WO2020191804A1 - 一种基于低频连续声波峰值捕获的高精度远距离水声测距方法 - Google Patents

一种基于低频连续声波峰值捕获的高精度远距离水声测距方法 Download PDF

Info

Publication number
WO2020191804A1
WO2020191804A1 PCT/CN2019/081503 CN2019081503W WO2020191804A1 WO 2020191804 A1 WO2020191804 A1 WO 2020191804A1 CN 2019081503 W CN2019081503 W CN 2019081503W WO 2020191804 A1 WO2020191804 A1 WO 2020191804A1
Authority
WO
WIPO (PCT)
Prior art keywords
echo
electrical signal
sound wave
wave
hydrophone
Prior art date
Application number
PCT/CN2019/081503
Other languages
English (en)
French (fr)
Inventor
罗安
赵能桐
杨鑫
宁倩
杨苓
王逸兴
韩旭
杨均权
欧素妤
陈燕东
戴瑜兴
李民英
陈宇
Original Assignee
广东志成冠军集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东志成冠军集团有限公司 filed Critical 广东志成冠军集团有限公司
Publication of WO2020191804A1 publication Critical patent/WO2020191804A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated

Definitions

  • the embodiment of the present invention relates to the technical field of underwater acoustic ranging, in particular to a high-precision long-distance underwater acoustic ranging method based on low-frequency continuous acoustic wave peak capture.
  • Underwater acoustic ranging technology is currently the main means of underwater positioning and navigation. With the continuous introduction and support of modern marine high-tech, the application of underwater acoustic ranging technology is not limited to military use, but is also widely used in underwater environment detection, marine resource development, Marine engineering construction, disaster prevention, near-shore development and detection of underwater targets and many other fields, therefore, it has important application value and strategic significance.
  • piezoelectric transducers As emission wave devices. It should be noted that the working frequency of piezoelectric transducers is generally higher. According to the relevant acoustic principles, the higher the frequency of the sound wave, the faster the attenuation speed of its propagation under water; at the same time, it is restricted by its own material properties. , If large heat is generated during work, the power of piezoelectric transducer is generally difficult to reach high. These factors also affect the effect of piezoelectric transducers in long-distance underwater ranging.
  • the present invention provides a high-precision long-distance underwater acoustic ranging method based on low-frequency continuous sound wave peak capture, so as to realize the completion of the detection by capturing the electric signal peak value under the condition of simply filtering the electric signal converted by the low-frequency acoustic wave.
  • the ranging of the target reduces the interference of clutter, thereby improving the accuracy of underwater ranging; on the other hand, it uses a magnetostrictive transducer instead of a piezoelectric transducer as a transmitting wave device to avoid high-frequency signals
  • the problem of fast attenuation in the propagation process increases the reliability of underwater acoustic ranging.
  • the embodiment of the present invention provides a high-precision long-distance underwater acoustic ranging method based on low-frequency continuous acoustic wave peak capture, which is applied to a transducer underwater acoustic ranging platform, and the transducer underwater acoustic ranging platform mainly includes: a power amplifier , Impedance matching circuit, magnetostrictive transducer, hydrophone, target, DSP&FPGA control panel and LCD touch screen;
  • the power amplifier and the impedance matching circuit serve as the input front end of the magnetostrictive transducer, so as to realize that the current input to the magnetostrictive transducer is a specific frequency;
  • the DSP&FPGA control board and the LCD touch screen are used to realize visual operation, and the visual operation is used to control the output waveform of the power amplifier with one key, perform sampling processing on the output waveform, and then input the magnetostrictive transducer and sample The electrical signal data sent by the hydrophone and the distance of the target object obtained by calculation;
  • the method includes:
  • the power amplifier receives a wave sending instruction
  • the power amplifier controls the magnetostrictive transducer to emit a sound wave a 0 according to the wave sending instruction, the sound wave a 0 includes a predetermined number of cycles of sine waves, and the predetermined number is represented by n;
  • the hydrophone receives the sound wave a 0 and the echo a 1 reflected by the target;
  • the hydrophone converts the acoustic wave a 0 and the echo a 1 into the transmitted wave electric information u 0 and the echo electric signal u 1 respectively ;
  • the peak time t i is used to obtain the distance d of the target, and the formula is expressed as:
  • d is the distance to the target
  • c is the propagation speed of sound in the environment in water
