type of device (for example, it can be set to increase the transmit power when the peer device is an audio device), and the terminal device does not need to be in high power mode, switch to low power mode; if the terminal device Currently in low power mode, continue to maintain.
  • the initial mode can also be customized by the user, and the initial mode can be high power mode or low power mode by default.
  • Step 1204 If it is determined that the peer device is a specified type of device (for example, an audio device), the terminal device enables high power. Specifically, the controller may enable high power for the ACL.
  • Step 1205 Receive a request for increasing the transmit power of the peer device, for example, it may be, for example, LMP_Power_Control_Req.
  • the request is used to request the peer device to increase the transmit power.
  • the request may carry the order of magnitude of the specific power increase requested, for example, , Increase the transmit power by 10% (one step up), or request the terminal device to transmit with the maximum transmit power (max power), or increase the power transmission level;
  • Step 1206 The terminal device starts to detect the link quality of the ACL. It can use the packet loss rate, retransmission rate, received signal strength indicator (RSSI), delay, throughput rate, and quality of service (Quality of Service, Qos). ), transmit power, maximum transmit power, minimum transmit power, power range and other parameters used to measure transmission quality or link quality;
  • RSSI received signal strength indicator
  • Qos quality of service
  • Step 1207 If it is determined that the channel quality meets the predetermined condition, switch to high power.
  • the preset condition may be when the RSSI is lower than the threshold, and or when the number of consecutive retransmissions exceeds the threshold. If the predetermined condition is not met, the low-power mode is maintained, see step 1203.
  • Step 1208 The terminal device switches to the high power mode, and uses the high power mode to send data packets to the peer device.
  • step 1209 Considering the influence of the Wi-Fi service on the Bluetooth service, whether to increase the transmission power may be further determined according to the usage of the Wi-Fi service. For example, after receiving the request of the peer device to increase the transmission power, it can further determine whether the constraint condition of Wi-Fi coexistence is satisfied. For example, in some cases, the Bluetooth high power mode is achieved by multiplexing Wi-Fi as shown in Figure 4.
  • Bluetooth high-power mode will cause the Wi-Fi service to fail to send and receive data, for example, if the Wi-Fi service needs to perform key frame reception or transmission, or the current WiFi is used for VoWi-Fi (Voice Over Wi-Fi) and other real-time services, it is not necessary to switch to Bluetooth high power mode. Therefore, it is necessary to consider the coexistence of Bluetooth high power and Wi-Fi in this implementation.
  • step 1205 is optional, that is, the terminal device can monitor the channel quality to determine whether to increase the transmission power.
  • a user-defined high-power mode method can be provided.
  • the terminal device displays a setting interface.
  • the user’s operation can be received to set up Wi-Fi, mobile network, Interference mode, etc.
  • a second interface can be displayed, as shown in Figure 14, a user interface for Bluetooth settings can be displayed.
  • the interface includes a Bluetooth switch for turning on or off the Bluetooth function of the terminal device; It also includes the information of the terminal device, such as the device name, logo, etc.; including the Bluetooth devices that have been paired with the terminal device, such as the headset HUAWEI free buds shown in the figure; and multiple peer devices that are scanned around, as shown in the figure HUAWEI Mate 20, and HUAWEI Mate 10; users can click Scan to terminal devices for pairing operations, and they can also perform connection operations for devices that have been paired.
  • the terminal device detects that the user is operating on the "paired device" device, for example, for the operation of HUAWEI free buds, the terminal device displays an interface as shown in Figure 15, which can be set for the paired device, for example, it can be paired It also includes the video switch for calls, the media audio switch, the shared contact switch, and whether to enable the high-power mode switch. For example, after receiving the user’s instruction to enable the high-power mode, the terminal device can follow the high-power mode Send data packets to the headset HUAWEI free buds.
  • FIG. 16 another interface for setting high power is displayed.
  • High power settings can be performed for devices that have been paired, including the ability to rename devices that have been paired.
  • the option of "Automatically activate high power mode when the device is connected" or the high power mode selection is prohibited when the device is connected.
  • the terminal device is connected to the headset HUAWEI free buds, the corresponding mode will be automatically selected according to the user's preset settings.
  • the terminal device when it receives a user's operation for the Bluetooth function, it may display an interface as shown in FIG. 18.
  • the interface includes a Bluetooth switch for turning on or off the Bluetooth of the terminal device. Function; includes information about the terminal device, such as device name, logo, etc.; includes Bluetooth devices that have been paired with the terminal device, such as the headset HUAWEI free buds, HUAWEI Mate 10; also includes multiple peers that are scanned around The device, such as HUAWEI Mate 10 as shown in the figure; further, in the paired devices, the connection status between the paired device and the current terminal device can be displayed, including but not limited to the unconnected state and the connected state, as shown in Figure 17 Devices that have been paired, including HUAWEI Mate 10 and HUAWEI free buds, show the unconnected state.
  • the unconnected state can understand that the current terminal device and HUAWEI Mate 10 and HUAWEI free buds have completed the scanning and pairing process specified in the Bluetooth protocol, but they have not After completing the data connection process, when the user's connection operation is received, the interface shown in Figure 18 can be displayed to remind the user, as shown in the figure, "has been connected to the opposite device HUAWEI free buds belong to the audio device , Whether to start high power mode", if the user clicks "Yes" operation command, the terminal device can send data packets to the headset in high power mode; if the user clicks "ignore” operation command, the terminal device does not The power mode sends data packets to the headset; if the user clicks the "not reminded” operation command, the terminal device will not send data packets to the headset in high power mode, and will not remind the user in the pop-up box next time it connects.
  • the Bluetooth setting interface can also include power setting options.
  • the user can set a "default use high power mode” switch.
  • the power mode sends data packets to the connected peer device; it also includes the "default not to use high power mode” switch.
  • the terminal device When receiving a user's instruction, the terminal device will not send data packets to the connected peer device in high power mode; It can also include the switch of "Set high power mode device type”.
  • the interface can be set to "add the paired Bluetooth device to high power mode", the interface can display the paired peer device, after receiving the user's check operation, for example, after selecting HUAWEI free buds, when HUAWEI free buds and After the terminal device is connected, the terminal device sends data packets to the HUAWEI free buds headset in high power mode; the interface can also set the "high power mode device type list", the interface can display different device types defined by the Bluetooth protocol, for example, as shown in Table 4 Compared with the main equipment types and secondary equipment types shown in Table 5, after receiving the user's check operation, for example, the user checked "audio equipment”, "computer equipment”, “phone equipment”, “wearable device”, “Health Equipment” and “Accessory Equipment”, when a terminal device is connected to the opposite device, the CoD type and profile type of the opposite device can be used to determine whether the opposite device is the above-mentioned "audio device”, "computer device”, “telephone device” , “Wearable device”, "health device”,
  • the Bluetooth setting interface can also include power control options, for example, including “high power mode by default when connecting to audio devices", which can be used when the terminal device is connected to the peer device. It can send data packets to the peer device in high power mode; it can also include “use low power mode by default”, which can be used to send data packets to the peer device in low power mode when the terminal device is connected to the peer device.
  • power control options for example, including "high power mode by default when connecting to audio devices", which can be used when the terminal device is connected to the peer device. It can send data packets to the peer device in high power mode; it can also include “use low power mode by default”, which can be used to send data packets to the peer device in low power mode when the terminal device is connected to the peer device.
  • the method described in the embodiment of the present application may be implemented by the wireless communication module 160 of the terminal device 100 shown in FIG. 1, and may be specifically executed by a Bluetooth module or a Bluetooth chip.
  • the Bluetooth chip may also receive the to-be-sent from the processor 110.
  • the signal is frequency-modulated, amplified, and converted into electromagnetic waves by the antenna 2 for radiation.
  • the high-power mode, low-power mode, etc. of this application can be extended to the first power mode (the terminal device sends data to the opposite device at the first transmission power or the first power) and the second power mode (the terminal device uses the second transmission power Or the second power sends data to the peer device), that is, the terminal device can use different transmission powers according to the device type of the peer device.
  • the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a computer.
  • computer readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage media or other magnetic storage devices, or can be used to carry or store instructions or data structures
  • Any connection can suitably become a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • coaxial cable , Fiber optic cable, twisted pair, DSL or wireless technologies such as infrared, wireless and microwave are included in the fixing of the media.
  • disks and discs include compact discs (CDs), laser discs, optical discs, digital versatile discs (DVD), floppy disks, and Blu-ray discs. Disks usually copy data magnetically, while discs The laser is used to optically copy data. The above combination should also be included in the protection scope of the computer-readable medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Telephone Function (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种蓝牙功率控制的方法以及终端设备,当终端设备通过蓝牙连接对端设备的时候,可以获取到对端设备的设备类型或者服务类型来确定对端设备的是否为预设的高功率模式的设备,从而使得以终端设备以高功率模式发送数据包至对端设备,进一步地,在确定对端设备的设备类型为预设的高功率模式的设备之后,还可以依据对端设备的请求或者数据链路的质量或者是否满足Wi-Fi共存等条件确定提高发射功率。

