WO2020191525A1 - 小区搜索的方法和装置 - Google Patents

小区搜索的方法和装置 Download PDF

Info

Publication number
WO2020191525A1
WO2020191525A1 PCT/CN2019/079274 CN2019079274W WO2020191525A1 WO 2020191525 A1 WO2020191525 A1 WO 2020191525A1 CN 2019079274 W CN2019079274 W CN 2019079274W WO 2020191525 A1 WO2020191525 A1 WO 2020191525A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
endc
frequency point
search
cell
Prior art date
Application number
PCT/CN2019/079274
Other languages
English (en)
French (fr)
Inventor
匡雅斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980081943.2A priority Critical patent/CN113170385B/zh
Priority to PCT/CN2019/079274 priority patent/WO2020191525A1/zh
Publication of WO2020191525A1 publication Critical patent/WO2020191525A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of wireless communication technologies, and more specifically, to a method and device for cell search.
  • 4G and 5G dual connectivity (eNodeB-nrNodeB dual carrier, ENDC) networking methods will use 4G base stations and 4G core networks, and use 4G
  • the base station serves as the anchor point of the control plane and superimposes the 5G base station for user plane data transmission.
  • Terminal devices that support dual connectivity can use LTE base stations and 5G base stations at the same time, so that they can make full use of the good coverage of the LTE frequency band and the rich 5G spectrum resources to increase the peak transmission rate of the terminal devices.
  • the present application provides a method and device for cell search, which enables terminal equipment supporting ENDC to preferentially camp in a cell supporting ENDC, thereby obtaining data services by using 5G and 4G dual connections, which can improve user experience.
  • the present application provides a method for cell search.
  • the method includes: obtaining a frequency sweep result, which includes multiple frequency points; determining the frequency points that support ENDC in the frequency sweep result, and prioritize the frequency points that support ENDC. Frequency point for cell search.
  • the terminal device After the terminal device obtains the result of the frequency sweep by the frequency sweep, it is added to determine whether there is a frequency point that supports ENDC in the frequency sweep result. If the frequency points that support ENDC and those that do not support ENDC coexist in the frequency sweep result, the terminal device will initiate a cell search for the frequency point that supports ENDC first, which can increase the probability that the terminal device will preferentially reside in the cell that supports ENDC, thereby enabling support ENDC's UE can use 5G and 4G dual connections to obtain data services and improve user experience.
  • the multiple frequency points contained in the frequency sweep result are arranged according to the frequency point energy, and the cell search is first performed for the frequency points that support ENDC, including: scanning The order of the frequency points included in the frequency result is adjusted so that the frequency points that support ENDC in the frequency sweep result are in front of the frequency sweep result; the cell search is performed in sequence according to the order of the adjusted frequency points in the frequency sweep result.
  • the priority is to perform cell search for the frequency points that support ENDC. After the frequency sweep result is obtained, the frequency point that supports ENDC in the frequency sweep result is adjusted to the top of the frequency sweep result. Carrying out cell search according to the adjusted frequency point sorting can realize the priority search for the frequency points that support ENDC.
  • the method further includes: after successfully camping on the first cell, determining whether the first frequency point of the first cell is included in the historical frequency point list; according to the judgment result Associate the first frequency point with the ID supporting ENDC.
  • the first frequency point and the ENDC-supporting identification are associated according to the judgment result, including: when the first frequency point is included in the historical frequency point list, judging Whether the first frequency point is associated with the ENDC identification; when the first frequency point is associated with the identification that supports ENDC, the association relationship between the first frequency point and the identification that supports ENDC is cleared; when it is determined that the LTE base station has successfully added the NG base station, it is the first frequency Establish an association relationship between the dot and the logo that supports ENDC.
  • the terminal device After the terminal device camps on a cell (for example, the first cell), it first determines whether the frequency point of the first cell (hereinafter referred to as the first frequency point) is included in the historical frequency point list. If the first frequency point is already included in the historical frequency point list, continue to determine whether the first frequency point is associated with an ENDC-supporting identification. If the first frequency point is associated with the identification that supports ENDC, the identification that supports ENDC is first cleared, and after it is determined that the LTE base station has successfully added the NG base station, the first frequency point is re-associated with the identification that supports ENDC. In this way, it can be ensured that the first frequency point where the ENDC-supporting logo is added must be the LTE base station successfully adding the NG base station.
  • the first frequency point the frequency point of the first cell
  • a frequency point is associated with an ENDC-supporting identifier can also be understood as whether the frequency point supports ENDC.
  • a frequency point is associated with the identification of supporting ENDC, that is, the frequency point supports ENDC, or in other words, the frequency point carries the identification of supporting ENDC.
  • a frequency point is not associated with an ENDC-supporting identifier, that is, the frequency point does not support ENDC, or sometimes, the frequency point does not carry an ENDC-supporting identifier.
  • the first frequency point and the identification supporting ENDC are associated according to the judgment result, including: when the first frequency point is not included in the historical frequency point list, The first frequency point is added to the historical frequency point list; when it is determined that the LTE base station has successfully added the NG base station, the first frequency point is associated with an ENDC-supporting identity.
  • the terminal device After the terminal device camps on a cell (for example, the first cell), it first determines whether the frequency point of the first cell (that is, the first frequency point) is included in the historical frequency point list. If the first frequency point is not included in the historical frequency point list, the first frequency point is added to the historical frequency point list. Subsequently, after determining that the LTE base station has successfully added the NG base station, the UE re-associates the first frequency point with the ENDC-supporting identity. In this way, it can be ensured that the first frequency point where the ENDC-supporting logo is added must be the LTE base station successfully adding the NG base station.
  • the frequency sweep result is obtained in the following search stage: historical frequency point search stage, preferred frequency band search stage, or full frequency band search stage.
  • the process of adjusting the frequency point supporting ENDC to the forefront of the frequency point scanning result is not limited to which stage of the frequency point search is.
  • the process of adjusting the frequency point supporting ENDC to the forefront of the frequency point scanning result is not limited to which stage of the frequency point search is.
  • the preferred frequency band search phase or the full frequency band search phase it is all possible.
  • determining the frequency points that support ENDC in the sweep result includes: determining whether the sweep result includes historical frequency points that support ENDC, and/or operator-configured Cloud frequency points supporting ENDC; the historical frequency points supporting ENDC included in the frequency sweep result and/or the cloud frequency points supporting ENDC configured by the operator are determined as the frequency points supporting ENDC.
  • the terminal device determining the frequency points that support ENDC in the frequency sweep result includes determining whether the frequency sweep result includes historical frequency points associated with the ENDC-supporting identifier, and whether the frequency sweep result includes cloud frequency points configured by the operator that support ENDC. If it exists, these frequency points are the frequency points that support ENDC in the sweep result.
  • the sweep result is obtained by sweeping the frequency in the preferred frequency band search stage, and the cell search in the preferred frequency band stage includes: configuring the operator's cloud to support ENDC Before adjusting the frequency band to a preferred frequency band that does not support ENDC, cell search is performed on each frequency band in sequence according to the order of the adjusted frequency band.
  • the cloud frequency band that supports ENDC is ranked before the preferred frequency band that does not support ENDC, and the preferred frequency band that does not support ENDC is ranked. Before other bands or frequency points.
  • the first cell belongs to the first non-independent networking NSA area
  • the method further includes: performing a frequency sweep in the second NSA area for the first time, and the obtained frequency sweep result Including the first frequency point, the first frequency point is associated with the identification that supports ENDC; cell search is performed on the first frequency point, and the second cell is found; after successfully camping on the second cell, the first frequency point and ENDC support are cleared The associated relationship of the logo.
  • the UE When the UE crosses from one NSA area (the first NAS area) to another NSA area (the second NAS area), the UE will firstly try to search for the ENDC saved in the first NAS area when it sweeps the frequency for the first time in the second NSA area
  • the historical frequency point (for example, the first frequency point).
  • the UE will clear the association relationship between the historical frequency point and the ENDC-supporting identity.
  • the frequency bands anchored by 5G in the second NSA area and the first NSA area are different, it is impossible for the LTE base station to successfully add the NG base station. This can ensure that the UE will not preferentially initiate a search for historical frequency points that support ENDC in the first area when scanning again in the second NSA area.
  • the method further includes: performing a cell search again in the second NSA area to find the first frequency point and at least one second frequency point; and determining the first frequency point And there is no frequency point that supports ENDC in the at least one second frequency point; sort the first frequency point and the at least one second frequency point according to the energy of the frequency point, and perform cell search according to the frequency point sequence after sorting .
  • the UE When the UE initiates a frequency sweep again in the second NSA area, since the frequency point (for example, the first frequency point) that supports ENDC in the first area is no longer associated with the identity that supports ENDC, the UE will no longer target the first area.
  • the historical frequency points of ENDC are supported in the area and the cell search is initiated first. Therefore, if the UE performs cell search again in the second NSA area, if there is no frequency point that supports ENDC, the UE will initiate a cell search in order of the energy of the frequency points.
  • the present application provides a cell search device, which has the function of implementing the method in the first aspect and any possible implementation manners thereof.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • the device is a terminal device, or the device is a chip or an integrated circuit.
  • the device may also be a processor or a baseband device.
  • the present application provides a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so that the terminal device executes the first aspect or the method in any possible implementation manner of the first aspect.
  • processors there are one or more processors and one or more memories.
  • the terminal device further includes a communication interface.
  • the communication interface may be a transceiver or an input/output interface.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer instructions.
