WO2020191724A1 - 车辆控制系统与车辆 - Google Patents

车辆控制系统与车辆 Download PDF

Info

Publication number
WO2020191724A1
WO2020191724A1 PCT/CN2019/080144 CN2019080144W WO2020191724A1 WO 2020191724 A1 WO2020191724 A1 WO 2020191724A1 CN 2019080144 W CN2019080144 W CN 2019080144W WO 2020191724 A1 WO2020191724 A1 WO 2020191724A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
analog
control
vehicle
Prior art date
Application number
PCT/CN2019/080144
Other languages
English (en)
French (fr)
Inventor
马建云
应佳行
商志猛
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to EP19921191.3A priority Critical patent/EP3885213A4/en
Priority to CN201980002955.1A priority patent/CN110876265A/zh
Priority to PCT/CN2019/080144 priority patent/WO2020191724A1/zh
Publication of WO2020191724A1 publication Critical patent/WO2020191724A1/zh
Priority to US17/198,092 priority patent/US20210197857A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/005Handover processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • B60R16/0231Circuits relating to the driving or the functioning of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0098Details of control systems ensuring comfort, safety or stability not otherwise provided for
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0055Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements
    • G05D1/0061Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements for transition from automatic pilot to manual pilot and vice versa
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0004In digital systems, e.g. discrete-time systems involving sampling
    • B60W2050/0006Digital architecture hierarchy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40208Bus networks characterized by the use of a particular bus standard
    • H04L2012/40215Controller Area Network CAN
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40267Bus for use in transportation systems
    • H04L2012/40273Bus for use in transportation systems the transportation system being a vehicle