Description

一种蓝牙发射功率的控制方法以及终端设备
本申请要求在2019年3月26日提交中国国家知识产权局、申请号为201910234733.4、发明名称为“一种蓝牙发射功率的控制方法以及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种数据传输领域,尤其涉及一种蓝牙领域的功率控制方法。
背景技术
随着终端设备功能的多样化,数据传输能力已经成为终端设备的重要指标之一,而短距离传输技术因为其固有的特点,例如传输效率高、实用简便、兼容性高等优点,被广泛应用于数据传输领域。以蓝牙传输为例,当前市面上的终端设备由于技术能力、成本和功耗的考虑,其发射功率普遍较低,远达不到协议中规定(例如协议中规定的最高发射功率为20dBm),从而导致在业务覆盖时,数据传输的距离较短,且易受到同频信号(例如Wi-Fi信号)的干扰,导致音频等实时业务体验不佳。
发明内容
基于上述原因,本发明本申请提供一种功率控制的终端设备和方法,有助于节省功耗并且让用户有更好的数据传输体验。
一方面,本申请的一个实施例提供了一种终端设备,该设备包括:一个或多个处理器;存储器,多个应用程序,以及一个或多个计算机程序,其中所述一个或多个计算机程序被存储在所述存储器中,所述一个或多个计算机程序包括指令,当所述指令被所述终端设备执行时,使得所述终端设备执行以下操作:所述终端设备获取对端设备的设备类型信息;所述终端设备根据所述对端设备的设备类型信息确定所述对端设备的设备类型;当所述设备类型为非预设的设备类型时,所述终端设备以第一发射功率发送数据给所述对端设备;当所述设备类型为所述预设的设备类型时,所述终端设备以第二发射功率发送数据给所述对端设备;其中,所述终端设备与所述对端设备建立蓝牙连接,所述第一发射功率小于所述第二发射功率。
通过基于不同的设备实现不同的功率控制,可以满足不同功耗和用户需求。
在一些可能的实现方式中,终端设备在确定对端设备为预设的设备类型时,所述终端设备接收到所述对端设备的第一请求,所述第一请求用于提高所述终端设备的发射功率至所述第二发射功率;所述终端设备响应于所述第一请求,所述终端设备以第二发射功率发送数据给所述对端设备。
可以实现终端设备基于对端设备的请求实现动态的功率控制。
在一些可能的实现方式中,当所述设备类型为所述预设的设备类型,所述终端设备确定所述蓝牙连接的信道质量满足第一预设条件,所述终端设备以第二发射功率发送数据给所述对端设备。所述第一预设条件为所述蓝牙连接的参数低于第一门限值,所述参数包括重传率或者信号接收强度值。
上述方式可以实现终端设备自主的实现动态的功率控制。
在一些可能的实现方式中,终端设备可以通过Wi-Fi射频链路的功率放大器提高发射功率至所述第二发射功率。
上述方式可以通过WIFI发射通路中的功率放大器进行功率档位切换。
在一些实施例中,所述设备类型信息包括所述对端设备的COD(Class of Device)信息或者UUID(universally unique identifier,UUID)信息。
可以实现通过多种方式实现对端设备的设备类型。
第二方面一方面,本申请的一个实施例提供了一种方法,包括:所述终端设备获取对端设备的设备类型信息;所述终端设备根据所述对端设备的设备类型信息确定所述对端设备的设备类型;当所述设备类型为非预设的设备类型时,所述终端设备以第一发射功率发送数据给所述对端设备;当所述设备类型为所述预设的设备类型时,所述终端设备以第二发射功率发送数据给所述对端设备;其中,所述终端设备与所述对端设备建立蓝牙连接,所述第一发射功率小于所述第二发射功率。
上述方法通过基于不同的设备实现不同的功率控制,可以满足不同功耗和用户需求。
在一些可能的实现方式中,终端设备在确定对端设备为预设的设备类型时,所述终端设备接收到所述对端设备的第一请求,所述第一请求用于提高所述终端设备的发射功率至所述第二发射功率;所述终端设备响应于所述第一请求,所述终端设备以第二发射功率发送数据给所述对端设备。
上述方法可以实现终端设备基于对端设备的请求实现动态的功率控制。
在一些可能的实现方式中,当所述设备类型为所述预设的设备类型,所述终端设备确定所述蓝牙连接的信道质量满足第一预设条件,所述终端设备以第二发射功率发送数据给所述对端设备。所述第一预设条件为所述蓝牙连接的参数低于第一门限值,所述参数包括重传率或者信号接收强度值。
上述方法可以实现终端设备自主的实现动态的功率控制。
在一些可能的实现方式中,终端设备可以通过Wi-Fi射频链路的功率放大器提高发射功率至所述第二发射功率。
上述方法上述方式可以通过WIFI发射通路中的功率放大器进行功率档位切换。
在一些实施例中,所述设备类型信息包括所述对端设备的COD(Class of Device)信息或者UUID(universally unique identifier,UUID)信息
上述方法可以实现通过多种方式实现对端设备的设备类型。
第三方面,本申请的一个实施例提供了一种终端设备,包括:一个或多个处理器;
存储器;多个应用程序;以及一个或多个计算机程序,其中所述一个或多个计算机程序存储在所述存储器中,所述一个或多个计算机程序包括指令,当所述指令被所述终端设备执行时,使得所述终端设备执行以下操作:所述终端设备获取对端设备的设备类型信息;所述终端设备根据所述对端设备的设备类型信息确定所述对端设备的设备类型;当所述设备类型为音频或视频设备类型时,所述终端设备提高发射功率,以提高后的发射功率发送数据给所述对端设备。
终端设备可以实现对音频视频设备实现功率放大控制,以实现更好音乐、视频体验。
在一些实施例中,当所述设备类型为音频或视频设备类型时,所述终端设备接收到所述对端设备的第一请求,所述第一请求用于提高所述终端设备的发射功率;
所述终端设备响应于所述第一请求,所述终端设备提高发射功率,以提高后的发射功率 发送数据给所述对端设备。
可以实现终端设备基于音频视频设备的请求实现动态的功率控制。
在一些实施例中,当所述设备类型为音频或视频设备类型时,所述终端设备确定所述蓝牙连接的信道质量满足第一预设条件,所述第一预设条件为所述蓝牙连接的参数低于第一门限值,所述参数包括重传率或者信号接收强度值;所述终端设备提高发射功率,以提高后的发射功率发送数据给所述音频或视频设备。
上述方式可以实现终端设备自主的实现动态的功率控制。
在一些实施例中,当所述设备类型为音频或视频设备类型时,所述终端设备确定所述设备类型为音频或视频设备类型,所述终端设备确定所述蓝牙连接的信道质量满足第一预设条件,所述终端设备确定无(Voice over Wi-Fi)业务或无Wi-Fi业务关键帧的收发,所述终端设备提高发射功率,以提高后的发射功率发送数据给所述音频或视频设备。
上述方式可以实现终端设备的Wi-Fi业务与蓝牙业务的共存。
在一些实施例中,所述设备类型信息包括所述对端设备的COD(Class of Device)信息或者UUID(universally unique identifier,UUID)信息。
可以实现通过多种方式实现对端设备的设备类型。
第四方面,本申请实施提供一种方法,包括:所述终端设备获取对端设备的设备类型信息;所述终端设备根据所述对端设备的设备类型信息确定所述对端设备的设备类型;当所述设备类型为音频或视频设备类型时,所述终端设备提高发射功率,以提高后的发射功率发送数据给所述对端设备。
上述方法可以实现对音频视频设备实现功率放大控制,以实现更好音乐、视频体验。
在一些实施例中,当所述设备类型为音频或视频设备类型时,所述终端设备接收到所述对端设备的第一请求,所述第一请求用于提高所述终端设备的发射功率;
所述终端设备响应于所述第一请求,所述终端设备提高发射功率,以提高后的发射功率发送数据给所述对端设备。
可以实现终端设备基于音频视频设备的请求实现动态的功率控制。
在一些实施例中,当所述设备类型为音频或视频设备类型时,所述终端设备确定所述蓝牙连接的信道质量满足第一预设条件,所述第一预设条件为所述蓝牙连接的参数低于第一门限值,所述参数包括重传率或者信号接收强度值;所述终端设备提高发射功率,以提高后的发射功率发送数据给所述音频或视频设备。
上述方式可以实现终端设备自主的实现动态的功率控制。
在一些实施例中,当所述设备类型为音频或视频设备类型时,所述终端设备确定所述设备类型为音频或视频设备类型,所述终端设备确定所述蓝牙连接的信道质量满足第一预设条件,所述终端设备确定无(Voice over Wi-Fi)业务或无Wi-Fi业务关键帧的收发,所述终端设备提高发射功率,以提高后的发射功率发送数据给所述音频或视频设备。
上述方式可以实现终端设备的Wi-Fi业务与蓝牙业务的共存。
在一些实施例中,所述设备类型信息包括所述对端设备的COD(Class of Device)信息或者UUID(universally unique identifier,UUID)信息。
可以实现通过多种方式实现对端设备的设备类型。
第五方面,本申请的一个实施例提供了一种方法,包括:所述终端设备获取对端设备的设备类型信息,所述终端设备根据所述对端设备的设备类型信息确定所述对端设备的设备类 型为音频或视频设备类型,接收所述对端设备的第一请求,所述第一请求用于提高所述终端设备的发射功率,所述终端设备根据所述第一请求以及所述终端设备的当前发射功率确定提高后的发射功率,所述当前发射功率属于第一功率档位,当所述提高后的发射功率属于第二功率档位,切换所述第一功率档位到所述第二功率档位,以提高后的发射功率发送数据给所述对端设备。
上述方法可以实现终端设备基于不同功率档位来动态调整输出功率。
在一些实施例中,所述第一功率档位中的最大发射功率小于所述终端设备中蓝牙芯片所支持的最大发射功率;所述第二功率档位中的发射功率大于所述终端设备中蓝牙芯片所支持的最大发射功率。
上述方式终端设备可以进一步确定是否需要提高功率档位从而以提高后的发射功率发送数据给所述对端设备。
在一些实施例中,上述切换所述第一功率档位到所述第二功率档位,包括:复用WIFI发射通路中的功率放大器,所述WIFI发射通路中的功率放大器用于提高所述终端设备的发射功率。
上述方式可以通过WIFI发射通路中的功率放大器进行功率档位切换。
第六方面,本申请的一个实施例还提供一种芯片,包括:处理器,接口,所述接口,用于将接收代码指令并传输至所述处理器,所述处理器用于运行所述代码指令以执行方法:获取对端设备的设备类型信息,根据所述对端设备的设备类型信息确定所述对端设备的设备类型,确定所述对端设备的设备类型不是预设的设备类型时,以第一发射功率发送数据至所述对端设备;当所述对端设备的设备类型为预设的设备类型时,以第二发射功率发送数据至所述对端设备;其中,所述芯片与所述对端设备建立蓝牙连接,所述第一发射功率小于所述第二发射功率。
第七方面,本申请的一个实施例还提供计算机程序产品,一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在终端设备上运行时,使得所述终端设执行:获取对端设备的设备类型信息,根据所述对端设备的设备类型信息确定所述对端设备的设备类型,确定所述对端设备的设备类型不是预设的设备类型时,以第一发射功率发送数据至所述对端设备;当所述对端设备的设备类型为预设的设备类型时,以第二发射功率发送数据至所述对端设备;其中,所述芯片与所述对端设备建立蓝牙连接,所述第一发射功率小于所述第二发射功率
第八方面,本申请的一个实施例还提供可读存储介质,包括指令,其特征在于,当所述指令在终端设上运行时,使得所述终端设执行以下:获取对端设备的设备类型信息,根据所述对端设备的设备类型信息确定所述对端设备的设备类型,确定所述对端设备的设备类型不是预设的设备类型时,以第一发射功率发送数据至所述对端设备;当所述对端设备的设备类型为预设的设备类型时,以第二发射功率发送数据至所述对端设备;其中,所述芯片与所述对端设备建立蓝牙连接,所述第一发射功率小于所述第二发射功率。
第九方面,本申请的一个实施例还提供一种方法,所述方法用于终端设备,包括:获取对端设备的设备类型信息,根据所述对端设备的设备类型信息确定所述对端设备的设备类型,当所述对端设备的设备类型为预设的设备类型时,所述终端设备显示提示信息,所述提示信息用于提醒用户是否接收或者拒绝以高功率模式发送数据至对端设备,当接收用户的接收操作后,所述终端设备以高功率模式发送数据至对端设备。
上述方法可以实现基于用户的选择来根据预设的设备类型来提高发射功率。
附图说明
图1为本申请提供的一种终端设备100的结构的第一示意图;
图2为本申请提供的一种终端设备100的蓝牙协议框架;
图3为本申请提供的一种终端设备100的数据传输的示意图;
图4为本申请提供的一种终端设备100的结构的第二示意图;
图5为本申请提供的一种终端设备100的结构的第三示意图;
图6为本申请提供的一种蓝牙功率控制的第一示意图;
图7为本申请提供的一种蓝牙功率控制的第二示意图;
图8为本申请提供的一种蓝牙功率控制的第三示意图;
图9为本申请提供的一种蓝牙功率控制的第四示意图;
图10为本申请提供的一种蓝牙功率控制的五示意图;
图11为本申请提供的一种蓝牙功率控制的第六示意图;
图12为本申请提供的一种蓝牙功率控制的第七示意图;
图13为本申请提供的一种蓝牙功率的第一用户界面图;
图14为本申请提供的一种蓝牙功率的第二用户界面图;
图15为本申请提供的一种蓝牙功率的第三用户界面图;
图16为本申请提供的一种蓝牙功率的第四用户界面图;
图17为本申请提供的一种蓝牙功率的第五用户界面图;
图18为本申请提供的一种蓝牙功率的第六用户界面图;
图19为本申请提供的一种蓝牙功率的第七用户界面图;
图20为本申请提供的一种蓝牙功率的第八用户界面图;
图21为本申请提供的一种蓝牙功率的第九用户界面图;
具体实施方式
本申请实施例中所提及的终端设备可以为手机、平板电脑、手持计算机、笔记本电脑、超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、上网本、蜂窝电话、以及个人数字助理(Personal Digital Assistant,PDA)、可穿戴式设备(如智能手表)、增强现实(augmented reality,AR)\虚拟现实(virtual reality,VR)设备等设备,本实施例对该设备的具体形式不做特殊限制。
