WO2020191665A1 - 旋转式拍摄方法、控制装置、可移动平台及存储介质 - Google Patents

旋转式拍摄方法、控制装置、可移动平台及存储介质 Download PDF

Info

Publication number
WO2020191665A1
WO2020191665A1 PCT/CN2019/079876 CN2019079876W WO2020191665A1 WO 2020191665 A1 WO2020191665 A1 WO 2020191665A1 CN 2019079876 W CN2019079876 W CN 2019079876W WO 2020191665 A1 WO2020191665 A1 WO 2020191665A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
rotation
mode
control information
pan
Prior art date
Application number
PCT/CN2019/079876
Other languages
English (en)
French (fr)
Inventor
廖文山
胡攀
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/079876 priority Critical patent/WO2020191665A1/zh
Priority to CN201980005413.XA priority patent/CN111316636B/zh
Publication of WO2020191665A1 publication Critical patent/WO2020191665A1/zh
Priority to US17/484,227 priority patent/US20220014659A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/006Apparatus mounted on flying objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • G03B17/561Support related camera accessories
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B7/00Control of exposure by setting shutters, diaphragms or filters, separately or conjointly
    • G03B7/08Control effected solely on the basis of the response, to the intensity of the light received by the camera, of a built-in light-sensitive device
    • G03B7/091Digital circuits
    • G03B7/093Digital circuits for control of exposure time
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/80Geometric correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/695Control of camera direction for changing a field of view, e.g. pan, tilt or based on tracking of objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/72Combination of two or more compensation controls
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/76Circuitry for compensating brightness variation in the scene by influencing the image signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U60/00Undercarriages
    • B64U60/70Movable wings, rotor supports or shrouds acting as ground-engaging elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing

Definitions

  • the embodiment of the present invention relates to the field of control technology, in particular to a rotary shooting method, a movable platform, and a machine-readable storage medium.
  • the camera can be set on the PTZ and rotate with the PTZ to complete the shooting of photos or videos.
  • the existing drone aerial photography system lacks a rotary shooting solution, and even if the pan/tilt rotates, the shooting device performs exposure, which reduces the shooting experience.
  • the embodiment of the present invention provides a rotary shooting method, a control device of a movable platform, a movable platform, and a machine-readable storage medium, which can realize rotary shooting and improve the shooting experience.
  • an embodiment of the present invention provides a rotary shooting method, the shooting method is applied to a movable platform, and the movable platform has a shooting device mounted on the platform, and the method includes:
  • control information According to the brightness information and the rotation mode, where the control information includes rotation control information and exposure control information;
  • an embodiment of the present invention provides a control device for a movable platform.
  • the movable platform has a camera mounted on the platform via a pan/tilt.
  • the control device includes a memory and a processor; the memory is connected to the mobile platform via a communication bus.
  • the processor is connected to store computer instructions executable by the processor; the processor is used to read computer instructions from the memory and execute the following steps:
  • control information According to the brightness information and the rotation mode, where the control information includes rotation control information and exposure control information;
  • an embodiment of the present invention provides a movable platform.
  • the movable platform includes: a pan-tilt on which a camera is mounted; and the control device of the movable platform as described in the second aspect.
  • an embodiment of the present invention provides a machine-readable storage medium having several machine-readable instructions stored on the machine-readable storage medium, and when the machine-readable instructions are executed, the method described in the first aspect is implemented step.
  • the brightness information in the scene where the shooting target is located and the rotation mode of the pan/tilt can be obtained; then, control information is generated according to the brightness information and the rotation mode, and the control information includes rotation control information and exposure control information ; Afterwards, the rotation control information is sent to the pan/tilt, and the exposure control information is sent to the photographing device, so that the pan/tilt rotates according to the rotation control information to drive the photographing device The rotation is performed, and the photographing device performs exposure according to the exposure control information.
  • the rotation control information is generated according to the brightness information and the rotation mode
  • the control information includes rotation control information and exposure control information ;
  • the rotation control information is sent to the pan/tilt
  • the exposure control information is sent to the photographing device, so that the pan/tilt rotates according to the rotation control information to drive the photographing device
  • the rotation is performed, and the photographing device performs exposure according to the exposure control information.
  • the effect of rotating shooting is achieved and the shooting experience is improved.
  • Figure 1 is a perspective view of a movable platform provided by an embodiment of the present invention
  • FIG. 2 is a flowchart of a rotary shooting method provided by an embodiment of the present invention.
  • FIG. 3 is a flowchart of another rotary shooting method provided by an embodiment of the present invention.
  • Figure 4 is a flow chart of generating control information according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of determining whether an overexposure condition is met according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of determining the number of exposures provided by an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the pan-tilt rotation on a movable platform provided by an embodiment of the present invention.
  • FIG. 11 is a flowchart of determining whether a photograph is successful according to an embodiment of the present invention.
  • FIG. 12 is a flowchart of determining whether the shooting is successful according to the end time of the pan-tilt and the end time of the exposure provided by an embodiment of the present invention
  • FIG. 13 is a flowchart of obtaining a synthesized image according to an embodiment of the present invention.
  • Figure 16 is a schematic diagram of a circular space provided by an embodiment of the present invention.
  • Fig. 17 is a schematic diagram of a control device for a movable platform provided by an embodiment of the present invention.
  • the camera can be set on the gimbal and rotate with the gimbal to complete the shooting of photos or videos.
  • the existing drone aerial photography system lacks a rotating shooting solution, and even if the pan/tilt rotates, the shooting device performs exposure, which reduces the shooting experience.
  • the embodiment of the present invention provides a rotary shooting method.
  • the inventive concept is that the rotation control information and the exposure control information can be generated according to the brightness information in the scene where the shooting target is located and the rotation mode of the pan/tilt;
  • the control information is sent to the pan/tilt and the exposure control information is sent to the camera, so that the camera can rotate according to the rotation control information to drive the camera to rotate, and the camera will perform exposure based on the exposure control information, so that the camera can rotate and shoot
  • the device exposure is carried out at the same time to achieve the effect of rotating shooting.
  • FIG. 1 is a perspective view of a movable platform provided by an embodiment of the present invention.
  • the movable platform 100 at least includes a body 110, a power supply battery 120 provided on the body 110, a power system 130, a pan/tilt 140 and a camera 150.
  • a camera 150 is mounted on the platform 140.
  • the mobile platform 100 also includes a memory (not shown in the figure) and a processor (not shown in the figure); the memory is connected to the processor through a communication bus for storing computer instructions executable by the processor; the processor is connected to the cloud
  • the stage 140 is connected to the photographing device 150, and is used to read computer instructions from the memory to implement the steps of a rotating photographing method.
  • the movable platform may include, but is not limited to: air vehicles such as unmanned aerial vehicles, land vehicles such as automobiles, water vehicles such as ships, and other types of motor vehicles.
  • air vehicles such as unmanned aerial vehicles
  • land vehicles such as automobiles
  • water vehicles such as ships
  • the technician can make a selection according to a specific scenario, which is not limited in this embodiment.
  • Fig. 2 is a flowchart of a rotary shooting method provided by an embodiment of the present invention.
  • a rotary shooting method includes steps 201 to 203.
  • the above steps 201 to 203 can be performed by a movable platform, and specifically It is executed by the control device of the movable platform. among them:
  • step 201 the brightness information in the scene where the shooting target is located and the rotation mode of the pan/tilt are acquired.
  • the camera on the movable platform has a field of view (FOV), and the camera can obtain an image (picture and/or video) by shooting a scene in the field of view.
  • FOV field of view
  • the shooting device can first detect the brightness information in the scene where the shooting target is located, and then the shooting device sends the brightness information to the control of the movable platform via the communication bus (not shown in the figure) Device.
  • the control device of the movable platform can obtain the rotation mode selected by the user through the interactive interface, thereby obtaining the rotation mode of the pan-tilt.
  • the rotation mode may include at least one of a constant speed rotation mode, an accelerated rotation mode, and a deceleration rotation mode.
  • the pan/tilt head rotates around the roll axis in each rotation mode.
  • the rotation range of the rotation around the roll axis is 0-360 degrees.
  • the uniform rotation mode refers to a mode in which the pan/tilt rotates at a constant angular velocity, such as 5 rad/s.
  • the fixed angular velocity may be an angular velocity preset by the user, or an angular velocity determined according to different scenarios, which is not limited in this embodiment.
  • the camera can take images at a certain time interval, or at different time intervals.
  • the fixed value time interval may be a time interval preset by the user, or a time interval determined according to different scenarios, which is not limited in this embodiment.
  • the accelerated rotation mode refers to a mode in which the pan/tilt performs an angular velocity acceleration rotation according to a certain angular acceleration (positive value).
  • the fixed angular acceleration may be an angular acceleration preset by the user, or an angular acceleration determined according to different scenarios, which is not limited in this embodiment.
  • the camera can take images at a certain time interval or at different time intervals.
  • the fixed value time interval and the different time interval may be a time interval preset by the user, or may be a time interval determined according to different scenarios, which is not limited in this embodiment.
  • the decelerating rotation mode refers to a mode in which the pan/tilt head performs angular velocity deceleration rotation according to a certain value of angular acceleration (negative value).
  • the fixed angular acceleration may be an angular acceleration preset by the user, or an angular acceleration determined according to different scenarios, which is not limited in this embodiment.
  • the camera can take images at a certain time interval or at different time intervals.
  • the fixed value time interval and the different time interval may be a time interval preset by the user, or may be a time interval determined according to different scenarios, which is not limited in this embodiment.
  • the pan/tilt head can also be in a variable speed rotation mode, where the variable speed rotation mode can be accelerated and then decelerated, or decelerated and then accelerated, or decelerated, accelerated, and rotated at a constant speed.
  • the state and conditions of the movable platform need to be determined in this embodiment.
  • the operating status of the movable platform can be acquired (corresponding to step 301), and it can be determined whether the operating status of the movable platform meets the preset status conditions.
  • the acquisition The steps of the brightness information in the scene and the rotation mode of the pan/tilt (corresponding to step 302).
  • the preset state condition may include that the movable platform is in a hovering state.
  • the drone can determine whether it is in a hovering state. When the drone is in a hovering state, it acquires the brightness information in the scene and the rotation mode of the pan/tilt to perform rotating shooting; When the platform is not in the hovering state, the user is prompted to hover the drone through the user interaction interface.
  • the stability of the camera during the implementation of rotating shooting can be ensured, thereby improving the effect of rotating images taken.
  • control information is generated according to the brightness information and the rotation mode, and the control information includes rotation control information and exposure control information.
  • control information can be generated according to the brightness information provided by the camera and the rotation mode of the pan/tilt, and the control information can include rotation control information and exposure control information.
  • the rotation control information is used to control the rotation of the pan-tilt to drive the camera to rotate
  • the exposure control information is used to control the camera to perform exposure.
  • generating control information according to the brightness information and the rotation mode may include:
  • the number of exposures and the exposure parameters of each exposure can be determined according to the brightness information and the rotation mode, where the exposure parameters can include the sensitivity (ISO) value and the exposure time (corresponding to step 401).
  • control information can be generated according to the number of exposures, exposure parameters, and rotation mode (corresponding to step 402).
  • the rotation control information can be generated according to the rotation mode, where the rotation control information is used to control the pan/tilt to rotate according to the rotation mode, and the exposure control information is used to control the camera to perform exposure.
  • the exposure control information can be used to adjust at least one parameter of the sensitivity value, shutter speed, and aperture of the camera, so as to achieve the effect of controlling the camera to perform exposure.
  • acquiring the number of exposures and the exposure parameters for each exposure may include: referring to FIG. 5, it is possible to determine whether the shooting device meets the requirements of the single exposure according to the brightness information and the rotation time corresponding to the rotation mode.
  • Conditions of overexposure (corresponding to step 501). The determination of whether the overexposure condition is met includes: referring to FIG. 6, obtaining the value range of the sensitivity value of the photographing device (corresponding to step 601). When the exposure amount corresponding to each sensitivity value within the range of the rotation time and the sensitivity value is greater than the preset exposure threshold value, the overexposure condition is met (corresponding to step 602).
  • the exposure mode of the camera for exposure is the short exposure mode, otherwise the exposure mode is determined to be the long exposure mode (corresponding to step 502). Then, the number of exposures and the exposure parameters of each exposure are determined according to the brightness information, the rotation time corresponding to the rotation mode, and the exposure mode (corresponding to step 503).
  • determining the number of exposures and exposure parameters may include:
  • the number of exposures and the number of exposures can be determined according to the rotation time corresponding to the rotation mode, and the preset rotation radian and rotation speed for each rotation. Exposure time (corresponding to step 701). Then, the sensitivity value of each exposure is determined according to the brightness information and the exposure time of each exposure (corresponding to step 702).
