WO2020192306A1 - 无线路由器部署方法、装置、存储介质及电子设备 - Google Patents

无线路由器部署方法、装置、存储介质及电子设备 Download PDF

Info

Publication number
WO2020192306A1
WO2020192306A1 PCT/CN2020/075521 CN2020075521W WO2020192306A1 WO 2020192306 A1 WO2020192306 A1 WO 2020192306A1 CN 2020075521 W CN2020075521 W CN 2020075521W WO 2020192306 A1 WO2020192306 A1 WO 2020192306A1
Authority
WO
WIPO (PCT)
Prior art keywords
deployed
wireless router
network
location information
node
Prior art date
Application number
PCT/CN2020/075521
Other languages
English (en)
French (fr)
Inventor
潘婷婷
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/980,488 priority Critical patent/US11405799B2/en
Publication of WO2020192306A1 publication Critical patent/WO2020192306A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of computer technology, and in particular to a wireless router deployment method, a wireless router deployment device, a computer-readable storage medium, and electronic equipment.
  • Wireless full coverage communication networks in office buildings have become an important form of daily communication for office workers.
  • Wireless communication networks in high-rise buildings have become more complex and dense, and router deployment has become more irregular.
  • Irregular deployment of routers is not only difficult to ensure the coverage of the wireless network in the area, but also unable to effectively monitor the communication quality of the entire area. It also leads to a waste of resources and funds in network communication equipment. It can be seen that how to optimize the deployment of routers in order to improve the quality of network communication is currently an urgent problem to be solved.
  • the purpose of the present disclosure is to provide a wireless router deployment method, a wireless router deployment device, a computer-readable storage medium, and electronic equipment.
  • a wireless router deployment method for determining a deployment position of a wireless router in a spatial area, the method including:
  • the candidate node with the highest network quality score is selected as the deployment location of the wireless router to be deployed.
  • the calculating the network quality score of each candidate node according to the network coverage probability and the network energy efficiency value includes:
  • the calculation of the network coverage probability and the network energy efficiency value of each candidate node when the wireless router to be deployed is deployed based on the first location information includes:
  • the user nodes are location nodes randomly distributed in the spatial region.
  • the calculation of the network coverage probability and the network energy efficiency value when the temporary node deploys the wireless router to be deployed based on the first location information and the second location information includes:
  • each of the deployed wireless routers is calculated based on the first location information and the second location information when the wireless router to be deployed is deployed on the temporary node
  • the network capacity includes:
  • the acquiring first location information of a plurality of candidate nodes for deploying wireless routers distributed in the spatial area includes:
  • the method further includes:
  • the preset condition includes:
  • the network coverage probability is greater than a first preset threshold
  • the network energy efficiency value is greater than a second preset threshold
  • the network quality score is greater than a third preset threshold.
  • the method further includes:
  • a wireless router deployment device for determining a deployment position of a wireless router in a spatial area, the device including:
  • An information acquisition module configured to acquire first location information of multiple candidate nodes distributed in the space area for deploying wireless routers
  • the first calculation module is configured to calculate the network coverage probability and the network energy efficiency value when each candidate node deploys the wireless router to be deployed based on the first location information;
  • the second calculation module is configured to calculate the network quality score of each candidate node according to the network coverage probability and the network energy efficiency value
  • the location selection module is configured to select the candidate node with the highest network quality score as the deployment location of the wireless router to be deployed.
  • a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a processor to implement any one of the wireless router deployment methods described above.
  • an electronic device including a processor and a memory; wherein the memory is used to store executable instructions of the processor, and the processor is configured to execute by executing the executable instructions Any of the wireless router deployment methods described above.
  • Fig. 1 schematically shows a step flow chart of a wireless router deployment method in an exemplary embodiment of the present disclosure.
  • Fig. 2 schematically shows a flowchart of partial steps of a wireless router deployment method in another exemplary embodiment of the present disclosure.
  • FIG. 3 schematically shows a flowchart of partial steps of a wireless router deployment method in another exemplary embodiment of the present disclosure.
  • FIG. 4 schematically shows a flowchart of partial steps of a wireless router deployment method in another exemplary embodiment of the present disclosure.
  • Fig. 5 schematically shows a flowchart of partial steps of a wireless router deployment method in another exemplary embodiment of the present disclosure.
  • Fig. 6 schematically shows a flowchart of partial steps of a wireless router deployment method in another exemplary embodiment of the present disclosure.
  • Fig. 7 shows a schematic diagram of an application scenario of a wireless router deployment method in an exemplary embodiment of the present disclosure.
  • FIG. 8 schematically shows a block diagram of the composition of a wireless router deployment device in an exemplary embodiment of the present disclosure.
  • FIG. 9 schematically shows a schematic diagram of a program product in an exemplary embodiment of the present disclosure.
  • FIG. 10 schematically shows a schematic diagram of modules of an electronic device in an exemplary embodiment of the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • the example embodiments can be implemented in various forms, and should not be construed as being limited to the examples set forth herein; on the contrary, the provision of these embodiments makes the present disclosure more comprehensive and complete, and fully conveys the concept of the example embodiments To those skilled in the art.
  • the described features, structures or characteristics may be combined in one or more embodiments in any suitable way.
  • the wireless router deployment method provided by this exemplary embodiment may mainly include the following steps:
  • Step S110 Acquire first location information of multiple candidate nodes distributed in the space area for deploying wireless routers.
  • Each candidate node can be a location node randomly selected in the space area, or it can be a location node selected according to a predetermined rule. Based on the area range and size information of the entire space area, the exact location of each candidate node can be determined. In one embodiment, this step can create a simulation model for the entire space area and the candidate nodes in the space. Accordingly, a two-dimensional plane coordinate system or a three-dimensional coordinate system can be established, and each candidate node can be obtained in the coordinate system. The coordinate value of can be used as the first position information.
  • Step S120 Calculate the network coverage probability and the network energy efficiency value when each candidate node deploys the wireless router to be deployed based on the first location information.
  • a wireless router to be deployed can be deployed in each candidate node in turn, and then on each candidate node, the current deployment can be calculated Two evaluation parameters of network coverage probability and network energy efficiency value in the state. Since the distribution position of each candidate node is different, when the wireless router to be deployed is deployed on different candidate nodes, the degree of network coverage in the overall spatial area may be different. Moreover, when multiple wireless routers are deployed in a space area, there may also be network communication interference between each other, which will also affect the degree of network coverage. The network coverage probability calculated in this step can be used to evaluate the degree of network coverage in the spatial region.
  • the network energy efficiency value calculated in this step can be used to evaluate the network utilization efficiency in the space area.
  • Step S130 Calculate the network quality score of each candidate node according to the network coverage probability and the network energy efficiency value.
  • step S120 multiple sets of network coverage probabilities and network energy efficiency values corresponding to multiple candidate nodes are calculated, and based on this, the network quality score of each candidate node can be calculated in this step.
  • the network quality score and the network coverage probability are positively correlated, and the network quality score and the network energy efficiency value are also positively correlated.
  • the network coverage probability and network energy efficiency value of a certain candidate node are high, its network quality score is generally high, which means that the priority of the wireless router to be deployed at the candidate node will also be relatively high.
  • the network quality score of each candidate node in the space area can be obtained.
  • the candidate node with the highest network quality score can be selected as the deployment location of the wireless router to be deployed in this step, that is, the candidate node can be selected The wireless router is deployed at the candidate node with the highest network quality score.
  • the network quality score of each candidate node can be further calculated, so that the deployment location of the wireless router can be selected Provide evidence.
  • the deployment method takes into account the degree of network coverage and network utilization efficiency in the space area. While achieving high coverage of the overall spatial wireless network and ensuring network communication quality, it can avoid the waste of network resources and reduce the deployment cost of network equipment.
  • step S130. Calculating the network quality score of each candidate node according to the network coverage probability and the network energy efficiency value may further include the following steps:
  • Step S210 Obtain weight information for network coverage probability and network energy efficiency value.
  • this step can first obtain the weight information for the two evaluation parameters of network coverage probability and network energy efficiency value.
  • the weight information can be set and adjusted according to the user's specific network deployment requirements in the space area.
  • Step S220 Perform a weighted summation on the network coverage probability and the network energy efficiency value based on the weight information to obtain the network quality score of each candidate node.
  • this step will respectively perform a weighted summation of the network coverage probability and the network energy efficiency value of each candidate node, and the result of the sum will be the network quality score of each candidate node.
  • the embodiment of the present invention can assign different weighting coefficients to the network coverage probability and the network energy efficiency value by obtaining the weight information, so that the proportion of the two in the network quality score can be controlled.
  • the different proportions also reflect the importance of the parameters considered during the deployment of wireless routers, and can provide more diversified options for the deployment of wireless routers.
  • step S120 Calculate the network coverage probability and the network energy efficiency value when each candidate node deploys the wireless router to be deployed based on the first location information, which may further include The following steps:
  • Step S310 Obtain second location information of one or more user nodes that are distributed in the space area and perform network communication with the deployed wireless router.