因本申请实施例涉及利用短距离通信技术进行数据传输,需要引入与终端设备相对应的对端设备,本申请中所述的对端设备(又称从设备),可以为手机、平板电脑、手持计算机、笔记本电脑、超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、上网本、蜂窝电话、以及个人数字助理(Personal Digital Assistant,PDA)、可穿戴式设备(如智能手表)、增强现实(augmented reality,AR)\虚拟现实(virtual reality,VR)设备、智能音箱、耳机、车载设备、鼠标、键盘、打印机、照相机、摄像机等设备。
按照蓝牙协议,可以将数据传输系统包括主设备可以理解的,主设备与从设备可以为相同类型的设备,例如主设备为手机,从设备也可以为手机。为了便于描述,本申请可以将主设备称之为终端设备,将从设备称之为对端设备。
终端设备
如图1所述,图1示出了终端设备100的结构示意图,根据本发明的一些实施例提供一 种可能的是第一示意图。
终端设备100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本发明实施例示意的结构并不构成对终端设备100的具体限定。在本申请另一些实施例中,终端设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器110可以包含多组I2C总线。处理器110可以通过不同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。例如:处理器110可以通过I2C接口耦合触摸传感器180K,使处理器110与触摸传感器180K通过I2C总线接口通信,实现终端设备100的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通 信。在一些实施例中,音频模块170可以通过I2S接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块170与无线通信模块160可以通过PCM总线接口耦合。在一些实施例中,音频模块170也可以通过PCM接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与无线通信模块160。例如:处理器110通过UART接口与无线通信模块160中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块170可以通过UART接口向无线通信模块160传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现终端设备100的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现终端设备100的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为终端设备100充电,也可以用于终端设备100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他终端设备,例如AR设备等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对终端设备100的结构限定。在本申请另一些实施例中,终端设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过终端设备100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为终端设备供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
终端设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。终端设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在终端设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在终端设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,终端设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得终端设备100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code divisionmultiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
终端设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶 显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,终端设备100可以包括1个或N个显示屏194,N为大于1的正整数。
终端设备100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,终端设备100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当终端设备100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。终端设备100可以支持一种或多种视频编解码器。这样,终端设备100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现终端设备100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展终端设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储终端设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器110通过运行存储在内部存储器121的指令,和/或存储在设置于处理器中的存储器的指令,执行终端设备100的各种功能应用以及数据处理。
终端设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转 换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。终端设备100可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当终端设备100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。终端设备100可以设置至少一个麦克风170C。在另一些实施例中,终端设备100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,终端设备100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动终端设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A
的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。终端设备100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,终端设备100根据压力传感器180A检测所述触摸操作强度。终端设备100也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器180B可以用于确定终端设备100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定终端设备100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器180B检测终端设备100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消终端设备100的抖动,实现防抖。陀螺仪传感器180B还可以用于导航,体感游戏场景。
气压传感器180C用于测量气压。在一些实施例中,终端设备100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。终端设备100可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当终端设备100是翻盖机时,终端设备100可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测终端设备100在各个方向上(一般为三轴)加速度的大小。当终端设备100静止时可检测出重力的大小及方向。还可以用于识别终端设备姿态,应用于横竖 屏切换,计步器等应用。
距离传感器180F,用于测量距离。终端设备100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,终端设备100可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。终端设备100通过发光二极管向外发射红外光。终端设备100使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定终端设备100附近有物体。当检测到不充分的反射光时,终端设备100可以确定终端设备100附近没有物体。终端设备100可以利用接近光传感器180G检测用户手持终端设备100贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器180L用于感知环境光亮度。终端设备100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测终端设备100是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。终端设备100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,终端设备100利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,终端设备100执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,终端设备100对电池142加热,以避免低温导致终端设备100异常关机。在其他一些实施例中,当温度低于又一阈值时,终端设备100对电池142的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器180K,也称“触控器件”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于终端设备100的表面,与显示屏194所处的位置不同。
骨传导传感器180M可以获取振动信号。在一些实施例中,骨传导传感器180M可以获取人体声部振动骨块的振动信号。骨传导传感器180M也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器180M也可以设置于耳机中,结合成骨传导耳机。音频模块170可以基于所述骨传导传感器180M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于所述骨传导传感器180M获取的血压跳动信号解析心率信息,实现心率检测功能。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。终端设备100可以接收按键输入,产生与终端设备100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和终端设备100的接触和分离。终端设备100可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时插入多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。终端设备100通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,终端设备100采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在终端设备100中,不能和终端设备100分离。
蓝牙协议系统框架
如图2所示,本申请实施例提供一种终端设备的蓝牙协议框架,包括但不限于host(主机)协议栈、HCI(Host Controller Interface)、控制器(controller)。
其中,host协议栈定义了蓝牙框架中的多个应用(profile)和核心协议(protocol),每个profile定义了各自相应的消息格式与应用规则,profile是蓝牙服务(Application)。为了实现不同平台下的不同设备的互联互通,蓝牙协议为各种可能的、有通用意义的应用场景,都制定的了规范,如A2DP(advanced audio distribution profile)、HFP(hands-free profile)等等。
核心协议包括但不限于蓝牙基本的服务协议SDP(Service Discover Protocol)、逻辑链路控制和适配协议L2CAP(Logical Link Control and Adaptation Protocol)等。核心协议是蓝牙协议栈中必不可少的。
其中,HCI为上层协议提供了进入链路管理器的统一接口和进入基带的统一方式,在主机核心协议栈和控制器之间会存在若干传输层,这些传输层是透明的,完成传输数据的任务,蓝牙技术联盟(Bluetooth Special Interest Group,SIG)规定了四种与硬件连接的物理总线方式,即四种HCI传输层:USB、RS232、UART和PC卡。