Definitions

  • the invention relates to the field of automatic driving, in particular to a vehicle control system and a vehicle.
  • the automatic driving system of the vehicle needs to add a set of control system in addition to the control network of the vehicle itself.
  • the communication protocol of the control network of the vehicle is confidential before leaving the factory, if the new control system needs to be connected to the The control network needs to decrypt the communication protocol, but the decryption process is very resource intensive. And it is easier to have fault codes in the decryption process, that is, it is impossible to accurately interface to the control network, which leads to errors in the information interaction between the control system of the shape and the control network of the vehicle itself, which leads to the safety of the vehicle during automatic operation and driving. low.
  • a vehicle including the aforementioned vehicle control system is provided.
  • An embodiment of the present invention discloses a vehicle control system, which includes a control module, which is electrically connected to the vehicle control bus, and is used for receiving bus signals from the control bus.
  • the control module includes one or more processors for querying the type of control signal according to the bus signal, and simulating the control output signal of the vehicle according to the query result, and controlling the driving state of the vehicle.
  • a vehicle including the aforementioned vehicle control system is also provided.
  • the vehicle control system of the present invention executes the automatic operation driving mode, it does not need to decode and analyze the information protocol in the vehicle's own operating system to complete the control of the various functional modules of the vehicle, and make the vehicle
  • the execution unit of the vehicle accurately performs driving operations, which simplifies the complexity of the automatic operation of the vehicle.
  • the vehicle control system in this case performs control based on the original control signal in the vehicle, thereby ensuring the accuracy and safety of vehicle control.
  • Figure 1 is a circuit structure diagram of a vehicle control system in an embodiment of the present invention
  • Figure 2 is a waveform diagram of a first sensing differential signal and a second sensing differential signal
  • FIG. 3 is a schematic diagram of the circuit structure of the power supply unit, the second switch unit, and the second execution module shown in FIG. 1;
  • FIG. 4 is a schematic flowchart of a traditional gear shift strategy provided by an embodiment of this application.
  • Fig. 5 is a functional block diagram of a vehicle including a vehicle control system in an embodiment of the application;
  • FIG. 6 is a schematic structural diagram of a gearbox in the first execution unit of an embodiment of the application.
  • FIG. 7 is a schematic diagram of the connection structure of the oil pump and the fluid coupling in the first execution unit of an embodiment of the application.
  • An embodiment of the present application discloses a vehicle control system, which is used in a vehicle.
  • the vehicle control system includes a control module, which is electrically connected to the vehicle control bus for receiving bus signals from the control bus.
  • the control module includes one or more processors for querying the type of the bus model according to the bus signal, and according to the query result, simulating the control output signal of the vehicle to control the vehicle to be operated by the driver or Automatic driving.
  • controlling the driving state of the vehicle includes: simulating the type of signal corresponding to the query result and outputting it to the corresponding execution unit.
  • the signal of the type corresponding to the analog query result includes: the signal of the type corresponding to the analog query result has the same waveform, voltage amplitude, and frequency as the control signal obtained by the query.
  • control signal includes a transmitted vehicle sensor signal and/or a vehicle state signal.
  • the bus signal is used to indicate that the vehicle is operating by the driver or driving under automatic operation
  • the bus for transmitting the control signal includes a status signal bus electrically connected to the vehicle reminder module and/ Or electrically connect the sensor bus of the sensor unit.
  • control module pre-stores a plurality of control signals that characterize the vehicle in different driving states.
  • FIG. 1 is a circuit structure diagram of a vehicle control system 100 in an embodiment of the application.
  • the vehicle control system 100 includes a control module 10, a first subsystem 101 and a second subsystem 102.
  • the first subsystem 101 and the second subsystem 102 are electrically connected to the control module 10 respectively.
  • the first sub-system 101 and the second sub-system 102 respectively obtain different types of sensing signals or status signals according to control signals.
  • the first sub-system 101 is used to obtain the sensing signal collected by the sensing module
  • the second sub-system 102 is used to obtain the signal for controlling the vehicle to perform a reminder operation.
  • the control bus CC is used to transmit a mode signal provided by a master control system (not shown in the figure) for indicating that the vehicle needs to be in an automatic operation driving mode or a human operation driving mode.
  • the control bus controller area network bus Controller Area Network, CAN bus. Since the CAN bus is a type of bus that encrypts the transmission data, usually the external system needs to crack the signal transmitted in the CAN bus, and then control the actuator of the vehicle based on the information obtained by the crack.
  • different manufacturers and types of vehicle bus encryption methods are different. The use of cracking methods will increase the cost of software. At the same time, cracking will generate fault codes and packet loss, which may easily lead to the loss of bus transmission instructions or return fault codes, which are not obtained. carried out.
  • the first subsystem 101 includes a sensing unit 12, an execution unit 13, a first switch unit 14 and an analog unit 15.
  • the control module 10 includes an analog control processor 11.
  • the analog control processor 11 is electrically connected to the control bus CC, the analog unit 15 and the first switch unit 14.
  • the sensing unit 12 and the analog unit 15 are electrically connected to the execution unit 13 through the first switch unit 14.
  • the first switch unit 14 makes the sensing unit 15 and the execution unit 13 electrically connect under the control of the analog processor 11 according to the mode signal or
  • the simulation unit 15 is electrically connected to the execution unit 13.
  • the signal transmitted by the control bus CC is directly input to the sensing unit 12 through transparent transmission.
  • Transparent transmission means that regardless of the content of the service transmitted in the communication, it is only responsible for transmitting the content of the transmission from the source address to the destination address. Without making any changes to the content of business data.
  • the sensor is only responsible for receiving the control signal from the control bus CC, and does not need to crack the signal, which can avoid packet loss and a large number of fault codes.
  • the analog signal waveform output by the CC bus can be obtained.
  • Each analog signal waveform corresponds to a different type of control signal; the type of control signal is determined by the waveform of the analog signal and the amplitude of the signal.
  • the signal output by the steering wheel is a continuous analog differential signal, and the amplitude of the signal is related to the trigonometric function value of the rudder angle of the steering wheel; for another example, the signal output by the throttle is a continuous analog differential signal, and the amplitude of the signal is related to that of the accelerator pedal.
  • the stroke function is related
  • the signal type of the brake output is also a continuous analog differential signal
  • the amplitude of the signal is related to the stroke function of the brake.
  • the output signal amplitude values of different vehicles will be different.
  • the relationship between the direction angle and the output voltage of a type A vehicle can be expressed by the following formula:
  • V A a*f(b ⁇ +c)+d
  • f( ⁇ ) is the trigonometric function about the angle ⁇
  • a, b, c, d are the correction coefficients of the function.
  • the specific correction values of a, b, c, d can be obtained by pre-collecting the corresponding relationship between the rudder angle and the output voltage.
  • the sensing unit 12 includes at least one first sensor 121 for sensing one of the running states of the vehicle and outputting a first sensing signal.
  • the first sensor 121 is an accelerator position sensor for the accelerator pedal stroke distance.
  • the first sensing signal is used to characterize the amount of fuel that needs to be provided and the vehicle speed.
  • the first sensing signal includes a first sensing differential signal and a second sensing differential signal.
  • the first sensing differential signal and the second sensing differential signal are both differential voltage signals.
  • the second voltage range included in the second differential sensing signal is greater than and includes the first voltage range of the first differential sensing signal.
  • FIG. 2 it is a waveform diagram of the first sensing differential signal and the second sensing differential signal.
  • the first differential sensing signal and the second differential sensing signal have different voltage ranges, for example, the first voltage range is 0.4V-1.8V, and the second voltage range is 0.8V-3.6V.
  • the sensing unit 12 shown in FIG. 1 simultaneously obtains the first sensing differential signal and the second sensing differential signal, and determines the CC bus transmission according to the amplitude and waveform of the first sensing differential signal and the second sensing differential signal Control signal.
  • the analog control processor 11 queries the signals corresponding to different types of signal buses according to the mode control signals provided by the control bus CC.
  • the analog control processor 11 includes the first sensor signal in the query sensor signal, and outputs a reference signal to the analog unit 15 according to the query result, and the analog unit 15 according to the reference signal
  • the first sensing signal is simulated to output the first analog signal. Wherein, the change curve of the first analog signal and the sensing signal are consistent.
  • the analog control processor 11 queries the first sensing signal as a whole formed by the two differential signals of the first sensed differential signal and the second sensed differential signal, and queries the result according to the pre-stored signal waveform.
  • the signal type represented by the first sensor signal is not limited to the first sensor signal.
  • the analog control processor 11 includes a storage unit 111, a signal generation unit 112, a processing unit 113, and a first analog-to-digital conversion unit 114.
  • the storage unit 111 stores a sensing signal list composed of a plurality of first sensing signals, wherein the plurality of first sensing signals are respectively sensing signals of multiple states of accelerator pedal stroke collected in advance according to the first sensor 121.
  • the processing unit 113 is electrically connected to the storage unit 111 and the signal generating unit 112 respectively.
  • the processing unit 112 receives the mode control signal and outputs a corresponding selection signal to the first switch unit 14 according to the mode control signal.
  • the mode control signal is used to indicate that the vehicle currently needs to be in an automatic operation driving mode or a human operation driving mode, and the mode control signal can be provided by the corresponding personnel outside the vehicle, or can be detected and recognized by the corresponding sensor module of the vehicle to trigger the corresponding Functional modules are provided.
  • the mode control signal when the mode control signal is at a high level, it represents an automatic operation driving mode, and when the mode control signal is at a low level, it represents an artificial operation driving mode.
  • the processing unit 113 is no longer controlled by the transparent transmission signal of the control bus CC, but is controlled by the control signal of the driving system.
  • the driving system control signal may partly come from the CC control bus.
  • driving system control signals may come from vehicle sensors, or a logic processor that generates vehicle control signals based on vehicle sensors. According to the type of signal received.
  • the processing unit 113 searches for the corresponding first sensor signal in the sensor signal list, and simulates the first sensor signal to generate a first analog signal.
  • the first analog signal will control the first execution unit 13 to execute the corresponding operating. That is, the processing unit 112 controls the signal generating unit 112 to output the corresponding reference signal according to the first sensor signal obtained by the query. Furthermore, the simulation unit 15 simulates the first sensing signal according to the reference signal to generate a first analog signal.
  • the first analog signal includes the first analog differential signal and the second analog differential signal, wherein, in this embodiment, both the first analog differential signal and the second analog differential signal are also differential voltage signals, and The first analog differential signal corresponds to the first sensed differential signal, and the second analog differential signal corresponds to the second sensed differential signal.
  • the first and second analog differential signals are input to the actuator to control the vehicle.
