WO2020191937A1 - 用于机械结构件检测的无人机 - Google Patents

用于机械结构件检测的无人机 Download PDF

Info

Publication number
WO2020191937A1
WO2020191937A1 PCT/CN2019/093906 CN2019093906W WO2020191937A1 WO 2020191937 A1 WO2020191937 A1 WO 2020191937A1 CN 2019093906 W CN2019093906 W CN 2019093906W WO 2020191937 A1 WO2020191937 A1 WO 2020191937A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
mechanical structure
controller
detection device
alarm
Prior art date
Application number
PCT/CN2019/093906
Other languages
English (en)
French (fr)
Inventor
谷云辉
张志�
陈平
Original Assignee
三一汽车制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三一汽车制造有限公司 filed Critical 三一汽车制造有限公司
Publication of WO2020191937A1 publication Critical patent/WO2020191937A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/02Arrangements or adaptations of signal or lighting devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports

Definitions

  • This application relates to the technical field of fault detection, and in particular, to an unmanned aerial vehicle used for the detection of mechanical structural parts.
  • the drone 100' is provided with a rotor 14', a camera 16' and a contact detection device on the frame 12'.
  • the contact detection equipment is an ultrasonic flaw detector and an ultrasonic rebound tester. , Rebar locator or rebar corrosion meter, realize contact detection.
  • it is mainly for construction engineering inspections, which cannot meet the requirements of mechanical structural parts, especially paint covering parts, and can only achieve contact detection in horizontal and vertical states.
  • the detection range is limited and the use conditions are relatively harsh. Realize the detection during the movement, even more unable to realize the automatic alarm.
  • This application aims to solve at least one of the technical problems existing in the prior art.
  • this application proposes an unmanned aerial vehicle for mechanical structure inspection.
  • This application proposes an unmanned aerial vehicle for detecting mechanical structural parts, including: a frame; a rotor rotatably arranged on the frame; a first detection device, arranged on the frame, for detecting machinery within a predetermined range The structural defect of the structural component, and the first detection data is fed back; the second detection device, the second detection device includes a movable detection arm and a detection element arranged at the end of the detection arm, the detection element is used to detect the mechanical structure in the contact state The structural defect of, and feedback the second detection data; the alarm device, the controller is provided in the control device, and the controller is connected with the first detection device and the second detection device for obtaining the first detection data and the second detection data, And send out the first detection data and the second detection data; and/or analyze the first detection data and the second detection data, and control an alarm according to the analysis result.
  • the UAV proposed in this application is used for the detection of mechanical structural parts.
  • Rotatable rotors are arranged on the frame to ensure the smooth flight of the UAV;
  • the first detection device, the second detection device and the control device are arranged on the frame to work with each other, and the first detection device and the second detection device are mutually Cooperate to realize the contact detection and non-contact detection of the drone;
  • the controller performs analysis and alarm processing or sends out detection data based on the first detection data and the second detection data to ensure construction safety.
  • the unmanned aerial vehicle proposed in this application can detect the structural defects of the mechanical structural parts of the pump truck. It has both contact and non-contact detection methods. It has a wide detection range and high detection accuracy. It can realize automatic alarms and ensure construction safety .
  • the controller controls the first detection device to detect the structural defects of the mechanical structure within a predetermined range, so as to realize the non-contact detection of the pump truck; the controller controls the movement of the detection arm, and drives the detection element at the end of the detection arm and The mechanical structure is in contact, and the detection element detects the mechanical structure to realize the contact detection of the pump truck.
  • the controller obtains the first inspection data and the second inspection data
  • unmanned aerial vehicle used for mechanical structure inspection in this application, it may also have the following additional technical features:
  • the detection arm includes: a base rotatably arranged on the frame; a folding arm rotatably connected with the base; a telescopic arm, one end of the telescopic arm is connected with the folding arm, The other end is provided with a detection element.
  • the frame is provided with a base that can rotate 360° in the horizontal direction, and the base is provided with a folding arm that can rotate 180° in the vertical direction.
  • the folding arm and the base cooperate with each other.
  • the detection element can be rotated at any angle within the space range; the detection element is connected with the folding arm through a telescopic arm, and the telescopic arm can meet the needs of the detection element for the working distance.
  • the telescopic arm cooperates with the folding arm and the base to realize the detection of mechanical structural parts at any position in the space, and improve the detection accuracy and detection range.
  • detection can be performed at any angle within the horizontal and vertical 270° spatial range, and multiple detection postures can be completed.
  • the detection element is an ultrasonic detection element, which is connected to the controller; the mechanical structure is in a static state, and the controller controls the detection arm to drive the ultrasonic detection element so that the ultrasonic detection element is connected to the The mechanical structural parts are in contact, and the structural defects of the mechanical structural parts are detected.
  • the detection element is an ultrasonic detection element.
  • the ultrasonic detection element is arranged at the end of the telescopic arm and connected to the controller.
  • the controller controls the ultrasonic detection element to detect internal structural defects and surface structural defects of the mechanical structure.
  • the rotor works and the drone is in a hovering state.
  • the controller controls the rotation of the base and the folding arm, the ultrasonic detection element is aligned with the mechanical structure to be tested, and the controller controls the expansion of the telescopic arm in the contracted state, so that the ultrasonic detection element contacts the mechanical structure, and the ultrasonic detection element is opposite to the mechanical structure. Perform detection and feed back the first detection data.
  • the first detection device includes a camera device connected to the controller; the controller controls the camera device to detect surface structural defects of the mechanical structure.
  • the first detection device includes a camera device connected to the controller.
  • the controller controls the camera device to detect the surface structure defects of the mechanical structure, and determine whether the mechanical structure has surface structure defects. Routine inspection of parts.
  • the camera device detects whether there are cracks in the boom weld of the pump truck. Surface structure defects, and whether there is deformation of the boom of the pump truck, etc.
  • the first detection device includes an X-ray detection device, which is connected to the controller; the mechanical structure is in a static state, and the controller controls the X-ray detection device to interact with the mechanical structure. Internal structural defects are detected.
  • the first detection device includes an X-ray detection device connected to the controller.
  • the controller controls the X-ray inspection device to detect the internal structural defects of the mechanical structural parts, and judge whether the mechanical structural parts have internal structural defects, which is a regular deep inspection.
  • the X-ray inspection device performs in-depth inspections on the pump truck boom's connecting rods, shafts, boom cylinder connections, outriggers and other parts to detect the above structure Whether there are internal structural defects, and accurately detect the shape, size and location of the defects.
  • the first detection device includes an infrared detection device and an ultrasonic infrared thermal imaging detection device, and the infrared detection device and the ultrasonic infrared thermal imaging detection device are connected to the controller; when the mechanical structure is in motion At the same time, the controller controls the infrared detection device and the ultrasonic infrared thermal imaging detection device to detect the internal structural defects and external structural defects of the mechanical structure.
  • the first detection device includes an infrared detection device and an ultrasonic infrared thermal imaging detection device connected to the controller.
  • the controller controls the infrared detection device and the ultrasonic infrared thermal imaging detection device to detect the internal structural defects and external structural defects of the mechanical structural parts, and judge whether the mechanical structural parts have internal structural defects or external structural defects.
  • the infrared detection device and the ultrasonic infrared thermal imaging detection device realize the dynamic detection of the mechanical structure when the mechanical structure is in a moving state.
  • the control device includes: a positioning module, which is arranged on the frame and the mechanical structure, and is connected to the controller to obtain the spatial position and mechanical position of the drone detected by the mechanical structure.
  • the spatial position of the structure; the controller is also used to control the operation of the rotor according to the spatial position of the drone detected by the mechanical structure and the spatial position of the mechanical structure.
  • a positioning module is provided on the frame and the mechanical structure.
  • the positioning module can obtain the spatial position of the drone and mechanical structural parts in real time; the controller is connected with the positioning module, and the controller is based on the spatial position of the drone And the spatial position of the mechanical structural parts control the drone flight to ensure that the drone can automatically fly around several parts according to the determined route, and dynamically detect the mechanical structural parts to realize the tracking detection of the drone.
  • the positioning module is a GPS (Global Positioning System) positioning module.