其中,controller定义了底层硬件部分,包括无线射频(RF)、基带(BB)和链路管理(LM),RF层通过2.4GHz无需授权的ISM频段的微波,实现数据位流的过滤和传输,主要定义了蓝牙收发器在此频带正常工作所需要满足的条件。基带负责跳频以及蓝牙数据和信息帧的传输。链路管理负责连接、建立和拆除链路并进行安全控制。LM(Link Manager)层是蓝牙协议栈的链路管理层协议,负责将上层HCI命令翻译成基带能接受的操作,建立异步链路(asynchronous connection-oriented link,ACL)和同步链路(synchronous connection-oriented/extended,SCO)以及使蓝牙设备进入节能状态的工作模式等。LC(Link Control)层负责在一批数据包传送期间,响应上层LM命令(如执行建立数据包的传输链路,维持链路等功能的LM命令)。
本申请实施例所述的方法可以由图1所示的终端设备100的无线通信模块160来实现,具体可以是蓝牙模块或者是蓝牙芯片来执行。
数据传输拓扑结构
图3示出了终端设备100的一种可能的数据传输的方式。
如图3所示,以蓝牙技术为例,当终端设备100与对端设备连接之后,图3示出了3种典型的对端设备,例如显示设备200、音频设备300、存储设备400,本实施例只是列举并不 作出限定,终端设备100连接显示设备200之后,可以将文字、图片、视频、音频等各种数据发送给显示设备200,显示设备200接收后可以播放上述文字、图片、视频、音频等数据。
在一种可能的实施例中,终端设备100连接音频设备300之后,可以通过音频设备300在线播放音乐。
在一种可能的实施例,终端设备100可以是同时向多个对端设备发送文字、图片、视频、音频等数据。
值得说明的是,本实施例中的显示设备、音频设备、存储设备只是表示具有显示、音频播放、存储功能的终端设备,以智能手机为例,可以是显示设备,也可以是音频设备、还可以是存储设备。
在数据传输中,可以采用短距离通信技术,本申请实施例所描述的短距传输技术包括但不限于:Zig-Bee、蓝牙(Bluetooth)、无线宽带(Wi-Fi)、超宽带(UWB)和近场通信(NFC)、IrDA红外连接技术、UWB(Ultra Wideband)、数字增强无绳通信(Digital Enhanced Cordless Telecommunications,DECT)技术等等。
在数据传输中,可以以丢包率、重传率、接收信号的强度指示(Received Signal Strength Indicator,RSSI)、延迟、吞吐率、服务质量(Quality of Service,Qos)、发射功率、最大发射功率、最小发射功率、功率范围等用于衡量传输质量或者链路质量,还可以是其他用于衡量数据传输质量的参数,通常来讲,信道质量变差时,可以是丢包率、重传率等大于预设门限值,信道质量变好时,可以是RSSI等大于预设门限值。本申请不作出限定。
本申请实施例所描述的蓝牙协议,既可以是经典蓝牙(ER/BDR)协议,可以是低功耗蓝牙(BLE)协议;也可以是不同蓝牙协议版本(例如蓝牙3.0,4.0,5.0等)
蓝牙技术数据传输
蓝牙传输技术因其传输效率高,使用便利等特点广泛使用在数据传输领域,为了提高蓝牙传输的效率,蓝牙技术联盟(Bluetooth Special Interest Group,SIG)制定了相关的协议规定,其中的表1中是蓝牙协议中规定的蓝牙的发射功率参数表:
Figure PCTCN2020080178-appb-000001
协议中按照最大输出(发射)功率将终端设备分为三个等级20dBm,4dBm,4 0dBm,最大的发射功率等级(模式)可以达到为20dBm,协议中还规定了表称输出功率、最小输出功率以及功率控制等参数,例如在功率等级为1的时候,最大输出功率为20dBm,最小输出功率为0dBm,功率控制(请求对端设备提高或者降低的功率范围)在4dBm至20dBm。具体描述可以参见蓝牙协议(例如蓝牙协议5.0)
本申请实施例中,当蓝牙达到最大输出功率20dBm时,可以认为终端设备达到蓝牙高功率模式(又称高功率模式,最大输出功率模式,最大发射功率模式,或最大输出功率),同样, 当蓝牙的输出功率达到4dBm可以认为终端设备达到蓝牙普通功率模式(又称普通模式,普通输出功率模式,普通发射功率模式,普通输出功率)以及当蓝牙的输出功率为0dBm的时候,可以认为终端设备为蓝牙低功率模式(又称低功率模式,最小输出功率模式,最小发射功率模式,最小输出功率)。本申请实施例中还可以将蓝牙的功率等级分为至少2个,比如高功率模式以及低功率模式;还可以将功率等级分为至少4个,高功率模式,中高功率模式,中低功率模式以及低功率模式。本申请对于功率等级不作限定。
本申请实施例中,还可以按照功率范围定义功率等级,例如,可以定义1dBm至10dBm范围内功率输出为低功率模式,定义10dBm至20dBm为高功率模式,或者定义5dBm至10dBm为普通功率模式。
本申请实施例中,考虑到业界的终端设备普遍的最大输出功率为12dBm-14dBm左右,终端设备的高功率模式可以为高于14dBm或者高于12dBm。
本申请实施例中,当终端设备提高发射功率之后,可以认为终端设备处于高功率模式,或者以高功率模式进行数据业务;同样当终端设备降低发射功率之后,可以认为终端设备处于低功率模式,或者以低功率模式进行数据业务。
终端设备可以连接多个对端设备,并与每一个对端设备建立一条物理链路,终端设备可以基于不同的物理链路以不同的功率模式发送数据至对端设备,例如图3中终端设备100可以同时连接显示设备200以及音频设备200,即终端设备100可以与显示设备200建议第一物理链路,用于传输数据;终端设备100可以与音频设备300建立第二物理链路,其中,终端设备基于第二物理链路以高功率模式发送数据音频设备300。
蓝牙发射功率提升传输
为了提高终端设备的蓝牙发射功率或者使终端设备处于高功率模式下,可以采用多种方式,在一些可能的实施例中,如图4所示,可以在蓝牙芯片内增加至少一个内置功率放大器PA1(Power Amplifier,PA),从而提高终端设备的发射功率,增加通信距离。蓝牙的最大发射功率由PA1与IPA(内置功率放大器)级联实现,其中IPA作为PA1的输入级给PA1提供激励信号,PA1输出的发射功率即蓝牙的发射功率,可以理解,PA1的功率大于IPA的发射功率,从而达到提高功率的效果。
在一种可能的实施例中,还可以在射频通路上即蓝牙芯片外增加至少一个外置PA2,从而提高产品的发射功率,增加通信距离,其原理与上述实施例相同,可以理解,PA2的功率大于IPA的发射功率。
图4只是示例性描述一种通过增加PA的方式提高放射功率,但并非对本发明的限定。
在一些实施例中,如图5所示,还可以是通过复用Wi-Fi的发射通路来增加蓝牙发射功率。通常来讲,Wi-Fi的PA的发射能力强于蓝牙BT的发射能力,因此,当蓝牙传输需要高功率发射时,可以复用Wi-Fi芯片或者Wi-Fi功能单元的PA,以达到最大输出功率。
蓝牙可以默认工作在低功率模式以节省功耗,蓝牙的发射通路工作在蓝牙独立的RF(射频)通路上,RF通路包括蓝牙功率放大器、滤波器等射频器件;根据对端设备的请求,在满足高功率使用的约束条件下,进行功率档位切换,使能高功率模式,即如图5所示蓝牙基带连接Wi-Fi的射频通路,从而达到提高输出高功率的效果。
基于业务的蓝牙发射功率的切换
如果终端设备持续处于高功率模式来进行数据传输,无疑是功耗大幅增加而且在一些场景往往对数据传输的质量没那么高的要求,在蓝牙业务使用过程中,根据业务的实时状态, 动态调整蓝牙的发射功率,达到在尽可能保持低功耗的状态下提升业务性能的目的。
在一些实施例中,终端设备是否需要提高或者降低蓝牙的发射功率可以根据当前终端设备所进行的业务类型来确定,所述的业务类型可以包括Wi-Fi业务、蜂窝数据业务等;例如,当终端设备进行蜂窝业务的时候(或者仅在进行Wi-Fi业务的时候),此时消耗功率比较大,此时蓝牙可以采用较低的发射功率等级,例如表2中的等级2,即普通功率模式。当终端设备进行蜂窝业务和Wi-Fi业务的同时,此时可以采取最低的发送功率等级,例如表2中的等级3,即低功率模式。当终端设备仅在进行蓝牙业务的时候,可以采用最高的蓝牙发送功率等级,例如表2中的等级1,即高功率模式,如表2所示:
功率等级 功率模式 Wi-Fi业务 蜂窝业务
1 高功率模式 关闭 关闭
2 普通功率模式 开启(关闭) 关闭(开启)
3 低功率模式 开启 开启
表2
值得说明的是,本实施例可以针对不同业务进行组合以调整发射功率,例如在终端设备进行Wi-Fi业务时并且没有进行蜂窝业务的时候,可以采用高功率模式,本申请实施例不作出限定。在一些可能的实施例中,还可以根据当前的场景进行蓝牙功率模式的切换,业务场景可以音乐场景、视频场景、投屏场景、电话场景、图片分享场景、文档分享场景等,如表3所示,在音乐场景下,例如通过蓝牙无线耳机听音乐,由于音乐场景下用户对音质以及时延的要求较高,所以需要较高的发射功率;在图片分享的场景下,例如用户通过终端设备向对端设备发送照片,在该场景下,对传输质量相对较低,可以采用普通功率模式或者低功率模式即可满足用户的需求,如表3所示
功率等级 功率模式 业务场景
1 高功率模式 音视频场景
2 低功率模式 图片分享
表3
值得说明的是,本申请实施例可以自定义不同的场景下采用不同的功率模式,在一种可能的模式,可以提供图形用户界面进行选择,比如,用户可以设置在投屏场景下采用普通模式,在电话场景下采用高功率模式等。
在一些实施例中,终端设备可以结合业务类型以及业务场景来确定是否提高蓝牙发射功率,即可以确定当前业务场景是根据在哪种业务类型下进行的,从而调整蓝牙的功率模式。如表4所示:
功率等级 功率模式 业务场景 业务类型
1 高功率模式 音视频场景 Wi-Fi
2 低功率模式 图片分享 Wi-Fi
表4
当用户通过蓝牙耳机连接终端设备时,并通过蓝牙耳机听音乐或者看视频,并且当前音 乐或者视频是通过Wi-Fi热点传输数据时,所述终端设备可以采用高功率模式发送数据至耳机。
当用户通过蓝牙耳机连接终端设备时,并通过蓝牙耳机听音乐或者看视频,并且当前音乐或者视频是通过蜂窝模块传输数据时,所述终端设备可以采用低功率模式发送数据至耳机。值得说明的是,本申请实施例可以自定义不同的业务场景和业务类型下采用不同的功率模式,在一种可能的实施例,可以提供图形用户界面进行选择,比如,用户可以设置在投屏场景且Wi-Fi业务下采用普通模式,在电话场景且蜂窝业务下采用低功率模式等。可以结合更加节省功耗以及更佳的用户体验。
基于连接设备类型的蓝牙发射功率的切换
在一些实施例中,为了节省功耗,可以根据对端设备的类型来进行蓝牙发射功率的调整,通常来讲,用户在进行音乐传输的时候,比如对端设备是音箱、耳机等音频设备时,对数据传输的质量、时延等要求较高,因此需要终端设备进行高功率发射以提高传输数据传输质量,而在其他的一些场景下,例如终端设备在进行图片传输或者图片投屏等场景下,通常对端设备是显示器或者存储器等设备时,对数据传输的质量相对较低,因此可以采用相对较低的发送功率。
在一些实施例中,可以通过对端设备的设备类型(Class of Device,CoD)来进行判断是否为音频设备,终端设备在扫描周边对端设备时可以通过执行蓝牙协议规定的查询(inquiry)流程。该流程中,终端设备可以以广播的形式发送身份标识(ID)广播包,周边的对端设备收到ID广播包后可以回复响应消息(inquiry scan),例如,可以是回复FHS包,(Filesystem Hierarchy Standard,FHS),FHS包带有对端设备的设备COD类型(Class of device)信息,根据该信息可以判断被查询设备是否为音频设备或者预设的设备类型。
具体地,如图6所示,提供一种终端设备获取对端设备COD的方法。
步骤601:终端设备在开启蓝牙功能(例如,用户在终端设备的设置界面打开蓝牙开关)之后,终端设备可以进行对端设备查询,例如,通过蓝牙协议的inquiry流程可以向周围范围的多个对端设备发送ID包,所述ID包包括当前终端设备的一些参数信息,例如,身份标识、MAC地址、IP地址以及其他用于表征终端设备能力的参数等。
步骤602:对端设备A以及对端设备B接收到终端设备发送的ID包之后,例如,当对端设备处于inquiry scan的状态下,可以进行针对ID包进行响应,例如可以发送FHS包,所述FHS包中可以携带对端设备中的CoD信息,即设备类型信息。CoD可以是按照蓝牙协议规定的设备类型,如表4所示:
序号 主要设备类(Major Device Classes)
1 计算机(computer)
2 电话(phone)
3 LAN/网络接入点(LAN/Network Access point)
4 音频/视频(audio/video)
5 配件(Peripheral)
6 成像(imaging)
7 可穿戴(wearable)
8 玩具(Toy)
9 健康(Health)
10 其他
表5
表4中列举了根据蓝牙标准协议的一些主要设备类型,在协议中,可以用标识5位标识位标识主要设备类,例如用00001来标识计算机类,00010来标识电话类。具体设备类型可以参见蓝牙标准。
在一些实施例中,根据蓝牙协议,上述主要设备类型还可以细分为小类,以音频/视频大类为例,如表5所示,可以分为多个小类:
序号 次要设备类(minor device class filed)
1 可穿戴耳机设备(Wearable Headset Device)
2 免提设备(Hands-free Device)
3 麦克风(Microphone)
4 扬声器(Loudspeaker)
5 耳机(Headphones)
6 便携式音频(Portable Audio)
7 车载音频(Car audio)
8 机顶盒(Set-top box)
9 HiFi音频设备(HiFi Audio Device)
10 录像机(VCR)
11 摄像机(Video Camera)
12 录摄一体机(Camcorder)
13 视频监控(Video Monitor)
14 视频显示和扬声器(Video Display and Loudspeaker)
15 视频会议(Video Conferencing)
16 ……
表6
表5中列举了音视频分类中一些次要分类,协议中可以用6位标识位用来标识次要分类,例如000001用来标识可穿戴耳机设备,000010用来标识免提设备,具体可以参见蓝牙协议规定。
在本申请中,获取对端设备的COD信息,可以是包括主要设备类型,也可以包括次要设备类型。在判断对端设备的设备类型时,同样也可以基于主要设备类型,还可以基于次要设备类型。
值得说明的是,对端设备的响应消息中可以分携带有COD信息,还可以包括:MAC地址、IP地址、设备名称以及其他用于表征对端设备能力的参数等。