  • the execution unit includes a variety of different types of actuators, which can control the rudder angle of the turning direction of the vehicle, control the gear position of the vehicle, and control the throttle and throttle of the vehicle. Engine speed and so on.
  • the first analog signal includes a first analog differential signal and a second analog differential signal
  • the change curve of the first analog differential signal is consistent with the change curve of the first sensed differential signal
  • the second analog differential signal is consistent with the The change curves of the second sensing differential signal are consistent.
  • the consistent change curve includes the same waveform, voltage amplitude, and frequency.
  • the processing unit 113 controls the first sensor signal obtained by corresponding sensing by the sensing unit 12 according to the driver's operation to directly output to the first execution unit 13.
  • the signal generating unit 112 is a pulse width modulation signal (Pulse Width Modulation, PWM) circuit
  • the output reference signal is a pulse width modulation signal with a certain duty cycle.
  • the first analog-to-digital conversion unit 114 is electrically connected to the first sensor 121, the first switch unit 14 and the processing unit 113.
  • the first analog-to-digital conversion unit 114 is electrically connected to the two normally open input contacts of the relay in the first switch unit 14 to receive the feedback of the first analog differential signal and the second analog differential signal to perform analog control.
  • the number is converted into a digital signal and provided to the processing unit 113.
  • the processing unit 113 calculates and adjusts the pulse width adjustment signal according to the feedback of the first analog differential signal and the second analog differential signal, so that the first analog differential signal and the second analog differential signal are in a preliminary state. Set range.
  • the first analog-to-digital conversion unit 114 is electrically connected to the first sensor 121 to receive the feedback of the first sensed differential signal and the second sensed differential signal to perform analog-to-digital conversion processing, and to perform analog-to-digital conversion It is a digital signal and is provided to the processing unit 113.
  • the processing unit 113 determines the state of the first operating module according to the first sensed differential signal and the second sensed differential signal for performing mode conversion processing, and executes according to the state of the first operating module Run the operation in the automatic operation driving mode or exit the automatic operation driving mode.
  • the analog unit 15 includes a voltage follower 151, an operational amplifier 152, and an adder 153 electrically connected in sequence.
  • the voltage follower 151 is electrically connected between the signal generating unit 112 and the operational amplifier 152, and is used for receiving the reference signal, and is used for performing operational amplification processing on the pulse width modulated signal and also on the pulse width
  • the modulation signal performs voltage following processing to isolate the operational amplifier and prevent interference.
  • the operational amplifier 152 is electrically connected to the voltage follower 151 and the adder 153 respectively. After receiving the pulse width adjustment signal, perform operational amplification processing and convert it into an analog voltage signal, the analog voltage signal has a first voltage range, and the analog voltage signal is transmitted to the first switch as the first analog differential signal Unit 12.
  • the adder 153 is electrically connected to the first switch unit 12, and is configured to perform an addition operation on the first analog differential signal and a preset reference voltage range to obtain a second voltage range, which is used as the second analog differential signal to be transmitted to The second switch unit 12.
  • the first switch unit 14 is electrically connected to the analog unit 15, the sensing unit 12, and the execution unit 13, and is used for selectively electrically conducting or sensing the analog unit 15 and the execution unit 13 according to the selection signal output by the analog control processor 11
  • the unit 12 and the execution unit 13 are electrically connected.
  • the execution unit 13 is used for running operations of the vehicle. Among them, the sensing unit 12 and the analog unit 15 are not electrically connected to the execution unit 13 at the same time.
  • the first switch unit 14 is a double-pole double-throw relay (not labeled), and the relay includes two normally closed input contacts L1 to L2, two normally open input contacts N1 to N2, and two Output terminals O1 ⁇ O2.
  • the two normally closed input contacts L1 to L2 of the relay are electrically connected to the first sensor 121 to receive the first sensing differential signal and the second sensing differential signal in the first sensing signal .
  • the two normally open input contacts N1 to N2 of the relay are respectively electrically connected to the operational amplifier 152 and the adder 153 in the analog unit 15 to receive the first analog differential signal and the adder 153 in the first analog signal.
  • the second analog differential signal is respectively electrically connected to the operational amplifier 152 and the adder 153 in the analog unit 15 to receive the first analog differential signal and the adder 153 in the first analog signal.
  • the second analog differential signal is respectively electrically connected to the operational amplifier 152 and the adder 153 in the analog unit 15 to receive the first analog differential signal and the adder 153 in the first analog signal.
  • the second analog differential signal is respectively electrically connected to the operational amplifier 152 and the adder 153 in the analog unit 15 to receive the first analog differential signal and the adder 153 in the first analog signal.
  • the analog control processor 11 controls the two output terminals O1 to O2 of the relay to be electrically connected to the execution unit 13, so as to selectively control the first sensing signal or the first analog signal to The execution unit 13.
  • the selective signal when the selective signal is at a high level, it indicates that the vehicle is in an automatic driving mode.
  • the two normally open input contacts N1 ⁇ N2 and the two output terminals O1 ⁇ O2 are electrically conducted under the control of the low level. It means that when the simulation unit 15 and the execution unit 13 are electrically connected, the first sensing signal is transmitted to the execution unit 13 through the relay, and the execution unit 13 executes the corresponding operation operation according to the first sensing signal, for example, according to the driver operating the accelerator pedal Increase the throttle to increase the speed or decrease the throttle to decrease the speed.
  • the selective signal When the selective signal is at a low level, it indicates that the vehicle is in a human-operated driving mode operated by the driver.
  • the two normally closed input contacts L1 ⁇ L2 and the two output terminals O1 ⁇ O2 are electrically conducted under the control of the low level.
  • the sensing unit 12 and the execution unit 13 when the sensing unit 12 and the execution unit 13 are electrically connected, it indicates that the vehicle is in an automatic operation driving mode.
  • the first analog signal is transmitted to the execution unit 13 through the relay, and the execution unit 13 executes the corresponding operation according to the first analog signal. Operation, such as automatically increasing the throttle to increase the vehicle speed or reducing the throttle to reduce the vehicle speed directly based on the current vehicle conditions and road conditions.
  • control module 10 and the analog unit 15 are connected to the normally open input contacts in the relay, when the control module 10 is unable to correctly output the first analog signal due to abnormal signal transmission or power failure, it can ensure that the relay is normally open.
  • the sensing unit 12 that closes the input contact can be reliably electrically connected to the first execution unit 13, ensuring that the first sensing signal is reliably provided to the first execution unit 13 to perform the corresponding operation correctly, and the safe driving of the vehicle .
  • the first switch unit 14 is a multi-channel digital switch
  • the multi-channel digital switch includes at least two sets of input ports and at least one set of output ports.
  • the output ports are electrically connected, each group of the input ports includes two input ports, and each group of the output ports includes two output ports.
  • Two input ports in a group of the input ports are electrically connected to the first sensor to receive the first sensing differential signal and the second sensing differential signal in the first sensing signal
  • Another set of two input ports in the input port is electrically connected to the analog control unit to receive the first analog differential signal and the second analog differential signal in the first analog signal.
  • the analog control processor 11 controls the two input and output ports to connect to the first execution unit 13 to selectively provide the first sensing signal or the first analog signal to the first execution unit 13.
  • the first sensor 121 is a steering wheel sensor, a brake sensor, a door lock sensor, or a gear position sensor, which is used to sense the rotation stroke position of the steering wheel, the brake stroke position, the door lock position or the gear position, respectively Position to output the first sensing signal correspondingly.
  • the analog control processor 11 electrically controls the bus electrical CC connection for obtaining the bus signal.
  • the processing unit 113 When the mode control signal is at a low level, it indicates that the current vehicle is in a human-operated driving mode.
  • the processing unit 113 outputs a selection signal to the first switch unit 14 to control its two normally closed input contacts L1 ⁇ L2 and two output terminals O1 ⁇ O2
  • the electrical conduction makes the sensing unit 12 and the first execution unit 13 electrically connected. That is to say, the first sensor signal obtained by the operation performed by the human being sensed by the sensing unit 12 is directly transmitted to the first execution unit 13, so as to realize the human operation and driving of the vehicle.
  • the processing unit 113 When the mode control signal is at a high level, it indicates that the current vehicle is in an automatic operation driving mode.
  • the processing unit 113 outputs a selection signal to the first switch unit 14 to control its two normally open input contacts N1 ⁇ N2 and two output terminals O1 ⁇ O2. Electrical conduction allows the analog unit 15 to be electrically connected to the first execution unit 13.
  • the processing unit 113 queries the storage unit 111 for the first sensor signal that matches the current road condition, and the signal generation unit 112 outputs a pulse corresponding to the duty cycle.
  • the wide modulation signal is sent to the analog unit 15.
  • the analog unit 15 obtains the first analog signal in the first analog signal through the isolation processing of the voltage follower 151 and the amplification and sum operation of the operational amplifier 152 and the adder 153 for the pulse width modulation signal.
  • An analog differential signal and the second sensing differential signal are also included in the first analog signal.
  • the analog unit 15 outputs the first analog signal to the first execution unit 13 so as to realize the automatic control of the first execution unit 13 by the control module 10.
  • the second subsystem 102 includes a voltage divider circuit 16, a voltage control circuit 17, a second switch unit 18, a second execution unit 19 and a power supply unit PU, and the analog control processor 11 also includes a second analog-to-digital conversion unit 116 And the first output unit 115.
  • the voltage divider circuit 16 is electrically connected between the state signal line CA and the second analog-to-digital conversion unit 116
  • the voltage control circuit 17 is electrically connected between the first output unit 115 and the second switch unit 18, and the processing unit 113 It is electrically connected to the first output unit 115.
  • the power supply unit PU is electrically connected to the switch module 18 and the second execution unit 19.
  • the first output unit 115 is the input and output pin GPIO of the chip.
  • the voltage divider circuit 16 is electrically connected to the status signal line CA for receiving the status signal transmitted by the status signal line CA, such as a signal for controlling the vehicle to perform a reminder operation.
  • the status signal line CA is the left turn signal wire harness.
  • the voltage divider circuit 16 is used to identify the voltage state of the status signal, that is, it is used to identify whether the status signal is currently at a high voltage or a low voltage, and will correspondingly output the same identification as the waveform and amplitude of the status signal according to the high and low voltages of the status signal
  • the voltage signal is transmitted to the second mode conversion unit 116.
  • the state signal is also stored in the storage unit 111 in advance.
  • the second analog-to-digital conversion unit 116 performs analog-to-digital conversion of the identification voltage signal into a signal in digital form and outputs it from the first output port 115.
  • the voltage control circuit 17 is electrically connected to the first output unit 115 for receiving the identification voltage signal and outputting the second control signal accordingly. Specifically, when the identification voltage signal is at the first voltage, the second sub-control signal in the first voltage state is output, and when the identification voltage signal is at the second voltage, the second sub-control signal in the second voltage state is output .