  • At least one user node is distributed in the space area where the wireless router needs to be deployed, and each user node may be a location node selected randomly in the space area, or a location node selected according to a predetermined rule. If the user node is a location node randomly distributed in the space area, it can simulate the wireless network usage close to the real environment. Based on the area range and size information of the entire space area, the accurate location of each user node can be determined. In an embodiment, this step may be based on a two-dimensional plane coordinate system or a three-dimensional coordinate system, and use the coordinate value of each user node in the coordinate system as the second position information. To facilitate calculation, the second location information in this step and the first location information in step S110 should be acquired based on the same coordinate system.
  • Step S320 Select one of the multiple candidate nodes as the temporary node, and calculate the network coverage probability and the network energy efficiency value when the temporary node deploys the wireless router to be deployed based on the first location information and the second location information.
  • this step first selects one of them as a temporary node, and uses the first location information of each candidate node and the second location information of each user node to calculate the temporary node deployment wireless router to be deployed Network coverage probability and network energy efficiency value at time.
  • the first location information of each candidate node includes not only the first location information of the selected temporary node, but also the first location information of the candidate node of the deployed wireless router.
  • each user node can be connected to the wireless router with the strongest power that can be selected, so that the real best communication effect can be simulated.
  • Step S330 Continue to select another of the multiple candidate nodes as the temporary node and recalculate the network coverage probability and network energy efficiency value when the temporary node deploys the wireless router to be deployed, until the selection and calculation of all candidate nodes are completed.
  • this step will continue to select another of the multiple candidate nodes as the temporary node, and calculate again the network coverage probability and the network coverage probability when the wireless router to be deployed is deployed on the new temporary node. Network energy efficiency value. This step repeats this process until the selection and calculation of all candidate nodes are completed.
  • the network coverage probability and network energy efficiency value of deploying the wireless router to be deployed at each candidate node can be calculated in sequence.
  • the calculation of the network coverage probability and the network energy efficiency value when the temporary node deploys the wireless router to be deployed based on the first location information and the second location information in step S320 can be further It includes the following steps:
  • Step S410 Calculate the signal-to-noise interference ratio of each deployed wireless router when the temporary node deploys the wireless router to be deployed based on the first location information and the second location information.
  • this step can first calculate the Signal to Interference plus Noise Ratio of each deployed wireless router when the temporary node deploys the wireless router to be deployed. , Referred to as SINR), where the signal-to-noise-to-interference ratio SINR can reflect the ratio of the strength of the received useful signal to the sum of the strength of the received noise signal and the interference signal.
  • Step S420 Calculate the network coverage probability when the temporary node deploys the wireless router to be deployed according to the signal-to-noise interference ratio and the preset interference ratio threshold.
  • this step can calculate the network coverage probability when the temporary node deploys the wireless router to be deployed.
  • the calculation formula or related technology provided in other parts of this disclosure can be used The calculation is performed using the existing calculation formula in, which is not particularly limited in this exemplary embodiment.
  • Step S430 Calculate the network capacity of each deployed wireless router when the temporary node deploys the wireless router to be deployed based on the first location information and the second location information.
  • this step can calculate the network capacity of each deployed wireless router when the temporary node deploys the wireless router to be deployed.
  • the network capacity can reflect that the wireless router supplies the user node The effective power used.
  • Step S440 Calculate the network energy efficiency value when the temporary node deploys the wireless router to be deployed according to the network capacity, the number of deployed wireless routers and the transmission power.
  • this step can calculate the network energy efficiency value when the temporary node deploys the wireless router to be deployed .
  • the transmit power of the wireless router may be the ideal transmit power, or may be the lost transmit power based on the loss of router components, which is not particularly limited in this exemplary embodiment.
  • step S430. Calculating the network capacity of each deployed wireless router when the temporary node deploys the wireless router to be deployed based on the first location information and the second location information may further include The following steps:
  • Step S510 Calculate the SNR of each deployed wireless router when the temporary node deploys the wireless router to be deployed based on the first location information and the second location information.
  • step S410 the calculation result of step S410 can be directly used to obtain the signal-to-noise interference ratio of each deployed wireless router.
  • a calculation method different from step S410 can also be used to calculate the signal-to-noise interference ratio of each deployed wireless router.
  • Step S520 Obtain the bandwidth and the number of subcarriers of each deployed wireless router.
  • the wireless router to be deployed is deployed on a temporary node, the wireless router to be deployed is used as one of the deployed wireless routers to perform related calculations. In this step, information such as the bandwidth and number of subcarriers of each deployed wireless router is obtained for subsequent calculations.
  • Step S530 Calculate the network capacity of each deployed wireless router when the temporary node deploys the wireless router to be deployed according to the signal-to-noise and interference ratio, the bandwidth and the number of subcarriers.
  • this step can calculate the network capacity of each deployed wireless router when the temporary node deploys the wireless router to be deployed.
  • other wireless routers of the present disclosure can be used. Part of the provided calculation formulas or existing calculation formulas in related technologies are calculated, and this exemplary embodiment does not specifically limit this.
  • This exemplary embodiment provides a method for calculating the network coverage probability and the network energy efficiency value when the wireless router to be deployed is deployed in a temporary node.
  • the network communication technology involved in the wireless router please refer to the content of other parts of this disclosure or refer to the prior art.
  • Obtaining first location information of multiple candidate nodes distributed in the space area for deploying wireless routers may further include the following steps:
  • Step S610 The spatial region is divided into a plurality of evenly distributed spatial grids.
  • the entire space area can be divided into regions to obtain multiple evenly distributed space grids.
  • the specific separation results can also be adjusted in conjunction with the internal layout and structure of the space area.
  • Step S620 Use the spatial grid as a candidate node for deploying a wireless router.
  • the multiple spatial grids separated in step S610 can be used as candidate nodes for the deployment of wireless routers.
  • the wireless routers to be deployed can be deployed in the pre-determined order in each wireless router that has not yet been deployed.
  • the space grid Generally speaking, only one wireless router can be deployed on each spatial grid or alternative node.
  • Step S630 Acquire first location information of each candidate node.
  • each space grid can be used as a candidate node to obtain its corresponding position coordinate in the coordinate system, and the position coordinate is the first position information of each candidate node.
  • the above exemplary embodiments describe in detail the deployment process of a wireless router to be deployed, and it is generally necessary to deploy more than one wireless router in a large spatial area. Especially in high-rise buildings such as office buildings, there are more wireless routers that need to be deployed. Therefore, after the wireless router deployment method provided in the above exemplary embodiment completes the selection of the deployment location of the wireless router to be deployed (ie, the deployment is completed), it may further include the step of: continuing to deploy the new wireless router to be deployed in the space area And again select the deployment location of the wireless router to be deployed until the network coverage probability, network energy efficiency value, and/or network quality score meet the preset conditions.
  • the preset conditions may include: the network coverage probability is greater than the first preset threshold, the network energy efficiency value is greater than the second preset threshold, and the network quality score is greater than the third preset threshold.
  • the specific selection of preset conditions can be set according to actual deployment requirements.
  • the wireless router can be deployed in T temporary nodes in turn, and the related calculations After the parameters, determine an optimal node to complete the deployment.
  • the overall network coverage probability of the space area is P 1 .
  • the network capacity C(u, ⁇ ) from the user to the router can be expressed as:
  • SINR u (n) represents the signal to noise interference ratio between the router and the user k
  • N u is the number of subcarriers assigned by the router users
  • W u (n) represents the bandwidth of the router sub-carrier n. According to the system bandwidth and subcarrier comparison table, the router system bandwidth and the number of subcarriers can be obtained.
  • the energy efficiency of the entire system can be expressed as:
  • N B represents the number of routers
  • P ma represents the loss of transmission power of the router.
  • router power loss needs to be considered.
  • the power consumption of the router not only exists in the signal transmission process, but also the loss on the router components cannot be ignored. There is a linear relationship between router average power consumption and router radiated power.
  • the power consumption model can be expressed as:
  • P T represents the ideal transmit power of the router
  • the coefficient ⁇ m represents the loss factor of the average radiated power loss caused by amplifier and feeder losses and site cooling
  • B m represents the power deviation, which is a parameter that has nothing to do with the size of the transmit power and power consumption.
  • the coverage probability is:
  • T is the predefined SINR threshold
  • r is the distance between the user and the router
  • R is the distance between the user and the router used for integration
  • h 0 is the Nakagami-m channel gain
  • ⁇ n 2 is the normalized noise power
  • I is the interference
  • A is the path loss parameter
  • f(r) is the probability density function of the distance between the target user and the nearest base station.
  • the algorithm involved in this application scenario uses a top-down iterative approach to make the optimal choice.
  • the problem obtained is divided into independent sub-problems, and the current
  • the problem-solving process is only related to the current state, and will not interfere or influence the solution of other sub-problems.
  • the solution process of each sub-problem is independent of each other.