在一些实施例中,在终端设备和对端设备配对连接的过程中,终端设备可以获取到对端设备的能力参数,例如获取到对端设备所支持的蓝牙服务(profile)的类型或者版本号,终端设备可以通过对端设备所支持的蓝牙服务的类型来确定对端设备的设备类型,例如,如果对端设备支持音频传输模型协定(advanced audio distribution profile,A2DP)和/或免提协定(hands-free profile,HFP)服务,则可以确定对端设备是音频/视频设备。
一般来讲,Profile定义了一种基于蓝牙的应用,每个Profile规范主要包括针对开发 者的接口,消息的格式和标准(例如音频压缩),使用蓝牙协议栈的组件等等。每一种Profile对应于一个UUID,Bluetooth中UUID的概念类似于TCP/IP中端口的概念,每一个UUID运行一种服务,可以通过通用唯一识别码(universally unique identifier,UUID)来标识蓝牙服务。其中,不同的UUID标识的蓝牙服务不同,每个服务都有通用、独立、唯一的UUID与之对应,常见的服务如下表5所示:
UUID 蓝牙服务
A2DP_UUID A2DP(Advanced Audio Distribution Profile)
HFP_UUID HFP(Hands-Free Profile)
表7
A2DP_UUID表示A2DP音频传输模型协定,A2DP定义建立音视频流所需要的参数和流程;HFP_UUID表示HFP免提协定,提供手机与耳机之间通信所需的基本功能。
在一些实施例中,如图6所示,对端设备A以及对端设备B接收到终端设备发送的ID包之后,例如,当对端设备处于inquiry scan的状态下,可以进行针对ID包进行响应,例如可以发送FHS包,所述FHS包中可以携带对端设备中的CoD信息,所述FHS包中还可以携带中对端设备设备所支持的服务的UUID信息,例如,当对端设备支持A2DP服务时,所述FHS包可以携带A2DP_UUID,进一步地,终端设备可以根据UUID确定对端设备的设备类型。
在一些实施例中,终端设备还可以通过与对端设备之间进行服务发现协议(service discovery protocol,SDP)交互操作,使得终端设备可以通过自身的蓝牙芯片直接向对端设备的蓝牙芯片发送蓝牙服务的查询命令。
如图7所示,本申请实施例提供一种通过SDP协议查询对端设备的所支持的服务。
步骤701:终端设备发送SDP请求,例如,终端设备询问对端设备是否支持Hands-Free服务,则对端设备可以发送SDP_Service Search Attribute Request消息,其中,SDP_Service Search Attribute Request消息中可以携带Hands-Free的UUID;
步骤702:对端设备接收到终端设备的请求之后,可以回复查询到的profile以及版本号,例如回复Hands-Free的UUID和Hands-Free的版本号。
在一些实施例中,终端设备发送SDP请求时,SDP_Service Search Attribute Request消息中携带的UUID可以随机或者按照预设的顺序,例如,可以先携带有Hands-Free的UUID;当对端设备不支持的时候Hands-Free服务的时候;可以再次发送SDP请求,并携带有A2DP的UUID,即SDP过程会逐个查询对端设备支持哪些service,进一步地,终端设备根据对端设备所支持的服务,确定对端设备的设备类型。
在另一些实施例中,在如图6所示的方法中,在终端设备获取到对端设备的CoD信息之后,可以进一步确定对端设备所支持的服务,例如,终端设备获取根据CoD信息为配件(Peripheral)设备,进一步地,可以依据确定对端设备可能的支持的服务类型,例如Hands-Free或者A2DP服务,进一步地,可以利用如图7所示的方法,通过发送SDP_Service Search Attribute Request消息,消息中携带中Hands-Free的UUID,当对端设备不支持的时候Hands-Free服务的时候;可以再次发送SDP请求,并携带有A2DP的UUID;从而更加精确的确定对端设备的设备类型。
在一些实施例中,通过上述识别对端设备CoD类型或者对端设备所支持的服务类型来识别对端设备的类型,终端设备启动或者开启高功率模式。例如,当终端设备确定对端设备的CoD类型是(audio/video)类型,具体地,可以是可穿戴耳机设备(Wearable Headset Device) 类型,终端设备可以确定当前用户可能在通过蓝牙耳机在听音乐,因此可以提高发射功率,使终端设备处于高功率模式,从而使得用户有更好的用户体验。还例如,当终端设备确定对端设备支持A2DP服务,终端设备可以确定对端设备是与音频服务相关的设备,因此可以提高发射功率,使终端设备处于高功率模式,从而使得用户有更好的用户体验。
值得说明的是,本申请所提到UUID,可以是基本的UUID(128位),也可以是代替基本UUID的16位UUID,例如一种基本的UUID结构可以是BASE_UUID 00000000-0000-1000-8000-00805F9B34FB;又例如,SDP服务的代理基本UUID的16位UUID为0x0001。
蓝牙高功率发射的开启
终端设备与对端设备基于蓝牙协议建议连接之后,会建立至少一条物理链路,例如可以是基于连接的异步链路(Asynchronous Connection-Oriented Link,ACL)链路,根据蓝牙协议,终端设备可以给每一条ACL分配一个链路编号(例如,connection Handle编号),终端设备可以根据链路编号来提高发射功率。
在一种可能的实施例中,还可以通过识别对端设备的标识或者mac地址来提高发射功率。
在上述实施例中,可以通过识别对端设备的COD以及对端设备所支持的服务来确定对端设备需要开启或者关闭终端设备的高功率模式,具体地,可以通过host发送HCI命名,由controller具体执行对应的操作。
如图8所示,本申请实施例提供一种开启蓝牙高功率的方法,具体如下:
步骤801:终端设备获取对端设备的CoD信息或者UUID信息,例如终端设备可以通过蓝牙协议中inquiry流程或者通过SDP流程获取对端设备所支持的服务的UUID;
步骤802:终端设备确定对端设备的设备类型,例如可以通过上述识别对端设备COD的方法和/或识别对端设备所支持的蓝牙服务来识别对端设备的设备类型;
步骤803:当终端设备确定对端设备为非预设类型的设备时,终端设备确定不开启高功率模式,具体地,终端设备可以通过controller指示该ACL不使能高功率模式。
在一种可能的设计中,终端设备可以通过用户界面设置默认或者初始的功率模式为低功率模式,当终端设备确定对端设备为非预设设备(例如计算机设备)时,可以触发controller指示该ACL不使能高功率模式或者保持原有的功率模式或者不触发任何动作或者指令;
步骤804:当终端设备确定对端设备为预设设备(例如音频设备)时,终端设备确定需要以高功率模式进行,具体地,则终端设备可以配置HCI命令以使得允许该ACL链路发射高功率。
步骤805:终端设备使能高功率模式,具体地,可以是controller执行HCI命令,指示该ACL链路使能高功率。
进一步地,终端设备以高功率模式发送数据包至对端设备;
值得说明的是,在步骤805中,终端设备使能高功率模式,终端设备可以以低功率模式发送数据包至对端设备,因为可能还需要满足其他的预设条件(例如信道质量满足预定条件之后),终端设备才能以高功率模式发送数据包至对端设备。
值得说明是,上述步骤并非是对执行顺序的一种限定,例如步骤803可以在步骤802之前,本申请不作限定。
在步骤805之后,本申请实施例还提供一种终端设备开启高功率模式的方法,如图9所示:
步骤901:终端设备连接对端设备之后,可以发送数据包至对端设备,具体地,可以通过controller发送数据包至对端设备,所述数据包可以是普通功率模式或者低功率模式进行发送。
本申请中的数据包可以是音频数据、视频数据、文件等数据包,在一些实施例中,数据包还包括一些控制命令或者参数。
步骤902:对端设备接收到数据包之后,会发送响应(例如ACK)至终端设备;在一些实施例中,如果对端设备没有收到数据包或者只收到部分数据包,对端设备会也会发送响应消息(例如NACK)至终端设备;在一些实施例中,有可能对端设备收到或者没有数据包,对端设备不会回复响应,例如链路质量差的情况下或者数据丢失的情况下。
步骤903:终端设备确定当前的链路质量,确定当前的数据传输链路的质量可以通过丢包率、重传次数、重传率、RSSI(Received Signal Strength Indicator)值等参数来确定。在一些实施例中,可以是基于对端设备是否回复ACK或者NACK来确定链路质量,例如,当链路质量较好的情况下,对端设备收到数据包就可以回复ACK;如果链路质量不好的情况下,通常对端设备没有收到数据包或者部分数据包,对端设备回复终端设备NACK或者对端设备无响应。基于对端设备的响应可以确定当前链路质量,从而进一步确定是否开启高功率模式,具体地,可以是controller上报链路质量至host。
步骤904:当终端设备确定链路质量满足预定条件时,终端设备开启高功率模式,通常预定条件可以是丢包率大于预定值,或者重传次数大于预定值或者重传率大于预定值,RSSI小于预设值等,还可以是本申请实施例中其他用于衡量链路质量的参数满足阈值条件。具体地,可以是host发送指令至controller设置ACL链路开启高功率模式。
步骤905:终端设备设置ACL链路开启高功率模式,具体地,终端设备的controller接收到来自host的命令使能ACL链路之后,回复响应消息至host。
步骤906:当终端设备(具体是controller)设置该链路开启高功率模式之后,可以发送数据包至对端设备在高功率模式下。
值得说明的是,在高功率模式下终端设备还可以接受对端设备回复的ACK或者NACK,进一步判断是否需要继续保持在高功率模式或者调整至低功率模式。
步骤907-步骤912原理同上述1001-1006,可以检测继续检测当前的链路质量,从而决定进一步地是否切换至普通功率模式。本实施例不在赘述。
根据对端设备动态开启高功率模式
在实际应用中,对端设备可以有多种不同的类型,不同类型的对端设备数据传输的质量要求也不太一样,比如一些键盘、鼠标等对端设备,通常在近距离才会使用的设备,对于耳机或音箱、车载设备等,由于音乐和通话均为实时性要求极高的业务,且可能存在远距离或遮蔽场景使用的情况,因此需要使用高功率模式来提升远距离或者遮蔽场景下的业务稳定性。
一般来讲,对端设备可以根据数据传输的质量主动向终端设备发送请求,请求对端设备降低或者提供发送功率,或者请求终端设备进入高发射功率模式或者低发射功率模式。
具体地,如图10所示,当终端设备与对端设备(以耳机为例)建立连接后,终端设备可以发送数据给对端设备,当对端设备检测到数据传输的链路质量变差(例如拉远或者遮挡)时,对端设备可以发送请求给终端设备,例如发送的请求为LMP_Power_Control_req,该请求是用于请求终端设备提高发射功率,例如,该请求可以携带请求提高具体的功率的数量级,例如,提高10%的发射功率(one step up)或者要求提高4dBm,还可以是请求终端设备以最 大的发射功率进行发射(max power),还可以是增加功率发射等级;
在一些实施例中,有一些对端设备连接终端之后,会立即向终端设备发送请求,例如直接发送LMP_Power_Control_req至终端设备,以使得终端设备以高功率模式发送数据包。
终端设备接收到对端设备的请求之后,回复响应消息给对端设备,例如可以回复LMP_Power_Control_Res,进一步地,终端设备提高发射功率;
同样,对端设备也可以发送请求消息至终端设备,用于降低终端设备的发射功率,例如,请求降低10%的发送功率,或者请求终端设备以最小的发送功率进行传输数据、或者降低功率发射等级。
值得说明的是,在一些实施例中,终端设备接收到对端设备用于提高发射功率的请求之后,会决定是否提高发射功率,例如,终端设备需要获取当前终端设备所能支持的最大发射功率,以及获取当前终端设备所使用的发送功率,根据所能支持的最大发射功率以及当前所使用的发送功率来决定是否提高发射功率。例如,终端设备所能支持的最大发射功率为14dBm,当前终端设备所使用的发射功率为12dBm,对端设备请求提高发射功率4dBm,在这种情况下,终端设备可以不提高发射功率,因为已经超出终端设备所能支持的最大发射功率;终端设备还可以至提高2dBm,以达到终端设备所能支持的最大输出功率。在一些实施例中,终端设备还需要确定当前终端是否支持高功率模式;在一些实施例中,终端设备在接收到对端设备的请求,所述请求用于提高终端设备的发射功率,例如,提高4dBm,终端设备还需要根据当前的实际发射功率以及需要提高的发射功率,来确定是否需要提高终端设备的功率等级,例如终端设备的实际发射功率是12dBm,对端设备请求提高4dBm,若终端设备将大于14dBm定义为高功率模式时,则此时终端设备不需要切换至高功率模式,若终端设备将大于或等于12dBm定义为高功率模式,则终端设备需要切换至高功率模式,在这种情况下,可以理解,终端模式有两个档位模式,例如,当大于14dBm的时候可以定义为高功率模式,当提升后的发射功率(现在实际的发射功率加上对端设备请求的需要提高的发射功率)大于14dBm的时候,则需要提高发射功率档位,例如采用图4或者图5所示的方法。
在一种可能的实施例中,针对耳机和音箱类设备,还可以根据对端请求动态开启手机侧高功率模式,如图11所示:
步骤1101:终端设备获取对端设备的CoD信息或者UUID信息,例如终端设备可以通过蓝牙协议中inquiry流程或者通过SDP流程获取,如图6,图7所述的方法;
步骤1102:终端设备确定对端设备的设备类型,该设备类型可以是通过上述识别对端设备的COD类型以及所支持的服务类型来确定其设备类型;在一些实施例中,可以将对端设备的设备类型定义为高功率设备和低功率设备,例如,可以将audio类型定义为高功率设备,将computer类型定于为低功率设备,本申请实施例不作限定,可以基于厂商或者用户的自定义;在一些实施例中还可以是将对端设备分为多档功率设备,例如高功率设备、中等功率设备、低功率设备;如表6所示:
设备类型 具体类型
高功率设备 Audio
低功率设备 Computer
表8
值得说明的是,上表中的高功率设备类型可以根据用户自定义不同类型的设备,而具体 的设备类型可以参照上述蓝牙协议中的设备类型规定或者COD类型。
