WO2014101441A1 - 认知协作中继转发方法及系统 - Google Patents

认知协作中继转发方法及系统 Download PDF

Info

Publication number
WO2014101441A1
WO2014101441A1 PCT/CN2013/082068 CN2013082068W WO2014101441A1 WO 2014101441 A1 WO2014101441 A1 WO 2014101441A1 CN 2013082068 W CN2013082068 W CN 2013082068W WO 2014101441 A1 WO2014101441 A1 WO 2014101441A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
cognitive
forwarding
power
node
Prior art date
Application number
PCT/CN2013/082068
Other languages
English (en)
French (fr)
Inventor
冯志勇
张平
马思思
张奇勋
贺倩
尉志青
刘建伟
王璁
刘晓敏
Original Assignee
北京邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京邮电大学 filed Critical 北京邮电大学
Publication of WO2014101441A1 publication Critical patent/WO2014101441A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/46TPC being performed in particular situations in multi hop networks, e.g. wireless relay networks

Definitions

  • the present invention relates to the field of cognitive wireless network communication technologies, and in particular, to a cognitive cooperative relay forwarding method and system. Background technique
  • the relay selection and power allocation scheme of the cognitive cooperative relay and forwarding system must be based on the basic information of the geographic location, transceiving capability and parameters, and target transmission quality indicators of some relay nodes. In this case, the status of the primary user is also an important parameter that must be grasped in real time.
  • the cognitive database is introduced, and the information collected through distributed or centralized detection channels is collected and accumulated in the cognitive database, and is continuously updated and maintained with the current network. The state is consistent and thus provided to the communication system for developing a reasonably feasible transmission scheme.
  • the prior art scheme obtains the relay node information through the cognitive database, performs distributed spectrum detection in units of relay clusters, models the spectrum detection result and the main user behavior by using the probability model, and calculates the chain according to the detection result.
  • Road The connectivity and the transmit power threshold are determined by the resource allocation decision unit and the power allocation scheme.
  • the relay selection part adopts a dynamic programming algorithm for iterative selection, and the power allocation part allocates with a certain fixed total power consumption as a constraint condition, and finally completes multi-hop transmission in a decoding and forwarding mode.
  • the assumption that the relay cluster exists in the aggregate state of the prior art scheme is difficult to satisfy in the practical application, and the concept of the relay cluster constrains the feasible set range when the scheme is optimized, so that the optimization result is not ideal.
  • the relay hop count defined by the relay cluster can obtain better results in theoretical research, but lacks flexibility in practical applications.
  • the probability-based relay selection method may cause the system state to be unstable and affect the communication quality when the primary user state switching is frequent.
  • the existing optimization scheme sets a fixed total power consumption limit for system transmission, and does not consider the problem that the current smart terminal performance is limited by the battery storage capacity.
  • the assumptions of the prior art scheme regarding the relay cluster are quite different from the actual situation.
  • the number of relay forwarding hops is determined by the trunk cluster distribution, cannot be dynamically adjusted according to communication requirements, and has no function of reducing energy consumption. Therefore, a new cognitive cooperative relay forwarding method and system is urgently needed. Summary of the invention
  • the step S2 includes:
  • each relay cluster includes an equal division point
  • the step S202 includes: for each relay node, it is assigned to a relay cluster in which the equidistant point closest to the Euclidean distance is located.
  • the step S3 includes:
  • the step S302 includes:
  • step S302e Repeat step S302oS302d until all parameters meet the preset accuracy.
  • the method further includes:
  • the present invention also provides an cognitive cooperative relay forwarding system that implements the above method
  • a cognitive cooperative relay forwarding system includes at least one cognitive terminal and a control hub interacting therewith; the control hub includes a cognitive database, a relay selection module, and a power allocation module;
  • the cognitive database receives and summarizes environmental awareness information sent by the cognitive terminal and feedback information of the relay selection module and the power allocation module;
  • the relay selection module performs relay selection based on Jason's inequality according to the information in the recognition database and sends the selection result to the power distribution module;
  • the power distribution module performs power allocation based on the convex optimization theory according to the information in the recognition database and feeds the selection result to the cognitive database;
  • the cognitive terminal is configured to acquire environmental cognitive information and report it to the cognitive database, and configure and manage the self-parameter The number and the relay selection result and the power allocation result.
  • the method further includes a verification module, configured to verify a frequency allocation result of the power distribution module:
  • the relay hop count is increased and fed back to the cognitive database, and the relay selection module And the power distribution module is reprocessed.
  • a cognitive cooperative relay forwarding method of the present invention first performs relay selection based on Jason's inequality according to the number of relay switching hops, and then combines the result of the relay selection to perform power allocation based on convex optimization theory;
  • Relay selection and power allocation in the natural state T is a minimum energy consumption cognitive cooperative relay forwarding method that satisfies a specific signal to noise ratio condition, and can realize reliable transmission of optimal power cognitive cooperative relay;
  • Time complexity is low and easy to implement.
  • FIG. 1 is a schematic diagram of a module of a cognitive cooperative relay forwarding system according to the present invention
  • FIG. 2 is a flowchart of the operation of the relay selection module in FIG. 1;
  • FIG 3 is a flow chart of the power distribution module in Figure i. detailed description
  • a cognitive cooperative relay forwarding method mainly includes the following steps:
  • the initial set number of relay transfer hops N should not be too large
  • the minimum signal-to-noise ratio required for transmission is a performance indicator for measuring transmission quality.
  • the minimum transmission power of each hop is a pure increasing function of the hop transmission distance.