  • the local optimal solution can finally be combined into the overall optimal solution is the prerequisite for the algorithm to solve the problem.
  • use mathematical induction to prove that the final overall solution is the optimal solution.
  • the router distribution map is obtained to reach the maximum coverage volume and the best communication quality. balance.
  • the wireless router deployment apparatus 800 may mainly include: an information acquisition module 810, a first calculation module 820, a second calculation module 830, and a location selection module 840.
  • the information obtaining module 810 is configured to obtain first position information of multiple candidate nodes distributed in the spatial area for deploying wireless routers; the first calculation module 820 is configured to be based on the first position information Calculate the network coverage probability and network energy efficiency value of each candidate node when the wireless router to be deployed is deployed; the second calculation module 830 is configured to calculate each candidate node according to the network coverage probability and the network energy efficiency value
  • the location selection module 840 is configured to select the candidate node with the highest network quality score as the deployment location of the wireless router to be deployed.
  • the second calculation module 830 may further include: a weight acquisition module and a score calculation module.
  • the weight obtaining module is configured to obtain weight information for the network coverage probability and the network energy efficiency value;
  • the score calculation module is configured to perform a weighted summation of the network coverage probability and the network energy efficiency value based on the weight information to obtain the network of each candidate node Quality score.
  • the first calculation module 820 may further include: a position acquisition module, a first node calculation module, and a second node calculation module.
  • the location obtaining module is configured to obtain second location information of one or more user nodes that are distributed in the space area for network communication with the deployed wireless router;
  • the first node calculation module is configured to select multiple candidate nodes One of them is used as a temporary node, and based on the first location information and the second location information, the network coverage probability and network energy efficiency value of the temporary node when the wireless router to be deployed is deployed are calculated;
  • the second node calculation module is configured to continue to select multiple candidates The other one of the nodes is used as a temporary node and the network coverage probability and network energy efficiency value when the temporary node deploys the wireless router to be deployed are calculated again, until the selection and calculation of all candidate nodes are completed.
  • the first node calculation module may further include: a signal-to-noise interference ratio calculation module, a network coverage probability calculation module, a network capacity calculation module, and a network energy efficiency value calculation module.
  • the SNR calculation module is configured to calculate the SNR of each deployed wireless router when the temporary node deploys the wireless router to be deployed based on the first location information and the second location information;
  • the network coverage probability calculation module is configured to The signal-to-noise interference ratio and the preset interference ratio threshold are used to calculate the network coverage probability when the temporary node deploys the wireless router to be deployed;
  • the network capacity calculation module is configured to calculate the temporary node deployment to be deployed wireless router based on the first location information and the second location information The network capacity of each deployed wireless router;
  • the network energy efficiency value calculation module is configured to calculate the network energy efficiency value when the temporary node deploys the wireless router to be deployed according to the network capacity and the number of deployed wireless routers and the transmission power.
  • the information acquisition module 810 may further include: a spatial region separation module, a spatial grid selection module, and a node information acquisition module.
  • the spatial region separation module is configured to divide the spatial region into a plurality of evenly distributed spatial grids
  • the spatial grid selection module is configured to use the spatial grid as a candidate node for deploying wireless routers
  • the node information acquisition module It is configured to obtain the first location information of each candidate node.
  • modules or units of the device for action execution are mentioned in the above detailed description, this division is not mandatory.
  • the features and functions of two or more modules or units described above may be embodied in one module or unit.
  • the features and functions of a module or unit described above can be further divided into multiple modules or units to be embodied.
  • a computer-readable storage medium having a computer program stored thereon, and the computer program can implement the above-mentioned wireless router deployment method of the present disclosure when the computer program is executed by a processor.
  • various aspects of the present disclosure can also be implemented in the form of a program product, which includes program code; the program product can be stored in a non-volatile storage medium (can be CD-ROM, U Disk or mobile hard disk, etc.) or on the network; when the program product runs on a computing device (which can be a personal computer, a server, a terminal device, or a network device, etc.), the program code is used to make the computing
  • the device executes the method steps in the foregoing exemplary embodiments of the present disclosure.
  • the program product 900 for implementing the above method according to the embodiment of the present disclosure can adopt a portable compact disk read-only memory (CD-ROM) and include program code, and can be used in a computing device (such as a personal computer). Computer, server, terminal device or network equipment, etc.).
  • a computing device such as a personal computer. Computer, server, terminal device or network equipment, etc.
  • the program product of the present disclosure is not limited to this.
  • the computer-readable storage medium may be any tangible medium that contains or stores a program, and the program may be used by or in combination with an instruction execution system, apparatus, or device.
  • the program product can use any combination of one or more readable media.
  • the readable medium may be a readable signal medium or a readable storage medium.
  • the readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination of the above. More specific examples (non-exhaustive list) of readable storage media include: electrical connections with one or more wires, portable disks, hard disks, random access memory (RAM), read only memory (ROM), erasable Type programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage device, magnetic storage device or any suitable combination of the above.
  • RAM random access memory
  • ROM read only memory
  • EPROM or flash memory erasable Type programmable read only memory
  • CD-ROM portable compact disk read only memory
  • magnetic storage device magnetic storage device or any suitable combination of the above.
  • the readable signal medium may include a data signal propagated in baseband or as a part of a carrier wave, and readable program code is carried therein. This propagated data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the readable signal medium may also be any readable medium other than the readable storage medium, and the readable medium may send, propagate, or transmit a program for use by or in combination with the instruction execution system, apparatus, or device.
  • the program code contained on the readable medium can be transmitted by any suitable medium, including but not limited to wireless, wired, optical cable, RF, etc., or any suitable combination of the above.
  • the program code for performing the operations of the present disclosure can be written in any combination of one or more programming languages.
  • the programming languages include object-oriented programming languages, such as Java, C++, etc., as well as conventional procedural programming languages.
  • Programming language such as C language or similar programming language.
  • the program code can be executed entirely on the user's computing device, partly on the user's computing device, executed as an independent software package, partly on the user's computing device and partly executed on the remote computing device, or entirely on the remote computing device or Execute on the server.
  • the remote computing device can be connected to a user computing device through any kind of network (including a local area network (LAN) or a wide area network (WAN), etc.); or, it can be connected to an external computing device, such as using Internet services
  • LAN local area network
  • WAN wide area network
  • the provider comes to connect via the Internet.
  • an electronic device including at least one processor and at least one memory for storing executable instructions of the processor; wherein the processor is It is configured to execute the method steps in the above-mentioned exemplary embodiments of the present disclosure through execution of the executable instructions.
  • the electronic device 1000 in this exemplary embodiment will be described below with reference to FIG. 10.
  • the electronic device 1000 is only an example, and should not bring any limitation to the function and scope of use of the embodiments of the present disclosure.
  • the electronic device 1000 is represented in the form of a general-purpose computing device.
  • the components of the electronic device 1000 may include but are not limited to: at least one processing unit 1010, at least one storage unit 1020, a bus 1030 connecting different system components (including the processing unit 1010 and the storage unit 1020), and a display unit 1040.
  • the storage unit 1020 may include a readable medium in the form of a volatile storage unit, such as a random access storage unit 1021 (RAM) and/or a cache storage unit 1022, and may further include a read-only storage unit 1023 (ROM).
  • RAM random access storage unit
  • ROM read-only storage unit
  • the storage unit 1020 may also include a program/utility tool 1024 having a set of (at least one) program modules 1025.
  • program modules include but are not limited to: an operating system, one or more application programs, other program modules, and program data. Each of the examples or some combination may include the realization of a network environment.
  • the bus 1030 may represent one or more of several types of bus structures, including a storage unit bus or a storage unit controller, a peripheral bus, a graphics acceleration port, a processing unit, or a local area that uses any of various bus structures. bus.
  • the electronic device 1000 can also communicate with one or more external devices 1100 (such as keyboards, pointing devices, Bluetooth devices, etc.), and can also communicate with one or more devices that allow a user to interact with the electronic device 1000, and/or communicate with Any device (such as a router, a modem, etc.) that enables the electronic device 1000 to communicate with one or more other computing devices. This communication can be performed through an input/output (I/O) interface 1050.
  • the electronic device 1000 may also communicate with one or more networks (for example, a local area network (LAN), a wide area network (WAN), and/or a public network, such as the Internet) through the network adapter 1060. As shown in FIG.
  • the network adapter 1060 can communicate with other modules of the electronic device 1000 through the bus 1030. It should be understood that although not shown in the figure, other hardware and/or software modules can be used in conjunction with the electronic device 1000, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives And data backup storage system, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及一种无线路由器部署方法、无线路由器部署装置、计算机可读存储介质及电子设备。本公开实施例中的无线路由器部署方法用于确定无线路由器在一空间区域中的部署位置,包括:获取分布于所述空间区域中的用于部署无线路由器的多个备选节点的第一位置信息;基于所述第一位置信息分别计算各个所述备选节点部署待部署无线路由器时的网络覆盖概率和网络能效值;根据所述网络覆盖概率和所述网络能效值计算各个所述备选节点的网络质量分数;选取所述网络质量分数最高的备选节点作为所述待部署无线路由器的部署位置。