  • the computer instructions run on the computer, the computer executes the first aspect or any possible implementation of the first aspect. The method in the way.
  • this application provides a chip including a processor.
  • the processor is used to read and execute a computer program stored in the memory to execute the method in the first aspect or any possible implementation manner of the first aspect.
  • the chip further includes a memory, and the memory and the processor are connected to the memory through a circuit or wire, and the memory is used to store a computer program.
  • the chip further includes a communication interface.
  • this application also provides a computer program product.
  • the computer program product includes computer program code.
  • the computer program code runs on a computer, the computer can execute the first aspect and any one of the possibilities thereof. The method in the implementation.
  • the present application also provides a wireless communication system, including the terminal device described in the third aspect.
  • the terminal device when the terminal device initiates a cell search, it is added whether the frequency sweep result includes a frequency point that supports ENDC. If the frequency point that supports ENDC and the frequency point that does not support ENDC in the frequency sweep result, the terminal device will give priority to the cell search for the frequency point that supports ENDC, which can effectively improve the probability that the terminal device preferentially resides in the cell that supports ENDC, so that UEs that support ENDC can use 5G and 4G dual connections to obtain data services, which improves user experience.
  • Figure 1 is the architecture diagram of the ENDC network.
  • Figure 2 is a schematic diagram of each stage of the LTE network search process.
  • FIG. 3 is a flowchart of LTE network search.
  • Fig. 4 is a schematic diagram of the UE maintaining and supporting the ENDC mark after successfully camping.
  • Fig. 5 is a schematic diagram of a cell search process provided by this application.
  • Figure 6 (a) and (b) are schematic flowcharts of the cell search method provided by the present application.
  • FIG. 7 is a schematic diagram of the network search process when the UE crosses the NSA provided by this application.
  • FIG. 8 is a schematic structural block diagram of a cell search device 500 provided in the present application.
  • FIG. 9 is a schematic structural diagram of a terminal device 1000 provided by the present application.
  • Figure 1 is an ENDC network architecture diagram. As shown in Figure 1, after the UE camps on the LTE cell and enters the connected state, the LTE base station as the primary node will decide whether to add the NR base station as the secondary node, so that the 5G-enabled UE can use both LTE and NR dual connections. , Improve the transmission rate.
  • 5G is also called a new radio (NR).
  • NR new radio
  • 5G network appearing in this article is also called NR network
  • 5G base station is also called NR base station.
  • LTE cell search (or, also called network search) is triggered by the non-access layer (NAS) of the terminal device.
  • the NAS issues the search type to the radio resource control layer (RRC).
  • RRC radio resource control layer
  • the RRC determines the parameters to be sent to the physical layer (physical layer, PHY) according to the received search type, and the PHY performs cell search.
  • LNAS the NAS of LTE
  • LRRC the RRC of LTE
  • LPHY the PHY of LTE
  • the cell search types triggered by LNAS include three types: historical frequency point search, preferred frequency band search, and full frequency band search.
  • the preferred frequency band search is also called pref-band search
  • the full frequency band search is also called full band search.
  • the sequence in which the UE performs cell search is the historical frequency point search stage, and enters the preferred frequency band search stage if it fails to camp after the historical frequency point search.
  • the full frequency band search phase is entered. If the search in the above three stages fails, other modes can be used for cell search. If none of the terminal devices successfully camps on, a new round of cell search is started, and the search phase continues from the historical frequency point search stage.
  • FIG 3 is a detailed flowchart of LTE cell search. As shown in Figure 3, in the cell search process of LTE, the search at each stage is described as follows.
  • Historical frequency point search preferentially search for frequency points where the UE has successfully resided before (ie, historical frequency points). Because the location of the UE will not change much in a short period of time, it is preferred to search for historical frequency points, and it is believed that the cell where the UE has successfully camped before will be found with great probability.
  • Pref-band search The operator may pre-configure some preferred frequency bands for the UE. The operator's use of these preferred frequency bands is equivalent to instructing the UE to preferentially search for LTE cells in which frequency bands in the current area with a higher success rate. Therefore, in the preferred frequency band search phase, the UE will preferentially search for cells in these preferred frequency bands configured by the operator.
  • Full band search The UE searches for all LTE frequency bands it supports in sequence. In general, the full band search is started only when the first two types of searches are unsuccessful. The full band search takes a long time.
  • the terminal device can also switch to other search modes to search. If after searching in other modes, the terminal device fails to camp on, the terminal device returns to the above three search types of LTE and starts a new round of search.
  • the technical solution of the present application retains the various stages of the LTE cell search process, and on this basis adds the records of historical frequency points supporting ENDC and the judgment of the cloud frequency points supporting ENDC configured by the operator.
  • the terminal equipment first tries to support the LTE cell of ENDC in the network search stage.
  • frequency points configured by the communication operator that support ENDC are called cloud frequency points.
  • the historical frequency points support the maintenance of the ENDC logo.
  • the UE After the UE successfully camps on the cell, it adds the frequency of the camped cell to the historical frequency list.
  • the UE After the UE successfully camps each time, if the frequency point of the camped cell is already a historical frequency point and has been marked as supporting ENDC, the UE first clears the ENDC support identification of the frequency point. After the UE has successfully added a next generation (NG) base station to the LTE base station, it adds an ENDC-supporting logo on the frequency point.
  • NG next generation
  • the UE may alternatively add an ENDC-supporting identity to a frequency point, that is, the UE associates the frequency point with an ENDC-supporting identity, or in other words, the UE marks the frequency point as a frequency that supports ENDC. point.
  • the UE clears the association between a frequency point and the ENDC-supporting identifier, that is, the UE clears the ENDC-supporting identifier carried by the frequency point, or in other words, the UE marks the frequency point as a frequency point that does not support ENDC.
  • FIG. 4 is a schematic diagram of the UE maintaining the identity of the camping cell to support ENDC after the camping succeeds.
  • the UE after the UE successfully camps on the cell, it first determines whether the frequency of the camped cell is already included in the history frequency list. If the frequency of the camping cell has been included in the history frequency list, the UE determines whether the frequency of the camping cell has been marked as supporting ENDC (or in other words, whether the frequency of the camping cell carries an ENDC-supporting identifier). If the frequency point of the camping cell has been marked as supporting ENDC, the UE will clear the identification of the frequency point of the camping cell supporting ENDC. After that, the UE judges whether the LTE base station has successfully added the NG base station.
  • the UE After the UE successfully camps on the cell, if it is determined that the frequency of the camped cell is not included in the historical frequency list, the UE adds the frequency of the camped cell to the historical frequency list. After that, the UE judges whether the LTE base station has successfully added the NG base station.
  • the UE determines that the LTE base station has successfully added the NG base station, the UE adds an ENDC-supporting identifier to the frequency point of the camping cell in the historical frequency point list.
  • the UE adds the judgment processing of the historical frequency points supporting ENDC and the cloud information supporting ENDC.
  • the cloud information that supports ENDC includes cloud frequency points that support ENDC and cloud frequency bands that support ENDC. Similar to the concept of cloud frequency points introduced above, the cloud frequency band refers to the preferred frequency band configured by the operator.
  • Operators can configure cloud frequencies that support ENDC or cloud frequencies that do not support ENDC. Similarly, operators can configure cloud frequency bands that support ENDC, or cloud frequency points that do not support ENDC.
  • FIG. 5 is a schematic diagram of the cell search process provided by this application.
  • the UE initiates a cell search for each frequency point in sequence according to the order of the adjusted frequency points.
  • the UE will give priority to these historical frequency points that support ENDC and/or support ENDC cloud frequency point for cell search. If the cell search of these historical frequency points that support ENDC and cloud frequency points that support ENDC fails, the cell search is performed on the remaining frequency points in the frequency sweep result.
  • the preferred frequency band search stage first perform a round of historical frequency point search according to the search principle of the historical frequency point search stage described in (1) above. If the historical frequency point search fails, perform the preferred frequency band search.
  • the sweep result contains historical frequency points that support ENDC or cloud frequency points that support ENDC
  • the order of the frequency points reported by the physical layer is prioritized for these Support ENDC frequency point for cell search.
  • the cell search for these frequencies that support ENDC fails, the cell search for the remaining frequencies is initiated. If the frequency points that support ENDC are not included in the frequency sweep result, a cell search is initiated in order of the frequency points in the frequency sweep result.
  • the historical frequency points and cloud frequency points are still searched for a round of historical frequency points according to the search principle of the historical frequency point search stage described in step (1). If the historical frequency point search fails, perform a full frequency search again. When searching the entire frequency band, if the sweep result contains historical frequency points that support ENDC or cloud frequency points that support ENDC, these will be prioritized according to the order of the frequency points reported by the physical layer (sorted according to the energy of the frequency points) Frequency point for cell search. Otherwise, initiate a cell search for the remaining frequency points.
  • the following introduces the process of cell search by the UE based on the identification of maintaining historical frequency points to support the ENDC and the processing principle of the UE in each stage of the network search proposed in this application.
  • FIG. 6 (a) and (b) of FIG. 6 are schematic flowcharts of the cell search method provided by the present application. Among them, (a) of FIG. 6 shows the historical frequency point search stage and the preferred frequency band search stage, and (b) shows the full frequency band search stage.
  • the operator has configured a cloud frequency point that supports ENDC.
  • the preferred frequency band refers to the frequency band configured by the operator but not supporting ENDC.
  • cell 1 the frequency of cell 1 (hereinafter referred to as f 1 ) is saved in the historical frequency point list, and f1 carries an ENDC-supporting identifier.
  • f1 are not historical frequency point list, but belong to cloud frequency f 1 carrier configured to support the ENDC.
  • the signal of cell 2 is stronger than that of cell 1, and both cell 1 and cell 2 belong to the cells where the UE can camp.