  • the first voltage state when the first voltage is at a high level, the first voltage state is at a high level, and when the second voltage is at a low level, the second voltage state is at a low level.
  • the second switch unit 18 includes a first connection terminal 181, a second connection terminal 182, and a control terminal 183.
  • the first connection terminal 181 and the second connection terminal 182 are selectively electrically conductive or electrically disconnected according to the voltage of the control terminal 183 .
  • the first connection terminal 181 is electrically connected to the power supply module PU to receive the first driving voltage VDD
  • the second connection terminal 182 is electrically connected to the second execution unit 19
  • the control terminal 183 is electrically connected to the voltage in the analog control unit 11 Control circuit 17.
  • the second switch unit 18 is a single-pole single-throw relay, and the first connection terminal 181 is the normally open terminal of the relay, the second connection terminal 182 is the output terminal of the relay, and the control terminal 183 is the power terminal of the relay.
  • the relay When the second control signal is at a high level, the relay is energized in a closed state, and the first connection terminal 181 and the second connection terminal 182 are electrically conducted; when the second control signal is at a low level, the relay is energized In the disconnected state, the first connecting terminal 181 and the second connecting terminal 182 are electrically disconnected.
  • the first driving voltage VDD is transmitted to the second execution module 19, and the second execution module 19 executes the first reminding operation, so that the vehicle In the first reminder state.
  • the first driving voltage VDD stops transmitting to the second execution module 19.
  • the first reminder operation is a left turn reminder or a right turn reminder of the vehicle
  • the first reminder state is that the left turn signal is on or the right turn signal is on.
  • the second execution unit 19 is a left turn signal or a right turn signal.
  • FIG. 3 is a simplified circuit diagram of the power supply unit PU, the second switch unit 18 and the second execution module 19.
  • the first driving voltage VDD is transmitted to the second execution module 19, and the second execution module 19 is in the execution state of the reminding operation, that is, The left turn signal is in the lighting state; when the second sub-control signal is in the second voltage state, the first connection terminal 181 and the second connection terminal 182 are electrically disconnected, and the first driving voltage VDD stops transmitting to all As for the second execution module 19, the second execution module 19 is in the execution state without reminding the operation, that is, the left turn signal is in the off state.
  • the first driving voltage VDD is 12V.
  • the first reminder operation is a door lock control reminder, an ignition stop control reminder, a dual flashing light control reminder, a low beam reminder, a width indicator reminder, a front fog light reminder, a rear fog light reminder or a far Light reminder.
  • the first reminder state is that the lock control, the ignition and flameout control, the dual flashing control, the low beam lamp, the width indicator lamp, the front fog lamp, the rear fog lamp or the high beam lamp are in the on state.
  • the second The execution module is door lock, ignition flame extinguisher, double flashing light, low beam light, width indicator light, left and right lane change reminder, front fog light, rear fog light or high beam light.
  • the state signal may also be a left and right lane change signal, and the second execution unit 19 automatically executes the operations corresponding to the left and right lane change during the automatic driving mode.
  • the mode control signal When the mode control signal is at a low level, it indicates that the current vehicle is in an artificial driving mode.
  • the voltage divider circuit 16 recognizes that the state signal is the first voltage with a high level, it outputs an identification voltage signal, and the second analog-to-digital conversion unit 116 uses the identification voltage The signal is converted into a digital signal and transmitted to the voltage control unit 17 through the first output unit 115.
  • the voltage control unit 17 outputs the second control signal in the first voltage state to the second switch unit 18 according to the voltage identification signal.
  • the first connection terminal 181 and the second connection terminal 182 Under the control of the second control signal, the first connection terminal 181 and the second connection terminal 182 are directly electrically connected, so that the first driving voltage VDD received by the first connection terminal 181 is transmitted to the electrical connection with the second connection terminal 182.
  • the second execution unit 19 enables the second execution unit 19 to perform the first reminder operation.
  • the processing unit 113 obtains the status signal from the storage unit 111 and transmits the status signal to the voltage control unit 17 through the first output unit 115.
  • the voltage control The unit 17 outputs the second control signal of the first voltage state to the second switch unit 18 according to the state signal.
  • the second switch unit 18 makes the first connection terminal 181 and the second connection terminal 182 directly electrically under the control of the second control signal. It is turned on, so that the first driving voltage VDD received by the first connection terminal 181 is transmitted to the second execution unit 19 electrically connected to the second connection terminal 182, so that the second execution unit 19 performs the first reminding operation.
  • the sensing unit 12 is electrically connected to the first switch unit 14, and the control module 10 is also electrically connected to the first switch unit 14 through the analog unit 15, and the first switch unit 14 is also electrically connected to the first execution unit 13 .
  • the status signal line CA is electrically connected to the control module 10, and the control module 10 is correspondingly electrically connected to the second switch unit 18.
  • the sensing unit 12 is electrically connected to the first execution unit 13 through the first switch unit 14, or the control module 10 is electrically connected through the analog unit 15.
  • the first execution unit 13 is sexually connected.
  • the control module 10 outputs a corresponding control signal to the second switch unit 18 to provide the first driving voltage VDD according to the voltage state in the state signal line CA.
  • the second execution unit 19 to perform the reminding operation, or output a corresponding control signal to the second switch unit 18 to stop supplying the first driving voltage VDD to the second execution unit 19, and to stop executing the reminding operation.
  • the vehicle control system 10 can generate analog signals based on the multi-path sensor information acquired in advance to control the gears, Keep the vehicle running in the most efficient zone.
  • the vehicle control system 10 of the present application executes the automatic operation driving mode, it does not need to decode and analyze the information protocol in the vehicle's own operating system to complete the control of the various functional modules of the vehicle, and make the vehicle
  • the execution unit in the system accurately executes the driving operation, which simplifies the complexity of the automatic operation of the vehicle.
  • the traditional vehicle gear shift strategy is shown in Fig. 4, where Fig. 4 is a flow diagram of a traditional gear shift strategy provided by an embodiment of the application.
  • the gear shift strategy includes the following three layers: Under the premise of measuring the parameters, the measured parameters include at least the moving speed of the vehicle, the engine speed and the accelerator.
  • the first layer matches the shift characteristic curve according to the shift mode, that is, the measured parameters are analyzed and processed to obtain the processed Parameter analysis and processing include summation, filtering, averaging and weighting, etc., and then match the processed parameters with the shift characteristic curve.
  • the second layer performs short-term transient response based on the measured parameters.
  • the third layer responds to manual up/down gears according to the engine speed limit.
  • the engine speed of the vehicle and the moving speed of the vehicle match the gear position of the vehicle, that is, if the speed of the vehicle decreases, the gear position of the vehicle is reduced; if the speed of the vehicle increases, the gear position of the vehicle is increased.
  • the traditional gear shift strategy has the problem of poor control effect. For example, when the current road type of the vehicle is uphill, the vehicle is usually in a high-speed and high-gear state, resulting in insufficient power of the vehicle. Therefore, it is necessary to lower the gear of the vehicle to increase the power of the mobile platform through the uphill. According to the traditional gear shift strategy, the vehicle can only be switched to a low gear after the moving speed is reduced. The control efficiency is low and the traction provided to the vehicle is low.
  • FIG. 5 is a functional block diagram of a vehicle 1 including a vehicle control system 100 in an embodiment of the application.
  • a gear control module is added between the command generation module and the gear execution module to separate the gear control from the vehicle operating speed, and the vehicle is in a suitable gear, which improves the control effect of the vehicle.
  • the instruction generation module is the sensor unit 12 shown in FIG. 1
  • the gear control module is the control module 10 shown in FIG. 1
  • the actuator is shown in FIG. 1 shown in the first execution unit 13.
  • control module can obtain the target gear parameter of the vehicle, generate an analog signal (that is, the adjusted operation command) according to the target gear parameter, and control the gear position of the vehicle according to the analog signal to keep the gear of the vehicle The position remains in the highest performance range.
  • analog signal that is, the adjusted operation command
  • the control module determines that the current road type of the vehicle is uphill according to the sensor data, it can obtain sensor data.
  • the sensor data includes driving environment information, such as driving environment information including Slope information, the slope information is obtained by a video sensor or an inertial measurement unit (Inertial Measurement Unit, IMU), and the slope information includes the angle, length, etc. of the uphill.
  • the control module can determine the target gear of the vehicle according to the current moving speed and gradient information of the vehicle, for example, the target gear is 1st gear. At this time, the control module can change the gear in the operation instruction to first gear, get the adjusted operation instruction, and send the operation instruction to the gear execution module.
  • the gear execution module can change The gear of the vehicle is reduced to the first gear, and the vehicle uses a low gear and a high moving speed to pass uphill, which can improve the traction of the vehicle through the uphill, and can improve the vehicle to pass uphill quickly.
  • the control module determines that the current road type of the vehicle is a turning road based on the sensor data, it can obtain sensor data, which includes driving environment information, such as driving environment information Including the turning information of the turning road, the turning information may be obtained by a video sensor or an inertial measurement unit (IMU), and the turning information includes the turning angle and length of the turning road. Further, the control module can determine the target gear of the vehicle according to the current moving speed and turning information of the vehicle, for example, the target gear is 3 gears.
  • control module can change the gear in the operation instruction to 3 gears, get the adjusted operation instruction, and send the operation instruction to the gear execution module without increasing the moving speed of the vehicle, and the gear is executed
  • the module can increase the gear of the vehicle to 3 gears, so that the vehicle can use the high gear to move through the turning road at a low speed, which can reduce the vehicle's fuel consumption and achieve higher energy efficiency.
  • the first execution unit 13 includes a gearbox.
  • FIG. 5 is a schematic structural diagram of a gearbox in an embodiment of the application.
  • the gearbox is realized by a planetary gear.
  • the central axis of the planetary gear is a sun gear and the outside is surrounded by planetary gears.
  • one side of the planet carrier serves as a support to carry the planetary gears, and the other side carries out coaxial power transmission.
  • the outermost ring of the planetary gear is the internal gear (also called the ring gear).
  • some planetary gear sets are transformed into two sets of pinions to transmit power to each other. One group is in contact with the sun gear and the other group is in contact with the ring gear. It is called a double pinion planetary gear set.
  • FIG. 6 is a schematic diagram of the connection structure of the oil pump and the hydraulic coupling in the first execution unit 13 of an embodiment of the application.
  • the first planetary gear set that is, the gearbox.
  • the gearbox is composed of sun gear S1, planetary gear P1, planet carrier PT1 and ring gear H1.
  • the gearbox On the right side of the gearbox is a set of compound planetary gear sets.
  • the two planetary gear sets share the inner ring gear H2, and respectively have two planetary gears P2/P3, planet carrier PT2 and sun gear S2/S3. 6 forward gears/1 reverse gears are combined by brake B1/B2 and clutch K1/K2/K3 composed of different multi-disc clutches.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Transportation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