  • t 1 -t n is the peak time of the sampled electrical information number s corresponding to the sound wave a 0
  • t n+1- t 2n is the peak time of the sampled electrical information number s corresponding to the echo a 1 .
  • it also includes: setting a trigger value for the sampling circuit, and filtering the electrical signal data sent by the hydrophone with a value lower than the trigger value.
  • it also includes: using a band-pass filter to filter the transmitted electrical signal u 0 and the echo electrical signal u 1 respectively to obtain a preset frequency signal.
  • the present invention uses the characteristic that the magnetostrictive rod in the magnetostrictive transducer vibrates under the action of a magnetic field to emit a sound wave a 0 , and receives the sound wave a 0 and the echo reflected by the target through a hydrophone a 1, after the electro-acoustic converter acoustic echo a 1 and a 0 using the hydrophone, filtered to give a sampled electrical signal s, and further the relationship between the time difference of the sound wave according to a 0 and a 1 in the echo, using The peak time t i calculates the distance d of the target, and solves the problem that underwater ranging is not suitable for high-frequency sound waves and pulse waves.
  • the distance measurement of the target is completed by capturing the peak value of the electrical signal.
  • the interference of clutter is reduced, thereby improving the accuracy of underwater distance measurement;
  • the magnetostrictive transducer is used to replace the piezoelectric transducer As a transmitting wave device, it avoids the problem of fast attenuation during high-frequency signal propagation and increases the reliability of underwater acoustic ranging.
  • Figure 1 is a schematic structural diagram of a transducer underwater acoustic ranging platform provided by an embodiment of the present invention
  • FIG. 2 is a flowchart of a high-precision long-distance underwater acoustic ranging method based on low-frequency continuous sound wave peak capture provided by an embodiment of the present invention
  • Figure 3 is a schematic diagram for determining the peak time.
  • the high-precision long-distance underwater acoustic ranging method based on the low-frequency continuous sound wave peak capture provided in the present invention is applied to a transducer underwater acoustic ranging platform.
  • the main circuit part mainly includes: power amplifier, impedance matching circuit, magnetostrictive transducer, hydrophone;
  • the control circuit part mainly includes: bandpass filter, conditioning circuit, sampling circuit, DSP&FPGA control panel, LCD touch display Screen.
  • the power amplifier is connected to a three-phase power supply to obtain electric energy from the three-phase power supply connection to ensure normal operation.
  • the sound wave generating device used is a magnetostrictive transducer.
  • the vibrating material of the magnetostrictive transducer is a rare earth magnetostrictive rod.
  • Magnetostriction refers to a ferromagnetic material whose size changes significantly when the current passing through the coil changes or the distance from the magnet changes when an object is magnetized in a magnetic field. Ferromagnetostrictive material.
  • the power amplifier is also connected to an impedance matching circuit, and the impedance matching circuit is also connected to a magnetostrictive transducer.
  • the power amplifier and the impedance matching circuit serve as the input front end of the magnetostrictive transducer, so as to realize that the current wave input to the magnetostrictive transducer has a specific frequency, so that the magnetostrictive transducer outputs Sound waves of the same specific frequency.
  • the magnetostrictive transducer has good frequency characteristics, can work at low frequencies (tens to 1000 Hz), and has a wide operating frequency.
  • an impedance matching circuit is used for reactive power compensation to improve the acoustics of the transducer.
  • the power factor of the ranging platform thereby improving the efficiency of the transducer underwater acoustic ranging platform.
  • the transducer underwater acoustic ranging platform further includes: a target.
  • the DSP&FPGA control board and the LCD touch screen are used to realize visual operation, and the visual operation is used to control the output waveform of the power amplifier with one key, perform sampling processing on the output waveform, and then input the magnetostrictive transducer and sample
  • the electrical signal data sent by the hydrophone calculates the distance of the target.
  • the power amplifier receives a wave sending instruction.
  • the start measurement icon is pressed on the LCD touch screen to generate the initiation measurement signal, and the initiation measurement signal is transmitted to the DSP&FPGA control board through the RS485 communication serial port, and the DSP&FPGA control board enters a mode that can receive sampling signals. And send the wave sending instruction to the power amplifier.