  • control device further includes: an avoidance module, arranged on the frame, connected to the controller, and used to detect whether there is an obstacle in the traveling direction of the drone detected by the mechanical structure; The device is also used to control the operation of the rotor based on the detection result of the avoidance module.
  • an avoidance module is installed on the rack, and the avoidance module can detect the traveling direction of the drone and detect whether there are obstacles in the traveling direction of the drone; the controller is connected with the avoidance module, and the controller can Control the rotor work according to the detection result of the avoidance module to make the UAV avoid obstacles and ensure the smooth flight of the UAV.
  • the UAV has an automatic tracking capability and can realize dynamic detection.
  • control device further includes: an alarm module connected to the controller, the controller The first detection data and the second detection data are analyzed, and the alarm module alarms according to the analysis result.
  • the controller after the controller obtains the first detection data and the second detection data, it analyzes the first detection data and the second detection data to obtain the analysis result, and the alarm module gives an alarm according to the analysis result to prompt The staff conducts maintenance.
  • the number of alarm modules is multiple, and the multiple alarm modules correspond to multiple analysis results, and based on different analysis results, different alarm modules perform alarms; or the number of alarm modules is One, there are multiple alarm signals in the alarm module, and multiple alarm signals correspond to multiple analysis results. Based on different analysis results, the alarm module sends out different alarm signals.
  • each alarm module can send out different alarm signals; or there are different alarm signals in one alarm module.
  • the alarm module sends out different alarm signals to directly classify the defects when detecting defects, which is convenient for subsequent operations.
  • Figure 1 is a schematic diagram of the structure of a drone in the related art.
  • Figure 2 is a schematic structural diagram of an unmanned aerial vehicle according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of the drone of the embodiment shown in FIG. 2 from another perspective;
  • Figure 4 is a top view of the drone of the embodiment shown in Figure 2;
  • Fig. 5 is a partial enlarged view of the UAV of the embodiment shown in Fig. 2 at A;
  • FIG. 6 is a schematic structural diagram of a second detection device in the unmanned aerial vehicle of the embodiment shown in FIG. 2;
  • FIG. 7 is a schematic structural diagram of a second detection device in the unmanned aerial vehicle of the embodiment shown in FIG. 2;
  • Fig. 8 is a usage scene diagram of the drone of the embodiment shown in Fig. 2.
  • the following describes the unmanned aerial vehicle 100 for detecting mechanical structures according to some embodiments of the present application with reference to FIGS. 2 to 8.
  • the present application proposes an unmanned aerial vehicle 100 for detecting mechanical structural components, as shown in FIGS. 2 to 5, including: a frame 12; a rotor 14 rotatably arranged on the frame 12; a first detection device (for example, The imaging device 162, X-ray detection device 164, infrared detection device 166, and ultrasonic infrared thermal imaging detection device 168) in the figure are set on the frame 12 to detect structural defects of mechanical structural parts within a predetermined range and provide feedback
  • the first detection data the second detection device 20, the second detection device 20 includes a movable detection arm 202 and a detection element arranged at the end of the detection arm 202 (the ultrasonic detection element 204 in the figure), the detection element is used to contact Detect the structural defects of the mechanical structure in the state, and feed back the second detection data; an alarm device, a controller (not shown in the figure) is provided in the control device, and the controller is connected to the first detection device and the second detection device 20 , Used to obtain the first detection data and the
  • the unmanned aerial vehicle 100 proposed in this application is used for testing the mechanical structure of the pump truck 200.
  • a rotatable rotor 14 is provided on the frame 12 to ensure the smooth flight of the UAV 100; the frame 12 is provided with a first detection device, a second detection device 20 and a control device that cooperate with each other.
  • the second detection device 20 cooperates with each other to realize contact detection and non-contact detection of the drone 100.
  • the controller Based on the first detection data and the second detection data, the controller performs analysis and alarm processing or sends out detection data to ensure construction safety.
  • the unmanned aerial vehicle 100 proposed in this application can detect the mechanical structure of the pump truck 200, and has both contact and non-contact detection methods, wide detection range, high detection accuracy, automatic alarms, and construction safety.
  • the controller controls the first detection device to detect the structural defects of the mechanical structure within a predetermined range to realize the non-contact detection of the pump truck 200; the controller controls the movement of the detection arm 202, and drives the end of the detection arm 202 The detection element of the device is in contact with the mechanical structure, and the mechanical structure is detected to realize the contact detection of the pump truck 200.
  • the controller obtains the first inspection data and the second inspection data
  • the detection arm 202 includes: a base 206, which is rotatably disposed on the frame 12; and a folding arm 208, which is rotatably connected to the base 206 is connected; telescopic arm 210, one end of the telescopic arm 210 is connected with the folding arm 208, and the other end is provided with a detection element.
  • the frame 12 is provided with a base 206 that can rotate 360° in the horizontal direction, and the base 206 is provided with a folding arm 208 that can rotate 180° in the vertical direction.
  • the folding arm 208 and the base 206 cooperate with each other to realize the rotation of the detection element at any angle within the space range; the detection element is connected to the folding arm 208 through the telescopic arm 210, the telescopic arm 210 can meet the needs of the detection element for the working distance; the telescopic arm 210 and the folding arm 208 and the base
  • the seats 206 cooperate with each other to realize the detection of mechanical structural parts at any position in space, and improve the detection accuracy and detection range.
  • detection can be performed at any angle within the horizontal and vertical 270° spatial range, and multiple detection postures can be completed.
  • the detection element is an ultrasonic detection element 204, which is connected to the controller; the mechanical structure is in a static state, and the controller controls the detection
  • the arm 202 drives the ultrasonic detection element 204 so that the ultrasonic detection element 204 is in contact with the mechanical structure, and detects structural defects of the mechanical structure.
  • the detection element is an ultrasonic detection element 204, which is arranged at the end of the telescopic arm 210 and is connected to the controller.
  • the controller controls the ultrasonic detection element 204 to detect internal structural defects and surface structures of the mechanical structure. Defects are detected.
  • the rotor 14 works, and the drone 100 is in a hovering state.
  • the controller controls the rotation of the base 206 and the folding arm 208, the ultrasonic detection element 204 is aligned with the mechanical structure to be detected, and the controller controls the telescopic arm 210 in the contracted state to expand so that the ultrasonic detection element 204 is in contact with the mechanical structure.
  • the component 204 detects the mechanical structure and feeds back the first detection data.
  • the first detection device includes a camera device 162, which is connected to a controller; the controller controls the camera device 162 on the mechanical structure. Surface structure defects are detected.
  • the first detection device includes a camera device 162 connected to the controller.
  • the controller controls the camera device 162 to detect the surface structure defects of the mechanical structure and determine whether the mechanical structure has surface structure defects. Routine inspection of mechanical structure.
  • the camera device 162 includes a camera 170 and an electron microscope 172.
  • the camera 170 is used to obtain image information of a mechanical structure
  • the electron microscope 172 is used to perform amplifying processing on the image information.
  • the camera device 162 detects whether the boom weld of the pump truck 200 is There are obvious surface structural defects such as cracks, and whether the boom of the pump truck 200 is deformed or not.
  • the first detection device includes an X-ray detection device 164, which is connected to the controller; the mechanical structure is in a static state, The controller controls the X-ray inspection device 164 to detect internal structural defects of the mechanical structure.
  • the first detection device includes an X-ray detection device 164 connected to the controller.
  • the controller controls the X-ray inspection device 164 to detect the internal structural defects of the mechanical structure, and determine whether the mechanical structure has internal structural defects, which is a regular deep inspection.
  • the X-ray inspection device 164 conducts depth measurements on the connecting rods, shafts, boom cylinder connections, and outriggers of the pump truck 200 boom. Detect and detect whether there are internal structural defects in the above structure, and accurately detect the shape, size and position of the defect.
  • the first detection device includes an infrared detection device 166 and an ultrasonic infrared thermal imaging detection device 168, an infrared detection device 166 and an ultrasonic infrared thermal imaging detection device 168 is connected to the controller; when the mechanical structure is in motion, the controller controls the infrared detection device 166 and the ultrasonic infrared thermal imaging detection device 168 to detect the internal structure defects and the external structure defects of the mechanical structure.
  • the first detection device includes an infrared detection device 166 and an ultrasonic infrared thermal imaging detection device 168 connected to the controller.
  • the controller controls the infrared detection device 166 and the ultrasonic infrared thermal imaging detection device 168 to detect internal and external structural defects of the mechanical structure, and determine whether the mechanical structure has internal or external structural defects.
  • the infrared detection device 166 and the ultrasonic infrared thermal imaging detection device 168 realize the dynamic detection of the mechanical structure when the mechanical structure is in a moving state.