  • the LNAS of the UE issues a network search request and a network search type indication to the LRRC, where the network search type indication is specifically a historical frequency point search.
  • the LRRC sends all the currently saved historical frequency points to the LPHY, and the LPHY performs a received signal strength indication (RSSI) sweep on these historical frequency points.
  • RSSI received signal strength indication
  • LPHY reports the sweep result to LRRC, and the sweep result includes the searched RSSI and the corresponding frequency point number in reply to LRRC.
  • the frequency points in the frequency sweep result have been sorted according to the RSSI size of each frequency point.
  • the scan results reported by LPHY include frequency points f 1 and f 2 and their respective RSSIs. Since the signal of cell 2 is stronger than that of cell 1, that is, the RSSI of f 2 is greater than the RSSI of f 1 , and therefore, in the rough scanning result reported by LPHY, f 1 is ranked after f 2 .
  • the LRRC judges whether the sweep result (also called the coarse sweep result) contains historical frequency points that support ENDC or cloud frequency points that support ENDC configured by the operator. If it exists, adjust these frequency points that support ENDC (including historical frequency points and cloud frequency points) to the top of the sweep result. For example, the LRRC judges that the RSSI of f 1 is less than the RSSI of f 2 , but since f 1 is a frequency point that supports ENDC, the LRRC will adjust f 1 to the front of f 2 . In other words, LRRC chooses to give priority to LPHY to issue a cell search of f 1 .
  • these frequency points that support ENDC can be sorted according to the size of the RSSI.
  • LPHY preferentially initiates cell search for frequencies that support ENDC. If the cell of f 1 camps successfully, the search ends.
  • the preferred frequency band search phase is entered.
  • the preferred frequency band described in the embodiment of FIG. 6 refers to a preferred frequency band that does not support ENDC.
  • cell 3 there is an LTE cell (hereinafter referred to as cell 3) in the environment, and the frequency of cell 3 is f 3 .
  • f 3 has been included in the historical frequency point list and f 3 carries a flag supporting ENDC.
  • the frequency point f 3 is not included in the historical frequency point list, but f 3 belongs to the cloud frequency point that supports ENDC configured by the operator.
  • cell 4 there is another LTE cell (hereinafter referred to as cell 4) in the environment, and the frequency of cell 4 is f 4 .
  • f 4 is included in the historical frequency point list but does not carry an ENDC-supporting logo, and f 4 is not a cloud frequency point that supports ENDC configured by the operator.
  • the signal of cell 4 is stronger than that of cell 3, and both cell 3 and cell 4 belong to the cells where the UE can camp.
  • the UE Before searching the preferred frequency band, the UE first performs a historical frequency search (see the description of the previous stage for the process), and when the historical frequency search fails again, it enters the preferred frequency band search stage.
  • the UE initiates a cell search for the preferred frequency band configured by the operator.
  • LPHY initiates a coarse sweep of the preferred frequency band in sequence.
  • LPHY sends the sweep result to LRRC, and the coarse sweep result contains the searched RSSI and RSSI frequency.
  • the frequency points contained in the frequency sweep result have been sorted according to the RSSI size of each frequency point.
  • the sweep result includes f 3 and f 4 and their corresponding RSSI. Since the cell signal is stronger than the 4 cell 3, i.e., f RSSI 4 is greater than f RSSI 3. Therefore, in the sweep result, f 4 is ranked before f 3 .
  • LRRC determines whether the sweep result includes historical frequency points that support ENDC, or cloud frequency points that support ENDC configured by the operator. If it exists, rank these frequency points that support ENDC to the top of the sweep result. For example, LRRC judges that f 3 belongs to the historical frequency point that supports ENDC, or that f 3 belongs to the cloud frequency point that supports ENDC configured by the operator. Even if the RSSI of f 3 is less than the RSSI of f4, LRRC will still adjust f 3 to f 4 front. Therefore, the LRRC chooses to issue a cell search of frequency f 3 to LPHY preferentially.
  • the network search process ends. If the cell of f 3 fails to camp on, and the network search in the preferred frequency band stage fails, then the full frequency band search stage is entered.
  • cell 5 there is an LTE cell (hereinafter referred to as cell 5) in the environment, and the frequency of cell 5 is f 5 .
  • f 5 is included in the list of historical frequency points, and f 5 carries a flag supporting ENDC.
  • frequency point f 5 is not included in the historical frequency point list, but f 5 belongs to a cloud frequency point configured by the operator that supports ENDC.
  • cell 6 there is another LTE cell (hereinafter referred to as cell 6) in the environment, and the frequency of cell 6 is f 6 .
  • f 6 is included in the list of historical frequency points, but does not carry an ENDC-supporting logo. Moreover, the frequency point f 6 does not belong to the cloud frequency point configured by the operator to support ENDC.
  • LRRC issues the frequency bands supported by the UE to LPHY.
  • LPHY initiates a rough sweep of these frequency bands in sequence.
  • LPHY sends the sweep result to LRRC, and the sweep result contains the searched RSSI and RSSI frequency.
  • the frequency sweep results reported by LPHY have been sorted according to the RSSI size of each frequency point. According to the assumption, the sweep result contains f 5 and f 6 and their respective RSSIs. Since the signal of cell 6 is stronger than that of cell 5, that is, the RSSI of f 6 is greater than the RSSI of f 5 . Therefore, in the rough sweep result, f 6 is ranked before f 5 .
  • LRRC determines whether the sweep result includes historical frequency points that support ENDC or cloud frequency points that support ENDC. If it exists, LRRC will adjust these frequency points that support ENDC to the top of the sweep result. For example, LRRC judges that f 5 is a historical frequency point that supports ENDC, or f 5 is a cloud frequency point that supports ENDC. F is less than 5, even if the RSSI RSSI f 6 of LRRC still choose to adjust. 6 f 5 f to the front, i.e. to select LRRC LPHY issued priority cell search frequency f 5.
  • f 5 If f 5 's net search is successful, the net search process ends. If the network search of f 5 fails and the network search fails in the full frequency band, the UE can also use other modes to search the network. If it still fails to camp on the cell, the UE starts a new round of cell search.
  • the terminal device adds a judgment process on whether the historical frequency point supports ENDC and whether the cloud frequency point configured by the operator supports ENDC during the cell search. If a cell that supports ENDC and a cell that does not support ENDC coexist in the environment, the terminal device will give priority to the cell search for the historical frequency points that support ENDC and the cloud frequency point that supports ENDC, which can effectively improve the priority of the terminal device to stay to support ENDC. The probability of the cell, so that UEs that support ENDC can use 5G and 4G dual connections to obtain data services, improving user experience.
  • the LRRC After the LRRC receives the sweep result reported by LPHY (the sweep result has been sorted according to the RSSI size of each frequency point), it only judges whether the sweep result contains historical frequency points that support ENDC. If so, adjust these historical frequency points that support ENDC to the top of the sweep result.
  • the multiple frequency points that support ENDC are sorted according to the size of the RSSI.
  • LRRC issues these cell searches that support historical frequency points of ENDC first to LPHY.
  • LRRC ranks the cloud frequency bands configured by the operator to support ENDC to the top of all cloud frequency bands (that is, the preferred frequency bands configured by the operator), and then the LRRC sequentially issues frequency band sweeps.
  • the LRRC After the LRRC receives the frequency sweep result reported by LPHY, it only judges whether there are historical frequency points that support ENDC among the cloud frequency points included in the frequency sweep result. If it exists, these historical frequency points that support ENDC are sorted to the top of the sweep result.
  • LRRC issues these cell searches that support historical frequency points of ENDC first to LPHY.
  • the LRRC After the LRRC receives the frequency sweep result reported by LPHY, it only judges whether there is a historical frequency point that supports ENDC among the frequency points included in the frequency sweep result. If it exists, these historical frequency points that support ENDC are sorted to the top of the sweep result.
  • LRRC issues these cell searches that support historical frequency points of ENDC first to LPHY.
  • an ENDC deployment strategy may be:
  • the mobile network side will anchor 5G with a fixed LTE band (LTE band), but will not anchor it with all LTE bands. But in different NSA areas, the 5G anchored LTE band is different. Then, it may cause that a historical frequency point that supports ENDC will no longer support ENDC after it reaches a new NSA area. Therefore, the UE needs to update the information about whether the saved historical frequency point supports ENDC.
  • the maintenance principle that the historical frequency points described above supports the ENDC identity can ensure that when crossing the NSA area, the UE preferentially selects an LTE cell that supports ENDC.
  • the following describes the network search process after the UE moves from one NSA to another NSA with reference to FIG. 7.
  • FIG. 7 is a schematic diagram of the network search process when the UE crosses the NSA provided in this application.
  • the LPHY of the UE searches for an available frequency point f 7 , performs a cell search on f 7 , and finds cell 7.
  • the LRRC of the UE adds f 7 to the historical frequency point list.
  • the LTE base station successfully added NG the LRRC add f 7 ENDC support identification.
  • the UE may move to area B when the UE re-initiates network search.
  • the UE cannot know the change of the NSA area.
  • the UE initiates the first network search in area B according to the normal network search process. Since f 7 is stored in the historical frequency point list, the LRRC of the UE will preferentially issue a cell search of f 7 to the LPHY. LPHY preferentially performs cell search on f 7 and finds cell 8. After that, the UE camps on cell 8 successfully.
  • the LRRC of the UE will clear the ENDC support flag of f7 in the historical frequency point list.
  • the UE clears the ENDC-supporting identifier carried in the historical frequency points after completing the cell camping every time. Later, if the LTE base station successfully adds the NG base station, and then re-adds the ENDC-supporting mark to the historical frequency point, it can be ensured that the ENDC-supporting mark of the historical frequency point must be marked after the NG base station is successfully added this time.
  • the UE crosses from one NSA area (the first NAS area) to another NSA area (the second NAS area), although it searches in the second NSA area for the first time, it will still try to search for the saved in the first NAS area first.
  • the historical frequency point of ENDC is supported, but as long as the historical frequency point successfully resides on the historical frequency point, the UE will clear the identification of the historical frequency point supporting ENDC.
  • the frequency bands anchored by 5G in the second NSA area and the first NSA area are different, it can be ensured that the LTE base station will not successfully add the NG base station. Therefore, if the UE initiates a network search again in the second NSA area, it will no longer preferentially initiate a search for historical frequency points that support ENDC in the first area.
  • the terminal device adds the judgment processing on whether the historical frequency point supports ENDC and whether the cloud frequency point configured by the operator supports ENDC during the cell search. If a cell that supports ENDC and a cell that does not support ENDC coexist in the environment, the terminal device will give priority to the cell search for the historical frequency points that support ENDC and the cloud frequency point that supports ENDC, which can effectively improve the priority of the terminal device to stay to support ENDC The probability of the cell, so that UEs that support ENDC can use 5G and 4G dual connections to obtain data services, which can improve user experience.