一种车辆控制系统(100)以及包括车辆控制系统(100)的车辆,车辆控制系统(100)包括控制模组(10),控制模组(10)电性连接于车辆控制总线,用于接收来自控制总线的总线信号;控制模组(10)包含一个或者多个处理器(11),用于根据总线信号查询控制信号的类型,以及根据查询结果模拟车辆的控制输出信号,对车辆的驾驶状态进行控制以使得车辆处于驾驶员操作或者处于自动操作驾驶。

Description

车辆控制系统与车辆
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中所存在的该专利文件或该专利披露。
技术领域
本发明涉及一种自动驾驶领域,尤其涉及一种车辆控制系统以及车辆。
背景技术
目前车辆自动驾驶系统需要在车辆本身的控制网络之外另行增加设置一套控制系统,但是由于车辆在出厂之前其控制网络所具有的通信协议是对外保密的,新增的控制系统若需要衔接该控制网络就需要进行通信协议的解密,而解密过程却非常耗费资源。并且解密过程中比较容易出现故障码,也即是无法准确地针对控制网络进行界面,继而导致形状的控制系统与车辆本身的控制网络的信息交互出现误差,进而导致车辆自动操作驾驶时安全性较低。
发明内容
为解决前述技术问题,提供一种操作简便且安全性较高的车辆控制系统。
进一步,提供一种包括前述车辆控制系统的车辆。
本发明一实施例中公开一种车辆控制系统,包括控制模组,控制模组电性连接于车辆控制总线,用于接收来自控制总线的总线信号。所述控制模组包含一个或者多个处理器,用于根据所述总线信号查询控制信号的类型,以及根据查询结果模拟所述车辆的控制输出信号,对车辆的驾驶状态进行控制。
在本发明的一个可选实施例中还提供一种包括前述车辆控制系统的车辆。
相较于现有技术,本发明车辆控制系统在执行自动操作驾驶模式时,完全无需针对车辆本身操作系统中的信息协议进行解码分析即可完成针对车辆各个功能模组的控制,并且使得车辆中的执行单元准确执行驾驶操作,简化了车辆自动操作驾驶的复杂程度,同时,本案中的车辆控制系统依据车辆中原有的 控制信号来执行控制,从而保证了车辆控制的准确性与安全性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例中车辆控制系统的电路结构图;
图2为第一感测差分信号与第二感测差分信号的波形图;
图3为图1所示供电单元、第二开关单元以及第二执行模组的电路结构示意图;
图4为本申请一实施例提供的一种传统的档位转换策略的流程示意图;
图5为本申请一个实施例中包含有车辆控制系统的车辆的功能框图;
图6为本申请一实施例第一执行单元中变速箱的结构示意图;
图7为本申请一实施例第一执行单元中机油泵及液力耦合器的连接结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请一实施例公开一种车辆控制系统,该车辆控制系统应用用于车辆中。
车辆控制系统包括控制模组,电性连接于车辆控制总线,用于接收来自控制总线的总线信号。其中,控制模组包含一个或者多个处理器,用于根据所述总线信号查询所述总线型号的类型,并且根据查询结果,模拟所述车辆的控制输出信号以控制车辆处于驾驶员操作或者处于自动操作驾驶。
本申请一可选实施例中,对车辆的驾驶状态进行控制包括:模拟查询结果对应类型的信号并将输出到对应的执行单元。
本申请一可选实施例中,模拟查询结果对应类型的信号包括:模拟查询结果对应类型的信号与所述查询获得控制信号的波形、电压幅度、频率相同。
本申请一可选实施例中,所述控制信号包括传输的车辆传感信号和/或车辆状态信号。
本申请一可选实施例中,所述总线信号用于表征所述车辆处于驾驶员操作或者处于自动操作驾驶,传输所述控制信号的总线包括电性连接车辆提醒模组的状态信号总线和/或电性连接传感器单元的传感器总线。
本申请一可选实施例中,所述控制模组预先存储包括有表征所述车辆处于不同驾驶状态的多个控制信号。
请参阅图1,其为本申请一实施例中车辆控制系统100的电路结构图。
如图1所示,车辆控制系统100包括控制模组10、第一子系统101以及第二子系统102。其中,第一子系统101与第二子系统102分别电性连接控制模组10。第一子系统101与第二子系统102分别依据控制信号获取不同类型的传感信号或者状态信号。本实施例中,第一子系统101用于获取通过传感模组感测采集的传感信号,第二子系统102用于获取控制车辆执行提醒操作的信号。
控制总线CC用于传输总控系统(图中未示出)提供的用于表征车辆需要处于自动操作驾驶模式或者人为操作驾驶模式的模式信号。本实施例中,控制总线控制器局域网络总线(Controller Area Network,CAN总线)。由于CAN总线是对传输数据进行加密的总线类型,通常外接系统需要对CAN总线中传输的信号进行破解,然后根据破解获得的信息对车辆进行的执行机构进行控制。然而,不同厂家、类型的车辆总线加密方式不同,采用破解的方式会导致软件成本耗费增加,同时破解会产生故障码和丢包,容易导致总线的传输指令丢失或者返回故障码,而得不到执行。
第一子系统101包括传感单元12、执行单元13、第一开关单元14以及模拟单元15。对应第一子系统101,控制模组10包括模拟控制处理器11。
模拟控制处理器11电性连接控制总线CC、模拟单元15以及第一开关单元14。传感单元12与模拟单元15通过第一开关单元14电性连接执行单元13,第一开关单元14在模拟处理器11依据模式信号的控制下使得传感单元15与执行单元13电性连接或者模拟单元15电性连接所述执行单元13。其中控制总线CC传输的信号通过透传的方式直接输入到传感单元12,透传是指的是在 通讯中不管传输的业务内容如何,只负责将传输的内容由源地址传输到目的地址,而不对业务数据内容做任何改变。在这种情况下,传感器只负责接收来自控制总线CC的控制信号,而不需要对信号进行破解,可以避免丢包和大量产生故障码。通过对控制总线CC的信号的采集,可以获得CC总线输出的模拟信号波形,每个模拟信号波形都对应不同类型的控制信号;控制信号的类型由模拟信号的波形和信号的幅值来确定,例如由方向盘输出的信号是连续的模拟差分信号,信号的幅值与方向盘的舵角的三角函数值有关;再例如,油门输出的信号是连续的模拟差分信号,信号的幅值与油门踏板的行程函数有关,刹车输出的信号类型也是连续的模拟差分信号,信号的幅值与刹车的行程函数关联。具体地,不同车辆的输出信号幅度值会有所不同,例如A类型车辆的方向角与输出电压关系可以使用如下公式来表示:
V A=a*f(bθ+c)+d
f(θ)是关于角度θ的三角函数,a,b,c,d为函数的矫正系数,通过矫正系数,可以实现对不同类型车辆的输出电压进行矫正。
对于不同类型的车辆,可以通过预先采集舵角与输出电压的对应关系,获得a,b,c,d的具体矫正值。如图1所示,传感单元12包括至少一个第一传感器121,用于感测所述车辆的其中一个运行状态并且输出第一感测信号。本实施例中,第一传感器121为油门位置传感器,用于油门踏板行程距离。第一感测信号用于表征当前需要提供的油量以及车速。
本实施例中,所述第一传感信号包括第一感测差分信号和第二感测差分信号,本实施例中,第一感测差分信号与第二感测差分信号均为差分电压信号,且第二感测差分信号包含的第二电压范围大于且包含所述第一感测差分信号第一电压范围。
如图2所示,其为第一感测差分信号和所述第二感测差分信号的波形图。其中,第一感测差分信号和第二感测差分信号具有不同的电压范围,例如第一电压范围为0.4V-1.8V,第二电压范围为0.8V-3.6V。图1所示的传感单元12,同时获得第一感测差分信号和第二感测差分信号并根据第一感测差分信号和第二感测差分信号的幅度值和波形来确定CC总线传输的控制信号。
请继续参阅图1,模拟控制处理器11依据控制总线CC提供的模式控制信号,查询不同型号信号总线对应的信号。在一个可选的实施例中,模拟控制处理器11包括查询传感类信号中的第一传感信号,并且依据查询结果输出参考 信号至所述模拟单元15,模拟单元15依据所述参考信号模拟第一感测信号而输出第一模拟信号。其中,所述第一模拟信号与所述感测信号的变化曲线一致。
在一个可选的实施例中,模拟控制处理器11查询第一感测差分信号和第二感测差分信号两个差分信号所形成的第一传感信号整体,并且根据预存的信号波形查询得到第一传感信号所表示的信号类型。
具体地,模拟控制处理器11包括存储单元111、信号产生单元112、处理单元113以及第一模数转换单元114。其中,存储单元111存储多个第一传感信号构成的传感信号列表,其中,多个第一传感信号分别为预先依据第一传感器121采集的油门踏板行程多个状态的传感信号。
处理单元113分别电性连接存储单元111以及信号产生单元112,处理单元112接收模式控制信号,并且依据模式控制信号输出对应的选择信号至第一开关单元14。其中,模式控制信号用于表征车辆当前需要处于自动操作驾驶模式或者人为操作驾驶模式,且模式控制信号可由车辆外部的相应人员提供,也可以由车辆对应的传感模组检测识别而触发相应的功能模组提供。本实施例中,模式控制信号为高电平时表征自动操作驾驶模式,模式控制信号为低电平时表征人为操作驾驶模式。
当模式控制信号控制车辆进入自动操作驾驶模式之后,处理单元113不再受到控制总线CC的透传信号控制,而是由驾驶系统的控制信号控制,驾驶系统控制信号可能会部分来自CC控制总线,同时驾驶系统控制信号可能来自车辆传感器,或者依据车辆传感器生成车辆控制信号的逻辑处理器。根据接收到的信号类型。处理单元113在传感信号列表中查找与之对应的第一传感信号,并模拟所述第一传感信号而产生第一模拟信号,第一模拟信号将控制第一执行单元13执行相应的操作。也即是,处理单元112依据查询获得的第一传感信号控制信号产生单元112输出对应的参考信号。进而由模拟单元15依据该参考信号模拟所述第一传感信号产生第一模拟信号。
所述第一模拟信号包括所述第一模拟差分信号和所述第二模拟差分信号,其中,在本实施例中,第一模拟差分信号与第二模拟差分信号均也为差分电压信号,且第一模拟差分信号对应第一感测差分信号,所述第二模拟差分信号对应所述第二感测差分信号。第一和第二模拟差分信号输入到执行器中对车辆进行控制,执行单元包括多种不同类型的执行器,可以控制车辆转弯方向的舵角,控制车辆的档位,控制车辆的油门大小和发动机转速等等。
所述第一模拟信号包括第一模拟差分信号和第二模拟差分信号,且所述第一模拟差分信号与所述第一感测差分信号的变化曲线一致,所述第二模拟差分信号与所述第二感测差分信号的变化曲线一致。其中,所述变化曲线一致包括波形、电压幅度、频率相同。
当模式控制信号表征车辆当前需要处于人为操作驾驶模式时,处理单元113控制由传感单元12依据驾驶员操作而对应感测获得的第一传感信号直接输出至第一执行单元13。
本实施例中,信号产生单元112为脉宽调制信号(Pulse Width Modulation,PWM)电路,其输出的参考信号为具有一定占空比的脉宽调制信号。其中,对应不同的第一传感信号,输出不同占空比的脉宽调整信号作为参考信号即可配合模拟单元15实现对应的第一模拟信号的产生。
第一模数转单元114电性连接所述第一传感器121、第一开关单元14以及处理单元113。
具体地,第一模数转换单元114电性连接第一开关单元14中继电器的两个常开输入触点,以接收反馈的所述第一模拟差分信号与所述第二模拟差分信号执行模数转换为数字型信号并提供至处理单元113。处理单元113计算依据所述反馈的所述第一模拟差分信号与所述第二模拟差分信号调整所述脉宽调整信号,使得所述第一模拟差分信号与所述第二模拟差分信号处于预设范围。
进一步,第一模数转换单元114电性连接所述第一传感器121以接收反馈的所述第一感测差分信号与所述第二感测差分信号执行模数转换处理,并且执行模数转换为数字型信号并提供至处理单元113。所述处理单元113依据执行模式转换处理的所述第一感测差分信号与所述第二感测差分信号确定所述第一运行模组的状态,依据所述第一运行模组的状态执行在所述自动操作驾驶模式下运行操作或者退出自动操作驾驶模式。
模拟单元15包括依次电性连接的电压跟随器151、运算放大器152以及加法运算器153。
电压跟随器151电性连接于信号产生单元112与运算放大器152之间,用于接收所述参考信号,以用于在针对所述脉宽调制信号执行运算放大处理之前,还针对所述脉宽调制信号执行电压跟随处理,以隔离所述运算放大器防止干扰。
运算放大器152分别电性连接所述电压跟随器151以及加法运算器153。 接收所述脉宽调整信号后执行运算放大处理并且转换为模拟电压信号,所述模拟电压信号具有第一电压范围,所述模拟电压信号作为所述第一模拟差分信号传输至所述第一开关单元12。
加法运算器153电性连接第一开关单元12,用于针对所述第一模拟差分信号与预设参考电压范围执行加法运算以获得第二电压范围,以作为所述第二模拟差分信号传输至所述第二开关单元12。
第一开关单元14电性连接模拟单元15、传感单元12以及执行单元13,用于依据模拟控制处理器11输出的选择信号选择性将模拟单元15与执行单元13电性导通或者传感单元12与执行单元13电性导通。执行单元13用于车辆的运行操作。其中,传感单元12与模拟单元15不同时与执行单元13电性导通。
本实施例中,第一开关单元14为双刀双掷的继电器(未标示),所述继电器包括两个常闭输入触点L1~L2、两个常开输入触点N1~N2以及两个输出端O1~O2。
继电器的两个常闭输入触点L1~L2电性连接所述第一传感器121,以接收所述第一感测信号中的所述第一感测差分信号和所述第二感测差分信号。
继电器的两个常开输入触点N1~N2分别电性连接所述模拟单元15中的运算放大器152以及加法运算器153,以接收所述第一模拟信号中的所述第一模拟差分信号和所述第二模拟差分信号。
模拟控制处理器11控制所述继电器的所述两个输出端O1~O2电性连接所述执行单元13,以依据选择信号选择性控制所述第一感测信号或者所述第一模拟信号至所述执行单元13。
其中,当选择性信号处于高电平表征车辆处于自动操作驾驶模式,继电器在低电平控制下两个常开输入触点N1~N2与两个输出端O1~O2电性导通,也即是说模拟单元15与执行单元13电性导通时,第一传感信号通过继电器传输至执行单元13,执行单元13依据第一传感信号执行相应的运行操作,例如依据驾驶人员操作油门踏板而加大油门提高车速或者减小油门降低车速。
当选择性信号处于低电平表征车辆处于驾驶人员操作的人为操作驾驶模式,继电器在低电平控制下两个常闭输入触点L1~L2与两个输出端O1~O2电性导通,也即是说传感单元12与执行单元13电性导通时,表征车辆处于自动操作驾驶模式,第一模拟信号通过继电器传输至执行单元13,执行单元13依 据第一模拟信号执行相应的运行操作,例如直接依据当前车况以及道路情况自动加大油门提高车速或者减小油门降低车速。