  • the controller controls the infrared detection device 166 and the ultrasonic infrared thermal imaging detection device 168 to detect the boom to achieve dynamic detection And monitoring.
  • the control device includes: a positioning module (not shown in the figure), which is arranged on the frame 12 and the mechanical structure, and is connected to the controller to obtain the detection of the mechanical structure.
  • the spatial position of the drone 100 and the spatial position of the mechanical structure; the controller is also used to control the rotor 14 to work according to the spatial position of the drone 100 and the spatial position of the mechanical structure detected by the mechanical structure.
  • the frame 12 and the mechanical structure are provided with positioning modules.
  • the positioning module can obtain the spatial position of the UAV 100 and the mechanical structure in real time; the controller is connected with the positioning module, and the controller is based on the UAV 100
  • the space position and the space position of the mechanical structure control the UAV 100 to fly to ensure that the UAV 100 can automatically fly around several parts according to the determined route.
  • the mechanical structure is dynamically detected to realize the tracking type of the UAV 100. Detection.
  • the positioning module is a GPS positioning module.
  • control device further includes: an avoidance module (not shown in the figure), which is arranged on the frame 12 and connected to the controller for detecting unmanned detection of mechanical structural parts Whether there is an obstacle in the traveling direction of the aircraft 100; the controller is also used to control the operation of the rotor 14 according to the detection result of the avoidance module.
  • an avoidance module (not shown in the figure), which is arranged on the frame 12 and connected to the controller for detecting unmanned detection of mechanical structural parts Whether there is an obstacle in the traveling direction of the aircraft 100; the controller is also used to control the operation of the rotor 14 according to the detection result of the avoidance module.
  • an avoidance module is provided on the frame 12, and the avoidance module can detect the traveling direction of the UAV 100 and detect whether there is an obstacle in the traveling direction of the UAV 100; the controller is connected with the avoidance module , The controller can control the rotor 14 to work according to the detection result of the avoidance module, so that the UAV 100 avoids obstacles and ensures the smooth flight of the UAV 100.
  • the UAV 100 through the mutual cooperation of the positioning module and the avoidance module, the UAV 100 has an automatic tracking capability and can realize dynamic detection.
  • the control device further includes: alarm The module 18 is connected with the controller.
  • the controller analyzes the first detection data and the second detection data, and the alarm module 18 alarms according to the analysis result.
  • the controller after the controller obtains the first detection data and the second detection data, it analyzes the first detection data and the second detection data to obtain the analysis result, and the alarm module 18 gives an alarm according to the analysis result to Prompt the staff to perform maintenance.
  • the number of alarm modules 18 is multiple, and multiple alarm modules 18 correspond to multiple analysis results, and based on different analysis results, different alarm modules 18 give alarms; or The number of the module 18 is one. There are multiple alarm signals in the alarm module 18, and the multiple alarm signals correspond to multiple analysis results. Based on different analysis results, the alarm module 18 sends out different alarm signals.
  • the mechanical structure has various defects, different repair methods are required for different defects. Therefore, multiple alarm modules 18 are provided in the alarm module 18, and it is ensured that each alarm module 18 can send a different alarm signal; or an alarm module 18 is provided with different alarm signals.
  • the alarm module 18 sends out different alarm signals to directly classify the defects when detecting the defects, so as to facilitate subsequent operations.
  • the UAV 100 proposed in this application is used for the detection of the mechanical structure of the pump truck 200.
  • the UAV 100 is composed of the following parts: frame 12, rotor 14, first The detection device, the second detection device 20 and the alarm device.
  • the first detection device includes a camera 162, an X-ray detection device 164, an infrared detection device 166, and an ultrasonic infrared thermal imaging detection device 168.
  • the detection device is connected to the controller in the control device for realizing the drone 100 non-contact detection.
  • the second detection device 20 includes a detection arm 202 and an ultrasonic detection element 204 arranged at the end of the detection arm 202; the detection arm 202 includes a base 206, a folding arm 208, and a telescopic arm 210.
  • the base 206 can perform 360° in a horizontal direction. Rotate, the folding arm 208 can rotate 180° in the vertical direction, and the telescopic arm 210 can meet the needs of the ultrasonic detecting element 204 for the working distance, and can detect at any angle within the horizontal and vertical space range of 270°.
  • the control device includes a controller, a positioning module, an avoidance module, and an alarm module 18.
  • the controller and the alarm module 18 cooperate with each other to analyze the first detection data and the second detection data, and control the alarm according to the analysis result; the controller, the positioning The module and the avoidance module cooperate with each other to form an automatic tracking system to ensure that the UAV 100 can automatically fly around several parts according to the determined route, dynamically detect the mechanical structure, and avoid obstacles at the same time to ensure the smooth flight of the UAV 100. Realize dynamic detection.
  • the UAV 100 can fly around the boom, connecting rods, and outriggers of the pump truck 200 by remote control or automatically.
  • the controller controls the first detection device and the second detection device 20 to control the pump truck 200. Perform testing. Specifically, there are two detection modes, contact detection and non-contact detection. In the contact detection mode, the drone 100 is hovering at a suitable position, the detection arm 202 is driven by the driving motor to extend, and the ultrasonic detection element 204 touches the detection part for detection; in the non-contact mode detection mode, the camera 162, X can be selected as needed.
  • the radiation detection device 164, the infrared detection device 166, and the ultrasonic infrared thermal imaging detection device 168 perform detection.
  • the camera device 162 is usually used for routine inspections of construction machinery before work.
  • the pump truck 200 is used to inspect the boom before the work.
  • the camera device 162 is used to detect whether there are cracks in the welding seam of the arm 202 and other obvious defects on the surface. Whether the frame is deformed or not;
  • X-ray inspection device 164 is mainly used for regular deep inspection of mechanical structural parts, which can perform in-depth inspection of important parts of mechanical structural parts, such as the connecting rod, shaft, and boom cylinder connection of the pump truck 200 boom Parts, legs, etc., are mainly used to detect internal defects, which can accurately detect the shape, size and location of the defect.
  • the automatic tracking detection function is activated, and GPS positioning modules are installed in the boom, connecting rod, and outriggers.
  • the UAV 100 automatically flies around these parts according to the determined route for dynamic detection, and has The automatic obstacle avoidance function ensures the safety of dynamic detection.
  • the dynamic detection preferably includes a camera 162, an X-ray detection device 164, an infrared detection device 166, and an ultrasonic infrared detection device 166.
  • the controller analyzes the detected data and images in real time, and finds that there are defects such as cracks, welds, etc. in structural parts such as booms, connecting rods, and outriggers, and automatically triggers the alarm module 18 to automatically alarm and prompt the pump truck 200 to stop working .
  • the infrared detection device 166 and the ultrasonic infrared thermal imaging detection device 168 are mainly used for dynamic detection of mechanical structural parts. For example, when the pump truck 200 drives the boom to move, it detects the boom in real time to realize dynamic detection and monitoring.
  • the UAV 100 When the UAV 100 detects a structural defect in the pump truck 200, it can automatically transmit the analysis and detection results to the control mechanism of the construction machinery, such as the remote control of the pump truck 200, etc., automatically trigger the mechanical stop operation, or trigger the control mechanism on the The alarm system prompts the operator to stop mechanical operations.
  • the control mechanism of the construction machinery such as the remote control of the pump truck 200, etc.
  • the unmanned aerial vehicle 100 for mechanical structural component detection proposed in the present application has two modes of contact detection and non-contact detection; in the contact detection mode, the detection arm 202 is used to drive, which can achieve detection at any angle in the horizontal and vertical 270° spatial range , Wide detection range; integrated infrared detection device 166, ultrasonic detection element 204, X-ray detection device 164 in one, at the same time with ultrasonic infrared thermal imaging detection function, can detect the surface and internal defects of mechanical structural parts, to meet various types of mechanical structural parts Defect detection: With automatic tracking and automatic alarm functions, it can realize dynamic detection, automatically analyze the detected data and images, and automatically alarm when defects are detected to ensure work safety.
  • the term “plurality” refers to two or more than two, unless clearly defined otherwise, the orientation or positional relationship indicated by the terms “upper” and “lower” are based on the drawings shown The orientation or positional relationship is only for the convenience of describing the application and simplifying the description, rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be construed as a limitation of the application;
  • the terms “connected”, “installed”, “fixed”, etc. should be understood in a broad sense. For example, “connected” can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected, or through an intermediate connection. The medium is indirectly connected.
  • the specific meanings of the above terms in this application can be understood according to specific circumstances.