  • FIG. 8 is a schematic structural block diagram of a cell search apparatus 500 provided by the present application.
  • the device 500 includes a processing unit 510 and a transceiver unit 520.
  • the processing unit 510 is configured to obtain a frequency sweep result, and determine the frequency points that support ENDC in the frequency sweep result, where the frequency sweep result includes multiple frequency points;
  • the transceiver unit 520 is configured to preferentially perform cell search for the frequency points supporting ENDC.
  • the multiple frequency points included in the frequency sweep result are arranged according to the magnitude of the frequency point energy
  • the processing unit 510 is specifically configured to adjust the arrangement order of the frequency points included in the frequency sweep result to make the frequency sweep result
  • the frequency points that support ENDC are located in front of the frequency sweep result; the transceiver unit 520 is specifically configured to perform cell search sequentially according to the adjusted arrangement order of the frequency points.
  • the processing unit 510 is further configured to determine whether the first frequency point of the first cell is included in the historical frequency point list after the device successfully camps on the first cell, and compare the first frequency point and the first frequency point according to the judgment result.
  • the processing unit 510 is specifically configured to, when the first frequency point is included in the historical frequency point list, determine whether the first frequency point is associated with an ENDC-supporting identifier; when the first frequency point is associated with an ENDC-supporting identifier, clear the first frequency point.
  • the association relationship between a frequency point and an ENDC-supporting identity when it is determined that the LTE base station has successfully added an NG base station, the first frequency point is associated with an ENDC-supporting identity.
  • the processing unit 510 is specifically configured to add the first frequency point to the historical frequency point list when the first frequency point is not included in the historical frequency point list; when it is determined that the LTE base station is successfully added to the NG base station, add the first frequency point A frequency point is associated with a logo that supports ENDC.
  • the processing unit 510 is specifically configured to determine whether there is a historical frequency point carrying an ENDC-supporting identifier in the frequency sweep result, and/or a cloud frequency point supporting ENDC configured by the operator, and the historical frequency point carries the support
  • the historical frequency point identified by the ENDC and/or the cloud frequency point supporting ENDC configured by the operator is determined as the frequency point supporting ENDC.
  • the processing unit 510 is specifically configured to adjust the cloud frequency band configured by the operator to support ENDC before adjusting to a preferred frequency band that does not support ENDC, and the transceiver unit 520 is configured to perform cell cell analysis on each frequency band in sequence according to the order of the adjusted frequency bands. search for.
  • the transceiving unit 520 is further configured to perform a frequency sweep in the second NSA area for the first time, and the obtained frequency sweep result includes the first frequency point, which carries an ENDC-supporting identifier; and performs cell scanning for the first frequency point.
  • the second cell is searched, and the processing unit 510 is further configured to clear the association relationship between the first frequency point and the ID supporting ENDC after the device successfully camps on the second cell.
  • the transceiving unit 520 is further configured to perform frequency scanning again in the second NSA area, and the obtained frequency scanning result includes the first frequency point and at least one second frequency point; the processing unit 510 is further configured to determine the first frequency point And there is no frequency point supporting ENDC in the at least one second frequency point; and the transceiver unit 520 is further configured to perform a cell search on the first frequency point and the at least one second frequency point according to the energy of the frequency point from large to small.
  • the device 500 may be a chip or an integrated circuit.
  • the chip described in the embodiment of the application may be a field-programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), and a central Processor (central processor unit, CPU), network processor (Network Processor, NP), digital signal processing circuit (digital signal processor, DSP), can also be a microcontroller (microcontroller unit, MCU, programmable controller ( programmable logic device (PLD) or other integrated chips.
  • FPGA field-programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit, CPU
  • Network Processor Network Processor
  • NP network Processor
  • digital signal processing circuit digital signal processor, DSP
  • microcontroller unit microcontroller unit, MCU, programmable controller (programmable logic device (PLD) or other integrated chips.
  • PLD programmable logic device
  • the processing unit 510 may be a processor.
  • the transceiver unit 520 may be a communication interface or a transceiver circuit.
  • the communication interface includes an input and output interface.
  • the transceiver circuit may include a receiving circuit and a transmitting circuit.
  • the apparatus 500 may correspond to the terminal equipment in the cell search method embodiments provided in this application.
  • the units included in the apparatus 500 are respectively used to implement corresponding operations and/or procedures executed by the terminal device in each method embodiment.
  • the processing unit 510 may be a processor.
  • the transceiver unit 520 may be a transceiver.
  • the transceiver may include a receiver and a transmitter, and has the functions of transmitting and receiving signals at the same time.
  • the processing unit 510 may also be a processing device, and the functions of the processing device may be partially or fully implemented by software.
  • the functions of the processing device may be partially or fully implemented by software.
  • the processing device may include a memory and a processor.
  • the memory is used to store a computer program
  • the processor reads and executes the computer program stored in the memory to execute the steps implemented inside the terminal device in each method embodiment.
  • the processing device includes a processor.
  • the memory for storing the computer program is located outside the processing device, and the processor is connected to the memory through a circuit/wire to read and execute the computer program stored in the memory.
  • the functions of the processing device can all be implemented by hardware.
  • the processing device may include an input interface circuit, a logic circuit, and an output interface circuit.
  • the input interface circuit is used to obtain the frequency sweep result;
  • the logic circuit is used to determine whether there is a frequency point that supports ENDC in the frequency sweep result.
  • the output interface circuit is used to output the judgment result of the logic circuit.
  • the logic circuit determines that there is a frequency point that supports ENDC in the frequency sweep result, the logic circuit outputs the frequency point that supports ENDC to the output interface circuit, and the output interface circuit outputs the frequency point.
  • the present application also provides a terminal device 1000, which is described below with reference to FIG. 9.
  • the terminal device 1000 includes an antenna 1101, a radio frequency device 1102, and a baseband device 1103.
  • the antenna 1101 is connected to the radio frequency device 1102.
  • the baseband device 1103 generates a signal to be sent to the network side, and sends the signal to the radio frequency device 1102, and the radio frequency device 1102 transmits the signal through the antenna 1101.
  • the radio frequency device 1102 receives signals from the network side through the antenna 1101, and sends the received signals to the baseband device 1103 for processing.
  • the baseband device 1103 may include one or more processing units 11031.
  • the baseband device 1103 may further include a storage unit 11032 and a communication interface 11033.
  • the storage unit 11032 is used to store programs and data.
  • the communication interface 11033 is used to exchange information with the radio frequency device 1102.
  • the communication interface 11033 may be an input/output interface or an input/output circuit.
  • the storage unit 11032 and the processing unit 11031 may be on the same chip, that is, an on-chip storage unit, or may be on a different chip from the processing unit 11031, that is, an off-chip storage unit.
  • the terminal device 1000 in the above apparatus embodiment may completely correspond to the terminal device in the method embodiment, and the corresponding unit included in the terminal device 1000 is used to perform the corresponding operation and/or processing performed by the terminal device in the method embodiment, which can be specifically Refer to the method embodiment, which will not be repeated here.
  • the processing unit 510 shown in FIG. 8 may be implemented by the baseband device 1103 shown in FIG. 9, and the transceiver unit 520 may be implemented by the radio frequency device 1102 shown in FIG. 9.
  • the present application provides a computer-readable storage medium in which computer instructions are stored.
  • the computer instructions When the computer instructions are run on a computer, the computer executes the corresponding operation and/or processing of any method embodiment.
  • the computer program product includes computer program code.
  • the computer program code runs on a computer, the computer executes the corresponding operation and/or processing of any method embodiment of this application.
  • This application also provides a chip including a processor.
  • the processor is used to call and run a computer program stored in the memory to execute the corresponding operation and/or processing of any method embodiment of the present application.
  • the chip further includes a memory, and the memory is connected to the processor.
  • the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive signals and/or data that need to be processed, and the processor obtains the signals and/or data from the communication interface and processes them.
  • the communication interface may be an input/output interface, which may specifically include an input interface and an output interface.
  • the communication interface may be a transceiver circuit, which may specifically include a receiving circuit and a transmitting circuit.
  • the memory and the memory involved in the foregoing embodiments may be physically independent units, or the memory may also be integrated with the processor.
  • the processor may be a central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more of them used to control the technology of the application Integrated circuits for program execution, etc.
  • the processor may be a digital signal processor device, a microprocessor device, an analog-to-digital converter, a digital-to-analog converter, etc.
  • the processor can distribute control and signal processing functions of terminal devices or network devices among these devices according to their respective functions.
  • the processor may have a function of operating one or more software programs, and the software programs may be stored in the memory.
  • the functions of the processor can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the memory can be read-only memory (ROM), other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • Dynamic storage devices can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), or other optical disk storage, optical disc storage ( Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can Any other medium accessed by the computer, etc.
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • optical disc storage Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • magnetic disk storage media or other magnetic storage devices or can be used to carry or store desired program codes in the form of instructions or data structures and can Any other medium
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • a component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or it may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to implement the technical solution of this embodiment.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种小区搜索的方法和装置,能够使支持ENDC的终端设备优先驻留到支持ENDC的小区,从而使用4G和5G的双连接来获取数据服务。该方法包括:获取扫频结果,扫频结果中包含多个频点;确定扫频结果中支持ENDC的频点,并优先针对支持ENDC的频点进行小区搜索。

