WO2020192403A1 - 一种仪器测试方法、装置及设备 - Google Patents

一种仪器测试方法、装置及设备 Download PDF

Info

Publication number
WO2020192403A1
WO2020192403A1 PCT/CN2020/078440 CN2020078440W WO2020192403A1 WO 2020192403 A1 WO2020192403 A1 WO 2020192403A1 CN 2020078440 W CN2020078440 W CN 2020078440W WO 2020192403 A1 WO2020192403 A1 WO 2020192403A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
measurement
instrument
tissue
nominal value
Prior art date
Application number
PCT/CN2020/078440
Other languages
English (en)
French (fr)
Inventor
何琼
邵金华
孙锦
段后利
Original Assignee
无锡声美达医学技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡声美达医学技术有限公司 filed Critical 无锡声美达医学技术有限公司
Publication of WO2020192403A1 publication Critical patent/WO2020192403A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/58Testing, adjusting or calibrating the diagnostic device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves

Definitions

  • This specification relates to the technical field of ultrasound imaging, and more specifically, to an instrument testing method, an instrument testing device, and an instrument testing equipment.
  • Ultrasound imaging technology can be used to measure the physical properties of organs such as the liver to reflect the health of the organs. For example, it is possible to determine whether there are health problems such as liver cirrhosis and fatty liver by measuring the elasticity value and sound attenuation value of the liver.
  • the measurement capability can usually be tested with the help of a tissue-like phantom (referred to as a tissue-like body membrane).
  • a tissue-like body membrane For example, an instrument is used to measure the elasticity of the tissue-like body membrane and calculate the difference between it and the nominal value of the elasticity of the tissue-like body membrane to determine the accuracy of the instrument's measurement of elasticity.
  • the nominal value of the physical index of the tissue-like body membrane will be inconsistent with the true value, which will affect the measurement of the instrument's measurement capability. Therefore, how to reasonably and effectively test the measurement capabilities of ultrasound imaging instruments has become a problem to be solved.
  • One purpose of the embodiments of this specification is to provide a new technical solution for instrument testing.
  • an instrument testing method is provided, the instrument is used to measure one or more physical indicators of an elastic medium, and the method includes:
  • the repeatability measurement accuracy of the instrument is determined.
  • the multiple measurements are that the instrument makes multiple measurements of a certain physical index on the same area of a tissue-like body membrane by contacting the tissue-like body membrane for measurement.
  • the method further includes:
  • the method further includes:
  • the measurement accuracy of the instrument is determined according to the degree of correlation of the change of the fourth measurement value with the nominal value.
  • the obtaining the degree of dispersion of the plurality of first measurement values includes:
  • the relative standard deviation of the first measurement values Determine the degree of dispersion, the relative standard deviation Calculated by:
  • n is the total number of measurements
  • x i is the first measurement value corresponding to the i-th (1 ⁇ i ⁇ n and i is an integer) measurement
  • is the arithmetic average of all x i
  • c is the tissue-like body membrane The nominal value of the physical index.
  • the obtaining the correlation degree of the fourth measurement value with the nominal value change includes:
  • the degree of correlation is determined by the correlation coefficient R between the fourth measurement value and the nominal value or the square R 2 of the correlation coefficient between the fourth measurement value and the nominal value, wherein the correlation coefficient R Calculated by:
  • X is the fourth measurement value
  • Y is the nominal value
  • Cov(X,Y) is the covariance between the fourth measurement value and the nominal value
  • Var[X] is the variance of the fourth measurement value
  • Var[Y] Is the variance of the nominal value.
  • acquiring multiple fourth measurement values obtained by the instrument by measuring a certain physical index on multiple tissue-like body membranes with different nominal values includes:
  • a plurality of fifth measurement values obtained by measuring a plurality of regions of the tissue-like body membrane with the nominal value are obtained, wherein the fifth measurement value is the same as the region One-to-one correspondence
  • the fourth measurement value is determined.
  • the physical index is elasticity or sound attenuation value.
  • an instrument testing device including: a receiving module, a first processing module, and a second processing module;
  • the receiving module is used to obtain a plurality of first measurement values obtained by the instrument by performing multiple measurements of a certain physical index on the same area of a tissue-like body membrane with a specific nominal value;
  • the first processing module is used to determine the degree of dispersion of the plurality of first measurement values
  • the second processing module is used to determine the repeatability measurement accuracy of the instrument according to the degree of dispersion of the first measurement value.
  • an instrument testing equipment including the instrument testing device as described in the second aspect of this specification; or, the instrument testing equipment includes:
  • the processor is configured to execute the method described in any one of the first aspect of this specification under the control of the executable command.
  • the instrument measurement method in this embodiment can determine the repeatability measurement accuracy of the instrument by obtaining the degree of dispersion of the results of multiple measurements on the same area of the same tissue-like body membrane by the instrument, which can eliminate the tissue-like body
  • the influence of the inconsistency between the nominal value of the membrane physical index and the true value on the test result is conducive to the reasonable and effective test of the measurement capability of the ultrasound imaging instrument.
  • Figure 1 is a schematic diagram of a hardware configuration that can be used to implement the embodiments of this specification.
  • Figure 2 is a schematic diagram of the configuration of the instrument test equipment that can be used to implement this specification.
  • Fig. 3 is a flowchart of the instrument test method according to the first embodiment of the specification.
  • FIG. 4 is a schematic structural diagram of an instrument testing device 400 according to the fifth embodiment of this specification.
  • FIG. 5 is a schematic structural diagram of an instrument test equipment 500 according to the sixth embodiment of the present specification.
  • Fig. 1 shows a schematic diagram of a hardware device used for instrument testing in this embodiment.
  • the hardware equipment in this embodiment includes an instrument testing equipment 100, an ultrasound imaging instrument 200 and a tissue-like body membrane 300.
  • the ultrasound imaging instrument 200 is used, for example, to measure organs and the like through ultrasound imaging technology to obtain physical indicators such as elasticity and sound attenuation values, and thereby reflect the health of the organs.
  • the ultrasound imaging instrument 200 is provided with a probe 201. By moving the probe 201, different detection positions and detection areas can be selected.
  • the tissue-like body membrane (mimetic body) 400 is, for example, a passive device that is composed of ultrasonic elastic tissue-like materials in different ways and is used to detect the measurement capability of an ultrasonic imaging instrument.
  • the tissue-like body membrane 400 can provide a standardized detection object for the test of an ultrasonic imaging instrument, which is beneficial to quantitative analysis of the measurement capability of the instrument.
  • the instrument testing equipment 100 is used, for example, to test the measurement capability of the ultrasonic imaging instrument 200 to control the quality of the instrument.
  • the instrument test equipment 100 includes, for example, a processor 101, a memory 102, a communication device 103, and a display device 104.
  • the processor 101 is, for example, a central processing unit CPU, a microprocessor MCU, and the like.
  • the memory 102 includes, for example, ROM (Read Only Memory), RAM (Random Access Memory), nonvolatile memory such as a hard disk, and the like.
  • the communication device 103 can perform wired communication or wireless communication, for example.
  • the display device 1040 can be used to display text or image information, for example.
  • the instrument testing equipment 100 and the ultrasound imaging instrument 200 are linked by a connecting line 300 to realize data transmission.
  • Fig. 1 The hardware configuration shown in Fig. 1 is only for explanatory purposes, and is by no means intended to limit this specification, its application or usage.
  • This embodiment provides an instrument testing method to determine the repeatability measurement accuracy of an ultrasound imaging instrument.
  • the accuracy refers to, for example, the consistency of results obtained by repeated measurements.
  • the accuracy of an ultrasound imaging instrument can reflect the measurement capability of the instrument.
  • This method is implemented by, for example, the instrument test equipment 100 in FIG. 1. As shown in Figure 3, the method includes the following steps S3100-S3300.
  • Step S3100 Obtain multiple first measurement values obtained by the instrument by performing multiple measurements of a certain physical index on the same area of a tissue-like body membrane with a specific nominal value.
  • Physical indicators are, for example, physical quantities measured by instruments, such as elasticity, sound attenuation value, etc.
  • the actual values of physical indicators in different regions of the same tissue-like body membrane may be different.
  • the instrument in this embodiment measures the same area of the same tissue-like body membrane to obtain the corresponding first measurement value.
  • a method can be adopted to keep the position, angle, and detection depth of the probe relative to the surface of the tissue-like body membrane constant during multiple measurements.