  • the relay node corresponding to the minimum power transmission scheme should have the characteristics of being as evenly distributed as possible between the source node S and the destination node D, thereby obtaining a simple and practical optional forwarding hop count.
  • each trunk cluster includes an equal division point; in this embodiment, specifically: for each relay node in the system planning scope, according to the geographical location information of the relay node, calculating the The Euclidean distance of each bisector is classified into the relay cluster where the equidistant point with the Euclidean distance is the smallest, and N-1 relay clusters are obtained together;
  • the relay node closest to the aliquot included in the relay cluster is classified into the relay cluster
  • the set of forwarding nodes is represented by ⁇ ⁇ ⁇ ..., ⁇ .
  • the transmission power of the secondary user transmitter is strictly controlled, and the spectrum sharing mechanism and the amplifying and forwarding mode are adopted, and each hop user transmits.
  • the power of the machine will be subject to its own hardware conditions and the interference power of the primary user does not exceed the maximum interference power threshold, that is, for any relay node, according to its distance from the primary user receiver and its own performance, there are A maximum transmit power dish ;
  • the final power allocation scheme must achieve a minimum signal-to-noise ratio threshold with minimum total power consumption while ensuring that each hop transmit power meets its maximum transmit power constraint;
  • the model is solved by the convex optimization theory, and the optimal power allocation value of each forwarding node can be obtained. After determining the specific parameters by the dichotomy method, the optimal power allocation scheme under the current relay selection state can be spoofed, as follows:
  • the forwarding node selected in step S2 is: the maximum transmit power corresponding to each node is The minimum signal-to-noise ratio threshold to be satisfied is, and the average noise power is ⁇ ; According to the Laplace algorithm, an optimization model based on convex optimization theory is constructed:
  • the optimization model is solved according to the binary method, and the power allocation result is calculated.
  • the step S302 includes -
  • the upper limit value of the target parameter is updated to the median value
  • step S302e Repeat step S302c S302d until all parameters meet the preset accuracy.
  • the method further includes:
  • step S4 Verify the frequency allocation result in step S3:
  • step S1 Relay transfer hop count If the power of all the forwarding nodes in the frequency allocation result reaches the maximum value and the SNR threshold requirement cannot be met, it indicates that the currently set relay forwarding hop count N is too small, and a warning is output; increasing the setting in step S1 Relay transfer hop count, repeat steps S1-S3. Otherwise, it indicates that an optimal power allocation scheme that meets the communication requirements has been obtained.
  • step S4 it can be ensured that the method of the present invention can obtain a minimum number of relay adapters, which overcomes the problem that the number of relay forwarding hops in the prior art scheme is determined by the trunk cluster distribution and cannot be dynamically adjusted according to communication requirements.
  • the cognitive cooperative relay forwarding system implementing the method of the first embodiment described above, as shown in FIG. 1, includes at least three cognitive terminals and a control center interacting therewith;
  • the control center includes a cognitive database and a relay selection module And a power distribution module;
  • the relay selection module and the power distribution module generate an optimal relay forwarding scheme with a minimum number of forwarding hops according to end-to-end communication performance requirements;
  • the cognitive database is an information center of the system, and is responsible for receiving and summarizing environmental cognitive information sent by the cognitive terminal and feedback information of the relay selection module and the power distribution module; and selecting a module and power for the relay An allocation module or the like provides information required for processing;
  • the relay selection module performs relay selection based on Jason's inequality according to the information in the recognition database and feeds the selection result to the cognitive database; the workflow is specifically as shown in FIG. 2;
  • the power distribution module performs power allocation based on the convex optimization theory according to the information in the knowledge database, and sends the selection result to the power distribution module; the workflow is specifically shown in FIG. 3;
  • the cognitive terminal is responsible for acquiring environmental awareness information and reporting it to the cognitive database, and can configure and manage its own parameters and perform relay selection results and power allocation results.
  • the cognitive cooperative relay forwarding system in this embodiment further includes a verification module, configured to check a frequency allocation result of the power allocation module - if the power of all forwarding nodes in the frequency allocation result reaches a maximum value, Unable to meet the SNR threshold requirement, ⁇ increasing the number of relay transfer hops and feeding back to the cognitive database, the relay selection module and the power distribution module re-processing; thus obtaining a minimum number of relay transfer hops, overcoming the existing In the technical solution, the number of relay forwarding hops is determined by the distribution of the relay, and cannot be dynamically adjusted according to the communication needs.
  • the present invention can provide an optimal relay forwarding scheme with a minimum number of handovers and solve cognitive users on the basis of satisfying specific performance requirements based on realistic and more appropriate scenario assumptions. Reliable transmission under the condition of limited user capacity and environmental factors, and optimal power allocation to reduce terminal energy consumption and extend the function of mobile terminal battery.
  • the optimal cognitive camping method and system with minimum hop count proposed by the present invention have been verified by network simulation for various scenarios, and the scheme can adapt to various network distributions. According to the transmission requirements, a stable and reliable relay forwarding scheme is generated, which proves the effectiveness and reliability of the system and reflects the high efficiency of the methods contained in the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及认知无线网络通信技术领域,具体涉及一种认知协作中继转发方法及系统。该认知协作中继转发方法包括歩骤:S1.设定中继转接跳数;S2.根据所述中继转接跳数,进行基于杰森不等式的中继选择;S3.结合所述中继选择结果,进行基于凸优化理论的功率分配。本发明能够在自然状态下进行中继选择以及功率分配,是一种满足特定信噪比条件的最小能耗认知协作中继转发方法,可以实现最优功率认知协作中继的可靠传输;同时本发明时间复杂度较低,便于实施。