Description

小区搜索的方法和装置 技术领域
本申请涉及无线通信技术领域,更具体地,涉及一种小区搜索的方法和装置。
背景技术
根据第三代合作伙伴计划(the third generation partner project,3GPP)的规划,4G和5G双连接(eNodeB-nrNodeB dual carrier,ENDC)的组网方式将会使用4G基站和4G核心网,并以4G基站作为控制面的锚点,叠加5G基站进行用户面数据传输。支持双连接的终端设备可以同时使用LTE基站和5G基站,从而既可以充分利用LTE频段覆盖好的特点又可以利用5G频谱资源丰富的特点,提升终端设备的峰值传输速率。
但是,运营商对5G网络的部署是逐步推进的,在相当长的时间内,5G基站还达不到4G网络的覆盖率,5G独立组网(standalone,SA)的大范围部署会更慢。在5G网络部署的前期,将会优先采用非独立组网(non-standalone,NSA)布局,因此,网络中将大量并存支持ENDC和不支持ENDC的LTE小区。而终端设备采用现有的小区搜索流程,可能无法优先驻留到支持ENDC的小区来获取数据服务,用户体验差。
发明内容
本申请提供一种小区搜索的方法和装置,能够使支持ENDC的终端设备优先驻留到支持ENDC的小区,从而通过使用5G和4G双连接来获取数据服务,可以提升用户体验。
第一方面,本申请提供一种小区搜索的方法,该方法包括:获取扫频结果,扫频结果中包含多个频点;确定扫频结果中支持ENDC的频点,并优先针对支持ENDC的频点进行小区搜索。
采用本申请的技术方案,终端设备扫频得到扫频结果之后,增加对扫频结果中是否存在支持ENDC的频点的判断处理。如果扫频结果中支持ENDC频点和不支持ENDC的频点并存,终端设备会优先针对支持ENDC的频点发起小区搜索,可以提高终端设备优先驻留到支持ENDC的小区的机率,从而使支持ENDC的UE能够使用5G和4G双连接来获取数据服务,提升用户体验。
结合第一方面,在第一方面的某些实现方式中,扫频结果中包含的多个频点是按照频点能量大小排列的,优先针对支持ENDC的频点进行小区搜索,包括:对扫频结果包含的各频点的排列顺序进行调整,使得扫频结果中支持ENDC的频点位于扫频结果的前面;按照扫频结果中调整后的各频点的排列顺序依序进行小区搜索。
在一种可能的实现方式中,优先针对支持ENDC的频点进行小区搜索,可以是在获取到扫频结果之后,将扫频结果中支持ENDC的频点调整到扫频结果的最前面,后续按照调整之后的频点的排序进行小区搜索,就可以实现对支持ENDC的频点优先搜索。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:成功驻留第一小区之 后,判断第一小区的第一频点是否包含在历史频点列表中;根据判断结果对第一频点和支持ENDC的标识作关联处理。
结合第一方面,在第一方面的某些实现方式中,根据判断结果对第一频点和支持ENDC的标识作关联处理,包括:当第一频点包含在历史频点列表中时,判断第一频点是否关联支持ENDC标识;当第一频点关联支持ENDC的标识时,清除第一频点和支持ENDC的标识的关联关系;当确定LTE基站成功添加NG基站之后,为第一频点和支持ENDC的标识之间建立关联关系。
当终端设备驻留到一个小区(例如,第一小区)后,首先判断第一小区的频点(以下称为第一频点)是否包含在历史频点列表中。如果第一频点已经包含在历史频点列表中,继续判断第一频点是否关联支持ENDC的标识。如果第一频点关联支持ENDC的标识,则先将该支持ENDC的标识清除,并在后续确定LTE基站成功添加NG基站之后再重新将第一频点和支持ENDC的标识进行关联。这样可以保证添加了支持ENDC的标识的第一频点一定是LTE基站成功添加了NG基站的。
需要说明的是,在本申请中,一个频点和支持ENDC的标识是否关联,也可以理解为该频点是否支持ENDC。可替换地,一个频点关联支持ENDC的标识,也即该频点支持ENDC,或者说,该频点携带支持ENDC的标识。相反地,一个频点不关联支持ENDC的标识,也即该频点不支持ENDC,或者时候,该频点不携带支持ENDC的标识。
结合第一方面,在第一方面的某些实现方式中,根据判断结果对第一频点和支持ENDC的标识作关联处理,包括:当第一频点不包含在历史频点列表中时,将第一频点添加到历史频点列表中;当确定LTE基站成功添加NG基站之后,将第一频点和支持ENDC的标识关联。
当终端设备驻留到一个小区(例如,第一小区)后,首先判断第一小区的频点(也即第一频点)是否包含在历史频点列表中。如果第一频点不包含在历史频点列表中,则将第一频点添加到历史频点列表中。后续,UE在确定LTE基站成功添加NG基站之后再重新将第一频点和支持ENDC的标识关联。这样可以保证添加了支持ENDC的标识的第一频点一定是LTE基站成功添加了NG基站的。
结合第一方面,在第一方面的某些实现方式中,扫频结果是在如下搜索阶段获得的:历史频点搜索阶段、优选频段搜索阶段或全频段搜索阶段。
在本申请实施例中,将支持ENDC的频点调整到频点扫描结果的最前面的处理,不限于是在频点搜索的哪个阶段。例如,在历史频点搜索阶段,在优选频段搜索阶段或者全频段搜索阶段都是可以的。
结合第一方面,在第一方面的某些实现方式中,确定扫频结果中支持ENDC的频点,包括:确定扫频结果中是否包含支持ENDC的历史频点,和/或运营商配置的支持ENDC的云频点;将扫频结果中包含的支持ENDC的历史频点和/或运营商配置的支持ENDC的云频点确定为所述支持ENDC的频点。
终端设备确定扫频结果中支持ENDC的频点包括确定扫频结果中是否包含和支持ENDC的标识关联的历史频点,以及扫频结果中是否包含由运营商配置的支持ENDC的云频点。如果存在,这些频点即为扫频结果中支持ENDC的频点。
结合第一方面,在第一方面的某些实现方式中,扫频结果是在优选频段搜索阶段进行 扫频得到的,在优选频段阶段进行小区搜索,包括:将运营商配置的支持ENDC的云频段调整至不支持ENDC的优选频段之前,并按照调整之后的频段的排序依次对各频段进行小区搜索。
在本申请实施例中,当运营商不仅配置了优选频段,还配置了支持ENDC的云频段的情况下,支持ENDC的云频段排在不支持ENDC的优选频段之前,不支持ENDC的优选频段排在其它频段或频点之前。
结合第一方面,在第一方面的某些实现方式中,第一小区属于第一非独立组网NSA区域,该方法还包括:在第二NSA区域首次进行扫频,得到的扫频结果中包含第一频点,所述第一频点和支持ENDC的标识关联;针对第一频点进行小区搜索,搜索到第二小区;成功驻留第二小区后,清除第一频点和支持ENDC的标识的关联关系。
当UE从一个NSA区域(第一NAS区域)跨到另一个NSA区域(第二NAS区域)之后,在第二NSA区域首次扫频时,UE会优先尝试搜索在第一NAS区域保存的支持ENDC的历史频点(例如,第一频点)。但是只要在该历史频点上成功驻留之后,UE就会将该历史频点和支持ENDC的标识的关联关系清除掉。并且,由于第二NSA区域和第一NSA区域由5G锚定的频段不一样,从而LTE基站不可能添加NG基站成功。这样可以确保UE在第二NSA区域中再次进行扫频时将不会再针对第一区域中支持ENDC的历史频点而优先发起搜索。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:在第二NSA区域再次进行小区搜索,搜索到第一频点和至少一个第二频点;确定第一频点和该至少一个第二频点中不存在支持ENDC的频点;按照频点的能量大小对第一频点和该至少一个第二频点进行排序,并按照排序之后的频点顺序进行小区搜索。
当UE在第二NSA区域中再次发起扫频时,由于第一区域中支持ENDC的频点(例如,第一频点)不再和支持ENDC的标识关联,从而UE将不会再针对第一区域中支持ENDC的历史频点而优先发起小区搜索。因此,如果UE在第二NSA区域中再次进行小区搜索时,如果不存在支持ENDC的频点,UE将会按照频点的能量大小顺序发起小区搜索。
第二方面,本申请提供一种小区搜索的装置,所述装置具有实现第一方面及其任意可能的实现方式中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
可选地,所述装置为终端设备,或者,所述装置为芯片或集成电路。
可选地,所述装置还可以为处理器或基带装置。
第三方面,本申请提供一种终端设备,包括处理器和存储器。存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,使得终端设备执行第一方面或第一方面任意可能的实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,终端设备还包括通信接口。所述通信接口可以为收发器或者输入输出接口。
第四方面,本申请提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得计算机执行第一方面或第一方面的任意可能的实现方式中的方法。
第五方面,本申请提供一种芯片,包括处理器。处理器用于读取并执行存储器中存储的计算机程序,以执行第一方面或第一方面任意可能的实现方式中的方法。
可选地,所述芯片还包括存储器,存储器与处理器通过电路或电线与存储器连接,存储器用于存储计算机程序。
进一步可选地,所述芯片还包括通信接口。
第六方面,本申请提供还提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面及其任意一种可能的实现方式中的方法。
第七方面,本申请还提供一种无线通信系统,包括上述第三方面所述的终端设备。
采用本申请的技术方案,终端设备在发起小区搜索时,增加对扫频结果中是否包含支持ENDC的频点的。如果扫频结果中支持ENDC的频点和不支持ENDC的频点,终端设备会优先针对支持ENDC的频点进行小区搜索,可以有效提高终端设备优先驻留到支持ENDC的小区的机率,从而使支持ENDC的UE能够使用5G和4G双连接来获取数据服务,提升了用户体验。
附图说明
图1是ENDC组网的架构图。
图2是LTE的搜网流程的各阶段的示意图。
图3是LTE搜网的流程图。
图4是UE在驻留成功之后维护支持ENDC标记的示意图。
图5是本申请提供的小区搜索流程的示意图。
图6的(a)和(b)是本申请提供的小区搜索的方法的示意性流程图。
图7是本申请提供的UE跨NSA时的搜网过程的示意图。
图8是本申请提供的小区搜索的装置500的示意性结构框图。
图9是本申请提供的一种终端设备1000的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
参见图1,图1是ENDC组网的架构图。如图1所示,当UE驻留到LTE小区并进入连接态之后,作为主节点的LTE基站会决定是否添加作为副节点的NR基站,从而使支持5G的UE能够同时使用LTE和NR双连接,提高传输速率。
应理解,5G也称为新空口(new radio,NR)。例如,本文中出现的5G网络也称为NR网络,5G基站也称为NR基站。
LTE的小区搜索(或者,也称为搜网)是由终端设备的非接入层(non-access stratum layer,NAS)触发。NAS向无线资源控制层(radio resource control layer,RRC)下发搜索类型。RRC根据接收到的搜索类型,决定下发给物理层(physical layer,PHY)的参数,并由PHY来进行小区搜索。
以下,将LTE的NAS记作LNAS,将LTE的RRC记作LRRC,将LTE的PHY记作LPHY。
参见图2,图2是LTE的小区搜索的各阶段的示意图。如图2所示,目前,LNAS触发的小区搜索类型包括历史频点搜索、优选频段搜索和全频段搜索三种类型。其中,优选频段搜索也称为pref-band搜索,全频段搜索也称为full band搜索。UE进行小区搜索的顺序是历史频点搜索阶段,在历史频点搜索之后未成功驻留的情况下进入优选频段搜索阶段。在优选频段搜索还未成功驻留的情况下进入全频段搜索阶段。如果以上三个阶段的搜索都失败了,还可以采用其它模式进行小区搜索,如果终端设备都未成功驻留,则开始新一轮的小区搜索,继续从历史频点搜索阶段开始。
参见图3,图3是LTE小区搜索的详细流程图。如图3所示,在LTE的小区搜索流程中,各阶段的搜索说明如下。
(1)历史频点搜索:优先搜索UE之前成功驻留过的频点(即,历史频点)。因为在短时间内UE的位置不会有太大变化,因此,优先搜索历史频点,认为会极大概率能够搜到UE之前成功驻留的小区。
(2)优选频段(pref-band)搜索:运营商有可能会预先给UE配置一些优选频段。运营商使用这些优选频段,相当于指示UE在当前区域中优先搜索哪些频段的LTE小区成功率会比较高。因此,在优选频段搜索阶段,UE会优先搜索运营商配置的这些优选频段的小区。
(3)全频段(full band)搜索:UE根据自身支持的所有LTE频段,依次在这些频段上进行搜索。一般情况下,full band搜索只有在前两种类型的搜索都不成功的情况下才启动。full band搜索的时间比较长。