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种用于机械结构件检测的无人机(100),包括机架(12),旋翼(14)可旋转地设置于机架(12)上;第一检测装置(162,164,166,168)设置于机架(12)上,用于检测预定范围内的机械结构件的结构缺陷,并反馈第一检测数据;第二检测装置(20)包括可运动的检测臂(202)和设置在检测臂(202)末端的检测元件(204),检测元件(204)用于在接触状态下检测机械结构件的结构缺陷,并反馈第二检测数据;控制装置内设有控制器,控制器用于获取第一及第二检测数据,并向外发送第一和第二检测数据;和/或对第一和第二检测数据进行分析,并根据分析结果控制报警。该无人机兼具接触式及非接触式两种检测方式,检测范围广,检测精度高。

Description

用于机械结构件检测的无人机
本申请要求于2019年03月25日提交中国专利局、申请号为201910225689.0、发明名称为“用于机械结构件检测的无人机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及故障检测技术领域,具体而言,涉及一种用于机械结构件检测的无人机。
背景技术
目前,混凝土泵车结构件检测大多是以人工观察检测进行,尤其是泵车工作前需对臂架、连杆、支腿等进行检测。人工检测工作量大,容易漏检,且只能检测表面缺陷,对于油漆覆盖和结构件内部的缺陷无法检测;无法在泵车工作时,对臂架和连杆进行检测,存在安全隐患。
相关技术中,如图1所示,无人机100’在机架12’上设置有旋翼14’、摄像装置16’和接触式检测设备,接触式检测设备为超声波探伤仪、超声波回弹仪、钢筋定位仪或钢筋锈蚀仪,实现接触式检测。但其主要是针对建设工程检测,不能满足机械结构件,尤其是不能满足油漆覆盖件的检测,并且只能在水平和竖直状态下实现接触检测,检测范围受限,使用条件较为苛刻,无法实现运动中检测,更无法实现自动报警。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。
为此,本申请提出了一种用于机械结构件检测的无人机。
本申请提出了一种机械结构件检测的无人机,包括:机架;旋翼,可旋转地设置于机架上;第一检测装置,设置于机架上,用于检测预定范围内的机械结构件的结构缺陷,并反馈第一检测数据;第二检测装置,第二检 测装置包括可运动的检测臂和设置在检测臂末端的检测元件,检测元件用于在接触状态下检测机械结构件的结构缺陷,并反馈第二检测数据;报警装置,控制装置内设置有控制器,控制器与第一检测装置及第二检测装置相连接,用于获取第一检测数据及第二检测数据,并向外发送第一检测数据和第二检测数据;和/或对第一检测数据和第二检测数据进行分析,并根据分析结果控制报警。
本申请提出的无人机用于机械结构件的检测。机架上设置有可旋转的旋翼,保证无人机的平稳飞行;机架上设置有相互配合工作的第一检测装置、第二检测装置及控制装置,第一检测装置与第二检测装置相互配合,实现无人机的接触式检测及非接触式检测;控制器基于第一检测数据和第二检测数据进行分析及报警处理或外发检测数据,保证施工安全。本申请提出的无人机可对泵车的机械结构件的结构缺陷进行检测,兼具接触式及非接触式两种检测方式,检测范围广,检测精度高,可实现自动报警,保证施工安全。
具体地,控制器控制第一检测装置对预定范围内的机械结构件的结构缺陷进行检测,实现对泵车的非接触式检测;控制器控制检测臂运动,驱动位于检测臂末端的检测元件与机械结构件接触,检测元件对机械结构件进行检测,实现对泵车的接触式检测。控制器获取到第一检测数据和第二检测数据后,存在两种处理方式:第一种是对第一检测数据和第二检测数据进行分析,判断机械结构件是否存在结构缺陷,并根据分析结果报警;第二种是直接将第一检测数据和第二检测数据向外发送,传输到工程机械的控制机构,例如泵车的遥控器等。如果机械结构件存在缺陷,遥控器会自动触发机械停止作业,或触发控制机构进行报警并停止机械作业。
根据本申请上述的用于机械结构件检测的无人机,还可以具有以下附加技术特征:
在上述技术方案中,优选地,检测臂包括:基座,可旋转地设置于机架上;折叠臂,可转动地与基座相连接;伸缩臂,伸缩臂的一端与折叠臂相连接,另一端设置有检测元件。
在该技术方案中,机架上设置有可在水平方向进行360°旋转的基座,在基座上设置有可在竖直方向180°旋转的折叠臂,折叠臂与基座相互配合, 可以实现检测元件在空间范围内任意角度的转动;检测元件通过伸缩臂与折叠臂连接,伸缩臂可满足检测元件对于工作距离的需要。伸缩臂与折叠臂及基座相互配合,实现空间任一位置对机械结构件进行检测,提升检测精度及检测范围。具体地,在接触模式下,由于伸缩臂的设置,可在水平和竖直270°空间范围内任一角度检测,完成多种检测姿态。
在上述任一技术方案中,优选地,检测元件为超声波检测元件,超声波检测元件与控制器相连接;机械结构件处于静止状态,控制器控制检测臂驱动超声波检测元件,以使得超声波检测元件与机械结构件相接触,并对机械结构件的结构缺陷进行检测。
在该技术方案中,检测元件为超声波检测元件,超声波检测元件设置于伸缩臂的末端,并与控制器相连接,控制器控制超声波检测元件对机械结构件内部结构缺陷及表面结构缺陷进行检测。
具体地,在泵车开始工作前(机械结构件处于静止状态),旋翼工作,无人机处于悬停状态。控制器控制基座与折叠臂转动,超声波检测元件对准待检测的机械结构件,控制器控制处于收缩状态的伸缩臂展开,使得超声波检测元件与机械结构件接触,超声波检测元件对机械结构件进行检测,并反馈第一检测数据。
在上述任一技术方案中,优选地,第一检测装置包括摄像装置,摄像装置与控制器相连接;控制器控制摄像装置对机械结构件的表面结构缺陷进行检测。
在该技术方案中,第一检测装置包括与控制器相连接的摄像装置,控制器控制摄像装置对机械结构件的表面结构缺陷进行检测,判断机械结构件是否存在表面结构缺陷,属于对机械结构件的常规检查。
具体地,在泵车开始工作前(机械结构件处于静止状态),或在泵车工作时(机械结构件处于运动状态),摄像装置检测泵车的臂架焊缝是否有裂纹等较明显的表面结构缺陷,以及泵车的臂架是否存在变形等。
在上述任一技术方案中,优选地,第一检测装置包括X射线检测装置,X射线检测装置与控制器相连接;机械结构件处于静止状态,控制器控制X射线检测装置对机械结构件的内部结构缺陷进行检测。
在该技术方案中,第一检测装置包括与控制器相连接的X射线检测装置。控制器控制X射线检测装置对机械结构件的内部结构缺陷进行检测,判断机械结构件是否存在内部结构缺陷,属于定期深度检测。
具体地,在泵车开始工作前(机械结构件处于静止状态),X射线检测装置对泵车臂架的连杆、轴、臂架油缸连接处、支腿等部位进行深度检测,检测上述结构是否存在内部结构缺陷,并可准确的探测缺陷的形状、大小和位置。
在上述任一技术方案中,优选地,第一检测装置包括红外检测装置和超声红外热成像检测装置,红外检测装置和超声红外热成像检测装置与控制器相连接;当机械结构件处于运动状态时,控制器控制红外检测装置和超声红外热成像检测装置对机械结构件的内部结构缺陷及外部结构缺陷进行检测。