  • the probe 201 is vertically placed at the position A on the surface of the tissue-like body membrane 400 during each measurement, and the same measurement depth is selected. In this way, multiple first measurement values are measured.
  • the multiple measurement position A is a manner in which the instrument is detached after contacting the tissue-like body membrane for measurement to perform multiple measurements on the position A.
  • the instrument test equipment acquires multiple first measurement values measured by the instrument, for example, through wired communication or wireless communication.
  • the instrument testing equipment 100 obtains multiple first measurement values measured by the ultrasound imaging instrument 200 through the connecting line 300.
  • Step S3200 Determine the degree of dispersion of the multiple first measurement values.
  • the degree of dispersion can reflect the difference between each value, and then reflect the consistency of the results obtained by the instrument repeated measurement under the same conditions, that is, the repeatability measurement of the ultrasound imaging instrument Accuracy.
  • the dispersion degree of the multiple first measurement values is determined by the relative standard deviation to make sure.
  • n is the total number of measurements
  • x i is the first measurement value corresponding to the i-th (1 ⁇ i ⁇ n and i is an integer) measurement
  • is the arithmetic average of all x i
  • c is the tissue-like body membrane The nominal value of the physical index.
  • I is the standard deviation of all x i .
  • the standard deviation of the elastic measurement value is 0.17.
  • the relative standard deviation of the elasticity measurement value is obtained
  • Step S3300 Determine the repeatability measurement accuracy of the instrument according to the degree of dispersion of the first measurement value.
  • the conditions that the dispersion degree of the first measurement value should meet can be obtained, and the measurement accuracy of the instrument can be determined accordingly.
  • the instrument measurement method in this embodiment can determine the repeatability measurement accuracy of the instrument by obtaining the degree of dispersion of the results of multiple measurements on the same area of the same tissue-like body membrane by the instrument, which can eliminate the nominal value and the physical index of the tissue-like body membrane.
  • the impact of inconsistent true values on the test results is conducive to the reasonable and effective testing of the measurement capabilities of ultrasound imaging instruments.
  • This embodiment provides an instrument test method. Based on the method in the first embodiment, the accuracy of the instrument measurement is also tested.
  • the measurement accuracy here, for example, refers to the consistency between the measured value of the physical index and the actual value of the physical index of the tissue-like body membrane.
  • This method is implemented by, for example, the instrument test equipment 100 in FIG. 1.
  • the method includes the following steps S4100-S4600.
  • Step S4100 Obtain multiple first measurement values obtained by the instrument by performing multiple measurements of a certain physical index on the same area of a tissue-like body membrane with a specific nominal value.
  • Step S4200 Determine the degree of dispersion of the multiple first measurement values.
  • Step S4300 Determine the repeatability measurement accuracy of the instrument according to the degree of dispersion of the first measurement value.
  • steps S4100-S4300 For the implementation of the foregoing steps S4100-S4300, reference may be made to the description of steps S3100-S3300 in the first embodiment, which will not be repeated here.
  • Step S4400 Obtain multiple fourth measurement values obtained by the instrument by measuring a certain physical index on multiple tissue-like body membranes with different nominal values, wherein the fourth measurement value corresponds to the nominal value one-to-one.
  • the fourth measurement value corresponds to the nominal value one-to-one. For example, for a tissue-like body membrane with a certain nominal value, physical indicators of the tissue-like body membrane are measured to obtain a fourth measured value, then the nominal value The value and this fourth measured value are in correspondence. Similarly, in step S4400, each nominal value has a unique fourth measured value corresponding to it, and each fourth measured value also has a unique corresponding corresponding to it. Nominal value.
  • multiple fourth measurement values are obtained by measuring multiple tissue-like body membranes with different physical index nominal values. For example, by measuring four tissue-like body membranes with nominal elastic values of 3 kPa, 12 kPa, 23 kPa, and 41 kPa, respectively, the elasticity measurement value of each tissue-like body membrane is obtained.
  • Step S4500 Determine the correlation degree of the fourth measured value with the nominal value.
  • the correlation degree of the change with the nominal value can reflect the consistency between the measurement result and the actual value of the physical index, that is, the measurement accuracy of the instrument.
  • the degree of correlation between the fourth measured value and the nominal value is determined by the correlation coefficient R between the fourth measured value and the nominal value.
  • the correlation coefficient R can be calculated in the following way:
  • X is the fourth measurement value
  • Y is the nominal value
  • Cov(X,Y) is the covariance between the fourth measurement value and the nominal value
  • Var[X] is the variance of the fourth measurement value
  • Var[Y] Is the variance of the nominal value.
  • the variance value of the fourth measurement value is 209.3725
  • the variance value of the elastic nominal value is 200.6875
  • the covariance between the fourth measurement value and the nominal value is 204.9375
  • the number of elastic nominal values used for calculation is at least three.
  • Step S4600 Determine the measurement accuracy of the instrument according to the correlation degree of the fourth measurement value with the nominal value.
  • the correlation coefficient between the fourth measurement value and the nominal value exceeds 0.99 to meet the measurement requirements.
  • the coefficient R 0.9995, which exceeds 0.99, so the measurement accuracy of the tested instrument in the foregoing example meets the requirements.
  • the instrument measurement method in this embodiment can not only produce the technical effect in the first embodiment, but also determine the measurement accuracy of the instrument according to the correlation degree of the measured value of the physical index with the change of the nominal value, as opposed to simply comparing the measured value with
  • the deviation of the nominal value can reduce the influence of the inconsistency between the nominal value of the physical index of the tissue-like body membrane and the true value. For example, for the case where the tissue-like body membrane changes during the preservation process, since the storage environment is the same, the index change trend of different tissue-like body membranes is the same. At this time, the test method in this embodiment can reduce the impact of this change .
  • the instrument obtains multiple fourth measurement values obtained by measuring physical indicators of multiple tissue-like body membranes with different physical indicator nominal values in the following manner:
  • the nominal value of each physical index multiple fifth measurement values obtained by measuring multiple regions of the tissue-like body membrane with the nominal value are obtained, wherein the fifth measurement value is the same as the value of the tissue-like body membrane.
  • the measurement area corresponds one to one.
  • the probe 201 is placed at positions A, B, and C and the measurement distance is kept unchanged, and the elastic value of the corresponding area of each position is measured to obtain the fifth measurement value.
  • the fourth measurement value is determined. For example, take the average of the fifth measurement values corresponding to positions A, B, and C in FIG. 1 as the fourth measurement value of the elasticity of the tissue-like body membrane in FIG. 1.
  • the influence of the uneven distribution of the tissue-like body membrane index in space can be reduced.
  • This embodiment provides an instrument test method. Based on the method in the first embodiment, the accuracy of the instrument measurement is also tested.
  • the measurement accuracy here, for example, refers to the consistency between the measured value of the physical index and the actual value of the physical index of the tissue-like body membrane.
  • the measurement accuracy of the instrument is tested in combination with the different ranges of the nominal value of the physical index of the tissue-like body membrane, so as to determine the measurement capability of the instrument comprehensively and reasonably.
  • This method is implemented by, for example, the instrument test equipment 100 in FIG. 1.
  • the method includes the following steps S5100-S5600.
  • Step S5100 Obtain multiple first measurement values obtained by the instrument by performing multiple measurements of a certain physical index on the same area of a tissue-like body membrane with a specific nominal value.
  • Step S5200 Determine the degree of dispersion of the multiple first measurement values.
  • Step S5300 Determine the repeatability measurement accuracy of the instrument according to the degree of dispersion of the first measurement value.
  • steps S5100-S5300 For the implementation of the foregoing steps S5100-S5300, reference may be made to the description of steps S3100-S3300 in the first embodiment, which will not be repeated here.
  • Step S5400 Determine whether the nominal value of a physical index of a tissue-like body membrane is less than a first preset value, and if the nominal value is less than the first preset value, obtain the physical performance of the tissue-like body membrane by the instrument.
  • the second measurement value obtained by the index measurement determines the absolute deviation of the second measurement value from the nominal value.
  • the nominal value of the physical index of the tissue-like body membrane is compared with the first preset value to determine whether it is less than the first preset value.