如果以上三种类型的搜索都失败了,终端设备还可以切换为其它搜索模式进行搜索。如果经过其它模式的搜索,终端设备都未成功驻留,终端设备回到LTE的上述三种搜索类型,启动新一轮的搜索。
根据图3所示的LTE的小区搜索流程可以看出,在4G和5G网络大量并存的情况下,即使终端设备支持5G能力,也无法优先搜索支持ENDC的LTE小区。
下面介绍本申请的技术方案。
本申请的技术方案,保留LTE小区搜索流程的各个阶段,在此基础上增加针对历史频点支持ENDC的记录以及运营商配置的支持ENDC的云频点的判断。终端设备在搜网阶段优先尝试支持ENDC的LTE小区。
应理解,通运营商配置的支持ENDC的频点被称为云频点。
详细来说,本申请的技术方案主要增加了如下两部分:
1、历史频点支持ENDC的标识的维护。
具体地,维护历史频点支持ENDC的标识的总体原则如下:
(1)UE在成功驻留小区之后,才将驻留小区的频点添加到历史频点列表中。
(2)UE每次驻留成功之后,如果驻留小区的频点已经是历史频点且已经标记为支持ENDC,UE先清除该频点的支持ENDC的标识。UE在LTE基站成功添加了下一代(next generation,NG)基站之后,再在该频点上添加支持ENDC的标识。
在本申请实施例中,可替换地,UE为一个频点添加支持ENDC的标识,也即UE将该频点和支持ENDC的标识关联,或者说,UE将该频点标记为支持ENDC的频点。相反地,如果UE清除一个频点和支持ENDC的标识的关联关系,也即UE清除该频点携带的 支持ENDC的标识,或者说,UE将该频点标记为不支持ENDC的频点。
参见图4,图4是UE在驻留成功之后维护驻留小区支持ENDC的标识的示意图。如图4所示,UE在小区驻留成功之后,首先判断驻留小区的频点是否已经包含在历史频点列表中。如果驻留小区的频点已经包含在历史频点列表中,UE判断驻留小区的频点是否已经标记为支持ENDC(或者说,驻留小区的频点是否携带支持ENDC的标识)。如果驻留小区的频点已经被标记为支持ENDC,UE将驻留小区的频点支持ENDC的标识清除。之后,UE判断LTE基站是否成功添加NG基站。
UE在小区驻留成功之后,如果确定驻留小区的频点不包含在历史频点列表中,UE将驻留小区的频点添加进历史频点列表中。之后,UE判断LTE基站是否成功添加NG基站。
如果UE确定LTE基站成功添加NG基站,UE在历史频点列表中为驻留小区的频点增加支持ENDC的标识。
2、UE在小区搜索的过程中增加对支持ENDC的历史频点和支持ENDC的云信息的判断处理。
这里,支持ENDC的云信息包括支持ENDC的云频点和支持ENDC的云频段。和上文介绍的云频点的概念类似,云频段是指运营商配置的优选频段。
运营商可以配置支持ENDC的云频点,也可以配置不支持ENDC的云频点。同样地,运营商可以配置支持ENDC的云频段,也可以配置不支持ENDC的云频点。
下面结合图5,对UE在搜索过程中对支持ENDC的历史频点和支持ENDC的云频点的判断处理的原则进行说明。
参见图5所示,图5是本申请提供的小区搜索流程的示意图。
(1)在历史频点搜索阶段搜索历史频点和云频点。将扫频结果中的频点按照能量大小进行排序,并将扫频结果中支持ENDC的历史频点或者支持ENDC的云频点调整到扫频结果的最前面。UE按照调整之后的各频点的排列顺序依次针对各频点发起小区搜索。
可以理解的是,由于将扫频结果中支持ENDC的历史频点或者支持ENDC的云频点调整到了扫频结果的最前面,因此,UE将优先针对这些支持ENDC的历史频点和/或支持ENDC的云频点进行小区搜索。如果这些支持ENDC的历史频点和支持ENDC的云频点的小区搜索都失败了,再针对扫频结果中的剩余频点进行小区搜索。
(2)在优选频段搜索阶段,首先按照上述(1)中描述的历史频点搜索阶段的搜索原则进行一轮历史频点搜索。如果历史频点搜索失败再进行优选频段搜索。在搜索优选频段时,如果扫频结果中包含支持ENDC的历史频点或者支持ENDC的云频点,则按照物理层上报的频点顺序(已按照频点的能量大小进行了排序)优先针对这些支持ENDC的频点进行小区搜索。在这些支持ENDC的频点的小区搜索都失败之后,再发起对剩余频点的小区搜索。如果扫频结果中不包含支持ENDC的频点,则对扫频结果中的频点顺序发起小区搜索。
(3)在全频段搜索阶段,历史频点和云频点还是按照步骤(1)中描述的历史频点搜索阶段的搜索原则进行一轮历史频点搜索。如果历史频点搜索失败再进行全频段搜索。在搜索全频段时,如果扫频结果中包含支持ENDC的历史频点或者支持ENDC的云频点,则按照物理层上报的频点顺序(已按照频点的能量大小进行了排序)优先对这些频点进行小区搜索。否则,发起对剩余频点的小区搜索。
下面介绍在本申请提出的基于维护历史频点支持ENDC的标识以及UE在搜网各阶段的处理原则之下,UE进行小区搜索的流程。
参见图6,图6的(a)和(b)是本申请提供的小区搜索的方法的示意性流程图。其中,图6的(a)示出了历史频点搜索阶段和优选频段搜索阶段,(b)示出了全频段搜索阶段。
在图6所示的实施例中,假设运营商配置了支持ENDC的云频点。同时,优选频段是指由运营商配置的但是不支持ENDC的频段。
参见图6的(a)中所示的历史频点搜索阶段和优选频段搜索阶段。
1、历史频点搜索阶段。
(1)假设环境中存在一个LTE小区(以下记作小区1),历史频点列表中保存了小区1的频点(以下记作f 1)且f1携带有支持ENDC的标识。或者,f1不属于历史频点列表,但是f 1属于运营商配置的支持ENDC的云频点。
(2)假设环境中还存在另一个LTE小区(记作小区2),小区2的频点(以下记作f 2)包含在历史频点列表中,但是f 2未携带支持ENDC的标识,且f 2也不属于运营商配置的支持ENDC的频点。
(3)小区2的信号强于小区1,且小区1和小区2都属于UE可以驻留的小区。
UE的LNAS向LRRC下发搜网请求以及搜网类型指示,这里搜网类型指示具体为历史频点搜索。LRRC接收到历史频点搜索的指示之后,将当前保存的所有历史频点下发给LPHY,由LPHY对这些历史频点进行一次接收信号强度指示(received signal strength indication,RSSI)扫频。LPHY向LRRC上报扫频结果,扫频结果包括搜索到的RSSI以及对应的频点号回复给LRRC。其中,扫频结果中的频点已经按照各频点的RSSI的大小进行了排序。根据上文的假设,LPHY上报的扫描结果中包含频点f 1和f 2以及各自的RSSI。由于小区2的信号强于小区1,也即f 2的RSSI大于f 1的RSSI,因此,在LPHY上报的粗扫结果中,f 1排在f 2之后。
LRRC判断扫频结果(也称为粗扫结果)中是否包含支持ENDC的历史频点或者运营商配置的支持ENDC的云频点。如果存在,将这些支持ENDC的频点(包括历史频点和云频点)调整到扫频结果的最前面。例如,LRRC判断f 1的RSSI小于f 2的RSSI,但是由于f 1属于支持ENDC的频点,LRRC会将f 1调整到f 2的前面。换句话说,LRRC选择给LPHY优先下发f 1的小区搜索。
当然,如果有多个支持ENDC的频点,则可以按照RSSI的大小,对这些支持ENDC的频点进行排序。
LPHY优先针对支持ENDC的频点发起小区搜索。如果f 1的小区驻留成功,搜网结束。
而如果f 1的小区驻留失败,且历史频点搜索阶段的搜网失败,则进入优选频段搜索阶段。
2、优选频段搜索阶段。
如上文所述,图6的实施例中所述的优选频段是指不支持ENDC的优选频段。
(1)假设环境中存在一个LTE小区(以下记作小区3),小区3的频点是f 3。f 3已经包含在历史频点列表中且f 3携带支持ENDC的标识。或者,频点f 3不包含在历史频点列表中,但是f 3属于运营商配置的支持ENDC的云频点。
(2)假设环境中还存在另外一个LTE小区(以下记作小区4),小区4的频点为f 4。f 4包含在历史频点列表中但不携带支持ENDC的标识,f 4且也不属于运营商配置的支持ENDC的云频点。
(3)小区4的信号强于小区3,且小区3和小区4都属于UE可以驻留的小区。
优选频段搜索之前,UE先进行一次历史频点搜(过程参见上一阶段的说明),当历史频点搜网再次失败则进入优选频段搜索阶段。
优选频段搜索开始之后,UE针对运营商配置的优选频段发起小区搜索。具体地,LPHY顺序发起优选频段的粗扫。LPHY将扫频结果发送给LRRC,粗扫结果包含搜索到的RSSI以及RSSI的频点。扫频结果中包含的频点已经按照各频点的RSSI的大小进行了排序。根据上文的假设,扫频结果中包含f 3和f 4以及各自对应的RSSI。由于小区4的信号强于小区3,也即,f 4的RSSI大于f 3的RSSI。因此,在扫频结果中,f 4排在f 3的前面。
LRRC判断扫频结果中是否包含支持ENDC的历史频点,或者运营商配置的支持ENDC的云频点。如果存在,将这些支持ENDC的频点排到扫频结果的最前面。例如,LRRC判断f 3属于支持ENDC的历史频点,或者f 3属于运营商配置的支持ENDC的云频点,即使f 3的RSSI小于f4的RSSI,LRRC还是会将f 3调整到f 4的前面。因此,LRRC选择向LPHY优先下发频点f 3的小区搜索。
如果f 3的小区驻留成功,则结束搜网流程。如果f 3的小区驻留失败,且优选频段阶段的搜网失败,则进入全频段搜网阶段。
参见图6的(b)中所示的全频段搜索阶段。
3、全频段搜索阶段。
(1)假设环境中存在一个LTE小区(以下记作小区5),小区5的频点是f 5。f 5包含在历史频点列表中,且f 5携带支持ENDC的标识。或者,频点f 5不包含在历史频点列表中,但是f 5属于运营商配置的支持ENDC的云频点。
(2)假设环境中还存在另外一个LTE小区(以下记作小区6),小区6的频点为f 6。f 6包含在历史频点列表中,但是未携带支持ENDC的标识。并且,频点f 6也不属于运营商配置的支持ENDC的云频点。
(3)小区6的信号强于小区5的信号,且小区5和小区6都属于可以驻留的小区。
在进入全频段搜索之前,先进行一次历史频点搜,当再次搜索失败,进入全频段搜网阶段。
全频段搜索开始之后,LRRC向LPHY下发UE支持的频段。LPHY顺序发起这些频段的粗扫。LPHY将扫频结果发送给LRRC,扫频结果中包含搜索到的RSSI以及RSSI的频点。其中,LPHY上报的扫频结果已经按照各频点的RSSI的大小进行了排序。按照假设,扫频结果中包含f 5和f 6以及各自的RSSI。由于小区6的信号强于小区5,也即,f 6的RSSI大于f 5的RSSI。因此,在粗扫结果中,f 6排在f 5的前面。
LRRC判断扫频结果中是否包含支持ENDC的历史频点或者支持ENDC的云频点。如果存在,LRRC将这些支持ENDC的频点调整到扫频结果的最前面。例如,LRRC判断f 5属于支持ENDC的历史频点,或者f 5属于支持ENDC的云频点。即使f 5的RSSI小于f 6的RSSI,LRRC依然会选择向f 5调整到f 6的前面,也即LRRC选择向LPHY优先下发频点f 5的小区搜索。
如果f 5的搜网成功,则结束搜网流程。如果f 5的搜网失败,且全频段搜网失败,UE还可以采用其它模式进行搜网。如果依然未成功驻留小区,UE开始新一轮的小区搜索。
以上图6是本申请提供的小区搜索的详细过程。
采用本申请的技术方案,终端设备在小区搜索的过程中,增加对历史频点是否支持ENDC以及运营商配置的云频点是否支持ENDC的判断处理。如果环境中支持ENDC的小区以及不支持ENDC的小区并存时,终端设备会优先对支持ENDC的历史频点以及支持ENDC的云频点进行小区搜索,可以有效提高终端设备优先驻留到支持ENDC的小区的机率,从而使支持ENDC的UE能够使用5G和4G双连接来获取数据服务,提升了用户体验。
在另一个实施例中,假设运营商只配置了支持ENDC的云频段,与图6中运营商配置了支持ENDC的云频点相比,小区搜索的各阶段将会有如下不同:
1、在历史频点搜索阶段。
LRRC收到LPHY上报的扫频结果(扫频结果已经按照各频点的RSSI的大小进行排序)之后,只判断扫频结果中是否包含支持ENDC的历史频点。如果有,则将这些支持ENDC的历史频点调整到扫频结果的最前面。
可选地,如果有多个支持ENDC的历史频点,则按照RSSI的大小,对这多个支持ENDC的频点进行排序。
LRRC向LPHY优先下发这些支持ENDC的历史频点的小区搜索。
2、在优选频段搜索阶段。
(1)LRRC将运营商配置的支持ENDC的云频段排到所有云频段(也即,运营商配置的优选频段)最前面,之后,LRRC顺序下发频段粗扫。
(2)LRRC接收到LPHY上报的扫频结果之后,只判断扫频结果包含的云频点中是否存在支持ENDC的历史频点。如果存在,则将这些支持ENDC的历史频点排到扫频结果的最前面。
LRRC向LPHY优先下发这些支持ENDC的历史频点的小区搜索。
3、在全频段搜索阶段:
LRRC接收到LPHY上报的扫频结果之后,只判断扫频结果包含的频点中是否存在支持ENDC的历史频点。如果存在,则将这些支持ENDC的历史频点排到扫频结果的最前面。