在该技术方案中,第一检测装置包括与控制器相连接的红外检测装置和超声红外热成像检测装置。控制器控制红外检测装置和超声红外热成像检测装置对机械结构件的内部结构缺陷及外部结构缺陷进行检测,判断机械结构件是否存在内部结构缺陷或外部结构缺陷。具体地,红外检测装置和超声红外热成像检测装置是在机械结构件处于运动状态时,实现对机械结构件的动态检测。
在上述任一技术方案中,优选地,控制装置包括:定位模块,设置于机架及机械结构件上,与控制器相连接,用于获取机械结构件检测的无人机的空间位置及机械结构件的空间位置;控制器还用于根据机械结构件检测的无人机的空间位置及机械结构件的空间位置控制旋翼工作。
在该技术方案中,在机架及机械结构件上设置有定位模块。在无人机对机械结构件进行非接触式检测的过程中,定位模块可以实时获取无人机及机械结构件的空间位置;控制器与定位模块相连接,控制器根据无人机的空间位置及机械结构件的空间位置控制无人机飞行,确保无人机可按确定的路线绕几个部位自动飞行,对机械结构件进行动态检测,实现无人机的追踪式检测。具体地,定位模块为GPS(Global Positioning System全球定位系统)定位模块。
在上述任一技术方案中,优选地,控制装置还包括:避让模块,设置于机架上,与控制器相连接,用于检测机械结构件检测的无人机的行进方向是否存在障碍;控制器还用于根据避让模块的检测结果控制旋翼工作。
在该技术方案中,机架上设置有避让模块,避让模块可对无人机的行进方向进行检测,检测无人机的行进方向上是否存在障碍;控制器与避让模块相连接,控制器可根据避让模块的检测结果控制旋翼工作,以使得无人机避让障碍,保证无人机的平稳飞行。
具体地,通过定位模块和避让模块的相互配合,使得无人机具备自动跟踪能力,可实现动态检测。
在上述任一技术方案中,优选地,基于对第一检测数据和第二检测数据进行分析,并根据分析结果控制报警的情况,控制装置还包括:报警模块,与控制器相连接,控制器对第一检测数据及第二检测数据进行分析,报警模块根据分析结果报警。
在该技术方案中,当控制器获取到第一检测数据及第二检测数据后,对第一检测数据及第二检测数据进行分析,得出分析结果,报警模块根据分析结果进行报警,以提示工作人员进行检修。
在上述任一技术方案中,优选地,报警模块的数量为多个,多个报警模块与多个分析结果相对应,基于不同的分析结果,不同的报警模块进行报警;或报警模块的数量为一个,报警模块内存在有多个报警信号,多个报警信号与多个分析结果相对应,基于不同的分析结果,报警模块发出不同的报警信号。
在该技术方案中,由于机械结构件存在有多种缺陷,而对于不同的缺陷需要不同的修复方式。因此报警模块内设置有多个报警模块,并保证每一个报警模块均可发出不同的报警信号;或在一个报警模块内设置有不同的报警信号。在无人机使用过程中,基于不同的缺陷,报警模块发出不同的报警信号,以在检测缺陷时直接对缺陷进行初步分类,便于后续操作。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是相关技术中无人机的结构示意图。
其中,图1中附图标记与部件名称之间的对应关系为:
100’无人机,12’机架,14’旋翼,16’摄像装置。
图2是本申请一个实施例的无人机的结构示意图;
图3为图2所示实施例的无人机另一视角的结构示意图;
图4为图2所示实施例的无人机的俯视图;
图5为图2所示实施例的无人机的A处局部放大图;
图6为图2所示实施例的无人机中第二检测装置的结构原理图;
图7为图2所示实施例的无人机中第二检测装置的结构原理图;
图8为图2所示实施例的无人机的使用场景图。
其中,图2至图8中附图标记与部件名称之间的对应关系为:
100无人机,12机架,14旋翼,162摄像装置,164X射线检测装置,166红外检测装置,168超声红外热成像检测装置,170摄像头,172电子显微镜,18报警模块,20第二检测装置,202检测臂,204超声波检测元件,206基座,208折叠臂,210伸缩臂,200泵车。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图2至图8来描述根据本申请一些实施例提供的用于机械结构件检测的无人机100。
本申请提出了一种机械结构件检测的无人机100,如图2至图5所示, 包括:机架12;旋翼14,可旋转地设置于机架12上;第一检测装置(例如图中的摄像装置162、X射线检测装置164、红外检测装置166及超声红外热成像检测装置168),设置于机架12上,用于检测预定范围内的机械结构件的结构缺陷,并反馈第一检测数据;第二检测装置20,第二检测装置20包括可运动的检测臂202和设置在检测臂202末端的检测元件(如图中的超声波检测元件204),检测元件用于在接触状态下检测机械结构件的结构缺陷,并反馈第二检测数据;报警装置,控制装置内设置有控制器(图中未示出),控制器与第一检测装置及第二检测装置20相连接,用于获取第一检测数据及第二检测数据,并向外发送第一检测数据和第二检测数据;和/或对第一检测数据和第二检测数据进行分析,并根据分析结果控制报警。
本申请提出的无人机100用于泵车200的机械结构件进行检测。机架12上设置有可旋转的旋翼14,保证无人机100的平稳飞行;机架12上设置有相互配合工作的第一检测装置、第二检测装置20及控制装置,第一检测装置与第二检测装置20相互配合,实现无人机100的接触式检测及非接触式检测。控制器基于第一检测数据和第二检测数据进行分析及报警处理或外发检测数据,保证施工安全。本申请提出的无人机100可对泵车200的机械结构件进行检测,兼具接触式及非接触式两种检测方式,检测范围广,检测精度高,可实现自动报警,保证施工安全。
具体地,控制器的控制第一检测装置对预定范围内的机械结构件的结构缺陷进行检测,实现对泵车200的非接触式检测;控制器控制检测臂202运动,驱动位于检测臂202末端的检测元件与机械结构件接触,并对机械结构件进行检测,实现对泵车200的接触式检测。
控制器获取到第一检测数据和第二检测数据后,存在两种处理方式:第一种是对第一检测数据和第二检测数据进行分析,判断机械结构件是否存在结构缺陷,并根据分析结果报警;第二种是直接将第一检测数据和第二检测数据向外发送,传输到工程机械的控制机构,例如泵车200的遥控器等。如果机械结构件存在结构缺陷,遥控器会自动触发机械停止作业,或触发控制机构进行报警并停止机械作业。
在本申请的一个实施例中,优选地,如图6和图7所示,检测臂202包括:基座206,可旋转地设置于机架12上;折叠臂208,可转动地与基座206相连接;伸缩臂210,伸缩臂210的一端与折叠臂208相连接,另一端设置有检测元件。
在该实施例中,机架12上设置有可在水平方向进行360°旋转的基座206,基座206上设置有可在竖直方向180°旋转的折叠臂208,折叠臂208与基座206相互配合,实现检测元件在空间范围内任意角度的转动;检测元件通过伸缩臂210与折叠臂208连接,伸缩臂210可满足检测元件对于工作距离的需要;伸缩臂210与折叠臂208及基座206相互配合,实现空间任一位置对机械结构件进行检测,提升检测精度及检测范围。具体地,在接触模式下,由于伸缩臂210的设置,可在水平和竖直270°空间范围内任一角度检测,完成多种检测姿态。