  • the power amplifier controls the magnetostrictive transducer to emit a sound wave a 0 according to the wave sending instruction, the sound wave a 0 includes a preset number of cycles of sine waves, and the preset number is represented by n .
  • the power amplifier inputs a preset number n of current waves with a preset frequency to the magnetostrictive transducer according to the wave command to enable the magnetostrictive transducer to emit the preset number n of current waves.
  • a sound wave a 0 of a preset frequency for example, the sound wave a 0 is a sine wave including a preset number of n cycles.
  • the hydrophone receives the sound wave a 0 and the echo a 1 reflected by the target.
  • the hydrophone and the magnetostrictive transducer are arranged close to the same level, and can receive the sound wave a 0 emitted by the magnetostrictive transducer. Further, when the sound wave a 0 is transmitted to the target in the water, it is reflected back to the hydrophone due to the blocking of the target. In this embodiment, the sound wave emitted back by the target is referred to as echo a 1 .
  • the hydrophone converts the acoustic wave a 0 and the echo a 1 into transmission wave electric information u 0 and echo electric signal u 1, respectively .
  • the hydrophone can convert the sound wave signal into an electric signal, for example, the received sound wave a 0 is converted into the transmitted wave electric information u 0 , and the echo a 1 is converted into the echo electric signal u 1 .
  • the sampling circuit is set with a trigger value, and the electrical signal data sent by the hydrophone with a value lower than the trigger value is filtered, so as to eliminate the influence of various underwater noises.
  • a band-pass filter is used to filter the transmitted electrical signal u 0 and the echo electrical signal u 1 to obtain a preset frequency signal.
  • the electrical signal data sent by the hydrophone includes not only the transmitted wave electrical signal u 0 and the echo electrical signal u 1 , but may also include electrical signal data corresponding to underwater noise.
  • the transmitted wave electric signal u 0 and the echo electric signal u 1 are electric signals with the same preset frequency as the sound wave a 0
  • the electric signal data sent by the hydrophone can be filtered by setting a band-pass filter.
  • the preset frequency signal may be the transmitted wave electric signal u 0 or the echo electric signal u 1 .
  • the conditioning circuit is used to further filter and amplify the frequency signal.
  • the sampling circuit is used to sample the amplified frequency signal to obtain the sampled electrical signal s.
  • the echo a 1 received by the hydrophone should also be a sine wave with n cycles. Since it takes a certain time for the sound wave a 0 to propagate to the target and be reflected by the target back to the hydrophone, the hydrophone first receives the sound wave a 0 and then the echo a 1 .
  • the timer of the DSP in the control board records the time ⁇ corresponding to each sampled electrical signal s, and stores the time ⁇ in the time array T[]; for each group in the electrical signal array U[] The sampled electrical signal s is compared.
  • the distance d of the target can be expressed by the following formula:
  • d is the distance to the target
  • c is the propagation speed of sound in the environment in water
  • t 1 -t n is the peak time of the sampled electrical information number s corresponding to the sound wave a 0
  • t n+1- t 2n is the peak time of the sampled electrical information number s corresponding to the echo a 1 .
  • the technical solution of this embodiment uses the characteristic that the magnetostrictive rod in the magnetostrictive transducer vibrates under the action of a magnetic field to emit a sound wave a 0 , and receives the sound wave a 0 and the target through a hydrophone.
  • the echo a 1 reflected by the object, the acoustic wave a 0 and the echo a 1 are converted using a hydrophone, and then filtered to obtain the sampled electrical signal s, and then according to the acoustic wave a 0 and the echo a 1
  • Use the peak time t i to find the distance d of the target, and solve the problem that underwater ranging is not suitable for high-frequency sound waves and pulse waves.
  • the distance measurement of the target is completed by capturing the peak value of the electrical signal.
  • it reduces the interference of clutter, thereby improving the accuracy of underwater ranging;
  • it uses a magnetostrictive transducer instead
  • the piezoelectric transducer is used as a transmitting wave device to avoid the problem of fast attenuation during the propagation of high-frequency signals and increase the reliability of underwater acoustic ranging.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