Description

认知协作中继转发方法及系统
技术领域
本发明涉及认知无线网络通信技术领域, 具体涉及一种认知协作中继转发方法及系 统。 背景技术
随着无线通信系统的发展, 尤其是安卓手机、 平板电脑等的智能终端的大范围普及, 用户对网络质量的高速化、应用业务的多元化等需求进入了一个急速增长阶段,对无线通 信系统的频谱利 和能耗提出了新的要求,这样就使得频谱资源稀缺情况日益显著,可用 频谱资源分配殆尽, 同时部分已授权频谱的使用效率低下; 能耗问题现在已经成为制约移 动终端便携性和流畅性的瓶颈^题,如何以更低的能耗实现一定质量要求的可靠通信也是 当前通信系统面临的主要 题之一。而导致这些问题的根本原因是现有的频谱固定分配方 案,但这一状况是难以在短时间内改变的, 因此能够实现机会式动态利用空闲频谱资源的 认知技术成为解决频谱短缺问题的有效手段。
将认知技术引入无线通信无疑将是无线通信系统的一项重大变革,基于软件无线电技 术的具有认知功能的智能通信设备使得系统具备了自主学习夕卜部环境,并根据感知到的环 境变化进行自身的重配置的能力, 而使得基于动态频谱分配的灵活的频谱接入机制成为 可能, 并可根据具体场景和外部环境赋予终端更加优化的运行方式。但是, 认知技术需要 面对复杂多变的外部环境进行自适应和自配置,如何以可接受的损耗实现满足一定质量要 求的自身可靠通信成为认知网络面临的主要问题,协作中继技术通过多个节点的坊作获得 性能增益, 很好的解决了能力受限的认知节点如何进行有保障的通信的问题。
认知协作中继转发系统的中继选择和功率分配方案,必须建立在掌握了一些中继节点 所处地理位置、收发能力及参数、 目标传输质量指标等基本信息的基础上,在认知网络中, 主用户状态也是必须实时掌握的重要参量》 由此, 引入认知数据库, 将通过分布式或者集 中式检测等渠道收集到的信息整理汇总在认知数据库中,并不断更新保持与当前网络状态 吻合, 从而提供给通信系统用于制定合理可行的传输方案。
现有技术方案在通过认知数据库获得中继节点信息的基础上, 以中继簇为单位,进行 分布式频谱检测, 以概率模型建模频谱检测结果及主用户行为,并依据检测结果计算链路 连通性和发送功率门限, 通过资源分配决策单元确定中继选择以及功率分配方案。 其中, 中继选择部分采用动态规划算法进行迭代选择,功率分配部分以某一固定总功耗为约束条 件进行分配, 最终以解码转发模式完成多跳传输。
然而现有技术方案对中继簇以聚合状态存在的假设在现实应用中很难满足,且中继簇 的概念约束了方案优化时的可行集合范围, 使优化结果不够理想。 另夕卜, 由中继簇限定中 继转发跳数在理论研究时可以得到比较好的成果但在实际应用中欠缺灵活性。基于概率的 中继选择方法在主用户状态切换较为频繁时可能导致系统状态不稳定,影响通信质量。另 夕卜,现有优化方案为系统传输设定了一个固定总功耗上限,未考虑当前智能终端性能受电 池储电能力制约的问题。综上所述,现有技术方案关于中继簇的假设与现实情况有较大差 异,中继转发跳数由中继簇分布决定,无法根据通信需要动态调整,且无降低能耗的功能。 因此, 一种新的认知协作中继转发方法及系统是亟待提供的。 发明内容
(一) 要解决的技术问题
本发明的目的在于提供一种能够在自然状态下进行中继选择以及功率分配,并满足特 定信噪比条件的最小能耗认知协作中继转发方法及系统,用于实现最优功率认知协作中继 的可靠传输。
(二) 技术方案 ·种认知协作中继转发方法, 包括步骤-
51. 设定中继转接跳数;
52. 根据所述中继转接跳数, 进行基于杰森不等式的中继选择;
53. 结合所述中继选择结果, 进行基于凸优化理论的功率分配。
优选的, 所述步骤 S2包括:
S201. 等分源节点与目标节点之间的直连线路-,等分份数等于步骤 S1中设定的中继转 接跳数-
5202, 划分中继簇, 每个中继簇包含一个等分点;
5203, 检验是否存在空中继簇;
是, 劑对于每个空中继簇, 将距离该中继簇包含的等分点最近的中继节点划入其中; 否, 剣跳转至步骤 S204;
5204, 在每个中继籙中选择距离其包含的等分点最近的中继节点为转发节点。 优选的, 所述步骤 S202包括- 对于每个中继节点, 将其划入与其欧式距离最近的等分点所在中继簇。
优选的, 所述步骤 S3包括:
5301. 根据拉普拉斯算法, 构建基于凸优化理论的优化模型- ∑ Pan - A(rSD - ) +∑ A (Ρα,, - Ρ^χ ) + τ(Υ Ρα„ - ΝΡ)';
其中 ¾数 、 μ, ϋ ^ Ο,ζΙ, Ν -Υ) . r分别对 ll¾f噪比误差、 源节点及转发节点发射 功率误差、 中继转发跳数; P表示功率分配值, ^。表示信噪比, 表示最小信噪比阈值, P x表示转发节点 n的最大发射功率;