在本申请的一个实施例中,优选地,如图6和图7所示,检测元件为超声波检测元件204,超声波检测元件204与控制器相连接;机械结构件处于静止状态,控制器控制检测臂202驱动超声波检测元件204,以使得超声波检测元件204与机械结构件相接触,并对机械结构件的结构缺陷进行检测。
在该实施例中,检测元件为超声波检测元件204,超声波检测元件204设置于伸缩臂210的末端,并与控制器相连接,控制器控制超声波检测元件204对机械结构件内部结构缺陷及表面结构缺陷进行检测。
具体实施例中,在泵车200开始工作前(机械结构件处于静止状态),旋翼14工作,无人机100处于悬停状态。控制器控制基座206与折叠臂208转动,超声波检测元件204对准待检测的机械结构件,控制器控制处于收缩状态的伸缩臂210展开,使得超声波检测元件204与机械结构件接触,超声波检测元件204对机械结构件进行检测,并反馈第一检测数据。
在本申请的一个实施例中,优选地,如图2至图5所示,第一检测装置包括摄像装置162,摄像装置162与控制器相连接;控制器控制摄像装置162对机械结构件的表面结构缺陷进行检测。
在该实施例中,第一检测装置包括与控制器相连接的摄像装置162,控制器控制摄像装置162对机械结构件的表面结构缺陷进行检测,判断机械结 构件是否存在表面结构缺陷,属于对机械结构件的常规检查。具体地,摄像装置162包括摄像头170及电子显微镜172,摄像头170用于获取机械结构件的图像信息,电子显微镜172用于对图像信息进行放大处理。
具体实施例中,在泵车200开始工作前(机械结构件处于静止状态),或在泵车200工作时(机械结构件处于运动状态),摄像装置162检测泵车200的臂架焊缝是否有裂纹等较明显的表面结构缺陷,以及泵车200的臂架是否存在变形等。
在本申请的一个实施例中,优选地,如图2至图4所示,第一检测装置包括X射线检测装置164,X射线检测装置164与控制器相连接;机械结构件处于静止状态,控制器控制X射线检测装置164对机械结构件的内部结构缺陷进行检测。
在该实施例中,第一检测装置包括与控制器相连接的X射线检测装置164。控制器控制X射线检测装置164对机械结构件的内部结构缺陷进行检测,判断机械结构件是否存在内部结构缺陷,属于定期深度检测。
具体实施例中,在泵车200开始工作前(机械结构件处于静止状态),X射线检测装置164对泵车200臂架的连杆、轴、臂架油缸连接处、支腿等部位进行深度检测,检测上述结构是否存在内部结构缺陷,并可准确的探测缺陷的形状、大小和位置。
在本申请的一个实施例中,优选地,如图2至图4所示,第一检测装置包括红外检测装置166和超声红外热成像检测装置168,红外检测装置166和超声红外热成像检测装置168与控制器相连接;当机械结构件处于运动状态时,控制器控制红外检测装置166和超声红外热成像检测装置168对机械结构件的内部结构缺陷及外部结构缺陷进行检测。
在该实施例中,第一检测装置包括与控制器相连接的红外检测装置166和超声红外热成像检测装置168。控制器控制红外检测装置166和超声红外热成像检测装置168对机械结构件的内部结构缺陷及外部结构缺陷进行检测,判断机械结构件是否存在内部结构缺陷或外部结构缺陷。具体地,红外检测装置166和超声红外热成像检测装置168是在机械结构件处于运动状态时,实现对机械结构件的动态检测。
具体实施例中,在泵车200驱动臂架移动的过程中(机械结构件处于运动状态),控制器控制红外检测装置166和超声红外热成像检测装置168对臂架进行检测,实现动态的检测与监控。
在本申请的一个实施例中,优选地,控制装置包括:定位模块(图中未示出),设置于机架12及机械结构件上,与控制器相连接,用于获取机械结构件检测的无人机100的空间位置及机械结构件的空间位置;控制器还用于根据机械结构件检测的无人机100的空间位置及机械结构件的空间位置控制旋翼14工作。
在该实施例中,机架12及机械结构件上设置有定位模块。在无人机100对机械结构件进行非接触式检测的过程中,定位模块可以实时获取无人机100及机械结构件的空间位置;控制器与定位模块相连接,控制器根据无人机100的空间位置及机械结构件的空间位置控制无人机100飞行,确保无人机100可按确定的路线绕几个部位自动飞行,对机械结构件进行动态检测,实现无人机100的追踪式检测。具体地,定位模块为GPS定位模块。
在本申请的一个实施例中,优选地,控制装置还包括:避让模块(图中未示出),设置于机架12上,与控制器相连接,用于检测机械结构件检测的无人机100的行进方向是否存在障碍;控制器还用于根据避让模块的检测结果控制旋翼14工作。
在该实施例中,在机架12上设置有避让模块,避让模块可对无人机100的行进方向进行检测,检测无人机100的行进方向上是否存在障碍;控制器与避让模块相连接,控制器可根据避让模块的检测结果控制旋翼14工作,以使得无人机100避让障碍,保证无人机100的平稳飞行。
具体实施例中,通过定位模块和避让模块的相互配合,使得无人机100具备自动跟踪能力,可实现动态检测。
在本申请的一个实施例中,优选地,如图2至图4所示,基于对第一检测数据和第二检测数据进行分析,并根据分析结果控制报警的情况,控制装置还包括:报警模块18,与控制器相连接,控制器对第一检测数据及第二检测数据进行分析,报警模块18根据分析结果报警。
在该实施例中,当控制器获取到第一检测数据及第二检测数据后,对 第一检测数据及第二检测数据进行分析,得出分析结果,报警模块18根据分析结果进行报警,以提示工作人员进行检修。
在本申请的一个实施例中,优选地,报警模块18的数量为多个,多个报警模块18与多个分析结果相对应,基于不同的分析结果,不同的报警模块18进行报警;或报警模块18的数量为一个,报警模块18内存在有多个报警信号,多个报警信号与多个分析结果相对应,基于不同的分析结果,报警模块18发出不同的报警信号。
在该实施例中,由于机械结构件存在有多种缺陷,而对于不同的缺陷需要不同的修复方式。因此报警模块18内设置有多个报警模块18,并保证每一个报警模块18均可发出不同的报警信号;或在一个报警模块18内设置有不同的报警信号。在无人机100使用过程中,基于不同的缺陷,报警模块18发出不同的报警信号,以在检测缺陷时直接对缺陷进行初步分类,便于后续操作。
具体实施例中,如图8所示,本申请提出的无人机100用于泵车200的机械结构件的检测,无人机100由以下几部分组成:机架12、旋翼14、第一检测装置、第二检测装置20及报警装置。具体地,第一检测装置包括摄像装置162、X射线检测装置164、红外检测装置166和超声红外热成像检测装置168,上述检测装置与控制装置内的控制器相连接,用于实现无人机100的非接触式检测。第二检测装置20包括检测臂202和设置在所述检测臂202末端的超声波检测元件204;检测臂202包括基座206、折叠臂208及伸缩臂210,基座206可在水平方向进行360°旋转,折叠臂208可在竖直方向180°旋转,伸缩臂210可满足超声波检测元件204对于工作距离的需要,可在水平和竖直270°空间范围内任一角度检测。控制装置包括控制器、定位模块、避让模块及报警模块18,控制器与报警模块18相互配合,可对第一检测数据和第二检测数据进行分析,并根据分析结果控制报警;控制器、定位模块及避让模块相互配合,形成自动追踪系统,确保无人机100可按确定的路线绕几个部位自动飞行,对机械结构件进行动态检测,同时避让障碍,保证无人机100的平稳飞行,实现动态检测。