  • the exposure time and sensitivity value of each exposure are determined according to the brightness information (corresponding to step 801). Then, the number of exposures is determined according to the rotation time corresponding to the rotation mode and the exposure time of each exposure (corresponding to step 802).
  • the exposure time of each exposure can be determined as the rotation time corresponding to the rotation mode (corresponding to step 901). Then, the sensitivity value of each exposure is determined according to the brightness information and the exposure time of each exposure (corresponding to step 902).
  • the aperture of the photographing device is a fixed value, so the exposure parameter can be the sensitivity value and the exposure time of each exposure.
  • the exposure parameter can be the sensitivity value, aperture, and exposure time per exposure. The technical personnel can adjust the exposure parameters according to the specific scene, and the corresponding scheme falls into the protection scheme of this application.
  • the long exposure mode in the above embodiment is suitable for scenes with low brightness, while the short exposure mode is suitable for scenes with high brightness or large brightness changes (ie high dynamic range).
  • the technician can choose the corresponding exposure according to the specific scene.
  • the mode is not limited here.
  • step 203 the rotation control information is sent to the pan/tilt head, and the exposure control information is sent to the photographing device, so that the pan/tilt head rotates according to the rotation control information to drive the The photographing device rotates so that the photographing device performs exposure according to the exposure control information.
  • the pan/tilt head drives the camera to rotate when rotating according to the rotation mode.
  • the pan/tilt can rotate around the roll axis, and optionally, the rotation range around the roll axis is 0-360 degrees. While the pan/tilt rotates, the camera simultaneously performs exposure. After the exposure of the shooting device is completed, it can be determined whether the shooting is successful, including:
  • step 1101 it is determined whether the photographing device is successful this time (corresponding to step 1101).
  • the following steps are used to determine whether the shooting is successful: referring to Fig. 12, the first moment when the pan/tilt ends rotating and the second moment when the photographing device ends exposure are acquired (corresponding to step 1201).
  • the difference between the first moment and the second moment is less than or equal to the time threshold, it is determined that the photographing device has succeeded in taking pictures, otherwise it is determined that the photographing has failed (corresponding to step 1202).
  • the shooting failure prompt message is output (corresponding step 1103).
  • multiple frames of images may be synthesized: referring to FIG. 13, the multiple frames of images are preprocessed to obtain multiple frames of preprocessed images (corresponding to step 1301).
  • the preprocessing may include image brightness processing and/or image geometric processing.
  • one frame of the multi-frame images is determined as the reference image (corresponding to step 1401). Then, using the reference image as a reference, adjust the brightness of other frame images to keep the brightness of each frame image consistent (corresponding to step 1402). As the brightness of the scene where the shooting target is located may change during the shooting process, adjusting the brightness of each frame of image is beneficial to improve the quality of subsequent composite images.
  • one frame of the multiple frames of images is determined as a reference image (corresponding to step 1501). Then, using the reference image as a reference, adjust the geometric parameters of other frames of images to keep the geometric information of each frame of images consistent (corresponding to step 1502).
  • the multiple frames of images captured by the camera can have the same center point, which can correct the staggered center points of different frames caused by the unstable movement of the movable platform. The problem is conducive to improving the accuracy of subsequent composite images.
  • the focal planes of the multiple frames of images captured by the camera can be made parallel, so that the instability of the focal planes of different frames caused by the unstable motion of the movable platform can be corrected.
  • the problem of parallelism helps to improve the accuracy of subsequent composite images.
  • the shooting failure prompt message can be displayed in a pop-up format in the form of a text file, can also be flashed in accordance with the display screen, and can also be voiced, so as to prompt the user quickly and accurately, so that the user can continue to take images.
  • each frame of image can be sequentially mapped to the time point of the circular space according to the shooting time.
  • the mapping operations include expansion, scaling, and rotation operations, that is, expand the image, scale each part of the image to make the frame image into a fan, and rotate a certain angle to fill the circular space.
  • the images of each frame are spliced in the model space to obtain the result image (corresponding to step 1303).
  • the result image is inversely mapped to a two-dimensional image plane to obtain a synthesized image (corresponding to step 1303).
  • images P1, P2, P3, and P4 can be obtained by rotating the camera, and fan-shaped images can be obtained by expanding and zooming. Then, rotating the fan-shaped images by a corresponding angle can be Map to the circular space shown in Figure 16.
  • the rotation angle of the nth (n ⁇ N) image can be calculated according to the following formula:
  • is the shooting time of the nth image
  • t 0 is the total shooting time
  • is the rotation angle.
  • the total shooting time is 60s
  • the shooting time corresponding to the first frame of image obtained by the first exposure is 0s
  • the rotation angle corresponding to the first frame of image is 0 degrees
  • the shooting time of the third frame image obtained by the third exposure is 35s, then the rotation angle corresponding to the third frame image is 210 degrees
  • the shooting time of the fourth frame image obtained by the fourth exposure is the 50s
  • the rotation angle corresponding to the fourth frame image is 300 degrees.
  • the area of each frame of the fan-shaped image is related to the speed of the pan/tilt rotation.
  • the area of each fan-shaped image in the uniform rotation mode, is the same; another example, in the accelerated rotation mode, the area of each fan-shaped image gradually becomes larger (or smaller) in a clockwise direction; another example, in the decelerated rotation mode, The area of each fan-shaped image gradually becomes smaller (or larger) in a clockwise direction.
  • the brightness information in the scene where the shooting target is located and the rotation mode of the pan/tilt can be obtained; then, the control information is generated according to the brightness information and the rotation mode, and the control information includes rotation control information and exposure control information;
  • the control information is sent to the pan-tilt and the exposure control information is sent to the photographing device, so that when the pan-tilt rotates according to the rotation control information, the photographing device is driven to rotate and the photographing device performs exposure.
  • the control information is sent to the pan-tilt and the exposure control information is sent to the photographing device, so that when the pan-tilt rotates according to the rotation control information, the photographing device is driven to rotate and the photographing device performs exposure.
  • the embodiment of the present invention also provides a rotating shooting method, which is also suitable for the movable platform shown in FIG. 1.
  • the difference from the method shown in FIG. 2 is that after the rotation control information is generated, the The rotation control information is sent to the power system of the movable platform, and the rotation control information is calculated by the power system to control the rotation of the movable platform to replace the rotation of the pan/tilt, and the camera performs exposure during the rotation.
  • the above scheme can also solve the corresponding technical problems and achieve the corresponding technical effects.
  • FIG. 17 is a schematic diagram of a control device for a movable platform according to an embodiment of the present invention.
  • the movable platform has a camera mounted on the platform, and the control device includes a memory 1701 and a processor 1702; the memory 1701 is connected to the processor 1702 through a communication bus, and is used for storing the processor 1702. Executable computer instructions; the processor 1702 is used to read computer instructions from the memory 1701 and execute the following steps:
  • control information According to the brightness information and the rotation mode, where the control information includes rotation control information and exposure control information;
  • the brightness information is detected by the photographing device.
  • the rotation mode includes at least one of a constant speed rotation mode, an acceleration rotation mode, and a deceleration rotation mode.
  • the pan/tilt head rotates around a roll axis.
  • the rotation range of the pan-tilt around the roll axis is 0-360 degrees.
  • processor 1702 is configured to read computer instructions from the memory, and specifically execute the following steps:
  • the exposure parameters including a sensitivity value and an exposure time
  • the control information is generated according to the number of exposures, the exposure parameter, and the rotation mode.
  • processor 1702 is configured to read computer instructions from the memory, and specifically execute the following steps:
  • the photographing device According to the brightness information and the rotation time corresponding to the rotation mode, determine whether the photographing device meets the overexposure condition in the case of a single exposure;
  • the exposure mode in which the photographing device performs exposure is a short exposure mode; otherwise, it is determined that the exposure mode is a long exposure mode;
  • the number of exposures and the exposure parameters of each exposure are determined according to the brightness information, the rotation time corresponding to the rotation mode, and the exposure mode.
  • the processor 1702 is configured to read computer instructions from the memory, and specifically execute the following steps:
  • the sensitivity value of each exposure is determined according to the brightness information and the exposure time of each exposure.
  • the processor 1702 is configured to read computer instructions from the memory, and specifically execute the following steps:
  • the number of exposures is determined according to the rotation time corresponding to the rotation mode and the exposure time of each exposure.
  • the processor 1702 is configured to read computer instructions from the memory, and specifically execute the following steps:
  • the sensitivity value of each exposure is determined according to the brightness information and the exposure time of each exposure.
  • processor 1702 is configured to read computer instructions from the memory, and specifically execute the following steps:
  • the overexposure condition is met.
  • processor 1702 is configured to read computer instructions from the memory, and further execute the following steps:
  • processor 1702 is configured to read computer instructions from the memory, and specifically execute the following steps:
  • processor 1702 is configured to read computer instructions from the memory, and further execute the following steps:
  • the result image is inversely mapped to a two-dimensional image plane to obtain a synthesized image.
  • processor 1702 is configured to read computer instructions from the memory, and specifically execute the following steps:
  • processor 1702 is configured to read computer instructions from the memory, and specifically execute the following steps:
  • the geometric parameters of other frames of images are adjusted to keep the geometric information of each frame of images consistent.
  • processor 1702 is configured to read computer instructions from the memory, and further execute the following steps:
  • the step of acquiring the brightness information in the scene and the rotation mode of the pan/tilt is performed;
  • the preset state condition includes that the movable platform is in a hovering state.
  • the memory 1701 may include a volatile memory (volatile memory); the memory 601 may also include a non-volatile memory (non-volatile memory); the memory 1701 may also include a combination of the foregoing types of memories.
  • the processor 1702 may be a central processing unit (CPU).
  • the processor 1702 may further include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the foregoing PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), or any combination thereof.
  • the control device of the movable platform can obtain the brightness information and the rotation mode of the pan/tilt in the scene where the shooting target is located; then, generate control information according to the brightness information and the rotation mode, and the control information includes rotation control information and exposure control information ; Afterwards, the rotation control information is sent to the pan/tilt, and the exposure control information is sent to the photographing device, so that the pan/tilt rotates according to the rotation control information to drive the photographing device The rotation is performed, and the photographing device performs exposure according to the exposure control information.
  • the control information includes rotation control information and exposure control information ; Afterwards, the rotation control information is sent to the pan/tilt, and the exposure control information is sent to the photographing device, so that the pan/tilt rotates according to the rotation control information to drive the photographing device The rotation is performed, and the photographing device performs exposure according to the exposure control information.
  • the effect of rotating shooting is achieved and the shooting experience is improved.
  • An embodiment of the present invention also provides a movable platform, which includes: a pan-tilt on which a photographing device is mounted; and a control device of the above-mentioned movable platform.
  • the embodiment of the present invention also provides a machine-readable storage medium, the machine-readable storage medium stores a number of machine-readable instructions, and when the machine-readable instructions are executed, the method described in FIGS. 2 to 15 is implemented. step.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Studio Devices (AREA)
  • Geometry (AREA)