因此,本申请实施例可以扩展到依据对端设备的类型是否是预定的设备类型,如果是,则终端设备可以提高发射功率或者启动高功率模式。
步骤1103:如果确定对端设备不是指定类型的设备,则不需要处于高功率模式,则切换至低功率模式;如果当前终端设备已经处于低功率模式,则继续保持低功率模式。也可以用户自定义初始模式,初始模式可以默认是高功率模式或者低功率模式。
步骤1104:如果确定对端设备是指定类型的设备,则终端设备使能高功率模式,具体地,可以是controller针对该ACL使能高功率。
步骤1105:接收到对端设备的提高发射功率的请求,例如,可以是例如LMP_Power_Control_Req,该请求是用于请求对端设备提高发射功率,例如,该请求可以携带请求提高具体的功率的数量级,例如,提高10%的发射功率(one step up),还可以是请求终端设备以最大的发射功率进行发射(max power),还可以增加功率发射等级;通常来讲,对端设备可以根据链路参数,例如RSSI值等来确定链路传输质量,当链路参数低于预设门限值时,可以发送LMP_Power_Control_Req至对端设备。
步骤1106:终端设备确认提升功率后是否达到高功率模式;在一些实施例,终端设备接收到对端设备用于提高发射功率的请求之后,会决定是否提高发射功率,例如,终端设备需要获取当前终端设备所能支持的最大发射功率,以及获取当前终端设备所使用的发送功率,根据所能支持的最大发射功率以及当前所使用的发送功率来决定是否提高发射功率。例如,终端设备所能支持的最大发射功率为14dBm,当前终端设备所使用的发射功率为12dBm,对端设备请求提高发射功率4dBm,在这种情况下,终端设备可以不提高发射功率,因为已经超出终端设备所能支持的最大发射功率;终端设备还可以至提高2dBm,以达到终端设备所能支持的最大输出功率。又例如,当终端设备当前的发射功率为8dBm,对端设备请求提高4dBm的发射功率,而终端设备定义大于14dBm为高功率模式,则此时不满足提升至高功率模式,可以执行步骤1103。在一些实施例中,终端设备在接收到对端设备的请求,所述请求用于提高终端设备的发射功率,例如,提高4dBm,终端设备还需要根据当前的实际发射功率以及需要提高的发射功率,来确定是否需要提高终端设备的功率等级,例如终端设备的实际发射功率是12dBm,对端设备请求提高4dBm,若终端设备将大于14dBm定义为高功率模式时,则此时终端设备不需要切换至高功率模式,若终端设备将大于或等于12dBm定义为高功率模式,则终端设备需要切换至高功率模式,在这种情况下,可以理解,终端模式有两个模式(高功率模式和低功率模式)或者两位档位(高功率档位与低功率档位),例如,当大于14dBm的时候可以定义为高功率模式,当提升后的发射功率(现在实际的发射功率加上对端设备请求的需要提高的发射功率)大于14dBm的时候,则需要提高发射功率档位,例如采用图4或者图5所示的方法。
在一些实施例中,可以认为低功率模式下,终端设备的发射功率为一定的范围,例如0dBm到14dBm,可以认为蓝牙芯片的最大发射功率为14dBm,如果当前终端设备的实际发射功率为10dBm,而对端设备请求提高5dBm或者50%的发射功率,终端设备确定当前的实际发射功率加上对端设备请求提高的发射功率已经超过蓝牙芯片的最大发发射功率,进一步,可以采用图4或者图5的方式提升发射功率,例如可以达到14-20dBm,那么终端设备可以处于高功率模式,高功率模式下,终端设备再调整发射功率,例如15dBm,并以15dBm发送数据给对端设备。
步骤1107:当终端设备提升后满足高功率模式之后,终端设备改变发射功率模式,将当前功率模式调整到高功率模式。即终端设备切换至高功率模式,并使用高功率模式发送数据包至对端设备。
上述步骤并非是对方法执行顺序的一种限定,在一些实施例中,终端设备通过连接对端设备时,可以获取对端设备的CoD信息以及服务类型,当终端设备连接对端设备之后,可以以默认或者初始的功率模式(例如低功率模式)进行发送数据至对端设备,当信道链路质量变差时,例如,链路参数低于预设门限时,终端设备接收对端设备请求改变功率模式的请求,例如提高发射功率等,终端设备响应与请求,终端设备以高功率模式发送数据包至对端设备。
在一些实施例中,例如步骤1108:考虑到Wi-Fi业务对蓝牙业务的影响,可以根据Wi-Fi业务的使用情况来进一步确定是否提高发射功率。例如,可以在接收到对端设备提高发射功率的请求之后,进一步判断是否满足Wi-Fi共存的约束条件,例如,在一些情况下,蓝牙高功率模式是通过如图4所示的复用Wi-Fi通路的方式实现的,如果这种蓝牙高功率模式会导致Wi-Fi业务无法收发数据时,例如,如果Wi-Fi业务需要执行关键帧接收或者发送,或者当前WiFi进行VoWi-Fi(Voice over Wi-F)等实时业务,则可以不切换到蓝牙高功率模式。因此在这种实现方式下需要考虑蓝牙高功率和Wi-Fi共存的问题。
根据终端设备开启高功率模式
有部分对端设备在建立ACL链路后就立即会向手机发送LMP Max Power请求,并且不会发送任何降功率请求,导致手机持续处于高功率发送状态。考虑到这种情况造成不必要的功耗浪费,因此另一种不依赖对端设备的请求,由终端设备单方面来决定是否使用高功率模式发送数据的方案。具体地,该方法开启高功率的条件不再依据对端设备的请求决定,而是终端设备根据对端设备信号的RSSI(Received Signal Strength Indicator)以及重传次数、丢包率等参数来决定是否使用高功率发射。如图12所示:
步骤1201:终端设备获取对端设备的CoD信息或者UUID信息,例如终端设备可以通过蓝牙协议中inquiry流程或者通过SDP流程获取对端设备所支持的服务的UUID;
步骤1202:终端设备确定对端设备的设备类型,该设备类型可以是通过上述识别对端设备的COD类型以及所支持的服务类型来确定其设备类型;
步骤1203:如果确定对端设备不是指定类型的设备(例如可以设置当对端设备是音频设备的时候提高发射功率),终端设备不需要处于高功率模式,则切换至低功率模式;如果终端设备当前处于低功率模式,则继续保持。也可以用户自定义初始模式,初始模式可以默认是高功率模式或者低功率模式。
步骤1204:如果确定对端设备是指定类型的设备(例如音频设备),则终端设备使能高功率,具体可以是controller针对该ACL使能高功率。
步骤1205:接收到对端设备的提高发射功率的请求,例如,可以是例如LMP_Power_Control_Req,该请求是用于请求对端设备提高发射功率,例如,该请求可以携带请求提高具体的功率的数量级,例如,提高10%的发射功率(one step up),还可以是请求终端设备以最大的发射功率进行发射(max power),还可以增加功率发射等级;
步骤1206:终端设备开始检测ACL的链路质量,可以通过丢包率、重传率、接收信号的强度指示(Received Signal Strength Indicator,RSSI)、延迟、吞吐率、服务质量(Quality of Service,Qos)、发射功率、最大发射功率、最小发射功率、功率范围等用于衡量传输质量或者链路质量的参数;
步骤1207:若确定信道质量满足预定条件的时候,切换至高功率。例如预设条件可以是当RSSI低于阈值的时候,和或任意连续重传的次数超过阈值的时候。若不满足预定条件时,则保持在低功率模式,参见步骤1203。
步骤1208:终端设备切换至高功率模式,并使用高功率模式发送数据包至对端设备。
在一些实施例中,步骤1209:考虑到Wi-Fi业务对蓝牙业务的影响,可以根据Wi-Fi业务的使用情况来进一步确定是否提高发射功率。例如,可以在接收到对端设备提高发射功率的请求之后,进一步判断是否满足Wi-Fi共存的约束条件,例如,在一些情况下,蓝牙高功率模式是通过如图4所示的复用Wi-Fi通路的方式实现的,如果这种蓝牙高功率模式会导致Wi-Fi业务无法收发数据时,例如,如果Wi-Fi业务需要执行关键帧接收或者发送,或者当前WiFi进行VoWi-Fi(Voice over Wi-Fi)等实时业务,则可以不切换到蓝牙高功率模式。因此在这种实现方式下需要考虑蓝牙高功率和Wi-Fi共存的问题。
在一些实施中,步骤1205是非必须的,即终端设备可以监控信道质量,从而确定是否提高发射功率。
值得说明的是,本申请实施例同样适用于功率降低的方法,其原理和步骤可以同本申请实施中所述的功率提高的方法。
根据用户选择进行高功率模式和低功率模式切换的方法和图形用户界面
在一些实施中,可以提供一种用户自定义高功率模式的方法,如图13所示,终端设备显示设置界面,在设置界面中,可以接收用户的操作以设置Wi-Fi、移动网络、勿扰模式等。当接收用户针对蓝牙选项设置的操作时,可以显示第二界面,如图14所示,可以显示蓝牙设置的用户界面,该界面中,包括蓝牙开关,用于打开或者关闭终端设备的蓝牙功能;还包括终端设备的信息,例如设备名称、标识等;包括已经与终端设备配对过的蓝牙设备,例如图示的耳机HUAWEI free buds;还包括扫描到的周围的多个对端设备,如图示的HUAWEI Mate 20,以及HUAWEI Mate 10;用户可以点击扫描到终端设备进行配对操作,还可以针对已经配对过的设备进行连接操作。
终端设备检测到用户针对“已配对的设备”设备操作,例如针对HUAWEI free buds的操作,终端设备显示如图15所示的界面,该界面可以针对已经配对的设备进行设置,例如可以对已经配对的设备进行重命名;还包括通话视频开关、媒体音频开关、共享联系人开关,以及是否开启高功率模式的开关,例如,当接收用户开启高功率模式的指令之后,终端设备可以依据高功率模式发送数据包至耳机HUAWEI free buds。
在一些实施例中,如图16所示,显示另一种设置高功率的界面,可以针对已经配对的设备进行高功率设置,包括可以对已经配对的设备进行重命名操作,已经可以设置“连接该设备时自动启动高功率模式”的选项或者连接该设备是禁止启动高功率模式选择,当终端设备连接上耳机HUAWEI free buds时,会根据用户预先设置,自动选择相应的模式。
在一些实施例中,如图17所示,终端设备接收到用户针对蓝牙功能的操作时,可显示如图18所示的界面,所述界面包括蓝牙开关,用于打开或者关闭终端设备的蓝牙功能;包括终端设备的信息,例如设备名称、标识等;包括已经与终端设备配对过的蓝牙设备,例如图示的耳机HUAWEI free buds,HUAWEI Mate 10;还包括扫描到的周围的多个对端设备,如图示的HUAWEI Mate 10;进一步地,在已经配对的设备中,可以显示已经配对的设备与当前终端设备的连接状态,包括但不限于未连接状态、已经连接状态,图17示的是已经配对的设备包括HUAWEI Mate 10以及HUAWEI free buds显示的是未连接状态,未连接状态可以理解当前 终端设备与HUAWEI Mate 10以及HUAWEI free buds已经完成蓝牙协议规定的扫描与配对过程,但并没有完成数据连接过程,当接收用户的连接操作时,可以显示如图18所示的界面,用于提醒用户,示例性地提醒如图所示,“已经连接到对端设备HUAWEI free buds属于音频设备,是否启动高功率模式”,如果接收用户点击“是”的操作命令,则终端设备可以以高功率模式发送数据包至耳机;如果接收用户点击“忽略”的操作命令,则终端设备不以高功率模式发送数据包至耳机;如果接收用户点击“不在提醒”的操作命令,则终端设备不以高功率模式发送数据包至耳机,并且下次连接的时候不在弹框提醒用户。
在一些实施例中,如图19所示,在蓝牙设置界面还可以包括功率设置选项,例如,用户可以设置“默认使用高功率模式”开关,当接收用户开启的指令时,终端设备将以高功率模式发送数据包至连接的对端设备;还包括“默认不使用高功率模式”开关,当接收用户开启的指令时,终端设备将不以高功率模式发送数据包至连接的对端设备;还可以包括“设置高功率模式设备类型”开关,当接收用户针对“设置高功率模式设备类型”的操作类型的时候,可以进行关于高功率模式设备类型的相关功能,事例性地,如图20所示,界面可以设置“将已经配对的蓝牙设备添加到高功率模式”,界面可以显示已经配对的对端设备,接收用户的勾选操作之后,例如选择HUAWEI free buds之后,当HUAWEI free buds与终端设备连接之后,终端设备以高功率模式发送数据包至HUAWEI free buds耳机;界面还可以设置“高功率模式设备类型列表”,界面可以显示蓝牙协议定义的不同的设备类型,例如,如表4与表5所示的主要设备类型和次要设备类型,接收用户的勾选操作之后,例如,用户勾选了“音频设备”、“计算机设备”、“电话设备”、“可穿戴设备”、“健康设备”、“配件设备”,当终端设备连接对端设备时,可以通过对端设备的CoD类型以及profile类型确定对端是否为上述“音频设备”、“计算机设备”、“电话设备”、“可穿戴设备”、“健康设备”、“配件设备”中的一种,事例性地,当确定对端设备为“音频设备”时,终端设备可以以高功率模式发送数据包至对端设备。
在一些实施例中,如图21所示,在蓝牙设置界面还可以包括功率控制选项,例如,包括“连接音频设备时默认使用高功率模式”,可以用于当终端设备连接对端设备时,可以以高功率模式发送数据包至对端设备;还可以包括“默认使用低功率模式”,可以用于当终端设备连接对端设备时,可以以低功率模式发送数据包至对端设备。
本申请实施例所述的方法可以由图1所示的终端设备100的无线通信模块160来实现,具体可以是蓝牙模块或者是蓝牙芯片来执行,蓝牙芯片还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
本申请的高功率模式、低功率模式等可以扩展到第一功率模式(终端设备以第一发射功率或者第一功率发送数据至对端设备)以及第二功率模式(终端设备以第二发射功率或者第二功率发送数据至对端设备),即终端设备可以根据对端设备的设备类型采用不同的发射功率。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或 者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本申请所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本申请技术方案的实施例而已,并非用于限定本申请的保护范围。凡根据本申请的揭露,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围。