LRRC向LPHY优先下发这些支持ENDC的历史频点的小区搜索。
UE在每个搜索阶段的处理原则以及其它步骤与图6中的(a)和(b)相同,这里不再赘述。
此外,本申请考虑到ENDC的一个部署策略可能是:NSA场景下,移动网侧会把5G与一个固定的LTE频段(LTE band)锚定在一起,但是不会与所有LTE band锚定。但不同的NSA区域,5G锚定的LTE band不同。那么,就可能会导致一个支持ENDC的历史频点到了新的NSA区域之后,将不再支持ENDC,因此UE需要对保存的历史频点是否支持ENDC的信息进行更新。
上文介绍的历史频点支持ENDC的标识的维护原则,可以确保在跨NSA区域时,UE优先选择支持ENDC的LTE小区。
下面再结合图7说明UE从一个NSA移动到另一个NSA之后的搜网过程。
参见图7,图7是本申请提供的UE跨NSA时的搜网过程的示意图。
首先假设一个场景,在区域A中,UE的LPHY搜索到可用频点f 7,并对f 7进行小区搜索,搜索到小区7。UE的LRRC将f 7添加进历史频点列表中。后续,如果LTE基站成功添加了NG基站,LRRC为f 7添加支持ENDC的标识。
由于某种原因,例如信号中断,或者关机重启等,UE重新发起搜网的情况下,此时UE可能移动到了区域B。但是UE并不能获知NSA区域的变更。UE在区域B按照正常的搜网流程发起首次搜网。由于f 7保存在历史频点列表中,因此,UE的LRRC会向LPHY优先下发f 7的小区搜索。LPHY优先对f 7进行小区搜索,搜索到小区8。之后,UE成功驻留到小区8。
按照本文图4提供的对历史频点的支持ENDC的标识的维护原则,UE一旦成功驻留到一个频点,就将该频点支持ENDC的标识清除。
因此,UE成功驻留到小区8之后,UE的LRRC会将历史频点列表中f7支持ENDC的标识清除。
后续,如果LTE基站成功添加了NG基站,LRRC才会重新为f7添加支持ENDC的标识。但是,上文已经介绍过,由于区域B和区域A中由5G锚定的频段并不一样,因此,UE驻留到小区8之后,LTE基站不可能成功添加NG基站。因此,在区域B中,f 7也就不可能会被重新标记为支持ENDC。
当UE在区域B中再次发起搜网时,如果扫描到历史频点f 7和f 8,由于f 7没有支持ENDC的标识,因此不会再出现优先对f 7进行小区搜索的情况了。
UE通过每次在完成小区驻留之后,先清除历史频点携带的支持ENDC的标识。后续,如果LTE基站添加NG基站成功,再重新为该历史频点添加支持ENDC的标识,可以确保该历史频点支持ENDC的标识一定是本次成功添加NG基站之后标记的。
当UE从一个NSA区域(第一NAS区域)跨到另一个NSA区域(第二NAS区域)之后,虽然首次在第二NSA区域进行搜网时,依然会优先尝试搜索在第一NAS区域保存的支持ENDC的历史频点,但是只要在该历史频点上成功驻留之后,UE就会将该历史频点支持ENDC的标识清除掉。并且,由于第二NSA区域和第一NSA区域由5G锚定的频段不一样,因此可以确保LTE基站不会成功添加NG基站。因此,UE在第二NSA区域中再次发起搜网将不会再针对第一区域中支持ENDC的历史频点而优先发起搜索。
以上对本申请的小区搜索的方法进行了详细说明。
采用本申请的技术方案,终端设备在小区搜索的过程中,增加对历史频点是否支持ENDC以及运营商配置的云频点是否支持ENDC的判断处理。如果环境中支持ENDC的小区以及不支持ENDC的小区并存时,终端设备会优先对支持ENDC的历史频点以及支持ENDC的云频点进行小区搜索,可以有效提高终端设备优先驻留到支持ENDC的小区的机率,从而使支持ENDC的UE能够使用5G和4G双连接来获取数据服务,可以提升用户体验。
以上结合图1-图7对本申请提供的小区搜索的方法做了详细说明。下面介绍本申请提供的小区搜索的装置。
参见图8,图8是本申请提供的小区搜索的装置500的示意性结构框图。如图8所示,装置500包括处理单元510和收发单元520。
处理单元510,用于获取扫频结果,并确定扫频结果中支持ENDC的频点,其中,所述扫频结果中包含多个频点;
收发单元520,用于优先针对所述支持ENDC的频点进行小区搜索。
在一个实施例中,扫频结果中包含的多个频点是按照频点能量大小排列的,处理单元510具体用于对扫频结果包含的各频点的排列顺序进行调整,使得扫频结果中支持ENDC的频点位于扫频结果的前面;收发单元520具体用于按照调整后的各频点的排列顺序依序进行小区搜索。
在一个实施例中,处理单元510还用于在装置成功驻留第一小区之后,判断第一小区的第一频点是否包含在历史频点列表中,并根据判断结果对第一频点和支持ENDC的标识作关联处理。
可选地,处理单元510具体用于当第一频点包含在历史频点列表中时,判断第一频点是否关联支持ENDC的标识;当第一频点关联支持ENDC的标识时,清除第一频点和支持ENDC的标识的关联关系;当确定LTE基站成功添加NG基站之后,将第一频点和支持ENDC的标识进行关联。
可选地,处理单元510具体用于当第一频点未包含在历史频点列表中时,将第一频点添加到历史频点列表中;当确定LTE基站成功添加NG基站之后,将第一频点和支持ENDC的标识关联。
可选地,处理单元510具体用于确定扫频结果中是否存在携带有支持ENDC的标识的历史频点,和/或运营商配置的支持ENDC的云频点,并将历史频点中携带支持ENDC的标识的历史频点和/或运营商配置的支持ENDC的云频点确定为支持ENDC的频点。
可选地,处理单元510具体用于将运营商配置的支持ENDC的云频段调整至不支持ENDC的优选频段之前,以及,收发单元520用于按照调整之后的频段的排序依次对各频段进行小区搜索。
可选地,收发单元520还用于在第二NSA区域首次进行扫频,得到的扫频结果中包含第一频点,第一频点携带有支持ENDC的标识;针对第一频点进行小区搜索,搜索到第二小区;以及,处理单元510还用于当所述装置成功驻留第二小区后,清除第一频点和支持ENDC的标识的关联关系。
可选地,收发单元520还用于在第二NSA区域再次进行扫频,得到的扫频结果中包含第一频点和至少一个第二频点;处理单元510还用于确定第一频点和该至少一个第二频点中不存在支持ENDC的频点;以及收发单元520还用于按照频点的能量从大到小对第一频点和该至少一个第二频点进行小区搜索。
在一个实施例中,装置500可以为芯片或集成电路。
本申请实施例中所述的芯片,可以是现场可编程门阵列(field-programmable gate array,FPGA)、专用集成芯片(application specific integrated circuit,ASIC)、系统芯片(system on chip,SoC)、中央处理器(central processor unit,CPU)、网络处理器(Network Processor,NP)、数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU、可编程控制器(programmable logic device,PLD)或其它集成芯片。
此种情况下,处理单元510可以为处理器。收发单元520可以为通信接口或收发电路。
可选地,通信接口包括输入输出接口。收发电路可以包括接收电路和发射电路。
在另一个实施例中,装置500可以对应本申请提供的小区搜索的各方法实施例中的终端设备。装置500包括的各单元分别用于实现各方法实施例中由终端设备执行的相应操作和/或流程。此种情况下,处理单元510可以为处理器。收发单元520可以为收发器。
可选地,收发器可以包括接收机和发射机,同时具有发射和接收信号的功能。
可选地,处理单元510还可以是一个处理装置,处理装置的功能可以部分或全部通过软件实现。
在一种实现中,处理装置的功能可以部分或全部通过软件实现。此时,处理装置可以包括存储器和处理器。其中,存储器用于存储计算机程序,处理器读取并执行存储器中存储的计算机程序,以执行各方法实施例中由终端设备内部实现的步骤。
在另一种实现中,处理装置包括处理器。用于存储计算机程序的存储器位于处理装置之外,处理器通过电路/电线与存储器连接,以读取并执行存储器中存储的计算机程序。
在再一种实现中,处理装置的功能可以全部通过硬件实现。此时,处理装置可以包括输入接口电路、逻辑电路和输出接口电路。其中,输入接口电路,用于获取扫频结果;逻辑电路,用于确定扫频结果中是否存在支持ENDC的频点。输出接口电路用于输出逻辑电路的判断结果。
具体地,当逻辑电路确定扫频结果中存在支持ENDC的频点时,逻辑电路将所述支持ENDC的频点输出给输出接口电路,并由输出接口电路输出。
本申请还提供一种终端设备1000,下面结合图9进行说明。
参见图9,图9是本申请提供的一种终端设备1000的结构示意图。如图9所示,终端设备1000包括天线1101、射频装置1102、基带装置1103。天线1101与射频装置1102连接。在上行方向,基带装置1103生成需要发送给网络侧的信号,并将所述信号发送给射频装置1102,射频装置1102将所述信号经过天线1101发射出去。在下行方向,射频装置1102通过天线1101从网络侧接收信号,并将接收到的信号发给基带装置1103进行处理。
具体地,基带装置1103可以包括一个或多个处理单元11031。此外,基带装置1103还可以包括存储单元11032和通信接口11033。存储单元11032用于存储程序和数据。通信接口11033用于与射频装置1102交互信息。通信接口11033可以为输入输出接口或者输入输出电路。
可选地,存储单元11032可以和处理单元11031处于同一芯片上,即片内存储单元,也可以与处理单元11031处于不同芯片上,即片外存储单元。
上述装置实施例中的终端设备1000可以与方法实施例中的终端设备完全对应,终端设备1000所包括的相应单元用于执行方法实施例中由终端设备执行的相应操作和/或处理,具体可以参见方法实施例,这里不再赘述。
例如,图8中所示的处理单元510可以由图9中所示的基带装置1103实现,收发单元520可以由图9中所示的射频装置1102实现。
此外,本申请提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得计算机执行任一方法实施例的相应操作和/或处理。
本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码,当计算机 程序代码在计算机上运行时,使得计算机执行本申请任一方法实施例的相应操作和/或处理。
本申请还提供一种芯片,包括处理器。处理器用于调用并运行存储器中存储的计算机程序,以执行本申请任一方法实施例的相应操作和/或处理。
可选地,芯片还包括存储器,存储器与处理器连接。处理器用于读取并执行存储器中的计算机程序。
进一步可选地,芯片还包括通信接口,处理器与通信接口连接。通信接口用于接收需要处理的信号和/或数据,处理器从通信接口获取该信号和/或数据,并对其进行处理。
可选地,通信接口可以是输入输出接口,具体可以包括输入接口和输出接口。或者,通信接口可以是收发电路,具体可以包括接收电路和发射电路。
上述实施例中涉及的存储器与存储器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起。
以上各实施例中,处理器可以为中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请技术方案程序执行的集成电路等。例如,处理器可以是数字信号处理器设备、微处理器设备、模数转换器、数模转换器等。处理器可以根据这些设备各自的功能而在这些设备之间分配终端设备或网络设备的控制和信号处理的功能。此外,处理器可以具有操作一个或多个软件程序的功能,软件程序可以存储在存储器中。处理器的所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
存储器可以是只读存储器(read-only memory,ROM)、可存储静态信息和指令的其它类型的静态存储设备、随机存取存储器(random access memory,RAM)或可存储信息和指令的其它类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其它磁存储设备,或者还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质等。
本申请实施例中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通 过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的。作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或全部单元来实现本实施例的技术方案。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求书的保护范围为准。