Abstract

一种旋转式拍摄方法、可移动平台的控制装置、可移动平台、机器可读存储介质。一种旋转式拍摄方法,所述拍摄方法应用于可移动平台,所述可移动平台通过云台挂载有拍摄装置,所述方法包括:获取拍摄目标所在场景内的亮度信息和所述云台的旋转模式;根据所述亮度信息和所述旋转模式生成控制信息,所述控制信息包括旋转控制信息和曝光控制信息;将所述旋转控制信息发送给所述云台,以及将所述曝光控制信息发送给所述拍摄装置,以使所述云台根据所述旋转控制信息进行旋转时带动所述拍摄装置进行旋转,和以使所述拍摄装置根据所述曝光控制信息进行曝光。本实施例中通过控制云台旋转的同时控制拍摄装置进行曝光,达到旋转拍摄的效果,提升拍摄体验。

Description

旋转式拍摄方法、控制装置、可移动平台及存储介质 技术领域
本发明实施例涉及控制技术领域,尤其涉及旋转式拍摄方法、可移动平台、机器可读存储介质。
背景技术
目前,现有的无人机航拍系统中,拍摄装置可以设置在云台上并跟随云台转动以完成照片或视频的拍摄。然而,现有的无人机航拍系统中缺乏旋转式拍摄方案,也即使云台旋转的同时,拍摄装置进行曝光的方案,降低了拍摄体验。
发明内容
本发明实施例提供一种旋转式拍摄方法、可移动平台的控制装置、可移动平台、机器可读存储介质,可实现旋转式拍摄,提升拍摄体验。
第一方面,本发明实施例提供一种旋转式拍摄方法,所述拍摄方法应用于可移动平台,所述可移动平台通过云台挂载有拍摄装置,所述方法包括:
获取拍摄目标所在场景内的亮度信息和所述云台的旋转模式;
根据所述亮度信息和所述旋转模式生成控制信息,所述控制信息包括旋转控制信息和曝光控制信息;
将所述旋转控制信息发送给所述云台,以及将所述曝光控制信息发送给所述拍摄装置,以使所述云台根据所述旋转控制信息进行旋转时带动所述拍摄装置进行旋转,和以使所述拍摄装置根据所述曝光控制信息进行曝光。
第二方面,本发明实施例提供一种可移动平台的控制装置,所述可移动平台通过云台挂载有拍摄装置,所述控制装置包括存储器和处理器;所 述存储器通过通信总线和所述处理器连接,用于存储所述处理器可执行的计算机指令;所述处理器用于从所述存储器读取计算机指令,执行如下步骤:
获取拍摄目标所在场景内的亮度信息和所述云台的旋转模式;
根据所述亮度信息和所述旋转模式生成控制信息,所述控制信息包括旋转控制信息和曝光控制信息;
将所述旋转控制信息发送给所述云台,以及将所述曝光控制信息发送给所述拍摄装置,以使所述云台根据所述旋转控制信息进行旋转时带动所述拍摄装置进行旋转,和以使所述拍摄装置根据所述曝光控制信息进行曝光。
第三方面,本发明实施例提供一种可移动平台,所述可移动平台包括:云台,所述云台挂载有拍摄装置;如第二方面所述的可移动平台的控制装置。
第四方面,本发明实施例提供一种机器可读存储介质,所述机器可读存储介质上存储有若干机器可读指令,所述机器可读指令被执行时实现第一方面所述方法的步骤。
由上述的技术方案可见,本实施例中可以获取拍摄目标所在场景内的亮度信息和云台的旋转模式;然后,根据亮度信息和旋转模式生成控制信息,控制信息包括旋转控制信息和曝光控制信息;之后,将所述旋转控制信息发送给所述云台,以及将所述曝光控制信息发送给所述拍摄装置,以使所述云台根据所述旋转控制信息进行旋转时带动所述拍摄装置进行旋转,并且所述拍摄装置根据所述曝光控制信息进行曝光。本实施例中通过控制云台旋转的同时控制拍摄装置进行曝光,达到旋转拍摄的效果,提升拍摄体验。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅 是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种可移动平台的立体图;
图2是本发明实施例提供的一种旋转式拍摄方法的流程图;
图3是本发明实施例提供的另一种旋转式拍摄方法的流程图;
图4是本发明实施例提供的一种生成控制信息的流程图;
图5是本发明实施例提供的确定曝光次数和每次曝光参数的流程图;
图6是本发明实施例提供的确定是否符合过度曝光条件的流程图;
图7是本发明实施例提供的确定每次曝光的感光度值的流程图;
图8是本发明实施例提供的确定曝光次数的流程图;
图9是本发明实施例提供的确定每次曝光的感光度值的流程图;
图10是本发明实施例提供的可移动平台上云台旋转的示意图;
图11是本发明实施例提供的确定拍照是否成功的流程图;
图12是本发明实施例提供的通过云台结束时刻和曝光结束时刻确定拍摄是否成功的流程图;
图13是本发明实施例提供的获取合成后的图像的流程图;
图14是本发明实施例提供的图像亮度调整的流程图;
图15是本发明实施例提供的图像几何调整的流程图;
图16是本发明实施例提供的圆形空间的示意图;
图17是本发明实施例提供的一种可移动平台的控制装置的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
目前,现有无人机航拍系统中,拍摄装置可以设置在云台之上并跟随云台转动以完成照片或者视频的拍摄。然而,现有的无人机航拍系统中缺乏旋转式拍摄方案,也即使云台旋转的同时,拍摄装置进行曝光的方案,降低拍摄体验。
为此,本发明实施例提供了一种旋转式拍摄方法,其发明构思在于,根据拍摄目标所在场景内的亮度信息和云台的旋转模式可以生成旋转控制信息和曝光控制信息;然后,将旋转控制信息发送给云台以及将曝光控制信息发送给拍摄装置,这样云台可以根据旋转控制信息进行旋转时带动拍摄装置进行旋转,同时拍摄装置根据曝光控制信息进行曝光,从而使云台旋转和拍摄装置曝光同时进行,从而达到旋转拍摄的效果。
本发明实施例提供的一种旋转式拍摄方法,可以应用于本发明一实施例提供的一种可移动平台,图1是本发明实施例提供的一种可移动平台的立体图。参见图1,可移动平台100至少包括机体110、设于所述机体110上的供电电池120、动力系统130、云台140和拍摄装置150。云台140挂载有拍摄装置150。可移动平台100还包括存储器(图中未示出)和处理器(图中未示出);存储器通过通信总线和处理器连接,用于存储处理器可执行的计算机指令;处理器分别与云台140和拍摄装置150连接,用于从存储器读取计算机指令以实现一种旋转式拍摄方法的步骤。
在一实施例中,该可移动平台可以包括但不限于:无人飞行器等空中交通工具、汽车等陆地交通工具、船舶等水中交通工具,及其他类型的机动载运工具。技术人员可以根据具体场景进行选择,本实施例不作限定。
图2是本发明实施例提供的一种旋转式拍摄方法的流程图,参见图2,一种旋转式拍摄方法包括步骤201~步骤203,上述步骤201~203可以由可移动平台执行,具体可以由可移动平台的控制装置执行。其中:
在步骤201中,获取拍摄目标所在场景内的亮度信息和所述云台的旋转模式。
在本实施例中,可移动平台上的拍摄装置存在一个视野范围(Field of  View,FOV),该拍摄装置通过拍摄该视野范围的场景,可以得到图像(图片和/或视频)。为获得更好的拍摄效果,在拍摄之前,拍摄装置可以先探测拍摄目标所在场景内的亮度信息,然后拍摄装置将该亮度信息经由通信总线(图中未示出)发送给可移动平台的控制装置。
在本实施例中,可移动平台的控制装置可以获取用户通过交互界面选择的旋转模式,从而得到云台的旋转模式。旋转模式可以包括匀速旋转模式、加速旋转模式和减速旋转模式中的至少一种。在一种实施方式中,云台在各旋转模式下绕横滚轴旋转。可选的,绕横滚轴旋转的旋转范围为0~360度。
在一实施例中,匀速旋转模式是指云台按照一定值角速度匀速转动的模式,例如5rad/s。其中,定值角速度可以是用户预先设定的角速度,也可以是根据不同场景确定出的角速度,本实施例不作限定。
可理解的是,在云台处于匀速旋转模式的状态下,拍摄装置可以按照一定值时间间隔拍摄图像,还可以按照不同时间间隔拍摄图像。其中,定值时间间隔可以是用户预先设定的时间间隔,也可以是根据不同场景确定出的时间间隔,本实施例不作限定。
在另一实施例中,加速旋转模式是指云台按照一定值角加速度(正值)进行角速度加速转动的模式。其中,定值角加速度可以是用户预先设定的角加速度,也可以是根据不同场景确定出的角加速度,本实施例不作限定。
可理解的是,在云台处于加速旋转模式的状态下,拍摄装置可以按照一定值时间间隔拍摄图像,还可以按照不同时间间隔拍摄图像。其中,定值时间间隔和不同时间间隔可以是用户预先设定的时间间隔,也可以是根据不同场景确定出的时间间隔,本实施例不作限定。