一种基于低频连续声波峰值捕获的高精度远距离水声测距方法,通过磁致伸缩换能器中的磁致伸缩棒自身在磁场作用下振动的特点,发出声波a 0,并通过水听器接收声波a 0和由目标物反射的回波a 1(S130),使用水听器对声波a 0和回波a 1进行声电转换后,进行滤波处理,得到采样电信号s,进而根据声波a 0和回波a 1的时间差关系,使用峰值时间t i求出目标物的距离d(S170),测距方法实现了在仅对声音转换的电信号进行简单滤波的条件下,通过捕获电信号峰值的方式完成对目标物的测距,且提高了测距精度。

Description

一种基于低频连续声波峰值捕获的高精度远距离水声测距方法 技术领域
本发明实施例涉及水声测距的技术领域,尤其涉及一种基于低频连续声波峰值捕获的高精度远距离水声测距方法。
背景技术
水声测距技术是目前水下定位和导航的主要手段,在现代海洋高新技术的不断引入和支持下,水声测距技术应用不仅限于军用,也广泛应用于海底环境探测、海洋资源开发、海洋工程建设、灾难预防、近岸开发以及水下目标的探测等诸多领域,因此,它具有重要的应用价值和战略意义。
一方面,目前国内已有的远距离水声测距方法中,大多数是以压电换能器作为发射波装置。需要说明的是,压电换能器的工作频率一般较高,而由相关声学原理可知,声波的频率越高,其在水下传播的衰减速度就越快;同时由于受自身材料属性的制约,如工作时产生较大热量,压电换能器的功率一般难以达到很高。这些因素也影响了压电换能器在远距离水下测距的效果。
另一方面,目前的水下测距方法中,大多采用发出和接收脉冲波的形式,这就需要灵敏度高的水听器来及时的接收脉冲波,然而设备灵敏度太高,又比较容易受到其他噪声的影响,尤其是在远距离的水下测距过程中,更容易接收到其他杂波、且该杂波难以与发出的脉冲波相区别,导致找不出准确的声波传输时间差,无法准确的对目标物进行测距。
发明内容
本发明提供一种基于低频连续声波峰值捕获的高精度远距离水声测距方法,以实现在仅对低频的声波转换的电信号进行简单滤波的条件下,通过捕获电信号峰值的方式完成对目标物的测距,一方面,降低杂波的干扰,从而提高水下测距的精度;另一方面,利用磁致伸缩换能器替代压电换能器作为发射波装置,避免高频信号传播过程中衰减快的问题,增加水声测距的可靠性。
本发明实施例提供一种基于低频连续声波峰值捕获的高精度远距离水声测距方法,应用于换能器水声测距平台,所述换能器水声测距平台主要包括:功率放大器、阻抗匹配电路、磁致伸缩换能器、水听器、目标物、DSP&FPGA控制板和液晶触摸显示屏;
所述功率放大器和所述阻抗匹配电路作为所述磁致伸缩换能器的输入前端,以实现输入所述磁致伸缩换能器的电流为特定频率;
所述DSP&FPGA控制板和液晶触摸屏用于实现可视化操作,所述可视化操作用于一键控制所述功率放大器输出波形、对所述输出波形进行采样处理后输入所述磁致伸缩换能器、采样所述水听器发送的电信号数据、计算得到所述目标物的距离;
所述方法包括:
所述功率放大器接收发波指令;
所述功率放大器根据所述发波指令,控制所述磁致伸缩换能器发出声波a 0,所述声波a 0包括预设数量个周期的正弦波,所述预设数量用n表示;
所述水听器接收所述声波a 0和由所述目标物反射的回波a 1
所述水听器将所述声波a 0和回波a 1,分别转换为发射波电信息u 0和回波电 信号u 1
分别对所述发射波电信号u 0和回波电信号u 1进行滤波处理,得到预设的频率信号,所述频率信号与所述发射波电信号u 0或回波电信号u 1对应;
使用调理电路和采样电路对所述频率信号进行处理,得到采样电信号s;
从所述采样电信息号s中确定2n个峰值所对应的峰值时间t i,其中,i=1,2,……,2n,包括:将所述采样电信号s以m个为一组依次存放在电信号数组U[]中;利用DSP&FPGA控制板中的DSP自带的定时器记录每个采样电信号s对应的时间τ,并将所述时间τ存放在时间数组T[]中;对所述电信号数组U[]中每一组的采样电信号s进行比较,当中间的数值U[(mi-1)/2]大于其余所有数值时,记录下所述中间的数值U[(mi-1)/2]所对应的时间t i=T[(mi-1)/2],直到i=2n为止;
根据所述声波a 0和回波a 1的时间差关系,使用所述峰值时间t i求出所述目标物的距离d,其公式表示为:
Figure PCTCN2019081503-appb-000001
其中,d为与目标物的距离,c为环境下的声音在水中的传播速度,t 1-t n为所述声波a 0所对应的采样电信息号s的峰值时间,t n+1-t 2n为所述回波a 1所对应的采样电信息号s的峰值时间。
进一步的,还包括:对采样电路设置触发数值,对所述水听器发送的、数值低于所述触发数值的电信号数据进行过滤处理。
进一步的,还包括:使用带通滤波器分别对所述发射波电信号u 0和回波电信号u 1进行滤波处理,得到预设的频率信号。
本发明通过磁致伸缩换能器中的磁致伸缩棒自身在磁场作用下振动的特点,发出声波a 0,并通过水听器接收所述声波a 0和由所述目标物反射的回波a 1,使 用水听器对该声波a 0和回波a 1进行声电转换后,进行滤波处理,得到采样电信号s,进而根据所述声波a 0和回波a 1的时间差关系,使用所述峰值时间t i求出所述目标物的距离d,解决水下测距不适于适用高频声波和脉冲波的问题,在仅对低频的声波转换的电信号进行简单滤波的条件下,通过捕获电信号峰值的方式完成对目标物的测距,一方面,降低杂波的干扰,从而提高水下测距的精度;另一方面,利用磁致伸缩换能器替代压电换能器作为发射波装置,避免高频信号传播过程中衰减快的问题,增加水声测距的可靠性。
附图说明
图1为本发明实施例提供的一种换能器水声测距平台的结构示意图;
图2为本发明实施例提供的一种基于低频连续声波峰值捕获的高精度远距离水声测距方法的流程图;
图3为确定峰值时间的示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
本发明中提供的基于低频连续声波峰值捕获的高精度远距离水声测距方法,应用于换能器水声测距平台。
本实施例中,如图1所示,主要包括主电路和控制电路两个部分。其中, 主电路部分主要包括:功率放大器、阻抗匹配电路、磁致伸缩换能器、水听器;控制电路部分主要包括:带通滤波器、调理电路、采样电路、DSP&FPGA控制板、液晶触摸显示屏。进一步的,功率放大器与三相电源连接,以从该三相电源连接获取电能,以保证正常工作。
本实施例中,所采用的声波发生装置为磁致伸缩换能器。该磁致伸缩换能器的振动材料为稀土磁致伸缩棒。磁致伸缩是指物体在磁场中磁化时,在磁化方向会发生伸长或缩短,当通过线圈的电流变化或者是改变与磁体的距离时其尺寸即发生显著变化的铁磁性材料,通常称为铁磁致伸缩材料。
进一步的,本实施例中,功率放大器还与阻抗匹配电路连接,阻抗匹配电路还与磁致伸缩换能器。所述功率放大器和所述阻抗匹配电路作为所述磁致伸缩换能器的输入前端,以实现输入所述磁致伸缩换能器的电流波为特定频率,使得该磁致伸缩换能器输出相同的特定频率的声波。需要说明的是,磁致伸缩换能器具有良好的频率特性,可在低频率(几十至1000赫兹)下工作,工作频带宽。
再进一步的,由于磁致伸缩换能器本身呈阻感性,接入电路后会产生无功功率导致系统效率降低,所以本实施例中使用阻抗匹配电路进行无功补偿,提高换能器水声测距平台的功率因数,从而提高换能器水声测距平台的效率。
再进一步的,该换能器水声测距平台还包括:目标物。所述DSP&FPGA控制板和液晶触摸屏用于实现可视化操作,所述可视化操作用于一键控制所述功率放大器输出波形、对所述输出波形进行采样处理后输入所述磁致伸缩换能器、采样所述水听器发送的电信号数据、计算得到所述目标物的距离。
本实施例中提供的方法,具体包括如下步骤:
S110、所述功率放大器接收发波指令。
在一实施例中,在液晶触摸显示屏中按下开始测量图标,以生成发起测量信号,通过RS485通信串口将该发起测量信号传递到DSP&FPGA控制板中,DSP&FPGA控制板进入可接收采样信号模式,并向该功率放大器发送该发波指令。
S120、所述功率放大器根据所述发波指令,控制所述磁致伸缩换能器发出声波a 0,所述声波a 0包括预设数量个周期的正弦波,所述预设数量用n表示。
本实施例中,该功率放大器根据所述发波指令,向磁致伸缩换能器输入预设数量n的预设频率的电流波,使能磁致伸缩换能器发出该预设数量n的预设频率的声波a 0,如该声波a 0为包括预设数量n个周期的正弦波。
S130、所述水听器接收所述声波a 0和由所述目标物反射的回波a 1