  • the first preset value is 7 kPa
  • the nominal value of elasticity is less than 7 kPa, for example, a tissue-like body membrane of 6 kPa, which can represent a normal elastic liver.
  • the second measurement value is, for example, an elasticity value of 5.8 kPa measured on the aforementioned tissue-like body membrane with a nominal value of 6 kPa.
  • the absolute deviation of the second measurement value from the nominal value of the physical index of the tissue-like body membrane is, for example, the absolute value of the difference between the two.
  • the absolute deviation of the fourth measured value from the nominal value of the physical index of the tissue-like body membrane is
  • 0.2kPa.
  • Step S5500 Determine whether the nominal value of a physical index of a tissue-like body membrane is greater than a second preset value, and if the nominal value is greater than the second preset value, obtain the physical index of the tissue-like body membrane by the instrument Measure the obtained third measurement value, and determine the relative deviation of the third measurement value from the nominal value.
  • the nominal value of the physical index of the tissue-like body membrane is compared with the second preset value to determine whether it is greater than the second preset value.
  • the second preset value is 10 kPa
  • the third measurement value is, for example, an elasticity value of 22 kPa measured by measuring the nominal value of 20 kPa of the tissue-like body membrane in the foregoing example.
  • the relative deviation of the third measurement value with respect to the nominal value of the physical index of the tissue-like body membrane is, for example, the quotient of the absolute value of the difference between the two and the nominal value of the physical index of the tissue-like body membrane.
  • the relative deviation of the third measurement value from the nominal value of the physical index of the tissue-like body membrane is
  • Step S5600 Determine the measurement accuracy of the instrument according to the absolute deviation and the relative deviation.
  • the absolute deviation needs not to exceed 0.5kPa to meet the measurement requirements.
  • the relative deviation needs to be no more than 5% to meet the requirements.
  • the absolute deviation when the nominal value is less than the first preset value is 0.2kPa, which meets the requirements, but the relative deviation of the instrument when the nominal value is greater than the second preset value is 10%, which does not meet the requirements Therefore, the measurement accuracy of the tested instrument does not meet the requirements.
  • the instrument testing method in this embodiment can not only achieve the technical effects in the first embodiment, but also combines the measurement accuracy of the testing instrument in different ranges of the nominal value of the physical index of the tissue-like body membrane, which fully and reasonably reflects the overall instrument Measurement accuracy.
  • This embodiment provides an instrument testing method.
  • the measurement accuracy of the instrument is jointly determined according to the correlation degree, the absolute deviation and the relative deviation.
  • the instrument test method in the second embodiment and the third embodiment please refer to the description of the instrument test method in the second embodiment and the third embodiment, which will not be repeated here.
  • the instrument testing device 400 includes: a receiving module 410, a first processing module 420, and a second processing module 430;
  • the receiving module 410 is used to obtain multiple first measurement values obtained by the instrument by performing multiple measurements of a certain physical index on the same area of a tissue-like body membrane with a specific nominal value;
  • the first processing module 420 is configured to determine the degree of dispersion of a plurality of first measurement values
  • the second processing module 430 is configured to determine the repeatability measurement accuracy of the instrument according to the degree of dispersion of the first measurement value.
  • This embodiment provides an instrument testing equipment, including the instrument testing device in the fifth embodiment; or, the instrument testing equipment is the instrument testing equipment 500 shown in FIG. 5, including:
  • the memory 510 is used to store executable commands.
  • the processor 520 is configured to execute any method in the first to fourth embodiments under the control of the executable command.
  • elasticity is used as a physical index for description.
  • the physical index is another index such as sound attenuation value
  • the implementation of the method in the foregoing embodiment is the same as the case where the physical index is elastic. Repeat.
  • the computer program product may include a computer-readable storage medium loaded with computer-readable program instructions for enabling a processor to implement various aspects of this specification.
  • the computer-readable storage medium may be a tangible device that can hold and store instructions used by the instruction execution device.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing.
  • Computer-readable storage media include: portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM) Or flash memory), static random access memory (SRAM), portable compact disk read-only memory (CD-ROM), digital versatile disk (DVD), memory stick, floppy disk, mechanical encoding device, such as a printer with instructions stored thereon
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • flash memory flash memory
  • SRAM static random access memory
  • CD-ROM compact disk read-only memory
  • DVD digital versatile disk
  • memory stick floppy disk
  • mechanical encoding device such as a printer with instructions stored thereon
  • the computer-readable storage medium used here is not interpreted as a transient signal itself, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through waveguides or other transmission media (for example, light pulses through fiber optic cables), or through wires Transmission of electrical signals.
  • the computer-readable program instructions described herein can be downloaded from a computer-readable storage medium to various computing/processing devices, or downloaded to an external computer or external storage device via a network, such as the Internet, a local area network, a wide area network, and/or a wireless network.
  • the network may include copper transmission cables, optical fiber transmission, wireless transmission, routers, firewalls, switches, gateway computers, and/or edge servers.
  • the network adapter card or network interface in each computing/processing device receives computer-readable program instructions from the network, and forwards the computer-readable program instructions for storage in the computer-readable storage medium in each computing/processing device .
  • the computer program instructions used to perform the operations of this manual can be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, status setting data, or in one or more programming languages.
  • Source code or object code written in any combination, the programming language includes object-oriented programming languages such as Smalltalk, C++, etc., and conventional procedural programming languages such as "C" language or similar programming languages.
  • Computer-readable program instructions can be executed entirely on the user's computer, partly on the user's computer, executed as a stand-alone software package, partly on the user's computer and partly executed on a remote computer, or entirely on the remote computer or server carried out.
  • the remote computer can be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (for example, using an Internet service provider to access the Internet connection).
  • LAN local area network
  • WAN wide area network
  • an electronic circuit such as a programmable logic circuit, a field programmable gate array (FPGA), or a programmable logic array (PLA), can be customized by using the status information of the computer-readable program instructions.
  • the computer-readable program instructions are executed to realize various aspects of this specification.
  • These computer-readable program instructions can be provided to the processor of a general-purpose computer, a special-purpose computer, or other programmable data processing device, thereby producing a machine such that when these instructions are executed by the processor of the computer or other programmable data processing device , A device that implements the functions/actions specified in one or more blocks in the flowchart and/or block diagram is produced. It is also possible to store these computer-readable program instructions in a computer-readable storage medium. These instructions make computers, programmable data processing apparatuses, and/or other devices work in a specific manner, so that the computer-readable medium storing instructions includes An article of manufacture, which includes instructions for implementing various aspects of the functions/actions specified in one or more blocks in the flowchart and/or block diagram.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of an instruction, and the module, program segment, or part of an instruction contains one or more functions for implementing the specified logical function.
  • Executable instructions may also occur in a different order than the order marked in the drawings. For example, two consecutive blocks can actually be executed in parallel, or they can sometimes be executed in the reverse order, depending on the functions involved.
  • each block in the block diagram and/or flowchart, and the combination of the blocks in the block diagram and/or flowchart can be implemented by a dedicated hardware-based system that performs the specified functions or actions Or it can be realized by a combination of dedicated hardware and computer instructions. It is well known to those skilled in the art that implementation through hardware, implementation through software, and implementation through a combination of software and hardware are all equivalent.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种仪器测试方法、仪器测试装置和仪器测试设备(100),测试方法包括:获取超声影像仪器(200)通过对具有特定标称值的一仿组织体膜(400)的同一区域进行某个物理指标的多次测量得到多个第一测量值(S3100);确定多个第一测量值的离散程度(S3200);根据第一测量值的离散程度,确定超声影像仪器(200)的重复性测量精度(S3300)。