在又一实施例中,减速旋转模式是指云台按照一定值角加速度(负值)进行角速度减速转动的模式。其中,定值角加速度可以是用户预先设定的角加速度,也可以是根据不同场景确定出的角加速度,本实施例不作限定。
可理解的是,在云台处于减速旋转模式的状态下,拍摄装置可以按照 一定值时间间隔拍摄图像,还可以按照不同时间间隔拍摄图像。其中,定值时间间隔和不同时间间隔可以是用户预先设定的时间间隔,也可以是根据不同场景确定出的时间间隔,本实施例不作限定。
在又一实施例中,云台还可以处于变速旋转模式,其中变速旋转模式可以是先加速后减速旋转,也还可以是先减速后加速旋转,还可以是减速、加速和匀速组合后的旋转,可以根据具体场景选择合适的组合,在能够相应拍摄效果的前提下,相应方案落入本申请的保护范围。
需要说明的是,为保证拍摄装置在各次曝光时处于相同的状态条件下,本实施例中还需要确定可移动平台的状态条件。参见图3,可以获取可移动平台的运行状态(对应步骤301),并确定可移动平台的运行状态是否满足预设状态条件,当可移动平台的运行状态满足预设状态条件时,则执行获取所在场景内的亮度信息和云台的旋转模式的步骤(对应步骤302)。
以可移动平台是无人机为例,预设状态条件可以包括可移动平台处于悬停状态。在一个实施例中,无人机可以确定自身是否处于悬停状态,当无人机处于悬停状态时,则获取场景内的亮度信息和云台的旋转模式以执行旋转式拍摄;当可移动平台并非处于悬停状态时,则通过用户交互界面提示用户悬停无人机。通过预先确定可移动平台处于悬停状态,可保证拍摄装置在实施旋转式拍摄时的稳定性,从而提升旋转式拍摄图像的效果。
在步骤202中,根据所述亮度信息和所述旋转模式生成控制信息,所述控制信息包括旋转控制信息和曝光控制信息。
在本实施例中,可以根据拍摄装置提供的亮度信息和云台的旋转模式生成控制信息,控制信息可以包括旋转控制信息和曝光控制信息。其中,旋转控制信息用于控制云台旋转以带动拍摄装置进行旋转,曝光控制信息用于控制拍摄装置进行曝光。
在本实施例中,根据亮度信息和旋转模式生成控制信息,可以包括:
在一示例中,参见图4,根据亮度信息和旋转模式可以确定曝光次数和每次曝光的曝光参数,其中曝光参数可以包括感光度(ISO)值和曝光 时间(对应步骤401)。然后,根据曝光次数、曝光参数和旋转模式可以生成控制信息(对应步骤402)。例如,可以根据旋转模式生成旋转控制信息,其中旋转控制信息用于控制云台按照旋转模式进行旋转,同时曝光控制信息用于控制拍摄装置进行曝光。其中,曝光控制信息可以用于调整拍摄装置的感光度值、快门速度和光圈中的至少一个参数,从而达到控制拍摄装置进行曝光的效果。
在本实施例中,获取确定曝光次数和每次曝光的曝光参数,可以包括:参见图5,可以根据亮度信息和旋转模式对应的旋转时间,确定在单次曝光的情况下,拍摄装置是否符合过度曝光的条件(对应步骤501)。其中确定是否符合过度曝光的条件包括:参见图6,获取拍摄装置的感光度值的取值范围(对应步骤601)。当旋转时间和感光度值的取值范围内的各感光度值对应的曝光量均大于预设曝光量阈值时,则符合过度曝光的条件(对应步骤602)。
继续参见图5,当符合过度曝光的条件时,则可以确定拍摄装置进行曝光的曝光模式为短曝光模式,否则确定曝光模式为长曝光模式(对应步骤502)。然后,根据亮度信息、旋转模式对应的旋转时间和曝光模式确定曝光次数和每次曝光的曝光参数(对应步骤503)。
在本实施例中,确定曝光次数和曝光参数可以包括:
在一示例中,当曝光模式为短曝光模式时,参见图7,可以根据旋转模式对应的旋转时间,以及预先设定的每次旋转的旋转弧度和旋转速度确定出曝光次数和每次曝光的曝光时间(对应步骤701)。然后,根据亮度信息和每次曝光的曝光时间确定每次曝光的感光度值(对应步骤702)。
在另一示例中,当曝光模式为短曝光模式时,参见图8,根据亮度信息确定每次曝光的曝光时间和感光度值(对应步骤801)。然后,根据旋转模式对应的旋转时间和每次曝光的曝光时间确定曝光次数(对应步骤802)。
在又一示例中,当曝光模式为长曝光模式时,参见图9,在确定所述 曝光次数为一次后,可以确定每次曝光的曝光时间为旋转模式对应的旋转时间(对应步骤901)。然后,根据亮度信息和每次曝光的曝光时间确定每次曝光的感光度值(对应步骤902)。
需要说明的是,对于拍摄装置,对于相同的曝光量(EV,Exposure Values),光圈不变的情况下,感光度值越高,快门速度越快,即每次曝光的曝光时间更短;或者,在快门速度不变的情况下,感光度值越高,光圈更小。本实施例中,拍摄装置的光圈为一固定值,因此曝光参数可以为感光度值和每次曝光的曝光时间。当然,在拍摄装置的光圈并非一固定值时,曝光参数可以为感光度值、光圈和每次曝光的曝光时间。技术人员可以根据具体场景调整曝光参数,相应方案落入本申请的保护方案。
上述实施例中的长曝光模式适于亮度不高的场景,而短曝光模式则适于亮度较高或者亮度变化较大(即高动态范围)的场景,技术人员可以根据具体场景选择相应的曝光模式,在此不作限定。
在步骤203中,将所述旋转控制信息发送给所述云台,以及将所述曝光控制信息发送给所述拍摄装置,以使所述云台根据所述旋转控制信息进行旋转时带动所述拍摄装置进行旋转,和以使所述拍摄装置根据所述曝光控制信息进行曝光。
在本实施例中,云台在接收到旋转控制信息后,按照旋转模式进行旋转时带动拍摄装置进行旋转。如图10所示,云台可绕横滚轴旋转,可选的,绕横滚轴旋转的旋转范围为0~360度。在云台旋转的同时,拍摄装置同时进行曝光。在拍摄装置曝光完成后,还可以确定是否拍摄成功,包括:
参见图11,确定拍摄装置此次拍照是否成功(对应步骤1101)。其中,通过以下步骤确定拍摄是否成功:参见图12,获取云台结束旋转的第一时刻和拍摄装置结束曝光的第二时刻(对应步骤1201)。当第一时刻和第二时刻的差值小于或者等于时间阈值时,则确定拍摄装置拍照成功,否则确定拍照失败(对应步骤1202)。
继续参见图11,当拍照成功时,则输出拍摄所得到的单张图像或对拍 摄所得的多帧图像进行合成处理(对应步骤1102);当拍照失败时,则输出拍摄失败提示信息(对应步骤1103)。
在一示例中,可以对多帧图像进行合成处理:参见图13,对多帧图像进行预处理,得到多帧预处理图像(对应步骤1301)。其中,预处理可以包括图像亮度处理和/或图像几何处理。
以图像亮度处理为例,参见图14,将多帧图像中的一帧图像确定为基准图像(对应步骤1401)。然后,以基准图像为基准,调整其他各帧图像的亮度,以使各帧图像的亮度保持一致(对应步骤1402)。由于拍摄过程中,拍摄目标所处的场景亮度可能发生改变,对各帧图像亮度进行调整,有利于提升后续合成图像的质量。
以图像几何处理为例,参见图15,将多帧图像中的一帧图像确定为基准图像(对应步骤1501)。然后,以基准图像为基准,调整其他各帧图像的几何参数,以使各帧图像的几何信息保持一致(对应步骤1502)。本实施例中,通过调整各帧图像的几何参数,可以使拍摄装置所拍摄的多帧图像具有相同的中心点,从而可以纠正可移动平台运动状态不稳定而引起的不同帧的中心点错开的问题,有利于提升后续合成图像的准确度。在一种实施例中,通过调整各帧图像的几何参数,可以使拍摄装置所拍摄的多帧图像的焦平面平行,从而可以纠正可移动平台运动状态不稳定而引起的不同帧的焦平面不平行的问题,有利于提升后续合成图像的准确度。
需要说明的是,考虑到所拍摄图像的质量,还可以对图像进行质量增加处理等其他调整图像质量的操作,从而提升后续图像合成的效果。当然,本领域技术人员还可以根据具体场景选择合适的预处理方式,相应方案落入本申请的保护范围。
在一示例中,拍摄失败提示信息可以以文本档的形式弹出显示,也可以按照显示屏频闪,还可以语音提示,从而达到快速和准确的提示用户,方便用户继续拍摄图像。
继续参见图13,将各帧预处理图像映射到同一个模型空间上的各个时 间节点(对应步骤1302)。例如,在旋转拍摄过程中,拍摄装置所拍摄的场景构成一个以该拍摄装置为中心的圆形空间,因此在步骤1302中可以按照拍摄时间将各帧图像依次映射到上述圆形空间的时间点位置,其中映射操作包括展开、缩放和旋转操作,即展开图像,缩放图像的各个部分使该帧图像变为扇型,旋转一定的角度填充圆形空间。之后,在模型空间内拼接各帧图像,得到结果图(对应步骤1303)。最后,将结果图反映射至二维图像平面,得到合成后的图像(对应步骤1303)。