本实施例中,该水听器与磁致伸缩换能器设置在同一水平靠近的位置,可以接收磁致伸缩换能器所发出的声波a 0。进一步的,声波a 0在水中传递至该目标物时,由于目标物的阻挡反射回到该水听器。本实施例中将由目标物所发射回的声波,称为回波a 1
所述水听器将所述声波a 0和回波a 1,分别转换为发射波电信息u 0和回波电信号u 1
本实施例中,水听器可以将声波信号转换为电信号,如将接收到的声波a 0转换为发射波电信息u 0,将回波a 1转换为回波电信号u 1
在一实施例中,对采样电路设置触发数值,对所述水听器发送的、数值低于所述触发数值的电信号数据进行过滤处理,可以消除水下各种噪声产生的影响。
S140、分别对所述发射波电信号u 0和回波电信号u 1进行滤波处理,得到预 设的频率信号,所述频率信号与所述发射波电信号u 0或回波电信号u 1对应;
本实施例中,使用带通滤波器分别对所述发射波电信号u 0和回波电信号u 1进行滤波处理,得到预设的频率信号。具体的,水听器所发送的电信号数据不仅仅包括发射波电信号u 0和回波电信号u 1,还可能包括水下噪声所对应的电信号数据。但由于发射波电信号u 0和回波电信号u 1是与声波a 0具有相同预设频率的电信号,可以通过设置带通滤波器对水听器所发送的电信号数据进行滤波处理,得到发射波电信号u 0和回波电信号u 1。所以,预设的频率信号可以能是发射波电信号u 0或回波电信号u 1
S150、使用调理电路和采样电路对所述频率信号进行处理,得到采样电信号s。
本实施例中,调理电路用于对频率信号进行进一步滤波和放大。采样电路用于对放大后的频率信号进行采样,得到采样电信号s。
S160、从所述采样电信息号s中确定2n个峰值所对应的峰值时间t i,其中,i=1,2,……,2n。
本实施例中,参照图3,当声波a 0包括预设数量n个周期的正弦波时,水听器所接收的回波a 1也应该是包括n个周期的正弦波。由于声波a 0传播到目标物,并由目标物反射回水听器需要一定时间,该水听器先接收到声波a 0,再接收到回波a 1。进一步的,通过将所述采样电信号s以m个为一组依次存放在电信号数组U[]中,其中,m为奇数,且远小于采样电路中一个周期的采样点数即可;利用DSP&FPGA控制板中的DSP自带的定时器记录每个采样电信号s对应的时间τ,并将所述时间τ存放在时间数组T[]中;对所述电信号数组U[]中每一组的采样电信号s进行比较,当中间的数值U[(mi-1)/2]大于其余所有数值时, 记录下所述中间的数值U[(mi-1)/2]所对应的时间t i=T[(mi-1)/2],对电信号数组U[]中其他组的采样电信号s进行比较,直到i=2n为止,从而得到峰值时间t i,其中,i=1,2,……,2n。
S170、根据所述声波a 0和回波a 1的时间差关系,使用所述峰值时间t i求出所述目标物的距离d。
本实施例中,目标物的距离d,可以通过如下公式表示:
Figure PCTCN2019081503-appb-000002
其中,d为与目标物的距离,c为环境下的声音在水中的传播速度,t 1-t n为所述声波a 0所对应的采样电信息号s的峰值时间,t n+1-t 2n为所述回波a 1所对应的采样电信息号s的峰值时间。
本实施例的技术方案,通过磁致伸缩换能器中的磁致伸缩棒自身在磁场作用下振动的特点,发出声波a 0,并通过水听器接收所述声波a 0和由所述目标物反射的回波a 1,使用水听器对该声波a 0和回波a 1进行声电转换后,进行滤波处理,得到采样电信号s,进而根据所述声波a 0和回波a 1的时间差关系,使用所述峰值时间t i求出所述目标物的距离d,解决水下测距不适于适用高频声波和脉冲波的问题,在仅对低频的声波转换的电信号进行简单滤波的条件下,通过捕获电信号峰值的方式完成对目标物的测距,一方面,降低杂波的干扰,从而提高水下测距的精度;另一方面,利用磁致伸缩换能器替代压电换能器作为发射波装置,避免高频信号传播过程中衰减快的问题,增加水声测距的可靠性。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽 然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (3)

