WO2020192510A1 - 配置协商方法及网络节点 - Google Patents

配置协商方法及网络节点 Download PDF

Info

Publication number
WO2020192510A1
WO2020192510A1 PCT/CN2020/079870 CN2020079870W WO2020192510A1 WO 2020192510 A1 WO2020192510 A1 WO 2020192510A1 CN 2020079870 W CN2020079870 W CN 2020079870W WO 2020192510 A1 WO2020192510 A1 WO 2020192510A1
Authority
WO
WIPO (PCT)
Prior art keywords
network node
configuration
transmission paths
radio bearer
transmission path
Prior art date
Application number
PCT/CN2020/079870
Other languages
English (en)
French (fr)
Inventor
张艳霞
吴昱民
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2020192510A1 publication Critical patent/WO2020192510A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular to a configuration negotiation method and network node.
  • the RB when a radio bearer (RB) is configured with a multi-path data replication function, the RB can be configured with at least two transmission paths, and the maximum configurable number of transmission paths corresponding to the RB can be pre-arranged, such as protocol agreement, For example, the protocol stipulates that the maximum configurable number of transmission paths corresponding to a certain RB is 4.
  • the master node Master Node, MN
  • the secondary node secondary node, SN
  • the master node Master Node, MN
  • the secondary node secondary node, SN
  • Knowing the configuration of the transmission path corresponding to the RB by the other party may cause the total number of transmission paths corresponding to the RB to exceed the pre-appointed maximum configurable number of transmission paths corresponding to the RB, which affects the corresponding communication process.
  • the embodiments of the present disclosure provide a configuration negotiation method and network node to solve the problem that under the DC architecture, the two network nodes involved cannot know the configuration of the transmission path corresponding to the corresponding radio bearer.
  • some embodiments of the present disclosure provide a configuration negotiation method applied to a first network node, including:
  • the configuration request message is used to request negotiation of the transmission path corresponding to the radio bearer.
  • some embodiments of the present disclosure provide a configuration negotiation method applied to a second network node, including:
  • the configuration request message is used to request negotiation of the transmission path corresponding to the radio bearer.
  • some embodiments of the present disclosure provide a network node, where the network node is a first network node and includes:
  • the first sending module is configured to send a configuration request message to the second network node
  • the configuration request message is used to request negotiation of the transmission path corresponding to the radio bearer.
  • some embodiments of the present disclosure provide a network node, where the network node is a second network node, and includes:
  • the second receiving module is configured to receive a configuration request message from the first network node
  • the configuration request message is used to request negotiation of the transmission path corresponding to the radio bearer.
  • some embodiments of the present disclosure provide a network node, including a memory, a processor, and a program stored on the memory and capable of running on the processor, wherein the program is processed by the processor.
  • the steps of the configuration negotiation method applied to the first network node or the steps of the configuration negotiation method applied to the second network node can be realized.
  • some embodiments of the present disclosure provide a computer-readable storage medium having a computer program stored thereon, wherein the computer program can be executed by a processor to implement the configuration negotiation applied to the first network node The steps of the method or the steps of the configuration negotiation method described above applied to the second network node.
  • the first network node sends a configuration request message to the second network node, and the configuration request message is used to request negotiation of the transmission path corresponding to the radio bearer.
  • the configuration request message is used to request negotiation of the transmission path corresponding to the radio bearer.
  • the negotiation process between the first and second network nodes not only can it be ensured that the total number of transmission paths corresponding to a certain radio bearer does not exceed the pre-agreed maximum configurable number of transmission paths corresponding to the radio bearer, but also that no configuration can be guaranteed Too many transmission paths, thereby avoiding resource waste, and ensuring that too few transmission paths are configured, thereby avoiding that the corresponding reliability requirements of the corresponding radio bearer cannot be met.
  • Figure 1 shows a schematic diagram of the bearer type of the PDCP data replication function
  • Figure 2 shows another schematic diagram of the bearer type of the PDCP data replication function
  • Figure 3 shows a schematic diagram of the bearer type of the multipath PDCP data replication function
  • Figure 4 shows another schematic diagram of the bearer type of the multipath PDCP data replication function
  • FIG. 5 is a flowchart of a configuration negotiation method according to some embodiments of the present disclosure.
  • FIG. 6 is another flowchart of the configuration negotiation method of some embodiments of the present disclosure.
  • FIG. 7 is a flowchart of the configuration negotiation process of a specific example of the disclosure.
  • FIG. 8 is one of structural schematic diagrams of a network node in some embodiments of the present disclosure.
  • FIG. 9 is the second structural diagram of a network node according to some embodiments of the disclosure.
  • FIG. 10 is the third structural diagram of a network node according to some embodiments of the disclosure.
  • the PDCP duplication function is introduced.
  • the network side configures whether the PDCP layer corresponding to the radio bearer (Radio Bearer, RB) of the user equipment (User Equipment, UE) should copy the data of the PDCP entity, and then pass the copied data through two (or more) different The path (such as two different Radio Link Control (RLC) entities) is sent, and different RLC entities correspond to different logical channels.
  • Radio Bearer Radio Bearer
  • UE User Equipment
  • the PDCP data copy function can indicate whether to start (ie activate) or stop (ie, deactivate) through media access control layer control signaling (Medium Access Control Control Element, MAC CE).
  • media access control layer control signaling Medium Access Control Element, MAC CE.
  • MCG Master Cell Group
  • SCG secondary cell group
  • PDCP data replication function bearer types include the two shown in Figure 1 and Figure 2:
  • A11, Split bearer The PDCP entity corresponding to the bearer is in one cell group, and the corresponding two (or more) RLCs and two (or more) MACs are in different cell groups.
  • A12, Duplicate bearer: 1 PDCP entity, 2 (or more) RLC entities and 1 MAC entity corresponding to the bearer are in a cell group.
  • MCG corresponds to MCG MAC entity
  • SCG corresponds to SCG MAC.
  • the network entity corresponding to the MCG is the master node (MN)
  • the network entity corresponding to the SCG is the secondary node (SN).
  • Multi-path PDCP data replication (Mulitple Leg PDCP Duplication)
  • the PDCP data replication function can be configured with more than two (e.g., 3) transmission paths (e.g., one PDCP entity corresponds to more than three RLC entities), and the configured transmission path can only Corresponding to one MAC entity, it can also correspond to two MAC entities.
  • FIG. 5 is a flowchart of a configuration negotiation method provided by some embodiments of the present disclosure. The method is applied to a first network node. As shown in FIG. 5, the method includes the following steps:
  • Step 501 Send a configuration request message to the second network node.
  • the configuration request message is used to request negotiation of the transmission path corresponding to the radio bearer.
  • the radio bearer may be a certain certain radio bearer or a certain certain radio bearers.
  • the radio bearer can be a signaling radio bearer (Signaling Radio Bearer, SRB) or a data radio bearer (Data Radio Bearer, DRB).
  • SRB Signaling Radio Bearer
  • DRB Data Radio Bearer
  • the transmission path corresponding to the radio bearer can be understood as the transmission path corresponding to the PDCP data replication function of the radio bearer, and generally more than two (for example, three) are configured.
  • the radio bearer involved in this embodiment can be the above-mentioned separated bearer or duplicate bearer.
  • the PDCP data replication function in this embodiment may be as described above, and will not be repeated here.
  • the first network node is an MN, and the second network node is an SN;
  • the first network node is SN
  • the second network node is MN.
  • the first network node is a network node where the PDCP entity of the radio bearer is located.
  • the MN requests to negotiate the transmission path radio bearer type as MN terminated split bear, or MN terminated SCG bearer (MN terminated SCG bear).
  • the SN requests to negotiate the radio bearer type of the transmission path as SN terminated split bear, or SN terminated MCG bearer (SN terminated MCG bear).
  • the first network node sends a configuration request message to the second network node, and the configuration request message is used to request negotiation of the transmission path corresponding to the radio bearer, for example, under the DC architecture.
  • the negotiation process between the first and second network nodes enables the two network nodes to learn the configuration of the transmission path corresponding to the corresponding radio bearer between the two network nodes, thereby effectively coordinating the resource status of the network side node and flexibly configuring the corresponding radio bearer Number of transmission paths.
  • the configuration request message includes at least one of the following:
  • Radio bearer identification such as SRB ID or DRB ID
  • the number of transmission paths configured by the first network node is configured by the first network node
  • Applicable data transmission direction for example, only uplink, only downlink, or simultaneous uplink and downlink.
  • the configuration request message includes the total number of transmission paths that need to be configured for the radio bearer determined by the first network node. In this way, by using the total number of transmission paths determined by the first network node, it can be ensured that the total number of transmission paths corresponding to the corresponding radio bearer does not exceed the pre-appointed maximum configurable number of transmission paths corresponding to the radio bearer.
  • the configuration request message includes the number of transmission paths that the first network node recommends that the second network node need to configure.
  • the first network node suggesting the number of transmission paths that the second network node needs to configure, it is possible to prevent the second network node from configuring too many transmission paths, avoiding resource waste, and avoiding the second network node from configuring too few transmission paths.
  • the corresponding reliability requirements of the corresponding radio bearers cannot be met.
  • the configuration request message includes the number of transmission paths configured by the first network node.
  • the second network node can learn the number of transmission paths configured by the first network node, thereby avoiding configuring too many transmission paths by itself, thereby avoiding the transmission path corresponding to the corresponding radio bearer The total number exceeds the pre-appointed maximum configurable number of transmission paths corresponding to the radio bearer.
  • the method further includes:
  • the configuration response message is any one of the following:
  • the first network node can determine the response of the second network node to the configuration request message.
  • the configuration confirmation message may include at least one of the following:
  • the identification of one or more transmission paths configured by the second network node may be a logical channel identity (LCID) and/or an RLC entity identity;
  • LCID logical channel identity
  • RLC entity identity an RLC entity identity
  • the number of transmission paths configured by the second network node in this way, the number of transmission paths configured by the second network node can enable the first network node to learn the configuration of the second network node;
  • the default transmission path for example, the number of the default transmission path can be selected as one or more; the default transmission path can be that after the PDCP data copy function of the corresponding radio bearer is deactivated, the radio bearer can pass the first 2.
  • the initially activated transmission path may be a transmission path initially available for the data replication function of the radio bearer after the initial configuration or reconfiguration of the transmission path of the radio bearer configured with the data replication function.
  • the available transmission path of the radio bearer can subsequently be changed through network signaling (such as MAC CE), or changed by the UE according to specific rules.
  • the configuration change message may include at least one of the following:
  • the number of transmission paths configured by the second network node is configured by the second network node
  • the reason why the second network node changes the number of transmission paths wherein, the number of transmission paths is suggested by the first network node that the second network node needs to be configured, or the number of transmission paths is caused by the first network node according to the The total number of transmission paths that need to be configured for the radio bearer determined by a network node, the number of transmission paths configured by the first network node, and the number of transmission paths that need to be configured by the second network node; for example, the reason may be current
  • the LCID resource is insufficient, so the number of transmission paths configured by the second network node is reduced;