以图10所示的拍摄装置为例,经过拍摄装置的旋转式拍摄可得到图像P1、P2、P3和P4,经过展开、缩放可以得到扇形的图像,然后,将扇形的图像旋转相应的角度可映射到如图16所示的圆形空间。
可选的,假设共拍摄得到N张图像,则第n(n≤N)张图像的旋转角度可根据以下公式进行计算,
θ=τ/t 0×360°
其中,τ为第n张图像的拍摄时刻,t 0为总的拍摄时长,θ为旋转角度。示例的,假设总的拍摄时长为60s,第一次曝光得到的第一帧图像对应的拍摄时刻为第0s,则第一帧图像对应的旋转角度为0度;第二次曝光得到的第二帧图像对应的拍摄时刻为第20s,则第二帧图像对应的旋转角度为120度;第三次曝光得到的第三帧图像的拍摄时刻为第35s,则第三帧图像对应的旋转角度为210度;第四次曝光得到的第四帧图像的拍摄时刻为第50s,则第四帧图像对应的旋转角度为300度。
可选的,各帧扇形图像的面积与云台旋转的速度相关。例如在匀速旋转模式下,各扇形图像的面积相同;又如,在加速旋转模式下,各扇形图像的面积按照顺时针方向逐渐变大(或者变小);再如,在减速旋转模式下,各扇形图像的面积按照顺时针方向逐渐变小(或者变大)。
至此,本实施例中可以获取拍摄目标所在场景内的亮度信息和云台的旋转模式;然后,根据亮度信息和旋转模式生成控制信息,控制信息包括旋转控制信息和曝光控制信息;之后,将旋转控制信息发送给云台以及将 曝光控制信息发送给所述拍摄装置,以使云台根据旋转控制信息进行旋转时带动拍摄装置进行旋转,同时拍摄装置进行曝光。本实施例中通过控制云台旋转的同时控制拍摄装置进行曝光,达到旋转拍摄的效果,提升拍摄体验。
基于上述发明构思,本发明实施例还提供了一种旋转式拍摄方法,同样适于图1所示的可移动平台,与图2所示方法的区别在于,在生成旋转控制信息后,将该旋转控制信息发送给可移动平台的动力系统,由动力系统解算旋转控制信息后控制可移动平台旋转以代替云台旋转,并且在旋转过程中拍摄装置进行曝光。上述方案同样可以解决相应的技术问题,达到相应的技术效果。
请参见图17,图17是本发明实施例提供的一种可移动平台的控制装置的示意图。具体的,可移动平台通过云台挂载有拍摄装置,所述控制装置包括存储器1701和处理器1702;所述存储器1701通过通信总线和所述处理器1702连接,用于存储所述处理器1702可执行的计算机指令;所述处理器1702用于从所述存储器1701读取计算机指令,执行如下步骤:
获取拍摄目标所在场景内的亮度信息和所述云台的旋转模式;
根据所述亮度信息和所述旋转模式生成控制信息,所述控制信息包括旋转控制信息和曝光控制信息;
将所述旋转控制信息发送给所述云台,以及将所述曝光控制信息发送给所述拍摄装置,以使所述云台根据所述旋转控制信息进行旋转时带动所述拍摄装置进行旋转,和以使所述拍摄装置根据所述曝光控制信息进行曝光。
进一步地,所述亮度信息由所述拍摄装置探测得到。
进一步地,所述旋转模式包括匀速旋转模式、加速旋转模式和减速旋转模式中的至少一种。
进一步地,在所述旋转模式下,所述云台绕横滚轴的旋转。
进一步地,所述云台绕横滚轴旋转的旋转范围为0~360度。
进一步地,所述处理器1702用于从所述存储器读取计算机指令,具体执行如下步骤:
根据所述亮度信息和所述旋转模式确定曝光次数和每次曝光的曝光参数,所述曝光参数包括感光度值和曝光时间;
根据所述曝光次数、所述曝光参数和所述旋转模式生成所述控制信息。
进一步地,所述处理器1702用于从所述存储器读取计算机指令,具体执行如下步骤:
根据所述亮度信息和所述旋转模式对应的旋转时间,确定在单次曝光的情况下,所述拍摄装置是否符合过度曝光的条件;
当符合所述过度曝光的条件时,则确定所述拍摄装置进行曝光的曝光模式为短曝光模式,否则确定所述曝光模式为长曝光模式;
根据所述亮度信息、所述旋转模式对应的旋转时间和所述曝光模式确定所述曝光次数和所述每次曝光的曝光参数。
进一步地,当所述曝光模式为短曝光模式时,所述处理器1702用于从所述存储器读取计算机指令,具体执行如下步骤:
根据所述旋转模式对应的旋转时间,以及预先设定的每次旋转的旋转弧度和旋转速度确定所述曝光次数和所述每次曝光的曝光时间;
根据所述亮度信息和所述每次曝光的曝光时间确定每次曝光的感光度值。
进一步地,当所述曝光模式为短曝光模式时,所述处理器1702用于从所述存储器读取计算机指令,具体执行如下步骤:
根据所述亮度信息确定所述每次曝光的曝光时间和感光度值;
根据所述旋转模式对应的旋转时间和所述每次曝光的曝光时间确定所述曝光次数。
进一步地,当所述曝光模式为长曝光模式时,所述处理器1702用于从所述存储器读取计算机指令,具体执行如下步骤:
确定所述曝光次数为一次,所述每次曝光的曝光时间为所述旋转模式 对应的旋转时间;
根据所述亮度信息和所述每次曝光的曝光时间确定每次曝光的感光度值。
进一步地,所述处理器1702用于从所述存储器读取计算机指令,具体执行如下步骤:
获取所述拍摄装置的感光度值的取值范围;
当所述旋转时间和所述感光度值的取值范围内的各感光度值对应的曝光量均大于预设曝光量阈值时,则符合过度曝光的条件。
进一步地,所述处理器1702用于从所述存储器读取计算机指令,还执行如下步骤:
确定所述拍摄装置此次拍照是否成功;
当拍照成功时,则输出拍摄所得到的单张图像或对拍摄所得的多帧图像进行合成处理;
当拍照失败时,则输出拍摄失败提示信息。
进一步地,所述处理器1702用于从所述存储器读取计算机指令,具体执行如下步骤:
获取所述云台结束旋转的第一时刻和所述拍摄装置结束曝光的第二时刻;
当所述第一时刻和所述第二时刻的差值小于或者等于时间阈值时,则确定所述拍摄装置拍照成功,否则确定拍照失败。
进一步地,所述处理器1702用于从所述存储器读取计算机指令,还执行如下步骤:
对多帧图像进行预处理,得到多帧预处理图像;
将各帧预处理图像映射到同一个模型空间上的各个时间节点;
在所述模型空间内,拼接各帧图像,得到结果图;
将所述结果图反映射至二维图像平面,得到合成后的图像。
进一步地,所述处理器1702用于从所述存储器读取计算机指令,具体 执行如下步骤:
将所述多帧图像中的一帧图像确定为基准图像;
以所述基准图像为基准,调整其他各帧图像的亮度,以使各帧图像的亮度保持一致。
进一步地,所述处理器1702用于从所述存储器读取计算机指令,具体执行如下步骤:
将所述多帧图像中的一帧图像确定为基准图像;
以所述基准图像为基准,调整其他各帧图像的几何参数,以使各帧图像的几何信息保持一致。
进一步地,所述处理器1702用于从所述存储器读取计算机指令,还执行如下步骤:
获取所述可移动平台的运行状态;
当所述移动平台的运行状态满足预设状态条件时,则执行获取所在场景内的亮度信息和云台的旋转模式的步骤;
其中,所述预设状态条件包括所述可移动平台处于悬停状态。
所述存储器1701可以包括易失性存储器(volatile memory);存储器601也可以包括非易失性存储器(non-volatile memory);存储器1701还可以包括上述种类的存储器的组合。所述处理器1702可以是中央处理器(central processing unit,CPU)。所述处理器1702还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA)或其任意组合。
本实施例提供的可移动平台的控制装置可以获取拍摄目标所在场景内的亮度信息和云台的旋转模式;然后,根据亮度信息和旋转模式生成控制信息,控制信息包括旋转控制信息和曝光控制信息;之后,将所述旋转控 制信息发送给所述云台,以及将所述曝光控制信息发送给所述拍摄装置,以使所述云台根据所述旋转控制信息进行旋转时带动所述拍摄装置进行旋转,并且所述拍摄装置根据所述曝光控制信息进行曝光。本实施例中通过控制云台旋转的同时控制拍摄装置进行曝光,达到旋转拍摄的效果,提升拍摄体验。
本发明实施例还提供一种可移动平台,所述可移动平台包括:云台,所述云台挂载有拍摄装置;以及上述可移动平台的控制装置。
本发明实施例还提供了一种机器可读存储介质,所述机器可读存储介质上存储有若干机器可读指令,所述机器可读指令被执行时实现图2~图15所述方法的步骤。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的检测装置和方法进行了详细介绍,本发明中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (36)