Description

[根据细则26改正13.03.2020] 一种仪器测试方法、装置及设备 技术领域
本说明书涉及超声影像技术领域,更具体地,涉及一种仪器测试方法、一种仪器测试装置和一种仪器测试设备。
背景技术
超声影像技术可以用于测量肝脏等器官的物理性质,从而反映器官的健康状况。例如,可以通过测量肝脏的弹性值、声衰减值等指标,确定是否存在肝硬化、脂肪肝等健康问题。
对于超声影像类仪器,通常可以借助仿组织体模(简称仿组织体膜)测试其测量能力。例如,利用仪器测量仿组织体膜的弹性并计算其与仿组织体膜弹性标称值的差值,从而确定仪器对弹性的测量准确度。但是,由于出厂误差、保存时发生变化等原因,仿组织体膜的物理指标的标称值与真实值会出现不一致的情况,从而对仪器测量能力的测试造成影响。因此,如何合理有效地测试超声影像仪器的测量能力,成为了需要解决的问题。
发明内容
本说明书实施例的一个目的是提供一种仪器测试的新的技术方案。
根据本说明书的第一方面,提供了一种仪器测试方法,所述仪器用于对弹性介质的一个或多个物理指标进行测量,所述方法包括:
获取所述仪器通过对具有特定标称值的一仿组织体膜的同一区域进行某个物理指标的多次测量所得到的多个第一测量值;
确定所述多个第一测量值的离散程度;
根据所述第一测量值的离散程度,确定所述仪器的重复性测量精度。
其中所述多次测量为所述仪器以接触仿组织体膜测量之后脱离的方式,对一仿组织体膜的同一区域进行某个物理指标的多次测量。
可选地,所述方法还包括:
确定一仿组织体膜的某个物理指标的标称值是否小于第一预设值,在所述标称值小于所述第一预设值的情况下,获取所述仪器对所述仿组织体膜的进行所述物理指标测量所得到的第二测量值,确定所述第二测量值相对于所述标称值的绝对偏差;
确定一仿组织体膜的某个物理指标的标称值是否大于第二预设值,在所述标称值大于所述第二预设值的情况下,获取所述仪器对所述仿组织体膜进行所述物理指标测量所得到的第三测量值,确定所述第三测量值相对于所述标称值的相对偏差;
可选地,所述方法还包括:
获取所述仪器通过对具有不同标称值的多个仿组织体膜进行某个物理指标测量所得到的多个第四测量值,其中,所述第四测量值与所述标称值一一对应;
确定所述第四测量值随所述标称值变化的相关程度;
根据所述第四测量值随所述标称值变化的相关程度,确定所述仪器的测量准确度。
可选地,所述获取所述多个第一测量值的离散程度,包括:
通过所述多个第一测量值的相对标准差
Figure PCTCN2020078440-appb-000001
确定所述离散程度,所述相对标准差
Figure PCTCN2020078440-appb-000002
通过以下方式计算:
Figure PCTCN2020078440-appb-000003
其中,n为总的测量次数,x i为第i(1≤i≤n且i为整数)次测量对应的第一测量值,μ为全体x i的算数平均数,c为仿组织体膜物理指标的标称值。
可选地,所述获取所述第四测量值随所述标称值变化的相关程度,包括:
通过所述第四测量值与所述标称值的相关系数R或者所述第四测量值与所述标称值的相关系数的平方R 2确定所述相关程度,其中,所述相关系数R通过以下方式计算:
Figure PCTCN2020078440-appb-000004
其中,X为第四测量值,Y为标称值,Cov(X,Y)为第四测量值与标称值的协方差,Var[X]为第四测量值的方差,Var[Y]为标称值的方差。
可选地,获取所述仪器通过对具有不同标称值的多个仿组织体膜进行某个物理指标测量所得到的多个第四测量值,包括:
对于每一标称值,获取通过对具有所述标称值的仿组织体膜的多个区域进行测量所得到的的多个第五测量值,其中,所述第五测量值与所述区域一一对应;
根据所述第五测量值,确定所述第四测量值。
可选地,所述物理指标为弹性或者声衰减值。
根据本说明书的第二方面,提供一种仪器测试装置,包括:接收模块、第一处理模块和第二处理模块;
所述接收模块用于获取所述仪器通过对具有特定标称值的一仿组织体膜的同一区域进行某个物理指标的多次测量所得到的多个第一测量值;
所述第一处理模块用于确定所述多个第一测量值的离散程度;
所述第二处理模块用于根据所述第一测量值的离散程度,确定所述仪器的重复性测量精度。
根据本说明书的第三方面,提供一种仪器测试设备,包括如本说明书第二方面所述的仪器测试装置;或者,所述仪器测试设备包括:
处理器,用于存储可执行命令;
处理器,用于在所述可执行命令的控制下,执行如本说明书第一方面中任一项所述的方法。
本说明书的一个有益效果在于:本实施例中的仪器测量方法,通过获取仪器对同一仿组织体膜同一区域多次测量所得结果的离散程度,确定仪器的重复性测量精度,能够消除仿组织体膜物理指标的标称值与真实值不一致对测试结果的影响,有利于合理有效地测试超声影像仪器的测量能力。
通过以下参照附图对本说明书的示例性实施例的详细描述,本说明书的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本说明书的实施例,并且连同其说明一起用于解释本说明书的原理。
图1是可用于实施本说明书实施例的硬件配置的示意图。
图2是可用于实现本说明书的仪器测试设备的配置的示意图。
图3是根据本说明书实施例一的仪器测试方法的流程图。
图4是根据本说明书实施例五的仪器测试装置400的结构示意图。
图5是根据本说明书实施例六的仪器测试设备500的结构示意图。
具体实施方式
现在将参照附图来详细描述本说明书的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本说明书的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本说明书及其应用或使用的任何限制。
对于相关领域普通技术人物已知的技术、方法和设备可能不作详细讨论,但在适当情况下,技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
<硬件配置>
图1示出了本实施例中用于仪器测试的硬件设备的示意图。
如图1所示,本实施例中的硬件设备包括了仪器测试设备100、超声影像仪器200和仿组织体膜300。
超声影像仪器200例如用于通过超声影像技术对器官等进行测量,获弹性、声衰减值等物理指标,据此反映器官的健康状况。超声影像仪器200设置有探头201。通过移动探头201可以选择不同的检测位置、检测区域。
仿组织体膜(仿体)400例如是由超声弹性仿组织材料以不同方式组成,用于检测超声影像仪器测量能力的无源装置。仿组织体膜400能够为超声影像仪器的测试提供标准化的检测对象,有利于对仪器测量能力进行定量分析。
仪器测试设备100例如用于对超声影像仪器200的测量能力进行测试,以控制仪器质量。如图2所示,仪器测试设备100例如包括处理器101、存储器102、通信装置103和显示装置104。
处理器101例如是中央处理器CPU、微处理器MCU等。存储器102例如包括ROM(只读存储器)、RAM(随机存取存储器)、诸如硬盘的非易失性存储器等。通信装置103例如能够进行有线通信或者无线通信。显示装置1040例如可用于显示文字或图像信息。
在本实施例中,仪器测试设备100和超声影像仪器200通过连接线300链接,以实现数据传输。
图1所示的硬件配置仅是解释性的,并且决不是为了要限制本说明书、其应用或用途。