  • the identification of one or more transmission paths configured by the second network node may be an LCID and/or an RLC entity identification;
  • the default transmission path for example, the number of the default transmission path can be selected as one or more; the default transmission path can be that after the PDCP data copy function of the corresponding radio bearer is deactivated, the radio bearer can pass the first 2.
  • the initially activated transmission path may be a transmission path initially available for the data replication function of the radio bearer after the initial configuration or reconfiguration of the transmission path of the radio bearer configured with the data replication function.
  • the available transmission path of the radio bearer may subsequently be changed through network signaling (such as MAC CE), or changed by the UE according to specific rules.
  • the configuration rejection message may include:
  • the reason for rejection may be that the current LCID resource is insufficient, or the current active cell corresponding to the second network node is overloaded.
  • the method may further include:
  • the total number of transmission paths determined by the first network node may be configured by the first network node, and the total number of transmission paths may be equal to or less than the maximum configurable number of transmission paths agreed by the protocol.
  • This adjustment of the number of transmission paths configured by the first network node can be understood as: if the number of transmission paths configured by the second network node is not equal to the number of transmission paths that the second network node needs to configure, the first network node can adjust the transmission path configured by itself To ensure that the total number of transmission paths determined by the first network node remains unchanged.
  • the advance agreement may be an agreement agreement. If the second network node is configured with one transmission path and the maximum total number of transmission paths agreed by the protocol is 4, the first network node can determine the number of transmission paths configured by itself, for example, the number of configured transmission paths is 1, 2 or 3.
  • the advance agreement may be an agreement agreement. If the configuration request message indicates that the first network node can configure 2 transmission paths, and the second network node reports that it is configured with 3 transmission paths, and the maximum total number of transmission paths agreed by the protocol is 4, the first network node can adjust it The configured transmission path is 1.
  • the method may further include:
  • the configuration message includes at least one of the transmission path information configured by the first network node and the transmission path information configured by the second network node.
  • the terminal can be informed of the configuration message of the corresponding transmission path and ensure the smooth progress of the corresponding communication process.
  • the sending of the configuration request message is initiated by any of the following methods:
  • the first network node actively initiates
  • the second network node triggers the first network node to initiate.
  • the reason for sending the configuration request message includes at least one of the following:
  • the method may further include:
  • the timer is stopped.
  • the negotiation process of the first and second network nodes can be effectively controlled, and the effectiveness of the corresponding communication process can be improved.
  • FIG. 6 is a flowchart of another configuration negotiation method provided by some embodiments of the present disclosure. The method is applied to a second network node. As shown in FIG. 6, the method includes the following steps:
  • Step 601 Receive a configuration request message from the first network node
  • the configuration request message is used to request negotiation of the transmission path corresponding to the radio bearer.
  • the negotiation process between the first and second network nodes can be used to enable the two network nodes to learn about the configuration of the transmission path corresponding to the corresponding radio bearer by the other network node. Effectively coordinate the resource status of the network side node, and flexibly configure the number of transmission paths corresponding to the radio bearer.
  • the method further includes:
  • the configuration response message is any one of the following:
  • the configuration request message includes at least one of the following:
  • the number of transmission paths configured by the first network node is configured by the first network node
  • the configuration confirmation message includes at least one of the following:
  • the number of transmission paths configured by the second network node is configured by the second network node
  • the configuration change message includes at least one of the following:
  • the number of transmission paths configured by the second network node is configured by the second network node
  • the reason why the second network node changes the number of transmission paths wherein, the number of transmission paths is suggested by the first network node that the second network node needs to be configured, or the number of transmission paths is caused by the first network node according to the A total number of transmission paths that need to be configured for a radio bearer determined by a network node, and the number of transmission paths configured by the first network node, and a determined number of transmission paths that need to be configured by the second network node;
  • the configuration rejection message includes: a reason for rejection.
  • the first network node is an MN, and the second network node is an SN;
  • the first network node is SN
  • the second network node is MN.
  • the first network node is a network node where the PDCP entity of the radio bearer is located.
  • the MN requests to negotiate the transmission path radio bearer type as MN terminated split bear, or MN terminated SCG bearer (MN terminated SCG bear).
  • the SN requests to negotiate the radio bearer type of the transmission path as SN terminated split bear, or SN terminated MCG bearer (SN terminated MCG bear).
  • Example 1 as shown in Figure 7, the corresponding configuration negotiation process may include the following steps:
  • S1: MN sends a configuration request message to SN.
  • the configuration request message is used to request negotiation of a transmission path corresponding to a radio bearer (such as SRB1 or DRB2).
  • the configuration request message includes the following:
  • Radio bearer identification such as SRB ID or DRB ID
  • the total number of transmission paths to be configured for the radio bearer determined by the MN;
  • Applicable data transmission direction for example, only uplink, only downlink, or simultaneous uplink and downlink.
  • the configuration response message is any of the following:
  • the configuration confirmation message may include at least one of the following:
  • the identification of one or more transmission paths configured by the SN may be an LCID and/or an RLC entity identification;
  • the default transmission path for example, the number of the default transmission path can be selected as one or more; the default transmission path can be that after the PDCP data copy function of the corresponding radio bearer is deactivated, the radio bearer can pass through the SN The path for data transmission;
  • Initially activated transmission paths for example, the number of initially activated transmission paths can be selected as one or more.
  • the configuration change message may include at least one of the following:
  • the number of transmission paths that need to be configured for the determined SN for example, the reason may be that the current LCID resources are insufficient, so the number of transmission paths configured by the SN is reduced;
  • the identification of one or more transmission paths configured by the SN may be an LCID and/or an RLC entity identification;
  • the default transmission path for example, the number of the default transmission path can be selected as one or more; the default transmission path can be that after the PDCP data copy function of the corresponding radio bearer is deactivated, the radio bearer can pass through the SN The path for data transmission;
  • the configuration rejection message may include:
  • the reason for rejection may be that the current LCID resource is insufficient, or the active cell corresponding to the current SN is overloaded.
  • the configuration message includes at least one of the transmission path information configured by the MN and the transmission path information configured by the SN.
  • the MN can determine the total number of transmission paths that need to be configured for the radio bearer, and indicate the total number of transmission paths and the number of transmission paths configured by the MN to the SN, and the SN can change the number of transmission paths that it needs to configure and feed back to the SN. MN.
  • Example 2 as shown in Figure 7, the corresponding configuration negotiation process may include the following steps:
  • S1: MN sends a configuration request message to SN.
  • the configuration request message is used to request negotiation of a transmission path corresponding to a radio bearer (such as SRB1 or DRB2).
  • the configuration request message includes the following:
  • Radio bearer identification such as SRB ID or DRB ID
  • the total number of transmission paths to be configured for the radio bearer determined by the MN;
  • Applicable data transmission direction for example, only uplink, only downlink, or simultaneous uplink and downlink.
  • the configuration response message is any of the following:
  • the configuration confirmation message may include at least one of the following:
  • the identification of one or more transmission paths configured by the SN may be an LCID and/or an RLC entity identification;
  • the default transmission path for example, the number of the default transmission path can be selected as one or more; the default transmission path can be that after the PDCP data copy function of the corresponding radio bearer is deactivated, the radio bearer can pass through the SN The path for data transmission;
  • Initially activated transmission paths for example, the number of initially activated transmission paths can be selected as one or more.
  • the configuration rejection message may include:
  • the reason for rejection may be that the current LCID resource is insufficient, or the active cell corresponding to the current SN is overloaded.
  • the configuration message includes at least one of the transmission path information configured by the MN and the transmission path information configured by the SN.
  • the MN can determine the total number of transmission paths that need to be configured for the radio bearer, and indicate the total number of transmission paths to the SN, and the SN can determine the number of transmission paths configured by itself and feed it back to the MN.
  • the number of configured transmission paths can determine the number of transmission paths that you need to configure.
  • Example 3 as shown in Figure 7, the corresponding configuration negotiation process may include the following steps:
  • S1: MN sends a configuration request message to SN.
  • the configuration request message is used to request negotiation of a transmission path corresponding to a radio bearer (such as SRB1 or DRB2).
  • the configuration request message includes the following:
  • Radio bearer identification such as SRB ID or DRB ID
  • MN recommends the number of transmission paths that SN needs to configure
  • Applicable data transmission direction for example, only uplink, only downlink, or simultaneous uplink and downlink.
  • the configuration response message is any of the following:
  • the configuration confirmation message may include at least one of the following:
  • the identification of one or more transmission paths configured by the SN may be an LCID and/or an RLC entity identification;
  • the default transmission path for example, the number of the default transmission path can be selected as one or more; the default transmission path can be that after the PDCP data copy function of the corresponding radio bearer is deactivated, the radio bearer can pass through the SN The path for data transmission;
  • Initially activated transmission paths for example, the number of initially activated transmission paths can be selected as one or more.
  • the configuration change message may include at least one of the following:
  • the identification of one or more transmission paths configured by the SN may be an LCID and/or an RLC entity identification;
  • the default transmission path for example, the number of the default transmission path can be selected as one or more; the default transmission path can be that after the PDCP data copy function of the corresponding radio bearer is deactivated, the radio bearer can pass through the SN The path for data transmission;
  • the configuration rejection message may include:
  • the reason for rejection may be that the current LCID resource is insufficient, or the active cell corresponding to the current SN is overloaded.
  • the configuration message includes at least one of the transmission path information configured by the MN and the transmission path information configured by the SN.
  • the MN when the MN is not sure of the total number of transmission paths that need to be configured for the radio bearer, the MN can indicate the number of transmission paths that the SN needs to configure, and the SN can change the number of transmission paths that need to be configured, and feed it back to the MN. Determine the number of transmission paths configured by yourself.
  • Example 4 as shown in Figure 7, the corresponding configuration negotiation process may include the following steps:
  • S1: MN sends a configuration request message to SN.
  • the configuration request message is used to request negotiation of a transmission path corresponding to a radio bearer (such as SRB1 or DRB2).
  • the configuration request message includes the following:
  • Radio bearer identification such as SRB ID or DRB ID
  • Applicable data transmission direction for example, only uplink, only downlink, or simultaneous uplink and downlink.