  1. 一种旋转式拍摄方法,其特征在于,所述拍摄方法应用于可移动平台,所述可移动平台通过云台挂载有拍摄装置,所述方法包括:
    获取拍摄目标所在场景内的亮度信息和所述云台的旋转模式;
    根据所述亮度信息和所述旋转模式生成控制信息,所述控制信息包括旋转控制信息和曝光控制信息;
    将所述旋转控制信息发送给所述云台,以及将所述曝光控制信息发送给所述拍摄装置,以使所述云台根据所述旋转控制信息进行旋转时带动所述拍摄装置进行旋转,和以使所述拍摄装置根据所述曝光控制信息进行曝光。
  2. 根据权利要求1所述的旋转式拍摄方法,其特征在于,所述亮度信息由所述拍摄装置探测得到。
  3. 根据权利要求1所述的旋转式拍摄方法,其特征在于,所述旋转模式包括匀速旋转模式、加速旋转模式和减速旋转模式中的至少一种。
  4. 根据权利要求1所述的旋转式拍摄方法,其特征在于,在所述旋转模式下,所述云台绕横滚轴旋转。
  5. 根据权利要求4所述的旋转式拍摄方法,其特征在于,所述云台绕横滚轴旋转的旋转范围为0~360度。
  6. 根据权利要求1所述的旋转式拍摄方法,其特征在于,所述根据所述亮度信息和所述旋转模式生成控制信息包括:
    根据所述亮度信息和所述旋转模式确定曝光次数和每次曝光的曝光参数,所述曝光参数包括感光度值和曝光时间;
    根据所述曝光次数、所述曝光参数和所述旋转模式生成所述控制信息。
  7. 根据权利要求6所述的旋转式拍摄方法,其特征在于,所述根据所述亮度信息和所述旋转模式确定曝光次数和每次曝光的曝光参数包括:
    根据所述亮度信息和所述旋转模式对应的旋转时间,确定在单次曝光 的情况下,所述拍摄装置是否符合过度曝光的条件;
    当符合所述过度曝光的条件时,则确定所述拍摄装置进行曝光的曝光模式为短曝光模式,否则确定所述曝光模式为长曝光模式;
    根据所述亮度信息、所述旋转模式对应的旋转时间和所述曝光模式确定所述曝光次数和所述每次曝光的曝光参数。
  8. 根据权利要求7所述的旋转式拍摄方法,其特征在于,当所述曝光模式为短曝光模式时,所述根据所述亮度信息、所述旋转模式对应的旋转时间和所述曝光模式确定所述曝光次数和所述每次曝光的曝光参数,包括:
    根据所述旋转模式对应的旋转时间,以及预先设定的每次旋转的旋转弧度和旋转速度确定所述曝光次数和所述每次曝光的曝光时间;
    根据所述亮度信息和所述每次曝光的曝光时间确定每次曝光的感光度值。
  9. 根据权利要求7所述的旋转式拍摄方法,其特征在于,当所述曝光模式为短曝光模式时,所述根据所述亮度信息、所述旋转模式对应的旋转时间和所述曝光模式确定所述曝光次数和所述每次曝光的曝光参数,包括:
    根据所述亮度信息确定所述每次曝光的曝光时间和感光度值;
    根据所述旋转模式对应的旋转时间和所述每次曝光的曝光时间确定所述曝光次数。
  10. 根据权利要求7所述的旋转式拍摄方法,其特征在于,当所述曝光模式为长曝光模式时,所述根据所述亮度信息、所述旋转模式对应的旋转时间和曝光模式确定曝光次数和每次曝光的曝光参数,包括:
    确定所述曝光次数为一次,所述每次曝光的曝光时间为所述旋转模式对应的旋转时间;
    根据所述亮度信息和所述每次曝光的曝光时间确定每次曝光的感光度值。
  11. 根据权利要求7所述的旋转式拍摄方法,其特征在于,所述根据所述亮度信息和所述旋转模式对应的旋转时间,确定在单次曝光的情况下, 所述拍摄装置是否符合过度曝光的条件包括:
    获取所述拍摄装置的感光度值的取值范围;
    当所述旋转时间和所述感光度值的取值范围内的各感光度值对应的曝光量均大于预设曝光量阈值时,则符合过度曝光的条件。
  12. 根据权利要求1所述的旋转式拍摄方法,其特征在于,所述方法还包括:
    确定所述拍摄装置此次拍照是否成功;
    当拍照成功时,则输出拍摄所得到的单张图像或对拍摄所得的多帧图像进行合成处理;
    当拍照失败时,则输出拍摄失败提示信息。
  13. 根据权利要求12所述的旋转式拍摄方法,其特征在于,所述确定所述拍摄装置此次拍照是否成功包括:
    获取所述云台结束旋转的第一时刻和所述拍摄装置结束曝光的第二时刻;
    当所述第一时刻和所述第二时刻的差值小于或者等于时间阈值时,则确定所述拍摄装置拍照成功,否则确定拍照失败。
  14. 根据权利要求1所述的旋转式拍摄方法,其特征在于,所述方法还包括对拍摄所得的多帧图像进行合成处理,所述合成处理包括:
    对所述多帧图像进行预处理,得到多帧预处理图像;
    将各帧预处理图像映射到同一个模型空间上的各个时间节点;
    在所述模型空间内,拼接各帧图像,得到结果图;
    将所述结果图反映射至二维图像平面,得到合成后的图像。
  15. 根据权利要求14所述的旋转式拍摄方法,其特征在于,所述预处理包括图像亮度处理,对所述多帧图像进行预处理包括:
    将所述多帧图像中的一帧图像确定为基准图像;
    以所述基准图像为基准,调整其他各帧图像的亮度,以使各帧图像的亮度保持一致。
  16. 根据权利要求14所述的旋转式拍摄方法,其特征在于,所述预处理包括图像几何处理,对所述多帧图像进行预处理包括:
    将所述多帧图像中的一帧图像确定为基准图像;
    以所述基准图像为基准,调整其他各帧图像的几何参数,以使各帧图像的几何信息保持一致。
  17. 根据权利要求1所述的旋转式拍摄方法,其特征在于,获取所在场景内的亮度信息和云台的旋转模式之前,所述方法还包括:
    获取所述可移动平台的运行状态;
    当所述移动平台的运行状态满足预设状态条件时,则执行获取所在场景内的亮度信息和云台的旋转模式的步骤;
    其中,所述预设状态条件包括所述可移动平台处于悬停状态。
  18. 一种可移动平台的控制装置,其特征在于,所述可移动平台通过云台挂载有拍摄装置,所述控制装置包括存储器和处理器;所述存储器通过通信总线和所述处理器连接,用于存储所述处理器可执行的计算机指令;所述处理器用于从所述存储器读取计算机指令,执行如下步骤:
    获取拍摄目标所在场景内的亮度信息和所述云台的旋转模式;
    根据所述亮度信息和所述旋转模式生成控制信息,所述控制信息包括旋转控制信息和曝光控制信息;
    将所述旋转控制信息发送给所述云台,以及将所述曝光控制信息发送给所述拍摄装置,以使所述云台根据所述旋转控制信息进行旋转时带动所述拍摄装置进行旋转,和以使所述拍摄装置根据所述曝光控制信息进行曝光。
  19. 根据权利要求18所述的控制装置,其特征在于,所述亮度信息由所述拍摄装置探测得到。
  20. 根据权利要求18所述的控制装置,其特征在于,所述旋转模式包括匀速旋转模式、加速旋转模式和减速旋转模式中的至少一种。
  21. 根据权利要求18所述的控制装置,其特征在于,在所述旋转模式 下,所述云台绕横滚轴的旋转。
  22. 根据权利要求21所述的控制装置,其特征在于,所述云台绕横滚轴旋转的旋转范围为0~360度。
  23. 根据权利要求18所述的控制装置,其特征在于,所述处理器用于从所述存储器读取计算机指令,具体执行如下步骤:
    根据所述亮度信息和所述旋转模式确定曝光次数和每次曝光的曝光参数,所述曝光参数包括感光度值和曝光时间;
    根据所述曝光次数、所述曝光参数和所述旋转模式生成所述控制信息。
  24. 根据权利要求23所述的控制装置,其特征在于,所述处理器用于从所述存储器读取计算机指令,具体执行如下步骤:
    根据所述亮度信息和所述旋转模式对应的旋转时间,确定在单次曝光的情况下,所述拍摄装置是否符合过度曝光的条件;
    当符合所述过度曝光的条件时,则确定所述拍摄装置进行曝光的曝光模式为短曝光模式,否则确定所述曝光模式为长曝光模式;
    根据所述亮度信息、所述旋转模式对应的旋转时间和所述曝光模式确定所述曝光次数和所述每次曝光的曝光参数。
  25. 根据权利要求24所述的控制装置,其特征在于,当所述曝光模式为短曝光模式时,所述处理器用于从所述存储器读取计算机指令,具体执行如下步骤:
    根据所述旋转模式对应的旋转时间,以及预先设定的每次旋转的旋转弧度和旋转速度确定所述曝光次数和所述每次曝光的曝光时间;
    根据所述亮度信息和所述每次曝光的曝光时间确定每次曝光的感光度值。
  26. 根据权利要求24所述的控制装置,其特征在于,当所述曝光模式为短曝光模式时,所述处理器用于从所述存储器读取计算机指令,具体执行如下步骤:
    根据所述亮度信息确定所述每次曝光的曝光时间和感光度值;
    根据所述旋转模式对应的旋转时间和所述每次曝光的曝光时间确定所述曝光次数。
  27. 根据权利要求24所述的控制装置,其特征在于,当所述曝光模式为长曝光模式时,所述处理器用于从所述存储器读取计算机指令,具体执行如下步骤:
    确定所述曝光次数为一次,所述每次曝光的曝光时间为所述旋转模式对应的旋转时间;
    根据所述亮度信息和所述每次曝光的曝光时间确定每次曝光的感光度值。
  28. 根据权利要求24所述的控制装置,其特征在于,所述处理器用于从所述存储器读取计算机指令,具体执行如下步骤:
    获取所述拍摄装置的感光度值的取值范围;
    当所述旋转时间和所述感光度值的取值范围内的各感光度值对应的曝光量均大于预设曝光量阈值时,则符合过度曝光的条件。
  29. 根据权利要求18所述的控制装置,其特征在于,所述处理器用于从所述存储器读取计算机指令,还执行如下步骤:
    确定所述拍摄装置此次拍照是否成功;
    当拍照成功时,则输出拍摄所得到的单张图像或对拍摄所得的多帧图像进行合成处理;
    当拍照失败时,则输出拍摄失败提示信息。
  30. 根据权利要求29所述的控制装置,其特征在于,所述处理器用于从所述存储器读取计算机指令,具体执行如下步骤:
    获取所述云台结束旋转的第一时刻和所述拍摄装置结束曝光的第二时刻;
    当所述第一时刻和所述第二时刻的差值小于或者等于时间阈值时,则确定所述拍摄装置拍照成功,否则确定拍照失败。
  31. 根据权利要求18所述的控制装置,其特征在于,所述处理器用于 从所述存储器读取计算机指令,还执行如下步骤:
    对多帧图像进行预处理,得到多帧预处理图像;
    将各帧预处理图像映射到同一个模型空间上的各个时间节点;
    在所述模型空间内,拼接各帧图像,得到结果图;
    将所述结果图反映射至二维图像平面,得到合成后的图像。
  32. 根据权利要求31所述的控制装置,其特征在于,所述处理器用于从所述存储器读取计算机指令,具体执行如下步骤:
    将所述多帧图像中的一帧图像确定为基准图像;
    以所述基准图像为基准,调整其他各帧图像的亮度,以使各帧图像的亮度保持一致。
  33. 根据权利要求31所述的控制装置,其特征在于,所述处理器用于从所述存储器读取计算机指令,具体执行如下步骤:
    将所述多帧图像中的一帧图像确定为基准图像;
    以所述基准图像为基准,调整其他各帧图像的几何参数,以使各帧图像的几何信息保持一致。
  34. 根据权利要求18所述的控制装置,其特征在于,所述处理器用于从所述存储器读取计算机指令,还执行如下步骤:
    获取所述可移动平台的运行状态;
    当所述移动平台的运行状态满足预设状态条件时,则执行获取所在场景内的亮度信息和云台的旋转模式的步骤;
    其中,所述预设状态条件包括所述可移动平台处于悬停状态。
  35. 一种可移动平台,其特征在于,所述可移动平台包括:
    云台,所述云台挂载有拍摄装置;
    如权利要求18-34中任一项所述的可移动平台的控制装置。
  36. 一种机器可读存储介质,其特征在于,所述机器可读存储介质上存储有若干机器可读指令,所述机器可读指令被执行时实现权利要求1~17任一项所述方法的步骤。
PCT/CN2019/079876 2019-03-27 2019-03-27 旋转式拍摄方法、控制装置、可移动平台及存储介质 WO2020191665A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/079876 WO2020191665A1 (zh) 2019-03-27 2019-03-27 旋转式拍摄方法、控制装置、可移动平台及存储介质
CN201980005413.XA CN111316636B (zh) 2019-03-27 2019-03-27 旋转式拍摄方法、控制装置、可移动平台及存储介质
US17/484,227 US20220014659A1 (en) 2019-03-27 2021-09-24 Rotary photographing method, control device, mobile platform, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/079876 WO2020191665A1 (zh) 2019-03-27 2019-03-27 旋转式拍摄方法、控制装置、可移动平台及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/484,227 Continuation US20220014659A1 (en) 2019-03-27 2021-09-24 Rotary photographing method, control device, mobile platform, and storage medium