<实施例一>
本实施例提供一种仪器测试方法,以确定超声影像仪器的重复性测量精度。这里的精确性例如指多次重复测量所得结果的一致性。超声影像仪器的精确性可以反映仪器的测量能力。
该方法例如由图1中的仪器测试设备100实施。如图3所示,该方法包括以下步骤S3100-S3300。
步骤S3100:获取仪器通过对具有特定标称值的一仿组织体膜的同一区域进行某个物理指标的多次测量所得到的多个第一测量值。
物理指标例如是通过仪器测量的物理量,例如弹性、声衰减值等。
通常来说,同一仿组织体膜的不同区域的物理指标的真实值可能存在 差异。为了消除这种差异的影响,本实施例中仪器对同一仿组织体膜的同一区域进行测量,得到对应的第一测量值。为了保证多次测量针对的是同一区域,可以采取保持多次测量中探头相对于仿组织体膜表面的位置、角度、探测深度等参数不变的方式。
例如,在图1中,每次测量时都将探头201垂直放置在仿组织体膜400表面的位置A,并且选择相同的测量深度,通过这种方式测得多个第一测量值。
特别地,需要所述多次测量位置A为所述仪器以接触仿组织体膜测量之后脱离的方式,对位置A进行多次测量。
仪器测试设备例如通过有线通信或者无线通信的方式获取仪器测得的多个第一测量值。例如在图1中,仪器测试设备100通过连接线300获取超声影像仪器200测得的多个第一测量值。
步骤S3200:确定多个第一测量值的离散程度。
对于步骤S3100获取到的多个第一测量值,其离散程度能够反映各个数值之间的差异性,进而反映仪器在相同条件下重复测量所得结果的一致性高低,即超声影像仪器的重复性测量精度。
在本实施例一具体体现中,多个第一测量值的离散程度通过相对标准差
Figure PCTCN2020078440-appb-000005
来确定。
相对标准差
Figure PCTCN2020078440-appb-000006
通过以下方式计算:
Figure PCTCN2020078440-appb-000007
其中,n为总的测量次数,x i为第i(1≤i≤n且i为整数)次测量对应的第一测量值,μ为全体x i的算数平均数,c为仿组织体膜物理指标的标称值。上式中的
Figure PCTCN2020078440-appb-000008
为全体x i的标准差。
例如,对于弹性标称值为3kPa的仿组织体膜,对其同一区域进行测量,得到的多个测量结果如表1所示:
测量次数i 1 2 3 4
第i次测得的弹性值(kPa) 3.1 2.8 2.9 2.7
表1
根据上述数据计算得出弹性测量值的标准差为0.17。结合弹性标称值为3kPa,得到弹性测量值的相对标准差
Figure PCTCN2020078440-appb-000009
通过计算相对标准差,能够降低弹性值大小对偏差的绝对值造成的影响,使得测试结果更加合理。
步骤S3300:根据第一测量值的离散程度,确定仪器的重复性测量精度。
通过试验分析等手段,可以得到第一测量值的离散程度应当满足的条件,据此确定仪器的测量准确度如何。
例如,假设仪器对同一区域进行多次测量所得结果的相对标准差需要不超过0.1才能满足测量要求,前述例子中
Figure PCTCN2020078440-appb-000010
因此前述例子中被检测仪器的重复性测量精度符合要求。
本实施例中的仪器测量方法,通过获取仪器对同一仿组织体膜同一区域多次测量所得结果的离散程度,确定仪器的重复性测量精度,能够消除仿组织体膜物理指标的标称值与真实值不一致对测试结果的影响,有利于合理有效地测试超声影像仪器的测量能力。
<实施例二>
本实施例提供一种仪器测试方法,在实施例一中方法的基础上,还对仪器测量的准确性进行测试。这里的测量准确度,例如指物理指标的测量值与仿组织体膜物理指标的真实值之间的一致性。
该方法例如由图1中的仪器测试设备100实施。该方法包括以下步骤S4100-S4600。
步骤S4100:获取仪器通过对具有特定标称值的一仿组织体膜的同一区域进行某个物理指标的多次测量所得到的多个第一测量值。
步骤S4200:确定多个第一测量值的离散程度。
步骤S4300:根据第一测量值的离散程度,确定仪器的重复性测量精度。
上述步骤S4100-S4300的实施方式可以参照实施例一中对步骤S3100-S3300的描述,这里不再赘述。
步骤S4400:获取仪器通过对具有不同标称值的多个仿组织体膜进行某个物理指标测量所得到的多个第四测量值,其中,第四测量值与标称值一一对应。
第四测量值与标称值一一对应,例如是对于具有某个标称值的仿组织体膜,对该仿组织体膜进行物理指标的测量,得到一个第四测量值,那么这个标称值和这个第四测量值是对应关系,类似地,在步骤S4400中,每一标称值都具有与其对应的唯一的第四测量值,每个第四测量值也都具有与其对应的唯一的标称值。
本实施例中,通过对具有不同物理指标标称值的多个仿组织体膜进行测量得到多个第四测量值。例如,通过对弹性标称值分别为3kPa、12kPa、23kPa、41kPa的四个仿组织体膜进行测量,得到每个仿组织体膜的弹性测量值。
步骤S4500:确定第四测量值随标称值变化的相关程度。
对于步骤S4500中获取到的多个第四测量值,其随标称值变化的相关程度能够反映测量结果与物理指标真实值的一致性,即仪器的测量准确度。
在本实施例一具体体现中,第四测量值随标称值变化的相关程度通过第四测量值与标称值的相关系数R来确定。
相关系数R可以通过以下方式计算:
Figure PCTCN2020078440-appb-000011
其中,X为第四测量值,Y为标称值,Cov(X,Y)为第四测量值与标称值的协方差,Var[X]为第四测量值的方差,Var[Y]为标称值的方差。
例如,对于前述弹性标称值分别为3kPa、12kPa、23kPa、41kPa的四个仿组织体膜,分别进行弹性测量所得到的第四测量值如表2所示:
弹性标称值(kPa) 3 12 23 41
第四测量值(kPa) 2.8 11.4 22.5 41.5
表2
根据上述数据计算得出第四测量值的方差数值为209.3725,弹性标称值的方差数值为200.6875,第四测量值与标称值的协方差为204.9375,因此第四测量值与标称值之间的相关系数
Figure PCTCN2020078440-appb-000012
相关系数的平方R 2=0.9995。
需要说明的是,本实施例中,用于计算的弹性标称值的数量至少为三个。
步骤S4600:根据第四测量值随标称值变化的相关程度,确定仪器的测量准确度。
通过试验分析等手段,可以得到第四测量值随标称值变化的相关程度应当满足的条件,据此确定仪器的测量准确度如何。
例如,假设在前述仿组织体膜弹性标称值分别为3kPa、12kPa、23kPa、41kPa的测试场景中,第四测量值与标称值的相关系数超过0.99才能满足测量要求,前述例子中相关性系数R=0.9995,超过了0.99,因此前述例子中被检测仪器的测量准确度符合要求。
本实施例中的仪器测量方法,除了能够产生实施例一中的技术效果外,还根据物理指标的测量值随标称值变化的相关程度确定仪器的测量准确度,相对于单纯比较测量值与标称值偏差的方式,能够减小仿组织体膜物理指标的标称值与真实值不一致所带来的影响。例如,对于仿组织体膜在保存环节发生变化的情况,由于保存环境相同,不同仿组织体膜的指标变化趋势相同,此时本实施例中的测试方法能够减小这种变化带来的影响。