泵车200工作前,无人机100通过遥控或自动绕泵车200的臂架、连杆、 支腿等重要结构部件飞行,控制器控制第一检测装置及第二检测装置20对泵车200进行检测。具体地,检测模式分为两种,接触检测和非接触检测。接触检测模式下,无人机100悬停在合适位置,由驱动马达驱动检测臂202伸展,超声波检测元件204接触检测部位进行检测;非接触模式检测模式下,可根据需要选择摄像装置162、X射线检测装置164、红外检测装置166、超声红外热成像检测装置168进行检测。具体地,摄像装置162通常用于工程机械工作前的常规检查,例如泵车200工作前对臂架进行检测,采用摄像装置162检测臂202架焊缝是否有裂纹等表面较明显的缺陷以及臂架是否变形等缺陷;X射线检测装置164主要用于机械结构件的定期深度检测,可对机械结构件的重要部位进行深度检测,例如泵车200臂架的连杆、轴、臂架油缸连接处、支腿等部位,主要用于检测内部缺陷,可准确的探测缺陷的形状、大小和位置。
泵车200工作后,启动自动跟踪检测功能,在臂架、连杆、支腿等部位装有GPS定位模块,无人机100按确定的路线绕这几个部位自动飞行进行动态检测,并具备自动避障功能,保证动态检测的安全性,动态检测优选摄像装置162、X射线检测装置164、红外检测装置166、超声红外检测装置166。控制器实时对检测到的数据和图像进行分析,发现臂架、连杆、支腿等结构件有裂纹、焊缝脱落等缺陷时,自动促发报警模块18自动报警,提示泵车200停止工作。具体地,红外检测装置166和超声红外热成像检测装置168主要用于机械结构件的动态检测,例如泵车200在驱动臂架移动时,实时对臂架进行检测,实现动态的检测与监控。
当无人机100检测到泵车200存在结构缺陷时,可自动将分析检测的结果传输到工程机械的控制机构,例如泵车200遥控器等,自动触发机械停止作业,或触发控制机构上的报警系统提示操作手停止机械作业。
本申请提出的机械结构件检测的无人机100具有接触检测和非接触检测两种模式;接触检测模式下,采用检测臂202驱动,可实现水平和竖直270°空间范围内任一角度检测,检测范围广;集成红外检测装置166、超声波检测元件204、X射线检测装置164于一体,同时具备超声红外热成像检测功能,可检测机械结构件表面和内部缺陷,满足机械结构件多种类型缺陷检测;具备自动跟踪和自动报警功能,可实现动态检测,自动分析检测的数据与图像,检 测到缺陷自动报警,保证工作安全。
在本申请的描述中,术语“多个”则指两个或两个以上,除非另有明确的限定,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制;术语“连接”、“安装”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种用于机械结构件检测的无人机,其中,包括:
    机架;
    旋翼,可旋转地设置于所述机架上;
    第一检测装置,设置于所述机架上,用于检测预定范围内的所述机械结构件的结构缺陷,并反馈第一检测数据;
    第二检测装置,所述第二检测装置包括可运动的检测臂和设置在所述检测臂末端的检测元件,所述检测元件用于在接触状态下检测所述机械结构件的结构缺陷,并反馈第二检测数据;
    控制装置,所述控制装置内设置有控制器,所述控制器与所述第一检测装置及所述第二检测装置相连接,用于获取所述第一检测数据及所述第二检测数据,并向外发送所述第一检测数据和所述第二检测数据;和/或
    对所述第一检测数据和所述第二检测数据进行分析,并根据分析结果控制报警。
  2. 根据权利要求1所述的用于机械结构件检测的无人机,其中,所述检测臂包括:
    基座,可旋转地设置于所述机架上;
    折叠臂,可转动地与所述基座相连接;
    伸缩臂,所述伸缩臂的一端与所述折叠臂相连接,另一端设置有所述检测元件。
  3. 根据权利要求2所述的用于机械结构件检测的无人机,其中,
    所述检测元件为超声波检测元件,所述超声波检测元件与所述控制器相连接;
    所述机械结构件处于静止状态,所述控制器控制所述检测臂驱动所述超声波检测元件,以使得所述超声波检测元件与所述机械结构件相接触,并对所述机械结构件的结构缺陷进行检测。
  4. 根据权利要求1所述的用于机械结构件检测的无人机,其中,
    所述第一检测装置包括摄像装置,所述摄像装置与所述控制器相连接;
    所述控制器控制所述摄像装置对所述机械结构件的表面结构缺陷进行检测。
  5. 根据权利要求1所述的用于机械结构件检测的无人机,其中,
    所述第一检测装置包括X射线检测装置,所述X射线检测装置与所述控制器相连接;
    所述机械结构件处于静止状态,所述控制器控制所述X射线检测装置对所述机械结构件的内部结构缺陷进行检测。
  6. 根据权利要求1所述的用于机械结构件检测的无人机,其中,
    所述第一检测装置包括红外检测装置和超声红外热成像检测装置,所述红外检测和所述超声红外热成像检测装置与所述控制器相连接;
    所述机械结构件处于运动状态,所述控制器控制所述红外检测装置和所述超声红外热成像检测装置对所述机械结构件的内部结构缺陷及外部结构缺陷进行检测。
  7. 根据权利要求1至6中任一项所述的用于机械结构件检测的无人机,其中,所述控制装置包括:
    定位模块,设置于所述机架及所述机械结构件上,与所述控制器相连接,用于获取所述机械结构件检测的无人机的空间位置及所述机械结构件的空间位置;
    所述控制器还用于根据所述机械结构件检测的无人机的空间位置及所述机械结构件的空间位置控制所述旋翼工作。
  8. 根据权利要求1至6中任一项所述的用于机械结构件检测的无人机,其中,所述控制装置还包括:
    避让模块,设置于所述机架上,与所述控制器相连接,用于检测机械结构件检测的无人机的行进方向是否存在障碍;
    所述控制器还用于根据所述避让模块的检测结果控制所述旋翼工作。
  9. 根据权利要求1至6中任一项所述的用于机械结构件检测的无人机,其中,基于对所述第一检测数据和所述第二检测数据进行分析,并根据分析结果控制报警的情况,所述控制装置还包括:
    报警模块,与所述控制器相连接,用于对所述第一检测数据及所述第二 检测数据进行分析,并根据分析结果报警。
  10. 根据权利要求9所述的用于机械结构件检测的无人机,其中,
    所述报警模块的数量为多个,多个所述报警模块与多个所述分析结果相对应,基于不同的所述分析结果,不同的所述报警模块进行报警;或
    所述报警模块的数量为一个,所述报警模块内存在有多个报警信号,多个所述报警信号与多个所述分析结果相对应,基于不同的所述分析结果,所述报警模块发出不同的报警信号。
PCT/CN2019/093906 2019-03-25 2019-06-28 用于机械结构件检测的无人机 WO2020191937A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910225689.0 2019-03-25
CN201910225689.0A CN109823540A (zh) 2019-03-25 2019-03-25 用于机械结构件检测的无人机