  • the configuration response message is any of the following:
  • the configuration confirmation message may include at least one of the following:
  • the identification of one or more transmission paths configured by the SN may be an LCID and/or an RLC entity identification;
  • the default transmission path for example, the number of the default transmission path can be selected as one or more; the default transmission path can be that after the PDCP data copy function of the corresponding radio bearer is deactivated, the radio bearer can pass through the SN The path for data transmission;
  • Initially activated transmission paths for example, the number of initially activated transmission paths can be selected as one or more.
  • the configuration rejection message may include:
  • the reason for rejection may be that the current LCID resource is insufficient, or the active cell corresponding to the current SN is overloaded.
  • the configuration message includes at least one of the transmission path information configured by the MN and the transmission path information configured by the SN.
  • the MN when the MN is not sure of the total number of transmission paths that need to be configured for the radio bearer, the MN indicates the number of transmission paths configured by the MN to the SN, and the SN can determine the number of transmission paths configured by itself and feed it back to the MN. Further, the MN can adjust the number of transmission paths that it needs to configure according to the number of transmission paths configured by the SN.
  • Example 5 as shown in Figure 7, the corresponding configuration negotiation process may include the following steps:
  • S1: MN sends a configuration request message to SN.
  • the configuration request message is used to request negotiation of a transmission path corresponding to a radio bearer (such as SRB1 or DRB2).
  • the configuration request message includes the following:
  • Radio bearer identification such as SRB ID or DRB ID
  • Applicable data transmission direction for example, only uplink, only downlink, or simultaneous uplink and downlink.
  • the configuration response message is any of the following:
  • the configuration confirmation message may include at least one of the following:
  • the identification of one or more transmission paths configured by the SN may be an LCID and/or an RLC entity identification;
  • the default transmission path for example, the number of the default transmission path can be selected as one or more; the default transmission path can be that after the PDCP data copy function of the corresponding radio bearer is deactivated, the radio bearer can pass through the SN The path for data transmission;
  • Initially activated transmission paths for example, the number of initially activated transmission paths can be selected as one or more.
  • the configuration rejection message may include:
  • the reason for rejection may be that the current LCID resource is insufficient, or the active cell corresponding to the current SN is overloaded.
  • the configuration message includes at least one of the transmission path information configured by the MN and the transmission path information configured by the SN.
  • the SN determines the number of transmission paths configured by itself and feeds it back to the MN, and the MN can further determine the number of transmission paths configured by itself.
  • the first network node is MN and the second network node is SN, but in other examples, the first network node is SN and the second network node is MN, and the specific implementation process Similar, not repeat them here.
  • FIG. 8 is a schematic structural diagram of a network node provided by some embodiments of the present disclosure.
  • the network node 80 is a first network node. As shown in FIG. 8, the network node 80 includes:
  • the first sending module 81 is configured to send a configuration request message to the second network node
  • the configuration request message is used to request negotiation of the transmission path corresponding to the radio bearer.
  • the negotiation process between the first and second network nodes can be used to enable the two network nodes to learn about the configuration of the transmission path corresponding to the corresponding radio bearer by the other network node. Effectively coordinate the resource status of the network side node, and flexibly configure the number of transmission paths corresponding to the radio bearer.
  • the network node 80 further includes:
  • the first receiving module is configured to receive a configuration response message from the second network node
  • the configuration response message is any one of the following:
  • the configuration request message includes at least one of the following:
  • the number of transmission paths configured by the first network node is configured by the first network node
  • the configuration confirmation message includes at least one of the following:
  • the number of transmission paths configured by the second network node is configured by the second network node
  • the configuration change message includes at least one of the following:
  • the number of transmission paths configured by the second network node is configured by the second network node
  • the reason why the second network node changes the number of transmission paths wherein, the number of transmission paths is suggested by the first network node that the second network node needs to be configured, or the number of transmission paths is caused by the first network node according to the A total number of transmission paths that need to be configured for a radio bearer determined by a network node, and the number of transmission paths configured by the first network node, and a determined number of transmission paths that need to be configured by the second network node;
  • the configuration rejection message includes:
  • the network node 80 further includes:
  • the execution module is used to perform any of the following operations:
  • the network node 80 further includes:
  • the third sending module is configured to send the configuration message of the transmission path corresponding to the radio bearer to the terminal; wherein the configuration message includes the transmission path information configured by the first network node and the transmission configured by the second network node At least one of the path information.
  • the sending of the configuration request message is initiated by any of the following methods:
  • the first network node actively initiates
  • the second network node triggers the first network node to initiate.
  • the reason for sending the configuration request message includes at least one of the following:
  • the network node 80 further includes:
  • Start module used to start the timer
  • a determining module configured to determine that the second network node refuses to respond to the configuration request message when the timer expires and the configuration response message is not received from the second network node;
  • the stop module is configured to stop the timer when a configuration response message is received from the second network node before the timer expires.
  • the first network node is an MN, and the second network node is an SN;
  • the first network node is SN
  • the second network node is MN.
  • the first network node is a network node where the PDCP entity of the radio bearer is located.
  • FIG. 9 is a schematic structural diagram of a network node provided by some embodiments of the present disclosure.
  • the network node 90 is a second network node. As shown in FIG. 9, the network node 90 includes:
  • the second receiving module 91 is configured to receive a configuration request message from the first network node
  • the configuration request message is used to request negotiation of the transmission path corresponding to the radio bearer.
  • the negotiation process between the first and second network nodes can be used to enable the two network nodes to learn about the configuration of the transmission path corresponding to the corresponding radio bearer by the other network node. Effectively coordinate the resource status of the network side node, and flexibly configure the number of transmission paths corresponding to the radio bearer.
  • the network node 90 further includes:
  • the second sending module is configured to send a configuration response message to the first network node
  • the configuration response message is any one of the following:
  • the configuration request message includes at least one of the following:
  • the number of transmission paths configured by the first network node is configured by the first network node
  • the configuration confirmation message includes at least one of the following:
  • the number of transmission paths configured by the second network node is configured by the second network node
  • the configuration change message includes at least one of the following:
  • the number of transmission paths configured by the second network node is configured by the second network node
  • the reason why the second network node changes the number of transmission paths wherein, the number of transmission paths is suggested by the first network node that the second network node needs to be configured, or the number of transmission paths is caused by the first network node according to the A total number of transmission paths that need to be configured for a radio bearer determined by a network node, and the number of transmission paths configured by the first network node, and a determined number of transmission paths that need to be configured by the second network node;
  • the configuration rejection message includes: a reason for rejection.
  • the first network node is an MN, and the second network node is an SN;
  • the first network node is SN
  • the second network node is MN.
  • the first network node is a network node where the PDCP entity of the radio bearer is located.
  • Some embodiments of the present disclosure also provide a network node, including a processor, a memory, and a program stored on the memory and capable of running on the processor, where the program is executed by the processor
  • a network node including a processor, a memory, and a program stored on the memory and capable of running on the processor, where the program is executed by the processor
  • FIG. 10 is a schematic diagram of the hardware structure of a network node that implements various embodiments of the present disclosure.
  • the network node 110 includes but is not limited to: a bus 111, a transceiver 112, an antenna 113, a bus interface 114, a processor 115, and Storage 116.
  • the network node 110 further includes: a program stored in the memory 116 and running on the processor 115, and when the program is executed by the processor 115, the application to the first network node can be realized.
  • a program stored in the memory 116 and running on the processor 115, and when the program is executed by the processor 115, the application to the first network node can be realized.
  • the transceiver 112 is used to receive and send data under the control of the processor 115.
  • bus 111 can include any number of interconnected buses and bridges, bus 111 will include one or more processors represented by processor 115 and memory represented by memory 116
  • the various circuits are linked together.
  • the bus 111 may also link various other circuits such as peripheral devices, voltage regulators, and power management circuits, etc., which are all known in the art, and therefore, no further description is provided herein.
  • the bus interface 114 provides an interface between the bus 111 and the transceiver 112.
  • the transceiver 112 may be one element or multiple elements, such as multiple receivers and transmitters, and provide a unit for communicating with various other devices on a transmission medium.
  • the data processed by the processor 115 is transmitted on the wireless medium through the antenna 113, and further, the antenna 113 also receives the data and transmits the data to the processor 115.
  • the processor 115 is responsible for managing the bus 111 and general processing, and can also provide various functions, including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 116 may be used to store data used by the processor 115 when performing operations.
  • the processor 115 may be a CPU, ASIC, FPGA or CPLD.
  • Some embodiments of the present disclosure also provide a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the above-mentioned configuration negotiation method embodiment applied to the first network node can be realized
  • the computer-readable storage medium is, for example, Read-Only Memory (Read-Only Memory, ROM for short), Random Access Memory (Random Access Memory, RAM for short), magnetic disks, or optical disks, etc.
  • the technical solution of the present disclosure essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network node, etc.) execute the methods described in the various embodiments of the present disclosure.
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network node, etc.
  • modules, units, sub-modules, sub-units, etc. can be implemented in one or more application specific integrated circuits (ASICs), digital signal processors (Digital Signal Processing, DSP), digital signal processing equipment ( DSP Device, DSPD), Programmable Logic Device (PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, Other electronic units or combinations thereof that perform the functions described in the present disclosure.
  • ASICs application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD Programmable Logic Device
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present disclosure can be implemented through modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the purpose of the present disclosure can also be realized by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the purpose of the present disclosure can also be achieved only by providing a program product containing program code for implementing the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any well-known storage medium or any storage medium developed in the future. It should also be pointed out that, in the device and method of the present disclosure, obviously, each component or each step can be decomposed and/or recombined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种配置协商方法及网络节点,其中,应用于第一网络节点的配置协商方法包括:向第二网络节点发送配置请求消息;所述配置请求消息用于请求协商无线承载对应的传输路径。