5302, 以总功耗最小为目标, 根据二分法求解所述优化模型, 计算功率分配结果。 优选的, 所述步骤 S302包括:
S302a。 设定参数 、 u, (/ = 0,2,.,.,iV - l) , τ的上下限值;
S302b. 依次以每个参数为目标参数, 中值取其上下限值的均值, 其余参数取下限值;
S302c, 根据拉格朗日公式, †算关于每个转发节点功率分配及总功率, 进而计算函 数关于所述目标参数的偏导数;
S302d. 若所述偏导数不小于零, 则将目标参数的下限值更新为所述中值; 若所述偏导数小干零, 则将目标参数的上限值更新为所述中值;
S302e. 重复步骤 S302oS302d, 直至所有参数满足预设精度。
优选的, 所述歩骤 S3之后还包括歩骤:
S4. 检验所述歩骤 S3中频率分配结果- 若频率分配结果中所有转发节点的功率均到达最大值, 仍无法满足信噪比门限要求, 则增大所述中继转接跳数, 重复步骤 S1- S3。
本发明还提供了一种实现上述方法的认知协作中继转发系统;
一种认知协作中继转发系统,包括至少 个认知终端以及与其交互的控制中枢;所述 控制中枢包括认知数据库、 中继选择模块以及功率分配模块;
所述认知数据库,接收并汇总所述认知终端发送的环境认知信息以及所述中继选择模 块和功率分配模块的反馈信息;
所述中继选择模块,根据所述认识数据库中信息,进行基于杰森不等式的中继选择并 将选择结果发送至所述功率分配模块;
所述功率分配模块,根据所述认识数据库中信息,进行基于凸优化理论的功率分配并 将选择结果反馈至所述认知数据库;
所述认知终端,用于获取环境认知信息并上报至所述认知数据库,配置和管理自身参 数以及抉行中继选择结果以及功率分配结果。
优选的, 还包括检验模块, 用于检验所述功率分配模块的频率分配结果:
若频率分配结果中所有转发节点的功率均到达最大值, 仍无法满足信噪比门限要求, 则增大所述中继转接跳数并反馈至所述认知数据库,所述中继选择模块以及功率分配模块 重新进行处理。
(三) 有益效果
本发明的一种认知协作中继转发方法,首先根据中继转接跳数进行基于杰森不等式的 中继选择, 然后结合中继选择结果, 进行基于凸优化理论的功率分配; 本发明能够在自然 状态 T进行中继选择以及功率分配,是一种满足特定信噪比条件的最小能耗认知协作中继 转发方法, 可以实现最优功率认知协作中继的可靠传输; 同时本发明时间复杂度较低, 便 于实施。 附图说明
图 1是本发明的一种认知协作中继转发系统模块示意图;
图 2是图 1中中继选择模块工作流程图;
图 3是图 i中功率分配模块工作流程图。 具体实施方式
T面结合 图和实施例,对发明的具体实施方式傲进一步描述。以下实施例仅用于说 明本发明, 但不 ffi来限制本发明的范围。
实施例一
一种认知协作中继转发方法, 主要包括以 T步骤:
SL 设定中继转接跳数 N: 初始设定的中继转接跳数 N不宜过大;
S2. 以传输所需达到的最小信噪比为衡量传输质量的性能指标,在最小端到端信噪比 阈值的约束下, 每一跳的最小传输功耗是本跳传输距离的纯增函数, 則根据杰森不等式, 最小功耗传输方案对应的中继节点应具有在源节点 S与目的节点 D之间尽量均匀分布的特 性,由此可以得到一种简便实用的任选转发跳数中继选择方法:根据所述中继转接跳数 N, 进行基于杰森不等式的中继选择; 该歩骤主要包括-
S201. 等分源节点 S与目标节点 I)之间的直连线路, 等分份数等于步骤 S1中设定的中 继转接跳数 N, 则可以得到除源节点 S和目标节点 D之外的 N-1个等分点的地理坐标; 5202. 划分中继簇, 每个中继簇包含一个等分点; 本实施例中具体为: 对于系统规划 范围内的每个中继节点,依据该中继节点的地理位置信息,计算其到每个等分点的欧氏距 离, 并将其归入与其欧式距离最小的等分点所在的中继簇, 共可得到 N-1个中继簇;
5203. 检验是否存在空中继簇:
是, 则对于每个不含有任何中继节点的空中继簇,将距离该中继簇包含的等分点最近 的中继节点划入该中继簇中;
否, 即所有中继簇都至少含有一个中继节点, 则跳转至步骤 S204;
5204. 在每个中继簇中选择距离其包含的等分点最近的中继节点为系统传输所要调 用的转发节点, 转发节点的集合用 { ^ ^...,^^表示。
S3. 考虑到次 ^户通信不能对主 ^户产生超过一定阈值的千扰,次用户发射机的发射 功率是受到严格的控制的,采用频谱共享机制及放大转发模式,每一跳次用户发射机的功 率都将受到其本身硬件条件和对主用户的干扰功率不超过最大干扰功率阈值的双重约束, 即对任意中继节点,依据其与主用户接收机的距离和其自身性能,都存在一个最大发射功 率 皿 ; 最终的功率分配方案必须在保证每一跳发射功率满足其最大发射功率约束的条 件下, 以最小总功耗实现满足最小信噪比阈值的传输; 对上述问题建立最优化模型, 并采 用凸优化理论进行求解,可得到每个转发节点的最优功率分配值,采用二分法确定具体参 数后可以诈为当前中继选择状态下的最优功率分配方案, 具体如下:
S301 , 歩骤 S2中选择的转发节点为 , 每个节点对应的最大发射功率为
Figure imgf000007_0001
, 所需满足的最小信噪比阈值为 , 噪声平均功率为^ ; 根据拉普 拉斯算法, 构建基于凸优化理论的优化模型:
L -∑PatI - MrSD -PD + ^Pa^ NP) ;
其中 r¾¾ 、 M - 0,C-V - 1) , f 分别对 ¾噪比误差、 源节点及转发 点发射 功率误差、 中继转发跳数; P表示功率分配值, 表示信噪比, /^表示最小信噪比阈值, 表示转发 点 /¾的最大发射功率;
S302. 以总功耗最小为目标, 根据二分法求解所述优化模型, 计算功率分配结果。 优选的, 所述步骤 S302包括-
S302a. 依据数学含义, 所有拉普拉斯算子均为非负有理数, 旦在达到最优解^, 对 应误差项不为零的拉普拉斯算子必须为零;根据物理含义,信嗓比误差和中继转发跳数误 差必须为零, 因此结合试验数据设定参数 、 //( (^ 0,2„.., ,¥ -- 1) , r的上下限值, 例如, 可取 Λ.和 τ为 [U00] , 取 (i - 0,2,..., /V— 1)为 [0,100];
S302b. 依次以每个参数为目标参数, 中值取其上下限值的均值, 其余参数取下限值, 计算每个转发节点的功率分配及总功率;
S302c, 根据拉格朗日公式, †算关于每个转发节点功率分配及总功率, 进而计算函 数关于所述目标参数的偏导数;
S302d. 判断所述偏导数的正负特性- 若所述偏导数不小于零, 则将目标参数的下限值更新为所述中值;
若所述偏导数小于零, 则将目标参数的上限值更新为所述中值;
S302e. 重复歩骤 S302c S302d, 直至所有参数满足預设精度。
进一步的, 在所述歩骤 S3之后还包括歩骤:
S4。 检验所述步骤 S3中频率分配结果:
若频率分配结果中所有转发节点的功率均到达最大值, 无法满足信噪比门限要求, 则说明当前设定的中继转发跳数 N过小, 输出警告; 增大步骤 S 1中设定的中继转接跳数, 重复步骤 S1- S3。 否则, 说明已经得到满足通信要求的最优功率分配方案。
结合步骤 S4, 可以保证本发明的方法可以得到最小的中继转接 ^数, 克服了现有技 术方案中中继转发跳数由中继簇分布决定, 无法根据通信需要动态调整的问题。
实施例二
实现上述实施倒一中方法的认知协作中继转发系统, 如图 1中所示, 包括至少三个认 知终端以及与其交互的控制中枢;所述控制中枢包括认知数据库、中继选择模块以及功率 分配模块;中继选择模块和功率分配模块根据端到端通信性能要求生成具有最小转发跳数 的最优中继转发方案;
所述认知数据库,是系统的信息中枢,负责接收并汇总所述认知终端发送的环境认知 信息以及所述中继选择模块和功率分配模块的反馈信息;并为中继选择模块和功率分配模 块等提供处理所需的信息;
所述中继选择模块,根据所述认识数据库中信息,进行基于杰森不等式的中继选择并 将选择结果反馈至所述认知数据库; 其工作流程具体如图 2中所示;
所述功率分配模块,根据所述认识数据库中信息,进行基于凸优化理论的功率分配并 将选择结果发送至所述功率分配模块; 其工作流程具体如图 3中所示;
所述认知终端,负责获取环境认知信息并上报至所述认知数据库, 同时可以配置和管 理自身参数以及执行中继选择结果以及功率分配结果。
进一歩的,本实施例中的认知协作中继转发系统还包括检验模块,用于检验所述功率 分配模块的频率分配结果- 若频率分配结果中所有转发节点的功率均到达最大值, 仍无法满足信噪比门限要求, 剣增大所述中继转接跳数并反馈至所述认知数据库,所述中继选择模块以及功率分配模块 重新进行处理;这样可以得到最小的中继转接跳数,克服了现有技术方案中中继转发跳数 由中继籙分布决定, 无法根据通信需要动态调整的问题。
与现有的技术方案相比,本发明能在满足特定性能要求的基础上,基于与实际更为贴 切的场景假设,提供具有最小转接数目的最优中继转发方案, 同时解决认知用户受主用户 及环境因素制约能力受限条件下的可靠传输,并实现最优功率分配达到降低终端能耗,延 长移动终端电池使用 间的功能。同时,本发明提出的具有最小跳数的最优认知坊作中继 转发方法及系统, 己经通过针对多种场景进行的网络仿真模拟,证明本方案可以适应多种 网络分布情况, -可以依据传输需求生成稳定可靠的中继转发方案,证明了系统的有效性和 可靠性, 并体现了系统所含方法的高效性。
以上实施方式仅 ^于说明本发明,而并非对本发明的限制,有关技术领域的普通技术 人员, 在不脱离本发明的精神和范围的情况下, 还可以做出各种变化和变型, 因此所有等 同的技术方案也属于本发明的保护范畴。