  1. 一种基于低频连续声波峰值捕获的高精度远距离水声测距方法,应用于换能器水声测距平台,其特征在于,所述换能器水声测距平台主要包括:功率放大器、阻抗匹配电路、磁致伸缩换能器、水听器、目标物、DSP&FPGA控制板和液晶触摸显示屏;
    所述功率放大器和所述阻抗匹配电路作为所述磁致伸缩换能器的输入前端,以实现输入所述磁致伸缩换能器的电流为特定频率;
    所述DSP&FPGA控制板和液晶触摸屏用于实现可视化操作,所述可视化操作用于一键控制所述功率放大器输出波形、对所述输出波形进行采样处理后输入所述磁致伸缩换能器、采样所述水听器发送的电信号数据、计算得到所述目标物的距离;
    所述方法包括:
    所述功率放大器接收发波指令;
    所述功率放大器根据所述发波指令,控制所述磁致伸缩换能器发出声波a 0,所述声波a 0包括预设数量个周期的正弦波,所述预设数量用n表示;
    所述水听器接收所述声波a 0和由所述目标物反射的回波a 1
    所述水听器将所述声波a 0和回波a 1,分别转换为发射波电信息u 0和回波电信号u 1
    分别对所述发射波电信号u 0和回波电信号u 1进行滤波处理,得到预设的频率信号,所述频率信号与所述发射波电信号u 0或回波电信号u 1对应;
    使用调理电路和采样电路对所述频率信号进行处理,得到采样电信号s;
    从所述采样电信息号s中确定2n个峰值所对应的峰值时间t i,其中,i=1,2,……,2n,包括:将所述采样电信号s以m个为一组依次存放在电信号数组 U[]中;利用DSP&FPGA控制板中的DSP自带的定时器记录每个采样电信号s对应的时间τ,并将所述时间τ存放在时间数组T[]中;对所述电信号数组U[]中每一组的采样电信号s进行比较,当中间的数值U[(mi-1)/2]大于其余所有数值时,记录下所述中间的数值U[(mi-1)/2]所对应的时间t i=T[(mi-1)/2],直到i=2n为止;
    根据所述声波a 0和回波a 1的时间差关系,使用所述峰值时间t i求出所述目标物的距离d,其公式表示为:
    Figure PCTCN2019081503-appb-100001
    其中,d为与目标物的距离,c为环境下的声音在水中的传播速度,t 1-t n为所述声波a 0所对应的采样电信息号s的峰值时间,t n+1-t 2n为所述回波a 1所对应的采样电信息号s的峰值时间。
  2. 根据权利要求1所述的方法,其特征在于,还包括:对采样电路设置触发数值,对所述水听器发送的、数值低于所述触发数值的电信号数据进行过滤处理。
  3. 根据权利要求1所述的方法,其特征在于,还包括:使用带通滤波器分别对所述发射波电信号u 0和回波电信号u 1进行滤波处理,得到预设的频率信号。
PCT/CN2019/081503 2019-03-28 2019-04-04 一种基于低频连续声波峰值捕获的高精度远距离水声测距方法 WO2020191804A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910244852.8A CN109884646A (zh) 2019-03-28 2019-03-28 一种基于低频连续声波峰值捕获的高精度远距离水声测距方法
CN201910244852.8 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020191804A1 true WO2020191804A1 (zh) 2020-10-01