Description

配置协商方法及网络节点
相关申请的交叉引用
本申请主张在2019年3月28日在中国提交的中国专利申请号No.201910245125.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种配置协商方法及网络节点。
背景技术
相关技术中,当无线承载(Radio Bearer,RB)配置了多路径数据复制功能时,该RB可以配置至少两条传输路径,对于RB对应的传输路径的最大可配置数量可预先约定例如协议约定,例如协议约定某RB对应的传输路径的最大可配置数量为4。
然而,在双连接(Dual Connectivity,DC)架构下,主节点(Master Node,MN)和辅节点(secondary node,SN)各自配置RB对应的传输路径,造成对于某RB,MN和SN之间无法获知对方对该RB对应的传输路径的配置情况,从而可能导致该RB对应的传输路径总数量超过预先约定的该RB对应的传输路径的最大可配置数量,影响相应通信过程的进行。
发明内容
本公开实施例提供一种配置协商方法及网络节点,以解决在DC架构下,所涉及的两个网络节点之间无法获知对方对相应无线承载对应的传输路径的配置情况的问题。
为了解决上述技术问题,本公开实施例是这样实现的:
第一方面,本公开的一些实施例提供一种配置协商方法,应用于第一网络节点,包括:
向第二网络节点发送配置请求消息;
其中,所述配置请求消息用于请求协商无线承载对应的传输路径。
第二方面,本公开的一些实施例提供一种配置协商方法,应用于第二网络节点,包括:
从第一网络节点接收配置请求消息;
其中,所述配置请求消息用于请求协商无线承载对应的传输路径。
第三方面,本公开的一些实施例提供一种网络节点,所述网络节点为第一网络节点,包括:
第一发送模块,用于向第二网络节点发送配置请求消息;
其中,所述配置请求消息用于请求协商无线承载对应的传输路径。
第四方面,本公开的一些实施例提供一种网络节点,所述网络节点为第二网络节点,包括:
第二接收模块,用于从第一网络节点接收配置请求消息;
其中,所述配置请求消息用于请求协商无线承载对应的传输路径。
第五方面,本公开的一些实施例提供了一种网络节点,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时可实现上述应用于第一网络节点的配置协商方法的步骤,或者上述应用于第二网络节点的配置协商方法的步骤。
第六方面,本公开的一些实施例提供了一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时可实现上述应用于第一网络节点的配置协商方法的步骤,或者上述应用于第二网络节点的配置协商方法的步骤。
本公开的一些实施例中,第一网络节点向第二网络节点发送配置请求消息,所述配置请求消息用于请求协商无线承载对应的传输路径,可以例如在DC架构下等,借助第一和第二网络节点的协商过程,使得两个网络节点之间获知对方对相应无线承载对应的传输路径的配置情况,从而有效地协调网络侧节点的资源状况,以及灵活配置无线承载对应的传输路径数量。
进一步的,借助第一和第二网络节点的协商过程,不仅可保证某无线承载对应的传输路径总数量不超过预先约定的该无线承载对应的传输路径的最大可配置数量,还可保证不配置过多的传输路径,从而避免资源浪费,以及保证不配置过少的传输路径,从而避免相应无线承载对应的可靠性需求无法 满足。
附图说明
图1表示PDCP数据复制功能的承载类型的示意图;
图2表示PDCP数据复制功能的承载类型的另一示意图;
图3表示多路径PDCP数据复制功能的承载类型的示意图;
图4表示多路径PDCP数据复制功能的承载类型的另一示意图;
图5为本公开的一些实施例的配置协商方法的流程图;
图6为本公开的一些实施例的配置协商方法的另一流程图;
图7为本公开具体实例的配置协商过程的流程图;
图8为本公开的一些实施例的网络节点的结构示意图之一;
图9为本公开的一些实施例的网络节点的结构示意图之二;以及
图10为本公开的一些实施例的网络节点的结构示意图之三。
具体实施方式
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
首先,对本公开实施例中所涉及的一些概念进行解释说明。
1、包数据汇聚协议(Packet Data Convergence Protocol,PDCP)数据复制(即PDCP duplication)发送介绍
新空口(New Radio,NR)中,为提高数据传输的可靠性,引入了PDCP duplication功能。网络侧配置终端比如用户设备(User Equipment,UE)的无线承载(Radio Bearer,RB)对应的PDCP层是否要将PDCP实体的数据复制后,将复制的数据分别通过两个(或多个)不同的路径(如两个不同的无线链路控制(Radio Link Control,RLC)实体)进行发送,不同RLC实体对应不同的逻辑信道。
PDCP数据复制功能可以通过媒体接入控制层控制信令(Medium Access  Control Control Element,MAC CE)指示是否启动(即激活)还是停止(即去激活)。网络侧在配置RB的PDCP复制数据功能的时候,可以配置该功能是否在配置后立即开启,即不需要MAC CE信令再额外激活。
2、PDCP数据复制功能的承载类型
在5G系统中由于采用了双连接(Dual Connectivity,DC)架构(包括两个小区组,即主小区组(Master Cell Group,MCG)和辅小区组(Secondary Cell Group,SCG)),MCG对应于网络侧的主节点(Master Node,MN),SCG对应于网络侧的辅节点(secondary node,SN),因此PDCP数据复制功能的承载类型包括图1和图2所示的两种:
A11,分离承载(Split bearer):该承载对应的PDCP实体在1个小区组,对应的2个(或多个)RLC和2个(或多个)MAC在不同的小区组。
A12,复制承载(Duplicate bearer):该承载对应的1个PDCP实体、2个(或多个)RLC实体和1个MAC实体在1个小区组。
其中,MCG对应MCG MAC实体,SCG对应SCG MAC。MCG对应的网络实体为主节点(MN),SCG对应的网络实体为辅节点(SN)。
3、多路径PDCP数据复制(Mulitple Leg PDCP Duplication)
如图3和图4所示,PDCP数据复制功能可以配置超过两个(如,3个)传输路径(如,1个PDCP实体对应3个以上的RLC实体),而所配置的传输路径可以仅对应一个MAC实体,也可以对应两个MAC实体。
下面将结合实施例和附图对本公开进行详细说明。
请参见图5,图5是本公开的一些实施例提供的一种配置协商方法的流程图,该方法应用于第一网络节点,如图5所示,该方法包括如下步骤:
步骤501:向第二网络节点发送配置请求消息。
其中,所述配置请求消息用于请求协商无线承载对应的传输路径。该无线承载可选为确定的某个无线承载,或者,确定的某多个无线承载。该无线承载可选为信令无线承载(Signaling Radio Bearer,SRB),或者数据无线承载(Data Radio Bearer,DRB)。该无线承载对应的传输路径可以理解为该无线承载的PDCP数据复制功能对应的传输路径,一般配置为超过两个(比如3个)。
本实施例中所涉及到的无线承载可选为上述的分离承载或者复制承载,本实施例中的PDCP数据复制功能可如上所述,在此不再赘述。
可选的,所述第一网络节点为MN,所述第二网络节点为SN;
或者,所述第一网络节点为SN,所述第二网络节点为MN。
其中,所述第一网络节点为所述无线承载的PDCP实体所在的网络节点。
例如,当所述第一网络节点为MN,所述第二网络节点为SN时,MN请求协商传输路径的无线承载类型为MN端分离承载(MN terminated split bear),或者MN端SCG承载(MN terminated SCG bear)。
例如,当所述第一网络节点为SN,所述第二网络节点为MN时,SN请求协商传输路径的无线承载类型为SN端分离承载(SN terminated split bear),或者SN端MCG承载(SN terminated MCG bear)。
本公开的一些实施例的配置协商方法,第一网络节点向第二网络节点发送配置请求消息,所述配置请求消息用于请求协商无线承载对应的传输路径,可以例如在DC架构下等,借助第一和第二网络节点的协商过程,使得两个网络节点之间获知对方对相应无线承载对应的传输路径的配置情况,从而有效地协调网络侧节点的资源状况,以及灵活配置无线承载对应的传输路径数量。
本公开的一些实施例中,可选的,所述配置请求消息中包括以下至少一项:
无线承载标识;比如SRB ID或DRB ID;
第一网络节点确定的无线承载需要配置的传输路径总数量;
第一网络节点建议第二网络节点需要配置的传输路径数量;
第一网络节点配置的传输路径数量;
适用的数据传输方向;比如仅上行、仅下行,或者同时上下行。
一种实施方式中,所述配置请求消息中包括第一网络节点确定的无线承载需要配置的传输路径总数量。这样,借助由第一网络节点确定的该传输路径总数量,可以保证相应无线承载对应的传输路径总数量不超过预先约定的该无线承载对应的传输路径的最大可配置数量。
一种实施方式中,所述配置请求消息中包括第一网络节点建议第二网络 节点需要配置的传输路径数量。这样,借助该第一网络节点建议第二网络节点需要配置的传输路径数量,可以避免第二网络节点配置过多的传输路径,避免资源浪费,以及避免第二网络节点配置过少的传输路径,相应无线承载对应的可靠性需求无法满足。
一种实施方式中,所述配置请求消息中包括第一网络节点配置的传输路径数量。这样,借助该第一网络节点配置的传输路径数量,可以使得第二网络节点获知第一网络节点配置的传输路径数量,从而避免自身配置过多的传输路径,从而避免相应无线承载对应的传输路径总数量超过预先约定的该无线承载对应的传输路径的最大可配置数量。
可选的,步骤501之后,所述方法还包括:
从所述第二网络节点接收配置响应消息;
其中,所述配置响应消息为以下任意一项:
无线承载对应的传输路径的配置确认消息;
无线承载对应的传输路径的配置更改消息;
无线承载对应的传输路径的配置拒绝消息。
这样,借助该配置响应消息,可使得第一网络节点确定第二网络节点对配置请求消息的响应。
进一步的,所述配置确认消息中可包括以下至少一项:
第二网络节点配置的一个或多个传输路径的标识;比如,该标识可选为逻辑信道标识(Logical channel Identity,LCID),和/或RLC实体标识;
第二网络节点配置的传输路径数量;这样借助此第二网络节点配置的传输路径数量,可使得第一网络节点获知第二网络节点的配置情况;
缺省的传输路径;比如,该缺省的传输路径的数量可选为一条或者多条;该缺省的传输路径可以是对应无线承载的PDCP数据复制功能去激活后,该无线承载可通过第二网络节点进行数据传输的路径;
初始激活的传输路径;比如,该初始激活的传输路径的数量可选为一条或者多条。该初始激活的传输路径可以是配置了数据复制功能的无线承载的传输路径初始配置或重配之后,该无线承载的数据复制功能初始可用的传输路径。该无线承载的可用传输路径后续可通过网络信令(比如MAC CE)进 行变更,或者由UE根据特定规则进行变更。
进一步的,所述配置更改消息中可包括以下至少一项:
第二网络节点配置的传输路径数量;
第二网络节点更改传输路径数量的原因;其中,所述传输路径数量是第一网络节点建议所述第二网络节点需要配置的,或者,所述传输路径数量是第一网络节点根据所述第一网络节点确定的无线承载需要配置的传输路径总数量,以及所述第一网络节点配置的传输路径数量,确定的所述第二网络节点需要配置的传输路径数量;比如,此原因可以是当前LCID资源不足,因此减少第二网络节点配置的传输路径数量;
第二网络节点配置的一个或多个传输路径的标识;比如,该标识可选为LCID、和/或RLC实体标识;
缺省的传输路径;比如,该缺省的传输路径的数量可选为一条或者多条;该缺省的传输路径可以是对应无线承载的PDCP数据复制功能去激活后,该无线承载可通过第二网络节点进行数据传输的路径;
初始激活的传输路径;比如,该初始激活的传输路径的数量可选为一条或者多条。该初始激活的传输路径可以是配置了数据复制功能的无线承载的传输路径初始配置或重配之后,该无线承载的数据复制功能初始可用的传输路径。该无线承载的可用传输路径后续可通过网络信令(比如MAC CE)进行变更,或者由UE根据特定规则进行变更。
进一步的,所述配置拒绝消息中可包括:
拒绝理由;比如,该拒绝理由可以是当前LCID资源不足,或者当前第二网络节点对应的激活小区负载过重等。
本公开的一些实施例中,可选的,所述从所述第二网络节点接收配置响应消息之后,所述方法还可包括:
执行以下操作中的任意一项:
1)根据所述第二网络节点配置的传输路径数量,以及所述第一网络节点确定的传输路径总数量,调整所述第一网络节点配置的传输路径数量。