Description

无线路由器部署方法、装置、存储介质及电子设备
相关申请的交叉引用
本申请要求于2019年3月25日递交的中国专利申请第201910228534.2号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及计算机技术领域,具体涉及一种无线路由器部署方法、无线路由器部署装置、计算机可读存储介质及电子设备。
背景技术
随着无线通信需求不断提高,办公楼无线全覆盖通信网络已成为办公人员日常通信的重要形式,高层建筑中无线通信网络更加复杂化和密集化,其中路由器部署变得更加不规则。
路由器的不规则部署不仅难以保证区域内无线网络的覆盖率,而且无法有效监控整体区域的通信质量,同时也导致了网络通信设备方面的资源和资金浪费。由此可见,如何能够优化路由器的部署情况以便提高网络通信质量是目前亟待解决的问题。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开的目的在于提供一种无线路由器部署方法、无线路由器部署装置、计算机可读存储介质及电子设备。
根据本公开的一个方面,提供一种无线路由器部署方法,用于确定无线路由器在一空间区域中的部署位置,所述方法包括:
获取分布于所述空间区域中的用于部署无线路由器的多个备选节点的第一位置信息;
基于所述第一位置信息分别计算各个所述备选节点部署待部署无线路由器时的网络覆盖概率和网络能效值;
根据所述网络覆盖概率和所述网络能效值计算各个所述备选节点的网络质量分数;
选取所述网络质量分数最高的备选节点作为所述待部署无线路由器的部署位置。
在本公开的一种示例性实施方式中,所述根据所述网络覆盖概率和所述网络能效值计算各个所述备选节点的网络质量分数,包括:
获取针对所述网络覆盖概率以及所述网络能效值的权重信息;
基于所述权重信息对所述网络覆盖概率以及所述网络能效值进行加权求和以得到各个所述备选节点的网络质量分数。
在本公开的一种示例性实施方式中,所述基于所述第一位置信息分别计算各个所述备选节点部署待部署无线路由器时的网络覆盖概率和网络能效值,包括:
获取分布于所述空间区域中的与已部署无线路由器进行网络通信的一个或者多个用户节点的第二位置信息;
选取多个所述备选节点中的一个作为临时节点,并基于所述第一位置信息和所述第二位置信息计算所述临时节点部署待部署无线路由器时的网络覆盖概率和网络能效值;
继续选取多个所述备选节点中的另一个作为临时节点并再次计算当所述待部署无线路由器部署于所述临时节点时的网络覆盖概率和网络能效值,直至完成所有所述备选节点的选取和计算。
在本公开的一种示例性实施方式中,所述用户节点是随机分布于所述空间区域中的位置节点。
在本公开的一种示例性实施方式中,所述基于所述第一位置信息和所述第二位置信息计算所述临时节点部署待部署无线路由器时的网络覆盖概率和网络能效值,包括:
基于所述第一位置信息和所述第二位置信息计算所述临时节点部署待部署无线路由器时各个所述已部署无线路由器的信噪干扰比;
根据所述信噪干扰比以及预设的干扰比阈值计算当所述待部署无线路由器部署于所述临时节点时的网络覆盖概率;
基于所述第一位置信息和所述第二位置信息计算当所述待部署无线路由器部署于所述临时节点时各个所述已部署无线路由器的网络容量;
根据所述网络容量以及所述已部署无线路由器的数量和发射功率计算当所述待部署无线路由器部署于所述临时节点时的网络能效值。
在本公开的一种示例性实施方式中,所述基于所述第一位置信息和所述第二位置信息计算当所述待部署无线路由器部署于所述临时节点时各个所述已部署无线路由器的网络容量,包括:
基于所述第一位置信息和所述第二位置信息计算所述临时节点部署待部署无线路由器时各个所述已部署无线路由器的信噪干扰比;
获取各个所述已部署无线路由器的带宽和子载波数;
根据所述信噪干扰比、所述带宽以及所述子载波数计算所述临时节点部署待部署无线路由器时各个所述已部署无线路由器的网络容量。
在本公开的一种示例性实施方式中,所述获取分布于所述空间区域中的用于部署无线路由器的多个备选节点的第一位置信息,包括:
将所述空间区域分隔为多个均匀分布的空间网格;
将所述空间网格作为用于部署无线路由器的备选节点;
获取各个所述备选节点的第一位置信息。
在本公开的一种示例性实施方式中,所述方法还包括:
在所述空间区域中继续部署新的待部署无线路由器并再次选取所述待部署无线路由器的部署位置,直至所述网络覆盖概率、所述网络能效值和/或所述网络质量分数满足预设条件。
在本公开的一种示例性实施方式中,所述预设条件包括:
所述网络覆盖概率大于第一预设阈值;
所述网络能效值大于第二预设阈值;
所述网络质量分数大于第三预设阈值。
在本公开的一种示例性实施方式中,所述方法还包括:
在所述空间区域中增加新的待部署无线路由器并再次选取所述待部署无线路由器的部署位置,直至所述空间区域中的已部署无线路由器的数量大于第四预设阈值。
根据本公开的一个方面,提供一种无线路由器部署装置,用于确定无线路由器在一空间区域中的部署位置,所述装置包括:
信息获取模块,被配置为获取分布于所述空间区域中的用于部署无线路由器的多个备选节点的第一位置信息;
第一计算模块,被配置为基于所述第一位置信息分别计算各个所述备选节点部署待部署无线路由器时的网络覆盖概率和网络能效值;
第二计算模块,被配置为根据所述网络覆盖概率和所述网络能效值计算各个所述备选节点的网络质量分数;
位置选取模块,被配置为选取所述网络质量分数最高的备选节点作为所述待部署无线路由器的部署位置。
根据本公开的一个方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以上任一所述的无线路由器部署方法。
根据本公开的一个方面,提供一种电子设备,包括处理器和存储器;其中,存储器用于存储所述处理器的可执行指令,所述处理器被配置为经由执行所述可执行指令来执行以上任一所述的无线路由器部署方法。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示意性示出本公开一种示例性实施方式中无线路由器部署方法的步骤流程图。
图2示意性示出本公开另一示例性实施方式中无线路由器部署方法的部分步骤流程 图。
图3示意性示出本公开另一示例性实施方式中无线路由器部署方法的部分步骤流程图。
图4示意性示出本公开另一示例性实施方式中无线路由器部署方法的部分步骤流程图。
图5示意性示出本公开另一示例性实施方式中无线路由器部署方法的部分步骤流程图。
图6示意性示出本公开另一示例性实施方式中无线路由器部署方法的部分步骤流程图。
图7示出了本公开一种示例性实施方式中无线路由器部署方法的应用场景示意图。
图8示意性示出本公开示例性实施方式中无线路由器部署装置的组成框图。
图9示意性示出本公开示例性实施方式中一种程序产品的示意图。
图10示意性示出本公开示例性实施方式中一种电子设备的模块示意图。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施例使得本公开将更加全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。
此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
本公开的示例性实施方式中首先提供一种无线路由器部署方法,用于确定无线路由器在一空间区域中的部署位置。按照所确定的部署位置对无线路由器进行安装部署即可实现该空间区域内的无线网络覆盖。其中,部署无线路由器的空间区域可以是广场、公园等二维平面空间,另外也可以是办公楼或者其他高层建筑等三维立体空间,本公开对此不做特殊限定。
如图1所示,本示例性实施方式提供的无线路由器部署方法主要可以包括以下步骤:
步骤S110.获取分布于空间区域中的用于部署无线路由器的多个备选节点的第一位置信息。
在需要部署无线路由器的空间区域中分布有多个备选节点,备选节点的数量应当大于或者等于需要部署的无线路由器的最大数量,以便能够提供足够的无线路由器部署位置。每个备选节点可以是在空间区域中随机选取的位置节点,另外也可以是按照预定规则进行 规划选取的位置节点。基于整个空间区域的区域范围和尺寸信息,可以确定每个备选节点的准确位置。在一个实施例中,本步骤可以针对整个空间区域以及空间内的备选节点创建一仿真模型,相应地可以建立二维平面坐标系或者三维立体坐标系,获取每个备选节点在坐标系内的坐标值即可作为第一位置信息。
步骤S120.基于第一位置信息分别计算各个备选节点部署待部署无线路由器时的网络覆盖概率和网络能效值。
基于步骤S110中获取到的各个备选节点的第一位置信息,本步骤可以将一待部署无线路由器依次部署在各个备选节点处,然后在每个备选节点上都可以计算出在当前部署状态下的网络覆盖概率和网络能效值两项评价参数。由于每个备选节点的分布位置不同,当把待部署无线路由器部署在不同备选节点上时,整体空间区域中的网络覆盖程度可能会存在差异。而且当空间区域中部署有多个无线路由器时,相互之间也可能会存在网络通信的干扰,这也会对网络覆盖程度产生影响。本步骤计算得到的网络覆盖概率即可用于评价空间区域中的网络覆盖程度。另外,当多个无线路由器的部署位置较为接近时,会在网络覆盖范围上存在一定程度的重叠,而且重叠范围越大时,整个空间区域中所有无线路由器的发射功率的利用效率也就越低。本步骤计算得到的网络能效值即可用于评价空间区域中的网络利用效率。
步骤S130.根据网络覆盖概率和网络能效值计算各个备选节点的网络质量分数。
由步骤S120计算得到了对应于多个备选节点的多组网络覆盖概率和网络能效值,以此作为计算基础,本步骤可以计算得到各个备选节点的网络质量分数。一般而言,网络质量分数与网络覆盖概率为正相关的关系,网络质量分数与网络能效值也是正相关的关系。当某一备选节点上的网络覆盖概率和网络能效值较高时,其网络质量分数一般也较高,意味着待部署无线路由器部署在该备选节点处的优先级也会相对较高。
步骤S140.选取网络质量分数最高的备选节点作为待部署无线路由器的部署位置。
根据步骤S130的计算结果可以得到空间区域中各个备选节点的网络质量分数,通过比较之后,本步骤可以选取网络质量分数最高的备选节点作为待部署无线路由器的部署位置,亦即可以将待部署无线路由器部署在具有最高网络质量分数的备选节点处。
在本示例性实施方式提供的无线路由器部署方法中,通过计算各个备选节点的网络覆盖概率和网络能效值可以进一步计算得到各个备选节点的网络质量分数,从而可以为无线路由器的部署位置选择提供依据。该部署方法兼顾了空间区域中的网络覆盖程度和网络利用效率,在实现整体空间无线网络高度覆盖、保证网络通信质量的同时,可以避免网络资源的浪费、降低网络设备的部署成本。
如图2所示,在本公开的另一示例性实施方式中,步骤S130.根据网络覆盖概率和网络能效值计算各个备选节点的网络质量分数,可以进一步包括以下步骤:
步骤S210.获取针对网络覆盖概率以及网络能效值的权重信息。
为了合理评价各个备选节点的网络质量,本步骤首先可以获取针对网络覆盖概率以及 网络能效值两项评价参数的权重信息。该权重信息可以根据用户在空间区域中的具体网络部署需求进行设定和调整。
步骤S220.基于权重信息对网络覆盖概率以及网络能效值进行加权求和以得到各个备选节点的网络质量分数。