由于控制模组10以及模拟单元15连接与继电器中的常开输入触点,那么,当控制模组10出现信号传输异常或者断电等情况而无法正确输出第一模拟信号时,能够保证继电器中常闭输入触点的传感单元12能够可靠地与第一执行单元13电性导通,保证第一传感信号可靠地提供至第一执行单元13使其正确执行相应的操作,保证车辆安全驾驶。
在本申请一变更实施例中,第一开关单元14为多路数字开关,多路数字开关包括至少两组输入端口以及至少一组输出端口,所述两组输入端不同时与所述一组输出端口电性连接,每一组所述输入端口包括两个输入端口,每一组所述输出端口包括两个输出端口。其中一组所述输入端口中的两个输入端口电性连接所述第一传感器,以接收所述第一感测信号中的所述第一感测差分信号和所述第二感测差分信号;另外一组所述输入端口中的两个输入端口电性连接所述模拟控制单元,以接收所述第一模拟信号中的所述第一模拟差分信号和所述第二模拟差分信号。
模拟控制处理器11控制所述两个输入出端口连接所述第一执行单元13,以选择性提供所述第一感测信号或者所述第一模拟信号至第一执行单元13。
在本申请其他变更实施例中,所述第一传感器121为方向盘传感器,刹车传感器、门锁传感器或者档位传感器,分别用于感测方向盘旋转行程位置、刹车行程位置、门锁位置或者档位位置,以对应输出所述第一感测信号。
模拟控制处理器11电性控制总线电CC性连接,用于获取所述总线信号。
对于第一子系统101,其工作过程具体为:
当模式控制信号为低电平时表征当前车辆处于人为操作驾驶模式,处理单元113输出选择信号至第一开关单元14以控制其两个常闭输入触点L1~L2与两个输出端O1~O2电性导通,使得传感单元12与第一执行单元13电性连接。也即是人为执行的操作通过传感单元12感测获得第一传感信号直接传输至第一执行单元13,实现对车辆的人为操作驾驶。
当模式控制信号为高电平时表征当前车辆处于自动操作驾驶模式,处理单元113输出选择信号至第一开关单元14以控制其两个常开输入触点N1~N2与两个输出端O1~O2电性导通,使得模拟单元15与第一执行单元13电性连接,同时,处理单元113自存储单元111查询符合当前路况的第一传感信号,信号 产生单元112输出对应占空比的脉宽调制信号至模拟单元15,模拟单元15针对该脉宽调制信号,通过电压跟随器151的隔离处理以及运放放大器152与加法运算器153的放大与求和运算获得第一模拟信号中的第一模拟差分信号和所述第二感测差分信号。
模拟单元15输出该第一模拟信号至第一执行单元13,从而实现控制模组10针对第一执行单元13的自动控制。
进一步,第二子系统102包括分压电路16、电压控制电路17、第二开关单元18以及第二执行单元19与供电单元PU,同时,模拟控制处理器11还包括第二模数转换单元116以及第一输出单元115。其中,分压电路16电性连接状态信号线CA与第二模数转换单元116之间,电压控制电路17电性连接第一输出单元115与第二开关单元18之间,同时,处理单元113电性连接于第一输出单元115。
供电单元PU电性连接开关模组18与第二执行单元19。本实施例中,第一输出单元115为芯片的输入输出引脚GPIO。
分压电路16电性连接状态信号线CA,用于接收状态信号线CA传输的状态信号,例如控制车辆执行提醒操作的信号。本实施例中,状态信号线CA为左转向灯线束。分压电路16用于识别状态信号的电压状态,也即是用于识别状态信号当前处于高电压还是低电压,并且将依据状态信号的高、低电压对应输出与状态信号波形、幅度相同的识别电压信号传输至第二模式转换单元116。同时,存储单元111中还预先存储有该状态信号。
第二模数转换单元116针对识别电压信号进行模数转换为数字形式的信号并且自第一输出端口115输出。
电压控制电路17电性连接第一输出单元115,用于接收识别电压信号且据此输出第二控制信号。具体地,当识别电压信号处于所述第一电压时,输出第一电压状态的第二子控制信号,当识别电压信号处于所述第二电压时,输出第二电压状态的第二子控制信号。
本实施例中,第一电压为高电平时,第一电压状态为高电平,第二电压为低电平时,第二电压状态为低电平。
第二开关单元18包括第一连接端181、第二连接端182以及控制端183,第一连接端181与第二连接端182依据控制端183的电压选择性电性导通或者电性断开。第一连接端181电性连接供电模块PU以接收所述第一驱动电压 VDD,第二连接端182电性连接第二执行单元19,控制端183电性连接所述模拟控制单元11中的电压控制电路17。
本实施例中,第二开关单元18为单刀单掷继电器,且第一连接端181为继电器的常开端,第二连接端182为继电器的输出端,控制端183为继电器的电源端。当第二控制信号为高电平时,则使得继电器得电处于闭合状态,第一连接端181与第二连接端182电性导通;当第二控制信号为低电平时,则使得继电器得电处于断开状态,第一连接端181与第二连接端182电性断开。
当第一连接端181与第二连接端182电性导通时,所述第一驱动电压VDD传输至所述第二执行模组19,第二执行模组19执行第一提醒操作,使得车辆处于第一提醒状态。当第一连接端181与第二连接端182电性断开时,所述第一驱动电压VDD停止传输至所述第二执行模组19。
本实施例中,所述第一提醒操作为所述车辆的左转向提醒或者右转向提醒,所述第一提醒状态为左转向灯处于点亮状态或者右转向灯处于点亮状态,所述第二执行单元19为左转向灯或者右转向灯。
具体地,请一并参阅图1与图3,图3其为供电单元PU、第二开关单元18以及第二执行模组19简化电路示意图。
当第一连接端181与第二连接端182电性导通,所述第一驱动电压VDD传输至所述第二执行模组19,第二执行模组19处于提醒操作的执行状态,也即是左转向灯处于点亮状态;当所述第二子控制信号第二电压状态时,第一连接端181与第二连接端182电性断开,所述第一驱动电压VDD停止传输至所述第二执行模组19,第二执行模组19处于未提醒操作的执行状态,也即是左转向灯处于熄灭状态。本实施例中,第一驱动电压VDD为12V。
其他变更实施例中,所述第一提醒操作为门锁控制提醒,点火熄火控制提醒,双闪灯控制提醒,近光灯提醒、示宽灯提醒、前雾灯提醒、后雾灯提醒或者远光灯提醒。所述第一提醒状态为锁控制、点火熄火控制、双闪灯控制、近光灯、示宽灯、前雾灯、后雾灯或者远光灯处于点亮状态,对应地,所述第二执行模组为门锁,点火熄火器,双闪灯,近光灯,示宽灯,左右变道提醒、前雾灯,后雾灯或者远光灯。
在本申请其他实施例中,所述状态信号还可以为左、右变道信号,则第二执行单元19则在自动操作驾驶模式时据此自动执行对应执行左、右变道的操作。
对于第二子系统102,其工作过程具体为:
当模式控制信号为低电平时表征当前车辆处于人为操作驾驶模式,分压电路16识别到状态信号为高电平的第一电压时输出识别电压信号,第二模数转换单元116将该识别电压信号转换为数字信号并通过第一输出单元115传输至电压控制单元17,电压控制单元17则依据电压识别信号输出第一电压状态的第二控制信号至第二开关单元18,第二开关单元18在第二控制信号控制下使得第一连接端181与第二连接端182直接电性导通,从而第一连接端181接收的第一驱动电压VDD传输至与第二连接端182电性连接的第二执行单元19,使得第二执行单元19执行第一提醒操作。
当模式控制信号为高电平时表征当前车辆处于自动操作驾驶模式,处理单元113自存储单元111查询获得该状态信号,并且将该状态信号通过第一输出单元115传输至电压控制单元17,电压控制单元17则依据状态信号输出第一电压状态的第二控制信号至第二开关单元18,第二开关单元18在第二控制信号控制下使得第一连接端181与第二连接端182直接电性导通,从而第一连接端181接收的第一驱动电压VDD传输至与第二连接端182电性连接的第二执行单元19,使得第二执行单元19执行第一提醒操作。
对应图1,车辆(图未示)中的车辆控制系统100总体连接以及工作过程为:
首先,针对第一子系统101,断开传感单元12与第一执行单元13,针对第二子系统102,断开状态信号线CA与第二开关单元18的电性连接。
然后,将传感单元12电性连接至第一开关单元14,同时控制模组10通过模拟单元15也电性连接第一开关单元14,第一开关单元14还电性连接第一执行单元13。
状态信号线CA则电性连接控制模组10,控制模组10对应电性连接至第二开关单元18。
正常工作时,依据控制总线提供的表征车辆当前所处的工作模式,对应使得传感单元12通过第一开关单元14电性连接第一执行单元13,或者使得控制模组10通过模拟单元15电性连接第一执行单元13。
与此同时,依据控制总线提供的表征车辆当前所处的工作模式,控制模组10依据状态信号线CA中的电压状态,输出对应的控制信号至第二开关单元 18将第一驱动电压VDD提供至第二执行单元19执行提醒操作,或者输出对应的控制信号至第二开关单元18停止将第一驱动电压VDD提供至第二执行单元19,停止执行提醒操作。
当车辆处于自动操作驾驶模式时,行驶过程会遇到不同的路况,超车,行人等情况,所述车辆控制系统10能够预先获取的根据多路传感器信息生成模拟信号,以对挡位进行控制,保持车辆的行驶在效能最高区间。
相较于现有技术,本申请车辆控制系统10在执行自动操作驾驶模式时,完全无需针对车辆本身操作系统中的信息协议进行解码分析即可完成针对车辆各个功能模组的控制,并且使得车辆中的执行单元准确执行驾驶操作,简化了车辆自动操作驾驶的复杂程度。
传统的车辆的档位转换策略如图4所示,其中,图4为本申请一实施例提供的一种传统的档位转换策略的流程示意图,该档位转换策略包括如下三层:在收集到测量参数的前提下,该测量参数至少包括车辆的移动速度、发动机的转速及油门等参数,第一层按照换挡模式匹配换挡特性曲线,即对测量参数进行分析处理,得到处理后的参数,分析处理包括求和、过滤、求平均值及加权等,然后根据处理后的参数与换挡特性曲线进行匹配。第二层则根据测量参数进行短时瞬态响应。第三层则按照发动机转速极限对手动加减档进行响应。由此可见,车辆的发动机转速、及车辆的移动速度均与车辆的档位相匹配,即若车辆的速度降低,则降低车辆的档位;若车辆的速度增加,则调高车辆的档位。该传统的档位转换策略存在控制效果不佳的问题。例如,当车辆的当前所在道路类型为上坡时,通常车辆处于高速高挡位状态,导致车辆的动力不足,因此,需要降低车辆的档位,以提高移动平台通过上坡的动力。按照传统的档位转换策略,只有车辆在移动速度降低后,才能切换到低档位,控制效率较低,且导致为车辆提供的牵引力较低。
基于现有档位转换策略存在的问题,本申请实施例中,在指令生成模块与档位执行模块之间加入档位控制模块,各个模块之间的连接关系可参见图5。请参阅图5,其为本申请一个实施例中包含有车辆控制系统100的车辆1的功能框图。如图5所示,在指令生成模块与档位执行模块之间加入档位控制模块,使得档位控制与车辆运行速度相分离,车辆处于合适的档位,提高对车辆的控制效果。本实施例中,所述指令生成模块为即为图1所示的传感单元12,所述档位控制模块即为即为图1所示的控制模组10,所述执行器即为图1所示 的第一执行单元13。
具体地,控制模组可以获取车辆的目标档位参数,根据目标档位参数生成模拟信号(即调整后的操作指令),根据该模拟信号对车辆的档位进行控制,以使保持车辆的档位保持在效能最高区间。另外,不需要等待降低或增加车辆的移动速度后,才对车辆的档位进行转换,可直接对车辆的档位进行转换,提高控制效率。
例如,假设该车辆当前的移动速度为50km/h,若控制模组根据传感器数据确定车辆的当前所在道路类型为上坡,可以获取传感器数据,该传感器数据包括行驶环境信息,如行驶环境信息包括坡度信息,该坡度信息是由视频传感器获得的或者惯性测量单元(Inertial measurement unit,IMU)获得的,坡度信息包括上坡的角度、长度等等。进一步,控制模组可以根据车辆当前的移动速度和坡度信息确定车辆的目标档位,如该目标档位为1档。这时,控制模组可以将该操作指令中的档位换为1挡,得到调整后操作指令,将该操作指令发送至档位执行模块,不需要车辆降低移动速度,档位执行模块可将车辆的档位降为1档,车辆使用低档位高移动速度通过上坡,可以提高车辆通过上坡的牵引力,并可提高车辆快速通过上坡。
再例如,假设该车辆当前的移动速度为10km/h,若控制模组根据传感器数据确定车辆的当前所在道路类型为转弯道路,可以获取传感器数据,该传感器数据包括行驶环境信息,例如行驶环境信息包括转弯道路的转弯信息,该转弯信息可以由视频传感器获得的或者惯性测量单元(Inertial measurement unit,IMU)获得的,该转弯信息包括转弯道路的转弯角度及长度等等。进一步,控制模组可以根据车辆当前的移动速度和转弯信息确定车辆的目标档位,如该目标档位为3档。这时,控制模组可以将该操作指令中的档位换为3挡,得到调整后操作指令,将该操作指令发送至档位执行模块,不需要将车辆的移动速度增大,档位执行模块可将车辆的档位升为3档,这样车辆使用高档位低移动速度通过转弯道路,可减少车辆的耗油,能效更高。
在一个实施例中,为配合车辆控制系统10的执行,第一执行单元13包括有变速箱。请参阅图5,其为本申请一实施例中变速箱的结构示意图,该变速箱是通过行星齿轮实现的,行星齿轮的中心轴为太阳轮,外部由行星齿轮环绕。为了固定绕太阳轮旋转的行星齿轮,行星架的一边作为支架承载行星齿轮,另 一边进行同轴动力传输。而行星齿轮的最外圈就是内齿轮(也称齿圈)。为了提升动力传输能力,有些行星齿轮组变形为两组小齿轮相互传输动力。一组与太阳轮接触,另一组与内齿圈接触,它被称为双小齿轮行星齿轮组。
进一步,请参阅图6,其为本申请一实施例第一执行单元13中机油泵及液力耦合器的连接结构示意图,如6所示,由左至右,分别是连接发动机的液力耦合器。然后紧贴着的是机油泵,之后动力传输至第一个行星齿轮组(即变速箱)。如之前提到的,它由太阳轮S1,行星齿轮P1,行星架PT1和内齿圈H1组成。而变速箱的右侧是一组复合行星齿轮组。两个行星齿轮组共用内齿圈H2,而分别有两个行星齿轮P2/P3,行星架PT2和太阳轮S2/S3。通过不同多片离合器组成的制动器B1/B2和离合器K1/K2/K3来组合出6个前进档/1个倒挡。
可以理解,以上所揭露的仅为本申请的较佳实施例而已,当然不能以此来限定本申请之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本申请权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (29)