其中,此第一网络节点确定的传输路径总数量可以是由第一网络节点配置的,该传输路径总数量可等于或小于协议约定的最大可配置的传输路径数 量。此调整第一网络节点配置的传输路径数量可以理解为:若第二网络节点配置的传输路径数量不等于第二网络节点需要配置的传输路径数量,则第一网络节点可调整自身配置的传输路径数量,以保证第一网络节点确定的总传输路径数量不变。
2)根据所述第二网络节点配置的传输路径数量,以及所述第一网络节点确定的传输路径总数量,确定所述第一网络节点配置的传输路径数量。
3)根据所述第二网络节点配置的传输路径数量,以及预先约定的无线承载可配置的最大传输路径总数量,确定所述第一网络节点配置的传输路径数量。
例如,该预先约定可选为协议约定。若第二网络节点配置了1条传输路径,协议约定的最大传输路径总数量为4,则第一网络节点可自行确定自身配置的传输路径数量,比如确定的配置的传输路径数量为1条、2条或者3条。
4)根据所述第二网络节点配置的传输路径数量,以及预先约定的无线承载可配置的最大传输路径总数量,调整所述第一网络节点配置的传输路径数量。
例如,该预先约定可选为协议约定。若配置请求消息中指示第一网络节点可配置2条传输路径,而第二网络节点反馈其配置了3条传输路径,协议约定的最大传输路径总数量为4,则第一网络节点可调整其配置的传输路径为1条。
这样,借助上述执行的操作,可以保证相应无线承载对应的传输路径总数量不超过预先约定的该无线承载对应的传输路径的最大可配置数量,从而灵活配置该无线承载对应的传输路径数量。
可选的,所述从所述第二网络节点接收配置响应消息之后,所述方法还可包括:
向终端发送无线承载对应的传输路径的配置消息;
其中,所述配置消息中包括所述第一网络节点配置的传输路径信息,和所述第二网络节点配置的传输路径信息中的至少一者。
这样,借助向终端发送无线承载对应的传输路径的配置消息,可使得终 端获知相应传输路径的配置消息,保证相应通信过程的顺利进行。
本公开的一些实施例中,可选的,所述配置请求消息的发送是通过以下任意一种方式发起的:
第一网络节点主动发起;
第二网络节点触发第一网络节点发起。
可选的,所述配置请求消息的发送原因(比如第一网络节点主动发起的原因,或第二网络节点触发第一网络节点发起的原因)包括以下至少一项:
为无线承载初始配置传输路径;
为无线承载添加传输路径;
为无线承载删除传输路径;
为无线承载变更传输路径。
本公开的一些实施例中,可选的,步骤501之后,所述方法还可包括:
启动定时器;
当所述定时器超时,且未从所述第二网络节点接收到配置响应消息时,确定所述第二网络节点拒绝响应所述配置请求消息;
或者,当在所述定时器超时前,从所述第二网络节点接收到配置响应消息时,停止所述定时器。
这样,借助上述定时器,可对第一和第二网络节点的协商过程进行有效控制,提升相应通信过程的有效性。
请参见图6,图6是本公开的一些实施例提供的另一种配置协商方法的流程图,该方法应用于第二网络节点,如图6所示,该方法包括如下步骤:
步骤601:从第一网络节点接收配置请求消息;
其中,所述配置请求消息用于请求协商无线承载对应的传输路径。
本公开的一些实施例中,可以例如在DC架构下等,借助第一和第二网络节点的协商过程,使得两个网络节点之间获知对方对相应无线承载对应的传输路径的配置情况,从而有效地协调网络侧节点的资源状况,以及灵活配置无线承载对应的传输路径数量。
进一步的,借助第一和第二网络节点的协商过程,还可保证不配置过多的传输路径,从而避免资源浪费,以及保证不配置过少的传输路径,从而避 免相应无线承载对应的可靠性需求无法满足。
可选的,步骤601之后,所述方法还包括:
向所述第一网络节点发送配置响应消息;
其中,所述配置响应消息为以下任意一项:
无线承载对应的传输路径的配置确认消息;
无线承载对应的传输路径的配置更改消息;
无线承载对应的传输路径的配置拒绝消息。
可选的,所述配置请求消息中包括以下至少一项:
无线承载标识;
第一网络节点确定的无线承载需要配置的传输路径总数量;
第一网络节点建议第二网络节点需要配置的传输路径数量;
第一网络节点配置的传输路径数量;
适用的数据传输方向。
可选的,所述配置确认消息中包括以下至少一项:
第二网络节点配置的一个或多个传输路径的标识;
第二网络节点配置的传输路径数量;
缺省的传输路径;
初始激活的传输路径。
可选的,所述配置更改消息中包括以下至少一项:
第二网络节点配置的传输路径数量;
第二网络节点更改传输路径数量的原因;其中,所述传输路径数量是第一网络节点建议所述第二网络节点需要配置的,或者,所述传输路径数量是第一网络节点根据所述第一网络节点确定的无线承载需要配置的传输路径总数量,以及所述第一网络节点配置的传输路径数量,确定的所述第二网络节点需要配置的传输路径数量;
第二网络节点配置的一个或多个传输路径的标识;
缺省的传输路径;
初始激活的传输路径。
可选的,所述配置拒绝消息中包括:拒绝理由。
可选的,所述第一网络节点为MN,所述第二网络节点为SN;
或者,所述第一网络节点为SN,所述第二网络节点为MN。
其中,所述第一网络节点为所述无线承载的包数据汇聚协议PDCP实体所在的网络节点。
例如,当所述第一网络节点为MN,所述第二网络节点为SN时,MN请求协商传输路径的无线承载类型为MN端分离承载(MN terminated split bear),或者MN端SCG承载(MN terminated SCG bear)。
例如,当所述第一网络节点为SN,所述第二网络节点为MN时,SN请求协商传输路径的无线承载类型为SN端分离承载(SN terminated split bear),或者SN端MCG承载(SN terminated MCG bear)。
下面,以第一网络节点为MN,第二网络节点为SN为例,结合图7对本公开具体实例的配置协商过程进行说明。
实例1
实例1中,如图7所示,对应的配置协商过程可包括如下步骤:
S1:MN向SN发送配置请求消息。
其中,该配置请求消息用于请求协商无线承载(比如SRB1或DRB2)对应的传输路径。该配置请求消息中包括以下内容:
无线承载标识;比如SRB ID或DRB ID;
MN确定的无线承载需要配置的传输路径总数量;
MN配置的传输路径数量,或者MN建议SN需要配置的传输路径数量;
适用的数据传输方向;比如仅上行、仅下行,或者同时上下行。
S2:SN接收到MN发送的配置请求消息后,向MN发送配置响应消息。
其中,该配置响应消息为以下任意一项:
无线承载对应的传输路径的配置确认消息;
无线承载对应的传输路径的配置更改消息;
无线承载对应的传输路径的配置拒绝消息。
进一步的,该配置确认消息中可包括以下至少一项:
SN配置的一个或多个传输路径的标识;比如,该标识可选为LCID,和/或RLC实体标识;
缺省的传输路径;比如,该缺省的传输路径的数量可选为一条或者多条;该缺省的传输路径可以是对应无线承载的PDCP数据复制功能去激活后,该无线承载可通过SN进行数据传输的路径;
初始激活的传输路径;比如,该初始激活的传输路径的数量可选为一条或者多条。
进一步的,该配置更改消息中可包括以下至少一项:
SN配置的传输路径数量;
SN更改传输路径数量的原因,其中,该传输路径数量是MN建议SN需要配置的,或者该传输路径数量是MN根据MN确定的无线承载需要配置的传输路径总数量,以及MN配置的传输路径数量,确定的SN需要配置的传输路径数量;比如,此原因可以是当前LCID资源不足,因此减少SN配置的传输路径数量;
SN配置的一个或多个传输路径的标识;比如,该标识可选为LCID、和/或RLC实体标识;
缺省的传输路径;比如,该缺省的传输路径的数量可选为一条或者多条;该缺省的传输路径可以是对应无线承载的PDCP数据复制功能去激活后,该无线承载可通过SN进行数据传输的路径;
初始激活的传输路径。
进一步的,该配置拒绝消息中可包括:
拒绝理由;比如,该拒绝理由可以是当前LCID资源不足,或者当前SN对应的激活小区负载过重等。
S3:MN接收到SN发送的配置响应消息后,执行以下操作中的至少一项:
根据SN配置的传输路径数量,以及MN确定的传输路径总数量,调整MN配置的传输路径数量;
向终端发送无线承载对应的传输路径的配置消息;所述配置消息中包括MN配置的传输路径信息,和SN配置的传输路径信息中的至少一者。
这样,可以实现由MN确定无线承载需要配置的传输路径总数量,并将该传输路径总数量以及MN配置的传输路径数量指示给SN,而SN可以更改自身需要配置的传输路径数量,并反馈给MN。
实例2
实例2中,如图7所示,对应的配置协商过程可包括如下步骤:
S1:MN向SN发送配置请求消息。
其中,该配置请求消息用于请求协商无线承载(比如SRB1或DRB2)对应的传输路径。该配置请求消息中包括以下内容:
无线承载标识;比如SRB ID或DRB ID;
MN确定的无线承载需要配置的传输路径总数量;
适用的数据传输方向;比如仅上行、仅下行,或者同时上下行。
S2:SN接收到MN发送的配置请求消息后,向MN发送配置响应消息。
其中,该配置响应消息为以下任意一项:
无线承载对应的传输路径的配置确认消息;
无线承载对应的传输路径的配置拒绝消息。
进一步的,该配置确认消息中可包括以下至少一项:
SN配置的传输路径数量;
SN配置的一个或多个传输路径的标识;比如,该标识可选为LCID,和/或RLC实体标识;
缺省的传输路径;比如,该缺省的传输路径的数量可选为一条或者多条;该缺省的传输路径可以是对应无线承载的PDCP数据复制功能去激活后,该无线承载可通过SN进行数据传输的路径;
初始激活的传输路径;比如,该初始激活的传输路径的数量可选为一条或者多条。
进一步的,该配置拒绝消息中可包括:
拒绝理由;比如,该拒绝理由可以是当前LCID资源不足,或者当前SN对应的激活小区负载过重等。
S3:MN接收到SN发送的配置响应消息后,执行以下操作中的至少一项:
根据SN配置的传输路径数量,以及MN确定的传输路径总数量,确定MN配置的传输路径数量;
向终端发送无线承载对应的传输路径的配置消息;所述配置消息中包括MN配置的传输路径信息,和SN配置的传输路径信息中的至少一者。
这样,可以实现由MN确定无线承载需要配置的传输路径总数量,并将该传输路径总数量指示给SN,而SN可以自行确定自身配置的传输路径数量,并反馈给MN,进一步的MN根据SN配置的传输路径数量,可以确定自身需要配置的传输路径数量。
实例3
实例3中,如图7所示,对应的配置协商过程可包括如下步骤:
S1:MN向SN发送配置请求消息。
其中,该配置请求消息用于请求协商无线承载(比如SRB1或DRB2)对应的传输路径。该配置请求消息中包括以下内容:
无线承载标识;比如SRB ID或DRB ID;
MN建议SN需要配置的传输路径数量;
适用的数据传输方向;比如仅上行、仅下行,或者同时上下行。
S2:SN接收到MN发送的配置请求消息后,向MN发送配置响应消息。
其中,该配置响应消息为以下任意一项:
无线承载对应的传输路径的配置确认消息;
无线承载对应的传输路径的配置更改消息;
无线承载对应的传输路径的配置拒绝消息。
进一步的,该配置确认消息中可包括以下至少一项:
SN配置的一个或多个传输路径的标识;比如,该标识可选为LCID,和/或RLC实体标识;
缺省的传输路径;比如,该缺省的传输路径的数量可选为一条或者多条;该缺省的传输路径可以是对应无线承载的PDCP数据复制功能去激活后,该无线承载可通过SN进行数据传输的路径;
初始激活的传输路径;比如,该初始激活的传输路径的数量可选为一条或者多条。
进一步的,该配置更改消息中可包括以下至少一项:
SN配置的传输路径数量;
SN更改传输路径数量的原因;其中,该传输路径数量是MN建议SN需要配置的,或者该传输路径数量是MN根据MN确定的无线承载需要配置的 传输路径总数量,以及MN配置的传输路径数量,确定的SN需要配置的传输路径数量;比如,此原因可以是当前LCID资源不足,因此减少SN配置的传输路径数量;
SN配置的一个或多个传输路径的标识;比如,该标识可选为LCID、和/或RLC实体标识;
缺省的传输路径;比如,该缺省的传输路径的数量可选为一条或者多条;该缺省的传输路径可以是对应无线承载的PDCP数据复制功能去激活后,该无线承载可通过SN进行数据传输的路径;
初始激活的传输路径。
进一步的,该配置拒绝消息中可包括:
拒绝理由;比如,该拒绝理由可以是当前LCID资源不足,或者当前SN对应的激活小区负载过重等。
S3:MN接收到SN发送的配置响应消息后,执行以下操作中的至少一项:
根据SN配置的传输路径数量,以及预先约定(例如协议约定)的无线承载可配置的最大传输路径总数量,确定MN配置的传输路径数量;
向终端发送无线承载对应的传输路径的配置消息;所述配置消息中包括MN配置的传输路径信息,和SN配置的传输路径信息中的至少一者。
这样,可以在MN不确定无线承载需要配置的传输路径总数量的情况下,由MN指示SN需要配置的传输路径数量,而SN可以更改自身需要配置的传输路径数量,并反馈给MN,后续MN自行确定自身配置的传输路径数量。
实例4