基于步骤S210中获取到的权重信息,本步骤将分别对各个备选节点的网络覆盖概率以及网络能效值进行加权求和,求和的结果即作为各个备选节点的网络质量分数。
本发明实施例通过获取权重信息的方式可以为网络覆盖概率和网络能效值分配不同的加权系数,从而可以控制二者在网络质量分数中的占比。不同的占比也反映了无线路由器部署时考量参数的重要程度,可以为无线路由器的部署方案提供更加多样化的选择。
如图3所示,在本公开的另一示例性实施方式中,步骤S120.基于第一位置信息分别计算各个备选节点部署待部署无线路由器时的网络覆盖概率和网络能效值,可以进一步包括以下步骤:
步骤S310.获取分布于空间区域中的与已部署无线路由器进行网络通信的一个或者多个用户节点的第二位置信息。
在需要部署无线路由器的空间区域中还分布有至少一个用户节点,每个用户节点可以是在空间区域中随机选取的位置节点,另外也可以是按照预定规则进行规划选取的位置节点。如果用户节点是随机分布于空间区域中的位置节点,可以模拟接近真实环境的无线网络使用情况。基于整个空间区域的区域范围和尺寸信息,可以确定每个用户节点的准确位置。在一个实施例中,本步骤可以基于二维平面坐标系或者三维立体坐标系,将每个用户节点在坐标系内的坐标值作为第二位置信息。为了便于计算,本步骤中的第二位置信息与步骤S110中的第一位置信息应当基于同一坐标体系进行获取。
步骤S320.选取多个备选节点中的一个作为临时节点,并基于第一位置信息和第二位置信息计算临时节点部署待部署无线路由器时的网络覆盖概率和网络能效值。
针对空间区域中的多个备选节点,本步骤首先选取其中一个作为临时节点,利用各个备选节点的第一位置信息以及各个用户节点的第二位置信息可以计算得到临时节点部署待部署无线路由器时的网络覆盖概率和网络能效值。其中各个备选节点的第一位置信息除了包括所选取的临时节点的第一位置信息以外,还包括已部署无线路由器的备选节点的第一位置信息。在这一计算过程中,可以将各个用户节点分别连接至各自可选择的功率最强的无线路由器,从而可以模拟真实的最佳通信效果。
步骤S330.继续选取多个备选节点中的另一个作为临时节点并再次计算临时节点部署待部署无线路由器时的网络覆盖概率和网络能效值,直至完成所有备选节点的选取和计算。
在由步骤S320完成一个临时节点的计算后,本步骤将继续选取多个备选节点中的另一个作为临时节点,并且再次计算当待部署无线路由器部署于新的临时节点时的网络覆盖概率和网络能效值。本步骤不断重复这一过程直至完成所有备选节点的选取和计算。
在本示例性实施方式中,通过逐个选取备选节点,可以依次计算得到将待部署无线路由器部署在各个备选节点处的网络覆盖概率和网络能效值。
如图4所示,在以上示例性实施方式的基础上,步骤S320中的基于第一位置信息和第二位置信息计算临时节点部署待部署无线路由器时的网络覆盖概率和网络能效值,可以进一步包括以下步骤:
步骤S410.基于第一位置信息和第二位置信息计算临时节点部署待部署无线路由器时各个已部署无线路由器的信噪干扰比。
基于各个备选节点的第一位置信息以及各个用户节点的第二位置信息,本步骤首先可以计算临时节点部署待部署无线路由器时各个已部署无线路由器的信噪干扰比(Signal to Interference plus Noise Ratio,简称SINR),其中信噪干扰比SINR可以反映接收到的有用信号的强度与接收到的噪声信号与干扰信号的强度之和的比值。
步骤S420.根据信噪干扰比以及预设的干扰比阈值计算临时节点部署待部署无线路由器时的网络覆盖概率。
利用步骤S410中计算得到的信噪干扰比以及预设的干扰比阈值,本步骤可以计算临时节点部署待部署无线路由器时的网络覆盖概率,具体可以采用本公开其他部分提供的计算公式或者相关技术中的现有计算公式进行计算,本示例性实施方式对此不做特殊限定。
步骤S430.基于第一位置信息和第二位置信息计算临时节点部署待部署无线路由器时各个已部署无线路由器的网络容量。
基于各个备选节点的第一位置信息以及各个用户节点的第二位置信息,本步骤可以计算临时节点部署待部署无线路由器时各个已部署无线路由器的网络容量,网络容量可以反映无线路由器供给用户节点使用的有效功率。
步骤S440.根据网络容量以及已部署无线路由器的数量和发射功率计算临时节点部署待部署无线路由器时的网络能效值。
利用步骤S430中计算得到的各个已部署无线路由器的网络容量以及整个空间区域中已部署无线路由器的数量和各个无线路由器的发射功率,本步骤可以计算临时节点部署待部署无线路由器时的网络能效值。其中,无线路由器的发射功率可以是理想发射功率,也可以是在考虑路由器元件损耗基础上的损耗发射功率,本示例性实施方式对此不做特殊限定。
如图5所示,在以上示例性实施方式的基础上,步骤S430.基于第一位置信息和第二位置信息计算临时节点部署待部署无线路由器时各个已部署无线路由器的网络容量,可以进一步包括以下步骤:
步骤S510.基于第一位置信息和第二位置信息计算临时节点部署待部署无线路由器时各个已部署无线路由器的信噪干扰比。
本步骤可以直接利用步骤S410的计算结果得到各个已部署无线路由器的信噪干扰比,另外也可以采用与步骤S410不同的计算方法计算各个已部署无线路由器的信噪干扰 比。
步骤S520.获取各个已部署无线路由器的带宽和子载波数。
空间区域中可能存在有多个已部署无线路由器,将待部署无线路由器部署在临时节点上时,该待部署无线路由器即作为已部署无线路由器的其中之一进行相关计算。本步骤获取各个已部署无线路由器的带宽和子载波数等信息以用于后续计算。
步骤S530.根据信噪干扰比、带宽以及子载波数计算临时节点部署待部署无线路由器时各个已部署无线路由器的网络容量。
根据步骤S510计算得到的信噪干扰比以及步骤S520中获取到的带宽和子载波数,本步骤可以计算得到临时节点部署待部署无线路由器时各个已部署无线路由器的网络容量,具体可以采用本公开其他部分提供的计算公式或者相关技术中的现有计算公式进行计算,本示例性实施方式对此不做特殊限定。
本示例性实施方式提供了一种计算待部署无线路由器部署于临时节点时的网络覆盖概率和网络能效值的方法,其中未详细说明的部分可以参考本公开其他部分的内容或者可以参考现有技术中涉及的无线路由器的网络通信技术。
为了对备选节点的位置进行准确标识,本公开可以对需要部署无线路由器的空间区域进行建模,以一个三维空间区域为例,可以建立一个三维立体模型。如图6所示,在本公开的另一示例性实施方式中,步骤S110.获取分布于空间区域中的用于部署无线路由器的多个备选节点的第一位置信息可以进一步包括以下步骤:
步骤S610.将空间区域分隔为多个均匀分布的空间网格。
本步骤首先可以对整个空间区域进行区域划分以得到多个均匀分布的空间网格,具体的分隔结果也可以结合空间区域的内部格局和构造进行调整。
步骤S620.将空间网格作为用于部署无线路由器的备选节点。
步骤S610中分隔得到的多个空间网格即可作为用于部署无线路由器的备选节点,在后续的仿真计算过程中,待部署无线路由器可以按照预设顺序依次部署在各个尚未部署无线路由器的空间网格内。一般而言,每一个空间网格或者备选节点上仅能部署一个无线路由器。
步骤S630.获取各个备选节点的第一位置信息。
由步骤S610完成空间区域的划分后,每个空间网格都可以作为一个备选节点在坐标体系内获取各自相应的位置坐标,该位置坐标即为各个备选节点的第一位置信息。
以上示例性实施方式对一个待部署无线路由器的部署过程进行了详细描述,而在一个范围较大的空间区域中一般需要部署不止一个无线路由器。尤其是在办公楼等高层建筑中,需要部署的无线路由器的数量更多。因此,由以上示例性实施方式中提供的无线路由器部署方法完成一待部署无线路由器的部署位置的选择(即完成部署)后,还可以包括步骤:在空间区域中继续部署新的待部署无线路由器并再次选取待部署无线路由器的部署位置,直至网络覆盖概率、网络能效值和/或网络质量分数满足预设条件。其中,预设条件 可以包括:网络覆盖概率大于第一预设阈值,网络能效值大于第二预设阈值,网络质量分数大于第三预设阈值。具体选择何种预设条件可以根据实际的部署需求进行设定。
每当需要在空间区域中继续增加部署新的无线路由器时,由于空间区域内的已部署无线路由器的数量改变(即在原路由器数量的基础上加一),前次计算得到的相关参数都已不再适用,因此需要重新计算。
以网络覆盖概率大于第一预设阈值作为预设条件,假设空间中存在T个临时节点,当部署第一个无线路由器时,可以把该无线路由器依次部署在T个临时节点,并分别计算相关参数后,确定一最优节点以完成部署,此时空间区域整体的网络覆盖概率为P 1
当部署第二个无线路由器时,需要把该无线路由器依次部署在剩下的(T-1)个临时节点中,并基于第一个和第二个无线路由器的部署进行联合计算以确定一新的最优节点,并得到新的网络覆盖概率P 2。以此类推,假设空间区域中已按照上述部署方法完成四个无线路由器的部署,那么需要经过T+(T-1)+(T-2)+(T-3)次计算,才能依次确定每个无线路由器的部署位置。基于该部署方法不断在空间区域中增加部署新的无线路由器,直至计算得到的网络覆盖概率大于第一预设阈值,即可完成对整个空间区域的无线路由器部署。
除此之外,在部署多个无线路由器的过程中,以上示例性实施方式提供的无线路由器部署方法还可以包括步骤:在空间区域中增加新的待部署无线路由器并再次选取待部署无线路由器的部署位置,直至空间区域中的已部署无线路由器的数量大于第四预设阈值。该步骤相当于预先设定整个空间区域中的无线路由器的最大数量为第四预设阈值,当没有达到这一数量时,需要在空间区域内持续增加部署新的无线路由器。
需要说明的是,虽然以上示例性实施方式以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或者必须执行全部的步骤才能实现期望的结果。附加地或者备选地,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。
下面结合一具体应用场景对以上示例性实施方式中的无线路由器部署进行详细说明。
如图7所示,在通信网络中,假设一个三维区域的无线网络含有大量路由器(图中以尺寸相对较大的圆点表示),同时该区域随机分布n个用户(图中以尺寸相对较小的圆点表示)与该区域中的路由器通信。设用户集合为U={u 1,u 2,……u n},该区域路由器集合为Ф={i 1,i 2,……i k},路由器对应坐标为Z={z 1,z 2,……z k},用户坐标表示为z u,路由器子载波传输功率为P i (n),路径损耗因子为α,在该应用场景中,可以设定路径损耗因子α=4,σ 2表示每个路由器的子载波热噪声效应。则路由器k与用户之间的信噪干扰比(SINR)可以表示为
Figure PCTCN2020075521-appb-000001
在该应用场景中,可以设定路由器发出的信号功率相同,用户与路由器之间距离不同, 用户接收路由器功率不同,通过编程实现用户选择与最佳功率路由器通信。用户到路由器的网络容量C(u,Ф)可表示为:
Figure PCTCN2020075521-appb-000002
SINR u (n)表示路由器k与用户之间的信噪干扰比,N u为路由器分配给用户的子载波数,W u (n)表示路由器子载波n的带宽。根据系统带宽与子载波对照表,可以得到路由器系统带宽及子载波数。
整个系统的能效可以表示为:
Figure PCTCN2020075521-appb-000003