在本实施例一具体体现中,仪器通过对具有不同物理指标标称值的多个仿组织体膜进行物理指标的测量所得到的多个第四测量值,通过以下方式获取:
对于每一物理指标标称值,获取通过对具有标称值的仿组织体膜的多个区域进行测量所得到的的多个第五测量值,其中,第五测量值与仿组织体膜的测量区域一一对应。例如,在图1中分别将探头201放置在位置A、B、C并保持测量距离不变,测量每个位置对应区域的弹性值,得到第五测量值。
根据第五测量值,确定第四测量值。例如,对图1中位置A、B、C对应的第五测量值取平均值,作为图1中仿组织体膜弹性的第四测量值。
通过根据不同区域的物理指标测量值确定仿组织体膜的物理指标测量值,能够减小仿组织体膜指标在空间上不均匀分布带来的影响。
<实施例三>
本实施例提供一种仪器测试方法,在实施例一中方法的基础上,还对仪器测量的准确性进行测试。这里的测量准确度,例如指物理指标的测量值与仿组织体膜物理指标的真实值之间的一致性。本实施例中结合仿组织体膜的物理指标标称值的不同范围来测试仪器的测量准确度,以全面合理地确定仪器的测量能力。
该方法例如由图1中的仪器测试设备100实施。该方法包括以下步骤S5100-S5600。
步骤S5100:获取仪器通过对具有特定标称值的一仿组织体膜的同一区域进行某个物理指标的多次测量所得到的多个第一测量值。
步骤S5200:确定多个第一测量值的离散程度。
步骤S5300:根据第一测量值的离散程度,确定仪器的重复性测量精度。
上述步骤S5100-S5300的实施方式可以参照实施例一中对步骤S3100-S3300的描述,这里不再赘述。
步骤S5400:确定一仿组织体膜的某个物理指标的标称值是否小于第一预设值,在标称值小于第一预设值的情况下,获取仪器对仿组织体膜的进行物理指标测量所得到的第二测量值,确定第二测量值相对于标称值的绝对偏差。
本步骤中,将仿组织体膜物理指标标称值与第一预设值进行比较,确定其是否小于第一预设值。例如,当物理指标为弹性时,第一预设值为7kPa,弹性值标称值小于7kPa例如为6kPa的仿组织体膜,能够代表正常弹性的肝脏。
第二测量值例如是对前述标称值为6kPa的仿组织体膜进行测量测得 的弹性值5.8kPa。
第二测量值相对于仿组织体膜的物理指标标称值的绝对偏差,例如是两者的差值的绝对值。在前述例子中,第四测量值相对于仿组织体膜的物理指标标称值的绝对偏差为|5.8-6|=0.2kPa。
步骤S5500:确定一仿组织体膜的某个物理指标的标称值是否大于第二预设值,在标称值大于第二预设值的情况下,获取仪器对仿组织体膜进行物理指标测量所得到的第三测量值,确定第三测量值相对于标称值的相对偏差。
本步骤中,将仿组织体膜物理指标标称值与第二预设值比较,确定其是否大于第二预设值。例如,当物理指标为弹性时,第二预设值为10kPa,弹性值标称值大于10kPa例如为20kPa的仿组织体膜,能够代表出现硬化的肝脏。
第三测量值例如是对前述例子中的标称值为20kPa仿组织体膜进行测量测得的弹性值22kPa。
第三测量值相对于仿组织体膜的物理指标标称值的相对偏差,例如是两者的差值的绝对值与仿组织体膜物理指标标称值的商。在前述例子中,第三测量值相对于仿组织体膜的物理指标标称值的相对偏差为
Figure PCTCN2020078440-appb-000013
步骤S5600:根据绝对偏差和相对偏差,确定仪器的测量准确度。
通过试验分析等手段,可以得到绝对偏差和相对偏差应当满足的条件,据此确定仪器的测量准确度如何。
例如,假设对于标称值小于第一预设值情况下的测量结果,绝对偏差需要不超过0.5kPa才能满足测量要求,同时,对于标称值大于第二预设值情况下的测量结果,相对偏差需要不超过5%才能满足要求。前述例子中,标称值小于第一预设值情况下的绝对偏差为0.2kPa,满足要求,但是该仪器在标称值大于第二预设值情况下的相对偏差为10%,不满足要求,因此该被测试仪器的测量准确度不满足要求。
本实施例中的仪器测试方法,除了能够实现实施例一中的技术效果外,还结合仿组织体膜的物理指标标称值的不同范围测试仪器的测量准确 度,全面合理地反映仪器整体上的测量准确度。
<实施例四>
本实施例提供一种仪器测试方法,在实施例二和实施例三的基础上,根据相关程度、绝对偏差和相对偏差共同确定仪器的测量准确度。具体实施方式可以参见实施例二和实施例三中对仪器测试方法的描述,这里不再赘述。
<实施例五>
如图4所示,本实施例提供一种仪器测试装置400。该仪器测试装置400包括:接收模块410、第一处理模块420和第二处理模块430;
接收模块410用于获取仪器通过对具有特定标称值的一仿组织体膜的同一区域进行某个物理指标的多次测量所得到的多个第一测量值;
第一处理模块420用于确定多个第一测量值的离散程度;
第二处理模块430用于根据第一测量值的离散程度,确定仪器的重复性测量精度。
各个模块的具体功能可参见实施例一中对方法的描述,这里不再赘述。
<实施例六>
本实施例提供一种仪器测试设备,包括实施例五中的仪器测试装置;或者,该仪器测试设备为图5所示的仪器测试设备500,包括:
存储器510,用于存储可执行命令。
处理器520,用于在可执行命令的控制下,执行如实施例一至实施例四中的任一方法。
需要说明的是,前述各个实施例中以弹性作为物理指标进行说明,当物理指标为其他指标例如声衰减值时,前述实施例中方法的实施方式与物理指标为弹性的情况相同,这里不再赘述。
本说明书可以是系统、方法和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于使处理器实现本说明书的各个方面的计算机可读程序指令。
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。
这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
用于执行本说明书操作的计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或 者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本说明书的各个方面。
这里参照根据本说明书实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本说明书的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
附图中的流程图和框图显示了根据本说明书的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以 不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。对于本领域技术人物来说公知的是,通过硬件方式实现、通过软件方式实现以及通过软件和硬件结合的方式实现都是等价的。
以上已经描述了本说明书的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人物来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术改进,或者使本技术领域的其它普通技术人物能理解本文披露的各实施例。本说明书的范围由所附权利要求来限定。