实例4中,如图7所示,对应的配置协商过程可包括如下步骤:
S1:MN向SN发送配置请求消息。
其中,该配置请求消息用于请求协商无线承载(比如SRB1或DRB2)对应的传输路径。该配置请求消息中包括以下内容:
无线承载标识;比如SRB ID或DRB ID;
MN配置的传输路径数量,或者MN建议SN需要配置的传输路径数量;
适用的数据传输方向;比如仅上行、仅下行,或者同时上下行。
S2:SN接收到MN发送的配置请求消息后,向MN发送配置响应消息。
其中,该配置响应消息为以下任意一项:
无线承载对应的传输路径的配置确认消息;
无线承载对应的传输路径的配置拒绝消息。
进一步的,该配置确认消息中可包括以下至少一项:
SN配置的传输路径数量;
SN配置的一个或多个传输路径的标识;比如,该标识可选为LCID,和/或RLC实体标识;
缺省的传输路径;比如,该缺省的传输路径的数量可选为一条或者多条;该缺省的传输路径可以是对应无线承载的PDCP数据复制功能去激活后,该无线承载可通过SN进行数据传输的路径;
初始激活的传输路径;比如,该初始激活的传输路径的数量可选为一条或者多条。
进一步的,该配置拒绝消息中可包括:
拒绝理由;比如,该拒绝理由可以是当前LCID资源不足,或者当前SN对应的激活小区负载过重等。
S3:MN接收到SN发送的配置响应消息后,执行以下操作中的至少一项:
根据SN配置的传输路径数量,以及预先约定的无线承载可配置的最大传输路径总数量,调整MN配置的传输路径数量;
向终端发送无线承载对应的传输路径的配置消息;所述配置消息中包括MN配置的传输路径信息,和SN配置的传输路径信息中的至少一者。
这样,可以实现在MN不确定无线承载需要配置的传输路径总数量的情况下,由MN向SN指示MN配置的传输路径数量,而SN可以自行确定自身配置的传输路径数量,并反馈给MN,进一步的MN根据SN配置的传输路径数量,可以调整自身需要配置的传输路径数量。
实例5
实例5中,如图7所示,对应的配置协商过程可包括如下步骤:
S1:MN向SN发送配置请求消息。
其中,该配置请求消息用于请求协商无线承载(比如SRB1或DRB2)对应的传输路径。该配置请求消息中包括以下内容:
无线承载标识;比如SRB ID或DRB ID;
适用的数据传输方向;比如仅上行、仅下行,或者同时上下行。
S2:SN接收到MN发送的配置请求消息后,向MN发送配置响应消息。
其中,该配置响应消息为以下任意一项:
无线承载对应的传输路径的配置确认消息;
无线承载对应的传输路径的配置拒绝消息。
进一步的,该配置确认消息中可包括以下至少一项:
SN配置的传输路径数量;
SN配置的一个或多个传输路径的标识;比如,该标识可选为LCID,和/或RLC实体标识;
缺省的传输路径;比如,该缺省的传输路径的数量可选为一条或者多条;该缺省的传输路径可以是对应无线承载的PDCP数据复制功能去激活后,该无线承载可通过SN进行数据传输的路径;
初始激活的传输路径;比如,该初始激活的传输路径的数量可选为一条或者多条。
进一步的,该配置拒绝消息中可包括:
拒绝理由;比如,该拒绝理由可以是当前LCID资源不足,或者当前SN对应的激活小区负载过重等。
S3:MN接收到SN发送的配置响应消息后,执行以下操作中的至少一项:
根据SN配置的传输路径数量,以及预先约定的无线承载可配置的最大传输路径总数量,确定MN配置的传输路径数量;
向终端发送无线承载对应的传输路径的配置消息;所述配置消息中包括MN配置的传输路径信息,和SN配置的传输路径信息中的至少一者。
这样,可以实现在MN不确定无线承载需要配置的传输路径总数量的情况下,由SN自行确定自身配置的传输路径数量,并反馈给MN,进一步的MN可自行确定其配置的传输路径数量。
可理解的,上述实例中是以第一网络节点为MN,第二网络节点为SN为例,但其他实例中也可以是第一网络节点为SN,第二网络节点为MN,且具体实现过程类似,在此不再赘述。
上述实施例对本公开的配置协商方法进行了说明,下面将结合实施例和附图对本公开的网络节点进行说明。
请参见图8,图8是本公开的一些实施例提供的一种网络节点的结构示意图,该网络节点80为第一网络节点,如图8所示,该网络节点80包括:
第一发送模块81,用于向第二网络节点发送配置请求消息;
其中,所述配置请求消息用于请求协商无线承载对应的传输路径。
本公开的一些实施例中,可以例如在DC架构下等,借助第一和第二网络节点的协商过程,使得两个网络节点之间获知对方对相应无线承载对应的传输路径的配置情况,从而有效地协调网络侧节点的资源状况,以及灵活配置无线承载对应的传输路径数量。
可选的,所述网络节点80还包括:
第一接收模块,用于向从所述第二网络节点接收配置响应消息;
其中,所述配置响应消息为以下任意一项:
无线承载对应的传输路径的配置确认消息;
无线承载对应的传输路径的配置更改消息;
无线承载对应的传输路径的配置拒绝消息。
可选的,所述配置请求消息中包括以下至少一项:
无线承载标识;
第一网络节点确定的无线承载需要配置的传输路径总数量;
第一网络节点建议第二网络节点需要配置的传输路径数量;
第一网络节点配置的传输路径数量;
适用的数据传输方向。
可选的,所述配置确认消息中包括以下至少一项:
第二网络节点配置的一个或多个传输路径的标识;
第二网络节点配置的传输路径数量;
缺省的传输路径;
初始激活的传输路径。
可选的,所述配置更改消息中包括以下至少一项:
第二网络节点配置的传输路径数量;
第二网络节点更改传输路径数量的原因;其中,所述传输路径数量是第一网络节点建议所述第二网络节点需要配置的,或者,所述传输路径数量是第一网络节点根据所述第一网络节点确定的无线承载需要配置的传输路径总数量,以及所述第一网络节点配置的传输路径数量,确定的所述第二网络节点需要配置的传输路径数量;
第二网络节点配置的一个或多个传输路径的标识;
缺省的传输路径;
初始激活的传输路径。
可选的,所述配置拒绝消息中包括:
拒绝理由。
可选的,所述网络节点80还包括:
执行模块,用于执行以下操作中的任意一项:
根据所述第二网络节点配置的传输路径数量,以及所述第一网络节点确定的传输路径总数量,调整所述第一网络节点配置的传输路径数量;
根据所述第二网络节点配置的传输路径数量,以及所述第一网络节点确定的传输路径总数量,确定所述第一网络节点配置的传输路径数量;
根据所述第二网络节点配置的传输路径数量,以及预先约定的无线承载可配置的最大传输路径总数量,确定所述第一网络节点配置的传输路径数量;
根据所述第二网络节点配置的传输路径数量,以及预先约定的无线承载可配置的最大传输路径总数量,调整所述第一网络节点配置的传输路径数量。
可选的,所述网络节点80还包括:
第三发送模块,用于向终端发送无线承载对应的传输路径的配置消息;其中,所述配置消息中包括所述第一网络节点配置的传输路径信息,和所述第二网络节点配置的传输路径信息中的至少一者。
可选的,所述配置请求消息的发送是通过以下任意一种方式发起的:
第一网络节点主动发起;
第二网络节点触发第一网络节点发起。
可选的,所述配置请求消息的发送原因包括以下至少一项:
为无线承载初始配置传输路径;
为无线承载添加传输路径;
为无线承载删除传输路径;
为无线承载变更传输路径。
可选的,所述网络节点80还包括:
启动模块,用于启动定时器;
确定模块,用于当所述定时器超时,且未从所述第二网络节点接收到配置响应消息时,确定所述第二网络节点拒绝响应所述配置请求消息;
停止模块,用于当在所述定时器超时前,从所述第二网络节点接收到配置响应消息时,停止所述定时器。
可选的,所述第一网络节点为MN,所述第二网络节点为SN;
或者,所述第一网络节点为SN,所述第二网络节点为MN。
其中,所述第一网络节点为所述无线承载的PDCP实体所在的网络节点。
请参见图9,图9是本公开的一些实施例提供的一种网络节点的结构示意图,该网络节点90为第二网络节点,如图9所示,该网络节点90包括:
第二接收模块91,用于从第一网络节点接收配置请求消息;
其中,所述配置请求消息用于请求协商无线承载对应的传输路径。
本公开的一些实施例中,可以例如在DC架构下等,借助第一和第二网络节点的协商过程,使得两个网络节点之间获知对方对相应无线承载对应的传输路径的配置情况,从而有效地协调网络侧节点的资源状况,以及灵活配置无线承载对应的传输路径数量。
可选的,所述网络节点90还包括:
第二发送模块,用于向所述第一网络节点发送配置响应消息;
其中,所述配置响应消息为以下任意一项:
无线承载对应的传输路径的配置确认消息;
无线承载对应的传输路径的配置更改消息;
无线承载对应的传输路径的配置拒绝消息。
可选的,所述配置请求消息中包括以下至少一项:
无线承载标识;
第一网络节点确定的无线承载需要配置的传输路径总数量;
第一网络节点建议第二网络节点需要配置的传输路径数量;
第一网络节点配置的传输路径数量;
适用的数据传输方向。
可选的,所述配置确认消息中包括以下至少一项:
第二网络节点配置的一个或多个传输路径的标识;
第二网络节点配置的传输路径数量;
缺省的传输路径;
初始激活的传输路径。
可选的,所述配置更改消息中包括以下至少一项:
第二网络节点配置的传输路径数量;
第二网络节点更改传输路径数量的原因;其中,所述传输路径数量是第一网络节点建议所述第二网络节点需要配置的,或者,所述传输路径数量是第一网络节点根据所述第一网络节点确定的无线承载需要配置的传输路径总数量,以及所述第一网络节点配置的传输路径数量,确定的所述第二网络节点需要配置的传输路径数量;
第二网络节点配置的一个或多个传输路径的标识;
缺省的传输路径;
初始激活的传输路径。
可选的,所述配置拒绝消息中包括:拒绝理由。
可选的,所述第一网络节点为MN,所述第二网络节点为SN;
或者,所述第一网络节点为SN,所述第二网络节点为MN。
其中,所述第一网络节点为所述无线承载的PDCP实体所在的网络节点。
本公开的一些实施例还提供了一种网络节点,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时实现上述应用于网络节点的配置协商方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。可选的,该网络节点为第一网络节点或第二网络节点。
具体的,图10为实现本公开各个实施例的一种网络节点的硬件结构示意图,所述网络节点110包括但不限于:总线111、收发机112、天线113、总 线接口114、处理器115和存储器116。
在本公开的一些实施例中,所述网络节点110还包括:存储在存储器116上并可在处理器115上运行的程序,该程序被处理器115执行时可实现上述应用于第一网络节点的配置协商方法实施例的各个过程,或者上述应用于第二网络节点的配置协商方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
收发机112,用于在处理器115的控制下接收和发送数据。
在图10中,总线架构(用总线111来代表),总线111可以包括任意数量的互联的总线和桥,总线111将包括由处理器115代表的一个或多个处理器和存储器116代表的存储器的各种电路链接在一起。总线111还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口114在总线111和收发机112之间提供接口。收发机112可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器115处理的数据通过天线113在无线介质上进行传输,进一步,天线113还接收数据并将数据传送给处理器115。
处理器115负责管理总线111和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器116可以被用于存储处理器115在执行操作时所使用的数据。
可选的,处理器115可以是CPU、ASIC、FPGA或CPLD。
本公开的一些实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时可实现上述应用于第一网络节点的配置协商方法实施例的各个过程,或者上述应用于第二网络节点的配置协商方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,该计算机可读存储介质,例如为只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或 者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络节点等)执行本公开各个实施例所述的方法。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子模块、子单元等可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和 /或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护范围之内。