N B表示路由器数量,P ma表示路由器损耗发射功率。在实际能效计算中,需要考虑路由器功率损耗问题。路由器功率的消耗不仅存在于信号传输过程中,路由器元件上损耗也不容忽略。路由器平均功率消耗与路由器辐射功率之间是线性关系,功率消耗模型可以表示为:
P ma=α m·P T+B m
P T表示路由器的理想发射功率;系数α m表示由放大器和馈线损耗以及场地冷却造成的平均辐射功率损耗的损耗因子;B m表示功率偏离,是与发射功率大小和功率消耗无关的参数。
覆盖概率则为:
Figure PCTCN2020075521-appb-000004
T为预先定义的SINR门限,r为用户离路由器距离,R为用于积分的用户离路由器的距离范围,h 0为Nakagami-m信道增益,σ n 2为归一化噪声功率,I为干扰,a为路径损耗参数,f(r)为目标用户与最近基站的距离的概率密度函数。
该应用场景中涉及的算法采用自上而下迭代的方式做出最优选择,每做出一次选择时,便将所求得的问题划分为独立子问题,在选择子问题的过程时确定当前问题解决过程只与当前状态有关,不会对其他子问题的求解形成干扰或影响,每个子问题的求解过程是相互独立。局部最优解最终能够结合为整体最优解是该算法在解决问题时的适用前提。当子问题全部解决后,利用数学归纳法证明得到最终的整体解为最优解。
算法设计规则为:将三维待监测区域划分为m×m×m的网格,共有N=m 3个网格点,在待测区域内随机撒入X个用户点,将第一个路由器依次部署在m 3个网格点,求取与网络覆盖概率和网络能效值相关的网络质量分数的最大值位置,将第一个路由器放置该位置,再取第二个路由器放置于剩下的m 3-1的网格点位置,求取网络质量分数的最大值位置并放置,按照这一方式依次对各个无线路由器进行放置部署。当三维待测区域实现预定覆盖概率值P,即P C(T)>P,并且网络能效值η E超过预定值η时,获得路由器分布图,达到最大覆盖体积及最佳通信质量之间的平衡。
在本公开的示例性实施方式中,还提供一种无线路由器部署装置,该装置可以用于确定无线路由器在一空间区域中的部署位置。如图8所示,无线路由器部署装置800主要可以包括:信息获取模块810、第一计算模块820、第二计算模块830和位置选取模块840。其中,信息获取模块810被配置为获取分布于所述空间区域中的用于部署无线路由器的多个备选节点的第一位置信息;第一计算模块820被配置为基于所述第一位置信息分别计算各个所述备选节点部署待部署无线路由器时的网络覆盖概率和网络能效值;第二计算模块830被配置为根据所述网络覆盖概率和所述网络能效值计算各个所述备选节点的网络质量分数;位置选取模块840被配置为选取所述网络质量分数最高的备选节点作为所述待部署无线路由器的部署位置。
在本公开的另一示例性实施方式中,第二计算模块830可以进一步包括:权重获取模块和分数计算模块。其中,权重获取模块被配置为获取针对网络覆盖概率以及网络能效值的权重信息;分数计算模块被配置为基于权重信息对网络覆盖概率以及网络能效值进行加权求和以得到各个备选节点的网络质量分数。
在本公开的另一示例性实施方式中,第一计算模块820可以进一步包括:位置获取模块、第一节点计算模块和第二节点计算模块。其中,位置获取模块被配置为获取分布于空间区域中的与已部署无线路由器进行网络通信的一个或者多个用户节点的第二位置信息;第一节点计算模块被配置为选取多个备选节点中的一个作为临时节点,并基于第一位置信息和第二位置信息计算临时节点部署待部署无线路由器时的网络覆盖概率和网络能效值;第二节点计算模块被配置为继续选取多个备选节点中的另一个作为临时节点并再次计算临时节点部署待部署无线路由器时的网络覆盖概率和网络能效值,直至完成所有备选节点的选取和计算。
在本公开的另一示例性实施方式中,第一节点计算模块可以进一步包括:信噪干扰比计算模块、网络覆盖概率计算模块、网络容量计算模块和网络能效值计算模块。其中,信噪干扰比计算模块被配置为基于第一位置信息和第二位置信息计算临时节点部署待部署无线路由器时各个已部署无线路由器的信噪干扰比;网络覆盖概率计算模块被配置为根据信噪干扰比以及预设的干扰比阈值计算临时节点部署待部署无线路由器时的网络覆盖概率;网络容量计算模块被配置为基于第一位置信息和第二位置信息计算临时节点部署待部署无线路由器时各个已部署无线路由器的网络容量;网络能效值计算模块被配置为根据网络容量以及已部署无线路由器的数量和发射功率计算临时节点部署待部署无线路由器时的网络能效值。
在本公开的另一示例性实施方式中,信息获取模块810可以进一步包括:空间区域分隔模块、空间网格选取模块和节点信息获取模块。其中,空间区域分隔模块被配置为将空间区域分隔为多个均匀分布的空间网格;空间网格选取模块被配置为将空间网格作为用于部署无线路由器的备选节点;节点信息获取模块被配置为获取各个备选节点的第一位置信息。
上述无线路由器部署装置的具体细节已经在对应的无线路由器部署方法中进行了详细的描述,因此此处不再赘述。
应当注意,尽管在上文详细描述中提及了用于动作执行的设备的若干模块或者单元,但是这种划分并非强制性的。实际上,根据本公开的实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。
在本公开的示例性实施方式中,还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时可实现本公开的上述的无线路由器部署方法。在一些可能的实施方式中,本公开的各个方面还可以实现为一种程序产品的形式,其包括程序代码;该程序产品可以存储在一个非易失性存储介质(可以是CD-ROM、U盘或者移动硬盘等)中或网络上;当所述程序产品在一台计算设备(可以是个人计算机、服务器、终端装置或者网络设备等)上运行时,所述程序代码用于使所述计算设备执行本公开中上述各示例性实施例中的方法步骤。
参见图9所示,根据本公开的实施方式的用于实现上述方法的程序产品900,其可以采用便携式紧凑磁盘只读存储器(CD-ROM)并包括程序代码,并可以在计算设备(例如个人计算机、服务器、终端装置或者网络设备等)上运行。然而,本公开的程序产品不限于此。在本示例性实施例中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
所述程序产品可以采用一个或者多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。
可读存储介质例如可以为但不限于电、磁、光、电磁、红外线或半导体的系统、装置或器件、或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件或者上述的任意合适的组合。
可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。可读信号介质还可以是可读存储介质以外的任意可读介质,该可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、有线、光缆、RF等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言的任意组合来编写用于执行本公开操作的程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、C++等,还包括常规的过程式程序设计语言,诸如C语言或类似的程序设计语言。程序代码可以完全地在用户计算设 备上执行、部分地在用户计算设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络(包括局域网(LAN)或广域网(WAN)等)连接到用户计算设备;或者,可以连接到外部计算设备,例如利用因特网服务提供商来通过因特网连接。
在本公开的示例性实施方式中,还提供一种电子设备,所述电子设备包括至少一个处理器以及至少一个用于存储所述处理器的可执行指令的存储器;其中,所述处理器被配置为经由执行所述可执行指令来执行本公开中上述各示例性实施例中的方法步骤。
下面结合图10对本示例性实施方式中的电子设备1000进行描述。电子设备1000仅仅为一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
参见图10所示,电子设备1000以通用计算设备的形式表现。电子设备1000的组件可以包括但不限于:至少一个处理单元1010、至少一个存储单元1020、连接不同系统组件(包括处理单元1010和存储单元1020)的总线1030、显示单元1040。
其中,存储单元1020存储有程序代码,所述程序代码可以被处理单元1010执行,使得处理单元1010执行本公开中上述各示例性实施例中的方法步骤。
存储单元1020可以包括易失性存储单元形式的可读介质,例如随机存取存储单元1021(RAM)和/或高速缓存存储单元1022,还可以进一步包括只读存储单元1023(ROM)。
存储单元1020还可以包括具有一组(至少一个)程序模块1025的程序/实用工具1024,这样的程序模块包括但不限于:操作系统、一个或者多个应用程序、其他程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
总线1030可以为表示几类总线结构中的一种或多种,包括存储单元总线或者存储单元控制器、外围总线、图形加速端口、处理单元或者使用各种总线结构中的任意总线结构的局域总线。
电子设备1000也可以与一个或多个外部设备1100(例如键盘、指向设备、蓝牙设备等)通信,还可以与一个或者多个使得用户可以与该电子设备1000交互的设备通信,和/或与使得该电子设备1000能与一个或多个其他计算设备进行通信的任何设备(例如路由器、调制解调器等)通信。这种通信可以通过输入/输出(I/O)接口1050进行。并且,电子设备1000还可以通过网络适配器1060与一个或者多个网络(例如局域网(LAN)、广域网(WAN)和/或公共网络,例如因特网)通信。如图10所示,网络适配器1060可以通过总线1030与电子设备1000的其他模块通信。应当明白,尽管图中未示出,可以结合电子设备1000使用其他硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
本领域技术人员能够理解,本公开的各个方面可以实现为系统、方法或程序产品。因此,本公开的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、微代码等),或硬件和软件结合的实施方式,这里可以统称为“电 路”、“模块”或“系统”。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。
上述所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中,如有可能,各实施例中所讨论的特征是可互换的。在上面的描述中,提供许多具体细节从而给出对本公开的实施方式的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而没有特定细节中的一个或更多,或者可以采用其它的方法、组件、材料等。在其它情况下,不详细示出或描述公知结构、材料或者操作以避免模糊本公开的各方面。