Claims (19)

  1. 一种终端设备,包括:
    一个或多个处理器;
    存储器;
    多个应用程序;
    以及一个或多个计算机程序,其中所述一个或多个计算机程序被存储在所述存储器中,所述一个或多个计算机程序包括指令,当所述指令被所述终端设备执行时,使得所述终端设备执行以下操作:
    所述终端设备获取对端设备的设备类型信息;
    所述终端设备根据所述对端设备的设备类型信息确定所述对端设备的设备类型;
    当所述设备类型为非预设的设备类型时,所述终端设备以第一发射功率发送数据给所述对端设备;
    当所述设备类型为所述预设的设备类型时,所述终端设备以第二发射功率发送数据给所述对端设备;
    其中,所述终端设备与所述对端设备建立蓝牙连接,所述第一发射功率小于所述第二发射功率。
  2. 根据权利要求1所述的终端设备,其特征在于,当所述设备类型为所述预设的设备类型时,所述终端设备以第二发射功率发送数据给所述对端设备,包括:
    当所述设备类型为所述预设的设备类型时,所述终端设备接收到所述对端设备的第一请求,所述第一请求用于提高所述终端设备的发射功率至所述第二发射功率;
    所述终端设备响应于所述第一请求,所述终端设备以第二发射功率发送数据给所述对端设备。
  3. 根据权利要求1所述的终端设备,其特征在于,当所述设备类型为所述预设的设备类型时,所述终端设备以第二发射功率发送数据给所述对端设备,包括:
    当所述设备类型为所述预设的设备类型,所述终端设备确定所述蓝牙连接的信道质量满足第一预设条件,所述终端设备以第二发射功率发送数据给所述对端设备。
  4. 根据权利要求2所述的终端设备,其特征在于,所述提高所述终端设备的发射功率至所述第二发射功率,包括:
    通过Wi-Fi射频链路的功率放大器提高发射功率至所述第二发射功率。
  5. 根据权利要求1所述的终端设备,其特征在于,当所述设备类型为所述预设的设备类型时,所述终端设备以第二发射功率发送数据给所述对端设备,包括:
    所述终端设备确定所述设备类型为所述预设的设备类型;
    所述终端设备确定所述蓝牙连接的信道质量满足第一预设条件;
    所述终端设备确定无Vo Wi-Fi(Voice over Wi-Fi)业务或无Wi-Fi业务关键帧的收发;
    所述终端设备以第二发射功率发送数据给所述对端设备。
  6. 根据权利要求1所述的终端设备,其特征在于,所述第一预设条件为所述蓝牙连接的参数低于第一门限值,所述参数包括重传率或者信号接收强度值。
  7. 根据权利要求6所述的终端设备,其特征在于,所述设备类型信息包括所述对端设备的COD(Class of Device)信息或者UUID(universally unique identifier,UUID)信息。
  8. 根据权利要求1-7任一项中所述的终端设备,其特征在于,所述预设的设备类型为音 频设备或者视频设备。
  9. 一种功率控制的方法,其特征在于,包括:
    所述终端设备获取对端设备的设备类型信息;
    所述终端设备根据所述对端设备的设备类型信息确定所述对端设备的设备类型;
    当终端设备确定所述对端设备的设备类型为非预设的设备类型时,所述终端设备以第一发射功率发送数据给所述对端设备;
    当终端设备确定所述对端设备的设备类型为预设的设备类型时,所述终端设备以第二发射功率发送数据给所述对端设备;
    其中,所述终端设备与所述对端设备建立蓝牙连接,所述第一发射功率小于所述第二发射功率。
  10. [根据细则91更正 26.03.2020]
    根据权利要求9所述的方法,其特征在于,在所述终端设备以第二发射功率发送数据给所述对端设备之前,所述方法还包括:
    所述终端设备接收到所述对端设备的第一请求,所述第一请求用于提高所述终端设备的发射功率至所述第二发射功率。
  11. [根据细则91更正 26.03.2020]
    根据权利要求10所述的方法,其特征在于,在所述终端设备以第二发射功率发送数据给所述对端设备之前,所述方法还包括:
    所述终端设备确定支持所述第二发射功率。
  12. [根据细则91更正 26.03.2020]
    根据权利要求11所述的方法,其特征在于,在所述终端设备以第二发射功率发送数据给所述对端设备之前,所述方法还包括:
    所述终端设备确定所述终端设备满足第一预设条件,所述第一预设条件为所述终端设备无(Voice over Wi-Fi)业务或无Wi-Fi业务关键帧的收发。
  13. 根据权利要求9所述的方法,其特征在于,在所述终端设备以第二发射功率发送数据给所述对端设备之前,所述方法还包括:
    所述终端设备确定所述蓝牙连接的信道质量满足第二预设条件,所述第二预设条件为所述蓝牙连接的参数低于第一门限值,所述参数包括重传率或者信号接收强度值。
  14. 根据权利要求10所述的方法,其特征在于,所述设备类型信息包括所述对端设备的COD(Class of Device)信息或者UUID(universally unique identifier,UUID)信息。
  15. 一种终端设备,包括:
    一个或多个处理器;
    存储器;
    多个应用程序;以及
    一个或多个计算机程序,其中所述一个或多个计算机程序存储在所述存储器中,所述一个或多个计算机程序包括指令,当所述指令被所述终端设备执行时,使得所述终端设备执行以下操作:
    所述终端设备获取对端设备的设备类型信息;
    所述终端设备根据所述对端设备的设备类型信息确定所述对端设备的设备类型;
    当所述设备类型为音频或视频设备类型时,所述终端设备提高发射功率,以提高后的发射功率发送数据给所述音频或视频设备。
  16. [根据细则91更正 26.03.2020]
    根据权利15所述的终端设备,其特征在于,当所述设备类型为音频或视频设备类型时,所述终端设备提高发射功率,以提高后的发射功率发送数据给所述音频或视频设备,包 括:
    当所述设备类型为音频或视频设备类型时,所述终端设备接收到所述音频或视频设备的第一请求,所述第一请求用于调高所述终端设备的发射功率;
    所述终端设备响应于所述第一请求,所述终端设备提高发射功率,以提高后的发射功率发送数据给所述音频或视频设备。
  17. 根据权利16所述的终端设备,其特征在于,当所述设备类型为音频或视频设备类型时,所述终端设备提高发射功率,以提高后的发射功率发送数据给所述音频或视频设备,包括:
    当所述设备类型为音频或视频设备类型时,所述终端设备确定所述蓝牙连接的信道质量满足第一预设条件,所述第一预设条件为所述蓝牙连接的参数低于第一门限值,所述参数包括重传率或者信号接收强度值;
    所述终端设备提高发射功率,以提高后的发射功率发送数据给所述音频或视频设备。
  18. 根据权利要求16所述的终端设备,其特征在于,当所述设备类型为音频或视频设备类型时,所述终端设备提高发射功率,以提高后的发射功率发送数据给所述音频或视频设备,包括:
    所述终端设备确定所述设备类型为音频或视频设备类型;
    所述终端设备确定所述蓝牙连接的信道质量满足第一预设条件;
    所述终端设备确定无(Voice over Wi-Fi)业务或无Wi-Fi业务关键帧的收发;
    所述终端设备提高发射功率,以提高后的发射功率发送数据给所述音频或视频设备。
  19. 根据权利要求16-19任一项所述的终端设备,其特征在于,所述设备类型信息包括所述音频或视频设备的COD(Class of Device)信息或者UUID(universally unique identifier,UUID)信息。
PCT/CN2020/080178 2019-03-26 2020-03-19 一种蓝牙发射功率的控制方法以及终端设备 WO2020192546A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20779028.8A EP3920565B1 (en) 2019-03-26 2020-03-19 Bluetooth transmission power control method and terminal device
US17/440,941 US20220124643A1 (en) 2019-03-26 2020-03-19 Bluetooth Transmit Power Control Method and Terminal Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910234733.4 2019-03-26
CN201910234733.4A CN111757303A (zh) 2019-03-26 2019-03-26 一种蓝牙发射功率的控制方法以及终端设备