Claims (27)

  1. 一种配置协商方法,应用于第一网络节点,包括:
    向第二网络节点发送配置请求消息;
    其中,所述配置请求消息用于请求协商无线承载对应的传输路径。
  2. 根据权利要求1所述的方法,其中,所述向第二网络节点发送配置请求消息之后,所述方法还包括:
    从所述第二网络节点接收配置响应消息;
    其中,所述配置响应消息为以下任意一项:
    无线承载对应的传输路径的配置确认消息;
    无线承载对应的传输路径的配置更改消息;
    无线承载对应的传输路径的配置拒绝消息。
  3. 根据权利要求1所述的方法,其中,所述配置请求消息中包括以下至少一项:
    无线承载标识;
    第一网络节点确定的无线承载需要配置的传输路径总数量;
    第一网络节点建议第二网络节点需要配置的传输路径数量;
    第一网络节点配置的传输路径数量;
    适用的数据传输方向。
  4. 根据权利要求2所述的方法,其中,所述配置确认消息中包括以下至少一项:
    第二网络节点配置的一个或多个传输路径的标识;
    第二网络节点配置的传输路径数量;
    缺省的传输路径;
    初始激活的传输路径。
  5. 根据权利要求2所述的方法,其中,所述配置更改消息中包括以下至少一项:
    第二网络节点配置的传输路径数量;
    第二网络节点更改传输路径数量的原因;其中,所述传输路径数量是第 一网络节点建议所述第二网络节点需要配置的,或者,所述传输路径数量是第一网络节点根据所述第一网络节点确定的无线承载需要配置的传输路径总数量,以及所述第一网络节点配置的传输路径数量,确定的所述第二网络节点需要配置的传输路径数量;
    第二网络节点配置的一个或多个传输路径的标识;
    缺省的传输路径;
    初始激活的传输路径。
  6. 根据权利要求2所述的方法,其中,所述配置拒绝消息中包括:
    拒绝理由。
  7. 根据权利要求4或5所述的方法,其中,所述从所述第二网络节点接收配置响应消息之后,所述方法还包括:
    执行以下操作中的任意一项:
    根据所述第二网络节点配置的传输路径数量,以及所述第一网络节点确定的传输路径总数量,调整所述第一网络节点配置的传输路径数量;
    根据所述第二网络节点配置的传输路径数量,以及所述第一网络节点确定的传输路径总数量,确定所述第一网络节点配置的传输路径数量;
    根据所述第二网络节点配置的传输路径数量,以及预先约定的无线承载可配置的最大传输路径总数量,确定所述第一网络节点配置的传输路径数量;
    根据所述第二网络节点配置的传输路径数量,以及预先约定的无线承载可配置的最大传输路径总数量,调整所述第一网络节点配置的传输路径数量。
  8. 根据权利要求4、5或7所述的方法,其中,所述从所述第二网络节点接收配置响应消息之后,所述方法还包括:
    向终端发送无线承载对应的传输路径的配置消息;
    其中,所述配置消息中包括所述第一网络节点配置的传输路径信息,和所述第二网络节点配置的传输路径信息中的至少一者。
  9. 根据权利要求1所述的方法,其中,所述配置请求消息的发送是通过以下任意一种方式发起的:
    第一网络节点主动发起;
    第二网络节点触发第一网络节点发起。
  10. 根据权利要求1所述的方法,其中,所述配置请求消息的发送原因包括以下至少一项:
    为无线承载初始配置传输路径;
    为无线承载添加传输路径;
    为无线承载删除传输路径;
    为无线承载变更传输路径。
  11. 根据权利要求1所述的方法,其中,所述向第二网络节点发送配置请求消息之后,所述方法还包括:
    启动定时器;
    当所述定时器超时,且未从所述第二网络节点接收到配置响应消息时,确定所述第二网络节点拒绝响应所述配置请求消息;
    或者,当在所述定时器超时前,从所述第二网络节点接收到配置响应消息时,停止所述定时器。
  12. 根据权利要求1所述的方法,其中,
    所述第一网络节点为主节点MN,所述第二网络节点为辅节点SN;
    或者,
    所述第一网络节点为SN,所述第二网络节点为MN;
    其中,所述第一网络节点为所述无线承载的包数据汇聚协议PDCP实体所在的网络节点。
  13. 一种配置协商方法,应用于第二网络节点,其中,包括:
    从第一网络节点接收配置请求消息;
    其中,所述配置请求消息用于请求协商无线承载对应的传输路径。
  14. 根据权利要求13所述的方法,其中,所述从第一网络节点接收配置请求消息之后,所述方法还包括:
    向所述第一网络节点发送配置响应消息;
    其中,所述配置响应消息为以下任意一项:
    无线承载对应的传输路径的配置确认消息;
    无线承载对应的传输路径的配置更改消息;
    无线承载对应的传输路径的配置拒绝消息。
  15. 根据权利要求13所述的方法,其中,所述配置请求消息中包括以下至少一项:
    无线承载标识;
    第一网络节点确定的无线承载需要配置的传输路径总数量;
    第一网络节点建议第二网络节点需要配置的传输路径数量;
    第一网络节点配置的传输路径数量;
    适用的数据传输方向。
  16. 根据权利要求14所述的方法,其中,所述配置确认消息中包括以下至少一项:
    第二网络节点配置的一个或多个传输路径的标识;
    第二网络节点配置的传输路径数量;
    缺省的传输路径;
    初始激活的传输路径。
  17. 根据权利要求14所述的方法,其中,所述配置更改消息中包括以下至少一项:
    第二网络节点配置的传输路径数量;
    第二网络节点更改传输路径数量的原因;其中,所述传输路径数量是第一网络节点建议所述第二网络节点需要配置的,或者,所述传输路径数量是第一网络节点根据所述第一网络节点确定的无线承载需要配置的传输路径总数量,以及所述第一网络节点配置的传输路径数量,确定的所述第二网络节点需要配置的传输路径数量;
    第二网络节点配置的一个或多个传输路径的标识;
    缺省的传输路径;
    初始激活的传输路径。
  18. 根据权利要求14所述的方法,其中,所述配置拒绝消息中包括:拒绝理由。
  19. 根据权利要求13至18中任一项所述的方法,其中,
    所述第一网络节点为MN,所述第二网络节点为SN;
    或者,
    所述第一网络节点为SN,所述第二网络节点为MN;
    其中,所述第一网络节点为所述无线承载的PDCP实体所在的网络节点。
  20. 一种网络节点,其中,所述网络节点为第一网络节点,包括:
    第一发送模块,用于向第二网络节点发送配置请求消息;
    其中,所述配置请求消息用于请求协商无线承载对应的传输路径。
  21. 根据权利要求20所述的网络节点,其中,
    所述网络节点还包括:
    第一接收模块,用于向从所述第二网络节点接收配置响应消息;
    其中,所述配置响应消息为以下任意一项:
    无线承载对应的传输路径的配置确认消息;
    无线承载对应的传输路径的配置更改消息;
    无线承载对应的传输路径的配置拒绝消息。
  22. 根据权利要求21所述的网络节点,还包括:
    执行模块,用于执行以下操作中的任意一项:
    根据所述第二网络节点配置的传输路径数量,以及所述第一网络节点确定的传输路径总数量,调整所述第一网络节点配置的传输路径数量;
    根据所述第二网络节点配置的传输路径数量,以及所述第一网络节点确定的传输路径总数量,确定所述第一网络节点配置的传输路径数量;
    根据所述第二网络节点配置的传输路径数量,以及预先约定的无线承载可配置的最大传输路径总数量,确定所述第一网络节点配置的传输路径数量;
    根据所述第二网络节点配置的传输路径数量,以及预先约定的无线承载可配置的最大传输路径总数量,调整所述第一网络节点配置的传输路径数量。
  23. 根据权利要求21或22所述的网络节点,还包括:
    第三发送模块,用于向终端发送无线承载对应的传输路径的配置消息;其中,所述配置消息中包括所述第一网络节点配置的传输路径信息,和所述第二网络节点配置的传输路径信息中的至少一者。
  24. 一种网络节点,其中,所述网络节点为第二网络节点,包括:
    第二接收模块,用于从第一网络节点接收配置请求消息;
    其中,所述配置请求消息用于请求协商无线承载对应的传输路径。
  25. 根据权利要求24所述的网络节点,其中,
    所述网络节点还包括:
    第二发送模块,用于向所述第一网络节点发送配置响应消息;
    其中,所述配置响应消息为以下任意一项:
    无线承载对应的传输路径的配置确认消息;
    无线承载对应的传输路径的配置更改消息;
    无线承载对应的传输路径的配置拒绝消息。
  26. 一种网络节点,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时实现如权利要求1至12中任一项所述的配置协商方法的步骤,或者实现如权利要求13至19中任一项所述的配置协商方法的步骤。
  27. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至12中任一项所述的配置协商方法的步骤,或者实现如权利要求13至19中任一项所述的配置协商方法的步骤。
PCT/CN2020/079870 2019-03-28 2020-03-18 配置协商方法及网络节点 WO2020192510A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910245125.3 2019-03-28
CN201910245125.3A CN111436163B (zh) 2019-03-28 2019-03-28 配置协商方法及网络节点