Claims

权利要求书
1、 一种认知协作中继转发方法, 其特征在于, 包括步骤:
S1 . 设定中继转接跳数;
S2. 根据所述中继转接跳数, 进行基干杰森不等式的中继选择;
S3. 结合所述中继选择结果, 进行基于凸优化理论的功率分配。
2、 根据权利要求 I所述的认知协作中继转发方法, 其特征在于, 所述步骤 S2包括: S201. 等分源节点与目标节点之间的直连线路,等分份数等于歩骤 S 中设定的中继转 接跳数;
S202. 划分中继簇, 每个中继簇包含一个等分点;
5203, 检验是否存在空中继簇:
是, 剣对于每个空中继簇, 将距离该中继簇包含的等分点最近的中继节点划入其中; 否, 劑跳转至步骤 S204-
5204. 在每个中继簇中选择距离其包含的等分点最近的中继节点为转发节点。
3、 根据权利要求 2所述的认知协作中继转发方法, 其特征在干, 所述步骤 S202包括: 对于每个中继节点, 将其划入与其欧式距离最近的等分点所在中继簇。
4、根据权利要求 1-3任意一项所述的认知协作中继转发方法, 其特征在于, 所述步骤 S3包括:
5301. 根据拉普拉斯算法, 构建基于凸优化理论的优化模型- Ζ =Σ ¾ ¾)+∑ (Pan Ρη ΑΧ ) + ΤΡα, " ΝΡ '^
其中 Γ 数 、 Ο,ϋ,Ν— ϊ) ·Γ分别对 St噪比误差、 源节点及转发节点发射 功率误差、 中继转发眺数: P表示功率分配值, 表示信噪比, 表示最小信噪比阈值, P x表示转发节点 n的最大发射功率;
5302, 以总功耗最小为目标, 根据二分法求解所述优化模型, †算功率分配结果。 5、 根据权利要求 4所述的认知协作中继转发方法, 其特征在于, 所述歩骤 S302包括:
S3()2a, 设定参数 、 ^ (/ - iX2,..., N--l) , τ的上下限值;
S302b. 依次以每个参数为目标参数, 中值取其上下限值的均值, 其余参数取下限值; S302c. 根据拉格朗日公式, if算关于每个转发节点功率分配及总功率, 进而计算函 数关于所述目标参数的偏导数;
S302d. 若所述偏导数不小于零, 则将目标参数的下限值更新为所述中值; 若所述偏导数小于零, 则将目标参数的上限值更新为所述中值; S302e. 重复步骤 S302c- S302d, 直至所有参数满足预设精度。
6、 根据权利要求 4所述的认知协诈中继转发方法, 其特征在于, 所述步骤 S3之后还 包括步骤:
S4. 检验所述歩骤 S3中频率分配结果- 若频率分配结果中所有转发节点的功率均到达最大值, 仍无法满足信噪比门限要求, 则增大所述中继转接跳数, 重复歩骤 S1- S3。
7、 根据权利要求 1-3或 5任意一项所述的认知协诈中继转发方法, 其特征在于, 所述 步骤 S3之后还包括步骤-
S4。 检验所述步骤 S3中频率分配结果:
若频率分配结果中所有转发节点的功率均到达最大值, 无法满足信噪比门限要求, 则增大所述中继转接跳数, 重复步骤 Si-S3。
8、 一种实现权利要求 1-7任意一项所述方法的认知协作中继转发系统, 其特征在于, 包括至少 Ξ:个认知终端以及与其交互的控制中枢:所述控制中枢包括认知数据库、中继选 择模块以及功率分配模块;
所述认知数据库,接收并汇总所述认知终端发送的环境认知信息以及所述中继选择模 块和功率分配模块的反馈信息;
所述中继选择模块,根据所述认识数据库中信息,进行基于杰森不等式的中继选择并 将选择结果发送至所述功率分配模块;
所述功率分配模块,根据所述认识数据库中信息,进行基于凸优化理论的功率分配并 将选择结果反馈至所述认知数据库
所述认知终端,用于获取环境认知信息并上报至所述认知数据库,配置和管理自身参 数以及执行中继选择结果以及功率分配结果。
9、根据权利要求 8所述的认知协作中继转发系统, 其特征在于, 还包括检验模块, 用 于检验所述功率分配模块的频率分配结果:
若频率分配结果中所有转发节点的功率均到达最大值, 仍无法满足信噪比门限要求, 则增大所述中继转接跳数并反馈至所述认知数据库,所述中继选择模块以及功率分配模块 重新进行处理。
PCT/CN2013/082068 2012-12-28 2013-08-22 认知协作中继转发方法及系统 WO2014101441A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210599107.3A CN103139864B (zh) 2012-12-28 2012-12-28 认知协作中继转发方法及系统
CN201210599107.3 2012-12-28

Publications (1)

Publication Number Publication Date
WO2014101441A1 true WO2014101441A1 (zh) 2014-07-03

Family

ID=48499042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/082068 WO2014101441A1 (zh) 2012-12-28 2013-08-22 认知协作中继转发方法及系统

Country Status (2)