Family

ID=66934983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081503 WO2020191804A1 (zh) 2019-03-28 2019-04-04 一种基于低频连续声波峰值捕获的高精度远距离水声测距方法

Country Status (2)

Country Link
CN (1) CN109884646A (zh)
WO (1) WO2020191804A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6202034B1 (en) * 1999-01-27 2001-03-13 Delphi Technologies, Inc. Ultrasonic ranging system and method for improving accuracy thereof
CN103995263A (zh) * 2014-05-20 2014-08-20 山东科技大学 一种基于时序的超声波测距方法
CN104931971A (zh) * 2015-06-19 2015-09-23 上海美迪索科电子科技有限公司 一种用于无线测距的超声波测距方法及测距装置
CN105241459A (zh) * 2015-10-19 2016-01-13 东南大学 一种用于室内水下目标定位的时延估计方法及装置
CN106054135A (zh) * 2016-05-12 2016-10-26 东南大学 一种基于周期移动时间窗的被动水声定位方法
CN107765235A (zh) * 2016-08-16 2018-03-06 合肥科盛微电子科技有限公司 基于数字滤波、数字包络提取的超声波测距算法
CN107884774A (zh) * 2017-12-01 2018-04-06 太原理工大学 一种多频率的抗干扰无变压器驱动的超声波测距装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2645091Y (zh) * 2003-07-16 2004-09-29 武汉理工大学 收发同体型超声测距仪
JP2011252747A (ja) * 2010-06-01 2011-12-15 Tokyo Univ Of Marine Science & Technology 水中測位システム及び水中測位方法
EP2680029A1 (de) * 2012-06-27 2014-01-01 Leica Geosystems AG Distanzmessverfahren und Distanzmesser
CN104267643B (zh) * 2014-09-27 2016-08-31 江苏华宏实业集团有限公司 水下机器人目标定位识别系统
US10145948B2 (en) * 2016-07-13 2018-12-04 Texas Instruments Incorporated Methods and apparatus for narrowband ranging systems using coarse and fine delay estimation
CN106680823B (zh) * 2017-02-09 2023-08-08 天津大学 利用抹香鲸叫声脉冲的目标距离和速度探测方法与装置
JPWO2018181018A1 (ja) * 2017-03-30 2020-03-05 日本電気株式会社 信号処理装置および信号処理方法
CN107014906B (zh) * 2017-04-17 2019-10-25 中国计量大学 一种新型的用于测量水声无源材料反射系数的方法
CN107765251B (zh) * 2017-10-19 2020-01-17 维沃移动通信有限公司 距离检测方法和终端设备
CN108107403B (zh) * 2017-12-20 2020-07-03 北京声智科技有限公司 一种波达方向估计方法和装置
CN108882108B (zh) * 2018-07-05 2019-09-20 湖南大学 适用于海洋通讯电声换能器的阻抗匹配系统及其匹配方法
CN109313264B (zh) * 2018-08-31 2023-09-12 深圳市汇顶科技股份有限公司 基于飞行时间的测距方法和测距系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6202034B1 (en) * 1999-01-27 2001-03-13 Delphi Technologies, Inc. Ultrasonic ranging system and method for improving accuracy thereof
CN103995263A (zh) * 2014-05-20 2014-08-20 山东科技大学 一种基于时序的超声波测距方法
CN104931971A (zh) * 2015-06-19 2015-09-23 上海美迪索科电子科技有限公司 一种用于无线测距的超声波测距方法及测距装置
CN105241459A (zh) * 2015-10-19 2016-01-13 东南大学 一种用于室内水下目标定位的时延估计方法及装置
CN106054135A (zh) * 2016-05-12 2016-10-26 东南大学 一种基于周期移动时间窗的被动水声定位方法
CN107765235A (zh) * 2016-08-16 2018-03-06 合肥科盛微电子科技有限公司 基于数字滤波、数字包络提取的超声波测距算法
CN107884774A (zh) * 2017-12-01 2018-04-06 太原理工大学 一种多频率的抗干扰无变压器驱动的超声波测距装置

Also Published As

Publication number Publication date
CN109884646A (zh) 2019-06-14

Similar Documents

Publication Publication Date Title
CN108594238B (zh) 基于瞬态信号的水声换能器电声性能校准装置及校准方法
CN110186546B (zh) 基于粉红噪声的水听器灵敏度自由场宽带校准方法
CN110006997B (zh) 金属复合材料超声波测厚仪
JP2015531474A (ja) 超音波フェーズドアレイ試験装置
JPH0130104B2 (zh)
JPS5847027B2 (ja) 超音波パルス反響信号を判定する方法及び装置
CN106226660A (zh) 接触式超声波局部放电检测仪的计量装置
CN101441200B (zh) 一种超声检测方法和系统
CN105004930B (zh) 一种新型的微波探测方法及装置和应用
WO2020191804A1 (zh) 一种基于低频连续声波峰值捕获的高精度远距离水声测距方法
CN203037849U (zh) 一种超声波测厚仪
CN110006996B (zh) 金属复合材料超声波测厚方法及层间界面在超声波测厚中的应用
RU2390796C1 (ru) Эхолот
JP2005043164A (ja) 音波伝播時間測定装置
CN110988853A (zh) 基于有效峰值的超声波到达时间计算方法
CN213986856U (zh) 一种孔中激振式波速测试仪
KR101282489B1 (ko) 두 개의 운용 주파수를 갖는 정밀수중탐사용 수중초음파카메라 및 그 작동방법
CN104375134A (zh) 通用水下声学测量系统
CN2140049Y (zh) 便携式电磁和压电超声合成测厚仪
CN107389803B (zh) 一种液体与固体延迟材料之间声反射系数的测量方法
CN104614027B (zh) 超声波测量装置的测量方法
CN102590356A (zh) 声发射传感器灵敏度测量装置
RU102270U1 (ru) Параметрический эхолокатор
Leiko et al. Experimental data on dynamic changes of radio pulses when they are emitted by piezoceramic electromechanical transducers
RU192374U1 (ru) Параметрический локатор

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920974

Country of ref document: EP

Kind code of ref document: A1