  1. 一种车辆控制系统,其特征在于,包括:
    控制模组,电性连接于车辆控制总线,用于接收来自控制总线的总线信号;
    所述控制模组包含一个或者多个处理器,用于根据所述总线信号查询控制信号的类型;以及,
    根据查询结果模拟所述车辆的控制输出信号,对车辆的驾驶状态进行控制。
  2. 根据权利要求1所述的车辆控制系统,其特征在于,对车辆的驾驶状态进行控制包括:根据所述查询结果生成模拟信号,所述模拟信号用于控制车辆的行驶,将所述模拟产生的信号输出到对应的执行单元。
  3. 根据权利要求2所述的车辆控制系统,其特征在于,模拟查询结果对应类型的信号包括:模拟查询结果对应类型的信号与所述查询获得控制信号的波形、电压幅度、频率相同。
  4. 根据权利要求3所述的车辆控制系统,其特征在于,所述控制信号包括传输的车辆传感信号和/或车辆状态信号。
  5. 根据权利要求1-4任意一项所述的车辆控制系统,其特征在于,所述总线信号用于表征所述车辆处于驾驶员操作的人为操作驾驶模式或者处于自动操作驾驶的自动操作驾驶模式,传输所述控制信号的总线包括电性连接车辆提醒模组的状态信号总线和/或电性连接传感器单元的传感器总线。
  6. 根据权利要求5所述的车辆控制信号,其特征在于,所述控制模组预先存储包括有表征所述车辆处于不同驾驶状态的多个控制信号。
  7. 根据权利要求6所述的车辆控制系统,其特征在于:
    所述传感单元包括第一传感器,所述第一传感器用于感测所述车辆的其中一个运行状态并且输出第一感测信号;
    所述控制模组还包括模拟控制处理器,所述模拟控制处理器依据查询获得的所述控制信号中的第一感测信号并且输出第一模拟信号,所述第一模拟信号与所述感测信号的变化曲线一致;
    执行单元包括第一执行单元,所述控制模组选择性将所述第一感测信号或者所述第一模拟信号传输至所述第一执行单元,以控制第一执行单元在下执行所述车辆的第一运行操作。
  8. 根据权利要求7所述的车辆控制系统,其特征在于:
    当所述车辆处于所述人为操作驾驶模式时,所述模拟控制处理器控制所述第一传感器与所述执行控制单元电性连接,并且依据所述第一感测信号控制所述执行单元,以控制所述车辆处于人为操作驾驶模式;
    当所述车辆处于所述自动操作驾驶模式时,所述模拟控制处理器控制所述第一模拟信号传输至所述执行控制单元,以依据所述第一模拟信号控制所述执行单元以控制所述车辆处于自动操作驾驶模式。
  9. 根据权利要求7所述的车辆控制系统,其特征在于,
    所述第一传感信号与所述第一模拟信号为两路差分信号,
    所述第一传感信号包括第一感测差分信号和第二感测差分信号,且第二感测差分信号包含的第二电压范围大于且包含所述第一感测差分信号第一电压范围;
    所述第一模拟信号包括第一模拟差分信号和第二模拟差分信号,且所述第一模拟差分信号与所述第一感测差分信号的变化曲线一致,所述第二模拟差分信号与所述第二感测差分信号的变化曲线一致。
  10. 根据权利要求9所述的车辆控制系统,其特征在于,所述车辆控制系统还包括模拟单元,所述模拟控制处理器还包括存储单元、处理单元以及信号产生单元,所述信号产生单元电性连接所述存储单元与所述信号产生单元,所述信号产生单元电性连接所述模拟单元,
    所述存储单元用于预先存储多个所述第一传感信号;
    所述处理单元依据所述总线信号自所述存储单元查询获得其中一个第一传感信号,所述信号产生单元依据查询获得的第一传感信号输出参考信号;
    所述模拟单元依据所述参考信号产生所述第一模拟信号。
  11. 根据权利要求10所述的车辆控制系统,其特征在于,所述信号产生单元为脉宽调制电路,所述参考信号为所述脉宽调制电路输出的脉宽调制信号。
  12. 根据权利要求11所述的车辆控制系统,其特征在于,所述模拟单元包括运算放大器与加法运算器,所述运算放大器电性连接所述信号产生单元,所述加法运算器电性连接所述运算放大器;
    所述运算放大器接收所述脉宽调整信号,且针对所述脉宽调制信号执行运算放大处理并且转换为模拟电压信号,所述模拟电压信号具有第一电压范围,所述模拟电压信号作为所述第一模拟差分信号传输至所述继电器;
    所述加法运算器针对所述第一模拟差分信号执行加法运算而获得第二电压范围且作为所述第二模拟差分信号。
  13. 根据权利要求12所述的车辆控制系统,其特征在于,所述模拟单元还包括电压跟随器,所述电压跟随器电性连接所述信号产生单元以及所述运算放大器,以用于在针对所述脉宽调制信号执行运算放大处理之前,还针对所述脉宽调制信号执行电压跟随处理,以隔离所述运算放大器防止干扰。
  14. 根据权利要求10所述的车辆控制系统,其特征在于,所述车辆控制系统还包括第一开关单元,所述第一开关单元电性连接所述模拟单元、所述传感单元、第一执行单元以及所述处理单元,所述处理单元依据所述总线信号输出选择信号至所述开关单元,以控制所述第一开关单元依据所述选择信号对应的所述车辆的模式将所述传感单元电性连接所述第一执行单元或者将所述模拟单元电性连接所述处理单元。
  15. 根据权利要求14所述的车辆控制系统,其特征在于,所述第一开关单元为一双刀双掷的继电器,其中,所述继电器包括两个常闭输入触点、两个常开输入触点以及两个输出端;
    所述继电器的两个常闭输入触点电性连接所述第一传感器,以接收所述第 一感测信号中的所述第一感测差分信号和所述第二感测差分信号;
    所述继电器的两个常开输入触点电性连接所述模拟控制单元,以接收所述第一模拟信号中的所述第一模拟差分信号和所述第二模拟差分信号;以及
    所述选择信号控制所述继电器的所述两个输出端电性连接所述执行控制单元,以选择性提供所述第一感测信号或者所述第一模拟信号至所述第一执行单元。
  16. 根据权利要求15所述的车辆控制系统,其特征在于,
    当所述选择信号表征所述车辆处于人为操作驾驶模式时,所述模拟控制处理器控制所述两个常闭输入触点与所述两个输出端电性连接,以将所述第一感测信号提供至所述第一控制模组;
    当所述选择信号表征所述车辆处于自动操作驾驶模式时,所述模拟控制处理器控制所述两个常开输入触点与所述两个输出端电性连接,以将所述第一模拟信号提供至所述第一控制模组。
  17. 根据权利要求14所述的车辆控制系统,其特征在于,所述第一开关单元为多路数字开关,所述多路数字开关包括至少两组输入端口以及至少一组输出端口,所述两组输入端不同时与所述一组输出端口电性连接,每一组所述输入端口包括两个输入端口,每一组所述输出端口包括两个输出端口;
    其中一组所述输入端口中的两个输入端口电性连接所述第一传感器,以接收所述第一感测信号中的所述第一感测差分信号和所述第二感测差分信号;
    另外一组所述输入端口中的两个输入端口电性连接所述模拟控制单元,以接收所述第一模拟信号中的所述第一模拟差分信号和所述第二模拟差分信号;
    所述模拟控制处理器还用于控制所述两个输入出端口连接所述执行控制单元,以选择性提供所述第一感测信号或者所述第一模拟信号。
  18. 根据权利要求17所述的车辆控制系统,其特征在于,
    当所述选择信号表征所述车辆处于所述人为操作驾驶模式时,所述模拟控制处理器控制所述其中一组输入端口与所述一组输出端口电性连接,以将所述第一感测信号提供至所述执行控制单元;
    当所述选择信号表征所述车辆处于所述自动操作驾驶模式时,所述模拟控 制处理器控制所述另外一组输入端口与所述一组输出端口电性连接,以将所述第一模拟信号提供至所述执行控制单元。
  19. 根据权利要求18所述的车辆控制系统,其特征在于,所述第一电压范围为0.4-1.8V,所述第二电压范围为0.8-3.6V。
  20. 根据权利要求10所述的车辆控制系统,其特征在于,所述模拟控制处理器包括第一模式转换单元,所述第一模式转换单元电性连接所述继电器的两个常开输入触点以及所述处理单元,其中,所述第一模式转换单元接收反馈的所述第一模拟差分信号与所述第二模拟差分信号并执行模数转换为数字信号;以及
    所述处理单元依据反馈数字信号的所述第一模拟差分信号与所述第二模拟差分信号调整所述脉宽调整信号,使得所述第一模拟差分信号与所述第二模拟差分信号处于预设范围。
  21. 根据权利要求20所述的车辆控制系统,其特征在于,所述第一模数转换单元还电性连接所述第一传感器,以接收反馈的所述第一感测差分信号与所述第二感测差分信号执行模数转换处理;
    所述处理单元依据执行模式转换处理的所述第一感测差分信号与所述第二感测差分信号确定所述第一运行模组的状态,且所述模拟控制处理器依据所述第一运行模组的状态执行在所述自动操作驾驶模式下运行操作或者退出所述自动操作驾驶模式。
  22. 根据权利要求7-21任意一项所述的车辆控制系统,其特征在于,
    所述第一传感器为油门位置传感器,所述运行模组为油门踏板,所述第一传感器用于感测测所述油门踏板行程位置,以对应输出所述第一感测信号;或者
    所述第一传感器为方向盘传感器,刹车传感器、门锁传感器或者档位传感器,分别用于感测方向盘旋转行程位置、刹车行程位置、门锁位置或者档位位置,以对应输出所述第一感测信号。
  23. 根据权利要求6所述的车辆控制系统,其特征在于:
    所述传输所述控制信号的总线中的状态信号线用于传输状态信号,所述状态信号为控制车辆执行提醒操作;
    所述模拟控制处理器依据所述状态信号控制第二执行单元执行第一提醒操作,使得所述车辆处于第一提醒状态。
  24. 根据权利要求23所述的车辆控制系统,其特征在于,所述车辆控制系统还分压电路、电压控制电路、第二开关单元以及第二执行单元与供电单元,所述模拟控制处理器还包括第二模数转换单元以及第一输出单元;
    所述分压电路电性连接所述状态信号线与所述第二模数转换单元,用于依据状态信号的电压状态输出识别电压信号至所述第二模数转换单元,所述模数转换单元将所述识别电压信号转换为数字信号自所述第一输出单元输出;
    所述电压控制电路电性连接所述第一输出单元与所述第二开关单元之间,依据所述识别电压信号输出第二控制信号至所述第二开关单元;
    所述供电单元电性连接所述开关模组与所述第二执行单元,所述第二开关单元在所述第二控制信号控制线选择性将所述供电单元提供的第一驱动电压传输至所述第二执行单元。
  25. 根据权利要求24所述的车辆控制系统,其特征在于,所述第二开关单元包括第一连接端、第二连接端以及控制端,所述第一连接端与所述第二连接端依据所述控制端的电压选择性电性导通或者电性断开,所述第一连接端电性连接所述供电单元以接收所述第一驱动电压,所述第二连接端电性连接所述第二执行单元,所述控制端电性连接所述电压控制电路;
    且当所述第二控制信号为第一电压状态时,所述第一连接端与所述第二连接端电性导通,所述第一驱动电压传输至所述第二执行单元;当所述第二控制信号第二电压状态时,所述第一连接端与所述第二连接端电性断开,所述第一驱动电压停止传输至所述第二执行单元。
  26. 根据权利要求25所述的车辆控制系统,其特征在于,
    当所述状态处于所述第一电压时,控制所述第二控制信号为第一电压状态,当所述状态信号处于所述第二电压时,控制所述第二控制信号为第二电压 状态。
  27. 根据权利要求26所述的车辆控制系统,其特征在于,
    所述第一提醒操作为所述车辆的左转向提醒或者右转向提醒,所述第一提醒状态为左转向灯处于点亮状态或者右转向灯处于点亮状态,所述第二执行模组为左转向灯或者右转向灯;
    所述第二输出信号为所述控制总线中电性连接左转向灯且为右转向灯且传输第一驱动电压的左转向灯线束或者右转向灯束所传输的电信号。
  28. 根据权利要求27所述的车辆控制系统,其特征在于,
    所述第一提醒操作为门锁控制提醒,点火熄火控制提醒,双闪灯控制提醒,近光灯提醒,示宽灯提醒,前雾灯提醒,后雾灯提醒或者远光灯提醒;
    所述第一提醒状态为锁控制,点火熄火控制,双闪灯控制,近光灯,示宽灯,前雾灯,后雾灯或者远光灯处于点亮状态;
    所述第二执行模组为门锁,点火熄火器,双闪灯,近光灯,示宽灯,前雾灯,后雾灯或者远光灯。
  29. 一种车辆,其特征在于,包括如权利要求1-28任意一项所述的车辆控制系统。
PCT/CN2019/080144 2019-03-28 2019-03-28 车辆控制系统与车辆 WO2020191724A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19921191.3A EP3885213A4 (en) 2019-03-28 2019-03-28 VEHICLE CONTROL SYSTEM AND VEHICLE
CN201980002955.1A CN110876265A (zh) 2019-03-28 2019-03-28 车辆控制系统与车辆
PCT/CN2019/080144 WO2020191724A1 (zh) 2019-03-28 2019-03-28 车辆控制系统与车辆
US17/198,092 US20210197857A1 (en) 2019-03-28 2021-03-10 Systems for controlling vehicles and vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/080144 WO2020191724A1 (zh) 2019-03-28 2019-03-28 车辆控制系统与车辆