Country Link
CN (1) CN103139864B (zh)
WO (1) WO2014101441A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105101332A (zh) * 2015-07-13 2015-11-25 东南大学 一种中继蜂窝网络中高效地选择用户通信基站的方法
CN105682192A (zh) * 2016-03-17 2016-06-15 东南大学 一种中继蜂窝网络用户选择基站的高效能方法
CN106454849A (zh) * 2016-10-08 2017-02-22 重庆大学 一种合作认知无线网络高能效资源分配方法
WO2018119673A1 (zh) * 2016-12-27 2018-07-05 深圳先进技术研究院 中继携能通信系统及其传输速率优化方法和装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103139864B (zh) * 2012-12-28 2015-10-28 北京邮电大学 认知协作中继转发方法及系统
CN105636188B (zh) * 2015-12-29 2019-01-01 南京邮电大学 认知解码转发中继系统的功率分配方法
CN107248908B (zh) * 2017-05-04 2020-05-15 桂林电子科技大学 一种基于中继选择的认知中继网络中混合双工传输方法
US10491301B2 (en) 2017-10-27 2019-11-26 King Fahd University Of Petroleum And Minerals Multi-user mixed multi-hop relay network
CN109362090B (zh) * 2018-11-27 2021-11-16 南京信息工程大学 认知中继网络能量效率最大化的功率分配优化方法
CN110493825B (zh) * 2019-07-18 2022-06-14 广东工业大学 一种边缘计算架构下多任务的负载均衡方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090245159A1 (en) * 2008-03-31 2009-10-01 Ozgur Oyman System and method for node-clustering and multi-hop routing in wideband wireless ad-hoc networks
CN102223644A (zh) * 2011-05-05 2011-10-19 北京邮电大学 联合中继选择与功率分配的系统及方法
CN102316570A (zh) * 2010-06-30 2012-01-11 华为技术有限公司 中继系统中信号的发送方法、装置和系统
CN103139864A (zh) * 2012-12-28 2013-06-05 北京邮电大学 认知协作中继转发方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101547826B1 (ko) * 2007-11-21 2015-08-28 삼성전자주식회사 중계 방식의 무선통신 시스템에서 중계국 선택 및 송신전력 결정 장치 및 방법
CN101848524B (zh) * 2010-03-23 2012-11-21 北京邮电大学 无线多中继协作传输网络的中继选择和功率分配方法
CN102238685B (zh) * 2010-05-06 2014-08-20 华为技术有限公司 无线中继网络的中继节点选择与功率分配的方法和设备
CN101977391B (zh) * 2010-10-15 2013-04-24 北京邮电大学 认知无线网中多终端协作通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090245159A1 (en) * 2008-03-31 2009-10-01 Ozgur Oyman System and method for node-clustering and multi-hop routing in wideband wireless ad-hoc networks
CN102316570A (zh) * 2010-06-30 2012-01-11 华为技术有限公司 中继系统中信号的发送方法、装置和系统
CN102223644A (zh) * 2011-05-05 2011-10-19 北京邮电大学 联合中继选择与功率分配的系统及方法
CN103139864A (zh) * 2012-12-28 2013-06-05 北京邮电大学 认知协作中继转发方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, YINGJIE;: "Investigation of Network Control and Radio Resource Management in Metropolitan Area Wireless Mesh Networks", ELECTRONIC TECHNOLOGY & INFORMATION SCIENCE , CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 15 December 2007 (2007-12-15), pages 1136 - 1146 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105101332A (zh) * 2015-07-13 2015-11-25 东南大学 一种中继蜂窝网络中高效地选择用户通信基站的方法
CN105682192A (zh) * 2016-03-17 2016-06-15 东南大学 一种中继蜂窝网络用户选择基站的高效能方法