Claims (10)

  1. 一种仪器测试方法,所述仪器用于对弹性介质的一个或多个物理指标进行测量,所述方法包括:
    获取所述仪器通过对具有特定标称值的一仿组织体膜的同一区域进行某个物理指标的多次测量所得到的多个第一测量值;
    确定所述多个第一测量值的离散程度;
    根据所述第一测量值的离散程度,确定所述仪器的重复性测量精度。
  2. 根据权利要求1的方法,其中所述多次测量为所述仪器以接触仿组织体膜测量之后脱离的方式,对一仿组织体膜的同一区域进行某个物理指标的多次测量。
  3. 根据权利要求1或2所述的方法,其中,所述方法还包括:
    确定一仿组织体膜的某个物理指标的标称值是否小于第一预设值,在所述标称值小于所述第一预设值的情况下,获取所述仪器对所述仿组织体膜的进行所述物理指标测量所得到的第二测量值,确定所述第二测量值相对于所述标称值的绝对偏差;
    确定一仿组织体膜的某个物理指标的标称值是否大于第二预设值,在所述标称值大于所述第二预设值的情况下,获取所述仪器对所述仿组织体膜进行所述物理指标测量所得到的第三测量值,确定所述第三测量值相对于所述标称值的相对偏差;
    根据所述绝对偏差和所述相对偏差,确定所述仪器的测量准确度。
  4. 根据权利要求1-3任一项所述的方法,其中,所述方法还包括:
    获取所述仪器通过对具有不同标称值的多个仿组织体膜进行某个物理指标测量所得到的多个第四测量值,其中,所述第四测量值与所述标称值一一对应;
    确定所述第四测量值随所述标称值变化的相关程度;
    根据所述第四测量值随所述标称值变化的相关程度,确定所述仪器的测量准确度。
  5. 根据权利要求1-4任一项所述的方法,其中,所述获取所述多个第 一测量值的离散程度,包括:
    通过所述多个第一测量值的相对标准差
    Figure PCTCN2020078440-appb-100001
    确定所述离散程度,所述相对标准差
    Figure PCTCN2020078440-appb-100002
    通过以下方式计算:
    Figure PCTCN2020078440-appb-100003
    其中,n为总的测量次数,x i为第i(1≤i≤n且i为整数)次测量对应的第一测量值,μ为全体x i的算数平均数,c为仿组织体膜物理指标的标称值。
  6. 根据权利要求1-5任一项所述的方法,其中,所述获取所述第四测量值随所述标称值变化的相关程度,包括:
    通过所述第四测量值与所述标称值的相关系数R或者所述第四测量值与所述标称值的相关系数的平方R 2确定所述相关程度,其中,所述相关系数R通过以下方式计算:
    Figure PCTCN2020078440-appb-100004
    其中,X为第四测量值,Y为标称值,Cov(X,Y)为第四测量值与标称值的协方差,Var[X]为第四测量值的方差,Var[Y]为标称值的方差。
  7. 根据权利要求1-6任一项所述的方法,其中,获取所述仪器通过对具有不同标称值的多个仿组织体膜进行某个物理指标测量所得到的多个第四测量值,包括:
    对于每一标称值,获取所述仪器通过对具有所述标称值的仿组织体膜的多个区域进行测量所得到的多个第五测量值,其中,所述第五测量值与所述区域一一对应;
    根据所述第五测量值,确定所述第四测量值。
  8. 根据权利要求1-7任一项所述的方法,其中,所述物理指标为弹性介质的弹性或者声衰减值。
  9. 一种仪器测试装置,包括:接收模块、第一处理模块和第二处理模块;
    所述接收模块用于获取所述仪器通过对具有特定标称值的一仿组织 体膜的同一区域进行某个物理指标的多次测量所得到的多个第一测量值;
    所述第一处理模块用于确定所述多个第一测量值的离散程度;
    所述第二处理模块用于根据所述第一测量值的离散程度,确定所述仪器的重复性测量精度。
  10. 一种仪器测试设备,包括如权利要求9所述的仪器测试装置;或者,所述仪器测试设备包括:
    处理器,用于存储可执行命令;
    处理器,用于在所述可执行命令的控制下,执行如权利要求1-8任一项所述的方法。
PCT/CN2020/078440 2019-03-28 2020-03-09 一种仪器测试方法、装置及设备 WO2020192403A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910245324.4A CN111743569B (zh) 2019-03-28 2019-03-28 一种仪器测试方法、装置及设备
CN201910245324.4 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020192403A1 true WO2020192403A1 (zh) 2020-10-01