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/198,092 Continuation US20210197857A1 (en) 2019-03-28 2021-03-10 Systems for controlling vehicles and vehicles

Publications (1)

Publication Number Publication Date
WO2020191724A1 true WO2020191724A1 (zh) 2020-10-01

Family

ID=69717607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080144 WO2020191724A1 (zh) 2019-03-28 2019-03-28 车辆控制系统与车辆

Country Status (4)

Country Link
US (1) US20210197857A1 (zh)
EP (1) EP3885213A4 (zh)
CN (1) CN110876265A (zh)
WO (1) WO2020191724A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115123286A (zh) * 2021-03-26 2022-09-30 武汉智行者科技有限公司 一种人工驾驶和自动驾驶档位信号的切换控制系统
CN115352428A (zh) * 2022-07-22 2022-11-18 东风越野车有限公司 一种基于自动驾驶改装车辆的信息交互控制系统及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114792468A (zh) * 2021-09-17 2022-07-26 大唐高鸿智联科技(重庆)有限公司 一种车辆行驶意图识别方法、装置及电子设备
US11988161B2 (en) * 2022-09-12 2024-05-21 Kodiak Robotics, Inc. Systems and methods for providing redundant pulse-width modulation (PWM) throttle control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015049253A1 (de) * 2013-10-01 2015-04-09 Volkswagen Aktiengesellschaft Verfahren für ein fahrerassistenzsystem eines fahrzeugs
CN106080606A (zh) * 2016-07-08 2016-11-09 百度在线网络技术(北京)有限公司 用于控制无人驾驶车辆的方法和装置
CN107656519A (zh) * 2017-09-30 2018-02-02 北京新能源汽车股份有限公司 电动车辆的驾驶控制方法及装置
CN107792075A (zh) * 2016-09-07 2018-03-13 丰田自动车株式会社 用于车辆的行驶控制装置
CN108313060A (zh) * 2017-12-29 2018-07-24 同济大学 一种汽车驾驶模式切换控制系统及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010512592A (ja) * 2006-12-11 2010-04-22 ビ−エイイ− システムズ パブリック リミテッド カンパニ− 自律性乗物システムの制御
FR2989047B1 (fr) * 2012-04-05 2014-04-11 Renault Sa Systeme de commande de vehicule en mode autonome et vehicule comprenant un tel systeme de commande

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015049253A1 (de) * 2013-10-01 2015-04-09 Volkswagen Aktiengesellschaft Verfahren für ein fahrerassistenzsystem eines fahrzeugs
CN106080606A (zh) * 2016-07-08 2016-11-09 百度在线网络技术(北京)有限公司 用于控制无人驾驶车辆的方法和装置
CN107792075A (zh) * 2016-09-07 2018-03-13 丰田自动车株式会社 用于车辆的行驶控制装置
CN107656519A (zh) * 2017-09-30 2018-02-02 北京新能源汽车股份有限公司 电动车辆的驾驶控制方法及装置
CN108313060A (zh) * 2017-12-29 2018-07-24 同济大学 一种汽车驾驶模式切换控制系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3885213A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115123286A (zh) * 2021-03-26 2022-09-30 武汉智行者科技有限公司 一种人工驾驶和自动驾驶档位信号的切换控制系统
CN115352428A (zh) * 2022-07-22 2022-11-18 东风越野车有限公司 一种基于自动驾驶改装车辆的信息交互控制系统及方法
CN115352428B (zh) * 2022-07-22 2024-05-24 东风越野车有限公司 一种基于自动驾驶改装车辆的信息交互控制系统及方法

Also Published As

Publication number Publication date
EP3885213A1 (en) 2021-09-29
US20210197857A1 (en) 2021-07-01
CN110876265A (zh) 2020-03-10
EP3885213A4 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
WO2020191724A1 (zh) 车辆控制系统与车辆
CN109808705B (zh) 一种用于远程遥控驾驶控制的系统
WO2020191734A1 (zh) 用于自动驾驶的控制方法、控制装置及车辆
CN107234970B (zh) 电动汽车增程器控制器
CN200993741Y (zh) 一种基于串行通信的混合动力电动汽车匹配标定装置
CN202093392U (zh) 一种agv系统的硬件平台
CN204296564U (zh) 车辆档位显示装置
CN101927764A (zh) 混合动力汽车的双hcu整车控制系统
CN103775623A (zh) 电动车自动换挡策略
CN113885516B (zh) 一种电动拖拉机自动驾驶域控制器及其控制方法
CN102120421A (zh) 基于can总线的纯电动汽车全液晶显示组合仪表
CN102841271A (zh) 一种双离合器自动变速器电控单元电磁兼容性测试平台
US9506560B2 (en) Automatic transmission
CN206719141U (zh) 一种具有两路can总线的电动拖拉机及通讯装置
CN101624053B (zh) 一种插电式混合动力汽车挡位信号安全的控制方法
CN110907195B (zh) 一种自动变速器整车下线检测方法
CN105679073A (zh) 一种led交通信号灯故障反馈方法
WO2024027575A1 (zh) 一种智能远光灯控制系统
CN105799688A (zh) 用基于能量的稳定策略稳定发动机状态选择的方法和设备
CN105150920A (zh) 一种汽车动态显示方法及基于该方法的高位制动灯系统
CN205969040U (zh) 一种多接口舵机
CN210666468U (zh) 一种基于rs422总线的天线倒伏控制装置
CN105923076A (zh) 电动车、电动车车灯的智能控制方法及系统
CN106406151A (zh) 一种智能行间中耕施肥施药机的控制电路及算法
CN207832458U (zh) 一种混合动力系统试验台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921191

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019921191

Country of ref document: EP

Effective date: 20210625

NENP Non-entry into the national phase

Ref country code: DE