Publications (1)

Publication Number Publication Date
WO2020192546A1 true WO2020192546A1 (zh) 2020-10-01

Family

ID=72610257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080178 WO2020192546A1 (zh) 2019-03-26 2020-03-19 一种蓝牙发射功率的控制方法以及终端设备

Country Status (4)

Country Link
US (1) US20220124643A1 (zh)
EP (1) EP3920565B1 (zh)
CN (1) CN111757303A (zh)
WO (1) WO2020192546A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114630408A (zh) * 2020-12-11 2022-06-14 无锡中感微电子股份有限公司 无线发射功率控制方法、系统以及装置
WO2023030071A1 (zh) * 2021-09-06 2023-03-09 Oppo广东移动通信有限公司 广播消息的发射方法、装置、电子设备以及存储介质

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200122820A (ko) * 2019-04-19 2020-10-28 삼성전자주식회사 블루투스 네트워크 환경에서 eir 패킷을 전송하기 위한 전자 장치 및 그에 관한 방법
CN116018857A (zh) * 2020-07-16 2023-04-25 高通股份有限公司 针对蓝牙的自适应发射功率控制
CN116801223A (zh) * 2020-12-11 2023-09-22 Oppo广东移动通信有限公司 通信方法、装置、终端设备及存储介质
CN112616141B (zh) * 2020-12-18 2022-02-11 珠海格力电器股份有限公司 蓝牙配网方法以及智能设备
CN112911380B (zh) * 2021-01-15 2023-03-28 海信视像科技股份有限公司 一种显示设备及与蓝牙设备的连接方法
CN112969195B (zh) * 2021-02-23 2023-01-20 深圳市汇顶科技股份有限公司 信号质量检测方法及相关设备
US11901983B1 (en) * 2021-03-17 2024-02-13 T-Mobile Innovations Llc Selectively assigning uplink transmission layers
CN114698078B (zh) * 2022-02-24 2023-05-16 荣耀终端有限公司 发射功率调整方法、电子设备及存储介质
WO2023159417A1 (en) * 2022-02-24 2023-08-31 Qualcomm Incorporated Low power adaptive power control
CN116981033A (zh) * 2022-04-01 2023-10-31 中兴通讯股份有限公司 蓝牙功率调整方法、终端设备及存储介质
US20230337040A1 (en) * 2022-04-15 2023-10-19 At&T Intellectual Property I, L.P. Apparatuses and methods for identifying factors contributing to communication device performance and facilitating enhancements in performance
CN117616379A (zh) * 2022-06-20 2024-02-27 北京小米移动软件有限公司 多媒体数据处理方法、装置、电子设备和存储介质
CN115087077A (zh) * 2022-08-19 2022-09-20 荣耀终端有限公司 一种网络设备控制方法、网络设备、产品及介质
WO2024076816A1 (en) * 2022-10-04 2024-04-11 Qualcomm Incorporated Configuration switch triggers for audio device communications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1878027A (zh) * 2006-06-30 2006-12-13 西安电子科技大学 基于认知无线电系统的多用户资源分配方法
CN107205217A (zh) * 2017-06-19 2017-09-26 广州安望信息科技有限公司 基于智能音箱场景组网的无间断内容推送方法及系统
EP3225105A1 (en) * 2016-03-23 2017-10-04 Radio Systems Corporation Rf beacon proximity determination enhancement
CN109005582A (zh) * 2018-08-14 2018-12-14 Oppo广东移动通信有限公司 发射功率调整方法、装置、电子设备及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016100922A (ja) * 2014-11-18 2016-05-30 キヤノン株式会社 送電装置、送電装置の制御方法、プログラム
CN109474372B (zh) * 2017-09-08 2020-10-23 华为技术有限公司 一种数据传输的方法、装置及系统
CN109005579A (zh) * 2018-08-16 2018-12-14 Oppo(重庆)智能科技有限公司 一种功率控制的方法、装置以及计算机存储介质
CN109275131B (zh) * 2018-09-25 2021-08-24 Oppo广东移动通信有限公司 蓝牙通信方法和终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1878027A (zh) * 2006-06-30 2006-12-13 西安电子科技大学 基于认知无线电系统的多用户资源分配方法
EP3225105A1 (en) * 2016-03-23 2017-10-04 Radio Systems Corporation Rf beacon proximity determination enhancement
CN107205217A (zh) * 2017-06-19 2017-09-26 广州安望信息科技有限公司 基于智能音箱场景组网的无间断内容推送方法及系统
CN109005582A (zh) * 2018-08-14 2018-12-14 Oppo广东移动通信有限公司 发射功率调整方法、装置、电子设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3920565A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114630408A (zh) * 2020-12-11 2022-06-14 无锡中感微电子股份有限公司 无线发射功率控制方法、系统以及装置
WO2023030071A1 (zh) * 2021-09-06 2023-03-09 Oppo广东移动通信有限公司 广播消息的发射方法、装置、电子设备以及存储介质

Also Published As

Publication number Publication date
EP3920565A1 (en) 2021-12-08
CN111757303A (zh) 2020-10-09
US20220124643A1 (en) 2022-04-21
EP3920565A4 (en) 2022-03-23
EP3920565B1 (en) 2024-05-22

Similar Documents

Publication Publication Date Title
WO2020192546A1 (zh) 一种蓝牙发射功率的控制方法以及终端设备
WO2021027616A1 (zh) 一种通过遥控器实现一碰投屏的终端设备、方法以及系统
WO2021036835A1 (zh) 一种蓝牙搜索方法、系统及相关装置
US11825539B2 (en) Bluetooth connection method and electronic device
WO2020107485A1 (zh) 一种蓝牙连接方法及设备
WO2021082829A1 (zh) 蓝牙连接方法及相关装置
WO2021052178A1 (zh) 一种Wi-Fi连接方法及设备
WO2020244623A1 (zh) 一种空鼠模式实现方法及相关设备
WO2021043219A1 (zh) 一种蓝牙回连方法及相关装置
EP4024918B1 (en) Bluetooth connection method and related apparatus
US11844119B2 (en) Bluetooth pairing method and related apparatus
WO2022127690A1 (zh) 终端设备、多链路通信方法及芯片
CN111757451B (zh) 一种调节蓝牙输出功率的方法和终端设备
WO2022042265A1 (zh) 通信方法、终端设备及存储介质
US20220368754A1 (en) Bluetooth communication method and related apparatus
WO2021027623A1 (zh) 一种设备能力发现方法及p2p设备
WO2023236670A1 (zh) 数据传输管理方法、电子设备及存储介质
RU2780224C1 (ru) Оконечное устройство, способ и система реализации экранной проекции одним касанием, используя дистанционное управление
WO2023165513A1 (zh) 通信方法、电子设备及装置
WO2024001735A1 (zh) 网络连接方法、电子设备及存储介质
US20230337147A1 (en) Device Configuration Method and Device
CN117098253A (zh) 组网的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779028

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020779028

Country of ref document: EP

Effective date: 20210902

NENP Non-entry into the national phase

Ref country code: DE