Publications (1)

Publication Number Publication Date
WO2020191665A1 true WO2020191665A1 (zh) 2020-10-01

Family

ID=71161146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079876 WO2020191665A1 (zh) 2019-03-27 2019-03-27 旋转式拍摄方法、控制装置、可移动平台及存储介质

Country Status (3)

Country Link
US (1) US20220014659A1 (zh)
CN (1) CN111316636B (zh)
WO (1) WO2020191665A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022016323A1 (zh) * 2020-07-20 2022-01-27 深圳市大疆创新科技有限公司 拍摄系统及其控制方法和装置、计算机存储介质
CN112653843A (zh) * 2020-12-24 2021-04-13 维沃移动通信有限公司 基于云台的拍摄方法、装置及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104881049A (zh) * 2015-05-28 2015-09-02 天津大学 有限空间内无人机全景拍摄云台
CN106534627A (zh) * 2015-09-10 2017-03-22 鹦鹉无人机股份有限公司 包括使用姿态无关控制参数的前视相机的无人机
CN107370919A (zh) * 2017-07-03 2017-11-21 广州傲胜机器人科技有限公司 720全景摄影云台系统和全景图像合成算法
WO2018119590A1 (zh) * 2016-12-26 2018-07-05 深圳市道通智能航空技术有限公司 一种测光方法和装置、曝光方法和装置及无人飞行器
CN108521864A (zh) * 2017-10-20 2018-09-11 深圳市大疆创新科技有限公司 成像控制方法、成像装置和无人机
CN108702462A (zh) * 2016-03-07 2018-10-23 亚马逊技术股份有限公司 自主运载工具上的入射光传感器
US10178315B1 (en) * 2016-06-29 2019-01-08 Amazon Technologies, Inc. Image capture in a vibrational environment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102495522A (zh) * 2011-12-01 2012-06-13 天津曙光敬业科技有限公司 基于无人直升机航拍的360°空中全景互动漫游系统的制作方法
CN104717415B (zh) * 2013-12-12 2019-03-01 华为技术有限公司 一种摄像装置
CN104853082B (zh) * 2014-11-25 2017-11-07 广东欧珀移动通信有限公司 一种拍摄全景图片的方法及装置
CN104828256B (zh) * 2015-04-21 2016-09-28 杨珊珊 一种智能多模式飞行拍摄设备及其飞行控制方法
CN104954671B (zh) * 2015-05-27 2018-01-19 广东欧珀移动通信有限公司 全景摄像的方法及装置
CN105045279A (zh) * 2015-08-03 2015-11-11 余江 一种利用无人飞行器航拍自动生成全景照片的系统及方法
US10200624B2 (en) * 2016-04-06 2019-02-05 Facebook, Inc. Three-dimensional, 360-degree virtual reality exposure control
CN107800971B (zh) * 2017-10-27 2019-08-20 Oppo广东移动通信有限公司 全景拍摄的自动曝光控制处理方法、装置及设备
WO2019119434A1 (zh) * 2017-12-22 2019-06-27 深圳市大疆创新科技有限公司 信息处理方法、无人机、遥控设备以及非易失性存储介质
CN108668081A (zh) * 2018-06-25 2018-10-16 深圳市固胜智能科技有限公司 一种延时摄影装置及延时摄影方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104881049A (zh) * 2015-05-28 2015-09-02 天津大学 有限空间内无人机全景拍摄云台
CN106534627A (zh) * 2015-09-10 2017-03-22 鹦鹉无人机股份有限公司 包括使用姿态无关控制参数的前视相机的无人机
CN108702462A (zh) * 2016-03-07 2018-10-23 亚马逊技术股份有限公司 自主运载工具上的入射光传感器
US10178315B1 (en) * 2016-06-29 2019-01-08 Amazon Technologies, Inc. Image capture in a vibrational environment
WO2018119590A1 (zh) * 2016-12-26 2018-07-05 深圳市道通智能航空技术有限公司 一种测光方法和装置、曝光方法和装置及无人飞行器
CN107370919A (zh) * 2017-07-03 2017-11-21 广州傲胜机器人科技有限公司 720全景摄影云台系统和全景图像合成算法
CN108521864A (zh) * 2017-10-20 2018-09-11 深圳市大疆创新科技有限公司 成像控制方法、成像装置和无人机

Also Published As

Publication number Publication date
CN111316636A (zh) 2020-06-19
US20220014659A1 (en) 2022-01-13
CN111316636B (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
US20210105403A1 (en) Method for processing image, image processing apparatus, multi-camera photographing apparatus, and aerial vehicle
US20210141378A1 (en) Imaging method and device, and unmanned aerial vehicle
WO2019113966A1 (zh) 一种避障方法、装置和无人机
CN109071034A (zh) 切换云台工作模式的方法、控制器和图像增稳设备
CN108780324B (zh) 无人机、无人机控制方法和装置
CN105045279A (zh) 一种利用无人飞行器航拍自动生成全景照片的系统及方法
CN109074664A (zh) 姿态标定方法、设备及无人飞行器
CN108513651B (zh) 手持云台装置及其控制方法与计算机可读存储介质
WO2019061295A1 (zh) 一种视频处理方法、设备、无人机及系统
US20220014659A1 (en) Rotary photographing method, control device, mobile platform, and storage medium
WO2019104641A1 (zh) 无人机、其控制方法以及记录介质
CN113273172A (zh) 全景拍摄方法、装置、系统及计算机可读存储介质
WO2019037038A1 (zh) 图像处理方法、装置及服务器
US20210109312A1 (en) Control apparatuses, mobile bodies, control methods, and programs
WO2020019106A1 (zh) 云台和无人机控制方法、云台及无人机
US20200137310A1 (en) Control device, photographing system, movable body, and control method and program
WO2019061064A1 (zh) 图像处理方法和设备
WO2019023914A1 (zh) 一种图像处理方法、无人机、地面控制台及其图像处理系统
WO2020227998A1 (zh) 图像增稳控制方法、拍摄设备和可移动平台
US20210014427A1 (en) Control device, imaging device, mobile object, control method and program
WO2019205087A1 (zh) 图像增稳方法和装置
CN104660915B (zh) 全景拍照曝光的控制方法及装置
CN110800286B (zh) 一种拍摄方法及相关设备
JP2021096865A (ja) 情報処理装置、飛行制御指示方法、プログラム、及び記録媒体
WO2019052197A1 (zh) 飞行器参数设定方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921304

Country of ref document: EP

Kind code of ref document: A1