Publications (1)

Publication Number Publication Date
WO2020192510A1 true WO2020192510A1 (zh) 2020-10-01

Family

ID=71581149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079870 WO2020192510A1 (zh) 2019-03-28 2020-03-18 配置协商方法及网络节点

Country Status (2)

Country Link
CN (1) CN111436163B (zh)
WO (1) WO2020192510A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066702A1 (ja) * 2016-10-07 2018-04-12 株式会社Nttドコモ 無線通信システム、ネットワーク装置及び無線通信方法
WO2018174791A1 (en) * 2017-03-24 2018-09-27 Telefonaktiebolaget Lm Ericsson (Publ) Methods providing dual connectivity communication and related network nodes and wireless terminals
CN108633018A (zh) * 2017-03-23 2018-10-09 华为技术有限公司 配置方法、装置及系统
CN109168179A (zh) * 2018-08-28 2019-01-08 中国联合网络通信集团有限公司 一种系统双连接调度策略及装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101765117A (zh) * 2008-12-26 2010-06-30 华为技术有限公司 一种分配信道和实现通信的方法、装置和系统
CN101998304B (zh) * 2009-08-18 2013-09-11 华为技术有限公司 多段无线承载下提供服务质量保证的方法和装置
CN102158911A (zh) * 2010-02-11 2011-08-17 华为技术有限公司 机器对机器业务的承载建立方法及网络传输设备
US9838089B2 (en) * 2011-10-07 2017-12-05 Futurewei Technologies, Inc. System and method for multiple point transmission in a communications system
US9763226B2 (en) * 2012-01-11 2017-09-12 Nokia Solutions And Networks Oy Secondary cell preparation for inter-site carrier aggregation
CN105519184B (zh) * 2013-02-28 2019-06-28 华为技术有限公司 能力协商的方法、无线设备控制器和无线设备
CN105517028B (zh) * 2014-10-17 2020-03-24 电信科学技术研究院 一种触发和配置传输路径的方法及设备
CN115474245A (zh) * 2015-06-30 2022-12-13 华为技术有限公司 一种数据传输方法、无线网络节点和通信系统
CN106162730B (zh) * 2016-07-12 2019-11-15 上海华为技术有限公司 一种通信的方法、设备及系统
CN108377567B (zh) * 2016-11-01 2021-02-23 北京三星通信技术研究有限公司 一种在5g架构下建立双连接传输数据的方法、装置和系统
WO2018131984A1 (ko) * 2017-01-16 2018-07-19 엘지전자(주) 무선 통신 시스템에서 ue 설정 업데이트 방법 및 이를 위한 장치
US11019544B2 (en) * 2017-02-02 2021-05-25 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in mobile communication system
CN111642030B (zh) * 2017-03-16 2022-05-03 中兴通讯股份有限公司 一种用户信息管理的方法和系统
CN109151891B (zh) * 2017-06-15 2022-04-05 华为技术有限公司 一种通信处理方法和通信装置
CN109246705B (zh) * 2017-06-15 2020-10-23 维沃移动通信有限公司 一种数据无线承载完整性保护配置方法、终端及网络设备
CN110324848B (zh) * 2017-06-16 2020-10-16 华为技术有限公司 信息处理方法、通信装置以及计算机存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066702A1 (ja) * 2016-10-07 2018-04-12 株式会社Nttドコモ 無線通信システム、ネットワーク装置及び無線通信方法
CN108633018A (zh) * 2017-03-23 2018-10-09 华为技术有限公司 配置方法、装置及系统
WO2018174791A1 (en) * 2017-03-24 2018-09-27 Telefonaktiebolaget Lm Ericsson (Publ) Methods providing dual connectivity communication and related network nodes and wireless terminals
CN109168179A (zh) * 2018-08-28 2019-01-08 中国联合网络通信集团有限公司 一种系统双连接调度策略及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA ET AL.: "Duplication with multiple legs in SgNB", 3GPP TSG-RAN WG3 MEETING #103, R3-180218, 1 March 2019 (2019-03-01), XP051604161 *
VIVO: "ANR coordination between MN and SN", 3GPP TSG-RAN WG2 MEETING #104, R2-1816503, 16 November 2018 (2018-11-16), XP051480457 *

Also Published As

Publication number Publication date
CN111436163B (zh) 2022-03-01
CN111436163A (zh) 2020-07-21

Similar Documents

Publication Publication Date Title
CN108260163B (zh) 信息的发送、接收方法及装置
JP7028898B2 (ja) 複製送信の構成、複製送信方法および装置
US11323911B2 (en) Radio bearer configuration method and apparatus for configuring a dual connectivity terminal
US20190253895A1 (en) Control signaling processing method, device, and system
WO2019029520A1 (zh) 一种寻呼消息的发送方法及相关设备
JP6468618B2 (ja) 無線ローカルエリアネットワークの並行処理能力を高めるための方法、装置、およびシステム
JP7210563B2 (ja) 複製送信の方法および装置
WO2018233446A1 (zh) 数据传输方法、装置、系统、网元、存储介质及处理器
WO2021238774A1 (zh) 通信方法及装置
CN110875827B (zh) 一种网络切片管理方法及装置
CN116567751A (zh) 提高无线通信系统中的服务可靠性的方法和装置
US20190238352A1 (en) Communication Method and Apparatus
WO2019062616A1 (zh) 一种终端能力控制方法、终端及基站
EP3836735A1 (en) Method and apparatus for restoring data radio bearer, and storage medium and electronic apparatus
WO2020063441A1 (zh) 重复传输方法、终端和网络侧设备
WO2016052708A1 (ja) 情報通知方法、移動通信システム、及び基地局
WO2021174536A1 (zh) 一种通信方法及相关装置
JP7123138B2 (ja) 通信方法及び通信装置
WO2020063401A1 (zh) 一种模式切换方法、数据流分流方法及装置
US10554693B2 (en) Security configuration method for radio bearer and device
WO2020192510A1 (zh) 配置协商方法及网络节点
WO2022205995A1 (zh) 一种业务流处理方法、装置及系统
WO2021022986A1 (zh) 直接通信接口无线承载配置方法、终端及网络侧设备
WO2020093771A1 (zh) 重复传输的处理方法、装置及网络节点
WO2016168978A1 (zh) 一种资源切换方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779021

Country of ref document: EP

Kind code of ref document: A1