Claims (19)

  1. 一种无线路由器部署方法,用于确定无线路由器在一空间区域中的部署位置,所述方法包括:
    获取分布于所述空间区域中的用于部署无线路由器的多个备选节点的第一位置信息;
    基于所述第一位置信息分别计算各个所述备选节点部署待部署无线路由器时的网络覆盖概率和网络能效值;
    根据所述网络覆盖概率和所述网络能效值计算各个所述备选节点的网络质量分数;
    选取所述网络质量分数最高的备选节点作为所述待部署无线路由器的部署位置。
  2. 根据权利要求1所述的无线路由器部署方法,其中,所述根据所述网络覆盖概率和所述网络能效值计算各个所述备选节点的网络质量分数,包括:
    获取针对所述网络覆盖概率以及所述网络能效值的权重信息;
    基于所述权重信息对所述网络覆盖概率以及所述网络能效值进行加权求和以得到各个所述备选节点的网络质量分数。
  3. 根据权利要求1所述的无线路由器部署方法,其中,所述基于所述第一位置信息分别计算各个所述备选节点部署待部署无线路由器时的网络覆盖概率和网络能效值,包括:
    获取分布于所述空间区域中的与已部署无线路由器进行网络通信的一个或者多个用户节点的第二位置信息;
    选取多个所述备选节点中的一个作为临时节点,并基于所述第一位置信息和所述第二位置信息计算所述临时节点部署待部署无线路由器时的网络覆盖概率和网络能效值;
    继续选取多个所述备选节点中的另一个作为临时节点并再次计算当所述待部署无线路由器部署于所述临时节点时的网络覆盖概率和网络能效值,直至完成所有所述备选节点的选取和计算。
  4. 根据权利要求3所述的无线路由器部署方法,其中,所述用户节点是随机分布于所述空间区域中的位置节点。
  5. 根据权利要求3所述的无线路由器部署方法,其中,所述基于所述第一位置信息和所述第二位置信息计算所述临时节点部署待部署无线路由器时的网络覆盖概率和网络能效值,包括:
    基于所述第一位置信息和所述第二位置信息计算所述临时节点部署待部署无线路由器时各个所述已部署无线路由器的信噪干扰比;
    根据所述信噪干扰比以及预设的干扰比阈值计算当所述待部署无线路由器部署于所述临时节点时的网络覆盖概率;
    基于所述第一位置信息和所述第二位置信息计算当所述待部署无线路由器部署于所述临时节点时各个所述已部署无线路由器的网络容量;
    根据所述网络容量以及所述已部署无线路由器的数量和发射功率计算当所述待部署 无线路由器部署于所述临时节点时的网络能效值。
  6. 根据权利要求5所述的无线路由器部署方法,其中,所述基于所述第一位置信息和所述第二位置信息计算当所述待部署无线路由器部署于所述临时节点时各个所述已部署无线路由器的网络容量,包括:
    基于所述第一位置信息和所述第二位置信息计算所述临时节点部署待部署无线路由器时各个所述已部署无线路由器的信噪干扰比;
    获取各个所述已部署无线路由器的带宽和子载波数;
    根据所述信噪干扰比、所述带宽以及所述子载波数计算所述临时节点部署待部署无线路由器时各个所述已部署无线路由器的网络容量。
  7. 根据权利要求1所述的无线路由器部署方法,其中,所述获取分布于所述空间区域中的用于部署无线路由器的多个备选节点的第一位置信息,包括:
    将所述空间区域分隔为多个均匀分布的空间网格;
    将所述空间网格作为用于部署无线路由器的备选节点;
    获取各个所述备选节点的第一位置信息。
  8. 根据权利要求1-7中任意一项所述的无线路由器部署方法,其中,所述方法还包括:
    在所述空间区域中继续部署新的待部署无线路由器并再次选取所述待部署无线路由器的部署位置,直至所述网络覆盖概率、所述网络能效值和/或所述网络质量分数满足预设条件。
  9. 根据权利要求8所述的无线路由器部署方法,其中,所述预设条件包括:
    所述网络覆盖概率大于第一预设阈值;
    所述网络能效值大于第二预设阈值;
    所述网络质量分数大于第三预设阈值。
  10. 根据权利要求1-7中任意一项所述的无线路由器部署方法,其中,所述方法还包括:
    在所述空间区域中增加新的待部署无线路由器并再次选取所述待部署无线路由器的部署位置,直至所述空间区域中的已部署无线路由器的数量大于第四预设阈值。
  11. 根据权利要求1-7中任意一项所述的无线路由器部署方法,其中,所述空间区域为三维空间区域。
  12. 一种无线路由器部署装置,用于确定无线路由器在一空间区域中的部署位置,所述装置包括:
    信息获取模块,被配置为获取分布于所述空间区域中的用于部署无线路由器的多个备选节点的第一位置信息;
    第一计算模块,被配置为基于所述第一位置信息分别计算各个所述备选节点部署待部署无线路由器时的网络覆盖概率和网络能效值;
    第二计算模块,被配置为根据所述网络覆盖概率和所述网络能效值计算各个所述备选节点的网络质量分数;
    位置选取模块,被配置为选取所述网络质量分数最高的备选节点作为所述待部署无线路由器的部署位置。
  13. 根据权利要求12所述的无线路由器部署装置,其中,所述第二计算模块包括:
    权重获取模块,被配置为获取针对所述网络覆盖概率以及所述网络能效值的权重信息;
    分数计算模块,被配置为基于所述权重信息对所述网络覆盖概率以及所述网络能效值进行加权求和以得到各个所述备选节点的网络质量分数。
  14. 根据权利要求12所述的无线路由器部署装置,其中,所述第一计算模块包括:包括:
    位置获取模块,被配置为获取分布于所述空间区域中的与已部署无线路由器进行网络通信的一个或者多个用户节点的第二位置信息;
    第一节点计算模块,被配置为选取多个所述备选节点中的一个作为临时节点,并基于所述第一位置信息和所述第二位置信息计算所述临时节点部署待部署无线路由器时的网络覆盖概率和网络能效值;
    第二节点计算模块,被配置为继续选取多个所述备选节点中的另一个作为临时节点并再次计算当所述待部署无线路由器部署于所述临时节点时的网络覆盖概率和网络能效值,直至完成所有所述备选节点的选取和计算。
  15. 根据权利要求14所述的无线路由器部署装置,其中,所述第一节点计算模块包括:
    信噪干扰比计算模块,被配置为基于所述第一位置信息和所述第二位置信息计算所述临时节点部署待部署无线路由器时各个所述已部署无线路由器的信噪干扰比;
    网络覆盖概率计算模块,被配置为根据所述信噪干扰比以及预设的干扰比阈值计算当所述待部署无线路由器部署于所述临时节点时的网络覆盖概率;
    网络容量计算模块,被配置为基于所述第一位置信息和所述第二位置信息计算当所述待部署无线路由器部署于所述临时节点时各个所述已部署无线路由器的网络容量;
    网络能效值计算模块,被配置为根据所述网络容量以及所述已部署无线路由器的数量和发射功率计算当所述待部署无线路由器部署于所述临时节点时的网络能效值。
  16. 根据权利要求15所述的无线路由器部署装置,其中,所述网络容量计算模块被配置为:
    基于所述第一位置信息和所述第二位置信息计算所述临时节点部署待部署无线路由器时各个所述已部署无线路由器的信噪干扰比;
    获取各个所述已部署无线路由器的带宽和子载波数;
    根据所述信噪干扰比、所述带宽以及所述子载波数计算所述临时节点部署待部署无线 路由器时各个所述已部署无线路由器的网络容量。
  17. 根据权利要求12所述的无线路由器部署装置,其中,所述信息获取模块包括:
    空间区域分隔模块,被配置为将所述空间区域分隔为多个均匀分布的空间网格;
    空间网格选取模块,被配置为将所述空间网格作为用于部署无线路由器的备选节点;
    节点信息获取模块,被配置为获取各个所述备选节点的第一位置信息。
  18. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-11中任意一项所述的无线路由器部署方法。
  19. 一种电子设备,包括:
    处理器;
    存储器,用于存储所述处理器的可执行指令;
    其中,所述处理器被配置为经由执行所述可执行指令来执行权利要求1-11中任意一项所述的无线路由器部署方法。
PCT/CN2020/075521 2019-03-25 2020-02-17 无线路由器部署方法、装置、存储介质及电子设备 WO2020192306A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/980,488 US11405799B2 (en) 2019-03-25 2020-02-17 Wireless router deployment method and device, storage medium and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910228534.2A CN109743741B (zh) 2019-03-25 2019-03-25 无线路由器部署方法、装置、存储介质及电子设备
CN201910228534.2 2019-03-25