Family

ID=72609181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078440 WO2020192403A1 (zh) 2019-03-28 2020-03-09 一种仪器测试方法、装置及设备

Country Status (2)

Country Link
CN (1) CN111743569B (zh)
WO (1) WO2020192403A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130237820A1 (en) * 2010-06-01 2013-09-12 The Trustees Of Columbia University In The City Of New York Devices, methods, and systems for measuring elastic properties of biological tissues
CN103356241A (zh) * 2013-08-02 2013-10-23 中国十九冶集团有限公司职工医院 二维超声设备成像质量评估系统及评估方法
CN104997533A (zh) * 2015-06-23 2015-10-28 武汉超信电子工程有限公司 超声探头几何参数自动校正方法和装置
CN105303025A (zh) * 2014-06-10 2016-02-03 西门子公司 用于成像的医疗设备和用于成像的医疗设备的方法
CN105433986A (zh) * 2016-02-01 2016-03-30 飞依诺科技(苏州)有限公司 超声设备的自动校准方法及系统
CN107446293A (zh) * 2017-07-12 2017-12-08 无锡海斯凯尔医学技术有限公司 一种超声仿组织体模及其制备方法和应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5755228A (en) * 1995-06-07 1998-05-26 Hologic, Inc. Equipment and method for calibration and quality assurance of an ultrasonic bone anaylsis apparatus
US6370480B1 (en) * 1999-05-21 2002-04-09 General Electric Company Quantitative analysis system and method for certifying ultrasound medical imaging equipment
CN100363709C (zh) * 2005-03-25 2008-01-23 鸿富锦精密工业(深圳)有限公司 激光量测机台扫描精度验证方法
CN1723856A (zh) * 2005-07-11 2006-01-25 史念曾 超声检测组织均匀度及衰减定标定量分析技术
JP5235217B2 (ja) * 2007-12-20 2013-07-10 エアロクライン・エイビイ 装置の機能をテストする方法
CN101655344B (zh) * 2008-08-18 2011-11-09 北京航天计量测试技术研究所 一种电子经纬仪空间坐标测量系统的校准方法
CN101915821B (zh) * 2010-07-05 2015-04-22 中国电力科学研究院 Sf6气体分解产物检测仪器的校验方法与系统
CN106137256B (zh) * 2015-04-14 2019-07-12 深圳市隆煜盛科技有限公司 超声成像性能测试设备及方法
CN105843870B (zh) * 2016-03-17 2019-04-09 南京地质矿产研究所 重复性和再现性的分析方法及其应用
CN106525108A (zh) * 2016-12-07 2017-03-22 深圳市蜂联科技有限公司 一种基于线性拟合算法的空气盒子温湿度精度校正方法
CN107607672B (zh) * 2017-08-29 2018-12-28 广州海洋地质调查局 一种水下气体传感器校准设备及校准方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130237820A1 (en) * 2010-06-01 2013-09-12 The Trustees Of Columbia University In The City Of New York Devices, methods, and systems for measuring elastic properties of biological tissues
CN103356241A (zh) * 2013-08-02 2013-10-23 中国十九冶集团有限公司职工医院 二维超声设备成像质量评估系统及评估方法
CN105303025A (zh) * 2014-06-10 2016-02-03 西门子公司 用于成像的医疗设备和用于成像的医疗设备的方法
CN104997533A (zh) * 2015-06-23 2015-10-28 武汉超信电子工程有限公司 超声探头几何参数自动校正方法和装置
CN105433986A (zh) * 2016-02-01 2016-03-30 飞依诺科技(苏州)有限公司 超声设备的自动校准方法及系统
CN107446293A (zh) * 2017-07-12 2017-12-08 无锡海斯凯尔医学技术有限公司 一种超声仿组织体模及其制备方法和应用

Also Published As

Publication number Publication date
CN111743569B (zh) 2021-07-27
CN111743569A (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
Fuller et al. Common methods variance detection in business research
WO2020232810A1 (zh) 一种矢量网络分析仪在片s参数的校准方法、系统及设备
Zhang et al. Lung ultrasound findings in patients with coronavirus disease (COVID-19)
Plumb et al. Terminal digit preference biases polyp size measurements at endoscopy, computed tomographic colonography, and histopathology
Zhang et al. A symmetry and bi-recursive algorithm of accurately computing Krawtchouk moments
CN103211615A (zh) 测量对象的生物特征的方法及装置
Kovtunenko et al. High precision identification of an object: Optimality-conditions-based concept of imaging
CN114166768A (zh) 不同设备检测同一指标同质化换算方法、装置、电子设备
BR102015029155A2 (pt) método para adquirir medições sequenciais, dispositivo baseado em processador e meio legível por computador tangível e não transitório
Rodrigues Filho et al. Evaluating the impact of measurement uncertainty in blood pressure measurement on hypertension diagnosis
WO2020192403A1 (zh) 一种仪器测试方法、装置及设备
Boss et al. Magnetic resonance imaging biomarker calibration service: proton spin relaxation times
Amstutz et al. Topological sensitivity analysis in the context of ultrasonic non-destructive testing
Schambeck et al. Diagnostic accuracy of magnetic resonance elastography and point-shear wave elastography for significant hepatic fibrosis screening: Systematic review and meta-analysis
Suh et al. Accuracy and precision of ultrasound shear wave elasticity measurements according to target elasticity and acquisition depth: A phantom study
CN111912974B (zh) 一种免疫试剂定标方法
US20110130989A1 (en) System and method for identifying a peripheral component interconnect express signal
CN116415686A (zh) 温升模型校准方法、装置、超声成像设备及存储介质
WO2020192404A1 (zh) 一种对具有影像引导功能的超声弹性测量仪器的超声测量深度进行检测的方法及装置
Ma et al. Estimation of line-based target registration error
Lee et al. Likelihood-based inference for the ratio of shape parameters of generalized exponential distributions
Shen Testing quasi-independence for doubly truncated data
Sridhara et al. Ultrasound training in surgical residency: Is it feasible?
Schöneweiß et al. Investigation of resolution and microphone size for measurements of airborne ultrasound
Phillips et al. Uncertainty due to finite resolution measurements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20777685

Country of ref document: EP

Kind code of ref document: A1