CN106454849A (zh) * 2016-10-08 2017-02-22 重庆大学 一种合作认知无线网络高能效资源分配方法
WO2018119673A1 (zh) * 2016-12-27 2018-07-05 深圳先进技术研究院 中继携能通信系统及其传输速率优化方法和装置

Also Published As

Publication number Publication date
CN103139864B (zh) 2015-10-28
CN103139864A (zh) 2013-06-05

Similar Documents

Publication Publication Date Title
WO2014101441A1 (zh) 认知协作中继转发方法及系统
Ansere et al. A reliable energy efficient dynamic spectrum sensing for cognitive radio IoT networks
Liu et al. Resource allocation in wireless powered IoT networks
CN103118439B (zh) 基于传感网节点通用中间件的数据融合方法
Al-Turjman et al. Energy aware resource allocation in multi-hop multimedia routing via the smart edge device
CN102918908A (zh) 用于通过支持若干技术的设备使用未使用tv频谱的方法和装置
Wen et al. Energy-efficient and delay-aware distributed routing with cooperative transmission for Internet of Things
Liu et al. Energy-efficient capacity optimization in wireless networks
CN112187859A (zh) 物联网业务与边缘网络能力动态映射的方法及电子设备
Tsoumanis et al. Energy-efficient sink placement in wireless sensor networks
Biswas et al. Sum throughput maximization in a cognitive multiple access channel with cooperative spectrum sensing and energy harvesting
Leng et al. Age of information for wireless energy harvesting secondary users in cognitive radio networks
CN112737939A (zh) 基于物联网协作通信的网络自愈方法及网络架构
Iqbal et al. GWINs: Group-based medium access for large-scale wireless powered IoT networks
He et al. A novel distributed resource allocation scheme for wireless-powered cognitive radio Internet of Things networks
Santos et al. CGR: Centrality-based green routing for Low-power and Lossy Networks
Haldorai et al. Energy Efficient Network Selection for Cognitive Spectrum Handovers
Bozkaya et al. BS-on-air: Optimum UAV localization for resilient ultra dense networks
CN111010419A (zh) 泛在电场数据采集系统与方法
Wang et al. Joint optimization for traffic-offloading and resource-allocation over RF-powered backscatter mobile wireless networks
Patil et al. Energy efficient aggregation with divergent sink placement for wireless sensor networks
Li et al. Promoting energy efficiency and proportional fairness in densely deployed backscatter-aided networks
US9722725B2 (en) System and method for resource management in heterogeneous wireless networks
CN111225363B (zh) 基于非完美csi分布式d2d系统功率分配方法和装置
Zhang et al. Cooperation for optimal demand response in cognitive radio enabled smart grid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12-11-2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13869630

Country of ref document: EP

Kind code of ref document: A1