Claims (22)

  1. 一种小区搜索的方法,其特征在于,包括:
    获取扫频结果,所述扫频结果中包含多个频点;
    确定所述扫频结果中支持ENDC的频点,并优先针对所述支持ENDC的频点进行小区搜索。
  2. 根据权利要求1所述的方法,其特征在于,所述扫频结果中包含的多个频点是按照频点能量大小排列的,所述优先针对所述支持ENDC的频点进行小区搜索,包括:
    对所述扫频结果包含的各频点的排列顺序进行调整,使得所述扫频结果中支持ENDC的频点位于所述扫频结果的前面;
    按照调整后的各频点的排列顺序依序进行小区搜索。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    成功驻留第一小区之后,判断所述第一小区的第一频点是否包含在历史频点列表中;
    根据判断结果,对所述第一频点和支持ENDC的标识作关联处理。
  4. 根据权利要求3所述的方法,其特征在于,所述根据判断结果对所述第一频点和支持ENDC的标识作关联处理,包括:
    当所述第一频点包含在历史频点列表中时,判断所述第一频点是否关联所述支持ENDC标识;
    当所述第一频点关联支持ENDC的标识时,清除所述第一频点和支持ENDC的标识的关联关系;
    当确定LTE基站成功添加NG基站之后,为所述第一频点和所述支持ENDC的标识之间建立关联关系。
  5. 根据权利要求3所述的方法,其特征在于,所述根据判断结果对所述第一频点和支持ENDC的标识作关联处理,包括:
    当所述第一频点不包含在历史频点列表中时,将所述第一频点添加到所述历史频点列表中;
    当确定LTE基站成功添加NG基站之后,将所述第一频点和所述支持ENDC的标识关联。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述扫频结果是在如下搜索阶段获得的:
    历史频点搜索阶段、优选频段搜索阶段或全频段搜索阶段。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述确定所述扫频结果中支持ENDC的频点,包括:
    确定所述扫频结果中是否包含支持ENDC的历史频点,和/或运营商配置的支持ENDC的云频点;
    将所述扫频结果中包含的支持ENDC的历史频点和/或运营商配置的支持ENDC的云频点确定为所述支持ENDC的频点。
  8. 根据权利要求6或7所述的方法,其特征在于,所述扫频结果是在优选频段搜索 阶段进行扫频得到的,所述在优选频段阶段进行小区搜索,包括:
    将运营商配置的支持ENDC的云频段调整至不支持ENDC的优选频段之前,并按照调整之后的频段的排序依次对各频段进行小区搜索。
  9. 根据权利要求4-8中任一项所述的方法,其特征在于,所述第一小区属于第一非独立组网NSA区域,所述方法还包括:
    在第二NSA区域首次进行扫频,得到的扫频结果中包含所述第一频点,所述第一频点和支持ENDC的标识关联;
    针对所述第一频点进行小区搜索,搜索到第二小区;
    成功驻留所述第二小区后,清除所述第一频点和支持ENDC的标识的关联关系。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    在所述第二NSA区域再次进行扫频,得到的扫频结果中包含所述第一频点和至少一个第二频点;
    确定所述第一频点和所述至少一个第二频点中不存在支持ENDC的频点;
    按照频点的能量从大到小的顺序对所述第一频点和所述至少一个第二频点进行小区搜索。
  11. 一种小区搜索的装置,其特征在于,包括:
    处理单元,用于获取扫频结果,并确定所述扫频结果中支持ENDC的频点,其中,所述扫频结果中包含多个频点;
    收发单元,用于优先针对所述支持ENDC的频点进行小区搜索。
  12. 根据权利要求11所述的装置,其特征在于,所述扫频结果中包含的多个频点是按照频点能量大小排列的,
    所述处理单元具体用于对所述扫频结果包含的各频点的排列顺序进行调整,使得所述扫频结果中支持ENDC的频点位于所述扫频结果的前面;
    所述收发单元具体用于按照调整后的各频点的排列顺序依序进行小区搜索。
  13. 根据权利要求11或12所述的装置,其特征在于,所述处理单元还用于:
    在所述装置成功驻留第一小区之后,判断所述第一小区的第一频点是否包含在历史频点列表中,并根据判断结果对所述第一频点和支持ENDC的标识作关联处理。
  14. 根据权利要求13所述的装置,其特征在于,所述处理单元具体用于:
    当所述第一频点包含在所述历史频点列表中时,判断所述第一频点是否关联支持ENDC的标识;
    当所述第一频点关联支持ENDC的标识时,清除所述第一频点和所述支持ENDC的标识的关联关系;
    当确定LTE基站成功添加NG基站之后,将所述第一频点和所述支持ENDC的标识进行关联。
  15. 根据权利要求13所述的装置,其特征在于,所述处理单元具体用于:
    当所述第一频点未包含在所述历史频点列表中时,将所述第一频点添加到所述历史频点列表中;
    当确定LTE基站成功添加NG基站之后,将所述第一频点和所述支持ENDC的标识关联。
  16. 根据权利要求11-15中任一项所述的装置,其特征在于,所述扫频结果是在如下搜索阶段获得的:
    历史频点搜索阶段、优选频段搜索阶段或全频段搜索阶段。
  17. 根据权利要求11-16中任一项所述的装置,其特征在于,所述处理单元具体用于:
    确定所述扫频结果中是否包含支持ENDC的历史频点,和/或运营商配置的支持ENDC的云频点;
    将所述扫频结果中包含的支持ENDC的历史频点和/或运营商配置的支持ENDC的云频点确定为所述支持ENDC的频点。
  18. 根据权利要求16或17所述的装置,其特征在于,所述扫频结果是在优选频段搜索阶段进行扫频得到的,所述处理单元用于将运营商配置的支持ENDC的云频段调整至不支持ENDC的优选频段之前,并按照调整之后的频段的排序依次对各频段进行小区搜索。
  19. 根据权利要求14-18中任一项所述的装置,其特征在于,所述第一小区属于第一非独立组网NSA区域,所述收发单元还用于:
    在第二NSA区域首次进行扫频,得到的扫频结果中包含所述第一频点,所述第一频点和支持ENDC的标识关联;
    针对所述第一频点进行小区搜索,搜索到第二小区;
    以及,所述处理单元还用于在所述装置成功驻留所述第二小区时,清除所述第一频点和所述支持ENDC的标识的关联关系。
  20. 根据权利要求19所述的装置,其特征在于,所述收发单元还用于在所述第二NSA区域再次进行扫频,得到的扫频结果中包含所述第一频点和至少一个第二频点;
    以及,所述处理单元还用于确定所述第一频点和所述至少一个第二频点中不存在支持ENDC的频点;
    所述收发单元还用于按照频点的能量从大到小的顺序对所述第一频点和所述至少一个第二频点进行小区搜索。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序在计算机上执行时,使得计算机执行如权利要求1-10中任一项所述的方法。
  22. 一种芯片,其特征在于,包括存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于读取并执行所述存储器中存储器的所述计算机程序,以执行如权利要求1-10中任一项所述的方法。
PCT/CN2019/079274 2019-03-22 2019-03-22 小区搜索的方法和装置 WO2020191525A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980081943.2A CN113170385B (zh) 2019-03-22 2019-03-22 小区搜索的方法和装置
PCT/CN2019/079274 WO2020191525A1 (zh) 2019-03-22 2019-03-22 小区搜索的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/079274 WO2020191525A1 (zh) 2019-03-22 2019-03-22 小区搜索的方法和装置

Publications (1)

Publication Number Publication Date
WO2020191525A1 true WO2020191525A1 (zh) 2020-10-01

Family

ID=72610371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079274 WO2020191525A1 (zh) 2019-03-22 2019-03-22 小区搜索的方法和装置

Country Status (2)

Country Link
CN (1) CN113170385B (zh)
WO (1) WO2020191525A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113873598A (zh) * 2021-10-15 2021-12-31 迈普通信技术股份有限公司 网络切换方法、装置、网络设备及存储介质
CN113993185A (zh) * 2021-09-22 2022-01-28 深圳市广和通无线股份有限公司 搜网方法、搜网装置、通信设备及计算机可读存储介质
CN114845357A (zh) * 2021-02-01 2022-08-02 华为技术有限公司 小区搜索的方法及装置
CN115002877A (zh) * 2022-06-21 2022-09-02 维沃移动通信有限公司 网络搜索方法和装置
CN115052327A (zh) * 2022-03-16 2022-09-13 北京小米移动软件有限公司 网络控制方法、装置及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113613294A (zh) * 2021-07-28 2021-11-05 西安广和通无线软件有限公司 网络接入方法、装置、终端设备及存储介质
CN113556800B (zh) * 2021-09-23 2022-01-07 芯翼信息科技(上海)有限公司 搜索网络的方法、装置、介质和设备
CN114173361A (zh) * 2021-12-13 2022-03-11 展讯通信(上海)有限公司 5g网络搜索方法、装置及终端
CN114928865B (zh) * 2022-05-12 2024-05-10 拉扎斯网络科技(上海)有限公司 取餐柜路由器的网络切换方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1756435A (zh) * 2004-09-28 2006-04-05 日本电气株式会社 小区搜索方法和移动通信终端
CN103546940A (zh) * 2012-07-17 2014-01-29 电信科学技术研究院 一种感知系统中进行小区搜索的方法及装置
CN106332231A (zh) * 2015-06-29 2017-01-11 展讯通信(上海)有限公司 移动终端小区搜索方法及装置
WO2018030867A1 (ko) * 2016-08-11 2018-02-15 삼성전자 주식회사 서비스 기반 셀 선택 및 재선택 제어 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102316551B (zh) * 2010-06-29 2015-04-01 中兴通讯股份有限公司 一种实现快速频率扫描的方法和移动终端
CN102355712A (zh) * 2011-10-11 2012-02-15 中兴通讯股份有限公司 加快公共陆地移动网络搜网速度的方法及装置
CN105792249A (zh) * 2014-12-26 2016-07-20 联芯科技有限公司 一种搜网排序方法及系统
CN106412844B (zh) * 2015-08-03 2019-09-13 深圳市中兴微电子技术有限公司 实现增强型多媒体广播多播业务连续接收的方法及终端
US10887828B2 (en) * 2017-08-24 2021-01-05 Qualcomm Incorporated Techniques and apparatuses for mobile network searching in multiple radio access technologies

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1756435A (zh) * 2004-09-28 2006-04-05 日本电气株式会社 小区搜索方法和移动通信终端
CN103546940A (zh) * 2012-07-17 2014-01-29 电信科学技术研究院 一种感知系统中进行小区搜索的方法及装置
CN106332231A (zh) * 2015-06-29 2017-01-11 展讯通信(上海)有限公司 移动终端小区搜索方法及装置
WO2018030867A1 (ko) * 2016-08-11 2018-02-15 삼성전자 주식회사 서비스 기반 셀 선택 및 재선택 제어 방법

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114845357A (zh) * 2021-02-01 2022-08-02 华为技术有限公司 小区搜索的方法及装置
WO2022160984A1 (zh) * 2021-02-01 2022-08-04 华为技术有限公司 小区搜索的方法及装置
CN114845357B (zh) * 2021-02-01 2024-06-04 华为技术有限公司 小区搜索的方法及装置
CN113993185A (zh) * 2021-09-22 2022-01-28 深圳市广和通无线股份有限公司 搜网方法、搜网装置、通信设备及计算机可读存储介质
CN113873598A (zh) * 2021-10-15 2021-12-31 迈普通信技术股份有限公司 网络切换方法、装置、网络设备及存储介质
CN113873598B (zh) * 2021-10-15 2024-04-12 迈普通信技术股份有限公司 网络切换方法、装置、网络设备及存储介质
CN115052327A (zh) * 2022-03-16 2022-09-13 北京小米移动软件有限公司 网络控制方法、装置及存储介质
CN115052327B (zh) * 2022-03-16 2023-10-20 北京小米移动软件有限公司 网络控制方法、装置及存储介质
CN115002877A (zh) * 2022-06-21 2022-09-02 维沃移动通信有限公司 网络搜索方法和装置

Also Published As

Publication number Publication date
CN113170385A (zh) 2021-07-23
CN113170385B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
WO2020191525A1 (zh) 小区搜索的方法和装置
US11082899B2 (en) Cell reselection method and apparatus
WO2021143597A1 (zh) 一种小区驻留方法及终端、存储介质
TWI602456B (zh) 存取網路偵測及選擇的方法
CN104541562B (zh) 无线电通信系统、无线电终端、无线电站和小区选择方法
WO2021142576A1 (zh) 无线通信方法、终端设备和网络设备
EP3706474B1 (en) Method for selecting cell, terminal device, and network device
US9900834B2 (en) Methods and devices for cell selection
JP2010193088A (ja) 無線基地局選択方法、無線基地局選択装置および無線基地局選択プログラム
US20230209426A1 (en) Cell reselection method, terminal device, and network device
WO2022237469A1 (zh) 一种小区选择的方法及装置
CN111866964A (zh) 一种小区选择方法、网络设备及终端
CN115299102A (zh) 无线资源控制rrc重建立方法和装置
CN106211242A (zh) 一种网络切换方法及装置
CN112512099B (zh) 一种小区驻留方法及终端、存储介质
CN114339807A (zh) 小区选择重选方法、装置、终端及可读存储介质
CN107466058B (zh) 一种提高lte基站驻留比的方法及其装置
CN113891405A (zh) 一种小区选择方法及装置
JP6562818B2 (ja) 制御装置、端末装置、制御方法及びプログラム
CN114339722B (zh) 一种选网的方法、装置、芯片及模组设备
KR102471682B1 (ko) 액세스 포인트 간의 로밍 방법 및 로밍을 제공하는 단말기
US20230422122A1 (en) Cell reselection method and apparatus based on slice, and device and storage medium
US20230139924A1 (en) Cell Selection Method and Apparatus
US20220070745A1 (en) Cell reselection method and user equipment
WO2023130244A1 (zh) 信息上报方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922004

Country of ref document: EP

Kind code of ref document: A1