Publications (1)

Publication Number Publication Date
WO2020191937A1 true WO2020191937A1 (zh) 2020-10-01

Family

ID=66871970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093906 WO2020191937A1 (zh) 2019-03-25 2019-06-28 用于机械结构件检测的无人机

Country Status (2)

Country Link
CN (1) CN109823540A (zh)
WO (1) WO2020191937A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117386566A (zh) * 2023-12-06 2024-01-12 国家能源(山东)新能源有限公司 一种基于无人机的风机叶片缺陷检测装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109823540A (zh) * 2019-03-25 2019-05-31 三一汽车制造有限公司 用于机械结构件检测的无人机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101558178B1 (ko) * 2015-04-06 2015-10-08 (주)하이레벤 에어백 시스템을 구비한 무인 항공기 촬영 시스템
US20170247120A1 (en) * 2016-02-26 2017-08-31 Skycatch, Inc. Battery arm sensor assembly
CN206627451U (zh) * 2017-04-17 2017-11-10 四川为天建设工程检测有限公司 一种多功能检测无人机
CN107380420A (zh) * 2017-08-23 2017-11-24 南京市特种设备安全监督检验研究院 一种基于无人机机械臂的起重机金属结构检测装置及方法
CN108408082A (zh) * 2018-02-11 2018-08-17 西安航空学院 一种用于大飞机垂尾裂纹探测的无人机及其操作方法
CN109823540A (zh) * 2019-03-25 2019-05-31 三一汽车制造有限公司 用于机械结构件检测的无人机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100975330B1 (ko) * 2008-12-26 2010-08-12 권오건 초음파 탐상 장치 시스템 및 그 제어 방법
CN105644554A (zh) * 2015-12-31 2016-06-08 三汽车制造有限公司 一种防倾翻控制系统及工程机械
US10473603B2 (en) * 2017-04-18 2019-11-12 Saudi Arabian Oil Company Apparatus, system and method for inspecting composite structures using quantitative infra-red thermography
CN108802040A (zh) * 2017-05-04 2018-11-13 南京市特种设备安全监督检验研究院 一种用于起重机表面缺陷检测的无人机装置及检测方法
CN109187564B (zh) * 2018-10-25 2020-11-24 河南城建学院 一种狭长型构筑物实时变形监测系统
CN209667368U (zh) * 2019-03-25 2019-11-22 三一汽车制造有限公司 用于机械结构件检测的无人机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101558178B1 (ko) * 2015-04-06 2015-10-08 (주)하이레벤 에어백 시스템을 구비한 무인 항공기 촬영 시스템
US20170247120A1 (en) * 2016-02-26 2017-08-31 Skycatch, Inc. Battery arm sensor assembly
CN206627451U (zh) * 2017-04-17 2017-11-10 四川为天建设工程检测有限公司 一种多功能检测无人机
CN107380420A (zh) * 2017-08-23 2017-11-24 南京市特种设备安全监督检验研究院 一种基于无人机机械臂的起重机金属结构检测装置及方法
CN108408082A (zh) * 2018-02-11 2018-08-17 西安航空学院 一种用于大飞机垂尾裂纹探测的无人机及其操作方法
CN109823540A (zh) * 2019-03-25 2019-05-31 三一汽车制造有限公司 用于机械结构件检测的无人机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117386566A (zh) * 2023-12-06 2024-01-12 国家能源(山东)新能源有限公司 一种基于无人机的风机叶片缺陷检测装置
CN117386566B (zh) * 2023-12-06 2024-03-01 国家能源(山东)新能源有限公司 一种基于无人机的风机叶片缺陷检测装置

Also Published As

Publication number Publication date
CN109823540A (zh) 2019-05-31

Similar Documents

Publication Publication Date Title
JP6676736B2 (ja) ストリンガの非破壊検査のための装置
CN109079775B (zh) 使用方位对准反馈来控制机器人末端执行器的方位的方法
US10095087B2 (en) Unmanned aerial vehicle system for taking close-up picture of facility and photography method using the same
EP3549874B1 (en) Mobile visual-inspection system
CN108303426B (zh) 一种电缆隧道缺陷无损快速检测装置及其检测方法
US11185985B2 (en) Inspecting components using mobile robotic inspection systems
US20180361571A1 (en) Stabilization of Tool-Carrying End of Extended-Reach Arm of Automated Apparatus
US6636581B2 (en) Inspection system and method
US10634632B2 (en) Methods for inspecting structures having non-planar surfaces using location alignment feedback
WO2018121079A1 (zh) 安检设备及方法
EP3267189B1 (en) Defect inspection device, defect inspection method, and program
WO2020191937A1 (zh) 用于机械结构件检测的无人机
CN102590245A (zh) X射线数字平板成像智能检测系统装置及检测方法
CN202471622U (zh) X射线数字平板成像智能检测系统装置
JP2007183172A (ja) 航空機機体の検査方法および装置
JP2018130983A (ja) 検査装置
CN102778506A (zh) 用于检测不同直径管材和平板工件的自动扫查系统
JP2020153844A (ja) マルチコプターを用いた計測器移動補助装置
CN213121750U (zh) 超声探头夹具及具有其的无损检测机器人和检测系统
CN209667368U (zh) 用于机械结构件检测的无人机
KR20180088993A (ko) 대형탱크 주행플랜트 3d 스캔용 로봇시스템
KR101745699B1 (ko) 터빈 블레이드의 비파괴 검사 장치
KR102572904B1 (ko) 무인 항공기 및 검사 방법
US9205507B2 (en) Nuclear power plant construction preparation unit, nuclear power plant construction system, and nuclear power plant construction method
US20220026397A1 (en) Structural wall inspection system using drones to perform nondestructive testing (ndt)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921632

Country of ref document: EP

Kind code of ref document: A1