Publications (1)

Publication Number Publication Date
WO2020192306A1 true WO2020192306A1 (zh) 2020-10-01

Family

ID=66371344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075521 WO2020192306A1 (zh) 2019-03-25 2020-02-17 无线路由器部署方法、装置、存储介质及电子设备

Country Status (3)

Country Link
US (1) US11405799B2 (zh)
CN (1) CN109743741B (zh)
WO (1) WO2020192306A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112929866A (zh) * 2021-01-20 2021-06-08 河北工程大学 一种自适应优化城市灾区网络覆盖的无人机部署方法
CN115967451A (zh) * 2023-03-13 2023-04-14 微网优联科技(成都)有限公司 无线路由器信号处理方法、装置及应用其的无线路由器

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109743741B (zh) * 2019-03-25 2021-03-02 京东方科技集团股份有限公司 无线路由器部署方法、装置、存储介质及电子设备
CN110312264B (zh) * 2019-06-21 2022-03-11 重庆市农业科学院 进行蔬菜立体栽培的网络管理平台
EP3982658A4 (en) * 2019-07-24 2022-08-10 Huawei Technologies Co., Ltd. WIRELESS ACCESS POINT DEPLOYMENT METHOD AND APPARATUS
CN112770326B (zh) * 2019-10-21 2023-05-09 阿里巴巴集团控股有限公司 LoRa网关部署方法、装置、设备及存储介质
CN111510932A (zh) * 2020-03-21 2020-08-07 杭州迪普科技股份有限公司 无线接入点部署方法、装置、电子设备及计算机可读介质
CN112055366B (zh) * 2020-09-04 2023-08-25 北京自如信息科技有限公司 一种网关位置的确定方法、装置及计算机设备
CN112996009B (zh) * 2021-03-31 2022-11-15 建信金融科技有限责任公司 无线设备的部署方法、装置、电子设备及存储介质
CN114302413B (zh) * 2022-01-13 2024-02-23 北京艾灵客科技有限公司 基站位置部署方法、装置、计算机设备及存储介质
CN114727300B (zh) * 2022-02-08 2024-05-03 北京邮电大学 基于引力模型的信关站部署方法及相关设备
CN115297044B (zh) * 2022-06-29 2024-02-06 深圳市图麟科技有限公司 一种便于路由器调试信号的测试方法及其设备
CN115297015A (zh) * 2022-08-02 2022-11-04 中国电信股份有限公司 边缘节点接入方法及装置、存储介质和电子设备
CN116437409B (zh) * 2023-06-13 2023-08-22 微网优联科技(成都)有限公司 一种无线路由器的信道切换方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101453738A (zh) * 2008-12-31 2009-06-10 阿德利亚科技(北京)有限责任公司 一种无线网状网的覆盖规划和信道分配方法及装置
CN102547758A (zh) * 2011-12-21 2012-07-04 上海工程技术大学 一种wlan接入点部署方法
CN103415025A (zh) * 2013-06-13 2013-11-27 国家电网公司 基于onu-wg的无源光网络优化方法
US20150215791A1 (en) * 2014-01-29 2015-07-30 Time Warner Cable Enterprises Llc Access point management and usage in a network environment
CN106162668A (zh) * 2015-04-15 2016-11-23 富士通株式会社 确定网络参数的方法和装置
CN109743741A (zh) * 2019-03-25 2019-05-10 京东方科技集团股份有限公司 无线路由器部署方法、装置、存储介质及电子设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7031266B1 (en) * 2000-02-25 2006-04-18 Cisco Technology, Inc. Method and system for configuring wireless routers and networks
US9226257B2 (en) * 2006-11-04 2015-12-29 Qualcomm Incorporated Positioning for WLANs and other wireless networks
KR101301979B1 (ko) * 2010-12-21 2013-08-30 주식회사 케이티 근거리 통신을 위한 액세스 포인트를 이용한 위치 측정 방법 및 장치와 액세스 포인트의 위치 추정 방법
CN103338504B (zh) * 2013-06-21 2015-11-18 北京邮电大学 无线局域网中多个ap信道及功率的联合自配置方法
CN104394537B (zh) * 2014-12-11 2017-12-05 广东工业大学 一种多目标关注的无线Mesh路由器部署优化方法
US9692498B2 (en) * 2015-10-16 2017-06-27 At&T Intellectual Property I, L.P. Extending wireless signal coverage with drones
CN105634873B (zh) * 2016-01-27 2019-05-17 中国铁道科学研究院电子计算技术研究所 一种高速列车运营环境监测网络的性能评价方法及系统
US10367677B2 (en) * 2016-05-13 2019-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
US10979932B2 (en) * 2018-06-06 2021-04-13 The Board Of Regents Of The University Of Oklahoma Enhancement of capacity and user quality of service (QoS) in mobile cellular networks
CN109302715A (zh) * 2018-12-13 2019-02-01 广州文搏科技有限公司 一种精确的无线传感器网络节点部署系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101453738A (zh) * 2008-12-31 2009-06-10 阿德利亚科技(北京)有限责任公司 一种无线网状网的覆盖规划和信道分配方法及装置
CN102547758A (zh) * 2011-12-21 2012-07-04 上海工程技术大学 一种wlan接入点部署方法
CN103415025A (zh) * 2013-06-13 2013-11-27 国家电网公司 基于onu-wg的无源光网络优化方法
US20150215791A1 (en) * 2014-01-29 2015-07-30 Time Warner Cable Enterprises Llc Access point management and usage in a network environment
CN106162668A (zh) * 2015-04-15 2016-11-23 富士通株式会社 确定网络参数的方法和装置
CN109743741A (zh) * 2019-03-25 2019-05-10 京东方科技集团股份有限公司 无线路由器部署方法、装置、存储介质及电子设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112929866A (zh) * 2021-01-20 2021-06-08 河北工程大学 一种自适应优化城市灾区网络覆盖的无人机部署方法
CN112929866B (zh) * 2021-01-20 2024-05-28 河北工程大学 一种自适应优化城市灾区网络覆盖的无人机部署方法
CN115967451A (zh) * 2023-03-13 2023-04-14 微网优联科技(成都)有限公司 无线路由器信号处理方法、装置及应用其的无线路由器
CN115967451B (zh) * 2023-03-13 2023-06-27 微网优联科技(成都)有限公司 无线路由器信号处理方法、装置及应用其的无线路由器

Also Published As

Publication number Publication date
CN109743741B (zh) 2021-03-02
US11405799B2 (en) 2022-08-02
CN109743741A (zh) 2019-05-10
US20210274355A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
WO2020192306A1 (zh) 无线路由器部署方法、装置、存储介质及电子设备
CN105531970B (zh) 用于在网络中部署工作负荷的方法和系统
CN109933405A (zh) 虚拟机创建方法及装置、电子设备、存储介质
CN109788489B (zh) 一种基站规划方法及装置
US9565570B2 (en) Capacity planning method and device for wireless broadband network
JP5351241B2 (ja) 反復リソース重みの更新を用いて通信システムにおいてノードにリソースを配分する装置及び方法
CN109947574B (zh) 一种基于雾网络的车辆大数据计算卸载方法
WO2020125539A1 (zh) 一种节点设备的选择方法及其相关设备
Tseng et al. Link-aware virtual machine placement for cloud services based on service-oriented architecture
Maenhaut et al. Resource allocation in the cloud: From simulation to experimental validation
WO2014101441A1 (zh) 认知协作中继转发方法及系统
WO2023035750A1 (zh) 干扰优化方法及装置、存储介质及电子设备
WO2021012795A1 (zh) 网络节点的调度方法、装置、电子设备和存储介质
CN108366133B (zh) 一种ts服务器调度方法、调度设备及存储介质
Cao et al. Mapping strategy for virtual networks in one stage
WO2020233708A1 (zh) 创建网络仿真平台的方法和网络仿真方法及相应装置
CN110139370A (zh) 信息指示的方法、通信装置和通信系统
CN115168017B (zh) 一种任务调度云平台及其任务调度方法
CN112714146A (zh) 一种资源调度方法、装置、设备及计算机可读存储介质
CN108966122A (zh) 一种用于确定无线接入点的高度信息的方法与设备
US9813922B2 (en) System and method for resource management in heterogeneous wireless networks
CN113873557A (zh) 基站的重叠覆盖率计算方法及装置、存储介质、电子设备
Osibo et al. An edge computational offloading architecture for ultra-low latency in smart mobile devices
Nguyen et al. Location-aware dynamic network provisioning
WO2024021517A1 (zh) 网络协同处理方法、系统、装置及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20778862

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20778862

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20778862

Country of ref document: EP

Kind code of ref document: A1